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Equivariant bundle gerbes
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We develop the theory of simplicial extensions for bundle gerbes
and their characteristic classes with a view towards studying de-
scent problems and equivariance for bundle gerbes. Equivariant
bundle gerbes are important in the study of orbifold sigma mod-
els. We consider in detail two examples: the basic bundle gerbe on
a unitary group and a string structure for a principal bundle. We
show that the basic bundle gerbe is equivariant for the conjuga-
tion action and calculate its characteristic class; we show also that
a string structure gives rise to a bundle gerbe which is equivariant
for a natural action of the String 2-group.
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1. Introduction

Bundle gerbes were introduced by Murray in [32] as a simpler alternative
to the gerbes with band U(1) described in the monograph [6] of Brylinski.
Bundle gerbes on a manifold M are generalizations of the notion of line
bundle on M : this fact is manifested in several ways, one of which is the
existence of a characteristic class in H3(M,Z), generalizing the Chern class
of a line bundle. In another direction, the notion of bundle gerbe allows for a
particularly simple theory of connections and curving leading to a differential
form representative for this characteristic class, the 3-curvature of the bundle
gerbe connection and curving. Crucially for applications to physics, bundle
gerbes give rise to a notion of holonomy over a closed surface, generalizing
the notion of the holonomy of a line bundle with connection around a loop.

There are many key examples of bundle gerbes with their origin in phys-
ical problems; for example in the study of anomalies in quantum field theory
[9, 10, 23]; (together with the allied notion of bundle gerbe module) in the
study of D-brane charges in string theory [5, 24, 25, 30, 31]; in the study of
Chern–Simons theory [11, 29] and its relation to string structures [41]; and
recently in the study of topological insulators [12, 19]. The example which
serves to motivate this paper is the role that bundle gerbes and bundle gerbe
connections play in 2D sigma models with a Wess–Zumino term in the ac-
tion functional. The fields in such a theory are taken to be maps φ : Σ → M ,
where M is the target manifold of the theory which is equipped with a closed
3-form H. Locally, the Wess–Zumino term SWZ(φ) is described by integrals
over Σ of φ∗B, where B is a local 2-form on M solving the equation dB = H
— the so-called B-field. In topologically non-trivial situations there are am-
biguities which arise from the various choices that must be made in such
a construction. These ambiguities were analyzed by Gawedzki in [18] using
the theory of Deligne cohomology, a certain hybrid of Čech and de Rham
cohomology. If one interprets the closed 3-form H as the field strength or
3-curvature of a bundle gerbe with connection on M , this analysis can be
carried out much more systematically and succinctly leading to an identifi-
cation of the Feynmann amplitudes exp(iSWZ(φ)) in terms of the holonomy
of this bundle gerbe with connection [10].

This point of view is particularly well-adapted to the study of Wess–
Zumino–Witten sigma models in which the target space is a compact Lie
group G. In particular, when G is simple and simply connected, there is
a canonical bundle gerbe with connection on G, the so-called basic bun-
dle gerbe on G. The case where the target manifold is a non-simply con-
nected Lie group arising as the quotient of the simply connected cover G̃
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by a finite subgroup Γ of the center leads naturally to the notion of a Γ-
equivariant gerbe on G̃. More generally, one can consider the notion of a
Γ-equivariant gerbe on a manifold M upon which Γ acts; such an equivari-
ant gerbe amounts to the notion of an ordinary gerbe on the orbifold M/Γ.
These equivariant gerbes can be used to give a similar description of the
Wess–Zumino term when the target manifold is such an orbifold. A natural
question is how to extend this theory beyond the case of orbifolds, to the
case where a compact Lie group acts smoothly on the manifold M . This is
the motivation for the present work which develops the theory of equivariant
bundle gerbes; that is, we have a bundle gerbe G = (P, Y ) over a manifold
where Y → M is a surjective submersion and a Lie group G acts smoothly
on the right of M , and we want to investigate in what way this group action
can be lifted to G. This question has been studied in [7, 13] for bundle gerbes
described by local data over an open cover of M , as well as in [3, 21] and
notably in the general context of higher geometry in [35]. Our approach is to
be contrasted with abstract approaches using higher categories in that one
often wants, for the purposes of geometry and physics, specific manifolds
and explicit descriptions of geometric objects (such as differential forms).

1.1. Equivariance and simplicial extensions

A convenient way of studying equivariant bundle gerbes is to use the theory
of simplicial manifolds. To see why this is the case, and to motivate our
constructions below, consider first the simpler case of an equivariant U(1)-
bundle P → M . Then a right G action on P is a family of bundle maps
φg : P → P , each covering the action of the corresponding g ∈ G and sat-
isfying φgφh = φgh. Because all our objects are smooth we would like the
bundle maps φg to depend smoothly on g and a simple way to do that is to
introduce the manifold M ×G and two maps d0, d1 : M ×G → M defined
by d0(m, g) = mg and d1(m, g) = m. Then the bundle d−1

0 (P )⊗ d−1
1 (P )∗

has fibre at (m, g) given by Pmg ⊗ P ∗
m and the bundle maps φ can all be

combined to give a section of d−1
0 (P )⊗ d−1

1 (P )∗ whose value at (m, g) is
(φg)m(p)⊗ p∗ where p ∈ Pm. The condition that φgφh = φgh now becomes

an equation on M ×G2. Returning to the case of bundle gerbes, it is natural
to replace the idea of an isomorphism with a stable isomorphism and then
the condition φgφh = φgh may not hold exactly but rather up to a map cg,h
between the stable isomorphisms φgφh and φgh. In this case there is a co-
herence condition on the isomorphisms: cg,hcgh,k = cg,hkch,k, which lives over
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M ×G3. The manifolds M,M ×G,M ×G2, . . . form a simplicial manifold
— the nerve of the action groupoid — which we discuss further in Section 2.

Now that we are in the setting of simplicial manifolds it becomes natural
to generalise the idea above and formulate a notion of simplicial extension.
In the simplest form this starts with a simplicial manifold X• and a bun-
dle gerbe G = (P, Y ) over X0. The definition of a simplicial extension then
mimics the equivariance condition above. We leave the detail for discussion
in Section 3 but note here some geometric consequences. Firstly, given a
simplicial manifold X• there is an infinite-dimensional space ‖X•‖, called
the fat geometric realisation of X•, which contains a copy of X0. Roughly
speaking the existence of a simplicial extension is equivalent to the existence
of an extension of the bundle gerbe G from X0 to ‖X•‖. We do not prove
this fact here but it motivates the choice of name. Secondly, we can realise
the real cohomology of ‖X•‖ in terms of de Rham classes on the various Xk

and this is denoted by Hn(X•,R). There is a natural map

Hn(X•,R) → Hn(X0,R)

for every n ≥ 0 corresponding to the pullback from ‖X•‖ to X0. A simplicial
extension of G defines a class in H3(X•,R), which we call the extension class
of the simplicial extension, and this maps to the real Dixmier–Douady class
of the bundle gerbe G in H3(X0,R).

By working with simplicial manifolds we can also consider the descent
problem for bundle gerbes. This has been considered for bundle gerbes de-
scribed by local data on an open cover of a manifold in [28, 36]. If M → N
is a surjective submersion and G a bundle gerbe on M then the existence
of descent data for G is precisely the condition for G to descend to a bun-
dle gerbe on N . We show in Section 3 that such descent data is exactly
a simplicial extension for the natural simplicial manifold M,M [2],M [3], . . . ,
where M [k] is the kth fibre product of M with itself over N . This result is of
interest in its own right but also important in understanding the descent of
equivariant bundle gerbes when the action of G on M arises from a principal
G-bundle M → N . There are two natural notions of group action on a bun-
dle gerbe; there is a strong action [22, 27, 28], where the group action on M

lifts to Y → M and also to P → Y [2] and commutes with the bundle gerbe
product; there is also the notion of weak action, which corresponds to the
general simplicial extension setting where essentially the group acts on G by
stable isomorphisms. In Section 4 we show that for both strong and weak
G actions on a bundle gerbe G over the total space of a principal G-bundle
M → N there is a natural notion of quotient or descended gerbe on N . In
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addition we show that a strong action induces a weak action and that the
corresponding quotients agree, up to a specified stable isomorphism.

In [34] two of the authors gave a construction of the basic bundle gerbe
Bn on a unitary group U(n). In that work we discussed the fact that the
conjugation action on U(n) lifted to a strong action of U(n) on Bn. In
Theorem 5.2 we construct the extension class of this action and note that,
in particular, it is non-trivial even in the case of U(1) where B1 and the
conjugation action are both trivial.

1.2. 2-group actions

We also consider the case of an action of a 2-group on a manifold. This state-
ment will need some unpacking. Firstly, a 2-group1 is a monoidal groupoid
such that for each object of the groupoid there is another object that is
an inverse, possibly only up to isomorphism, for the monoidal product. For
the purposes of this article we will only introduce strict 2-groups, where
associativity holds, inverses are honest inverses and so on. This allows us
to use the equivalent but less complicated crossed modules. Also, we are
interested in using not just bare groupoids, but Lie groupoids, and so Lie
2-groups. Many known Lie 2-groups, and the ones used in this article, arise
as 2-group extensions of ordinary Lie groups. In our case, we take a Lie
group G with certain properties, and consider the String 2-group, which fits
into an extension

BU(1) → StringG → G

for a certain uncomplicated 2-group BU(1). A lift of the structure group of a
principal G-bundle P to the group StringG is called a string structure on P .
These were first considered by Killingback in the context of heterotic string
theory in [26] (see also [33, 42]). The topology and geometry of string struc-
tures is also important in Witten’s famous paper on the Dirac operator on
loop spaces [43] and in Stolz and Teichner’s program on elliptic cohomology
[39].

It is not difficult to ask for an action of a 2-group on a manifold (all 2-
groups will be Lie 2-groups from now on) and it follows from the definition
that such an action for StringG factors through the map to G. The reverse
also holds: given a G action, we can induce an action of StringG.

This, then, is the context in which we look at bundle gerbes that are
equivariant under the action of the 2-group StringG on a manifold. While the

1not a p-group for p = 2!
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action on the manifold factors through G, and so may appear uninteresting,
an analogue of the discussion above for ordinary group actions becomes
much more complicated; here the use of simplicial manifolds and simplicial
extensions comes into its own. We shall leave the details for Section 6, but
what we do is consider a string structure for a principal G-bundle P , which
can be given by a bundle gerbe on P and some extra data. This bundle
gerbe is not G-equivariant, but it is StringG-equivariant as we shall see in
Theorem 6.10.

1.3. Summary

We start in Section 2 with a review of bundle gerbes and various simplicial
objects that we need in our subsequent discussion. In Section 3 we present
the general definition of our basic notion of a simplicial extension of a bundle
gerbe. We present a number of examples and define the simplicial class of
a simplicial extension. Our first application uses the notion of simplicial
extension to define a general descent condition for bundle gerbes G over
M where M → N is a surjective submersion. Our second application of
simplicial extensions in Section 4 is to define the notion of weak group action
on a bundle gerbe. We show how it relates to the more obvious concept of
strong group action and use the idea of descent to define the quotient of a
bundle gerbe by a strong or weak group action. We also define equivariant
classes for strong and weak group actions. In Section 5 we consider the basic
bundle gerbe on a unitary group defined by the first and third authors in
[34] and show that it is strongly equivariant under the conjugation action
of U(n) on itself. We give an equivariant connective structure and use this
to calculate its strongly equivariant class, which is non-trivial even in the
case of U(1). Section 6 starts with some preliminary material on crossed
modules and bundle 2-gerbes. We then show that a string structure for a
principal G-bundle P , viewed as a trivialisation of the Chern–Simons bundle
2-gerbe of P , gives rise to a natural simplicial extension, meaning that it is
equivariant for the natural action of StringG on P .

2. Background on simplicial manifolds and bundle gerbes

2.1. Simplicial manifolds

We recall some facts about simplicial objects in a category C (see for example
[4, 14, 20]). We will mostly be interested in the category of smooth manifolds.
Let � be the simplex category, whose objects are the finite ordinal sets
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[0] = {0}, [1] = {0, 1}, . . . and whose morphisms are order-preserving maps.
A simplicial object in C is a contravariant functor from � to C . A morphism
between two simplicial objects is a natural transformation between the two
functors defining them.

In more concrete terms, for the category of smooth manifolds, a sim-
plicial object (i.e. a simplicial manifold) is a sequence of manifolds X0, X1,
X2, X3, . . . together with maps α∗ : Xj → Xi for every arrow α : [i] → [j]
in �, satisfying the compatibility condition β∗α∗ = (αβ)∗. It is a standard
fact that these can all be written in terms of a certain collection of maps
di : Xp → Xp−1 (i = 0, . . . , p) and si : Xp → Xp+1 (i = 0, . . . , p) called face
and degeneracy maps, respectively, and satisfying the so-called simplicial
identities (see [14]). Sometimes, only the face maps of a simplicial object
will be important for us and we can ignore the degeneracies. In such a case
we will speak of a semi-simplicial object, eg. a semi-simplicial manifold.
The face map dk : Xp → Xp−1 corresponds to the map [p− 1] → [p] whose
image does not contain k. We will typically denote a simplicial manifold
X0, X1, X2, . . . by X•. A morphism of simplicial manifolds Y• → X• consists
of a sequence of maps Yk → Xk commuting with the face and degeneracy
maps.

The following examples will be useful throughout the paper.

Example 2.1. Let X be a manifold. We define X(•) to be the constant
simplicial manifold with all face and degeneracy maps equal to the identity.
Notice that if X• is a simplicial manifold, then there is a map X0 → Xk

corresponding to the unique map [k] → [0] and this gives rise to a simplicial

map X
(•)
0 → X•.

