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Universality for a class of random

band matrices
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We prove the universality for the eigenvalue gap statistics in the
bulk of the spectrum for band matrices, in the regime where the
band width is comparable with the dimension of the matrix, W ∼
N . All previous results concerning universality of non-Gaussian
random matrices are for mean-field models. By relying on a new
mean-field reduction technique, we deduce universality from quan-
tum unique ergodicity for band matrices.
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1. Introduction

1.1. Previous studies of Wigner and band matrices.

There has been tremendous progress on the universality of non-invariant
random matrices over the past decade. The basic model for such matrices,
the Wigner ensemble, consists of N ×N real symmetric or complex Her-
mitian matrices H = (Hij)1�i,j�N whose matrix entries are identically dis-
tributed centered random variables that are independent up to the symmetry
constraint H = H∗. The fundamental conjecture regarding the universality
of the Wigner ensemble, the Wigner-Dyson-Mehta conjecture, states that
the eigenvalue gap distribution is universal in the sense that it depends only
on the symmetry class of the matrix, but is otherwise independent of the
details of the distribution of the matrix entries. This conjecture has recently
been established for all symmetry classes in a series of works [5, 16, 19]
(see [14, 25, 38] for the Hermitian class of Wigner matrices). The approach
initiated in [14, 16] to prove universality consists of three steps: (i) estab-
lish a local semicircle law for the density of eigenvalues (or more generally
estimates on the Green functions); (ii) prove universality of Gaussian divis-
ible ensembles, i.e., Wigner matrices with a small Gaussian component, by
analyzing the convergence of Dyson Brownian motion to local equilibrium;
(iii) remove the small Gaussian component by comparing Green functions
of Wigner ensembles with those of Gaussian divisible ones. For an overview
of universality results for Wigner matrices and this three-step strategy, see
[18].

Wigner in fact predicted that universality should hold for any large
quantum system, described by a Hamiltonian H, of sufficient complexity.
One prominent example where random matrix statistics are expected to
hold is the random Schrödinger operator in the delocalized regime. The ran-
dom Schrödinger operator describes a system with spatial structure, whereas
Wigner matrices are mean-field models. Unfortunately, there has been virtu-
ally no progress in establishing the universality for the random Schrödinger
operator in the delocalized regime. One prominent model interpolating be-
tween the Wigner matrices and the random Schrödinger operator is the
random band matrix. In this model the physical state space, which labels
the matrix elements, is equipped with a distance. Band matrices are char-
acterized by the property that Hij becomes negligible if dist(i, j) exceeds
a certain parameter, W , called the band width. A fundamental conjecture
[22] states that the local spectral statistics of a band matrix H are governed
by random matrix statistics for large W and by Poisson statistics for small
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W . The transition is conjectured to be sharp [22, 37] for the band matri-
ces in one spatial dimension around the critical value W =

√
N . In other

words, if W � √
N , we expect the universality results of [5, 14, 16, 19] to

hold. Furthermore, the eigenvectors of H are expected to be completely de-
localized in this range. For W � √

N , one expects that the eigenvectors
are exponentially localized. This is the analogue of the celebrated Ander-
son metal-insulator transition for random band matrices. The only rigorous
work indicating the

√
N threshold concerns the second mixed moments of

the characteristic polynomial for a special class of Gaussian band matrices
[33, 34].

The localization length for band matrices in one spatial dimension was
recently investigated in numerous works. For general distribution of the ma-
trix entries, eigenstates were proved to be localized [31] for W � N1/8, and
delocalization of most eigenvectors in a certain averaged sense holds forW �
N6/7 [13], improved to W � N4/5 [12]. The Green’s function (H − z)−1 was
controlled down to the scale Im z � W−1 in [20], implying a lower bound of
order W for the localization length of all eigenvectors. When the entries are
Gaussian with some specific covariance profiles, supersymmetry techniques
are applicable to obtain stronger results. This approach has first been de-
veloped by physicists (see [11] for an overview); the rigorous analysis was
initiated by Spencer (see [37] for an overview), with an accurate estimate
on the expected density of states on arbitrarily short scales for a three-
dimensional band matrix ensemble in [10]. More recent works include uni-
versality for W = Ω(N) [32], and the control of the Green’s function down
to the optimal scale Im z � N−1, hence delocalization in a strong sense for
all eigenvectors, when W � N6/7 [4] with first four moments matching the
Gaussian ones (both results require a block structure and hold in part of
the bulk spectrum). These rigorous results based on the supersymmetric
method so far assumed the complex hermitian condition. Our work is about
statistics in the bulk of the spectrum for both real symmetric and complex
hermitian band matrices, but we note that for universality at the spectral
edge, much more is known [36]: extreme eigenvalues follow the Tracy-Widom
law for W � N5/6, an essentially optimal condition.

1.2. Difficulties and new ideas for general non mean-field models.

In trying to use the above three-steps strategy for band matrices, let us first
mention difficulties related to step (i), the local law. The Wigner-Dyson-
Gaudin-Mehta conjecture was originally stated for Wigner matrices, but
the methods of [14, 16] also apply to certain ensembles with independent
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but not identically distributed entries, which however retain the mean-field
character of Wigner matrices. For generalized Wigner matrices with entries
having varying variances, but still following the semicircle law, see [21], and
more generally [1], where even the global density differs from the semicircle
law. In particular, the local law up to the smallest scale N−1 can be obtained
under the assumption that the entries of H satisfy

(1.1) sij := E(|Hij |2) � C

N

for some positive constant C. In this paper, we assume that
∑

i sij = 1;
this normalization guarantees that the spectrum is supported on [−2, 2].
However, if the matrix entries vanish outside the band |i− j| � W � N ,
(1.1) cannot hold and the best known local semicircle law in this context
[12] gives estimates only up to scale W−1, while the optimal scale would be
N−1, comparable with the eigenvalue spacing. Hence for W = N1−δ, δ > 0,
the optimal local law is not known up to the smallest scale, which is a key
source of difficulty for proving the delocalization of the band matrices. In
this article, as W = cN for some fixed small constant c, the local law holds
up to the optimal scale.

While step (i) for the three-step strategy holds in this paper, steps (ii)
and (iii) present a key hurdle to prove the universality. To explain this diffi-
culty, consider Gaussian divisible matrices of the form H0 +GOE(t), where
H0 is an arbitrary Wigner matrix and GOE(t) is a N ×N Gaussian orthog-
onal ensemble with matrix entries given by independent Brownian motions
(up to the symmetry requirement) starting from 0. For any fixed time t,
GOE(t) is a GOE matrix ensemble with variances of the matrix entries pro-
portional to t. The basic idea for step (ii) is to prove the universality for
matrices of the formH0 +GOE(t) for t small, say, t = N−1+ε for some ε > 0.
Finally, in step (iii), one shows that the eigenvalue statistics of the original
matrix H can be approximated by H0 +GOE(t) for a good choice of H0. For
0 � ε < 1/2 and H satisfying (1.1) with a matching lower bound sij � c/N ,
c > 0, up to a trivial rescaling we can choose H0 = H [7]. If 1/2 � ε < 1,
more complicated arguments requiring matching higher moments of the ma-
trix entries are needed to choose an appropriate H0 [20]. Unfortunately, both
methods for this third step depend on the fact that the second moments of
the entries of the original matrix match those of H0 +GOE(t), up to rescal-
ing. For band matrices, the variances outside the band vanish; therefore, the
second moments of H0 +GOE(t) and the band matrix H will never match
outside the band. For the past years, this obstacle in step (iii) has been a
major roadblock to extend the three-step strategy to the band matrices and
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to other non mean-field models. In this paper, we introduce a new method
that overcomes this difficulty. In order to outline the main idea, we first need
to describe the quantum unique ergodicity as proved in [7].

From the local law for band matrices [12] with W = cN , we have the
complete delocalization of eigenvectors: with very high probability

max |ψk(i)| � (logN)C log logN

√
N

,

where C is a fixed constant and the maximum ranges over all coordinates
i of all the �2-normalized eigenvectors, ψ1, . . . ,ψN . Although this bound
prevents concentration of eigenvectors onto a set of size less than
N(logN)−C log logN , it does not imply the “complete flatness” of eigenvec-
tors in the sense that |ψk(i)| ≈ N−1/2. Recall the quantum ergodicity theo-
rem (Shnirel’man [35], Colin de Verdière [8] and Zelditch [39]) asserts that
“most” eigenfunctions for the Laplacian on a compact Riemannian manifold
with ergodic geodesic flow are completely flat. For d-regular graphs under
certain assumptions on the injectivity radius and spectral gap of the adja-
cency matrices, similar results were proved for eigenvectors of the adjacency
matrices [3]. A stronger notion of quantum ergodicity, the quantum unique
ergodicity (QUE) proposed by Rudnick-Sarnak [30] demands that all high
energy eigenfunctions become completely flat, and it supposedly holds for
negatively curved compact Riemannian manifolds. One case for which QUE
was rigorously proved concerns arithmetic surfaces, thanks to tools from
number theory and ergodic theory on homogeneous spaces [23, 24, 29].

For Wigner matrices, a probabilistic version of QUE was settled in [7]. In
particular, it is known that there exists ε > 0 such that for any deterministic
1 � j � N and I ⊂ �1, N�, for any δ > 0 we have

(1.2) P

(∣∣∣∣∣∑
i∈I

|ψj(i)|2 − |I|
N

∣∣∣∣∣ � δ

)
� N−ε/δ2.

Our key idea for proving universality of band matrices is a mean-field reduc-
tion. In this method, the above probabilistic QUE will be a central tool. To
explain the mean-field reduction and its link with QUE, we block-decompose
the band matrix H and its eigenvectors as

(1.3) H =

(
A B∗

B D

)
, ψj :=

(
wj

pj

)
,
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where A is a W ×W matrix. From the eigenvector equation Hψj = λjψj

we have

(1.4)

(
A−B∗ 1

D − λj
B

)
wj = λjwj ,

i.e. wj is an eigenvector of A−B∗(D − λj)
−1B, with corresponding eigen-

value λj . In agreement with the band structure, we may assume that the
matrix elements of A do not vanish and thus the eigenvalue problem in (1.4)
features a mean field random matrix (of smaller size).

For a real parameter e, consider the following matrix

(1.5) Qe = A−B∗ 1

D − e
B,

and let ξk(e), uk(e) be its sequence of eigenvalues and eigenvectors:
Qeuk(e) = ξk(e)uk(e). Consider the curves e → ξk(e) (see Figure 1). By def-
inition, the intersection points of these curves with the diagonal e = ξ are
eigenvalues for H, i.e., given j, we have ξk(λj) = λj for some k. From this
relation, we can find the eigenvalue λj near an energy e from the values of
ξk(e) provided that we know the slope of the curves e → ξk(e). It is a simple

computation that this slope is given by 1− (
∑W

i=1

∣∣ψ′
j(i)
∣∣2)−1, where ψ′

j is
the eigenvector of He where He is the same as H except D is replaced by
D − e (see Subsection 2.2 for details). If the QUE in the sense of (1.2) holds

for ψ′
j , then

∑W
i=1

∣∣ψ′
j(i)
∣∣2 ∼ W/N and the leading order of the slope is a

constant, independent of k. Therefore, the statistics of λj will be given by
those of ξk up to a trivial scaling factor. Since ξk’s are eigenvalues of a mean
field random matrix, thanks to A, the universal statistics of ξk will follow
from previous methods.

To summarize, our idea is to use the mean-field reduction to convert
the problem of universality of the band matrices (H) to a matrix ensemble
(Qe) of the form A+R with A a Wigner ensemble of the size of the band,
independent of R. The key input for this mean-field reduction is the QUE
for the big band matrix. This echoes the folklore belief that delocalization
(or QUE) and random matrix statistics occur simultaneously. In fact, this is
the first time that universality of random matrices is proved via QUE. We
wish to emphasize that, as a tool for proving universality, we will need QUE
while quantum ergodicity is not strong enough.

In order to carry out this idea, we need (i) to prove the QUE (2.9) for the
band matrices; (ii) to show that the eigenvalue statistics of Qe are universal.
The last problem was recently studied in [17, 27] which can be applied to the
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e

(a) A simulation of eigenvalues of Qe =
A−B∗(D − e)−1B, i.e. functions e �→
ξj(e). Here N = 12 and W = 3. The λi’s
are the abscissa of the intersections with
the diagonal.

eλ′λ

(b) Zoom into the framed region of Fig-
ure (a), for large N,W : the curves ξj
are almost parallel, with slope about 1−
N/W . The eigenvalues of A−B∗(D −
e)−1B and those of H are related by a
projection to the diagonal followed by a
projection to the horizontal axis.

Figure 1. The idea of mean-field reduction: universality of gaps between
eigenvalues for fixed e implies universality on the diagonal through parallel
projection.

current setting once some basic estimate for Qe is obtained. The QUE for the
band matrices, however, is a difficult problem. The method in [7] for proving
QUE depends on analysis of the flow of the eigenvectors H0 +GOE(t) and
on the comparison between the eigenvectors of this matrix ensemble and
those of the original matrices. Once again, due to vanishing matrix elements
in H, we will not be able to use the comparison idea and the method in
[7] cannot be applied directly. Our idea to resolve this difficulty is to use
again the mean field reduction, this time for eigenvectors, and consider the
eigenvector of the matrix Qe. Recall the decomposition (1.3) of the band
matrix. From (1.4), wj is an eigenvector to Qλj

. Temporarily neglecting
the fact that λj is random, we will prove that QUE holds for Qe for any e
fixed and thus wj is completely flat. This implies that the first W indices
of ψj are completely flat. We now apply this procedure inductively to the
decompositions of the band matrix where the role of A = Am will be played
by the W ×W minor on the diagonal of H between indices mW/2 + 1 and
(m+ 1)W/2, where m = 0, . . . , (2N −W )/W is an integer. Notice that the
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successively considered blocks A1, A2, . . . , Am overlap to guarantee consis-
tency. Assuming QUE holds in each decomposition, we have concluded that
ψj is completely flat by this patching procedure. This supplies the QUE we
need for the band matrices, provided that we can resolve the technical prob-
lem that we need these results for e = λj , which is random. The resolution
of this question relies on a new tool in analyzing non mean-field random
matrices: an uncertainty principle asserting that whenever a vector is nearly
an eigenvector, it is delocalized on macroscopic scales. This extends the de-
localization estimate for eigenvectors to approximate eigenvectors and is of
independent interest. This will be presented in Section 3.

