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Mixed trTLEP-structures and mixed

Frobenius structures

YoTAa SHAMOTO

We introduce the notion of mixed trTLEP-structures and prove
that a mixed trTLEP-structure with some conditions naturally
induces a mixed Frobenius manifold. This is a generalization of
the reconstruction theorem of Hertling and Manin. As a special
case, we also show that a graded polarizable variation of mixed
Hodge structure with H?2-generation condition gives rise to a fam-
ily of mixed Frobenius manifolds. It implies that there exist mixed
Frobenius manifolds associated to local B-models.
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A Frobenius manifold is a complex manifold whose tangent bundle is
equipped with a commutative product, a metric and a global section sat-
isfying a kind of integrability condition. The notion of Frobenius manifold
was introduced by Dubrovin [9] for the investigation of 2D topological field
theories. (The equivalent structure, called flat structure, was introduced by
K. Saito [27].) It has been shown that Frobenius manifolds naturally arise
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in many theories: the invariant theory of Weyl groups [28]; singularity the-
ory [7, 8, 26, 28]; Gromov-Witten theory [21]; the deformation theory of
Aso-structures [1], etc.

In some cases, we have an interesting isomorphism of Frobenius mani-
folds in two different theories. For instance, one of the goals in mirror sym-
metry is to prove that a Frobenius manifold constructed in a A-model is
isomorphic to the one constructed in the corresponding B-model.

However, in general, it is difficult to compare Frobenius manifolds .%# ©)
and .Z (M. A useful strategy is to split the problem into two steps as follows.

Step 1.: Show that each .Z® is constructed from more restricted set of
data 7 (i =0,1).

Step 2.: Show that 70 ~ 7).

The fact in Step 1 is called (re-)construction theorem. It depends on the
problem which data we choose. Following [14], let us consider the case of
tr'TLEP-structure.

Let M be a complex manifold and j : IP’%\ X M — IP%\ x M a map defined
by jx(A, t) :== (=, t) where ) is non-homogeneous coordinate on P} and ¢ is a
point in M. For an integer k, trTLEP(k)-structure on M is a tuple (H, V, P)
with following properties (Definition 2.13). H is a holomorphic vector bundle
on Pi x M trivial along IP’}\, V is a meromorphic flat connection on H;

(1.1) ViH—-+H® Q%DixM(log({O,oo} X M)) ® Opt ({0} x M).
P is V-flat non-degenerate (—1)*-symmetric pairing
(1.2) P:H @\ H = Optypr(—k{0} x M + k{oo} x M).

Hertling and Manin [14] showed the construction theorem for trTLEP-
structure. In other words, they proved that a trTLEP-structure with some
condition uniquely induces a Frobenius manifold. Then, they applied the
construction theorem to compare the Frobenius manifolds constructed from
isolated singularities, Frobenius manifolds associated to variation of polar-
ized Hodge structure of some family of hypersurfaces, and super Frobenius
manifolds in the deformation theory of A.o-structures.

Reichelt [23] defined the notion of logarithmic trTLEP-structure as a
generalization of trTLEP-structure and proved the construction theorem
for logarithmic Frobenius manifolds. Reichelt and Sevenheck [24] used the
construction theorem to refine the mirror symmetry theorem [11] for weak
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Fano toric manifolds. Here, we note that in [24], the result of Givental [11]
plays an important role at Step 2 of the strategy above.

1.2. Construction theorem for mixed Frobenius manifolds

The first main theorem of this paper is the construction theorem for mixed
Frobenius manifolds. We introduce the notion of mixed trTLEP-structure
and show that a mixed tr'TLEP-structure with some condition naturally in-
duces a mixed Frobenius manifold. The notion of mixed Frobenius manifolds
was introduced by Konishi and Minabe [19] to understand the local mirror
symmetry. Here we shall explain the notions of mixed trTLEP-structures and
mixed Frobenius structures, and the statement of the construction theorem.

The applications of the construction theorem to the local mirror symmetry
will be discussed in §1.4 and §1.5.

1.2.1. Mixed Frobenius structures and mixed trTLEP-structures.
Let M be a complex manifold equipped with holomorphic vector fields e
and E. Suppose that the tangent bundle ©;; has an associative commutative
product o, a torsion free flat connection V, and a V-flat increasing filtration
T = (Iy | k € Z). If the tuple (o, V, ¢, E, T) and sequence of metrics g = (g |
k€Z) on Grtoy = Dz Gr%@M satisfies some conditions, we call the
tuple . := (0,V,e, E,Z,g) a mixed Frobenius structure (MFS) on M. A
complex manifold equipped with a MFS is called mixed Frobenius manifold
(Definition 2.16).

Similarly, a mixed tr'TLEP-structure is a trTLEP-structure with a fil-
tration. Let H be a holomorphic vector bundle on P} x M trivial along P}
and V a meromorphic flat connection on # as in (1.1). If we are given an in-
creasing filtration W = (W, | k € Z) of V-flat subbundle on A and pairings
P=(Py | k€Z) on Gr"H such that (Gr) (H),V, P) is a trTLEP(—k)-
structure for any k, then we call the tuple 7 := (H, V, W, P) mixed trTLEP-
structure on M (Definition 2.14). As we will see in Proposition 2.19, a mixed
Frobenius structure .% on M naturally induces a mixed trTLEP-structure
T(Z) on M.

Let f: Mg — M; be a holomorphic map between complex manifolds.
A mixed trTLEP-structure 7 on M naturally induces mixed trTLEP-
structure f*7 on Mp. In particular, if we are given MFS .7 on a com-
plex manifold M and closed embedding ¢ : M < M then we have the mixed
tr'TLEP-structure 7 = ¢*7 (.%). This plays the role of the “restricted set of
data” in Step 1 in the strategy.
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1.2.2. Unfolding of mixed trTLEP-structure and the construction
theorem. Let (M,0) be a germ of a complex manifold and 7~ be a mixed
trTLEP-structure on (M,0). An unfolding of 7 is a tuple ((M,O),%,L,’L')
where ¢ : (M, 0) — (]\7 ,0) is a closed embedding , 7 is a mixed trTLEP-
structure on (M,0), and i : T =5 /*T is an isomorphism of mixed trTLEP-
structures. We can define the notion of morphisms of unfoldings of 7. Hence
we get the category of unfoldings of 7 denoted by Unfs (Definition 2.21).

If there exists a terminal object in inf;-, we call it universal unfolding of
T. We show that there is a universal unfolding ((M,0),7,¢,4) of 7 under
some conditions (Theorem 2.27). Moreover, we show that T is isomorphic
to T(F) for a MFS .# on (M,0) (Corollary 2.28). Hence we get the first
main theorem of this paper as follows.

Theorem 1.1 (Theorem 2.27, Corollary 2.28). Let T be a mized
trTLEP-structure on a germ of complex manifold (M,0). Assume that T
satisfies “some conditions”. Then there exists (uniquely up to isomorphisms)
a mized Frobenius structure F on a germ of a complex manifold (M ,0) such
that the induced mized trTLEP-structure T (F) gives a universal unfolding
of T.

This is a generalization of Theorem 4.5 in Hertling-Manin [14]. “Some
conditions” in this theorem is explained in Definition 2.8 and Definition 2.23.
We also give the definition of the equivalent condition for a special case in

§1.3.

1.3. Mixed Frobenius manifolds and variations of mixed Hodge
structure

Consider a graded polarizable variation of mixed Hodge structure (VMHS)
H = (Vg, F, W) on a germ of a complex manifold (M, 0). Here, Vg is a local
system of Q-vector space, F' = (F* | € Z) is a Hodge filtration on K :=
Vo ® Onr, and W = (W, | k € Z) is a weight filtration on Vg. If we fix a
graded polarization S = (S | kK € Z) on GrWV@ and an opposite filtration
U= (Up | ¢ € Z) (see Definition 3.1 for the definition of opposite filtrations),
then we have a mixed trTLEP-structure 7 (¢, S,U) by Rees construction
(Lemma 3.3).

For the mixed trTLEP-structure 7 = T (¢, U, S), “some conditions” in
Theorem 1.1 can be reformulated as a condition for . The condition is
called H2-generation condition([14]), motivated by quantum cohomology.
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Let V be the flat connection on K induced by 7. By Griffiths transver-
sality, we have a Higgs field 0 := Grp(V) : GrpK — GrpK ® Q}w,o- Put
w :=max{l € Z | Gr% K # 0}. Note that Gr® K = F*. The H?-generation
condition for 77 is the following.

(i) The rank of F is 1, and the rank of Gr2 ' K is equal to the dimension
of (M,0),

(ii) The map Sym ©pr0 ® F* — GrpK induced by 6 is surjective.

Let (y be a non-zero vector in F"|y. Then the condition (ii) is equivalent to
the condition that GrpK|y is generated by (p over Sym ©,r0lo and condi-
tions (i) and (ii) imply Opr0 ~ Grig ' K.

The following theorem is an application of Theorem 1.1 in the case of

T =T(2,U,5).

Theorem 1.2 (Corollary 3.6). Let 5 = (Vq,F,W) be a VMHS on a
germ of a complex manifold (M,0) with the H?-generation condition. Take
an integer w as above and a non-zero vector {y € F" |o. Fiz a graded polar-
ization S and an opposite filtration U on GrWV@. Then there exists (uniquely
up to isomorphisms) a tuple ((M,O),fi,L,i) with the following conditions.

1. #=(0,V,e,E,Z,g)is a MFS on a germ of a complex manifold (M, 0).
2. 11 (M,0) = (M,0) is a closed embedding.
3.

i T(A,U,8) = T(F) is an isomorphism of mized tr TLEP-structure
with i(0,0)(Co) = €lo-

1.4. Mixed Frobenius manifolds in local B models

We shall explain some applications of construction theorem to the local mir-
ror symmetry. Konishi and Minabe introduced the notion of mixed Frobe-
nius manifolds in [19, 20] to understand the local mirror symmetry. In [19],
they constructed mixed Frobenius manifolds for weak Fano toric surface. It
remains to construct mixed Frobenius manifolds for local B-models.

Mixed Frobenius manifolds for local B-models are expected to be con-
structed from variations of mixed Hodge structure ([18]). Using the results of
Batyrev [2] and Stienstra [31], Konishi and Minabe [18] gave a combinatorial
description for the VMHS in the local B-models.

Let A C Z? be a two dimensional reflexive polyhedron. We have the mod-
uli space M(A) of affine hypersurfaces in (C*)? (Definition 3.17). Let Vy C
(C*)? be a hypersurface corresponds to [f] € M(A). Fix a stable smooth
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point [fo] in M(A). Then the mixed Hodge structure on the relative co-
homology H?((C*)2,Vy), (f € M(A)) defines a VMHS A on the germ of
complex manifold (M(A), [fo]). Using the results of [18] and [2], we give a
sufficient condition for J# to satisfy the H?-generation condition in terms
of the toric data. As a consequence, we have the following theorem.

Theorem 1.3 (Corollary 3.26). Fiz a graded polarization S and an op-
posite filtration U for ), and take a non-zero vector (y € F2([fo]). Then,
there exists a tuple ((M,0), F,1,1) with the following conditions uniquely up
to isomorphisms.