Example 2.2. Let X be a manifold. Define X•+1 by Xk+1 = Map([k], X),
with the simplicial maps Xi → Xj given by pullback by [j] → [i]. Notice
that Xk+1 is the cartesian product of X and the face maps are given by
omitting factors.

Example 2.3. Let Y → X be a submersion and let Y [k] be the fibre prod-
uct of k copies of Y . This defines a simplicial manifold Y [•+1], where the
simplicial maps are induced by restricting those of the cartesian product
Y •+1.

Example 2.4. If M is a manifold on which a Lie group G acts smoothly
we define a simplicial manifold EG(M)• by EG(M)n = M ×Gn for n ≥ 0.
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The face maps are:

dk(m, g1, . . . , gn) =

⎧⎪⎨⎪⎩
(mg1, g2, . . . , gn) k = 0

(m, g1, . . . , gkgk+1, . . . , gn) k = 1, 2, . . . , n− 1

(m, g1, . . . , gn−1) k = n.

In particular X1 = M ×G and X0 = M and the two face maps X1 → X0

are d0(m, g) = mg and d1(m, g) = m.

In the case that M → N is a principal G-bundle then the simplicial
manifolds in Examples 2.3 and 2.4 are isomorphic:

Lemma 2.1. If M → N is a G-bundle then EG(M)• � M [•+1].

Proof. The isomorphism is given by maps EG(M)n → M [n] by

(m, g1, g2, . . . , gn) 	→ (m,mg1,mg1g2, . . . ,mg1g2 · · · gn).

It can be easily checked that this defines a simplicial map. �

Example 2.5. IfM is a manifold and K is a crossed module (Definition 6.1)
that acts on M (Definition 6.2), then there is a simplicial manifold EK(M)•
similar to the one defined in Example 2.4 for a Lie group. We will use this
simplicial manifold in Section 6, where we will give a precise definition.

We call a simplicial object in the category of surjective submersions a
simplicial surjective submersion. Explicitly, this will be a pair of simpli-
cial manifolds Y• and X• and a simplicial map Y• → X• with the property
that Yk → Xk is a surjective submersion for all k ≥ 0. Note that simplicial
surjective submersions are preserved under pullback, in the sense that if
Y• → X• is a simplicial surjective submersion, then so is the induced map
Y• ×X• Z• → Z• for any simplicial map Z• → X•.

Let X• be a simplicial manifold and Y → Xk a surjective submersion.
Define δ(Y ) → Xk+1 by

δ(Y ) = d−1
0 (Y )×Xk+1

d−1
1 (Y )×Xk+1

d−1
2 (Y )×Xk+1

· · ·

Denote by di : δ(Y ) → Y the obvious projections covering the face maps
di : Xk+1 → Xk. We can define inductively a family δk(Y ) with maps

δk(Y ) → δk−1(Y ). We remark that δ•+1(Y ) is not a simplicial manifold.
However, in the next example we discuss a related construction, which is a
simplicial surjective submersion.
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Example 2.6. If X• is a simplicial manifold then for each i = 0, . . . , p there
are maps μi : Xp → X0 induced by the inclusion [0] → [p] defined by 0 	→ i.
Then

μ = (μ0, . . . , μk) : Xk → Xk+1
0

defines a morphism of simplicial manifolds μ : X• → X•+1
0 . If Y → X0 is a

surjective submersion then so is Y k+1 → Xk+1
0 and we can define a sim-

plicial surjective submersion μ−1(Y •+1) → X•. We will use this example
extensively in the rest of the paper.

We will use the following similar construction in Section 6 when we
discuss bundle 2-gerbes.

Example 2.7. We have maps μij : Xp → X1 for 0 ≤ i < j ≤ p induced by
the map [1] → [p] defined by 0 	→ i and 1 	→ j. We can assemble these into

maps Xk → X
k(k+1)/2
1 , which we also call μ. If Y → X1 is a surjective sub-

mersion then as above we can pull back Y k(k+1)/2 to give a surjective sub-
mersion over Xk, for k ≥ 1. So we have a collection of manifolds

μ−1(Y )k =

⎧⎪⎨⎪⎩
X0, k = 0

Y, k = 1

μ−1(Y k(k+1)/2), k > 1

and maps μ−1(Y )k → μ−1(Y )k−1 satisfying the simplicial identities for face

maps. Note that unlike Example 2.6, in general μ−1(Y )• is only a semi-
simplicial manifold, since we may not have degeneracy maps μ−1(Y )0 =
X0 → μ−1(Y )1 = Y . The canonical map μ−1(Y )• → X• is then a semi-
simplicial surjective submersion.

It is clear that one could continue this and define a semi-simplicial surjec-
tive submersion given a surjective submersion Y → Xk as in the paragraph
preceding Example 2.6, however we will only need these two cases.

Lemma 2.2. Let Y• → X• be a simplicial surjective submersion. For any k
there is a map of surjective submersions Yk+1 → δ(Yk) covering projections
to Xk+1 such that each composition Yk+1 → δ(Yk) → Yk is the corresponding
face map Yk+1 → Yk.

Proof. We define Yk+1 → δ(Yk) by y 	→ (d0(y), d1(y), . . . ) and the result fol-
lows. �
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For simplicity, throughout this paper we will only work with a restricted
notion of morphism between simplicial surjective submersions. Namely, if
Y ′
• → X• and Y• → X• are simplicial surjective submersions then a mor-

phism

φ• : (Y
′
• → X•) → (Y• → X•)

is a family of maps φ• : Y
′
• → Y• such that every diagram

Y ′
k

��

φk �� Yk

��

Xk Xk

commutes for every k ≥ 0.
In particular we have

Lemma 2.3. If Y• → X• is a simplicial surjective submersion there is a
morphism of simplicial surjective submersions

μ• : (Y• → X•) → (μ−1(Y •+1
0 ) → X•).

Proof. For every k = 0, 1, . . . we have a commuting diagram

Yk

��

μ
�� Y k+1

0

��

Xk
μ

�� Xk+1
0

and the result follows from this. �

2.2. Bundle gerbes and simplicial manifolds

Let X• be a simplicial manifold and Q → Xp be a U(1)-bundle for some
p ≥ 0. We define a new U(1) bundle δ(Q) on Xp+1 by

δ(Q) = d−1
0 (Q)⊗ d−1

1 (Q)∗ ⊗ d−1
2 (Q)⊗ · · ·

For i �= j let πij : Xp+2 → Xp denote the map induced by the unique order-
preserving map [p] → [p+ 2] whose image does not contain i and j. Notice
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that if i ≤ j then we have didj = πi(j+1) and if i > j then didj = πij . It
follows easily that there is an isomorphism

(2.1) δ2(Q) =
⊗

0≤i<j≤p+2

π−1
ij (Q⊗Q∗)

and hence δ2(Q) has a canonical trivialisation. Explicitly, we may define a
section c of δ2(Q) whose value at x ∈ Xp+2 is

c(x) =
⊗

0≤i<j≤p+2

π−1
ij (qij ⊗ q∗ij),

for some choice of elements qij in the fibres over πij(x). We will usually
denote this canonical section by 1.

Recall the definition of a simplicial line bundle from [8].

Definition 2.4 ([8]). Let X• be a simplicial manifold. A simplicial line
bundle over X• is a pair (Q, σ) defined as follows:

1) Q → X1 is a U(1)-bundle;

2) σ is a section of δ(Q) → X2 such that δ(σ) = 1 ∈ δ2(Q).

If Y → M is a surjective submersion there is an equivalence between
bundle gerbes G over M and simplicial line bundles over Y [•+1]. To see this
note that if P is a simplicial line bundle over Y [•+1] then P → Y [2] is a
U(1)-bundle and σ(y1, y2, y3) is an element of

P(y2,y3) ⊗ P ∗
(y1,y3) ⊗ P(y1,y2)

which must be of the form b⊗m(a, b)∗ ⊗ a for some bundle morphism

m : P(y1,y2) ⊗ P(y2,y3) → P(y1,y3)

and any elements a ∈ P(y1,y2) and b ∈ P(y2,y3). The morphism m defines an
associative bundle gerbe multiplication if and only if δ(σ) = 1. If Y → M
is a surjective submersion then we denote the bundle gerbe given by the
simplicial line bundle P over Y [•+1] by (P, Y ).

We say that a simplicial line bundle (Q, σ) over X• is trivial if there is
a U(1)-bundle T → X0 such that Q = δ(T ) and σ is the section 1 of δ2(T ).
It is easy to see that a bundle gerbe is trivial if and only if it is trivial
when regarded as a simplicial line bundle. In this case we have a line bundle
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T → Y such that δ(T ) = P , where here the δ operation is for the simplicial

manifold Y [•+1]. For clarity, we will write δY (T ) for this whenever there is
any possibility of confusion.

Recall that if (P, Y ) is a bundle gerbe on M with trivialisations T and
R, then there is a canonical definition of a line bundle L → M with the
property that T = R⊗ π∗(L). The point is that we have an isomorphism
δ(T ) → δ(R) and hence descent data for T ⊗R∗. We denote the descended
line bundle L by T �R.

We will also be interested in a particular class of trivial bundle gerbes:
we say a bundle gerbe (P, Y ) over M is strongly trivial if P = Y [2] × U(1)
and the multiplication is the trivial multiplication, in other words

(y1, y2, z1)(y2, y3, z2) = (y1, y3, z1z2).

Note that Y × U(1) is a trivialisation of a strongly trivial bundle gerbe and
it follows that if T is a trivialisation of a strongly trivial bundle gerbe then
T = T � (Y × U(1)) descends to M . If T is trivialised so that T = Y × U(1)
we say that T is a strong trivialisation if the induced trivialisation morphism
δY (Y × U(1)) → Y [2] × U(1) is the identity on the U(1) factor. We have the
following Lemma whose proof is straightforward.

Lemma 2.5. Assume that (Q, Y ) is strongly trivial over M and trivialised
by T so that T descends to T � (Y × U(1)) → M as discussed above. Assume
further that s : Y → T is a section so it induces an isomorphism T � Y ×
U(1). Then s descends to a section of T � (Y × U(1)) → M if and only if
the isomorphism T � Y × U(1) induces a strong trivialisation of (Q, Y ).

Let (P, Y ) be a bundle gerbe over M . If f : N → M is a map then
the bundle gerbe pulls back to a bundle gerbe (f−1(P ), f−1(Y )) over N .
If X → M is also a submersion and f : X → Y is a map of manifolds over
M then (f−1(P ), X) is a bundle gerbe over M . Notice that both of these
examples can be understood as the pullback of the simplicial line bundle over
Y [•+1] by f : f−1(Y [•+1]) → Y [•+1] and f : X [•+1] → Y [•+1], respectively.

If T → Y is a trivialisation of (P, Y ) then we denote the induced trivi-
alisation of (f−1(P ), f−1(Y )) by f−1(T ).

Assume that P has a bundle gerbe connection ∇ and curving f . Choose
a connection∇T for T satisfying∇ = δY (∇T ). Then F∇ = δY (F∇T

) = δY (f)

so that F∇T
− f = π∗νT for some νT ∈ Ω2(M). If R is another trivialisation

with connection ∇R such that ∇ = δY (∇R) then, as above, T ⊗R∗ descends
to a bundle T �R. Then∇T −∇R descends to a connection∇T�R on T �R
whose curvature FT�R = νT − νR.
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If X• is a simplicial manifold and (P, Y ) a bundle gerbe over Xk, where
Y → Xk is a surjective submersion, we can define a bundle gerbe (δ(P ), δ(Y ))
over Xk+1. We will also be interested in a more complicated case. Let Y• →
X• be a simplicial surjective submersion and let (P, Yk) be a bundle gerbe
over Xk. Then by Lemma 2.2 we can restrict (P, δ(Yk)) to form (P, Yk+1)

over Xk+1. Further, we can repeat this process and form (δ2(P ), Yk+2) over
Xk+2. Notice that, as per (2.1), we have that

δ2(P ) =
⊗

0≤i<j≤p+4

π−1
ij (P ⊗ P ∗),

where we have used πij to denote the induced map Y
[2]
k+2 → Y

[2]
k . Therefore

we see that (δ2(P ), Yk+2) is canonically isomorphic to the strongly trivial

bundle gerbe (Y
[2]
k+2 × U(1), Yk+2).

We have

Lemma 2.6. Assume that (Q, Yk) is a bundle gerbe over Xk and R → Yk
is a trivialisation of Q. Then (δ2(Q), Yk+2) is strongly trivialised by δ2(R) →
Yk+2.

Proof. We have that

δ2(Q) =
⊗

0≤i,j,≤k+4

π−1
ij (Q)⊗ π−1

ij (Q∗) → Y
[2]
k+2

and

δ2(R) =
⊗

0≤i,j,≤k+4

π−1
ij (R)⊗ π−1

ij (R∗) → Yk+2.

If ψ : δYk
(R) → Q is the trivialisation morphism, the induced trivialisation

morphism δYk+2
(δ2(T )) → δ2(Q) is⊗

0≤i,j,≤k+4

π−1
ij (ψ)⊗ π−1

ij (ψ∗) → Yk+2,

which is the trivial morphism induced by the identity map on U(1). �
We will be particularly interested in the following examples of this:

Example 2.8. If Y → X0 is a surjective submersion and (P, Y ) is a bundle
gerbe, then we have the simplicial surjective submersion μ−1(Y •+1) → X•
from Example 2.6 and we can form the bundle gerbe (δ(P ), μ−1(Y 2)) over
X1 and the bundle gerbe (δ2(P ), μ−1(Y 3)) over X2.
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Example 2.9. If Y → X1 is a surjective submersion and (P, Y ) is a bundle
gerbe, then we have the semi-simplicial surjective submersion μ−1(Y )• → X•
from Example 2.7 and we can form the bundle gerbe (δ(P ), μ−1(Y )2) over
X2 and the bundle gerbe (δ2(P ), μ−1(Y )3) over X3.