Convention. We denote c (resp. C) a small (resp. large) constant which
may vary from line to line but does not depend on other parameters. By
W = Ω(N) we mean W � cN and �a, b� := [a, b] ∩ Z refers to all integers
between a and b.

2. Main results and sketch of the proof

2.1. The model and the results.

Our method mentioned in the introduction applies to all symmetry classes,
but for definiteness we will discuss the real symmetric case (in particular all
eigenvectors are assumed to be real). Consider an N ×N band matrix H
with real centered entries that are independent up to the symmetry condi-
tion, and band width 4W − 1 (for notational convenience later in the paper)
such that N = 2Wp with some fixed p ∈ N, i.e. in this paper we consider
the case W = Ω(N). More precisely, we assume that

(2.1) Hij = 0, if |i− j| > 2W,

where the distance | · | on {1, 2, . . . , N} is defined by periodic boundary
condition mod N . We assume that the variances sij := E(H2

ij) satisfy

∑
j

sij = 1 for all i;(2.2)

c

W
� sij �

C

W
, if |i− j| � 2W(2.3)
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for some positive constants. For simplicity of the presentation, we assume
identical variances within the band, i.e. we set

(2.4) sij = E
(
H2

ij

)
=

1

4W − 1
, if |i− j| � 2W.

but our result with the same proof holds under the general conditions (2.2)
and (2.3). We also assume that for some δ > 0 we have

(2.5) sup
N,i,j

E

(
eδWH2

ij

)
< ∞.

This condition can be easily weakened to some finite moment assumption,
we assume (2.5) mainly for the convenience of presentation. The eigenvalues
of H are ordered, λ1 � · · · � λN , and we know that the empirical spectral
measure 1

N

∑N
k=1 δλk

converges almost surely to the Wigner semicircle dis-
tribution with density

(2.6) ρsc(x) =
1

2π

√
(4− x2)+.

Our main result is the universality of the gaps between eigenvalues: finitely
many consecutive spacings between eigenvalues of H have the same limiting
distribution as for the Gaussian Orthogonal Ensemble, GOEN , which is
known as the multi-dimensional Gaudin distribution.

Theorem 2.1. Consider a band matrix H satisfying (2.1)–(2.5) with pa-
rameters N = 2pW . For any fixed κ > 0 and n ∈ N there exists an ε =
ε(p, κ, n) > 0 such that for any smooth and compactly supported function
O in Rn, and k ∈ �κN,N − κN� we have∣∣∣ (EH − E

GOEN
)
O
(
Nρsc(λk)(λk+1 − λk),(2.7)

· · · , Nρsc(λi)(λk+n − λk+n−1)
)∣∣∣ � CON

−ε,

where the constant CO depends only on κ and the test function O.

Prior to our work, the only universality result for band matrices was
given by T. Shcherbina in [32] via rigorous supersymmetric analysis. The
supersymmetric technique required complex hermitian symmetry, Gaussian
distribution and a very specific variance structure involving finitely many
blocks with i.i.d. matrix elements. Our theorem holds for a general distribu-
tion and for both the real symmetric and complex hermitian case. Moreover,
no block structure or i.i.d. entries are required, see remark after (2.4).
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As mentioned in the introduction, a key ingredient for Theorem 2.1 is
the quantum unique ergodicity of the eigenvectors of our band matrix model.
In fact, we will need QUE for small perturbations of H on the diagonal: for
any vector g = (g1, . . . , gN ) ∈ RN we define

(2.8) Hg = H −
N∑
j=1

gjeje
∗
j ,

where ej is the j-th coordinate vector. Let λg
1 � · · · � λg

N be the eigenvalues
of Hg and ψg

k be the corresponding eigenvectors, i.e. Hgψg
k = λg

kψ
g
k .

Theorem 2.2. Consider a band matrix H satisfying (2.1)–(2.5) with pa-
rameters N = 2pW . Then for any small g, Hg satisfies the QUE in the bulk.
More precisely, there exists ε, ζ > 0 such that for any fixed κ > 0, there ex-
ists Cκ,p > 0 such that for any k ∈ �κN, (1− κ)N�, δ > 0, and a ∈ [−1, 1]N ,
we have

(2.9) sup
‖g‖∞�N−1+ζ

P

(∣∣∣∣∣
N∑
i=1

a(i)

(
|ψg

k (i)|2 −
1

N

)∣∣∣∣∣ � δ

)
� Cκ,pN

−ε/δ2.

For the simplicity of exposition, we have stated the above result for QUE
only at macroscopic scales (i.e., by choosing a bounded test vector a), while
it holds at any scale (like in [7]). The macroscopic scale will be enough for
our proof of Theorem 2.1.

2.2. Sketch of the proof.

In this outline of the proof, amongst other things we explain why QUE for
small diagonal perturbationHg ofH is necessary to our mean-field reduction
strategy. The role of other tools such as the uncertainty principle and the
local law is also enlightened below.

We will first need some notation: we decompose Hg and its eigenvectors
as

(2.10) Hg :=

(
Ag B∗

B Dg

)
, ψg

k =

(
wg

k
pg
k

)
, k = 1, 2, . . . ,W,

where Ag is a W ×W matrix. The equation Hgψg
k = λg

kψ
g
k then gives

(2.11)

(
Ag −B∗ 1

Dg − λg
k

B

)
wg

k = λg
kw

g
k ,
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i.e. wg
k , λ

g
k are the eigenvectors and eigenvalues of Qg

λg
k
where we define

(2.12) Qg
e := Ag −B∗ 1

Dg − e
B

for any real parameter e. Notice that Ag depends only on g1, . . . , gW and
Dg depends only on gW+1, . . . , gN . Let ξg1 (e) � · · · � ξgW (e) be the ordered
sequence of eigenvalues of Qg

e and ug
k(e) the corresponding eigenvectors:

(2.13) Qg
eu

g
k(e) = ξgk (e)u

g
k(e).

We will be interested in a special class gi = g1i>W for some g ∈ R, and we
denote the matrix

(2.14) Hg :=

(
A B∗

B D − g

)
,

and let ψg
j , λ

g
j be its eigenvectors and eigenvalues.

First step: From QUE of Hg to universality of H by mean-field
reduction. Following Figure 1, we obtain eigenvalue statistics of H by
parallel projection. Denote C1, . . . , CN the continuous curves depicted in Fig-
ure 1b, labelled in increasing order of their intersection with the diagonal
(see also Figure 3 and Section 4 for a formal definition of these curves).

Assume we are interested in the universality of the gap λk+1 − λk for
some fixed k ∈ �κN, (1− κ)N�, and let ξ > 0 be a small constant. By some
a priori local law, we know |λk − e0| � N−1+ξ for some deterministic e0,
with overwhelming probability. Universality of the eigenvalue gaps around
λk then follows from two facts: (i) universality of gaps between eigenvalues
of Qe0 in the local window I = [e0 −N−1+ξ, e0 +N−1+ξ], (ii) the lines (e �→
Cj(e))j=k,k+1 have almost constant identical negative slope in the window
e ∈ I.

For (i), note that the Qe0 = A+R where A is a mean-field, Wigner, ran-
dom matrix and R is independent of A. For such matrices, bulk universality
is known [17, 27, 28]. The key tools are some a priori rigidity estimates for
the eigenvalues (see the fourth step), a coupling between Dyson Brownian
motions [5] and Hölder estimates for a resulting parabolic equation [18].

For the key step (ii), the slopes are expressed through QUE properties of
matrices of type Hg. More precisely, first note that any e ∈ I can be written
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uniquely as

e = λg
k + g

for some |g| � CN−1+ξ. Indeed, this is true for e = λk with g = 0, and the
function g → λg

k + g has a regular inverse, since by perturbative calculus

∂(λg
k + g)/∂g =

∑W
i=1

∣∣ψg
k(i)
∣∣2, which is larger than some deterministic c >

0, with overwhelming probability, by the uncertainty principle detailed in
the third step. Once such a writing of e is allowed, differentiating in g the
identity Ck(λg

k + g) = λg
k (a direct consequence of (2.11)) gives

(2.15)
∂

∂e
Ck(e) = 1−

(
W∑
i=1

∣∣ψg
k(i)
∣∣2)−1

.

As a consequence, using QUE in the sense of Theorem 2.2, we know that
(∂/∂e)Ck and (∂/∂e)Ck+1 are almost constant, approximately 1− (N/W ).
By parallel projection we obtain universality for H from universality of Qe0 .
In terms of scales, the average gap between eigenvalues of Qe0 around e0 is
(Wρsc(e0))

−1, hence the average gap λk+1 − λk is (Nρsc(e0))
−1 as expected.

This mean-field reduction strategy is detailed in Section 4.

Second step. Quantum unique ergodicity. The proof of Theorem 2.2
proceeds in four steps, with successive proofs of QUE for the following eigen-
vectors (k′ is the unique index such that ξk′ lies on the curve Ck):
(i) ug

k′(e) (a ∈ [−1, 1]W );

(ii) ug
k′(λ

g
k) (a ∈ [−1, 1]W );

(iii) wg
k (a ∈ [−1, 1]W );

(iv) ψg
k (a ∈ [−1, 1]N ).

In the parentheses we indicated the type of test vectors used in the QUE
statement.

First, (i) is QUE for a matrix of type Qe = A+R where A is a mean-
field, Wigner, random matrix and R is independent of A. For such matrices,
QUE is known from the work [6], which made use of the local eigenvector
moment flow method from [7]. For this step, some a priori information on
location of eigenvalues of Qe is necessary and given by the local law (see the
the fourth step).

From (i) to (ii), some stability the eigenvectors of Qe is required as
e varies. Accurate estimates on (∂/∂e)ug

k′(e) are given by the uncertainty
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principle (see the third step) and rigidity estimates of the eigenvalues (see
the fourth step).

From (ii) to (iii), note that wg
k and ug

k′(λ
g
k) are collinear, so QUE for wg

k
will be proved provided it is properly normalized:

(2.16) ‖wg
k‖2�2 ≈ W/N.

This is proved by patching: in (ii), choosing a(i) = 1 for i ∈ �1,W/2�, −1
for i ∈ �W/2 + 1,W �, and using translation invariance in our problem, we
have

∑
i∈�1,W/2�+�W/2 |ψg

k(i)|2 ≈
∑

i∈�1,W/2�+(�+1)W/2 |ψg
k(i)|2 for any �, so

that (2.16) holds.
The final step from (iii) to (iv) is a simple consequence of translation

invariance, as (iii) holds for any W successive coordinates of ψg
k. These steps

are detailed in Section 5.

Third step. Uncertainty principle. This important ingredient of the
proof can be summarized as follows: any vector approximately satisfying the
eigenvector equation ofHg orDg is delocalized in the sense that macroscopic
subsets of its coordinates carry a non-negligible portion of its �2 norm (see
Proposition 3.1 for a precise statement). This information allows us to bound
the slopes of the curves e �→ Ck(e) through (2.15). It is also important in the
proof of the local law for matrices of type Qe (see Lemma 6.5).

The proof of the uncertainty principle relies on an induction on q, where
N = qW , classical large deviation estimates and discretization of the space
arguments. Details are given in Section 3.

Fourth step. Local law. The local law for matrices of type Qe is neces-
sary for multiple purposes in the first two steps, most notably to establish
universality of eigenvalues in a neighborhood of e and QUE for correspond-
ing eigenvectors.

Note that the limiting empirical spectral distribution of Qe is hard to
be made explicit, and in this work we do not aim at describing it. Instead,
we only prove bounds on the Green’s function of Qe locally, i.e.

(Qe − z)−1
ij ≈ m(z)δij , N−1+ω � Im(z) � N−ω,

in the range when |Re(z)− e| is small enough. Here m(z) is the Stieltjes
transform of the limiting spectral density whose precise form is irrelevant
for our work. This estimate is obtained from the local law for the band
matrix H [12] through Schur’s complement formula. This local a priori in-
formation on eigenvalues (resp. eigenvectors) is enough to prove universality
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by Dyson Brownian motion coupling (resp. QUE through the eigenvector
moment flow) strategy. The proof of the local law is given in Section 6.

In the above steps, we assumed that the entries of H have distribution
which is a convolution with a small normal component (a Gaussian-divisible
ensemble), so that the mean-field matrices Qe are the result of a matrix
Dyson Brownian motion evolution. This assumption is classically removed
by density arguments such as the Green functions comparison theorem [20]
or microscopic continuity of the Dyson Brownian motion [7], as will be ap-
pearent later along the proof.

3. Uncertainty principle

This section proves an uncertainty principle for our band matrices satisfy-
ing (2.1)–(2.5): if a vector approximately satisfies the eigenvalue equation,
then it is delocalized on macroscopic scales.