1. % =(0,V,e, E,W,q) is a mixed Frobenius structure on (M, 0).
2. 1: (M(A),[fo]) — (M, 0) is an embedding.

3.0 : T(H#a,U,S) = *T(F) is an isomorphism of trTLEP-structure
with io,(1,))(Co) = €lo-

This theorem gives the mixed Frobenius manifolds associated to local
B-models.

1.5. Limit mixed trTLEP-structure and local A-models

We shall give a method to construct mixed trTLEP-structures from log-
arithmic trTLEP-structures. Let (M,0) be a germ of complex manifold
and (Z,0) C (M,0) a co-dimension 1 submanifold. If we are given a log Z-
trTLEP(0)-structure 7 (the definition of log Z-trTLEP-structure is given
in Definition 4.2 or [23, Definition 1.8]) satisfies some conditions, we have
a mixed trTLEP-structure 7z on (Z,0), which is called a limit mixed
trTLEP-structure (See Definition 4.7).

Let X be a weak Fano toric manifold. Let 7 be the dimension of H?(X, C).
For an apporopiate open embedding of H?(X,C)/2mv/—1H?(X,Z) to C",
we have the logarithmic tr'TLEP-structure T)?ma“ on a neighborhood V' of
0 € C", which is called the small quantum D-module ([24]).

Let S be a weak Fano toric surface and X be the projective compact-
ification of the canonical bundle of S. There is a divisor Z of V which
is canonically identified with a locally closed subset of the quotient space
H?(S,C)/2n\/—1H?(S,Z). For each z¢& Z, the logarithmic trTLEP-
structure 73! on (V,2) induces a limit mixed trTLEP-structure (7)z.
on (Z,z). Moreover, if z is close to 0 € C" enough, then (7). induces the
mixed Frobenius manifold constructed by Konishi-Minabe [19].
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2. Construction theorem for mixed Frobenius manifolds

The aim of this chapter is to prove the construction theorem for mixed
Frobenius manifolds (Corollary 2.28), which is a generalization of [14, The-
orem 4.5].

The symbol ]P’%\ denotes a projective line with non-homogeneous param-
eter A\. We identify a holomorphic vector bundle with the associated locally
free sheaf. For a holomorphic vector bundle K, we write s € K to mean
that s is a local section of K. We denote the dual vector bundle of K by
KV. When we consider filtrations, we always assume that the filtrations are
exhaustive. Hence we always omit “exhaustive”.

2.1. Mixed trTLEP-structures and mixed Frobenius manifolds

We define the notion of mixed trTLEP-structures and mixed Frobenius man-
ifolds. We show that a mixed Frobenius manifold always induces a mixed
trTLEP-structures. We also show that a mixed trTLEP-structure induces a
mixed Frobenius manifold under certain conditions.

2.1.1. trTLE-structures and Saito structures. Recall the definition
of trTLE-structures. Let M be a complex manifold and p) : IP’}\ XM — M
a natural projection.

Definition 2.1 ([13, 14]). A pair (#, V) is called a trTLE-structure on
M if the following properties are satisfied:

1. H is a holomorphic vector bundle on IP’; X M such that the adjoint
morphism pipy,H — H is an isomorphism,

2. V is a meromorphic flat connection on H with pole order 1 along
{0} x M and logarithmic pole along ({oco} x M) :

Vi H = H @ Qo (10g({0,00} x M)) @ Oy ({0} x M).

A morphism of trTLE-structures is a flat morphism of holomorphic vector
bundles.

Remark 2.2. For a trTLE-structure (H, V) and a complex number ¢, the
pair (H,V + c-idy A~d)) is also a trTLE-structure.
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We recall the definition of Saito structure (without a metric) in [25].
Let M be a complex manifold and p) : IP’%\ x M — M a natural projection.
Suppose that its tangent bundle ©); is equipped with a symmetric Higgs
field 6, a torsion free flat connection V, and two global sections e and FE.
We have endomorphisms VFE and 0 defined by a — V,F and a — 6g(a)
for a € O,,.

Definition 2.3 ([25, Definition VII. 1.1]). The tuple S := (0, V, e, E) is
called a Saito structure on M if the following conditions are satisfied.

1. The vector field e is V-flat and 6.a = —a for all a € ©,,.

2. The following meromorphic connection V on P3O is flat:

dA

- 1 1
(2.1) Vi=piV + -p\b — (piGE + in.E) 3

A A

The vector field e is called the unit vector field and F is called the Euler
vector field.

Remark 2.4. 1. The tangent bundle ©j; has the structure of a com-
mutative associative Oys-algebra defined by a o b := —0,b (a,b € O ).
The unit vector field e is the global unit section of this algebra.

2. The flatness of V is equivalent to the condition that the equations
V(o) =0, V(V,E) =0, and Lieg(o) = o hold.

By definition, a Saito structure always induces a trTLE-structure.

Lemma 2.5. Let S :=(0,V,e, E) be a Saito Structure on a complex man-

~

ifold M. Then the pair (p3©r, V) is a trTLE-structure on M. O
We recall the definition of Frobenius type structure.

Definition 2.6 ([13, Definition 5.6]). Let K be a holomorphic vector
bundle over a complex manifold M. A Frobenius type structure on K
consists of a flat connection V" on K, a Higgs field C on K, and endomor-
phisms U,V € End(K) such that

(2.2) VI(C) = V(V) = [C,U] = 0,
(2.3) VI(U) —[C,V] +C = 0.
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We remark that this definition of Frobenius type structure lacks the pair-
ing comparing with [13, Definition 5.6]. There is a correspondence between
a tr'TLE-structure and a Frobenius type structure as follows.

Lemma 2.7 ([13, Theorem 5.7]). Let (H,V) be a trTLE-structure on a
complex manifold M. There exists a unique Frobenius type structure (V*,C,

U,V) on H|x=¢ such that

(2.4) V=nVi+ i+ </\pAU —pAV) N

via the natural isomorphism H ~ p3(H|x=o0). We call it the Frobenius type
structure associated to (H, V).

Proof. Let a be a local section of O ;. Extend the section a constantly along
IP)}\ and denote it by a. Similarly, take a local section s of H|y—¢ and extend
it to the local section 5 of H. Define C,s as the restriction of AVzs to A = 0.
Define Us as the restriction of AV g, s to {\ = 0}. Since the flat section V is
pole order 1 along {A = 0}, the morphism (a, s) — C,s defines a Higgs field
on H|y=o and s — Us defines an endomorphism on H|y—o.

Since V is regular singular along {A = oo}, we have the residual connec-
tion V** and the residue endomorphism Resy—~V on H|y—~. By the con-
dition 1 in Definition 2.1, we have a natural isomorphism H|x—oo ~ H|r=0-
Using the isomorphism, regard V™ as the connection on H|y—¢ and denote
it by V'. Similarly, regard Resy—~V as a endomorphism on H|y—¢ and de-
note it by V. One can check the equation (2.4). The flatness of V implies
(2.2) and (2.3). The uniqueness is trivial by construction. O

Definition 2.8 ([14]). Let (H, V) be a trTLE-structure on M. Let (V*,C,
U,V) be the Frobenius type structure associated to (H,V). Assume that
there is a V'-flat global section ¢ of H|y—o.

e The section ( is said to satisfy the injectivity condition (resp. the
identity condition) when the induced morphism

(2.5) CoC 1 Onr — Hr=0

defined by a — C,¢ (a € ©)y) is an injective morphism (resp. an iso-
morphism).
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e Take a complex number d. The section ( is said to satisfy the eigenvalue
condition for d (with respect to (#, V) ) if the following equation holds.

(2.6) V¢ = gg.

We denote by (IC), (IdC), and (EC), the injectively condition, the identity
condition and the eigenvalue condition for d respectively.

Remark 2.9. Let (H,V), (V',C,U,V), and ¢ be as in Definition 2.8.
Fix complex numbers ¢ and d. The Frobenius type structure associated
to (H,V —c-idgA7tdN) is (V5,C,U,V +c-id). If ¢ satisfies (EC), with
respect to (H,V), then it satisfies (EC), ,, with respect to (H,V —c-
idA~td)).

Let § =(0,V,E,e) be a Saito structure on a complex manifold M.
By Lemma 2.5, we have the trTLE-structure (p3©ar, V). Comparing the
equations (2.1) and (2.4), we can check that the Frobenius type structure

associated to (p}‘\@M,@) is (V,0,05, VE).
Lemma 2.10. The unit vector field e satisfies (IC) and (EC)a.

Proof. The condition 1 in Definition 2.3 implies that the unit vector field e
satisfies (IC). Since V is torsion free and e is V-flat, V.E = Ve — [E,e] =
—[E, e]. By Remark 2.4,

[E,eoe] — [E,e]Joe—eo[E,e] =coe.
This implies —[E, e] = e. Hence e also satisfies (EC)a. O

Let (H,V) be a trTLE-structure on M. Let (V*,C,U,V) be the Frobenius
type structure associated to (H, V). Assume that we have a global V'-flat
section ¢ of H|y—¢ with (IdC) and (EC)s2. Put p:= —Ce( : Opr — H|r—0-
Using this isomorphism, regard V (resp. C) as a flat section (resp. Higgs field)
on O and denote it by the same letter. Put e := p~1(¢) and E := p~1(UC).
The following proposition is essentially proved in [14] and [23].

Proposition 2.11. o The tuple Sy ¢ = (C, V', e, E) is a Saito struc-
ture on M.
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e Sy ¢ is the unique Saito structure on M such that p(e) = ¢ and the
morphism

pa(p) 1 P3O = pA(H|r=0) = H

gives an isomorphism of trTLE-structures between (p’)‘\@M,@) and
(H,V). O

We conclude this subsection with the following corollary.

Corollary 2.12. Fiz a complex number d. Put ¢ := (2 —d)/2. Let M be a
complex manifold and py : ]P’%\ X M — M a natural projection.

1. If § is a Saito structure on M, then Hs 4 := (p3Owm, V+e- idA\~td)\)
is a tt'TLE-structure such that the unit vector field satisfies (1dC) and
(EC)a.

2. Let (H,V) be a trTLE-structure and (V*,C,U,V) the associated Frobe-
nius type structure. Let ¢ be a V*-flat global section of H| = satisfying
(IdC) and (EC)4. Then there is a unique Saito structure S on M such
that the unit vector e satisfies —C.( = ¢ and the morphism

—PA(CeC) 1 P3OM = PA(H|r=0) = H
giwes an isomorphism of trTLE-structures between Hs 4 and (H,V).