Finally, we make a remark about notation. We will be concerned with
bundle gerbes G = (P, Y ) over simplicial manifolds and we shall be using
the operation δ repeatedly. As in Examples 2.8 and 2.9 and the discus-
sion preceding Lemma 2.6, we will often be interested in the bundle gerbe
(δ(P ), δ(Y )) restricted to some subspace of δ(Y ). To make it clear precisely
which bundle gerbe we mean by δ(G), we will use the notation (δ(P ), Yk)
(where Y• → X• is a simplicial surjective submersion) whenever there is
chance of confusion.

2.3. Simplicial de Rham cohomology

We recall the definition of the simplicial de Rham cohomology of a simpli-
cial manifold X• [14]. Associated canonically to X• is the bicomplex with
differentials

Dp,q : Ω
p(Xq) → Ωp+1(Xq)⊕ Ωp(Xq+1)

η(p,q) 	→ ((−1)qdη(p,q), δη(p,q)).

We combine these to form the total complex in the usual fashion:

D :
⊕

p+q=r

Ωp(Xq) →
⊕

p+q=r+1

Ωp(Xq).

The cohomology of this total complex is defined to be the simplicial de Rham
cohomology, denoted Hr(X•,R). Note that this is also the real cohomology
of the fat realisation ‖X•‖ (see for instance Proposition 5.15 of [14]). For
later convenience we introduce the notation A∗(X•) for this total complex.

Of particular interest will be H3(X•,R) and we note that a class consists
of

η = (η(0,3), η(1,2), η(2,1), η(3,0)) ∈ Ω0(X3)⊕ Ω1(X2)⊕ Ω2(X1)⊕ Ω3(X0)

satisfying

Dη = (δη(0,3),−dη(0,3) + δη(1,2), dη(1,2) + δη(2,1),−dη(2,1) + δη(3,0), dη(3,0))

= (0, 0, 0, 0, 0)
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up to addition of a cocycle of the form Dρ so that

η +Dρ = (η(0,3) + δρ(0,2), η(1,2) + dρ(0,2) + δρ(1,1),

η(2,1) − dρ(1,1) + δρ(2,0), η(3,0) + dρ(2,0)).

3. Simplicial extensions

3.1. Simplicial extensions of bundle gerbes

Before we define the notion of a simplicial extension we need the following:

Proposition 3.1. Let Y• → X• be a simplicial surjective submersion and
G = (P, Yk) be a bundle gerbe over Xk. Assume that δ(G) = (δ(P ), Yk+1)
has a trivialisation T → Yk+1. Then δ(T ) → Yk+2 descends to a line bundle

AT → Xk+2 and the canonical trivialisation of δ2(T ) → Yk+3 descends to a
trivialisation of δ(AT ) → Xk+3.

Proof. Notice first that the line bundle δ(T ) trivialises the bundle gerbe
(δ2(P ), Yk+2), which is canonically isomorphic to the strongly trivial bun-

dle gerbe (Y
[2]
k+2 × U(1), Yk+2), as we observed in the discussion preceding

Lemma 2.6. Hence δ(T ) descends to AT := δ(T )� (Yk+2 × U(1)) → Xk+2.

To see that the canonical trivialisation of δ2(T ) → Yk+3 descends to
δ(AT ) → Xk+3 we apply Lemma 2.6 to the bundle gerbe (δ(P ), Yk+1) with

trivialisation T → Yk+1 to deduce that (δ3(P ), Yk+3) is strongly trivialised

by δ2(T ) → Yk+3. Then Lemma 2.5 implies that the section of δ2(T ) de-
scends to a section of δ(AT ) → Xk+3. �

Using this we can make the following definition:

Definition 3.2. Let X• be a simplicial manifold and G = (P, Y0) be a bun-
dle gerbe over X0. A simplicial extension of G over X• is a triple (Y•, T, s)
consisting of:

1) Y• → X• a simplicial surjective submersion;

2) a trivialisation T → Y1 of δ(G) = (δ(P ), Y1) over X1; and

3) a section s : X2 → AT satisfying δ(s) = 1 relative to the canonical triv-
ialisation of δ(AT ).

If (Y•, T, s) is a simplicial extension then pulling back s to a section of
δ(T ) defines a simplicial line bundle over Y•, which we denote by [T, s].
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A simple but useful example of a simplicial extension is the following,
defined for any bundle gerbe (P, Y ) over X.

Proposition 3.3. A bundle gerbe (P, Y ) over a manifold X defines a sim-

plicial extension (Y [•+1], T, s) over the constant simplicial manifold X(•)

whose induced simplicial line bundle on Y [•+1] is precisely (P, Y ).

Proof. The condition that T trivialises δ(P ) can be written as follows. Let

(y0, y1), (y
′
0, y

′
1), (y

′′
0 , y

′′
1) ∈ Y [2], then there is an isomorphism

(3.1) T(y0,y1) � P(y0,y
′
0)
⊗ T(y

′
0,y

′
1)
⊗ P(y

′
1,y1)

and the isomorphism

T(y0,y1) � P(y0,y
′′
0 )

⊗ T(y
′′
0 ,y

′′
1 )

⊗ P(y
′′
1 ,y1)

is equal to the induced isomorphism

T(y0,y1) � P(y0,y
′
0)
⊗ T(y

′
0,y

′
1)
⊗ P(y

′
1,y1)

� P(y0,y
′
0)
⊗ P(y

′
0,y

′′
0 )

⊗ T(y
′′
0 ,y

′′
1 )

⊗ P(y
′′
1 ,y

′
1)
⊗ P(y

′
1,y1)

� P(y0,y
′′
0 )

⊗ T(y
′′
0 ,y

′′
1 )

⊗ P(y
′′
1 ,y1)

,

where we use the bundle gerbe multiplication to get from the second to the
third line.

In this case, a trivialisation T → Y [2] is given by T(y0,y1) = P(y0,y1) and
defining the map using the bundle gerbe product. Then

δ(T )(y0,y1,y2) = P(y1,y2) ⊗ P ∗
(y0,y2) ⊗ P(y0,y1),

and a section is given by the bundle gerbe multiplication. It is easy to see
that the descent equation preserves this section and this defines the required
section s of AT . The associativity of the bundle gerbe product gives us δ(s) =
1. By construction this simplicial extension pulls back to the simplicial line
bundle defined by (P, Y ). �

Proposition 3.4. Let (Y ′
• → X•) and (Y• → X•) be simplicial surjective

submersions where (Y ′
0 → X0) = (Y0 → X0). Assume we have a morphism

φ : (Y ′
• → X•) → (Y• → X•) which is the identity when k = 0. Then a simpli-

cial extension (Y•, T, s) of (P, Y0) over X• pulls back to a simplicial extension
(Y ′

• , φ
−1(T ), s) of (P, Y0) over X•.
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Proof. The trivialisation T of (δ(P ), Y1) pulls back to a trivialisation φ−1(T )
of the bundle gerbe φ−1(δ(P ), Y1) = (δ(P ), Y ′

1). Further, since φ is a simpli-
cial map, δ(φ−1(T )) = φ−1(δ(T )) which descends to AT . Hence the triple
(Y ′

• , φ
−1(T ), s) is a simplicial extension of (P, Y0). �

More surprising is the following:

Proposition 3.5. Let (Y• → X•) be a simplicial surjective submersion and
(Y•, T, s) be a simplicial extension of (P, Y0) over X•. Then there is a sim-
plicial extension

(μ−1(Y •+1
0 ), μ(T ), μ(s))

which pulls back to (Y•, T, s) by the morphism in Proposition 3.4.

Proof. Notice first that over X1 we have two bundle gerbes (δ(P ), μ−1(Y 2))
and its pullback by μ : Y1 → μ−1(Y 2) which is (μ−1(δ(P )), Y1). If T → Y1 is
a trivialisation of (μ−1(δ(P )), Y1) then from Proposition A.1 we know that
there is an induced trivialisation μ(T ) → μ−1(Y 2) of (δ(P ), μ−1(Y 2)) which
pulls back to T → Y1. The construction of AT in Proposition 3.1 depends
only on δ(P ) and T and it follows that there are isomorphisms AT � Aμ(T )

which commute with the trivialisations of δ(AT ) and δ(Aμ(T )). Hence we

can define a section μ(s) of Aμ(T ) and (μ−1(Y •+1
0 ), μ(T ), μ(s)) is a simplicial

extension. By Proposition A.1 and the construction it pulls back in the
required manner. �

Proposition 3.5 means we could simplify the definition of simplicial
extension by always working with the simplicial surjective submersion
μ−1(Y •+1

0 ) → X•. Indeed, when we specify a simplicial extension using only
the pair (T, s) then it will be understood that Y• = μ−1(Y •+1

0 ). We note
however that as we shall see in the next section, in practice we find that it
is useful to allow the extra flexibility of the choice of Y•.

Recall from Example 2.1 that we have the map X0 → Xk induced by the
unique map [k] → [0] and that the composition X0 → Xk → X0 with each of
the projections μi : Xk → X0 is the identity. This means μ−1(Y •+1) → X•
pulls back to Y [•+1] → X

(•)
0 and the simplicial line bundle [T, s] pulls back

to a simplicial line bundle on Y [•+1], which is a bundle gerbe on X0. We
have

Proposition 3.6. Let (T, s) be a simplicial extension of the bundle gerbe
(P, Y ) over X•. The bundle gerbe on X0 defined by the pullback of [T, s] to

X
(•)
0 via the simplicial map X

(•)
0 → X• is isomorphic to (P, Y ).
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Proof. The pullback of the simplicial extension of (P, Y ) over the simplicial

manifold X• is a simplicial extension of (P, Y ) over X
(•)
0 . We know from

Proposition 3.3 that (P, Y ) also defines a simplicial extension over X
(•)
0 .

So we only need to prove that any two simplicial extensions of (P, Y ) over

X
(•)
0 are isomorphic. Assume then that (T1, s1) and (T2, s2) are simplicial

extensions of (P, Y ) over X
(•)
0 . Notice that T1 and T2 are trivialisations of

δ(P ) so there exists a line bundle L → X0 defined by L = T1 � T2. Then
δ(L) = AT1

⊗A∗
T2
. But as all the maps are the identity δ(L) = L, which has

a section defined by s1 ⊗ s∗2. Hence L is trivial which defines an isomorphism
from T1 to T2. Moreover, by definition this isomorphism maps s1 to s2 and
hence defines an isomorphism of simplicial line bundles. �

The same canonical simplicial map X
(•)
0 → X• induces a homomorphism

Hn(X•,R) → Hn(X0,R)

for every n ≥ 0.

Proposition 3.7. A simplicial extension of G over X• defines a class in the
simplicial de Rham cohomology H3(X•,R) which maps to the real Dixmier–
Douady class of G in H3(X0,R).

Proof. Let the bundle gerbe G = (P, Y0) where π : Y0 → X0 is a surjective
submersion. Let (∇, f) be a connection and curving for G and denote by
η(3,0) ∈ Ω3(X0) the corresponding three-curvature so that π∗(η(3,0)) = df .
Note that this is unique up to addition to f of π∗(ρ(2,0)) where ρ(2,0) ∈
Ω2(X0), which changes η(3,0) to η(3,0) + dρ(2,0).

Notice first that T is a trivialisation of δ(G) over X1 and that δ(G) has
connection δ(∇) and curving δ(f). As in the discussion following Lemma
2.5 we choose a connection ∇T for T satisfying δY (∇T ) = δ(∇) and define
η(2,1) = −νT ∈ Ω2(X1) so that

(3.2) π∗(η(2,1)) = −FT + δ(f).

Hence π∗(δ(η(3,0))) = δ(df) = π∗(dη(2,1)) so that −dη(2,1) + δ(η(3,0)) = 0 as
required.

The choice of ∇T is unique up to adding π∗(ρ(1,1)) where ρ(1,1) ∈ Ω1(X1)
which changes η(2,1) to η(2,1) − dρ(1,1). If we also change f as above then we
change η(2,1) to η(2,1) − dρ(1,1) + δ(ρ(2,0)).

Notice that δ(T ) has a connection δ(∇T ) whose curvature is δ(νT ) =
δ(η(2,1)). This descends to a connection ∇AT

on AT which has a trivialising
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section s. We define

(3.3) η(1,2) = s∗(∇AT
) ∈ Ω1(X2)

so that

π∗(η(1,2)) = s∗(δ(∇T )) ∈ Ω1(X2).

Moreover dπ∗(η(1,2)) = −π∗(δη(2,1)). Hence dη(1,2) + δ(η(2,1)) = 0.
Notice that if we change ∇T by adding π∗(ρ(1,1)) then η(1,2) changes by

addition of δ(ρ(1,1)).
Lastly because δ(s) = 1 we conclude that δ(η(1,2)) = 0.

Notice that if we change (∇, f) to (∇+ δ(α), f + dα) for α ∈ Ω1(Y0),
then ∇T changes to ∇T + α and the cocycle is unchanged.

Finally we conclude that the simplicial extension defines a cocycle

η =
1

2πi
(0, η(1,2), η(2,1), η(3,0)) ∈ A3(X•),

whose class in H3(X•,R) we have seen is independent of choices. Note that
the real Dixmier-Douady class of G is represented by 1

2πiη(3,0). �
We note that

Proposition 3.8. The pullback of simplicial extensions defined in Propo-
sition 3.4 preserves simplicial classes.

Proof. This follows immediately from the construction as all the data used
to define the class pulls back. �

Definition 3.9. We call the class defined in Proposition 3.7 the (real)
extension class of the simplicial extension and denote it by ε(Y•, T, s), or
simply ε(T, s), since the class is independent of Y•.