Proposition 3.1. Recall the notations (2.10). There exists μ > 0 such that
for any (small) c > 0 and (large) D > 0, we have, for large enough N ,

P

(
∃e ∈ R, ∃u ∈ R

N−W , ∃g ∈ R
N : ‖g‖∞ � N−c, ‖u‖ = 1,(3.1)

‖(Dg − e)u‖ � μ,
∑

1�i�W

|ui|2 � μ2

)
� N−D,

P

(
∃e ∈ R, ∃g ∈ R

N : ‖g‖∞ � N−c,(3.2)

B∗ μ2

(Dg − e)2
B �

(
B∗ 1

Dg − e
B
)2

+ 1

)
� N−D

This proposition gives useful information for two purposes.

(i) An a priori bound on the slopes of lines e �→ Cg
k (e) (see Figure 3 in

Section 4) will be provided by inequality (3.2).

(ii) The proof of the local law for the matrix Qg
e will require the uncertainty

principle (3.1).

For the proof, we first consider general random matrices in Subsection 3.1
before making an induction on the size of some blocks in Subsection 3.2.
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3.1. Preliminary estimates.

In this subsection, we consider a random matrix B of dimension L×M and
a Hermitian matrix D of dimension L× L matrix where L and M are com-
parable. We have the decomposition (1.3) in mind and in the next subsection
we will apply the results of this subsection, Lemma 3.2 and Proposition 3.3,
for M = W and L = kW with some k ∈ �1, 2p− 1�. We assume that B has
real independent, mean zero entries and, similarly to (2.5),

(3.3) sup
M,i,j

E

(
eδMB2

ij

)
< Cδ < ∞

for some δ, Cδ > 0. In particular, we have the following bound:

(3.4) sup
M,i,j

sij <
Cδ

δM
, where sij := E

(|Bij |2
)
.

The main technical tool, on which the whole section relies, is the following
lemma.

Lemma 3.2. Let B be an L×M random matrix satisfying the above as-
sumptions and set β := M/L. Let S be a subspace of RL with dimS =: αL.
Then for any given γ and β, for small enough positive α, we have

P

(
∃u ∈ S : ‖u‖ = 1, ‖B∗u‖ � √

γ/4,(3.5)

and min
1�j�M

L∑
i=1

sij |ui|2 � γM−1

)
� e−cL

for large enough L. Here 0 < α < α0(β, γ, δ, Cδ) and c = c(α, β, γ, δ, Cδ) > 0.

Proof. With the replacement B → √
γB, we only need to prove the case

γ = 1 by adjusting δ to δ/γ. Hence in the following proof we set γ = 1.
First, we have an upper bound on the norm of BB∗. For any T �

T0(β, δ, Cδ) (with δ, Cδ in (3.3)),

(3.6) P(‖BB∗‖ � T ) � e−c1TL

for some small c1 = c1(β) > 0. This is a standard large deviation result, e.g.
it was proved in [15, Lemma 7.3, part (i)] (this was stated when the Bij ’s
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are i.i.d, but only independence was used in the proof, the identical law was
not).

Let b1,b2, . . . ,bM ∈ RL be the columns of B, then ‖B∗u‖2 =∑M
j=1 |bj ·

u|2. Since the bj · u scalar products are independent, we have for any g > 0

P
(‖B∗u‖2 � 1/2

)
� egM/2

E

(
e−gM‖B∗u‖2

)
=

M∏
j=1

(
eg/2E

(
e−gM |bj ·u|2

))
.

Since e−gr � 1− gr + 1
2g

2r2 for all r > 0, for ‖u‖ = 1 we have

E

(
e−gM |bj ·u|2

)
� 1− gME (|bj · u|)2 + g2M2

2
E
(|bj · u|4

)
(3.7)

= 1−Mg
∑
i

E
(|Bij |2

) |ui|2 +O(g2).

If u satisfies the last condition in the left hand side of (3.5), i.e. (with
γ = 1)

∑
i sij |ui|2 � M−1 for all 1 � j � M then (3.7) is bounded by 1−

g +O(g2) � exp
(− g +O(g2)

)
. Choosing g sufficiently small, we have

(3.8) P(‖B∗u‖2 � 1/2) �
(
e−g/2+O(g2)

)M
� e−c2M

where c2 depends only on the constants δ, Cδ from (3.3).
Now we take an ε grid in the unit ball of S, i.e. vectors {uj : j ∈ I} ⊂ S

such that for any u ∈ S, with ‖u‖ � 1 we have ‖u− uj‖ � ε for some j ∈ I.
It is well-known that |I| � (c3ε)

− dimS for some constant c3 of order one. We
now choose ε = (4

√
T )−1 (where T is chosen large enough to satisfy (3.6)).

If there exists a u in the unit ball of S with ‖B∗u‖ � 1/4 then by choosing
j such that ‖u− uj‖ � ε we can bound ‖B∗uj‖ � ‖B∗u‖+√

T‖u− uj‖ �
1/2, provided that ‖BB∗‖ < T . Hence together with (3.8), we have

P

(
∃u ∈ S : ‖B∗u‖ � 1

4
, ‖u‖ = 1

)
� P(‖BB∗‖ � T ) +

∑
j∈I

P

(
‖B∗uj‖ � 1

2

)
� e−c1TL + (c3ε)

− dimSe−c2M � e−cL,

where the last estimate holds if

(3.9) c � α log(c3ε) + c2β.
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After the fixed choice of a sufficiently large constant T we have log(c3ε) <
0, and for small enough α there exists c > 0 such that (3.9) holds, and
consequently (3.5) as well. �

Proposition 3.3. Let D be an L× L deterministic matrix and B be a
random matrix as in Lemma 3.2. Assume that D satisfies the following two
conditions:

(3.10) ‖D‖ � CD

for some large constant CD (independent of L) and

(3.11) max
a,b:|a−b|�(CD logL)−1

# {Spec(D) ∩ [a, b]} � L

logL
.

For any fixed γ > 0, there exists μ0(β, γ, δ, Cδ, CD) > 0 such that if μ � μ0,
then for large enough L we have

P

(
∃e ∈ R, ∃u ∈ R

L : ‖u‖ = 1, ‖B∗u‖ � √
γμ,(3.12)

min
1�j�M

L∑
i=1

sij |ui|2 � γM−1, ‖(D − e)u‖ � μ

)
� e−cL.

Proof. We will first prove the following weaker statement: for any fixed e ∈ R

and γ > 0, if μ � μ0(β, γ, Cδ, CD) is sufficiently small, then for large enough
L we have

P

(
∃u : ‖u‖ = 1, ‖B∗u‖ � √

γμ,(3.13)

min
j

∑
i

sij |ui|2 � γM−1, ‖(D − e)u‖ � μ

)
� e−cL.

As in the proof of Lemma 3.2, with the replacement B → √
γB, we only

need to prove the case γ = 1. Fix a small number ν and consider P to be
the spectral projection

P := Pν := 1(|D − e| � ν).

Assume there exists some u satisfying the conditions in the left hand side
of (3.13). Then we have

μ2 � ‖(D − e)u‖2 � ‖(D − e)(1− P )u‖2 � ν2‖(1− P )u‖2.
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Consequently, denoting v = Pu and w = (1− P )u, we have

‖w‖ � μ

ν
, ‖v‖2 � 1− μ2

ν2
� 1

2
,

provided that μ2 � ν2/2. Using the bound ‖B∗u‖ � μ in (3.13) and ‖v‖2 �
1/2, assuming ‖B∗‖ � C1 (this holds with probability e−cL for large enough
C1, by (3.6)), we have

(3.14) ‖B∗v‖ � ‖B∗u‖+ ‖B∗w‖ � μ+ C1‖w‖ � 2μ‖v‖+ C2
μ

ν
‖v‖

with probability 1−O(e−cL). Moreover, by (3.4) and the assumption∑
i sij |ui|2 � M−1 in (3.13), we have

2
∑
i

sij |vi|2 �
∑
i

sij |ui|2 − 2
∑
i

sij |wi|2(3.15)

� M−1 − 2C̃‖w‖2L−1 � (2M)−1

with C̃ = Cδ/(δβ) (see (3.4)) and provided that ν2 � 4βC̃μ2. Define ṽ =
v/‖v‖, which is a unit vector in Im(P ), the range of P . So far we proved
that

P

(
∃u : ‖u‖ = 1, ‖B∗u‖ � μ, min

j

∑
i

sij |ui|2 � M−1, ‖(D − e)u‖ � μ

)

� P

(
∃ṽ ∈ Im(P ) : ‖ṽ‖ = 1, ‖B∗ṽ‖ � 2μ+ C2

μ

ν
,
∑
i

sij |ṽi|2 � (4M)−1

)
+ e−cL.

We now set μ and ν such that 2μ+ C2μ/ν � 1/8, μ2 � ν2/2 and 4βC̃μ2 �
ν2. By Lemma 3.2, with S := Im(P ) and γ = 1/4, the probability of the
above event is exponentially small as long as

rank(P )/L i.e. # {Spec(D) ∩ [e− ν, e+ ν]} /L

is sufficiently small (determined by β, δ, Cδ, see the threshold α0 in Lemma
3.2). Together with (3.11), by writing the interval [e− ν, e+ ν] as a union
of intervals of length (CD logL)−1, by choosing small enough ν, then even
smaller μ and finally a large L, we proved (3.13).

The proof of (3.12) follows by a simple grid argument. For fixed μ > 0,
consider a discrete set of energies (ei)

r
i=1 such that (i) r � 2(CD + 1)/μ,
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(ii) |ej | � CD + 1 for any 1 � j � r and (iii) for any |e| � CD + 1, there is
a 1 � j � r with |ej − e| � μ. If |e| � CD + 1, we therefore have, for some
1 � j � r,

‖(D − ej)u‖ � μ+ |e− ej | � 2μ.

If |e| > CD + 1, then ‖(D − e)u‖ � |e| − CD > 1. We therefore proved that,
for any μ < 1,

P

(
∃e ∈ R, ∃u ∈ R

L : ‖u‖ = 1, ‖B∗u‖ � μ,

min
j

∑
i

sij |ui|2 � M−1, ‖(D − e)u‖ � μ

)

�
r∑

j=1

P

(
∃u ∈ R

L : ‖u‖ = 1, ‖B∗u‖ � μ,

min
j

∑
i

sij |ui|2 � M−1, ‖(D − ej)u‖ � 2μ

)
.

For large enough L, the right hand side is exponentially small by (3.13). �

3.2. Strong uncertainty principle.

In this subsection, we study the matrix with the following block structure.
Let H = H0 be a N ×N random matrix such that {Hij}i�j ’s, are indepen-
dent of each others. Consider the inductive decomposition

(3.16) Hm−1 =

(
Am B∗

m

Bm Hm

)
,

where Am is a W ×W matrix and Hm has dimensions (N −mW )× (N −
mW ). Remember that in our setting N = 2pW , so that the decomposition
(3.16) is defined for 1 � m � 2p with H2p−1 = A2p.

Lemma 3.4. In addition to the previous assumptions, assume that the en-
tries of Bm’s, 1 � m � 2p, satisfy (3.3) and

(3.17) E|(Bm)ij |2 � ĉ

W
for all 1 � i, j � W,

for some constant ĉ > 0. For any K > 0, let Ω := ΩK(H) be the set of events
such that

‖Am‖+ ‖Bm‖+ ‖Hm‖ � K,(3.18)
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and

max
a,b:|a−b|�K−1(logN)−1

# {Spec(Hm) ∩ [a, b]} � N/(logN),(3.19)

for all 0 � m � 2p. Then there exist (small) μ0 and c0 depending on
(ĉ, K, δ, Cδ, p), such that for any 0 < μ < μ0 and 0 � m � 2p− 1 we have

P

(
∃e ∈ R, ∃u ∈ R

N−mW : ‖u‖ = 1, ‖(Hm − e)u‖ � μ,(3.20)

∑
1�i�W

|ui|2 � μ2

)
� e−c0N + P(Ωc).

Proof. We will use an induction from m = 2p− 1 to m = 0 to prove that
for each 1 � m � 2p− 1 there exist two sequences of parameters μm ∈ (0, 1)
and cm > 0, depending on (ĉ, K, δ, Cδ), such that

P

(
∃e ∈ R, u ∈ R

N−mW : ‖u‖ = 1, ‖(Hm − e)u‖ � μm,(3.21)

∑
1�i�W

|ui|2 � μ2
m

)
� e−cmN + P(Ωc).

This would clearly imply (3.20). First the case m = 2p− 1 is trivial, since
we can choose μ2p−1 = 1/2 and use

∑
1�i�W |ui|2 = ‖u‖2 = 1 in this case.

Now we assume that (3.21) has been proved for some m+ 1, and we need
to prove it for m. Assume we are in Ω and there exists e and u ∈ RN−mW

such that the event in the left hand side of (3.21) holds. We write u =

(
v′

v

)
with v′ ∈ RW , ‖v′‖2 =∑1�i�W |ui|2. From ‖(Hm − e)u‖ � μm, we have

‖(Am+1 − e)v′ +B∗
m+1v‖+ ‖Bm+1v

′ + (Hm+1 − e)v‖ �
√
2μm.

Combining (3.18) with ‖(Hm − e)u‖ � μm, we have |e| � K + μm. Inserting
it in the above inequality together with ‖v′‖ � μm, and using (3.18) again,
we obtain

‖B∗
m+1v‖+ ‖(Hm+1 − e)v‖ �

√
2μm + (4K + 2μm)μm.
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Since ‖v‖ �
√

1− μ2
m, denoting ṽ := v/‖v‖ we have

‖B∗
m+1ṽ‖+ ‖(Hm+1 − e)ṽ‖

�
(√

2μm + (4K + 2μm)μm

)
(1− μ2

m)−1/2 =: μ̃m.