Proof. The first assertion is easily checked by using Lemma 2.10 and Re-
mark 2.9. Let (H,V) and ¢ be the same as in the second assertion. By Re-
mark 2.9, ¢ satisfies (IdC) and (EC), with respect to (H,V — ¢ - idyA71dN).
Hence by Proposition 2.11, there exists a unique Saito structure S such that
—Ce( = ¢ and —p3(Ce() gives an isomorphism of trTLE-structures between
(p3Oar, V) and (H,V — ¢ - idy A~ 1dN). O

2.1.2. Weight filtrations, graded pairings, and Frobenius filtra-
tions. Let M be a complex manifold. Let j) : IF’}\ X M — IP’%\ x M be the
morphism defined by jx(A,t) = (=, t) where A is the non-homogeneous co-
ordinate on IP’%\ and t is a point in M. For two holomorphic vector bundles £
and F , we denote by o the natural isomorphism £ ® F — F ® £ given by

eRf—=fRe (e€&, feF).

For an integer k, we denote the invertible sheaf Op: , 5 (—k{0} x M +k{oo} x
M) by )\kOp}\X - Let H be a holomorphic vector bundle on P} x M. Let
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P:H®jj\H— NE Op1 »pr be a morphism of Op:  pr-modules. The morphism
P is called (—1)*-symmetric if j{P = (—~1)*Poo, and it is called non-
degenerate if the morphism H — (j3H)" induced by A"*P is an isomor-
phism.

Recall the definition of trTLEP(k)-structures.

Definition 2.13 ([13]). Let (X, V) be a trTLE-structure on M and fix an
integer k. If a morphism of Op: , y-modules P : H ® jiH — )\k(’)PixM is V-
flat, (—1)F-symmetric, and non-degenerate, then we call the triple (#, V, P)
a trTLEP (k)-structure. We also call the morphism P a pairing of the
trTLEP (k)-structure.

We introduce the notions of filtered trTLEP-structures and mixed
tr'TLEP-structures.

Definition 2.14. Let (#H,V) be a trTLE-structure on M.

1. An increasing filtration W = (Wj, | k € Z) of V-flat subbundles in H
is called a weight filtration of (7, V) if the subquotient Gr})/ H :=
Wi /Wi_1 is a trTLE-structure for every integer k. We call the triple
Tare := (H,V, W) a filtered trTLE-structure if (H,V) is a trTLE-
structure and W is a weight filtration of it.

2. Let W be a weight filtration of (#H, V). A sequence of morphisms
Pi=(Pp: Gr H® j5Gr) H = X Opi s | k € Z)

is called a graded pairing on the filtered tr'TLE-structure Tgi =
(H,V,W) if the triple (Gr}¥ (H),V, Py) is a trTLEP(—k)-structure
for every integer k. We call the pair 7 := (Tgi, P) a mixed trTLEP-
structure if gy is a filtered trTLE-structure and P is a graded pairing
on it.

Isomorphisms of these structures are the isomorphisms of underlying tr'TLE-
structures which preserves the weight filtrations and graded Pairings.

Remark 2.15.

e We can define pull-backs for mixed trTLEP-structures. Let f : My —
M; be a holomorphic map and 7 = (H, (Wy)k, (Pk)x) a mixed trTLEP-
structure on  Mj. Then f*T := ((idps x f)*H, {(idp1 x f)*Wp},
{(idp1 x f)*Py}) is mixed trTLEP-structure on Mp.
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o Let 7 = (H,V,W, P) a mixed trTLEP-structure and ¢ a half-integer.
Then if we put W(€)g := Wiyoe and P(£);, := A** Py 90, the tuple
(H,V — lidyA~tdX\, W (), P(€)) is a mixed trTLEP structure. We de-
note it by 7(¢) and call it the Tate twist of T by /.

e A trTLEP(k)-structure 7 can be regarded as a mixed trTLEP-
structure by the canonical way. The Tate twist 7 (¢) gives a tr'TLEP (k +
20)-structure for every half-integer /.

We recall the definition of mixed Frobenius structure introduced in
[19, 20]. Let S = (0,V,e, E) be a Saito structure on a complex manifold
M. A subbundle J C ©) is called f-invariant (resp.V-flat) if 0,y € J
(resp.Vyy € J) for all x € Oy, y € J. A subbundle J C O, is called E-
closed if Lieg(y) = [E,y] € J for ally € J. If J is V-flat, the E-closedness
of J is equivalent to the condition that V,FE € J for all y € J.

Definition 2.16 ([19, Definition 6.2],[20, Definition 4.5]). Fix a com-
plex number d. Let Z = (Zy, C Oy | k € Z) be an increasing filtration of 6-
invariant, V-flat, and E-closed subbundles on ©;. Let g = (gi : Gr%@ M®
Gri©) — Oy | k € Z) be a sequence of V-flat symmetric morphisms. The
pair (Z,g) is called a Frobenius filtration on the Saito structure S of
charge d if they satisfy the following equations for all integer k:

(2.7) 902y, 2) = gr(y.0:2) (v € Oy, 2 € GriOyn)
(2.8) LieE(gk) = (2 —d+ k)gk.

A triple .7 := (S,Z, g) is called a mixed Frobenius structure (MFS) on
a complex manifold M if S is a Saito structure on M and (Z, g) is a Frobenius
filtration on S. A complex manifold equipped with a MFS is called mixed
Frobenius manifold.

Remark 2.17. e This definition of Frobenius filtrations (and MFS) is
slightly different from the one in [19, 20]. A MFS (S,Z,g) gives a
Frobenius structure if Z_; = 0 and Zg = O),.

e Let .# =(S,Z,g) be a MFS of charge d and ¢ a half-integer. If we
put Z(€)g := Tyqoe and g(£)y, := grroe, then F(€) := (S,Z(£),g(L)) is
a MFS of charge d — 2¢.

Let % =(S,Z,g) be a MFS on a complex manifold M of charge d.
The underlying Saito structure S induces a trTLE-structure Hs 4 (Corol-
lary 2.12). Put Wz, := piZy, and Wz := (W<zy | k € Z).
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Lemma 2.18. Wz is a weight filtration on Hs q.

Proof. Recall that Hs g = (p50ar, V + cA~'d)\) where V is given in (2.1)
and ¢ = (2 — d)/2. Since each Z, is #-invariant, V-flat, and E-closed, Wz, =
3Ly is (V+c- idp; ,, A~ 'dA)-flat. The natural isomorphism GrkWI (PR Om) ~
ijrf@ a shows that Wz is a weight filtration. O

We denote GI‘ZVI (p3©m) by Gr?fI (Hs,a)- For each integer k, let Py be a
morphism given by the following composition:

px T d®j” z z
Gr}* (Hs q) © j5Gr) 7 (Hs a) “—2s Gr}Y* (Hs.a) © Gr} * (Hs 4)

AT pRlgn) -
i k)> A kO]P’ixM'

Proposition 2.19. Put Py:= (P, | k€Z). Then T(F):=((Hs,a, Wz), Py)
1s a mized trTLEP-structure.

Proof. We need to show that (G‘rrkWZ (Hs.d), Py i) is a trTLEP(—Fk)-structure
for each integer k. Since g is symmetric and non-degenerate (and by con-
struction), Py is (—1) *-symmetric and non-degenerate. Hence it remains
to show that P, is (@ +c- idp;@M)\_ld)\)—ﬂat. This follows from the equa-
tions (2.7) and (2.8), the fact that g is V-flat, and some easy calcula-
tions. O

The following proposition describes a correspondence between mixed Frobe-
nius structures and mixed trTLEP-structures.

Proposition 2.20. Let T = (H,V,W, P) be a mized trTLEP-structure on
a complex manifold M. Let (V*,C,U,V) be the Frobenius type structure as-
sociated to the underlying trTLE-structure (H,V). Assume that there is a
V*-flat global section ¢ of H|x=o satisfying (I1dC) and (EC)q for a complex
number d. Then there exists a unique MFS % on M of charge d such that
the unit vector field e satisfies —Co.( = ¢ and the morphism

(2.9) —pX(CeC) : PXOM = PA(H[r=0) = H
gives an isomorphism of mized trTLEP-structures between T (%) and T .

Proof. By Corollary (2.12), we have a unique Saito structure S such that
(2.9) gives an isomorphism between Hs 4 and (H,V). Put p:= —Ce( and
Twy = p~ (Wi|r=0). Since Wy, is V-flat, Wy —o is V'-flat, C-invariant, and
closed under & and V. Recall that the flat connection and Higgs field of S
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are identified with V' and C via pu. If E is the Euler vector field of S and
¢=(2—-d)/2, the endomorphism VL E is identified with V + c-idg,, via
. Hence Ty, is E-closed. Let gpy be the restriction of A*P to {\ = 0}
and put gp := (gpk | k € Z). Then via (2.9) and the natural isomorphism
(P3Om)|r=0 = Onm, gpi gives a symmetric, V'-flat, non-degenerate pairing
on GriO); satisfying (2.7) and (2.8), which we denote by the same letter.
As a conclusion, the pair (Zy, gp) is a Frobenius filtration on S and hence
F = (S,Zw,gp) is a MFS on M. It is easy to check that (2.9) gives the
isomorphism 7 (.%#) ~ T. The uniqueness of such .# is trivial by construc-
tion. ]

2.2. Unfoldings and the construction theorem

For a complex manifold M and a point 0 € M, we denote by (M,0) the
germ of manifold around 0. Let (#, V) be a trTLE-structure on (M, 0), and
(V',C,U,V) the associated Frobenius type structure on H|y—o(Lemma 2.7).
Let ¢ be a V'-flat section of H|x—o. Then ( satisfies (IC) (resp. (IdC)) if and
only if the map (2.5) is injective (resp. isomorphism) at 0 € (M, 0).

Let (p be a non-zero vector in H|(g ) and take the V'-flat extension
¢ € H|r=o. The vector (p is said to satisfy (IC) (resp. (IdC)) if ¢ satisfies
(IC) (resp. (IdC)).

2.2.1. Statements of the unfolding theorem and the construction
theorem. We define the category of unfoldings of mixed trTLEP-structures.

Definition 2.21 (cf. [14, Definition 2.3]). Fix a mixed trTLEP-structure
T on (M,0).

(a) An unfolding of 7 is a mixed trTLEP-structure 7 on a germ (M, 0)
of complex manifold together with a closed embedding ¢ : (M,0) —
(M,0) and an isomorphism i : T ~ (*T.

(b) Let ((M, 0),’7’,L,z’) and ((M/,()),%/,L/,i/) be two unfoldings of 7. A
morphism of unfoldings of 7 from ((M, 0),7,¢, i) to ((M’,O), T,
V') is a pair (i, ¢) such that

o p: Q\Z, 0) _L(M/’ 0) is a holomorphic map with ¢ or =/, and
o ¢:T = o*T"is an isomorphism of mixed trTLEP-structure with

i=1"(p)od.

We denote the category of unfoldings by Unf,. A terminal object of LUnfr is
called a universal unfolding of 7T if it exists.
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Remark 2.22. Let ((M, 0),%, t,7) be an unfolding such that (M, 0) =
(M x C',(0,0)) and ¢ is the inclusion. Then we denote the unfolding by
((M x CL0),T, 2) Every unfolding is isomorphic to such an unfolding.

Let (H,V) be a trTLE-structure on (M,0), and (V*,C,U,V) the asso-
ciated Frobenius type structure. Recall that C is a Higgs field and U/ is an
endomorphism on H| —¢. Let A be the sub-algebra in End(#|y\—¢) generated
by {Cz | € ©Onr0} and U. The relation (2.2) implies that A is a commuta-
tive algebra.