Remark 3.1. Although we shall not need to make use of them, it is worth
pointing out the following facts. To every simplicial extension of G over X•
there is associated an integral extension class in H3(‖X•‖,Z) which classifies
simplicial extensions in the sense that there is an isomorphism between a
suitable set of equivalence class of simplicial extensions and H3(‖X•‖,Z).
Furthermore, a bundle gerbe G over X0 has a simplicial extension if and
only if there is a bundle gerbe G̃ over the geometric realization ‖X•‖ whose
Dixmier–Douady class in H3(‖X•‖,Z) is the integral extension class of the
simplicial extension and whose restriction to X0 is stably isomorphic to G. A
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proof of this fact uses some of the machinery of simplicial Čech cohomology
(see for example [16]), which would require a lengthy discussion. Since these
facts are not central to our paper we have chosen to omit them.

Proposition 3.10. If (Ti, si) is a simplicial extension of Gi for i = 1, 2 then
(T1, s1)⊗ (T2, s2) = (T1 ⊗ T2, s1 ⊗ s2) is a simplicial extension for G1 ⊗ G2

and ε((T1, s1)⊗ (T2, s2)) = ε(T1, s1) + ε(T2, s2).

When G is trivial so that G = (δY (R), Y ) for R → Y we can construct a
trivial simplicial extension (δ(R), 1), where δ(R) denotes the induced trivi-
alisation of δ(G).

If we regard X0 → X0 as a surjective submersion we can identify X
[2]
0

with X0 and the trivial line bundle X0 × U(1) gives us a strongly trivial
bundle gerbe. The product of any bundle gerbe G with this bundle gerbe is
naturally isomorphic to itself. Any simplicial line bundle (J, σ) gives us a
simplicial extension (J, σ) of this trivial bundle gerbe.

It follows that a simplicial line bundle can form a product with a sim-
plicial extension to give rise to a new simplicial extension. Or more di-
rectly, given a simplicial extension (Y•, T, s) with π : Y• → X• and a simpli-
cial line bundle (J, σ), we can define a new trivialisation T ⊗ π−1(J). Then
AT⊗π

−1
(J) = AT ⊗ δ(J) which has a section s⊗ δ(σ). Hence we have a new

simplicial extension (T, s)⊗ (J, σ) = (T ⊗ π−1(J), s⊗ δ(σ)).
If we pick a connection∇J for J it has a curvature two-form FJ ∈ Ω2(X1)

with dFJ = 0. Also we can define α ∈ Ω1(X2) by α = σ∗(δ(∇J)) and δ(α) =
(δσ)∗(δ2(∇J)) = 0 and δ(FJ) = dα. Hence a simplicial line bundle has a
simplicial Chern class cs(J, σ) ∈ H3(X•,R) represented by 1

2πi(0, α, FJ , 0).

Clearly this is in the kernel of the map H3(X•,R) → H3(X0,R).
If (T, s) and G has the class

1

2πi
(0, η(1,2), η(2,1), η(3,0))

then (T ⊗ π−1(J), s⊗ δ(σ)) has the class

1

2πi
(0, η(1,2) + α, η(2,1) + F, η(3,0)).

and hence ε((T, s)⊗ (J, σ)) = ε(T, s) + cs(J, σ). In fact the converse of this
is true.
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Proposition 3.11. Let (T1, s1) and (T2, s2) be two simplicial extensions
of G. Then there exists a simplicial line bundle (T1 � T2, s1 ⊗ s∗2) such that
(T1, s2) = (T2, s2)⊗ (T1 � T2, s1 ⊗ s∗2).

Proof. The construction is straightforward. We have two trivialisations of
δ(G), which differ by a line bundle T1 � T2 → X1. This gives us AT1

= AT2
⊗

δ(T1 � T2) so that δ(T1 � T2) has a section s1 ⊗ s∗2. As δ(s1) = δ(s2) = 1 it
follows that δ(s1 ⊗ s∗2) = 1. �

We note also without proof the following proposition.

Proposition 3.12. Let (T, s) be a simplicial extension of G and ρ : H →
G be a stable isomorphism. Then there is a canonically defined simplicial
extension ρ−1(T, s) of H. Moreover ε(ρ−1(T, s)) = ε(T, s).

3.2. Descent for bundle gerbes

Let π : M → N be a surjective submersion.

Proposition 3.13. If π : M → N is a surjective submersion and G is a
bundle gerbe on N then π∗(G) admits a simplicial extension to M [•+1].

Proof. The projection M [k] → N = N (k) defines a morphism of simplicial
manifolds M [•+1] → N (•) and it suffices to pull back the simplicial extension
defined in Proposition 3.3. �

The converse of Proposition 3.13 is in fact true. Before proving this, we
make two definitions as follows:

Definition 3.14. If M → N is a surjective submersion and G a bundle
gerbe on M then (M → N)-descent data for G is a simplicial extension of G
over M [•+1].

Definition 3.15. If π : M → N is a surjective submersion and G a bundle
gerbe on M then we say that G descends to M if there exists a bundle gerbe
H over N with π−1(H) stably isomorphic to G.

Proposition 3.16. If π : M → N is a surjective submersion and G a bundle
gerbe on M then G descends to N if and only if there exists (M → N)-
descent data for G.
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Proof. We have established one direction already in Proposition 3.13. Let
π : M → N be a surjective submersion and G = (P, Y ) a bundle gerbe over

M with a simplicial extension (T, s) for the simplicial manifold M [•+1]. Then
let Y = Y → N , regarded as a surjective submersion over N . Then there is

an equality of simplicial surjective submersions Y
[•+1]

= μ−1(Y •+1). The
simplicial extension defines a simplicial line bundle over μ−1(Y •+1) and

hence a simplicial line bundle over Y
[•+1]

, i.e. a bundle gerbe. We take
the descended bundle gerbe H to be the one defined by this simplicial line
bundle.

We need to check that the pullback of H is stably isomorphic to G.
Consider π−1(Y ) → M . This contains Y so we have a morphism of simplicial
manifolds

Y [•+1] → π−1(Y
[•+1]

) → Y
[•+1]

= μ−1(Y •+1).

Notice that this composition maps Y [•+1] to the subset Y [•+1] ⊂ μ−1(Y •+1)
and is the identity. It follows that if we start with the simplicial extension
(T, s) as a simplicial line bundle on μ−1(Y •+1), we descend by regarding it

as a simplicial line bundle on Y
[•+1]

and we pullback to π−1(Y
[•+1]

) and

restrict to Y [•+1], that is the same as just restricting (T, s) to Y [•+1], which
by Proposition 3.6 we know to be (P, Y ). Hence π−1(H) is stably isomorphic
to G. �

We are interested in several particular cases of simplicial extensions,
arising from actions of Lie groups and actions of 2-groups. We devote the
rest of this paper to the study of these.

4. Equivariant bundle gerbes

4.1. Strong and weak group actions on bundle gerbes

Recall that if M is a manifold on which a Lie group G acts smoothly on
the right we have the simplicial manifold EG(M)• from Example 2.4. We
define:

Definition 4.1. If G acts smoothly on M and G is a bundle gerbe on M a
weak action of G on G is a simplicial extension for G over EG(M)•.

Notice that the simplicial extension class of a weak action lives in
H3(EG(M)•,R) = H3

G(M,R), the equivariant de Rham cohomology of M .
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Definition 4.2 (c.f. [22, 27, 28]). Let G = (P, Y ) be a bundle gerbe over
M . A strong action of G on G is a smooth action of G on Y covering the
action on M and a smooth action of G on P → Y [2] by bundle morphisms
covering the induced action on Y [2] and commuting with the bundle gerbe
product. We say that G is a strongly equivariant bundle gerbe.

Proposition 4.3. A strong action of G on G induces a weak action.

Proof. We construct a simplicial extension (EG(Y )•, T, s) of G = (P, Y )
over EG(M)•. First we need a trivialisation of (δ(P ), Y ×G), which has fi-

bre over (y1, y2, g) ∈ Y [2] ×G = (Y ×G)×M×G (Y ×G) given by P ∗
(y1,y2) ⊗

P(y1g,y2g). Hence, (δ(P ), Y ×G) is strongly trivial via the isomorphism

P ∗
(y1,y2) ⊗ P(y1g,y2g)

� 1⊗g
−1

��P ∗
(y1,y2) ⊗ P(y1,y2) � U(1) .

We therefore take T to be the trivial bundle (Y ×G)× U(1). Thus δ(T ) is
trivial and descends to the trivial bundle with its canonical section s, and
so δ(s) = 1. �

4.2. Descent for equivariant bundle gerbes

If π : M → N is a principal G-bundle it is straightforward to show that if a
bundle gerbe G = (P, Y ) on M admits a strong action of G then it descends
to a quotient bundle gerbe (P/G, Y/G) on N . We now show that even for a
weak action of G bundle gerbes descend.

Proposition 4.4. Let M → N be a principal G-bundle. If G is a bundle
gerbe on M acted on weakly by G then G descends to a bundle gerbe on N ,
which is given explicitly by Proposition 3.16.

Proof. The proof is straightforward and only requires us to show that a weak
G action on G is the same as (M → N)-descent data for G. Equivalently,
we need to show that the simplicial manifolds EG(M)• and M [•+1] are
isomorphic, which is true by Lemma 2.1. �

A similar result is proved in [21] on the level of cohomology using the
definition of equivariance from [7].

In the case of a strong action we now have two ways to descend the
bundle gerbe. These are related by
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Proposition 4.5. Let M → N be a principal G-bundle and G = (P, Y ) a
bundle gerbe on M acted on strongly by G. The quotient of G by the strong
G action and the descent of G by the induced weak G action are stably
isomorphic.

Proof. We defined the descent of the bundle gerbe (P, Y ) in Proposition 3.16
given a weak action ofG in the form of a simplicial extension (μ−1(Y •+1), T, s)

of (P, Y ) over M [•+1]. This was given by the observation that μ−1(Y •+1) =

Y
[•+1]

(for Y → M/G the submersion given by the composition Y → M →
M/G) and then pulling back the simplicial extension to a simplicial line

bundle [T, s] over Y
[•+1]

. We also have a quotient bundle gerbe (P/G, Y/G)
over M/G. We define a map of surjective submersions ρ : Y → Y/G over
N = M/G and show that ρ−1(P/G) � T and that this map commutes with

the bundle gerbe multiplication on T → Y
[2]

and P/G → (Y/G)[2].
Notice, however, that the weak action on (P, Y ) induced by the strong

action of G, given in Proposition 4.3, is a simplicial extension (EG(Y )•, Y ×
U(1), 1). Proposition 3.5 tells us that this is the pullback of a simplicial ex-
tension (μ−1(Y •+1), T, s). Therefore, we need the simplicial line bundle com-
ing from this simplicial extension. The trivialisation T is given by Proposi-
tion A.1 as follows. We have the map EG(Y )1 = Y ×G → μ−1(Y •+1) =

Y
[2]
; (y, g) 	→ (y, yg). Then for (y0, y1), (y

′
0.y

′
1) ∈ Y

[2] ×M×G Y
[2]

we have
δ(P )(y0,y1),(y

′
0.y

′
1)
= P ∗

(y0,y
′
0)
⊗ P(y1,y

′
1)
. Note that π(y1) = π(y0)g for some g ∈

G and π : Y → M , and similarly for y′0, y
′
1, and that π(yi) = π(y′i). Then

Proposition A.1 gives

T(y0,y1) = U(1)⊗ δ(P )(y,yg)(y0,y1)

= U(1)⊗ P ∗
(y,y0) ⊗ P(yg,y1)

= U(1)⊗ P ∗
(y,y0) ⊗ P(y,y1g

−1
)

= U(1)⊗ P(y0,y1g
−1

)

= P(y0,y1g
−1

),

where again g is such that π(y1) = π(y0)g. To construct the descended bun-

dle gerbe we need the section of δ(T ) → Y
[3]
. For (y0, y1, y2) ∈ Y

[3]
and

π(yi) = π(yj)gij we have

δ(T )(y0,y1,y2) = P(y1,y2g
−1
12 ) ⊗ P ∗

(y0,y2g
−1
02 ) ⊗ P(y0,y1g

−1
01 ),
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and a section is given by s(y0, y1, y2) = p12 ⊗ (p12g01 · p01)∗ ⊗ p01, where
p01 ∈ P(y0,y1), p12 ∈ P(y1,y2) and · denotes the bundle gerbe multiplication
in P .

We can now define ρ : Y → Y/G by ρ(y) = yG ∈ Y/G where the latter
denotes the orbit of y under G. Then we have a map T(y0,y1) = P(y0,y1g

−1
) →

(P/G)(y0G,y1G) because the G orbit of (y0, y1g
−1) is the pair of G orbits

(y0G, y1g
−1G) = (y0G, y1G). Hence we have described a bundle map T →

P/G covering the induced map ρ : Y
[2] → (P/G)[2].

We need to prove that this map preserves the bundle gerbe product.
The multiplication in (P/G, Y/G) is given by the section σ(y0G, y1G, y2G) =
p12 ⊗ (p12 · p01G)⊗ p01 and it is easy to see that ρ maps the section s to σ
because the G action on P commutes with the bundle gerbe multiplication.
It follows that the bundle gerbe product is preserved. �

4.3. The class of a strongly equivariant bundle gerbe

Assume that G acts strongly on the bundle gerbe G = (P, Y ) overM . Choose
a bundle gerbe connection ∇ for P and a curving f . Let ω(3,0) ∈ Ω3(M) be
the three-curvature. We show how to write down an equivariant class for G.