We therefore proved

P

(
∃e ∈ R, ∃u ∈ R

N−mW : ‖u‖ = 1,

‖(Hm − e)u‖ � μm,
∑

1�i�W

|ui|2 � μ2
m

)
� P

(
∃e ∈ R, ∃ṽ ∈ R

N−(m+1)W : ‖ṽ‖ = 1,

‖B∗
m+1ṽ‖+ ‖(Hm+1 − e)ṽ‖ � μ̃m

)
+ P(Ωc)

� P

(
∃e ∈ R, ∃ṽ ∈ R

N−(m+1)W : ‖ṽ‖ = 1,

‖B∗
m+1ṽ‖+ ‖(Hm+1 − e)ṽ‖ � μ̃m,

∑
1�i�W

|ṽi|2 � μ2
m+1

)
+ e−cm+1N + P(Ωc),

where in the last inequality we used the induction hypothesis (at rankm+ 1)
and we assumed that μ̃m � μm+1, which holds by choosing μm small enough.

With (3.17) the last probability is bounded by

P

(
∃e ∈ R, ∃ṽ ∈ R

N−(m+1)W : ‖ṽ‖ = 1,

‖B∗
m+1ṽ‖+ ‖(Hm+1 − e)ṽ‖ � μ̃m,

min
1�j�W

∑
i

E |(Bm+1)ij |2 |ṽi|2 � μ2
m+1

ĉ

W

)
Applying (3.12) with μ = μ̃m and γ = ĉμ2

m+1, together with assumption
(3.19), we know that for small enough μm (and therefore small enough
μ̃m), the above probability is bounded by e−c̃N for some c̃ > 0. Therefore
(3.21) holds at rank m if we define cm recursively backwards such that
cm < min{cm+1, c̃}. The sequence μm may also be defined recursively back-
wards with an initial μ2p−1 = 1/2 so that each μ̃m remains smaller than
μm+1 and the small threshold μ0(β, γ = ĉμ2

m+1, δ, Cδ, CD) from Proposi-
tion 3.3. �
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Corollary 3.5. Under the assumptions of Lemma 3.4, there exist (small)
μ̃0 and c̃ depending on (ĉ, K, δ, Cδ, p), such that for any 0 < μ < μ0 we have

P

(
∃e ∈ R : B∗

1

μ2

(H1 − e)2
B1 �

(
B∗

1

1

H1 − e
B1

)2

+ 1

)
(3.22)

� P(Ωc) + e−c̃N .

Proof. By definition, the left hand side of (3.22) is

P

(
∃e ∈ R, ∃u ∈ R

W : ‖u‖ = 1,

μ
∥∥∥ 1

H1 − e
B1u

∥∥∥ � {∥∥∥B∗
1

1

H1 − e
B1u

∥∥∥2 + 1
}1/2)

.

Define v := (H1 − e)−1B1u, and ṽ := v/‖v‖. As ‖B1‖ � K in Ω, the above
probability is bounded by

P

(
∃e ∈ R, ∃v ∈ R

N−W : μ‖v‖ �
(‖B∗

1v‖2 + 1
)1/2

, ‖(H1 − e)v‖ � K
)

+ P(Ωc)

� P
(∃e ∈ R, ∃ṽ ∈ R

N−W : ‖ṽ‖ = 1, ‖B∗
1 ṽ‖ � μ, ‖(H1 − e)ṽ‖ � Kμ

)
+ P(Ωc).

With (3.20) (choosing m = 1), for any μ � μ0, where μ0 was obtained in
Lemma 3.4, the above expression is bounded by

P

(
∃e ∈ R, ∃ṽ ∈ R

N−W : ‖ṽ‖ = 1, ‖B∗
1 ṽ‖ � μ,

‖(H1 − e)ṽ‖ � Kμ,
∑

1�i�W

|ṽi|2 � μ2
0

)
+ e−c0N + P(Ωc)

� P

(
∃e ∈ R, ∃ṽ ∈ R

N−W : ‖ṽ‖ = 1, ‖B∗
1 ṽ‖ � μ, ‖(H1 − e)ṽ‖ � Kμ,

min
1�j�W

∑
1�i�W

E|(B1)ij |2|ṽi|2 � μ2
0

ĉ

W

)
+ e−c0N + P(Ωc).

For the last inequality we used (3.17). From (3.12) with γ = ĉμ2
0 and for small

enough μ � μ̃0 := μ0(β, γ = ĉμ2
0, δ, Cδ, CD), the above term is bounded by

P(Ω) + e−c̃N for some c̃ > 0, which completes the proof of Corollary 3.5. �
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Proof of Proposition 3.1. We write Hg in the from of (3.16). Then Hg sat-
isfies the assumptions (3.3) and (3.17). Define Ω := ΩK(H) as in (3.18) and
(3.19). Lemma 3.4 and Corollary 3.5 would thus immediately prove (3.1)–
(3.2) if g were fixed. To guarantee the bound simultaneously for any g, we
only need to prove that there exists a fixed (large) K > 0 such that for any
D > 0 we have

P

⎛⎝ ⋃
‖g‖�N−c

ΩK(Hg)

⎞⎠ � N−D

if N is large enough. This is just a crude bound on the norm of band
matrices which can be proved by many different methods. For example,
by perturbation theory, we can remove g and thus we only need to prove
P
(
ΩK(H0)

)
� N−D. This follows easily from the rigidity of the eigenvalues

of the matrix H (see [1, Corollary 1.10]). �

4. Universality

In this section, we prove the universality of band matrix H (Theorem 2.1)
assuming the QUE for the band matrices of type Hg (Theorem 2.2). In the
first subsection, we remind some a priori information on the location of the
eigenvalues of the band matrix. The following subsections give details for
the mean-field reduction technique previously presented.

4.1. Local semicircle law for band matrices.

We first recall several known results concerning eigenvalues and Green func-
tion estimates for band matrices. For e ∈ R and ω > 0, we define

S(e,N ;ω) =
{
z = E + iη ∈ C : |E − e| � N−ω, N−1+ω � η � N−ω

}
,(4.1)

Ŝ(e,N ;ω) =
{
z = E + iη ∈ C : |E − e| � N−ω, N−1+ω � η � 1

}
.(4.2)

In this section, we are interested only in Ŝ; the other set S will be needed
later on. We will drop the dependence in N whenever it is obvious. We view
ω as an arbitrarily small number playing few active roles and we will put all
these type of parameters after semicolon. In the statement below, we will
also need m(z), the Stieltjes transform of the semicircular distribution, i.e.

(4.3) m(z) =

∫
�sc(s)

s− z
ds =

−z +
√
z2 − 4

2
,
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where �sc is the semicircle distribution defined in (2.6) and the square root
is chosen so that m is holomorphic in the upper half plane and m(z) → 0 as
z → ∞. The following results on the Green function G(z) = (H − z)−1 of the
random band matrixH and its normalized tracem(z) = mN (z) = 1

N TrG(z)
have been proved in [12].

In the following theorem and more generally in this paper, the nota-
tion AN ≺ BN means that for any (small) ε > 0 and (large) D > 0 we have
P(|AN | > N ε|BN |) � N−D for large enough N � N0(ε,D). When AN and
BN depend on a parameter (typically on z in some set S or some label) then
by AN (z) ≺ BN (z) uniformly in z ∈ S we mean that the threshold N0(ε,D)
may be chosen independently of z.

Theorem 4.1 (Local semicircle law, Theorem 2.3 in [12]). For the
band matrix ensemble defined by (2.1) and (2.4), satisfying the tail condition
(2.5), uniformly in z ∈ Ŝ(e,W ;ω) we have

max
i,j

∣∣Gij(z)− δijm(z)
∣∣ ≺ √ Imm(z)

Wη
+

1

Wη
,(4.4)

∣∣mN (z)−m(z)
∣∣ ≺ 1

Wη
.(4.5)

We now recall the following rigidity estimate of the eigenvalues for band
matrices [12]. This estimate was first proved for generalized Wigner matrices
in [21] (for our finite band case this latter result would be sufficient). We
define the classical location of the j-th eigenvalue by the equation

(4.6)
j

N
=

∫ γj

−∞
�sc(x)dx.

Corollary 4.2 (Rigidity of eigenvalues, Theorem 2.2 of [21] or The-
orem 7.6 in [12]). Consider the band matrix ensemble defined by (2.1)
and (2.4), satisfying the tail condition (2.5), and N = 2pW with p finite.
Then, uniformly in j ∈ �1, N�, we have

(4.7) |λj − γj | ≺
(
min

(
j,N − j + 1

))−1/3
N−2/3.

4.2. Mean field reduction for Gaussian divisible band matrices.

Recall the definition of Hg from (2.14),

(4.8) Hg =

(
A B∗

B D − g

)
,
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i.e. A has dimensions W ×W , B has dimensions (N −W )×W and D has
dimensions (N −W )× (N −W ). Its eigenvalues and eigenvectors are de-
noted by λg

j and ψg
j , 1 � j � N .

Almost surely, there is no multiple eigenvalue for any g, i.e. the curves
g → λg

j do not cross, as shown both by absolute continuity argument (we
consider Gaussian-divisible ensembles) and by classical codimension count-
ing argument (see [9, Theorem 5.3]). In particular, the indexing is consistent,
i.e. if we label them in increasing order for g near −∞, λ−∞

1 < λ−∞
2 < · · · <

λ−∞
N , then the same order will be kept for any g:

(4.9) λg
1 < λg

2 < · · · < λg
N .

Moreover, the eigenfunctions are well defined (modulo a phase and nor-
malization) and by standard perturbation theory, the functions g → λg

j and
g → ψg

j are analytic functions (very strictly speaking in the second case

these are analytic functions into homogeneous space of the unit ball of CN

modulo U(1)). Moreover, by variational principle g → λg
j are decreasing. In

fact, they are strictly decreasing (almost surely) and they satisfy

(4.10) − 1 <
∂λg

k

∂g
< 0

since by perturbation theory we have

(4.11)
∂λg

k

∂g
= −1 +

W∑
i=1

∣∣ψg
k(i)
∣∣2

and 0 <
∑W

i=1

∣∣ψg
k(i)
∣∣2 < ‖ψg

k‖2 = 1 almost surely. We may also assume
(generically), that A and D have simple spectrum, and denote their spectra

σ(A) = {α1 < α2 < · · · < αW }, σ(D) = {δ1 < δ2 < · · · < δN−W }.

We claim the following behavior of λg
j for g → ±∞ (see Figure 2a):

λg
j =

⎧⎨⎩αj +O
(
|g|−1

)
, for j � W,

−g + δj−W +O
(
|g|−1

)
, for W < j � N,

as g → −∞,(4.12)

λg
j =

⎧⎨⎩−g + δj +O
(
|g|−1

)
, for j � N −W,

αj−(N−W ) +O
(
|g|−1

)
, for N −W < j � N,

as g → ∞.(4.13)
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Notice that the order of labels is consistent with (4.9). The above formulas
are easy to derive by simple analytic perturbation theory. For example, for
g → −∞ and j � W we use(

A−B∗ 1

D − g − λg
B

)
wg

j = λg
jw

g
j .

Let qj be the eigenvector of A corresponding to αj , Aqj = αjqj , then we can
express wg

j = qj +Δqj and λg
j = αj +Δαj , plug it into the formula above

and get that Δqj ,Δαj = O(|g|−1).
The formulas (4.12) and(4.13) together with the information that the

eigenvalue lines do not cross and that the functions g → λg
j are strictly mono-

tone decreasing, give the following picture. The lowest W lines, g → λg
j , j �

W start at g → −∞ almost horizontally at the levels α1, α2, . . . , αW and go
down linearly, shifted with δ1, . . . , δW at g → ∞. The lines g → λg

j , W < j �
N −W start decreasing linearly at g → −∞, shifted with δ1, δ2, . . . , δN−W

(in this order) and continue to decrease linearly at g → ∞ but shifted with
δW+1, δW+2, . . . δN . Finally, the top lines, g → λg

j ,N −W < j � N , start de-
creasing linearly at g → −∞, shifted with δN−2W+1, . . . , δN−W and become
almost horizontal at levels α1, α2, . . . , αW for g → ∞.

g

(a) The maps g �→ λg
j , 1 � j � N .

g

(b) The maps g �→ λg
j + g = xj(g), 1 � j �

N .

Figure 2. The eigenvalues of Hg (left) and Hg + g Id (right) for N = 12 and
W = 3.
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Similarly one can draw the curves g → xj(g) := λg
j + g (see Figure 2b)

Since xj(g) is an increasing function w.r.t. g ∈ R by (4.10), with (4.12)–
(4.13), it is easy to check that

(4.14) Ran xj =

⎧⎪⎨⎪⎩
(−∞, δj), j � W,

(δj−W , δj), W < j � N −W,

(δj−W ,∞), N −W < j � N.

From this description it is clear that for any e �∈ σ(D), the equation xj(g) = e
has exactly W solutions, namely

(4.15)
{
j : ∃g, s.t. xj(g) = e

}
=

⎧⎪⎨⎪⎩
�1,W �, e < δ1,

�m+ 1,m+W �, δm < e < δm+1,

�N −W + 1, N�, e > δN−W .

For any such j, the corresponding g is unique by strict monotonicity of xj(g),
thus this function can be locally inverted. Finally, for any j, we define the
following curves:

Cj(e) = λg
j , s.t. e = xj(g) = λg

j + g.