Definition 2.23. A V'-flat section ( is said to satisfy the generation
condition ((GC) for short) if it generates H|y—o over A, i.e. A = H|r=o.

Remark 2.24. A V'-flat section ( satisfies (GC) if and only if its re-
striction to (0,0) € P} x M generates H|( o) over Al ). A non-zero vector
Co € H|(0,0) is said to satisfy (GC) if its V'-flat extension ¢ € H[ =g satisfies
(GC).

Lemma 2.25. If a V'-flat section ¢ satisfies (GC), then the map A —
Hlr=0, a— a(C) is an isomorphism of O o-modules.

Proof. Let a,a’ be two endomorphisms in A such that a(¢) = a/(¢). For
any section s € H|x—o, we have b € A with b(¢) = s by (GC). Since A is a
commutative algebra, we have a(b(¢)) = b(a(¢)). This implies a(s) = a'(s)
and hence a = a'. O

Remark 2.26. Let ((M, 0),7, t,7) be an unfolding of a mixed trTLEP-
structure 7 on (M,0). Let (H,V) (resp. (H,V)) be the underlying trTLE-
structures of 7 (resp. 7). The restriction of i to (0,0) € P} x (M,0) is an
isomorphism | oy : H|(0,0) — ’H| 0,0) of vector spaces. If a non-zero vector
Co € Hl(0,0) satisfies (GC) or (EC)d, then i[(g,0)(Co) satisfies the same con-
dition. On the other hand, even if (y satisfies (IC) or (IdC), i[(g,0)(¢o) does

not necessarily satisfy the same condition.
The following theorem is the first main theorem of this paper.

Theorem 2.27 (Unfolding theorem). Let T be a mized trTLEP-
structure on a germ (M,0) of complex manifold and (H,V) the underly-
ing trTLE-structure. Let (o be a non-zero vector in Hloo satisfying (IC) and
(GC). Then there exists a universal unfolding of T. Moreover, an unfolding
((M,0), T, i) is universal if and only if the vector il (0,0)(Co) satisfies (IdC).
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This theorem will be proved in §2.2.2. Using this theorem, we have the
following.

Corollary 2.28 (Construction theorem). Let T, (H,V), and {y be the
same as in Theorem 2.27. Assume moreover that (o satisfies (EC), for a
complex number d. Then there exists a tuple ((M, 0), #,1, z) with the fol-
lowing properties uniquely up to isomorphisms.

1. F is a MFS of charge d on a germ (M, 0) of a complex manifold.
2. 0:(M,0) — (M, 0) is a closed embedding.

3.1:T = *T(F) is an isomorphism of mized trTLEP-structure such
that e(0) = i[(0,0)(Co)-

Proof. By Theorem 2.27, we have a universal unfolding ((M , 0),7~’, L z) of
T. Since i|(0)(Co) satisfies (IdC) and (EC); (Remark 2.26), there is a
unique MFS .# on (]\7 ,0) such that the morphism (2.9) gives the isomor-
phism 7 (%) ~ T (Proposition 2.19). This gives the existence of the tuple
((M ,0), F 1, z) The universality of the unfolding and the uniqueness of the
MFS in Proposition 2.19 imply the uniqueness of the tuple. O

This is a generalization of the Theorem 4.5 in [14].

2.2.2. A proof of the unfolding theorem. In this section, we give a
proof of Theorem 2.27. We define the category of unfoldings of a (filtered)
tr'TLE-structure as in the case of mixed trTLEP-structure.

Proposition 2.29. Let Tgy be a filtered trTLE-structure on a germ of
complex manifold (M,0) and (H,V) the underlying trTLE-structure. Let (o
be a vector in H| oy satisfying (GC) and (IC). Then, a universal unfolding
of Tar exists and is characterized by the same condition as in Theorem 2.27.

To prove this proposition, let us prepare some notions. Let (V*,V,C,U)
be the Frobenius type structure on H|y—o associated to (H, V). Let V4 the
vector space of V'-flat sections of H|yx—g. The dimension of V3 is equal to the
rank of H. In fact, there is a canonical isomorphism (O ® V34, d ® id) —
(H|x=0, V") of flat bundles on the germ of manifold (M,0). We also note
that for each unfolding H of trTLE-structure, the restriction map Vz — Vy
is an isomorphism.

Fix a V'-flat section ¢ € H| —¢. Since V*(Cs() = 0 as a section of H|y—¢ ®
911\4,07 there is an unique section 1 € H| =g such that ¢)¢(0) = 0 and V') =
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Ce(. If we consider 1) as a holomorphic function v : (M,0) — (V3,0) via the
identification H|yx—p =~ Vi ® Opr , we have dip = Co(.

When we are given an unfolding ﬁilt of Tait, we have a unique V-flat
section ¢ such that its restriction to (M, 0) equals to (. Then the restriction
of the holomorphic function Vg to (M, 0) equals to 9.

Lemma 2.30. Let Ty = (H,V, W) be a filtered trTLE-structure on a germ
of complex manifold (M,0). Let ¢ € Vy be a V'-flat section with (GC). Let
Y be the holomorphic function on (M x C!,0) such that Ylarxgor,0) = Ye-
Then, there exists a unique unfolding ((M x C',0), Tare, z) such that ) = ¢E.

Remark 2.31. e We can regard V3 as a vector space of global sec-
tion of H whose restriction to {\ = 0} is V"-flat. From this point of
view, we have a natural isomorphism of holomorphic vector bundles
O]P’}\X(M,O) QRVy — H.

e Let Ty = (H,V, W) be filtered trTLE-structure. Since (Wy(H), V) is

also a trTLE-structure, we have a filtration Wy, (Vay) := Viy, (3) on V.
We have a canonical isomorphism of filtered vector bundles

(2.10) (1, W) =~ (Vi ® Op1 x(a1,0)» AWk (Vi) © Ot (a1,0) i) -
e Define an algebra P} of Endc(Vy) by
(2.11) Py = {a € Endc(Vy) | a(Wy) C Wy, for all k € Z}.

Then A can be regarded as a subalgebra of Pq‘r/‘[ ® O, via the natural
isomorphism H|yx—¢ =~ V3 ® O .

Proof of Lemma 2.30. We may assume [ = 1. Put (]T/f, 0):=(MxC,0), H:=
O]P;x(z\?,o) ® Vg, and W}, := OIP’ix(JTJ,O) ® Wi(Vy). We will prove the exis-
tence and uniqueness of a meromorphic differential form 2 with values in
}End(ﬁ) such that V :=d+ Q defines the desired filtered trTLE-structure
T == (H, V,W).

Take a coordinate (¢,y) := (t1,t2,...,tm,y) on (M x C,0). Put P(n) :=
P}/ @ (Owolyl/(y)™*) for every non-negative integer n. Let (V*,C,U, V) be
the Frobenius type structure associated to (H, V), and put C’i(o) 1= Cojon, (i =
L...,m),U9 =1, and V(O := V. Identifying H|yx—o and Opro @ V3, we
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regard C’i(o), U and V(© as a element of P(0). The meromorphic differen-
tial form Q0 := V — d is written as

1 & d\
: 0) _ 1/(0)
(2.12) Q0 =3 E:: Jat; + (AU 1% ) .

Claim 2.32. For every non-negative integer n, there uniquely exist (C’i(n),
U™ vy c P(n) and Clsn_l) € P(n—1) with the following properties.
Here, we put P(—1) := P(0).

e The equations

(n—1) _ (n) _ ~(0) (n) _ 17(0) (n) _ y/(0)
(2.13) Cy 0, C; c;’, U v, v Vv

are satisfied in P(0).

e The equations

n) o™ (n)
() iy _ 9C _9Y5 T ) ppmyy _ OV
(n)
(2.15) U v, ) - o
ot;
are satisfied in P(n).
e The equations
(n) (n—1) (n)
(n) (n—l) _ 602 B 80:[/ _ (TL—I) (TL) _ av _

(2.16) [C;7,C" ] ay ot Cy LU ay 0,

8U(n n—1 n—1 n—1
(2.17) T v =] — ¢

are satisfied in P(n — 1). Here 9/0y : P(n) — P(n — 1) is induced from
the differential.

e The equation

(2.18) i) = dy ( i )

is satisfied in Vg ® (Onrolyl/(y)"™)
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Proof of Claim 2.32. We use an induction on n. In the case n = 0, the flat-
ness of V and the equation (2.12) imply (2.14) and (2.15). Since C’ZS_I),
oU© /oy, 801.(0)/83/, and V() /9y are zero, the equations (2.16), (2.17),
and (2.18) are trivial. The induction step from n to n + 1 consists of the
following three steps:

Step 1.: Construction of C’z(,n) € P(n) as a lift of Cé"_l) so that Cén)
together with Ci(n), U™ satisfies the part [CZ.("), CZS")} = [U(n)7 Cé”)] —
0 of (2.16) in P(n), and (2.18) in Vi ® (Onrolyl/(y)"+L).

Step 2.: Construction of Cz(n+1),U("+1),V(”+1) € P(n+1) as a lift of
C’i(n), U™ V(") such that conditions (2.17) and the part GCZ-(”H)/ay —
801(,71“)/8751- = oV (D) /9y = 0 of (2.16) are satisfied in P(n).

Step 3.: Check that C’Z-(nﬂ),U("H),V("“) satisfy the conditions (2.14)
and (2.15) in P(n + 1).

Let A™ be a commutative subalgebra of P(n) generated by Cl-(n) and U™,
By (GC), the map A™ — V3 ® (Oprolyl/(y)" ) defined by a +— a(() is an
isomorphism. Take Cqu(,n) as the inverse image of diy(9/0y) of this isomor-
phism. This completes Step 1. Step 2 is obvious. To prove Step 3, we use the
derivation 0/0y, the equations (2.16), (2.17), and the induction hypothesis.
For example, in P(n), we have

0 <8U(7’L+1) B [V(n+1)’0(n+1):| +C(TL+1)>

dy ot; E
o outn [ ac VT acittY
= — i V n 2 3
ot; Oy T Oy oy
0 ocy” | acy
. ) oM _ oM _ m) =y | Ty
ot; { [V ’ Cy ] Cy } { Vi, ot; ot;
=0.
This implies that the equation (2.15) holds for n 4+ 1. The equation (2.14)
is proved similarly. (|

(2

phisms C;,U, V, and C, in P}j ® Onro[[y]]. We show that they are actually
convergent.

The sequences (C-(n))n, (U (”)) , (V(”))n, and (C?Sn))n give formal endomor-

Claim 2.33. The endomorphisms C;, U, V', and Cy are in P;V{V ® O37 -
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Proof of Claim 2.33. Let ey (1<k< r = rank H) be a V'-flat frame of
H|r—0. Regard the endomorphisms on H|y—g (or on its formal completion
H|) @ Onrolly]]) as r x r matrices. Put N :=r?(m +2) and let X(t,y) €
CN @ Opro[ly]] be a N-dimensional vector valued (formal) function whose
entries are the entries of C1,...,Cp,, U, and V. Similarly, let X© e CN @
Owum,0 be a N-dimensional vector valued holomorphic function whose entries
are the entries of C’{O), .. ,Cﬁg),U(O), and V(. The order of entries are
chosen to satisfy X (t,0) = X©)(¢).