Over Y [2] ×G there are two bundles d−1
0 (P ) and d−1

1 (P ) correspond-
ing to the bundle gerbes d−1

0 (G) and d−1
1 (G) over M ×G. Let φ : d−1

0 (P ) →
d−1
1 (P ) be the action of right multiplication by g−1. On d−1

0 (P ) there are
two connections: d−1

0 (∇) and φ−1d−1
1 (∇)φ. They are both bundle gerbe con-

nections so we must have

(4.1) d−1
0 (∇)− φ−1d−1

1 (∇)φ = δY (β),

for β ∈ Ω1(Y ×G). Similarly we have curvings d∗0(f) and d∗1(f) and

δY (d
∗
0(f)− d∗1(f)− dβ) = 0,

or

(4.2) d∗0(f)− d∗1(f)− dβ = π∗(ω(2,1)),

for ω(2,1) ∈ Ω1(M ×G). Moreover

π∗(dω(2,1)) = d∗0(f)− d∗1(f)
= d∗0(df)− d∗1(df)
= d∗0(π

∗(ω(3,0)))− d∗1(π
∗(ω(3,0))),
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so that

−dω(2,1) + δ(ω(3,0)) = 0.

Applying d−1
0 , d−1

1 and d−1
2 to (4.1) we obtain

μ−1
2 (∇)− φ−1

0 μ−1
1 (∇)φ0 = δY (d

∗
0(β))

μ−1
2 (∇)− φ−1

1 μ−1
0 (∇)φ1 = δY (d

∗
1(β))

μ−1
1 (∇)− φ−1

2 μ−1
0 (∇)φ2 = δY (d

∗
2(β))(4.3)

where here μ0(m, g1, g2) = m, μ1(m, g1, g2) = mg1 and μ2(m, g1, g2) = mg1g2
and φi = φ ◦ di. We have φ1 = φ2φ0 so conjugating line (4.3) by φ−1

0 we ob-
tain

φ−1
0 μ−1

1 (∇)φ0 − φ−1
1 μ−1

0 (∇)φ1 = δY (d
∗
2(β)),

and an alternating sum gives us δY (δ(β)) = 0. Hence

(4.4) δ(β) = π∗(ω(1,2)),

for some ω(1,2) ∈ Ω1(M ×G2). It then follows that

π∗(δ(ω(2,1))) = −dδ(β) = −π∗(dω(1,2)),

or

dω(1,2) + δ(ω(2,1)) = 0.

Notice also that 0 = δ2(β) = −π∗(δ(ω(1,2))) so that δ(ω(1,2)) = 0 = d0. Thus
we have defined a cocycle

ω =
1

2πi
(0, ω(1,2), ω(2,1), ω(3,0)) ∈ A3(EG(M)•).

Consider what happens if we vary the choices involved. We could re-
place β by β + π∗(ρ(1,1)), changing ω(2,1) by adding −dρ(1,1) and ω(1,2) by
adding δ(ρ(1,1)), which leaves the class of ω unchanged. Also we could re-
place the curving f by adding π∗(ρ(2,0)) to it and changing ω(3,0) by ad-
dition of dρ(2,0), and ω(2,1) by addition of δ(ρ(2,0)), which again leaves the
class of ω unchanged. Finally, we can change (∇, f) to (∇+ δ(α), f + dα) for
α ∈ Ω1(Y ), which changes β to β + δ(α). The left hand side of equation (4.2)
then changes by the addition of δ(dα)− dδ(α) = 0, leaving ω unchanged. We
conclude that the class of ω depends only on the strong group action and
the bundle gerbe.
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Definition 4.6. We call the class just defined the strongly equivariant class
of the strongly equivariant bundle gerbe G and denote it by εs(G).

In [28] Meinrenken defines the class of a strongly equivariant bundle gerbe
using the Cartan model of equivariant cohomology. See also related work of
Stienon [38].

With these observations we can prove the following result:

Proposition 4.7. The equivariant class of a strongly equivariant gerbe is
equal to the simplicial extension class of the corresponding simplicial exten-
sion.

Proof. In Proposition 3.7 we defined the class η = 1
2πi [0, η(1,2), η(2,1), η(3,0)],

which we compare to the class ω = 1
2πi [0, ω(1,2), ω(2,1), ω(3,0)] above.

Firstly, it is clear that ω(3,0) = η(3,0).
Recall from Proposition 4.3 that the simplicial extension corresponding

to the strong action ofG on G is given by (EG(Y )•, T, s), where T (and hence
AT ) is the trivial bundle and s is the canonical section of AT . Equation (4.1)
tells us we can choose the trivialising connection on T to be β and then
equation (4.2) is the same as equation (3.2) and hence η(2,1) = ω(2,1).

Finally, the induced connection on δ(T ) is given by δ(β) and hence com-
paring equation (4.4) with equation (3.3) implies that η(1,2) = ω(1,2). �

5. The basic bundle gerbe

We review the constructions in [34] and situate them in the equivariant
setting. We first recall from [34] the basic bundle gerbe on G = U(n) and the
canonical connection and curving on it constructed using the holomorphic
functional calculus.

Write Z = S1 \ {1}. Define Y ⊂ Z ×G to be the set of pairs (z, g), where
z is not an eigenvalue of g. We equip Z with an ordering via the identification
of Z with the open interval (0, 2π) by φ 	→ exp(iφ). Let π : Y → G denote

the canonical map. We note that elements of Y [2] can be identified with
triples (z1, z2, g) where (z1, g), (z2, g) ∈ Y . In such a case if z ∈ Z we say
that it is between z1 and z2 if it is in the component of S1 \ {z1, z2} not
containing {1}.

As described in [34], there is a natural line bundle L on Y [2] together
with a bundle gerbe product on L, giving (L, Y ) the structure of a bundle

gerbe on G. To describe this note first that there is a decomposition of Y [2]
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as a union of three disjoint open sets defined by:

Y
[2]
+ = {(z1, z2, g) | z1 < z2 and there is

some eigenvalue of g between z1 and z2}

Y
[2]
− = {(z1, z2, g) | z1 > z2 and there is

some eigenvalue of g between z1 and z2}

and

Y
[2]
0 = {(z1, z2, g) | there is no eigenvalue of g between z1 and z2}.

If (z1, z2, g) ∈ Y
[2]
+ we define

E(z1,z2,g) =
⊕

z1<λ<z2

Eλ(g),

where Eλ(g) denotes the λ-eigenspace of g and we write z1 < λ < z2 to in-

dicate that λ is between z1 and z2. It is shown in [34] that E → Y
[2]
+ is a

smooth, locally trivial vector bundle. Recall also from [34] that the orthog-

onal projection P : Y
[2]
+ → Mn(C) onto E is given by the contour integral

formula

(5.1) P (z1, z2, g) =
1

2πi

∮
C(z1,z2,g)

(ξ1− g)−1dξ

where C(z1,z2,g) is an anti-clockwise curve enclosing all of the eigenvalues of
g between z1 and z2.

The line bundle L → Y [2] is defined as follows. If (z1, z2, g) ∈ Y
[2]
+ we set

L(z1,z2,g) =

top∧
E(z1,z2,g).

If (z1, z2, g) ∈ Y
[2]
− we set L(z1,z2,g) = L∗

(z2,z1,g). If (z1, z2, g) ∈ Y
[2]
0 we set

L(z1,z2,g) = C. It is proven in [34, Proposition 3.1] that L → Y [2] is a smooth,
locally trivial, hermitian line bundle. Furthermore it is shown in [34] that
there is a natural bundle gerbe product on L, equipping (L, Y ) with the
structure of a bundle gerbe. The resulting bundle gerbe Bn = (L, Y ) is a
model for the basic bundle gerbe on G = U(n).
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Observe that G acts smoothly on Y from the right, covering the adjoint
action of G on itself. More precisely, we define Y ×G → Y by ((z, g), h) 	→
(z, h−1gh); note that the projection map π : Y → G is equivariant. We have
the following lemma.

Lemma 5.1. The basic bundle gerbe Bn = (L, Y ) on G = U(n) is a strongly
equivariant bundle gerbe for the adjoint action of G on itself.

Proof. We need to show that the induced action Y [2] ×G → Y [2] lifts to an

action of G on L. It is sufficient to prove that the action of G on Y
[2]
+ lifts

to an action of G on E; this follows from the fact that the left action of G
on C

n is smooth and the fact that if v is an eigenvector of g with eigenvalue
λ, then v · h = h−1v is an eigenvector of h−1gh with eigenvalue λ. �

The map P : Y
[2]
+ → Mn(C) extends in an obvious way to a smooth map

P : Y [2] → Mn(C). Observe that P satisfies

(5.2) d∗1P = Adp2
d∗0P

on Y [2] ×G, where p2 : Y
[2] ×G → G is the map p2((z1, z2, g), h) = h.

Recall from [34] that there is a canonical bundle gerbe connection ∇ and
curving f on (L, Y ) whose 3-curvature is

ν = − i

12π
tr(g−1dg)3.

We briefly review the construction of ∇ and f as they will be needed in the

sequel. The orthogonal projection P : Y
[2]
+ → Mn(C) induces a connection

∇E on E by projecting the trivial connection d on Y
[2]
+ × C

n to E. The

connection ∇E then induces a connection ∇ on the restriction of L to Y
[2]
+ ,

over Y
[2]
− we equip L with the dual connection and over Y

[2]
0 we take the flat

connection. It is proven in [34] that this connection ∇ on L is a bundle gerbe
connection and that moreover a curving f for ∇ is given by the 2-form on
Y defined by

f(g, z) =
1

8π2

∮
C(g,z)

logz ξ tr((ξ1− g)−1dg(ξ1− g)−2dg)dξ

where C(g,z) is an anti-clockwise contour in C \Rz enclosing the eigenvalues
of g, and where Rz denotes the closed ray from the origin in C through z.
Here logz : C \Rz → C is the branch of the logarithm defined by making the
cut along Rz and defining logz(1) = 0.
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The connection ∇ on L is not equivariant however, for the action of
G on L described in Lemma 5.1 above. We investigate the failure of ∇
to be equivariant more closely. We have an isomorphism of line bundles
φ : d∗0L → d∗1L over Y [2] ×G; if s is a section of d∗0L over Y [2] ×G then φ(s)

is the section of d∗1L over Y [2] ×G defined by

φ(s) = s · p2,

where (s · p2)((z1, z2, g), h) = s(z1, z2, g) · h. We then have

φ−1d∗1∇(φ(s)) = φ−1 det(d∗1P (d(s · p2)))
= φ−1 det(d∗1P (ds · p2 + s · dp2))
= φ−1 det(Adp2

d∗0P (ds · p2 + s · dp2))
= − tr(p∗2θd

∗
1P ) · s+ d∗0∇s,

where we have used (5.2) and where we have written θ for the right Maurer-
Cartan 1-form on G. Using (5.1) we may express the 1-form α = tr(p∗2θd

∗
1P )

as a contour integral:

α(z1, z2, g, h) =
1

2πi

∮
C(g,z1,z2)

tr(θ(h)(ξ1− g)−1)dξ,

where, as in (5.1) above, C(g,z1,z2) denotes a contour enclosing the eigenvalues
of g between z1 and z2, oriented counter-clockwise.

Since d∗0∇ and d∗1∇ are bundle gerbe connections, it follows that δ(α) = 0
and hence α = δ(β) for some 1-form β on Y ×G. Using an identical argu-
ment to that used in the proof of part (a) of Theorem 5.1 in [34], we obtain
the following expression for β:

(5.3) β(z, g, h) = − i

2π

∮
C(g,z)

logz ξ tr(θ(h)(ξ1− g)−1)dξ

where logz and C(g,z) are respectively the branch of the logarithm and the
contour described above.

The main result of this section is the following theorem.

Theorem 5.2. Let Bn be the basic gerbe over G = U(n). The strongly
equivariant class of Bn is

εs(Bn) =
1

2πi
[0, 0, ω, ν]
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where

ν = − i

12π
tr(g−1dg)3 ∈ Ω3(G),

ω =
i

4π

(
tr(θ̂hθh) + tr(θθh) + tr(θθ̂h)

)
∈ Ω2(G2),

using θ = g−1dg, θh = dhh−1 and θ̂h = g−1θhg.

Proof. Following Section 4.3 we need to show that the following equations
hold:

d0(∇)− φ−1d−1
1 (∇)φ = δ(β)

δ(f)− dβ = π∗ω
δ(β) = 0

where the definition of

f(g, z) =
1

8π2

∮
C(g,z)

logz ξ tr((ξ1− g)−1dg(ξ1− g)−2dg)dξ

and

β(z, g, h) = − i

2π

∮
C(g,z)

logz ξ tr(θ(h)(ξ1− g)−1)dξ

is detailed in the discussion preceding the statement of the theorem.
We have established the first equation in that same discussion. The proof

that the second equation is satisfied is long and technical and we have there-
fore relegated it to Appendix B. We show then that the third equation
is satisfied, i.e. that δ(β) = 0. We have d∗0β((z, g), h, k) = β((z, h−1gh), k),
d∗1β((z, g), h, k) = β((z, g), hk) and d∗2β((z, g), h, k) = β((z, g), h). Therefore
we have that δ(β)(z, g, h, k) is equal to

i

2π

∮
C(g,z)

logz ξ tr
[
θ(k)h−1(ξ1− g)−1h

− θ(kh)(ξ1− g)−1 + θ(h)(ξ1− g)−1
]
dξ,

which is easily seen to equal 0 using θ(hk) = hθ(k)h−1 + θ(h). �

As an illustration of this theorem we consider the case where G = U(1)
in detail. In this case the bundle gerbe on G is necessarily trivial. However,
the equivariant bundle gerbe on G is non-trivial. The theorem above shows
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that its equivariant class is given by [0, 0, χ, 0], where χ is the closed 2-form
on U(1)× U(1) given by

χ(φ1, φ2) =
1

4π2 dφ1 ∧ dφ2,

where we have defined g1 = exp(iφ1) and g2 = exp(iφ2). An easy calculation
shows that the class inH2(U(1)× U(1),R) represented by the form χ is non-
zero. It follows that the class in H3

U(1)(U(1),R) represented by [0, 0, χ, 0] is
non-zero.