Their domains are defined as follows:

(4.16) Dom Cj =

⎧⎪⎨⎪⎩
(−∞, δj), j � W,

(δj−W , δj), W < j � N −W,

(δj−W ,∞), N −W < j � N.

From the definition of C it is clear that these are smooth functions, since
they are compositions of two smooth functions: g → λg

j and the inverse of
xj(g).

Finally, by just comparing the definition of ξj(e) in (2.13) for g = 0, we
know that if Ck(e) exists then it is one of the eigenvalues of Qe: Ck(e) = ξk′(e)
for some k′. Moreover, we know that almost surely there is no e such that
Qe has multiple eigenvalues (see [9, Theorem 5.3]), so we can assume the
curves (Ck)1�k�N do not intersect. This proves

(4.17) Ck(e) = ξk′(e),with k′ = k′(e) = k −ND(e)

where we defined ND(e) = |σ(D) ∩ (−∞, e)| the number of eigenvalues of D
smaller than e.
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C1

C3 C11
C12

e

Figure 3. A sample of curves (Cg
k )1�k�N for N = 12,W = 3. Bullet points

are eigenvalues of Dg.

The above discussion is summarized as follows, and extended to more
general matrices, Ag and Dg instead of A and D. We stress that the pa-
rameter g in the above discussion was an auxiliary variable and its role
independent of the fixed g in the definition below.

Definition 4.3 (Curves Cg
k (e)). Fix any g ∈ RN parameter vector. The

curves Cg
k (e) are the continuous extensions of ξk−NDg (e)(e). More precisely,

we have

(4.18) Cg
k (e) = ξgk′(e), k′ = k −NDg(e)

for any e �∈ σ(Dg).

The result below shows that the slopes of these curves are uniformly bounded,
for ordinates on compact sets.

Lemma 4.4. Consider any fixed (large) K > 0. There exists a constant CK

such that for any (small) ζ > 0 and any (large) D > 0 we have, for large
enough N ,

P

(
∃g : ‖g‖∞ � N−ζ , sup

e �∈σ(D),1�k�N
1|Cg

k (e)|�K

∣∣∣dCg
k

de
(e)
∣∣∣ � CK

)
(4.19)

� N−D.
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Proof. We first note that for e �∈ σ(D),

(4.20)

∣∣∣∣dCg
k

de

∣∣∣∣ = ∥∥∥∥ 1

Dg − e
Bug

k′(e)

∥∥∥∥2 , k′ = k −NDg(e)

by differentiating (2.13) w.r.t. e and multiplying it by ug
k′(e). Here we used

that k′ = k′(e) is constant as e varies between two consecutive eigenvalues
of D. By (2.12) and (2.13), with ‖ug

k′(e)‖ = 1, we have that

(4.21)

∥∥∥∥B∗ 1

Dg − e
Bug

k′(e)

∥∥∥∥ � ‖Ag‖+ |Cg
k (e)|.

Using Proposition 3.1 and that ‖Ag‖ � C holds with high probability, we
have for any e �∈ σ(D) that∥∥∥∥ 1

Dg − e
Bug

k′(e)

∥∥∥∥2 � 2

μ2

∥∥∥∥B∗ 1

Dg − e
Bug

k′(e)

∥∥∥∥2 + 1

μ2
(4.22)

� Cμ(1 + |Cg
k (e)|2)

for all ‖g‖∞ � N−ζ , with high probability, where in the last step we used
(4.21). Together with (4.20), we have proved (4.19). �

The following theorem summarizes the key idea of the mean-field reduc-
tion.

Theorem 4.5. Let θ ∈ (0, 1) be fixed. Let H be a Gaussian divisible band
matrix of type

(4.23) H =
√
qH1 +

√
1− qH2, q = W−1+θ,

where H1, H2 are independent band matrices of width 4W − 1, satisfying
(2.1)–(2.4), and let H1 have Gaussian entries. Recall that ψg

j is the eigen-
vector of Hg defined in (2.14). Fix an energy e0 ∈ (−2, 2) and let k satisfy
|γk − e0| � N−1(logN). Suppose that all ψg

j are flat for |j − k| � logN and

|g| � N−1+ζ for some ζ > 0, in the sense that

(4.24) sup
j : |j − k| � logN
|g| � N−1+ζ

E

∣∣∣∣∣
W∑
i=1

∣∣∣ψg
j (i)
∣∣∣2 −W/N

∣∣∣∣∣ � N−ζ .
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Then for any fixed constant C we have (here λj = λg=0
j ), for large enough

N ,

(4.25) sup
j:|j−k|�C

P

(∣∣∣∣Cj(e0)− e0 − N

W
(λj − e0)

∣∣∣∣ � N−1−ζ/5

)
� N−ζ/5.

Proof. We will prove (4.25) only for j = k, the general case clearly follows a
similar argument. Denote by R the set of matrices H such that

|λk − e0| � N−1+ζ/2, and sup
e �∈σ(D)

1|Ck(e)|�3

∣∣∣dCk(e)
de

∣∣∣ � C.

By the assumption |γk − e0| � N−1 logN and the rigidity of λk (see Corol-
lary 4.2), for any ζ > 0 the first condition above holds with high probability.
As guaranteed by Lemma 4.4, the second condition in the definition of R
holds with high probability for a large enough C. Hence, for such ζ and C,
for any D > 0 and large enough N we have P(R) � 1−N−D .

In this proof, we will assume that λk > e0 for simplicity of notations. In
R, we have{

(e, Ck(e)) : e ⊂ [e0, λk]
}
∈
[
e0 −N−1+ζ/2, e0 +N−1+ζ/2

]2
,(4.26)

sup
e∈[e0,λk]\σ(D)

∣∣∣∣dCk(e)de

∣∣∣∣ � C.

Recall that the function Ck satisfies the relation

(4.27) Ck
(
g + λg

k

)
= λg

k.

Differentiating (4.27) at the point e = g + λg
k, and using (4.11), we have

(4.28)
dCk(e)
de

=
∂gλ

g
k

1 + ∂gλ
g
k

=

∑W
i=1

∣∣ψg
k(i)
∣∣2 − 1∑W

i=1

∣∣ψg
k(i)
∣∣2 .

Hence there is a constant c such that in R we have

(4.29) inf
e∈[e0,λk]\σ(D)

W∑
i=1

∣∣ψg
k(i)
∣∣2 � c.
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Since Ck(λk) = λk at g = 0, we have

Ck(e0)− e0 =

∫ e0

λk

(
dCk(e)
de

− 1

)
de =

∫ λk

e0

(
W∑
i=1

∣∣ψg
k(i)
∣∣2)−1

de,

where e and g are related by g + λg
k = e. Using the above equation, a simple

calculation gives (remember N = 2pW and c is defined in (4.29))

E1R

∣∣∣∣Ck(e0)− e0 − N

W
(λk − e0)

∣∣∣∣(4.30)

� 2p

c
E1R

∫ λk

e0

∣∣∣∣∣
W∑
i=1

∣∣ψg
k(i)
∣∣2 −W/N

∣∣∣∣∣ de.
The integration domain is over e = g + λg

k ∈ [e0, λk] with g = 0 when e = λk,
and g = g0 when e = e0 with the g0 that satisfies e0 = g0 + λg0

k . Notice that
in the set R we have

dg

de
=

(
dλg

k

dg
+ 1

)−1

=

(
W∑
i=1

∣∣ψg
k(i)
∣∣2)−1

∈ [1, c−1],

which implies |g0| � c−1|λk − e0| � c−1N−1+ζ/2, i.e., g is in the domain re-
quired for using (4.24). Therefore, we can insert the estimate (4.24) into
(4.30) and conclude that

E1R

∣∣∣∣Ck(e0)− e0 − N

W
(λk − e0)

∣∣∣∣ � 2p

c
N−1−ζ/2.

This implies (4.25) and completes the proof of the theorem. �

4.3. Proof of Theorem 2.1.

We will first prove Theorem 2.1 for the class of Gaussian divisible band
matrix ensemble, which was defined in (4.23). We will prove general case
at the end of this section. Recall Qe = A−B∗(D − e)−1B where, for the
Gaussian divisible band matrix ensemble, we can decompose A as

(4.31) A =
√
qA1 +

√
1− qA2,

where A1 and A2 are independent and A1 is a standardW ×W GOEmatrix.
For a smooth test function O of n variables with compact support, define
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the following observable of the rescaled eigenvalue gaps of H:

Ok,n(λ, N) := O
(
Nρsc(λk)(λk+1 − λk),(4.32)

. . . , Nρsc(λk)(λk+n − λk+n−1)
)
.

Our goal is to prove that for some c > 0, for any k ∈ �κN, (1− κ)N� we have

(EH − E
GOEN )Ok,n(λ, N) � N−c.

Given k, let the (nonrandom) energy e0 ∈ (−2, 2) be such that |e0 − γk| �
(logN)N−1. We claim that we can choose e0 with |e0 − γk| � (logN)N−1

such that

(4.33) P(‖(D − e0)
−1‖ � N4) � N−1.

To prove this, we note that ‖(D − e0)
−1‖ � N4 is equivalent to min� |δ� −

e0| � N−4, where, remember, that the spectrum of D is denoted δ1 < δ2 <
· · · < δN−W . For any σ(D) fixed, we have the trivial bound∫ γk+(logN)N−1

γk−(logN)N−1

1min� |δ�−e0|�N−4de0 � N−5/2.

Taking expectation of the last inequality w.r.t the probability law of D and
using the Markov inequality, we have proved (4.33). We remark that, by
smoothness of O and by rigidity (Corollary 4.2), ρsc(λk) can be replaced by
ρsc(e0) in (4.32).

Denote EQe the expectation w.r.t the law of Qe induced from the distri-
bution of the original band matrix H and let ξ(e) = (ξ1(e), ξ2(e), . . . , ξW (e))
be the ordered spectrum of Qe. From the approximate affine transformation
between the λ and ξ eigenvalues, guaranteed by Theorem 4.5, we have

E
HOk,n(λ, N) = E

Qe0Ok−α,n(ξ(e0),W ) + O(N−c), α := ND(e0),

where we used Definition 4.3, and the definition

Ok,n(ξ(e0),W ) := O (Wρξ(ξk)(ξk+1 − ξk), . . . ,Wρξ(ξk)(ξk+n − ξk+n−1)) ,

ξi = ξi(e0).

Here ρξ denotes the limiting density of the eigenvalues Qe. We also used
ρξ(e0) = ρsc(e0), and that ρξ is smooth so ρξ(ξk) is very close to ρξ(e0) by
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rigidity, both are easy consequences of the local law for Qe0 , Theorem 6.1.
We therefore now need to prove

(4.34) E
Qe0Ok−α,n(ξ(e0),W )− E

GOENOk,n(λ, N) = O(N−c).

We now compute the left side of (4.34) by first conditioning on the
law of A2, B,D. Theorem 2.1 for Gaussian divisible matrices thus follows
from (4.33) and the following lemma (proved in the next subsection), which
asserts the local spectral statistics of the matrix Qe0 are universal.

Lemma 4.6. Under the assumptions of Theorem 2.1 and (4.31), there ex-
ists c > 0 such that

P

(
1‖(D−e0)−1‖�N4

∣∣∣EA1

(
Ok−α,n(ξ(e0),W )

∣∣∣A2, B,D
)

− E
GOENOk,n(λ, N)

∣∣∣ � N−c
)
� N−c.

Theorem 2.1 for our band matrices with general entries follows from
Lemma 4.6 and the following comparison result. Let Ht = (Hij(t)) be a
time dependent flow of symmetric N ×N matrices withH0 = H our original
band matrix. The dynamics of the matrix entries are given by the stochastic
differential equations

(4.35) dHij(t) =
dBij(t)√

N
− 1

2Nsij
hij(t)dt, |i− j| � 2W,

where B is a symmetric matrix with (Bij)i�j a family of independent Brow-
nian motions. By definition, Hij(t) = 0 for |i− j| > 2W . The parameter
sij > 0 can take any positive values, but we choose sij to be the variance of
Hij(0), i.e., sij = 1/(4W − 1). Clearly, for any t � 0 we have E(Hij(t)

2) = sij
for all i, j and thus the variance of the matrix element is preserved in this
flow. This flow is similar to the Dyson Brownian motion but adapted to the
band structure. For this flow, the following continuity estimate holds.

Lemma 4.7. Let κ > 0 be arbitrarily small, δ ∈ (0, 1/2) and t = N−1+δ.
Suppose that W = cN for some constant c independent of N . Denote by Ht

the solution of (4.35) with initial condition a symmetric band matrix H0 as
defined in (2.1), (2.4). Let m be any positive integer and Θ : Rm+m2 → R
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be a smooth function with derivatives satisfying

(4.36) sup
k∈�0,5�,x∈Rm+m2

|Θ(k)(x)|(1 + |x|)−C < ∞

for some C > 0. Denote by (u1(t), . . . ,uN (t)) the eigenvectors of Ht as-
sociated with the eigenvalues λ1(t) � · · · � λN (t), and (uk(t, α))1�α�N the
coordinates of uk(t). Then there exists ε > 0 (depending only on Θ, δ and κ)
such that, for large enough N ,

sup
I⊂�κN,(1−κ)N�,|I|=m=|J |

∣∣(EHt−E
H0)Θ

(
(N(λk−γk), Nuk(·, α)2)k∈I,α∈J

)∣∣ � N−ε.

The proof of this lemma is identical to that of the Corollary A.2 in [7]
and we thus omit it. Instead of Lemma 4.7, the Green function comparison
theorem from [20, 26] could be used as well to finish the proof.