Let o/ be a subalgebra of P}/’ ® Or0[[y]] generated by C1, ..., Cp,, and
U over Opp[ly]]. By (GC), the map &/ — H| =0 ® Onmo[[y]] given by a —
a(¢) is an isomorphism. Therefore, .27 is free O o[[y]]-module of rank r. Take
monomials Gy, ..., G, in the endomorphisms C1, ..., C),, U which form an
Owrpl[y]]-basis of o7. Then, there are formal functions g; € Onrp[[y]] (1 <
j <) such that

(2.19) Cy=> g;Gj.
J=1
By (2.18), we have

(2.20) ji‘lngj@ ~aw ().

Since G; are monomials in C1,...,Cyy,, and U, there exist 7 X r-matrix val-
ued  functions  Q;(t,z) such  that the entries are in
C{t}[z1,x2,...,zn]| and G,(t,y) = Q; (t,X(t,y)). Therefore, by the equa-
tion (2.20) and the fact that {G](g) |1 <j <r} form a frame of H|y—o ®
Ownrolly]], there exist convergent power series ¢;(t,y,x) € C{t,y,z} such
that g;(t,y) = ¢; (t, y,X(t,y)). Put Q := Zj ¢;Qj. Then by (2.19), we have
Cy = Q<t7y7X)'
By (2.16) and (2.17), we have the equations

oo _oc, ov_ v
oy o, oy 0 Oy

V. Gyl + Gy
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Using the expression C), = Q(¢,y, X) and these equations, we can regard
X(t,y) as a formal solution of the following partial differential equation

0X = 0X
X(t,0) = XOt)

where A;(t,y,z), (1 <i<m) are N x N matrix whose entries are in
C{t,y,x} and B;(t,y,x) is N-dimensional vector whose entries are also in
C{t,y,z}. The theorem of Cauchy-Kovalevski implies that X (¢,y) actually
converges. Therefore, C;, U,V are all homomorphic and hence Cj is also

holomorphic by (2.19). O
Put
1 [ 1 dA
2.21 Q= dt; v-v)¥
(2.21) )\(;C’dt +Cydy>+<)\U V) s

and V := d + Q. Then the equations (2.13) imply that the restriction of ?
to (M,0) is V. The equations (2.14), (2.15), (2.16), and (2.17) imply that V
is flat. And the equation (2.18) implies 1) = ¢Z- This proves the existence of
the unfolding. The uniqueness in Claim 2.32 implies the uniqueness of the
unfolding. OJ

Proof of Proposition 2.29. By (IC), v¢ : (M,0) — (V34,0) is closed embed-
ding. Hence there exist a non-negative integer [ and an isomorphism 1) :
(M x C',0) = (V,0) such that Yl (arxfoy,0) = Y¢- Applying the lemma 2.30
for this 1, we have an unfolding ((M x C',0), Tgy,4) such that wc =) and
hence 5.5 :O(mrxct0) = ’ﬁ\ A—o 18 an isomorphism. It is easy to check that
this unfolding is the universal unfolding. O

The following proposition together with Proposition 2.29 proves Theo-
rem 2.27.

Proposition 2.34. Let T = (H,V,W, P) be a mized trTLEP-structure.
Assume that there is a vector (o € H|(o,0y with (GC). Then, for any unfolding
((M, 0), Tites Ly z) of the underlying filtered tr TLE-structure (H,V, W), there
exists a unique sequence of graded pairings P on 7~}ﬂt such that ((]\7, 0),
(Tee, P), 1,4) is an unfolding of the mized trTLEP-structure T .
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Proof. We may assume that (M, 0) = (M x C,0). Let (#,V) be the un-
derlying trTLE-structure in 7~}ﬂt and W the weight filtration. Fix an arbi-
trary integer k. The graded pairing P}, uniquely extends to a V-flat sec-
tion P}, on Grk (ﬁ) over Cy x (M x C,0). We need to show that it takes

values on Gr}’ (H) in )‘_kOPix(M,OI As in Remark 2.31jnd in the proof
- b1 x (17,00 © Vi Wi = Opi(77,0) @
Wi (V). Put Q = V — d and coordinate (t,y) = (t1,...,tm,y) on (M x C,0).
Then as in the proof of Lemma 2.30, we have equation (2.21) where C;, C,,
U,V are the elements of P;‘flv ® 01\7,0‘ Let Cj ), Cy, k] Uy, Vix) be the image
of C;,Cy,U,V via the morphism P;f}/ ®O70 — End(GrZV(VH)) ® O310
Define () by the following equation: 7

1 (& 1 dA
g = (Z Cipdti + Cy,[kldy) + <AU[JJ V[k])
=1

Then d + Q[E] is the flat connection on Gr}? (7—7) induced by V.
Giving Py is equivalent to give a morphism

of Lemma 2.30 we can normalize H = O

- .
on (@R o (@R

€3 x(M,0)

y (¢p, (u),v) = ]Bk(u v) where (e o) is the natural pairing. Since H=
O «(WF.0) Vi, and Wk (’)Pl «(3.0) © Wi (V4 ), the morphism ¢p, can be

regarded as a global section of Ek ® (9 « (BT,0) where

By, = Hom(Grf! (Vay), (Gr{W(vj*H))V).
The flatness condition for ﬁk is equivalent to

dop, = Qo dp, +dp, 3%

which means

0 1

(2.23) ¢P

3 (CVH o5, — 9B

k

(2.24) Aa% - X(U[k] 0 pp — b5 0 AUm) — (Vi o dp, + b5 0 iiVin)-
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et e the equivalent class in F ® cx x (M,0) WY/ (Y represente
Let ¢ be th lent cl Ex @ (Ocsxaro) W]/ ()" ) d

by d>~ Then qS( ) is a global section of Fp ® A~ O]pl «(M,0) since (H, W, P)
is a mlxed trTL]*fP structure.

Claim 2.35. The pairing (ﬁg) gives a global section of

Er, @ (A" Opy a0y W]/ ()" 1)
for every non-negative integer n.

Proof of Claim 2.35. We use an induction on n. The case n = 0 is explained
above. Suppose that ¢~ Jisa global section of Fy® ()\ kOPi x (M0 )[y}/(y)”)

Let C{) be the image of Cjy to End(Gr} Vi) ® (Opy waro)[W]]/ (1))

Define C' [L], U, [(k]), V[(?) similarly.
By (2.22), and the induction hypothesis, Cl.(?k_]l)* o P]gn_l) — Plgn_l) o
*C([ 2 1 gives a (global) section of Ej ® ()\_kHOMx(M,o)Hy]]/(y)"). Simi-

larly, U[(kr]hl)* P(nfl) — P,gnil) ojf\U[(]:}hl) also gives a section of the same
(n—1)

module. By (GC), C (n [’:Jl) is an element of the algebra generated by C'; (k] and

U[(,;]l b . Therefore, C ﬁ 2 P,En_l) — P]gn_l) ojj‘\C;fLU:}l) is a section of the

same module. By (2.23), this implies that gbg) is a section of
k

B ® (A Oy a0 [81]/()™).
O

This claim shows that ¢p is a global section of Ej ® AR Op1 o (a,0) []]-

Since we know that ng is analytic along y-direction, we have proved that

qﬁP is a global section of Fr ® A~ k(’) «(V,0)° O
3. Application to local B-models

In this section, we give an application of the construction theorem (Corol-
lary 2.28) to local B-models.

First, in Section 3.1, we show that a germ of a variation of mixed Hodge
structure with H2-generation condition ([14, Definition 5.3]) defines a fam-
ily of mixed Frobenius manifolds. After that, following [18], we recall the
settings of local B-models. The VMHS'’s for local B-models are given by the
relative cohomology group of the affine hypersurface in (C*)¢. By the work
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of Batyrev [2], Stienstra [31], and Konishi-Minabe [18], the Hodge filtrations
and the weight filtrations are described by a kind of toric data. We recall
their results in Section 3.2. Using these results, in Section 3.3, we give a suf-
ficient condition for H?-generation condition in terms of the toric data and
we show that the local B-model mirror to the canonical bundle of a weak
Fano toric surface gives rise to a mixed Frobenius manifold (Corollary 3.26).

3.1. Mixed Frobenius manifolds and variations of mixed Hodge
structure

We denote by 7 = (Vp, F,W) a graded polarizable variation of mixed
Hodge structure (VMHS) on a germ of a complex manifold (1/,0). Here,
Vo is a Q-local system on (M,0), W = (Wj, | k € Z) is a weight filtration on
Vo, and F = (F*| ¢ € Z) is a Hodge filtration on K := Vg ® Op. Recall
that if S = (S | k € Z) is a graded polarization on .7, then we have

(3.1) Sk (G (FY), Gr)Y (FF1) =0
for any integers k and /.

Definition 3.1. Fix a graded polarization S = (S | k € Z) on a VMHS
H = (Vo, F,W). Let V:=idy, ®d be the flat connection on K = Vp ®
Or,o. Then an increasing filtration U = (U | £ € Z) on K is called opposite
filtration if the following conditions are satisfied :

(a) Uy is V-flat subbundle of K for each ¢.
(b) For any integers k and ¢,

(3.2) Grl¥ (F) @ GrfY (Up) = GrfY (K),
Sk (GrkW(Ug), Grg(Uk,gH)) = 0.

Remark 3.2. We can always construct an opposite filtration using the
Deligne splitting.

Fix a VMHS 7 = (Vg, F, W), a graded polarization S, and an opposite
filtration U. Then we get a mixed trTLEP-structure as follows. First, let
pa : P x (M,0) — (M,0) be the natural projection and take a lattice H of
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the meromorphic flat bundle (p}(K)(+{0,00} x M),p3V) by

(3.4) Hlc,x(m,0) ZP,\F ® Oc, x(m,0) ({0} x (M, 0)),
e,

(3.5)  Hl@\{oy)x (1,0 ZPAU€®O(IP’1\{O}) (v,0)(—£{0} x (M, 0)).
tez.

Then, put W, := px Wi N'H for every integer k. Take a pairing P, on GrkW(H)
by the composition of the morphism

(3.6)  id®jt: Gl (H) ® "GV (1) — Grl¥ (1) ® GrlV (1),

the natural inclusion GYE/(H)(@Q — Gr,’;;Wp’/‘\K(*{O,oo} x (M, 0))®?, and
the pull back p}Sk. By (3.1) and (3.3), P gives a morphism

Pk . GI‘ZV(H) ® ];GI'ZV(H) — )\_kOPiX(M,O)'
This construction is known as Rees construction. We get the following.

Lemma 3.3. The tuple T(A,S,U) = ((H,piV), (Wi, (Pr)r) defined
above is a mized trTLEP-structure on (M, 0).