Note that there also is a non-trivial multiplicative bundle gerbe on U(1),
with trivial underlying bundle gerbe, using the line bundle on U(1)× U(1)
with Chern class represented by χ [17].

6. String structures and simplicial extensions

Waldorf [41] has described string structures on a principal G-bundle P →
X as trivialisations of a certain bundle 2-gerbe, called the Chern–Simons
bundle 2-gerbe of P . In this section we show that such a trivialisation gives
rise to a simplicial extension of a bundle gerbe. Unlike the examples so far,
this is an example of a simplicial extension over a simplicial manifold that
is not the nerve of a Lie groupoid.

6.1. Crossed modules

We shall begin by recording some relevant facts about crossed modules,
which will be important in what follows. Crossed modules were introduced
by Whitehead in the 1940’s as a model for homotopy 2-types. We first recall
the definition reminding the reader that all groups are implicitly Lie groups.

Definition 6.1. A crossed module K is a pair of groups K̂ and L together

with a homomorphism K̂
t−→ L and an action L× K̂

α−→ K̂ by group auto-
morphisms satisfying

1) t(α(l, k)) = Adl(t(k)),

2) α(t(k1), k2) = Adk1
(k2),

for l ∈ L and k, k1, k2 ∈ K̂. We shall further assume that K̂ → K is a locally
trivial principal ker t-bundle, where here K := t(K̂).
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Remark 6.1. Although we do not need this point of view we remark that a
crossed module gives rise to a groupoid K̂ × L

��
�� L where both the objects

and arrows are groups and the source, target and composition are homomor-
phisms. Further, there are functors 1 → K and K ×K → K making certain
natural diagrams commute. Such a thing is the same as a group object in the
category of groupoids, and is called a strict 2-group. A detailed discussion
of this would take us too far afield, so we instead refer the interested reader
to history, discussion and definitions in [1].

We also want to say what it means for a crossed module to act on a
manifold.

Definition 6.2. A strict action of a crossed module K̂
t−→ L on a manifold

P is an ordinary group action of L on P such that the action restricted to
K < L is trivial.

Remark 6.2. Although Definition 6.2 will suffice for our purposes, we re-
mark that there is a definition of a strict action of a strict 2-group K on a
manifold P given in terms of a functor K × P → P (where P is considered as
a groupoid with no non-identity arrows) making certain diagrams commute.

In the case that the 2-group K is defined using a crossed module K̂
t−→ L it

is easy to see that this definition of action is equivalent to Definition 6.2.

Example 6.1. The crossed module in which we are interested is the follow-
ing [2]: K̂ is the central extension of the loop group Ω̂G, and L is the path

group PG. The map Ω̂G
t−→ PG is the composition of the projection to ΩG

with the inclusion ΩG ↪→ PG (so K = t(K̂) = ΩG and ker t = U(1)) and the

map α : PG× Ω̂G → Ω̂G is a lift of the adjoint map Ad: PG× ΩG → ΩG,
which we also denote by Ad. The result of [2] is that this defines a crossed
module that gives a 2-group model for the 3-connected cover of G, the String
group of G.

LetN be a manifold with a G-action. The crossed module in the previous
paragraph acts on N in a natural way via the evaluation map PG → G.

This crossed module will be important in what follows since the sim-
plicial manifold we consider in Section 6.4 is built from the crossed module
action on the total space of a G-bundle.

We have the following facts about K̂
t−→ L:
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1) Since K̂ is a central extension of K it is multiplicative as a principal
bundle, that is the following diagram is a pullback

(6.1)

K̂⊗̂K̂ ��

��

K̂

��

K ×K �� K

Here K̂⊗̂K̂ denotes the external tensor product, K̂1 ⊗ K̂2, where K̂i

is the pullback of K̂ by the projection onto the ith factor.

2) Since K̂
t−→ L is a crossed module, the map α lifts the restriction to K

of the adjoint map, Ad|K : L×K → K, so the following diagram is a
pullback

(6.2)

L× K̂
α ��

id×t
��

K̂

��

L×K
Ad �� K

3) The natural map from the dual bundle K̂∗ to K̂ covers the inverse
map on K so that the following diagram is a pullback

(6.3)

K̂∗ ��

��

K̂

��

K
(·)−1

�� K

In terms of the fibres of K̂ these tell us there are canonical isomorphisms

1) K̂k1k2
� K̂k1

⊗ K̂k2
,

2) K̂Adl(k) � K̂k,

3) K̂k
−1 � K̂∗

k ,

where l ∈ L and k ∈ K.
We will be concerned with bundles over Ln ×Km defined by (products

and compositions of) pullbacks of the maps above. We will call such a bundle
an xm-bundle. More precisely, we make the following definition.

Definition 6.3. Let f : Ln ×Km → K be a map given by composition and
products of the following operations:
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1) multiplication in L and K;

2) inversion in L and K;

3) inclusions K ↪→ L and 1 ↪→ K;

4) projections Ln ×Km → Lp ×Kq;

5) diagonals L×K → Lp ×Kq;

6) the adjoint action Ad: L×K → K.

We call a principal bundle P → Ln ×Km an xm-bundle if P � f−1(K̂) for
some f as above. Additionally, we define an xm-morphism between xm-
bundles on the same base to be a map of bundles built from compositions
and products of the three structural maps of the crossed module (6.1)–(6.3)
above. An xm-morphism is clearly an isomorphism, since maps of principal
bundles are so.

We have the following result, which we will use repeatedly.

Lemma 6.4. There exists at most one xm-morphism between any two xm-
bundles.

Proof. To prove this we first make the following observation: Suppose P is
an xm-bundle that is the pullback of a map f : Ln ×Km → K. We can factor
f through a product of K’s by leaving all the multiplication maps in f until
last; that is, we can write f as a k-tuple (f0, . . . , fk) : L

n ×Km → Kk, com-
posed with the map Kk m−→ K given by multiplication. The maps f1, . . . , fk
do not contain among them any multiplication maps in K. Moreover, since
Ad is a homomorphism we can further factorise the map (f0, . . . , fk) through
L� ×Kk by leaving all the maps involving Ad until last; so (f0, . . . , fk) is

given by a composition Ln ×Km g−→ L� ×Kk a−→ Kk, where we have denoted
by a the map involving all adjoints and by g the map comprised of all other

structure. As above, denote by K̂⊗̂k the external tensor product of K̂ with
itself over Kk. Then the pullback diagram (6.2) implies that the following
diagram is a pullback

L� × K̂⊗̂k ��

��

K̂⊗̂k

��

L� ×Kk a �� Kk

On the other hand, if we consider the map L� ×Kk pr−→ Kk m−→ K given by
projection and then multiplication, we see that the following diagram is also
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a pullback

L� × K̂⊗̂k ��

��

K̂⊗̂k ��

��

K̂

��

L� ×Kk pr
�� Kk m �� K

This gives the commutative diagram

K̂⊗̂k ��

��

K̂

��

P

��

��

��

L� × K̂⊗̂k ��

��

��

K̂⊗̂k

��

�� K̂

��

Kk m �� K

Ln ×Km

(f0,...,fk)

��

g ��

L� ×Kk
pr

��

a

��

Kk
m

�� K̂

This means that an xm-bundle P given by a map f is isomorphic (via
a unique isomorphism) to a bundle pulled back by only the structure maps
that do not include Ad (i.e. along the bottom sequence of arrows in the
diagram above). Now suppose that we have two xm-bundles P and Q, with
an xm-morphism between them. Then if we write them in the reduced form
above (by which we mean they are pullbacks by maps not involving the
adjoint action) there will be a unique xm-morphism between them. Since
there is a unique isomorphism from P to its reduced form and from Q to its
reduced form, we have a unique xm-morphism from P to Q. �

What Lemma 6.4 means is that if we have two xm-bundles and we write
out the fibres of each as

K̂f1(l1,...,ln,k1,...,km) ⊗ K̂f2(l1,...,ln,k1,...,km) ⊗ · · · ⊗ K̂fk(l1,...,ln,k1,...,km),

then if the product of all the subscripts are equal once the maps involving
Ad are removed, there is a unique xm-morphism between them.
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6.2. Bundle 2-gerbes and trivialisations

In [37] the third author defines a notion related to the one developed in this
paper; that of a bundle 2-gerbe. The definition in [37] is quite complicated,
however we can make a useful simplification by employing the ideas from
Section 2, specifically Proposition 3.1. This gives us the following equivalent
definition of bundle 2-gerbe:

Definition 6.5. A bundle 2-gerbe (G, P ) on X consists of the following
data:

1) a surjective submersion P → X;

2) a bundle gerbe G = (E, Y ) over P [2];

3) a trivialisation M of (δ(E), μ−1(Y )2); and

4) a section a of AM → P [4] satisfying δ(a) = 1 as a section of δ(AM ).

Here the bundle gerbe (δ(E), μ−1(Y )2) is the restriction of δ(G) to the

surjective submersion μ−1(Y )2 → P [3] as in Example 2.9, and the line bundle

AM → P [4] is the descent of δ(M) → μ−1(Y )2 as in Proposition 3.1.

Remark 6.3. We leave it to the reader to show that this definition is
equivalent to the one in [37]. The main point is that the definition from
[37] involves a trivialisation M of the bundle gerbe (δ(E), δ(Y )), and so
δ(M) → δ2(Y ) does not descend as in our definition (since the bundle gerbe
δ(δ(E), δ(Y )) = (δ2(E), δ2(Y )) is not strongly trivial). Therefore one needs
to consider the difference of δ(M) and the canonical trivialisation of
(δ2(E), δ2(Y )). One then has a section of this and the appropriate conditions
on this section.

Specifically, we are interested in trivial bundle 2-gerbes. With the ap-
propriate modifications the definition of a trivialisation of a bundle 2-gerbe
is as follows.

Definition 6.6. A bundle 2-gerbe (G, P ) over X is trivial if the following
conditions are satisfied:

1) there exists a bundle gerbe H = (Q,Z) over P and a stable isomor-
phism L : G → δ(H), where δ(H) = (δ(Q), μ−1(Z2));

2) there exists a section θ of the bundle M ⊗ δ(L) over P [3] satisfying
δ(θ) = a.
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The data (H, L, θ) will be called a trivialisation of the bundle 2-gerbe.

Note that if G = (E, Y ) then in (1) the bundle L sits over the space
Y ×P

[2]μ−1(Z2) and in (2)M⊗δ(L) sits over the space μ−1(Y )2×P
[3]μ−1(Z3)

but descends to P [3]. The equation δ(θ) = a makes sense because δ(θ) is a

section of δ(M ⊗ δ(L)) = δ(M), viewed as a bundle over P [4], which is the
bundle AM .

6.3. The Chern–Simons bundle 2-gerbe

The example of a bundle 2-gerbe in which we are interested is the Chern–
Simons bundle 2-gerbe [11] associated to a principal G-bundle P → X. This

is defined by taking the simplicial manifold P [•+1] and using the isomorphism
P [2] = P ×G to pull back the basic gerbe on G to P [2]. The model of the
basic bundle gerbe that we use here is different to that in Section 5; it is
the lifting bundle gerbe for the path fibration of the group G. The lifting
bundle gerbe was introduced in [32] and the example of the path fibration
of a compact Lie group G was studied in detail in [33]. It is given by taking
the surjective submersion PG → G, which is a principal ΩG-bundle, and
identifying PG[2] with PG× ΩG. We then pull back the central extension
Ω̂G by the projection PG× ΩG → ΩG.

Next we give the data of the Chern–Simons bundle 2-gerbe in detail.
According to the description above, it is the pullback of the basic gerbe on
G. Thus we have the following depiction.

PG× Ω̂G

��

P × PG× Ω̂G

��

PG× ΩG
��
��

P × PG× ΩG
��
��

PG

��

P × PG

��

G

P ×G

��

��
�� P

��

X
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We shall denote the bundle gerbe over P ×G in this diagram by G.
In order to describe the rest of the data defining the Chern–Simons

bundle 2-gerbe as per Definition 6.5, we need to consider the semi-simplicial
surjective submersion μ−1(P × PG)• → P [•+1] and the bundle gerbe

δ(G) = (δ(P × PG× Ω̂G), μ−1(P × PG)2).

Calculation shows that the low dimensional spaces in the semi-simplicial
surjective submersion μ−1(P × PG)• → P [•+1] are

P × PG3 × ΩG3

��

��
��
��
��
P × PG2 × ΩG

��

��
��
��
P × PG

��

��
�� P

P ×G3
��
��
��
��
P ×G2

��
��
��
P ×G

��
�� P

The maps di : μ
−1(P × PG)2 = P × PG2 × ΩG → P × PG are given by

(6.4)

d0(p, γ1, γ2, ω) = (pγ1(1), γ2),

d1(p, γ1, γ2, ω) = (p, γ1γ2ω),

d2(p, γ1, γ2, ω) = (p, γ1),

and the maps di : μ
−1(P × PG)3 = P × PG3 × ΩG3 → P × PG2 × ΩG are

given by

(6.5)

d0(p, γ1, γ2, γ3, ω1, ω2, ω3) = (pγ1(1), γ2, γ3, ω3),

d1(p, γ1, γ2, γ3, ω1, ω2, ω3) = (p, γ1γ2ω1, γ3,Adγ−1
3
(ω−1

1 )ω2),

d2(p, γ1, γ2, γ3, ω1, ω2, ω3) = (p, γ1, γ2γ3ω3, ω
−1
3 ω2),

d3(p, γ1, γ2, γ3, ω1, ω2, ω3) = (p, γ1, γ2, ω1).