We now complete the proof of Theorem 2.1. Recall that we have proved
this theorem for Gaussian divisible ensembles of the form (4.23). At any
time t, the entry hij(t) of Ht for the flow (4.35) is distributed as

(4.37) e
− t

2Nsij Hij(0) +
(
sij

(
1− e

− t

Nsij

))1/2
N (ij), |i− j| � 2W,

where (N (ij))i�j are independent standard Gaussian random variables.
Hence Ht is Gaussian divisible and bulk universality holds for t = N−1+δ

with δ a small positive number. By Lemma 4.7, the bulk statistics of Ht and
H0 are the same up to negligible errors. We have thus proved Theorem 2.1.

4.4. Universality for mean-field perturbations

We now prove Lemma 4.6. We first recall a general theorem [27] concerning
gap universality (see [17] for a related result). We start from the following
definition. In the rest of the paper, we fix a small number a > 0, and define
the control parameter

ϕ = W a.(4.38)

We will be interested in the deformed GOE defined by

(4.39) H̃t = V +
√
tZ,

where V is a deterministic matrix and Z is a W ×W GOE matrix. We now
list the assumptions on the initial matrix V at some energy level E0; in



Universality for a class of random band matrices 773

order to formulate them we will need two W -dependent mesoscopic scales
η∗ � ϕ/W and r � ϕη∗.

Assumption 1. Let η∗ and r be two W -dependent parameters, such that
ϕ/W � η∗ � r/ϕ � 1. We assume that there exist large positive constants
C1, C2 such that

(i) The norm of V is bounded, ‖V ‖ � WC1 .

(ii) The imaginary part of the Stieltjes transform of V is bounded from
above and below, i.e.,

C−1
2 � �(mV (z)) � C2, mV (z) :=

1

W
Tr(V − z)−1,(4.40)

uniformly for any z ∈ {E + iη : E ∈ [E0 − r, E0 + r], η∗ � η � 2}.
A deterministic matrix V satisfying these conditions will be called (η∗, r)-
regular at E0.

The following theorem was the main result of [27] (note that the size of
the matrix W was replaced by N there).

Theorem 4.8 (Universality for mean-field perturbations [27]). Sup-
pose that V is (η∗, r)-regular at E0 and set T such that η∗ϕ � T � r2/ϕ
with ϕ = W a. Let j be an index so that the j-th eigenvalue of V , Vj ∈
[E0 − r/3, E0 + r/3]. Denote the eigenvalues of H̃T (defined in (4.39)) by
λT = {λT,i}Wi=1 and let

(4.41) m
˜HT

(z) =
1

W
Tr(H̃T − z)−1.

Recall the definition of the gap observable Oj,n from (4.32) for some fixed n.
For a small enough, there is a constant c > 0 (depending on C1, C2, a) such
that

E
˜HTOj,n

(
λT ,W

ρT (λT,j)

ρsc(λT,j)

)
− E

GOEWOj,n(λ,W ) = O(W−c),(4.42)

where

ρT (λT,j) = Imm
˜HT

(λT,j + iη), η = T/ϕ.

Furthermore, for any δ > 0 the following level repulsion estimate holds:

(4.43) P (|λT,i − λT,i+1| � x/W ) � CδW
δx2−δ
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for any x > 0 (which can depend on W ) and for all i such that λT,i ∈ [E0 −
r/3, E0 + r/3].

The compensating factor ρT (λT,j)
ρsc(λT,j)

is due to our definition of the observable

(4.32) with a scaling ρsc.

Proof of Lemma 4.6. We apply Theorem 4.8 to the matrix

(4.44) H̃T = Qe0 =
√
qA1 + V where V =

√
1− qA2 −B∗(D − e0)

−1B,

with the following choices:

(4.45)
T = q = N−1+θ, η∗ = N−1+θ/2, r = N−1/2+θ, E0 = e0,

j = k − α (α = ND(e0)), λT,k = ξk(e0), C1 = 5,

and C2 some large constant (in the regularity assumptions on V ). Remember
that ξk(e0) is the eigenvalue of Qe0 and ND(e0) was defined below (4.17).

In order to verify the regularity assumption of Theorem 4.8, we need a
local law for Qe0 , which is stated and proved in Theorem 6.1: from (6.3),
there exists some c > 0 such that for any D > 0 we have, for large enough
N ,

P

(
∀z = E + iη : |E − e0| � r; η∗ � η � c,

1

W
�Tr(V − z)−1 ∈ [c, c−1]

)
� 1−N−D.

This verifies that part (ii) of the assumption of Theorem 4.8.
Moreover, since the statement of Lemma 4.6 concerns only the set ‖(D −

e0)
−1‖ � N4, together with the fact that A2 and B are bounded with high

probability, we have in this set

‖
√

1− qA2 −B∗(D − e0)
−1B‖ � N5

with high probability. This verifies that part (i) of the assumption of Theo-
rem 4.8 with C1 = 5.

Recall the mean field reduction from Section 4.2. By (4.17) and Ck(λk) =
λk, we have

|ξj(e0)− γk| = |ξk−α(e0)− γk| = |Ck(e0)− γk|(4.46)

� |Ck(e0)− Ck(λk)|+ |λk − γk| � N−1+ω
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with probability larger than 1−N−D for any small ω > 0 and large D > 0.
Here we have used the rigidity of λk, the assumption |e0 − γk| � (logN)N−1

and the estimate (4.19) on (d/de)Ck(e).
Since ξj = ξj(e0) is the j-th eigenvalue of

√
qA1 + V and let Vj be j-th

eigenvalue of V , we have ξj(e0)− Vj = O(
√
qNω) with probability larger

than 1−N−D. Therefore with high probability Vj ∈ [e0 − r/3, e0 + r/3].
Hence we can apply Theorem 4.8 to get

P

(∣∣∣∣∣EA1

(
Ok−α,n

(
ξ(e0),W

ρT (ξk−α)

ρsc(ξk−α)

) ∣∣∣∣∣A2, B,D

)
(4.47)

− E
GOEWOk−α,n(λ,W )

∣∣∣∣∣ � N−c

)
� N−c

for some c > 0. By (4.46) and smoothness of ρsc, we can replace ρsc(ξk−α)
with ρsc(γk) up to negligible error. Furthermore, by the local law (6.2) we
have for some c > 0 that

P

(
∀z = E + iη : |E − e0| � N−1/2, η = T/ϕ,

(4.48)

∣∣∣∣ 1W �Tr(Qe0 − z)−1 − ρsc(e0)

∣∣∣∣ � N−c

)
� 1−N−D.

Therefore, we can replace ρT (ξk−α) by ρsc(e0), again up to negligible er-
ror. With this replacement, (4.47) is exactly the statement of Lemma 4.6,
after noticing that EGOEWOk−α,n(λ,W ) converges, as W → ∞, to a limit
independent of the bulk index k − α. �

5. Quantum unique ergodicity

In this section, we prove Theorem 2.2, in particular we check that the as-
sumption of Theorem 4.5 concerning the flatness of eigenvector holds. The
following lemma implies the assumption (4.24) by choosing a(i) = 1 for all

1 � i � W , g = (g1, . . . , gN ) with gi = g1i>W and noticing 0 �
∑W

i=1

∣∣∣ψg
j (i)
∣∣∣2

� 1. We will prove this lemma after completing the proof of Theorem 2.2.

Lemma 5.1 (Quantum unique ergodicity for Gaussian divisible

band matrices). Recall that ψg
k =

(
wg

k
pg
k

)
is the k-th eigenvector of Hg
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with eigenvalue λg
k . Suppose that (4.23) holds. Let κ > 0 be fixed. There ex-

ists ε, ζ > 0 such that for any k ∈ �κN, (1− κ)N�, a ∈ [−1, 1]W and δ > 0
we have

(5.1) sup
‖g‖∞�N−1+ζ

P

(∣∣∣∣∣
W∑
i=1

a(i)

(
|wg

k (i)|2 −
1

N

)∣∣∣∣∣ � δ

)
� CκN

−ε/δ2.

Proof of Theorem 2.2. We will first prove Theorem 2.2 for the class of Gaus-
sian divisible band matrix ensemble, which was defined in (4.23). With (5.1),
we know that there exists ζ, ε > 0 such that for any k ∈ �κN, (1− κ)N�,
a ∈ [−1, 1]N , m ∈ �0, N/W − 1�, ‖g‖∞ < N−1+ζ , and δ > 0, we have

P

(∣∣∣∣∣
W∑
i=1

a(i+mW )

(
|ψg

k (i+mW )|2 − 1

N

)∣∣∣∣∣ � δ

)
� CκN

−ε/δ2.

Then summing upm ∈ �0, N/W − 1� = 0, 1, . . . , 2p− 1, we have proved The-
orem 2.2 in the case of Gaussian divisible band matrix. For the general case,
we consider g = 0 for simplicity, without loss of generality. Recall the def-
inition of Ht in (4.35). With (2.9) for any Gaussian divisible band matrix,
we know that for some ε > 0,

(5.2) E
Ht

∣∣∣∣∣
N∑
i=1

a(i)

(
|ψk(i)|2 − 1

N

)∣∣∣∣∣
2

� Cκ,pN
−ε.

Then comparing H = H0 with Ht using Lemma 4.7, we have

∣∣(EHt − E
H0
) |ψk(i)|2

∣∣ � CκN
−1−ε̃,

∣∣(EHt − E
H0
) |ψk(i)|2|ψk(j)|2

∣∣
� CκN

−2−ε̃,

for some ε̃ > 0 and for any i, j. Together with (5.2), we therefore proved

E
H0

∣∣∣∣∣
N∑
i=1

a(i)

(
|ψg

k (i)|2 −
1

N

)∣∣∣∣∣
2

� Cκ,p(N
−ε +N−ε̃),

which implies the desired result (2.9) by Markov’s inequality. �
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We now prove Lemma 5.1. Recall the notations in (2.10)–(2.13), i.e. that
ug
j (e), (e ∈ R and j ∈ �1,W �) is a (real) eigenvector of the matrix

(5.3)

Qg
e = Ag −B∗(Dg − e)−1B =

√
qA1 + V g,

V g =
√

1− qA2 +
∑

1�i�W

gieie
∗
i −B∗(Dg − e)−1B.

Note that not only A has a Gaussian divisible decomposition (4.31) but also
B and D, however this latter fact is irrelevant and we will not follow it in
the notation. With the labeling of eigenvalue convention in (4.17), we have
the following relation between ug and wg.

(5.4) ug

k̂

(
λg
k

)
=

wg
k

‖wg
k‖

, k̂ := k′(λg
k) = k −ND(λ

g
k).

To prove Lemma 5.1, we first claim that the following QUE for ug

k̂

(
λg
k

)
holds. The challenge is that we consider the matrix Qg

e with a random shift
e, namely e = λg

k , and the index k̂ is also random.

Lemma 5.2 (Quantum unique ergodicity for mean-field matrices
with random shift e). Let κ > 0 be fixed. Under the assumption of Lemma
5.1 and (4.31), there exists ε, ζ > 0 such that for any k ∈ �κN, (1− κ)N�,
a ∈ [−1, 1]W and δ > 0 we have ([x]i denotes the i-th component of a vec-
tor x)

sup
‖g‖∞�N−1+ζ

P

(∣∣∣∣∣
W∑
i=1

a(i)

([
ug

k̂

(
λg
k

) ]2
i
− 1

W

)∣∣∣∣∣ � δ

)
� CκN

−ε/δ2,(5.5)

k̂ := k′(λg
k) = k −ND(λ

g
k).

Proof of Lemma 5.1. Clearly, to deduce (5.1) from (5.5), one only needs to
show that there exists ε̃ > 0 such that

(5.6) sup
‖g‖∞�N−1+ζ

P

⎛⎝∣∣∣∣∣∣
∑

1�i�W

ψg
k (i)

2 − W

N

∣∣∣∣∣∣ � N−ε̃

⎞⎠ � CκN
−ε̃.

To see this, we first note that by choosing a(i) = 1i�W/2 − 1i>W/2, and

δ = N−ε/10 in (5.5), we have

P

⎛⎝∣∣∣∣∣∣
∑

1�i�W/2

ψg
k (i)

2 −
∑

W/2<i�W

ψg
k (i)

2

∣∣∣∣∣∣ � N−ε/10

⎞⎠ � CκN
−ε/10.
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In the above equation, the index set �1,W � which determines the decomposi-
tion (2.10) can be replaced by �1 + nW/2,W + nW/2� with n ∈ �0, 2(N/W −
1)�. By a simple union bound, we can assume all these bounds hold simul-
taneously. In particular, the local �2-norms of ψg

k on each consecutive W/2
batches of indices coincide approximately. As ψg

k is normalized, all these
local norms are close to W/(2N), which implies (5.6) and completes the
proof. �

In Lemma 5.2, the energy λg
k is random and the index includes a random

shift NDg(λg
k). To prove Lemma 5.2, we need the following lemma (proved

at the end of this section) which replaces the random parameter λg
k in (5.5)

by a deterministic one.

Lemma 5.3 (Quantum unique ergodicity for mean-field matrices
with fixed shift e). Let κ>0 be fixed. Under the assumption of Lemma 5.1
and (4.31), there exists ε, ζ > 0 such that for any k ∈ �κN, (1− κ)N�, |e−
γk| � N−1+2ζ , ‖g‖∞ � N−1+ζ , a ∈ [−1, 1]W , and δ > 0, we have

P

(
∃j : |j − k′| � N ζ ,

∣∣∣∣∣
W∑
i=1

a(i)

([
ug
j (e)

]2
i
− 1

W

)∣∣∣∣∣ � δ

)
� CκN

−ε/δ2

where k′ = k′(e) = k −NDg(e).