Proof. By (3.2), the adjunction map py.piGr}’ (H) — Gr}/ (H) is an iso-
morphism for every k. Since any extension of two trivial bundles on P! is
trivial, the adjunction map py.py’H — H is also an isomorphism. Since Uy
is flat, the connection piV is logarithmic along {oo} x (M, 0). The Griffith
transversality implies that pyV is pole order 1 along {oo} x (M,0). Since
Sy, is (—1)*-symmetric and non-degenerate, Py, is (—1)*-symmetric and non-
degenerate. O

We recall the definition of H?-generation condition in [14].

Definition 3.4 ([14, Definition 5.3]). Let ¢ := (Vg, F, W) be a VMHS
on a germ (M, 0) of a complex manifold. Put K := Vp ® Oprp, V := idVQ
d,and w := max{l € Z | F' # 0}. Let 0 := Grp(V) : Grp K — Ger®QMO
be the induced Higgs field. The H?-generation condition for /7 is the
following.

(i) The rank of F is 1, and the rank of Gr'g™!(K) is equal to the dimen-
sion of (M, 0),

(ii) The map Sym ©prp ® F* — GrpK induced by 6 is surjective.
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Standard discussion on Rees construction shows the following.

Lemma 3.5. Let 7 = (Vg, F,W) be a VMHS on a germ of complex man-
ifold (M,0). Take the integer w as above and non-zero vector (o € F*|y. Fix
a graded polarization S and an opposite filtration U.

(a) The vector (o satisfies (EC),,, with respect to T (,S,U).

2w

(b) Assume moreover that the rank of F* is 1. Then, the vector (y satisfies
(GQC), (IC) if and only if S satisfies H*-generation condition.

Proof. Let (H,piV) be the underlying trTLE-structure in 7 (57, S,U) (de-
fined by (3.4) and (3.5)). Let (V",C,U,V) be the associated Frobenius type
structure (Lemma 2.7). Then, using the decomposition K = @, F* N Uy, we
have V = £ -id on F* N Uy. Since (g is in F* N Uy, this proves (a). The Higgs
field C corresponds to € via the natural isomorphism H|y\—g ~ Grf K. We also
remark that & = 0. Hence the condition (ii) in Definition 3.4 is equivalent
to (GC). If we assume the condition (ii), the morphism ©, — Grl_| K
is surjective. Then the morphism is injective (this is equivalent to (IC))
if and only if the rank of Grf ;K is equal to the dimension of M. This
proves (b). O

Hence, combining Corollary 2.28, we have the following.

Corollary 3.6. Let 7 = (Vg, F,W) be a VMHS on a germ (M,0) of a
complex manifold with H?-generation condition. Take the integer w as above
and non-zero vector (o € F"|y. Fiz a graded polarization S and an opposite
filtration U. Then there exists a tuple (F,1,1) with following conditions up
to isomorphisms.

1. .F is a MFS of charge 2w on a germ of a complex manifold (M, 0).

2. 0:(M,0) — (M, 0) is a closed embedding.

3.1:T(H,U,S) = T(F) is an isomorphism of mived tr TLEP-structure
with i (0,0)(Co) = elo where e is the unit vector field of F. O

We give an example of VMHS which satisfies H2-generation condition.

Definition 3.7. Let Y be a projective complex manifold and put d :=
dimY. Let D; (i = 0,1) be hypersurfaces in Y such that Dy is smooth and
D := Dy U Dy is normal crossing. The triple (Y, Dy, D;) is called an open
Calabi-Yau manifold with a divisor if Qf.(D;) is trivial.



1004 Yota Shamoto
Remark 3.8. Take an open Calabi-Yau manifold with divisor (Y, Dy, D).
Put d := dim Y. Let F be the Hodge filtration on H4(Y \ D1, Dg \ D1).

1. By the degeneration of Hodge-to-de Rham spectral sequence, we have
the following.

(3.7) Gr?. HY(Y \ D1, Do \ D1) ~ H* P (Y,QP(log D)(—Dy)).

2. Since Qf.(Dy) is trivial, the dimension of Gr%H®(X \ Dy, Dy \ Dy) =~
HO(Y,Q%(Dy)) is 1.

Definition 3.9. We say that an open Calabi-Yau manifold with a divisor
(X, Do, Dy) satisfies H2-generation condition if the natural morphism
(3.8)

Sym (H1 (v, @y(logD))) ® HO(Y,Q%(Dy)) — GrpHYY \ Dy, Do \ Dy)

is surjective.

Remark 3.10. If d = 1, then H*(Y, Oy (—D)) is isomorphic to
HY(Y,0(~Dy)) = Grh

and hence H?-generation condition is automatically satisfied.

We then consider a complete family of open Calabi-Yau manifold with
a divisor. That is, we consider a smooth projective morphism 7 : (),Y) —
(M,0) and divisors (D;, D;) (i = 0,1) with the following properties.

e Dy is smooth and D := Dy U D; is normal crossing in ).
) le} / 17 (D1) is isomorphic to Oy where d = dim Y — dim M.

e The Kodaira-Spencer morphism p: Oy 9 — le*G)y/M(log D) is an
isomorphism.

Let j1: Y\ D Y\ Dy and j%:Y\ Dy Y\ be the inclusions. Then
Rdmj?ji(@y\[) gives a VMHS on (M, 0) which we denote by 7.

Lemma 3.11. The VMHS # satisfies H?-generation condition in the
sense of Definition 3.4 if the open Calabi-Yau manifold with a divisor
(Y, Do, D1) satisfies H?-generation condition in the sense of Definition 3.9.
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Proof. By Remark 3.8 and since the Kodaira-Spencer map p is an isomor-
phism, the condition (i) in Definition 3.4 is satisfied. The natural pairing

©y/m(log D) ® O, (log D1 )(=Do) — 24} (log D1 )(—Do)
induces the morphism

RirOy/m(l0g D) © R, 05, )\ ((log D1)(=Do)

— Rq“w*szg;/jw (log D1)(—Dy).

Using the Kodaira-Spencer morphism p and (3.7), this corresponds to
Crp(V) : Ouro @ F? — GrhHY(Y \ D1, Do)

at 0 € (M,0). Therefore the surjectivity of (3.8) implies the condition (ii) in
Definition 3.4. O

Example 3.12. Put Y:=P! D;:={0,00}, and Dg:={1,21,...2,} where
2z #0,1,00 (1=1,2,...m) and z; # z; (i # j). Then (Y, Dy, D1) is a open
Calabi-Yau manifold with a divisor. As mentioned in Remark 3.10, this satis-
fies the H2-generation condition and hence the complete family of (Y, Do, D1)
gives rise to a mixed Frobenius manifold.

3.2. Combinatorial description of VMHS for local B-models

3.2.1. Settings for local B-models. Let N be a finitely generated free
abelian group and d the rank of N. Let NV be the dual lattice of N and put
NV := NV @Z. Consider the group ring C[NV] = Clto,t;'] ® C[NV] as a
graded ring by deg(tkt™) := k (k € Z,m € N"). For an integral polyhedron
A C Ny := NV @R, let oa be the cone in Ny generated by {1} x A. This
defines a graded subring Sa := C[oa N NV] in C[NV]. Pa := Proj Sa is a
toric variety which contains an algebraic torus Ty := Spec C[NV] as an open
dense subset. We also note that Da := Pa \ T is a hypersurface.

Recall that the Newton polygon of a Laurent polynomial f =
Y omenv amt™ € C[NV] is the convex hull of the subset {m € NV | a,, # 0}
in Ny. Put A := A(A) := AN NV and let L(A) be the set of functions whose
newton polygon is contained in A. Then L(A) is naturally identified with
CA.

Definition 3.13. Let A’ be a face of A. For f:=3"  _,ant™ € L(A), we
define the function f& by f& := Y omeanny amt™.
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For a basis ui,uo,...,uq of N, let 01,60,...,05 be the corresponding
vector field on Tx. Each 6; defines a differential operator on C[NV] by
gz(tm) = <ui,m>tm.

Definition 3.14 ([18, Definition 3.1]). A Laurent polynomial f € C[N"]
is called A-regular if the following conditions are satisfied.

1. The Newton polygon of f is A.
2. For each face A’ of A, there is no point in T such that

(3.9) A =0(f%) == 0a(f*) = 0.
Let Lyeg := Lieg(A) be the set of A-regular Laurent polynomials.

3.2.2. Mixed Hodge structure. For f € L(A), we define the differential
operators E} (0 <i<d)on Sa by

(3.10) LY =10y, +tof, Ly =0 +tobif, (i=1,2,....d).

Definition 3.15. We define the vector space Ry by

d
(3.11) Ry :=5a/ Y LsSA.

=0

We define the decreasing filtration £ on Sa by &£¢ := D<i SZ. We de-
note the induced filtration on Ry by the same letter. Denote by oa(f)
the set of the co-dimension ¢ faces of oa. Put |oa(€)| :=J T and
I(0) := (oa \ |oa(f)]) N NV. Then an increasing filtration

TEGA(

(3.12) = @ cm
(k,m)el(t)

on Sx is defined. We also denote the induced filtration on Ry by the same
letter.

For f € Lyeg(A), put Vs := f71(0). In [18], Konishi and Minabe con-
structed an isomorphism

(3.13) p: Ry = HYTw,Vy)

with the following properties.
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(a) If F=(F‘|¢€Z) is the Hodge filtration on H%(Ty,V}), then
p(E4) = Fifor 0 <i <d.

(b) f W = (Wy, | k € Z) is the weight filtration on H(T, V), then
p(Li) = W24, (0<i<d-1),
p(Za1) = Waa—2 = Waa—1, HNTn,Vy) = W

3.2.3. Gauss-Manin connection. Let Op ) be the sheaf of algebraic
functions on IL(A). Since L(A) = C#, we have

Cl(am)mea] = H(L(A), Opa))-

For i =0,...,d, let £' be the differential operator on Sa ® OL(a) given by

L0 = to0o + to Z amt™,

meA
(3.14) | :
L= 04 3 am(usmyt™ (1< < d).
meA

Remark that £ = zv at f € L(A). We define the Op(a)-module R by

d
(3.15) R:=5A® OL(A)/ Z L'(Sa @ Ora))-
i=1

The restriction of R to Lyeg(A) defines an algebraic vector bundle, which
we denote by the same letter. We note that the fiber of R at f € Lyeg(A) is
Ry.
We define differential operators D,,, (m € A) on Sa ® Opa) by

(3.16) Do, +tot™.

~ Oap,
Let V be the connection on R defined by Vg, =D, .

Put X :=Pa X Lyeg(A), M = Lyeg(A) and let 7 : X — M be the pro-
jection. Define the divisors Do, D1 and D by Dy := {(p, f) € X | p € V}},
Dy := DA XLyeg(A), and D := DoUD;. Let j': X\ Dy — X, j2: X \D —
X\ Dg be the inclusions. The stalk of the sheaf Rdw*j!ljf(CX\D at f € M is
HYTn, V).