Note that

μ−1(P × PG)
[2]
2 = (P × PG2 × ΩG)×P×G

2 (P × PG2 × ΩG)

= P × PG2 × ΩG4

via the projections

(p, γ1, γ2, ω0, ω1, ω2, ω3) 	→ (p, γ1, γ2, ω0) and (p, γ1ω1, γ2ω2, ω3).

The maps

μ−1(P × PG)
[2]
2 = P × PG2 × ΩG4 −→−→−→ P × PG× ΩG = (P × PG)[2]
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are given by

d0(p, γ1, γ2, ω0, ω1, ω2, ω3) = (pγ1(1), γ2, ω2),

d1(p, γ1, γ2, ω0, ω1, ω2, ω3) = (p, γ1γ2ω0, ω
−1
0 Adγ−1

2
(ω1)ω2ω3),

d2(p, γ1, γ2, ω0, ω1, ω2, ω3) = (p, γ1, ω1).

Therefore, the bundle gerbe δ(G) is given by the bundle E → P × PG2 ×
ΩG4 whose fibre at (p, γ1, γ2, ω0, ω1, ω2, ω3) is

E(p,γ1,γ2,ω0,ω1,ω2,ω3)

� Ω̂Gω2
⊗ Ω̂G

∗
ω

−1
0 Ad

γ
−1
2

(ω1)ω2ω3
⊗ Ω̂Gω1

� Ω̂Gω2
⊗ Ω̂G

∗
ω

−1
0

⊗ Ω̂G
∗
Ad

γ
−1
2

(ω1) ⊗ Ω̂G
∗
ω2

⊗ Ω̂G
∗
ω3

⊗ Ω̂Gω1

� Ω̂Gω2
⊗ Ω̂Gω0

⊗ Ω̂Gω
−1
1

⊗ Ω̂Gω
−1
2

⊗ Ω̂Gω
−1
3

⊗ Ω̂Gω1

� Ω̂Gω0
⊗ Ω̂Gω

−1
3
.

The isomorphisms above are the unique ones guaranteed by Lemma 6.4. This
calculation shows that the bundle gerbe δ(G) is trivial with trivialisation

M = P × PG2 × Ω̂G
∗ → P × PG2 × ΩG, which is the data of Definition 6.5

(3).
For Definition 6.5 (4) we note that the bundle δ(M) → P × PG3 × ΩG3

has fibre at the point (p, γ1, γ2, γ3, ω1, ω2, ω3) given by

Ω̂G
∗
ω3

⊗ Ω̂GAd
γ
−1
3

(ω
−1
1 )ω2

⊗ Ω̂G
∗
ω

−1
3 ω2

⊗ Ω̂Gω1
,

and so we have the (unique) sequence of isomorphisms

δ(M)(p,γ1,γ2,γ3,ω1,ω2,ω3)

� Ω̂G
∗
ω3

⊗ Ω̂GAd
γ
−1
3

(ω
−1
1 )ω2

⊗ Ω̂G
∗
ω

−1
3 ω2

⊗ Ω̂Gω1

� Ω̂G
∗
ω3

⊗ Ω̂GAd
γ
−1
3

(ω
−1
1 ) ⊗ Ω̂Gω2

⊗ Ω̂G
∗
ω

−1
3

⊗ Ω̂G
∗
ω2

⊗ Ω̂Gω1

� Ω̂G
∗
ω3

⊗ Ω̂Gω
−1
1

⊗ Ω̂Gω2
⊗ Ω̂G

∗
ω

−1
3

⊗ Ω̂G
∗
ω2

⊗ Ω̂Gω1

� Ω̂G
∗
ω3

⊗ Ω̂G
∗
ω1

⊗ Ω̂Gω2
⊗ Ω̂Gω3

⊗ Ω̂G
∗
ω2

⊗ Ω̂Gω1

� U(1).

Therefore we have a trivialisation of δ(M) and hence AM , by Lemma 6.4.
We define the section a from Definition 6.5 (4) to be this trivialisation.
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The situation is summarised in the following diagram

δ
(
P × PG× Ω̂G

)
��

P × PG× Ω̂G

��

AM

		

δ(M)

��

M

��

P × PG2 × ΩG4








��
��
��
P × PG× ΩG

��
��

P × PG3 × ΩG3
��
��
��
��

��

P × PG2 × ΩG ��
��
��

��

P × PG

��

P ×G3
��
��
��
��
P ×G2

��
��
��
P ×G

��
�� P

��

X

6.4. The simplicial extension of a string structure

Suppose now that we have a trivialisation H of the Chern–Simons bundle
2-gerbe associated to the G-bundle P → X. We will build a simplicial ex-
tension of H over the simplicial manifold EK(P )• associated to the action

of the crossed module K = (Ω̂G → PG) from Example 6.1 on P . We will
now describe this simplicial manifold in more detail.

Given a crossed module K̂
t−→ L of Lie groups acting on a manifold P ,

one can form an action 2-groupoid. This has as objects the manifold P , as
1-arrows the product P × L, and as 2-arrows the product P × L× K̂:

P × L× K̂
pr12 ��

1P×f
�� P × L

pr1 ��

act
�� P

where the action f of K̂ on L is via the map t and the action of L on P
is part of the definition of the action of K on P . The precise description
of the structural maps (i.e. sources, targets and compositions) of this 2-
groupoid we shall leave to the reader as an instructive exercise, since we are
more interested in the nerve of this 2-groupoid (as defined by Street [40]
and Duskin [15]), which we shall describe explicitly in low dimensions. This
nerve is what we have called EK(P )•.

The intuitive picture that the reader should keep in mind is that of the
nerve of the action 1-groupoid, but instead of commuting triangles making
up the dimension 2 faces of simplices, one should fill it with an element of
the group K̂. A 2-simplex is thus a triangle commuting up to a 2-arrow; a
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EK(P )• = · · · P × L3 × K̂3
��
��
��
��
P × L2 × K̂ ��

��
��
P × L

��
�� P

EK(P )1
��
�� EK(P )0

d0(p, l) = pl

d1(p, l) = p

EK(P )2 ��
��
��
EK(P )1

d0(p, l1, l2, k) = (pl1, l2)

d1(p, l1, l2, k) = (p, l1l2t(k))

d2(p, l1, l2, k) = (p, l1)

EK(P )3 ��
��
��
��
EK(P )2

d0(p, l1, l2, l3, k1, k2, k3) = (pl1, l2, l3, k3)

d1(p, l1, l2, l3, k1, k2, k3) = (p, l1l2t(k1), l3, k2)

d2(p, l1, l2, l3, k1, k2, k3) = (p, l1, l2l3t(k3), k
−1
3 (kl

−1
3

1 )k2)

d3(p, l1, l2, l3, k1, k2, k3) = (p, l1, l2, k1)

Table 1: The nerve of the action 2-groupoid in low dimensions

3-simplex is a tetrahedron with faces labelled as such as commuting in the
2-dimensional sense. Table 1 specifies the face maps that we shall need in
the course of this section.

The crossed module we are interested in is Ω̂G → PG, from Exam-
ple 6.1, which gives rise to the String group of G. As described earlier,
it acts naturally on the G-bundle P via the map to G. For the simpli-
cial manifold EK(P )• arising from this action there is a simplicial map

e : EK(P )• → P [•+1], given by evaluating all paths at their endpoints, and

forgetting factors of Ω̂G. In low degrees this is

· · ·
����
����
��

P × PG3 × Ω̂G
3

e3=id× ev
3
1
��

��
��
��
��
P × PG2 × Ω̂G

e2=id× ev
2
1
��

��
��
��
P × PG

��
��

e1=id× ev1

��

P

e0=id

· · ·
����
����
��

P ×G3
��
��
��
��
P ×G2

��
��
��
P ×G

��
�� P
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We shall denote the operation δ for the simplicial manifolds EK(P )•
and P [•+1] by δEK and δP , respectively. Thus the definition of the Chern–
Simons bundle 2-gerbe and a trivialisation of it involve δP everywhere, while
a simplicial extension of H over EK(P )• will involve δEK. We also remind

the reader that if G = (E, Y ) over P [2] and H = (Q,Z) over P then by δk(G)
we mean (δk(E), μ−1(Y )k) and by δk(H) we mean (δk(Q), μ−1(Zk+1)).

Given a trivialisation (H, L, θ) of the Chern–Simons bundle 2-gerbe, we
will construct a simplicial extension of H over EK(P )• by pulling back the
data of the bundle 2-gerbe (G, P ) along e.

We construct the trivialisation T of δEK(H) as follows. Notice first, since
e is a simplicial map, we have that e−1(δP (H)) is canonically isomorphic
to δEK(H). We therefore have the stable isomorphism e−1

1 (L) : e−1
1 (G) →

e−1
1 (δP (H)) = δEK(H). To construct T we combine this with a trivialisation
of e−1

1 (G) using the following lemma.

Lemma 6.7. Let (Q, Y ) be a bundle gerbe over a manifold X with surjective
submersion π : Y → X. Then π−1(Q, Y ) (as a bundle gerbe over Y ) has a
canonical trivialisation given by τ = Q.

Proof. First notice that the statement makes sense because π−1(Q, Y ) has

as surjective submersion the pullback π−1(Y ) = Y [2], and τ = Q is a line

bundle over Y [2]. The fibre product Y [2] ×Y Y [2] is given by Y [3] and the face
maps are projection onto the first and second, and first and third factors,
respectively. Thus we have

π−1(Q)(y1,y2,y3) = Q(y2,y3) = Q(y2,y1)Q(y1,y3) = Q∗
(y1,y2)Q(y1,y3),

and so π−1(Q) is trivialised by τ = Q. �

Now, e1 : P × PG → P ×G is the surjective submersion for the bundle
gerbe G, so Lemma 6.7 gives us the trivialisation τ of e−1

1 (G). Thus we have
the trivialisation T = τ ⊗ e−1

1 (L) of δEK(H).
Next we need a section s of AT = δEK(τ ⊗ e−1

1 (L)) over EK(P )2 = P ×
PG2 × Ω̂G. Since H is a trivialisation of the Chern–Simons bundle 2-gerbe
we have a section θ of M ⊗ δP (L) over P ×G2. We claim that e−1

2 (M ⊗
δP (L)) is canonically isomorphic to δEK(τ ⊗ e−1

1 (L)) and therefore we can
define s = e−1

2 (θ). We have

e−1
2 (M ⊗ δP (L)) = e−1

2 (M)⊗ e−1
2 (δP (L)) = e−1

2 (M)⊗ δEK(e
−1
1 (L)).
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So we need to show that e−1
2 (M) is canonically isomorphic to δEK(τ). No-

tice that P × PG2 × Ω̂G is the total space of the dual of M . We have the
following result.

Lemma 6.8. Let (Q, Y ) be a bundle gerbe on a manifold X, with surjective
submersion π : Y → X. Let π̂ : R → Y be a trivialisation of (Q, Y ), and R∗

its dual. Denote by p the composite map π ◦ π̂ : R∗ → Y → X. Recall that, by
Lemma 6.7, the bundle gerbe π−1(Q, Y ) has a trivialisation τ . Then the two
trivialisations p−1(R) and π̂−1(τ∗) of p−1(Q, Y ) are canonically isomorphic.

Proof. Recall from the proof of Lemma 6.7 that the bundle gerbe π−1(Q, Y )

over Y has as surjective submersion Y [2] → Y . It has two trivialisations;
τ and π−1(R). We have τ � π−1(R) = R∗ since, for y ∈ Y and any x in
the same fibre, (τ ⊗ π−1(R)∗)(y,x) = Q(y,x)Rx = R∗

y, using the fact that R is

a trivialisation. We have π̂−1(τ)� p−1(R) = π̂−1(τ � π−1(R)) = π̂−1(R∗),
which is canonically trivial. Therefore π̂−1(τ) is canonically isomorphic to
p−1(R). �

To apply Lemma 6.8 to the bundle gerbe δP (G) with its trivialisation

M notice that e2 factors as P × PG2 × Ω̂G
π̂−→ P × PG2 × ΩG = μ−1(P ×

PG)2
π−→ P ×G2 such that the following diagram commutes

P × PG2 × Ω̂G

π̂
��

��
��
��

e2

��

P × PG
��
�� P

P × PG2 × ΩG

π
��

��
��
��
P × PG

��
��

e1

��

P

P ×G2
��
��
��
P ×G

��
�� P

and so the trivialisation e−1
2 (M) is canonically isomorphic to π̂−1(τδ(G)),

where τδ(G) is the canonical trivialisation of π−1(δP (G)) given by Lemma
6.7. But τδ(G) is isomorphic to δP (τ), where τ is the canonical trivialisation

of e−1
1 (G). Hence the pullback π̂−1(τδ(G)) = π̂−1(δP (τ)) is isomorphic to δEK

applied to the dual of the canonical trivialisation of e−1
1 (G), which is precisely

δEK(τ). This allows us to define the section s as the pullback of θ by e2.
It only remains to show that δEK(s) = 1 as a section of δEK(AT ), which

is the descent of the bundle δ2EK(τ ⊗ e−1
1 (L)) to EK(P )3 = P × PG3 × Ω̂G

3
.