Proof of Lemma 5.2. Since |λg
k − λk| � ‖g‖∞ and the rigidity estimate holds

for λk (see (4.7)), with high probability we have

(5.7) λg
k − γk = O(N−1+ζ)

for any ‖g‖∞ � N−1+ζ .
We discretize the set of the parameter e. Denote em = γk +mN−1−ζ .

For small enough ε, ζ > 0, for any fixed a and ‖g‖∞ as in the assumptions
of Lemma 5.3, we thus have, from this lemma (and a union bound),

P

(
∃m ∈ Z, ∃j : |m| � N3ζ , |j − k′(em)| � N ζ ,(5.8) ∣∣∣∣∣

W∑
i=1

a(i)

([
ug
j (em)

]2
i
− 1

W

)∣∣∣∣∣ � δ

)
� CκN

−ε/δ2.
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Using (5.7), we have with high probability that there exists a random integer
|m̃| � N3ζ such that

(5.9)
∣∣em̃ − λg

k

∣∣ � N−1−ζ .

Defining the W ×W matrix J by Jij := a(i)δij and setting e∗ := λg
k , we

have

∑
i

a(i)
[
ug

k̂

(
λg
k

)]2
i
=
(
ug

k̂
(e∗) , Jug

k̂
(e∗)
)

(5.10)

=
(
ug
k′(em̃) (em̃) , Jug

k′(em̃) (em̃)
)

+

∫ e∗

em̃

d

de

(
ug
k′(e)(e), Ju

g
k′(e)(e)

)
de.

From (5.8) and (5.9),

P

(∣∣∣∣∣
W∑
i=1

a(i)

([
ug
k′(em̃) (em̃)

]2
i
− 1

W

)∣∣∣∣∣ � δ

)
� C̃κN

−ε/δ2.

We therefore just need to bound the second term on the right hand side
of (5.10). A simple calculation yields (we now abbreviate k′ = k′(e) and
similarly �′ = �′(e) = �−ND(e))

d

de

(
ug
k′(e), J ug

k′(e)
)
= 2
∑
��=k

(
ug
k′(e), J ug

�′(e)
)

Cg
k (e)− Cg

� (e)

×
(
ug
�′(e), B

∗ 1

(Dg − e)2
B ug

k′(e)

)
.

Together with ‖a‖∞ � 1, this gives

∣∣∣∣ dde(ug
k′(e), J ug

k′(e)
)∣∣∣∣ �∑

��=k

C

|Cg
k (e)− Cg

� (e)|

×
∥∥∥∥ 1

Dg − e
Bug

�′(e)

∥∥∥∥∥∥∥∥ 1

Dg − e
Bug

k′(e)

∥∥∥∥ .
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By (4.22), for all e �∈ σ(Dg), we can bound
∥∥∥ 1
Dg−eBug

�′(e)
∥∥∥ by C(1 + |Cg

�′(e)|)
with high probability. Since for e ∈ [e1, eN3ζ ], Cg

k (e) = O(1) with high prob-
ability, we have∣∣∣∣ dde(ug

k′(e), J ug
k′(e)

)∣∣∣∣ � C
∑
� �=k

C(1 + |Cg
� (e)|)

|Cg
k (e)− Cg

� (e)|
, e ∈ [e1, eN3ζ ] \ σ(Dg),

with high probability. Using (4.19) and (6.4) in Theorem 6.1 with t = q
(note that, with the notations of Theorem 6.1, we have Cg

k (e) = ξgk′(e, q, q),
k′ = k −NDg(e) and ξgk (e, q, t) is the k-th eigenvalue of Qg

e (t, q), which is
defined in (6.1)), we have∑

�:|�−k|�2N2ω

C(1 + |Cg
� (e)|)

|Cg
k (e)− Cg

� (e)|
� CN1+3ω, e ∈ [e1, eN3ζ ] \ σ(Dg)

with high probability for any small ω. We have thus proved that with high
probability∣∣∣∣ dde(ug

k′(e), J ug
k′(e)

)∣∣∣∣ � ∑
�:|�−k|�2N2ω

1

|Cg
k (e)− Cg

� (e)|
+ CN1+3ω

for any e ∈ [e1, eN3ζ ] \ σ(Dg). Inserting the last equation into (5.10), us-
ing (5.9), the ordering of the curves Cg

k in k, and choosing ω � ζ/10, we
obtain that with high probability,∣∣(ug

k′ (λ
g
m) , Jug

k′ (λ
g
m)
)− (ug

k′ (em̃) , Jug
k′ (em̃)

)∣∣(5.11)

� CN2ω

∫ e∗

em̃

∑
�=k±1

1

|Cg
k (e)− Cg

� (e)|
de+N−ζ/2.

By Hölder’s inequality, we have

E

∣∣∣∣∫ e∗

em̃

1

|Cg
k (e)− Cg

� (e)|
de

∣∣∣∣(5.12)

�
(
E

∣∣∣∣∫ e∗

em̃

de

∣∣∣∣)1/3(
E

∫ e∗

em̃

1

|Cg
k (e)− Cg

� (e)|3/2
de

)2/3

� CN−ζ−1/3

(
N−1+ζ max

e:|e−γk|�N−1+2ζ
E
∣∣Cg

k (e)− Cg
� (e)

∣∣−3/2
)2/3

.

As in the proof of Lemma 4.6, we apply Theorem 4.8 to the operator
Qg

e in (5.3). We can similarly verify that Assumption 1 holds with high
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probability and thus the level repulsion estimate (4.43) holds. Since |g| �
N−1/2 � r (r is chosen as in (4.45)), we have V g

k ∈ [e− r/3, e+ r/3] for any
k such that |e− γk| � N−1+2ζ . Thus for any small ω we have

max
e:|e−γk|�N−1+2ζ

E
∣∣Cg

k (e)− Cg
� (e)

∣∣−3/2 � CωN
3/2+ω, � = k ± 1.

Together with the Markov inequality, (5.12) and (5.11), this concludes the
proof of Lemma 5.2. �

Proof of Lemma 5.3. We will need the local QUE from [6]. Remember the
notations from Subsection 4.4 and the control parameter ϕ = W a = cNa.
Let u1(t), . . . ,uW (t) be the real eigenvectors for the matrix H̃t defined in
(4.39) and let uj(i, t) be the i-th component of uj(t). The following result
is the content of Corollary 1.3 in [6].

Theorem 5.4 (Quantum unique ergodicity for mean-field pertur-
bations [6]). We assume the initial matrix H̃0 = V satisfies Assumption 1
in Subsection 4.4. We further assume that there exists a small constant b
such that∣∣(H̃0 − z)−1

ij −m0(z)δij
∣∣ � 1

W b
, with m0(z) =

1

N
Tr(H̃0 − z)−1,(5.13)

uniformly in {z = E + iη : E ∈ [E0 − r, E0 + r], η∗ � η � r} with E0, η∗ and
r as in Assumption 1. Then the following quantum unique ergodicity holds:
for any μ > 0 there exists ε, Cμ > 0 (depending also on a, b and C2 from
Assumption 1) such that for any T with ϕη∗ � T � r/ϕ, a ∈ [−1, 1]W , and
δ > 0, we have

sup
j:|λT,j−E0|<(1−μ)r

P

(∣∣∣∣∣ 1

‖a‖1
W∑
i=1

a(i)(Wu2j (i, T )− 1)

∣∣∣∣∣ > δ

)
(5.14)

� Cμ

(
W−ε + ‖a‖−1

1

)
/δ2.

We now return to the proof of Lemma 5.3. Theorem 5.4 implies in particular
that

(5.15) sup
j:|λT,j−E0|<(1−μ)r

P

(∣∣∣∣∣
N∑
i=1

a(i)
(
u2j (i, T )−N−1

)∣∣∣∣∣ > δ

)
� C N−ε/δ2.
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Similarly to (4.44), we apply Theorem 5.4 to the matrix

H̃T = Qg
e =

√
qA1 + V

where V =
√

1− qA2 +
∑

1�i�W

gieie
∗
i −B∗(Dg − e)−1B,

with the following choices:

T = q = N−1+θ, η∗ = N−1+θ/2, r = N−1/2+θ, E0 = e,

In particular, the supremum in (5.14) will cover all indices j such that |j −
(k −N g

D(e))| � N ζ and recall that uj(i, T ) = ugj (i) for such j. Using the
results from the next section, both requirements of Assumption 1 hold for
our V , in particular (4.40) is satisfied by (6.3) for q = t = 0. Moreover (5.13)
holds by (6.2). Hence the assumption for Theorem 5.4 are verified. Therefore
with (5.15) we obtain that there exists ε > 0 such that for any δ,

sup
�:|Cg

� (e)−e|<(1−μ)N−1/2+θ

P

(∣∣∣∣∣
W∑
i=1

a(i)
([

ug
�′ (e)

]2
i
−N−1

)∣∣∣∣∣ > δ

)
� CN ε/δ2,

(5.16)

�′ = �−NDg(e).

Moreover for any index k satisfying |e− γk| � N−1+2ζ we have |Cg
k (e)−

e| < (1− μ)N−1/2+θ. Indeed, with the rigidity property (4.7) and the trivial
perturbation estimate |λg

k − λk| � ‖g‖∞, we know that

|λg
k − e| � |λg

k − λk|+ |λk − γk|+ |γk − e| � CN−1+ζ .

By definition, Cg
k (λ

g
k) = λg

k . Hence together with (4.19), we have |Cg
k (e)−

e| � CN−1+ζ with high probability.
Finally, after choosing such a k satisfying |e− γk| � N−1+2ζ , for any j

such that |j − k′(e)| � N ζ we have j = �′(e) for some �. Moreover, |Cg
� (e)−

e| � |Cg
� (e)− Cg

k (e)|+ CN−1+ζ � CN−1+ζ , so that we can apply (5.16).
This concludes the proof of Lemma 5.3 by a simple union bound over all j’s
such that |j − k′(e)| � N ζ . �

6. Local law

The main purpose of this section is to prove the local law of the Green’s
function of Hg, Qg

e and some variations of them (recall the notations from
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Section 2.2). As we have seen in the previous sections, these local laws are
the basic inputs for proving universality and QUE of these matrices.

Theorem 6.1 (Local law for Q ). Recall S(e,N ;ω), Ŝ(e,N ;ω) and m(z)
defined in (4.1)-(4.3). We fix a vector g∈ RN with ‖g‖ � N−1/2, numbers
0 � t � q � N−1/2, a positive N -independent threshold κ > 0 and any energy
e with |e| � 2− κ. Set

(6.1) Qg
e (t, q) :=

√
tA1 +

√
1− qA2 −

∑
1�i�W

gieie
∗
i −B∗ 1

Dg − e
B.

For any (small) ω > 0 and (small) ζ > 0 and (large) D, we have

P

(
∃z ∈ S(e,N ;ω) s.t. max

ij

∣∣∣[Qg
e (t, q)− z]−1

ij −m(z)δij

∣∣∣(6.2)

� N ζ
(
(Nη)−1/2 + |z − e|

))
� N−D,

and there exists c > 0 such that

(6.3) P

(
∃z ∈ Ŝ(e,N ;ω) s.t.

1

W
Im
∑
i

[
Qg

e (t, q)− z
]−1

ii
/∈ [c, c−1]

)
� N−D.

Notice that (6.3) holds in Ŝ(e,N ;ω), which is larger than the set S(e,N ;ω)
used in (6.2). But instead of a precise error estimate as in (6.2), here (6.3)
only provides a rough bound.

Let ξgk (e, t, q) be the k-th eigenvalue of Qg
e (t, q). Then for any (small)

ω > 0 and (large) D

P

(
∃k, � : ξgk (e, t, q), ξg� (e, t, q) ∈ [e−N−ω, e+N−ω],(6.4) ∣∣ξgk (e, t, q)− ξg� (e, t, q)

∣∣ � |�− k|
N1+ω

−N−1+ω

)
� N−D

Notice the minus sign in front of −N−1+ω so that the right hand side of the
last inequality is positive only when |k − �| � N2ω.

6.1. Local law for generalized Green’s function.

To prove Theorem 6.1, we start with a more general setting. Let H̃ be
an N ×N real symmetric random matrix with centered and independent
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entries, up to symmetry. (Here we use a different notation since it is different
from the H of main part. Moreover, this H̃ is also different from the matrix
defined in (4.39).) Define

s̃ij := EH̃2
ij , 1 � i, j � N.

Assume that s̃ij = O(N−1) and there exist sij such that for some c > 0,

(6.5) s̃ij = (1 + O(N−1/2−c))sij ,

and

sij = sji,
∑
i

sij = 1.

Note that the row sums of the matrix of variances of H̃ is not exactly
1 any more, so this class of matrices H̃ goes slightly beyond the concept
of generalized Wigner matrices introduced in [20] but still remain in their
perturbative regime. A detailed analysis of the general case was given in [1].

As in (2.10), we define

H̃g = H̃ −
∑
i

gieie
∗
i , H̃g =

(
Ãg B̃∗

B̃ D̃g

)
,(6.6)

g = (g1, . . . , gN ) ∈ R
N ,

where Ãg is a W ×W matrix. We define

(6.7) Q̃g
e = Ãg − B̃∗

(
D̃g − e

)−1
B̃.

Clearly Qg
e (t, q) defined in (6.1) equals to Q̃g

e (t, q) if we choose

(6.8) H̃ = H̃(t, q) =

(√
tA1 +

√
1− qA2 B∗

B D

)
.