Lemma 3.16 ([18, Lemma 4.1],[31, Section 6]). The isomorphism
(3.13) gives an isomorphism between the local system of flat section of the
analytic flat bundle (R, V)™ and Rdw*jlljf(CX\D. O
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3.2.4. The moduli space. We recall the definition of the moduli space
M(A) of the affine hypersurfaces of Tyy. Define the action of T on L(A) by
(sf)(t) := f(st) where fe€L(A) and s,t€Tn. We put Clay,] := Cl(am)meal-
We regard the invariant ring Cla,,]™ as a graded ring using the natural
grading on Cla,].

Definition 3.17 ([2, Definition 10.4]). We define the moduli space of
affine hypersurface in Ty by M(A) := Proj(Cla,,]™).

If we put P(A) := Proj(Clan,]), M(A) is a GIT-quotient of P(A) by
the action of T . The stability condition of this GIT-quotient is defined as
follows.

Definition 3.18. For a point z € P(A), take a non-zero vector v € C4
which represents . The point z is stable if the orbit Ty - v is closed and of
d-dimensions.

Put Ri := Gr.'Rs, Ry := @, R%. By the property (a) of the isomor-
f g Nf f i vf
phism (3.13), we have the isomorphism

(3.17) b~ Gy THY (T, Vy), (0<i <d).

Let J; be a homogeneous ideal of Sa generated by tof,t001f,...,t004f.
Then we naturally have the isomorphism Ry ~ Sa/Jy of graded rings.

Proposition 3.19 ([2, Proposition 11.2, Corollary 11.3]). Consider
the action of the torus Ty on L(A)

(3.18) T x L(A) = L(A) : (o, t) x £(5) — tof(ts).

If we identify L(A) and Sk by f +— tof, the tangent space to the orbit Txrf
is isomorphic to the homogeneous component J}. Moreover, if we assume
that f € Lyeg(A), and the corresponding class [f] € M(A) is a smooth stable
point. Then, the tangent space © rq(a),[y) 8 naturally isomorphic to lec =
SA/ T} O

Proposition 3.20. Let f be a A-regular function in IL(A) such that corre-
sponding class [f] in M(A) is smooth stable point. Then under the isomor-
phism (3.17) and the isomorphism © pq(a) (1) = R} in Proposition 3.19, the
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Higgs field
Gre(V)i : Oma)f @ GrFHd(TN,Vf) — GrFHd(TN,Vf)
corresponds to the multiplication
R} ® Ry — Ry.

Proof. By Lemma 3.16, the Gauss-Manin connection corresponds to the
connection

0
1 V = — +¢0m A
(3.19) Oun = G +tt" (m e A)

on R over L(A). Since the filtration £ is determined by the degree of to,
under the identifications L(A) ~ S} and (3.17), the Higgs field
Grp(V) : Opa); ® GrpHY(Tw, Vi) — GrpHY(Tn, Vi)
corresponds to the multiplication
SA ® Ry — Ry.
By Proposition 3.19, this implies the conclusion. Il

3.3. H2-generation condition and MFS for local B-models

Let [fo] € M(A) be a smooth stable point and assume that fy is A-regular.
And let J#A be the variation of mixed Hodge structure on the germ of com-
plex manifold (M(A), [fo]) defined by H(Tn, Vy), (f € M(A)). By propo-
sition 3.20, J#a satisfies the H?-generation condition if and only if Ry is
generated by R}. In this section, we consider the following condition: Si gen-
erates Sa. If this condition is satisfied, then .7 satisfies the H?-generation
condition and hence gives rise to a mixed Frobenius manifold.

Definition 3.21 ([2, Definition 12.3]). A polyhedron A C Ny is called
reflexive if it satisfies the following conditions.

1. A contains 0 € NV.

2. For any codimension 1 face A’, there exists a primitive element u € N
such that

A'={m e Ng | (m,u) = —1}.
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In the following, we assume that A is reflexive.

Remark 3.22. Reflexive polyhedron A has following properties ([2, The-
orem 12.2]).

1. Its dual polyhedron A* := {u € Ng | (A,u) > —1} is also reflexive.
2. Da = Pa \ Ty is an anti-canonical divisor of Pa.

3. Pa is a Fano variety with Gorenstein singularities.

Lemma 3.23. Let A C N be a 2-dimensional reflexive polyhedron. Then,
Sa is generated by SX.

Proof. Fix an isomorphism N ~ Z2. Label the elements of AN N\ {0}
anti-clockwise with {my, ma,...,m;}. For each i, let 7; be the cone gener-
ated by m; and m; ;. (Here, we put mysq := my). The cones {7;}; define a
complete fan, which we denote by ¥(A*). It is known that the toric mani-
fold corresponding to ¥ (A*) is smooth and weak Fano. Therefore, the pair
{m;,mi11} is a basis of NV for every i. Put

o; := Cone((1,0), (1,m;), (1,m;+1)) C R x Ny

and S; := Spec(Clo; N (Z x NV)]). Since {m;,m;11} is a basis of NV, each
S; is generated by Sl-l. The equation S = ), S; shows the lemma. 0

For higher dimensional case, we consider following condition.

Definition 3.24 ([2, Definition 12.5, Remark 12.6]). Let A be a re-
flexive polyhedron and A* its dual. Then A is called Fano polyhedron if
PA is smooth Fano variety.

Lemma 3.25 ([2, Lemma 12.9]). If A is Fano polyhedron, then Sa is
generated by SlA. O

Now, we assume that A is 2-dimensional or Fano polyhedron. Fix a
Laurent polynomial fy € Lyeg(A) such that corresponding [fo] € M(A) is
smooth stable point.

Corollary 3.26. Let J¢A be the variation of mixed Hodge structure on
(M(A), [fo]) defined by HY (T, Vy), ([f] € M(A)). Fiz a graded polariza-
tion S and an opposite filtration U. Fiz a generator (o of Gry(HYTn, Vy,)).
There exists the tuple ((M,())gf, L,i) with following properties uniquely up
to isomorphisms.
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o 7 =(V,0,E e,T,g) is a MFS of charge 2d on a germ (M,O) of a
complex manifold.

o : (M(A),[fo]) — (M7 0) is a closed embedding.
o i :T(HA,S,U)— *T(F) is an isomorphism of mized trTLEP-

structure with il (o,0)(¢o) = €lo-

Proof. By Lemma 3.23 and Lemma 3.25, (o generates GrpH%(Ty, Vy,) over
O m(a),if,)- Hence, by Corollary 3.6, we have the conclusion. [l

4. Application to local A-models

In this section, we give an application of the construction theorem (Corol-
lary 2.28) to local A-models.

4.1. Limit mixed trTLEP-structure

4.1.1. Mixed trTLEP-structure defined by a nilpotent endomor-
phism. Let (H,V, P) be a tr'TLEP(0)-structure on a complex manifold M.
Let py : IF’}\ X M — M be the projection. Assume that there is a nilpotent
endomorphism 9% on H with the following conditions;

(4.1) V.00 =0,
(4.2) 9N = p3(Na—o).
(4.3) P(Ma,b) = Pa,N).

We obtain a mixed trTLEP-structure as follows. Let G be the cokernel of
M. By (4.2), G is a vector bundle over IP’}\ x M such that py.p3G — G is an
isomorphism. Condition (4.1) implies that V induces a flat connection V on

G. Let W = (W}, | k € Z) be a filtration on G defined by

~_Jo (k <0)
(4.4) Wy == {Im(Ker(‘ﬁkH) ~3) (k>0

The graded pairing Q = (Qy, : Gr}/ (G) ® j;Gr}Y (G) — A FOpisnr | k € Z)
is given by

0 (k<0
POAF0ka,b) (k> 0).

~—

(4.5) Qr([al, [b]) = {
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Here, a is a local section of Ker(9*+1) and [a] is the corresponding class
in Gr}¥(G). Similarly, b is a local section of jiKer(M**+!) and [b] is the
corresponding class in j;\GrkW(g). We get the following.

Lemma 4.1. The tuple Ty := (G, V, W, Q) is a mized trTLEP-structure.

Proof. By (4.2), the adjunction p)\*ijrng — Grng is an isomorphism for
every k. By (4.1), we have [V, ] = k9*d\/\. Therefore, for a € Ker(MF+1),
we have

ar _

NHVa = Ve + (k + 1)MF g + =0

Hence Va € Ker9**!. This implies that the subbundle Wy, is V-flat.

Put Py(a,b) := P(M*a,b). For a subbundle J of H, put J+*:={a €
H | Py(a,b) =0 for all b € j5J}. Since P is non-degenerate, we have H* =
KerMX and ImM++ = KerMF+1. Therefore, we have

(4.6) (Kert* 1) ™% = ImM + KerM*.
For acKer(MF1), and be j*Ker(NFF1), Let [a] € G}V (G), [b] €5*Gr}V (G))
be the corresponding classes. The relation A*Qy([a], [b]) = Py(a,b) and (4.6)

shows that @y, is well defined and non-degenerate.
Let a,b and [a], [b] as above. We have

d@x([al, b)) — Qr(Vlal, [b]) — Qk(la], V[b])

1
= V{(‘@P(mka, b)% +dP(9M*a,b) — P(MFVa,b) — P(MFa, Vb)}
1 dA

{((—k)P(‘ﬁka, b) + kP (N a,b)) -

TN
+ dP(M*a,b) — P(VOtEa, b) — P(Ma, Vb)}
=0.
This proves the flatness of Q. O

4.1.2. Logarithmic trTLEP-structure and limit mixed trTLEP-
structure. Let Z be a normal crossing hypersurface of a complex manifold
M. Recall the definition of logarithmic trTLEP-structure.

Definition 4.2 ([23, Definition 1.8]). Let k be an integer. A trTLEP (k)-
structure on M logarithmic along Z is a tuple T = (H,V, P) with the
following properties.
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e # is a holomorphic vector bundle over P! x M such that the adjoint
morphism p*p,H — H is an isomorphism.

e V is a meromorphic flat connection on H such that
(4.7) ViH = H®Qpwp(log Zo) @ Opt iy ({0} x M)

where Z := ({0,00} x M) U (P} x 2).

e P H®j*H — )\kOp}\XM is a (—1)¥-symmetric, non-degenerate, V-
flat pairing.

We also call 7 a logarithmic trTLEP(k)-structure (or logZ-
trTLEP (k)-structure) for short.

We also recall the notion of logarithmic Frobenius type structure.

Definition 4.3 ([23, Definition 1.6]). Let K be a holomorphic flat bun-
dle on M. Let U and V be endomorphisms on K. A tuple (V",C,U,V) is
called Frobenius type structure on K with logarithmic pole along 7 if

e V' is a flat connection on K with logarithmic pole along Z,

e C is a Higgs field on K with logarithmic pole along Z,

and these data satisfy the relations (2.2) and (2.3). We also call the tuple
(V',C,U,V) alogarithmic Frobenius type structure for short.

Remark 4.4. e This definition of logarithmic Frobenius type structure
lacks the pairing.

e If we assume that Z is smooth, we have the residue endomorphisms
Resz V', and ReszC.

The following lemma is proved by the same way as Lemma 2.7.