Notice that since (H, L, θ) is a trivialisation of the Chern–Simons bundle 2-
gerbe we have δP (θ) = a, where a is the section of AM from Section 6.3.
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Further, since s = e−1
2 (θ), we have δEK(s) = δEK(e

−1
2 (θ)) = e−1

3 (δP (θ)) =
e−1
3 (a). Therefore, we need only show that e−1

3 (a) is the canonical trivi-
alisation of δ2EK(τ ⊗ e−1

1 (L)) under the isomorphism induced by Lemma 6.8.
In fact, since a is a trivialisation of AM = δP (M) = δP (M)⊗ δ2P (L), the sec-
tion δP (θ) induces the canonical trivialisation of δ2P (L) and so it suffices to
check that e−1

3 (a) induces the canonical trivialisation of δ2EK(τ). Notice how-
ever, that the canonical trivialisation of δ2EK(τ) involves pairing up factors

of Ω̂G and Ω̂G
∗
, whereas a is an xm-morphism. To see that these are the

same consider a crossed module K̂
t−→ L. We can factorize the constant map

K → K; x 	→ 1 as

K
Δ−→ K ×K

1×i−−→ K ×K
m−→ K,

where Δ is the diagonal map, and i andm are inversion and multiplication in
K, respectively. Then (m ◦ (1× i) ◦Δ)−1(K) is canonically trivial. However,
we also have that (m ◦ (1× i) ◦Δ)−1(K) is isomorphic to K̂ ⊗ K̂∗, which is
canonically trivial. We have the following trivial result

Lemma 6.9. The two trivialisations of K̂ ⊗ K̂∗ given above are equal.

The point is that both the canonical trivialisation of δ2EK(τ) (by Lemma
6.9) and the trivialisation given by e−1

3 (a) are xm-morphisms as in Defini-
tion 6.3, and therefore are equal by Lemma 6.4. So Lemma 6.9 tells us that
the section e−1

3 (a) (and hence δEK(s)) agrees with the canonical section of
δ2EK(τ ⊗ e−1

1 (L)) (and hence δEK(AT )). Therefore we have our main result

Theorem 6.10. Let P → X be a principal G-bundle and let (H, L, θ) be
a trivialisation of the Chern–Simons bundle 2-gerbe of P . Then H has a
simplicial extension over the nerve of the action 2-groupoid of the induced
String group action on P , given by (T, s) constructed above.

Appendix A. Descent for trivialisations

Proposition A.1. Assume that (P, Y ) is a bundle gerbe over M and that
φ : X → Y is morphism of surjective submersions over M . Then if T → Y
is a trivialisation of (φ−1(P ), X) there is a trivialisation φ(T ) → Y with
the property that φ−1(φ(T )) → X is isomorphic to T as a trivialisation of
(φ−1(P ), Y ).

Proof. Recall that a trivialisation R → Y of (P, Y ) is an isomorphism P →
δY (R) which commutes with the bundle gerbe product on P and the trivial
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bundle gerbe product on δY (R). It is convenient to formulate this in the

following way. For (y1, y2) ∈ Y [2] we have an isomorphism

Ry1
⊗ P(y1,y2) → Ry2

r1 ⊗ p12 	→ r1p12

and we require that for any y1, y2, y3 we have (r1p12)p23 = r1(p12p23) where
pij ∈ P(yi,yj) and (p12p23) denotes the bundle gerbe product.

So if T → X is a trivialisation of φ−1(P ) → X [2] then we have

Tx1
P(φ(x1),φ(x2)) → Tx2

,

with the corresponding condition on compatibility with the bundle gerbe
product. We define S → X ×M Y by S(x,y) = Tx ⊗ P(φ(x),y). We want to
show that S descends to a bundle φ(T ) → Y and to this end we define

φx2x1
: Sx1,y → Sx2,y

by φx2x1
(t1 ⊗ q1) = (t1p12)⊗ (p∗12q1) where t1 ∈ Tx1

, q1 ∈ P(φ(x),y) and the
definition involves the choice of p12 ∈ P(φ(x1),φ(x2)). It is clearly independent
of this choice and the choices representing the element in S(x1,y). We need to
check that φx3x2

φx2x1
= φx3x1

and making appropriate choices of elements
in the various spaces we have

φx3x2
φx2x1

(t1 ⊗ q1) = φx3x2
(t1p12)⊗ (p∗12q1)

= (t1p12)p23 ⊗ p∗23(p
∗
12q1)

= φx3x1
(t1 ⊗ q1)

as required.
Now define

ρxy1y2
: S(x,y1) ⊗ P(y1,y2) → S(x,y2)

by ρxy1y2
(s1 ⊗ q12) = t1 ⊗ q1q12 where s1 = t1 ⊗ q1. We want to show that

S(x1,y1) ⊗ P(y1,y2)

φx2x1
⊗1

��

ρx1y1y2 �� S(x1,y2)

φx2x1

��

S(x2,y1) ⊗ P(y1,y2) ρx2y1y2

�� S(x2,y2)
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commutes. To see this we note that if s1 = t1 ⊗ q1 then

ρx2y1y2
◦ (φx2x1

⊗ 1)(s1 ⊗ q12) = ρx2y1y2
((t1p12 ⊗ p∗12q1)⊗ q12)

= t1p12 ⊗ ((p∗12q1)q12)
= t1p12 ⊗ p∗12(q1q12)
= φ(x2x1)(t1 ⊗ (q1q12))

= φ(x2x1) ◦ ρx1y1y2
(s1 ⊗ q12).

Hence this map descends to give an isomorphism

φ(T )y1
⊗ P(y1,y2) → φ(T )y2

which we write as s1 ⊗ q12 	→ s1q12 and we have to check that (s1q12)q23 =
s1(q12q23). We have (s1q12)q23 = (t1 ⊗ q1q12)q23 = t1 ⊗ (q1q12)q23 = t1 ⊗
q1(q12q23) = s1(q12q23), as required.

Finally notice that the pullback of φ(T ) is

φ−1(φ(T ))x = φ(T )φ(x) = S(x,φ(x)) = TxP(φ(x),φ(x)) = Tx,

as required. �

Appendix B. Calculations supporting the proof of
Theorem 5.2

We prove the equation δ(f)− dβ = π∗(ω). Our strategy, as in [34], is to
transfer the problem to the more convenient space G/T × YT , where T is the
subgroup of diagonal matrices in G = U(n) and YT = (T × Z) ∩ Y . Recall
the canonical map pY : G/T × YT → Y defined by (gT, (t, z)) = (gtg−1, z).
This map is G-equivariant, for the right action of G on Y by conjugation, if
we make G act on the right of G/T × YT by (gT, (t, z)) · h = (h−1gT, (t, z)).
By Lemma 6.3 of [34], the induced map p∗Y : Ω∗(Y ) → Ω∗(G/T × YT ) on
forms is injective. Therefore it suffices to prove that δ(p∗Y (f)) = dp∗Y (β) =
π∗(p∗Y (ω)) in Ω2(G/T × Y

[2]
T ).

Recall that we may identify a point in G/T with a family of orthogonal
projections P1, . . . , Pn where PiPj = 0 if i �= j and

∑
i P1 = 1. We identify a

point in G/T × YT with a triple (P, λ, z), where P = (P1, . . . , Pn) is a family
of orthogonal projections as above, λ = (λ1, . . . , λn) ∈ T with z �= λi for all i.
Under this identification the right action of G is (P, λ, z) · h = (h−1Ph, λ, z).
We regard the λi as the eigenvalues of a unitary matrix g and the Pi as the
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orthogonal projections onto the λi-eigenspace. Under this interpretation, the
map G/T × YT → Y is the map which sends

(P, λ, z) 	→ (g, z), where g =

n∑
i=1

λiPi.

From equation (B.4) in [34] we have the following expression for the
curving p∗Y (f):

p∗Y (f) =
i

4π

∑
i �=k

(
logz λi − logz λk +

λk − λi

λk

)
tr(PidPkdPk).

A little calculation yields that

δ(p∗Y (f)) =
i

4π

∑
i �=k

Aik

(
tr(Pi[Pk, θh]dPk)

+ tr(PidPk[Pk, θh]) + tr(Pi[Pk, θh][Pk, θh])
)
,

where we have set Aik = logz λi − logz λk + (λk − λi)λ
−1
i and θh = dhh−1.

Using the fact that PiPk = 0 for i �= k and dPk = PkdPk + dPkPk we obtain

tr(Pi[Pk, θh]dPk) = − tr(θhdPkPi).

Similarly we obtain

tr(PidPk[Pk, θh]) = − tr(θhPidPk)

tr(Pi[Pk, θh][Pk, θh]) = − tr(PiθhPkθh).

Hence our expression for δ(p∗Y (f)) becomes

δ(p∗Y (f)) = − i

4π

∑
i �=k

Aik (tr(dPkPiθh) + tr(PidPkθh) + tr(PiθhPkθh)) .

This splits up into the sum of two terms:
(B.1)

− i

4π

∑
i �=k

(logz λi − logz λk) (tr(θhdPkPi) + tr(θhPidPk) + tr(PiθhPkθh))

and

(B.2) − i

4π

∑
i �=k

(1− λiλ
−1
k ) (tr(θhdPkPi) + tr(θhPidPk) + tr(PiθhPkθh)) .
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We simplify the term (B.1). Using the fact that
∑

i Pi = I and
∑

i dPi = 0
we have ∑

i,k

logz λi (tr(θhdPkPi) + tr(θhPidPk)) = 0.

Therefore, ∑
i �=k

logz λi (tr(θhdPkPi) + tr(θhPidPk))

=−
∑
i

logz λi (tr(θhdPiPi) + tr(θhPidPi))

=−
∑
i

logz λi tr(θhdPi).

using dPiPi + PidPi = dPi. Similarly we have∑
i �=k

logz λk (tr(θhdPkPi) + tr(θhPidPk)) =
∑
k

logz λk tr(θhdPk).

For the remaining terms in (B.1) we have∑
i,k

logz λi tr(PiθhPkθh) =
∑
i

logz λi tr(Piθhθh).

Hence∑
i �=k

logz λi tr(PiθhPkθh) =
∑
i

logz λi tr(Piθhθh)−
∑
i

logz λi tr(PiθhPiθh)

=
∑
i

logz λi tr(Piθhθh),

since tr(PiθhPiθh) = 0. Similarly we have∑
i �=k

logz λk tr(PiθhPkθh) = −
∑
k

logz λk tr(Pkθhθh).

Therefore the term (B.1) reduces to

(B.3) − i

2π

∑
i

logz λi (tr(Piθhθh)− tr(θhdPi)) .
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We compare the term (B.3) with dp∗Y β. We have from (5.3)

p∗Y β = − i

2π

∑
i

logz λi tr(θhPi)

and hence

dp∗Y (β) = − i

2π

∑
i

logz λi (tr(−θhdPi) + tr(θhθhPi))(B.4)

− i

2π

∑
i

dλi

λi
tr(θhPi)

Comparing (B.3) and (B.4) we obtain the following expression for δ(p∗Y (f))−
dp∗Y (β):

δ(p∗Y (f))− dp∗Y (β)(B.5)

= − i

4π

∑
i �=k

(1− λiλ
−1
k ) [tr(θhdPkPi) + tr(θhPidPk) + tr(PiθhPkθh)]

+
i

2π

∑
i

dλi

λi
tr(θhPi).

We have, using
∑

k dPk = 0,

∑
i �=k

tr(θhdPkPi) + tr(θhPidPk)

= −
∑
i

tr(θhdPiPi) + tr(θhPidPi)

= −
∑
i

tr(θhdPi)

= 0.

Similarly, using
∑

Pk = I and tr(PiθhPiθh) = 0, we have

∑
i �=k

tr(PiθhPkθh) = tr(θhθh) = 0.
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Therefore the expression for δ(p∗Y (f))− dp∗Y (β) in (B.5) reduces to

δ(p∗Y (f))− dp∗Y (β)(B.6)

= +
i

4π

∑
i �=k

λiλ
−1
k [tr(θhdPkPi) + tr(θhPidPk) + tr(PiθhPkθh)]

+
i

2π

∑
i

dλi

λi
tr(θhPi).

For the term ∑
i �=k

λiλ
−1
k tr(PiθhPkθh)

appearing in (B.6) we have, since tr(PiθhPiθh) = 0,∑
i �=k

λiλ
−1
k tr(PiθhPkθh) =

∑
i,k

λiλ
−1
k tr(PiθhPkθh)

= tr(gθhg
−1θh)

= − tr(θhθ̂h),

where we have set θ̂h = g−1θhg. For the term∑
i �=k

λiλ
−1
k [tr(θhdPkPi) + tr(θhPidPk)]

we have, using dPiPi + PidPi = dPi and
∑

i dPi = 0,

∑
i �=k

λiλ
−1
k [tr(θhdPkPi) + tr(θhPidPk)] =

∑
k

λ−1
k [tr(θhdPkg) + tr(θhgdPk)] .

Therefore (B.6) becomes

δ(p∗Y f)− dp∗Y β =
i

4π

{
− tr(θhθ̂h) +

∑
k

λ−1
k [tr(θhdPkg) + tr(θhgdPk)]

− 2
∑
k

dλkλ
−1
k tr(θhPk)

}
.
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We have, using P 2
k = Pk,∑
k

(
λ−1
k tr(θhdPkg)− dλkλ

−1
k tr(θhPk)

)
=
∑
k

λ−1
k tr(θhdPkg)− λ−1

k dλkλ
−1
k tr(θhPkg)

=− tr(θhg
−1dg)

=− tr(θhθ),

using d(g−1) =
∑

k(λ
−1
k dPk − λ−1

k dλkλ
−1
k Pk), where we have set θ = g−1dg.

Similarly, ∑
k

(
λ−1
k tr(θhgdPk)− dλkλ

−1
k tr(θhPk)

)
= − tr(θ̂hθ).

Hence

δ(p∗Y (f))− dp∗Y (β) = p∗Y π
∗
(

i

4π

(
tr(θ̂hθh) + tr(θθh) + tr(θθ̂h)

))
.
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