Lemma 4.5 ([23, Proposition 1.10]). Let (H,V,P) be a logarithmic
trTLEP(0)-structure. Then there is a unique logarithmic Frobenius type
structure (V",C,U,V) on H|x—o such that
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In the following, we assume that Z is smooth. Let T = (H,V, P) be a
trTLEP(0)-structure on M logarithmic along Z such that

(4'9) ReSPixZ(v) ’{oo}xZ: 0.

Fix a point z in Z and a defining function ¢ of Z on a neighborhood of z.
Then the residual connection V¢ on H ’Pix( 7,z) is induced. It is easy to see
that the tuple 79 := (H [pi x(z.2), VI, P |(2,2)) is a trTLEP(0)-structure on
the germ (Z, z) of a complex manifold.

Lemma 4.6. The endomorphism M := AResp: , z(V) is nilpotent and satis-
fies the conditions (4.1)—(4.3) with respect to the trTLEP(0)-structure T4 =

(H |(2,2), VI, P l(2.2)-

Proof. First of all, we show that Resp: z(V) is nilpotent. Let (V*,C,U,V)
be the logarithmic Frobenius type structure on H|y—¢ such that

dA

1 1
(4.10) V=p\V"+ -p3C + <p§Z/l — pi{V) %

A A
The condition (4.9) is equivalent to Resz .(V") = 0. Then we have
RGS[R\X(Z’Z)(V) = )\_IRGSZ’ZC.

Since the eigenvalues of Respi »(z,.) (V) and Resz .C are both constant along
IP’%\, they are all zero. Therefore, the endomorphism Resp: . ( 7,2)(V) is nilpo-
tent.

The following shows (4.1):

dA
[V, = AV, Respt (2,2 (V)] + )\ReSP;x(Z,z)(V)T
dA
=N—.
A
The condition (4.2) is clear by 91 = Resz .C. The flatness of P implies (4.3).

O

This lemma together with Lemma 4.1 defines mixed trTLEP-structure on
(Z,2).

Definition 4.7. We call the mixed trTLEP-structure 7z, := 7:;{ a limit
mixed trTLEP structure.
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Remark 4.8. The mixed trTLEP-structure 7z, does not depend on the
choice of the defining function ¢ of Z around z.

4.2. Quantum D-modules on A-models

We recall the definition of quantum D-modules and their properties. Let X
be a smooth projective toric variety and Ay C Ha(X,C) a semi-subgroup
consists of effective classes. For each d € Ax and n € Z>q, let Yo,n,d be
the moduli space of genus 0 stable maps to X of degree d. We denote the
i-th evaluation map by ev; : X4 — X. Fix a Hermitian metric || x || on

H7%(X,C)

Theorem 4.9 ([16, Theorem 1.3], See also [24, Theorem 4.2]). The
Gromov- Witten potential

1 n .
(4.11) Ox(r)= > Zn'/ e
dEAX n20 : [XO,n,d,]v” Z:1
1 k
(4.12) = Z Z ! /[Xo o ev; (T’)e5(d).

deAx n>0

converges on a simply connected domain
(4.13) Ux :={r=7"+6 € H(X,C)| Re(6(d)) < —C, ||| < e ¢}
for C > 0. Hence ®x (1) defines a holomorphic function on Ux. O

Define g : H*(X,C) ® H*(X,C) — C by g(a, 8) := [ a U 3, and a quan-
tum cup product o on H*(X,C) by

(4.14) glaor B,7) = apy®x(r) (o, 8,7 € H'(X,C)).

Here, 7 € Ux and we regard «, 3,7 on the right hand side as differential
operators. Let E be a vector field on H*(X,C) defined as a sum of first
Chern class ¢1(X) and fundamental vector field of the action of C* defined
byt-a=t2a (o € H(X,C)). Then it is well known that .Zx := (o, E, g)
is a Frobenius structure on Uy of charge dim X.

Definition 4.10 ([24, Definition-Lemma 4.3]). We call the trTLEP(0)-
structure 7 (Zx) on Ux a big quantum D-module. We also call its re-
striction to Uk := Ux N H?(X,C) a small quantum D-module.



1016 Yota Shamoto

Remark 4.11. This definition is equivalent to the definition in [24].
The trTLEP(dim X)-structure 7 (%x)(dim X/2) is considered there (see
Remark 2.15).

Denote by V{ (resp. V{) the quotient space of Ux (resp. Uk) by the
natural action of 2mv/—1H?(X,Z). The following lemma is trivial by con-
struction.

Lemma 4.12. The big quantum D-module T (Fx) induces a trTLEP(0)-
structure T)?lg on V)O(. The small quantum D-module also induces a
tr'TLEP(0)-structure T3l on V0. O

Fix a nef basis 71, T, . . ., T, of H*(X, Z). Then the embedding of V into
C" is naturally defined. Let ¢ = (q1,¢2,---,¢) be the canonical coordinate
on C" and | # | the canonical Hermitian metric. We define

(4.15) Vx = {(¢,7") € C" x H?*(X,C)|la| < e ||| <™}
(4.16) Vi ={qeC|q < e “1.

Then we have the following.

Proposition 4.13 ([24, Corollary 4.5]). T;ig (resp. Tmall) s extended

to a logarithmic trTLEP(0)-structure on Vx (resp. V). O

4.3. MFS for local A-models

4.3.1. Construction of MFS for local A-models. Let S be a weak
Fano toric surface, 7o = 1 € H%(S,Z) a unit, and ~,4; its Poincare dual.
Fix a nef basis vy1,%2,...,% € H*(S,Z). Then {y0,71,...,%+1} is a basis
of H*(S,C). Denote by Ag the semi-subgroup consists of effective classes in
Hy(S,7Z).

Let X be the projective compactification of the canonical bundle Kg (i.e.
X :=P(Kg® Og)). Let p: X — S be the natural projection and i : S — X
the embedding defined by the zero section of Kg. Put I'; := p*; (0 <1i <r+
1) and Ag = Cl(OX/S(l)) S HQ(X,Z) Put A; ;== AqgUT; (O <i1<r+ 1)
Then the classes I';, A; (0 <i,5 <r+1) form a basis of H*(X,C). This
basis gives a coordinate

(t,s) = (19, ... th .. 47T 0 s s

on H*(X,C). Put qo := e* and ¢; := e'. Then, the quantum cup product
on H*(X,C) is given as follows.
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Lemma 4.14 ([19, Lemma 8.9, 8.10]).
(4.17) Ajox = A; Ux+ O(qo),

(4.18) Doy =T U+ Y Y (D)L H(d)Tw(d)Nagh)TY, + O(qo).
k=1dei.As\{0}

Here, qd = H::l q<dvri> and Ny := f[yo 0.a]"" 1. The symbol O(QO) represents
the higher order term with respect to qo. O

By Proposition 4.13, we have logarithmic trTLEP(0)-structure 73mall
on V. (Note that ¢ = (g0, q1,...,¢,) € C"T1) Put M := V{ \ Ujoof{a = 0}
and denote the restriction of T)S(man to M by the same latter. Let Z be a
divisor of M defined by gg = 0. For each point z in Z, the restriction of T;man
to the germ (M, z) satisfies the condition (4.9) along (Z, z). Hence we get
the limit mixed trTLEP-structure (T;ma“) 7,.. To compare with the results
of Konishi-Minabe [19] later, we consider the Tate twist (73"el),,(—1/2)
(See Remark 2.15).

Proposition 4.15. Let (T2, . (—1/2)=(H, W, P) be the mized trTLEP-
structure on (Z,z) constructed above and (V*,C,U,V) the corresponding
Frobenius type structure. (See Lemma 2.7.) Put :=AUx : H*(X) — H*(X).
Then we get the following.

r+1
(4.19) Hh—oZCbMﬁUx(Z¢)gz(GDCFJ x (Z,2),
=0

o (k <0)
(4.20) Wilr=o = {Im(Ker(‘ﬁk) = Hlx=0) (k>0),
(4.21)
quafh', (Fj) - FZ N F]+

21 odeine\(oy Ti( L5 (d)Tk(d) Nag))TY (5> 0),

(4.22) U =0,
%

(4.23) = ——= 42

2

where i =1,2,...,r, ¢ and Ny in the equation (4.21) are defined as in
Lemma 4.14, and the operator deg is defined by deg(I';) := mlI'; for I'; €
H™(X).
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Proof. The Lemma 4.14 implies (4.19) and (4.21). In particular, we have
AResp1 «(7,.)V = A U for the connection V underlying Timall The equa-
tion 4.4 twisted by (—1/2) gives (4.20). As is shown in [19], the Euler vector
field E of Fx is given by

9 o 9 "L .9 o
_40 r+1 i Y g+l
E=thm + 20 1 gur - 255 2 gt

Hence Cg is 0 on Cok(91) over Z. Since the charge of Fx is 3, considering
the twist, we have V = VE — (2 —-3)/2+ 1/2 = —deg /2 + 2, where VFE is
the endomorphism induced on Cok(N) over Z by VE. O

Using this proposition,we get the following.

Theorem 4.16. If z € Z is in a sufficiently small neighborhood of 0 € Vs
there exits a tuple ((M,O),g"}fc, L,i) with the following conditions uniquely
up to isomorphisms.

1. Z%¢ is a MFS of charge 4 on a germ of complex manifold (M, 0).
2.0:(Z,2) — (M, 0) is a closed embedding.

3.4 (Tamall)y, (=1/2) = T (F) is an isomorphism of mizved trTLEP-
structure such that the restriction i| ) sends I'g to the unit vector
field of & .

Proof. By (4.20), (4.21), and (4.23), I'g satisfies (IC), (GC), and (EC')4 when
z is sufficiently small. Therefore, by Corollary 2.28, we have the conclusion.
OJ

4.3.2. Comparison with the result of Konishi and Minabe. The
mixed Frobenius manifold ﬁ}fc constructed in Theorem 4.16 is isomorphic to
the mixed Frobenius manifold constructed in [19] as follows. Let .Zku be the
mixed Frobenius structure on a open subset of H*(S,C) defined in [19, The-
orem 8.7]. Regard Z as a subset of the quotient H?(S,C)/2mv/—1H?(S,7Z)
via the pull back p*. It is easy to see that Fxy induces MFS on H*(S,C)/
27\/—1H*(S,7Z) , which we denote by the same notation. We restrict the
induced mixed trTLEP-structure 7 (.Zxm) to the germ (Z, z) and denote it

by T(Fxm)|(z,-)- We have the following proposition.

Proposition 4.17. We have a natural isomorphism

T(Zrm)(z,) ~ (TR 2,2(~1/2).
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Proof. The isomorphism is given by v; — I'; (0 <i < r + 1). Comparing the
proof of [19, Theorem 8.7] with (4.5) and Proposition 4.15, we can check
that this gives an isomorphism of mixed trTLEP-structure over (Z,z). O

This proposition together with the uniqueness in Theorem 4.16 shows the
following.

Corollary 4.18. We have an isomorphism of mized Frobenius manifolds

((M,0), Z¥°) ~ ((H*(S,C)/2rV—1H*(S,Z), 2), Frm).-
O

This shows that we have constructed the mixed Frobenius manifold .Fi
by using the limit mixed trTLEP-structure and the unfolding theorem.
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