We now prove the local law of Q̃g
e = Q̃g

e (t, q) by going to the large matrix.
In the following everything depends on the parameters t, q but we will often
omit this from the notation.
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For any H̃ and complex parameters z, z′ ∈ C we define

G̃g(z, z′) :=

(
Ãg − z B̃∗

B̃ D̃g − z′

)−1

(6.9)

:=
(
H̃g(z, z′)

)−1
:=
(
H̃g − zJ − z′J ′

)−1

with Jij = δij1(i � W ) and J ′
ij = δij1(i > W ). Clearly

(Q̃g
e − z)−1

ij = G̃g(z, e)ij , 1 � i, j � W

Note that G̃g(z, z′) is not a Green’s function unless z = z′; we will call it
generalized Green function. In Lemma 6.3 below we show that an analogue
of the local law holds for G̃g(z, z′) in a sense that its diagonal entries are
well approximated by deterministic functions Mg

i (z, z
′) and the off diagonal

entries are small. The functionsMg
i are defined via a self-consistent equation

in the following lemma.

Lemma 6.2. Recall m(z) defined in (4.3). For z ∈ C, such that Im z > 0,
|z| � C, and |z2 − 4| � κ, for some fixed C, κ > 0, we define

A(z, ζ) :=
{
z′ ∈ C : Im z′ > 0, |z − z′| � N−ζ

}
⊂ C.

For any z′ ∈ A(z, ζ), ‖g‖∞ � N−ζ , there is a unique solution Mg
i (z, z

′) to
the equation

1

Mg
i (z, z

′)
= −(z′ − z)1i>W − gi(6.10)

− z −
N∑
j=1

sijM
g
j (z, z

′), 1 � i � N

with the constraint

(6.11) max
i

∣∣Mg
i (z, z

′)−m(z)
∣∣ = O(logN)−1.

Furthermore, Mg
i (z, z

′) is continuous w.r.t. to z′ and g, and it satisfies the
following bound

(6.12) max
i

∣∣Mg
i (z, z

′)−m(z)
∣∣ = O(logN)

(|z − z′|+ ‖g‖∞
)
,

in particular Mg=0
i (z, z) = m(z).
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This theorem in a very general setup (without the restriction (6.5)) was
proved in Lemma 4.4 of [2]. In particular, it showed the existence, uniqueness
and stability for any small additive perturbation of the equation

(6.13)
1

Mi
= −z −

∑
j

sijMj .

which has a unique solution Mi = m(z) in the upper half plane. In other
words, the solution M(d) of the perturbed equation

(6.14)
1

Mi(d)
= −z − di −

∑
j

sijMj(d)

depends analytically on the vector d for ‖d‖ � c/ logN . (Thanks to (6.5),
here we need only the special case when the perturbation is around the
semicircle, Mi = m, this result was essentially contained in [20] although
not stated explicitly.) The necessary input is a bound on the norm

(6.15)

∥∥∥∥ 1

1−m2(z)S

∥∥∥∥
�∞→�∞

� Cε logN, for |z2 − 4| � ε,

that was first proven in [20], see also part (ii) of Proposition A.2 in [12]. The
bound (6.15) requires a spectral gap above −1 in the spectrum of S which
is guaranteed by Lemma A.1 from [20] under the condition (2.4). In fact,
for our band matrices the logN factor in (6.15) can be removed, see Lemma
2.11 in [2].

Lemma 6.3. Recall G̃g(z, z′), the generalized Green’s function of H̃ from
(6.9). Let Ω be the subset of the probability space such that for any two
complex numbers y, y′ ∈ C satisfying 0 � Im y′ � Im y and |y|, |y′| � 3, we
have

(6.16) ‖G̃g(y, y′)‖ � C(Im y)−1.

Suppose that P(Ω) � 1−N−D for any fixed D > 0. Assume that g, z and
z′ satisfy

‖g‖∞ � N−1/2, |z2 − 4| � κ, N−1+ζ � Im z � ζ−1, ζ, κ > 0

and

|z − z′| � N−ζ , 0 � Im z′ � Im z.
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Then for any small ε > 0, we have

(6.17) max
ij

∣∣∣G̃g
ij(z, z

′)−Mg
i (z, z

′)δij
∣∣∣ � (Nη)−1/2N ε, η = Im z,

holds with probability greater than 1−N−D for any fixed D > 0.

Note that both the condition (6.16) and the estimate (6.17) are uniform
in Im y′ and Im z′, respectively, in particular (6.17) holds even if z′ is on the
real axis. This is formulated more explicitly in the following:

Corollary 6.4. In the setting of Lemma 6.3, we assume ‖g‖∞ � N−1/2

and pick an e ∈ R with |e| � 2− κ for some κ > 0. Then we have

max
1�i,j�W

sup
N−1+ζ�Im z�N−ζ

sup
E:|E−e|�N−ζ

∣∣∣G̃g
ij(z, e)−Mg

i (z, e)δij

∣∣∣(6.18)

� (Nη)−1/2N ε, z = E + iη

holds with probability 1−N−D for any fixed D > 0 and ε, ζ > 0.

Proof. From Lemma 6.3, we know (6.18) holds for fixed z and e. Hence
we only need to prove that that they hold at same time for all z = E +
iη : |E − e| � N−ζ and N−1+ζ � η � N−ζ . We choose an N−10-grid in both
parameter spaces so the validity of (6.18) can be simultaneously guaranteed

for each element of this net. Since in Ω we have
∣∣∣∂zG̃g

ij

∣∣∣ � ‖G̃g‖2 � η−2 �
N2, and the same bound holds for ∂eG̃

g
ij , we can approximate G̃g

ij(z, e) at
a nearby grid point with very high accuracy. The same argument holds for
Mg

i (z, e) by the stability of its defining equation. This proves Corollary 6.4.
�

Proof of Lemma 6.3. For the proof we proceed in three steps.

Step 1: We first consider the case z = z′. By (6.12), we only need to
prove that for any small ε > 0

(6.19) max
ij

∣∣∣G̃g
ij(z, z)−m(z)δij

∣∣∣ � (Nη)−1/2N ε

holds with probability greater than 1−N−D. To prove this estimate, we
claim that there exists a set Ξ so that P(Ξ) � 1−N−D for any D > 0, and



788 P. Bourgade, et al.

in Ξ

max
ij

|G̃g
ij −m(z)δij | � (logN)−1.

Furthermore an approximate self-consistent equation for G̃g
ii holds in Ξ; more

precisely, we have

1Ξ

∣∣∣∣∣∣
(
G̃g

ii

)−1 − H̃ii − gi + z +
∑
j

s̃ijG̃
g
jj

∣∣∣∣∣∣ � (Nη)−1/2N ε.

These facts were shown in [21] with g = 0 and the same argument holds to
the letter including a small perturbation g. Since by assumption ‖g‖∞ �
N−1/2, and s̃ij = (1 + O(N−1/2−c))sij we obtain

1Ξ

∣∣∣∣∣∣
(
G̃g

ii

)−1 − H̃ii + z +
∑
j

sijG̃
g
jj

∣∣∣∣∣∣ � (Nη)−1/2N ε.

Since |H̃ii| � N−1/2+ε with very high probability, using the stability of the
unperturbed self-consistent equation as in [21], we obtain (6.19).

Step 2: Proof of (6.17) for z′ �= z. Clearly the G̃g(z, z′)− G̃g(z, z) is a
continuous function w.r.t. z′ and it equals to zero at z = z′. We define the
following interpolation between y(0) = z to y(1) = Re z′ + i Im z and then
to y(2) = z′:

y(s) =

{
(1− s)Re z + sRe z′ + i Im z 0 � s � 1

Re z′ + (2− s)i Im z + (s− 1)i Im z′ 1 � s � 2.

Denote by sk = kN−4 and yk = y(sk), and our goal is to prove that (6.17)
holds for z′ = yk for k = 2N4. We have proved in Step 1 that (6.17) holds
for z′ = yk=0 and we now apply induction. For any fixed α < 1/2, we define

the event Ξ
(α)
k ⊂ Ω as

Ξ
(α)
k := Ω ∩

{
max
ij

∣∣∣G̃g
ij(z, yk)−Mg

i (z, yk)δij

∣∣∣ � (Nη)−α
}
.

Now we claim that, for any 1 � k � 2N4, any small ε > 0 and any large D,
we have

(6.20) P

⎧⎨⎩
⎛⎝⋂

��k

Ξ
(1/4)
�

⎞⎠ \ Ξ(1/2−ε)
k

⎫⎬⎭ � N−D.
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Assuming this estimate is proved, we continue to prove (6.17). Recall the
bound

(6.21) P(Ξ
(1/2−ε)
0 ) � 1−N−D

from Step 1. Simple calculus and (6.16) yield that

|∂z′G̃g
ij | � ‖G̃g‖2 � N2

holds in the set Ω. Hence we can estimate the difference between G̃g
ij(z, yk+1)

and G̃g
ij(z, yk) by N−2. Similar estimate holds between Mg

i (z, yk) and

Mg
i (z, yk+1) by the stability of the self-consistent equation (6.10) at the

parameter (z, yk), provided by Lemma 4.4 of [2].
These bounds easily imply that

(6.22) P

(
Ξ
(1/2−ε)
k \ Ξ(1/4)

k+1

)
� N−D.

It is clear that the initial bound (6.21) and the two estimates (6.20) and

(6.22) allow us to use induction to conclude P(Ξ
(1/2−ε)
k ) � 1−N−D for any

1 � k � 2N4. We have thus proved (6.17) assuming (6.20).

Step 3. Proof of (6.20). Recall G̃g is defined with Hg in (6.9). We define
Hg,(i)(z, z′) as the matrix obtained by removing the i-th row and column of
Hg(z, z′) and set

G̃g,(i)(z, z′) :=
(
Hg,(i)(z, z′)

)−1
.

As in [21], the standard large deviation argument implies that for any ε > 0,

in Ξ
1/4
k ,

1

G̃g
ii(z, yk)

= −(yk − z)1(i > W )− gi − z −
∑
ij

s̃ij

(
G̃g,(i)(z, yk)

)
jj

+O
(
N−1+ε‖G̃g,(i)(z, yk)‖HS

)
holds with probability 1−O(N−D), where ‖ · ‖HS is the Hilbert-Schmidt
norm. The matrix entries of G̃g,(i) can be replaced by G̃g by using the
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identity (see [20, Lemma 4.2])

(6.23) (G̃g,(�))ij = G̃g
ij −

G̃g
i�G̃

g
�i

G̃g
��

, � �= i, j,

and using that both off-diagonal matrix elements are bounded by (Nη)−1/4

on Ξ
(1/4)
k . Together with (6.5), we have obtained the self-consistent equation

1

G̃g
ii(z, yk)

= −(yk − z)1(i > W )− gi − z −
∑
j

sijG̃
g
jj(z, yk)(6.24)

+O
(
N−1+ε‖G̃g(z, yk)‖HS + (Nη)−1/2

)
,

which holds with probability larger than 1−O(N−D). The standard ar-
gument then uses the so-called Ward identity that the Green function G =
(H − z)−1 of any self-adjoint matrix H satisfies that

(6.25) ‖G(z)‖2HS = η−1 ImTrG(z), η = Im z.

In our case, G̃g is not a Green function and this presents the major difficulty.
The main idea is to write

G̃g(z, yk) = G̃g(z, ỹk) + G̃g(z, yk)i(η − Im yk)JG̃
g(z, ỹk),

ỹk = yk + i(η − Im yk),

where J is the matrix defined by Jij = 11�i�W δij and the imaginary part

of ỹk equals η = Im z. In particular, G̃g(z, ỹk) is a Green function of a self-
adjoint matrix, hence the Ward identity is applicable. By definition, ỹk ∈
{y� : � � k}. Hence in the set

⋂
��k Ξ

(1/4)
� ⊂ Ω, we have

‖G̃g(z, yk)‖HS(6.26)

� ‖G̃g(z, ỹk)‖HS + ‖G̃g(z, yk)i(η − Im yk)JG̃
g(z, ỹk)‖HS

� ‖G̃g(z, ỹk)‖HS + η‖G̃g(z, yk)‖‖G̃g(z, ỹk)‖HS

� C
[
η−1 ImTr G̃g(z, ỹk)

]1/2
,

where we have used the Ward identity (6.25) for G̃g(z, ỹk) and (6.16) for

G̃g(z, yk) . Inserting this bound into (6.24), we have that in
⋂

��k Ξ
(1/4)
� with
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probability 1−O(N−D) that for any ε > 0,

1

G̃g
ii(z, yk)

= −(yk − z)1(i > W )− gi − z

−
∑
ij

sijG̃
g
jj(z, yk) +O

(
(Nη)−1/2N ε

)
.

Now we compare this equation with (6.10) and notice that both are pertur-
bations of the equation (6.13) that is stable in an O((logN)−1) neighborhood

of the vector m. We obtain that in
⋂

��k Ξ
(1/4)
� with probability 1−O(N−D)

max
i

∣∣∣G̃g
ii(z, yk)−M g

i (z, yk)
∣∣∣ = O

(
(Nη)−1/2N ε

)
.

For the off-diagonal terms i.e., G̃g
ij(z, yk), similarly as in [20], we know

that in Ξ
(1/4)
k with probability 1−O(N−D)∣∣∣G̃g

ij(z, yk)
∣∣∣ � ∣∣∣G̃g

ij(z, yk)
∣∣∣ ∣∣∣G̃g,(i)

jj (z, yk)
∣∣∣

×
(
N−1/2+ε +N−1+ε‖(G̃g,(ij)(z, yk))‖HS

)
Then with (6.26) and (6.23), we obtain that in

⋂
��k Ξ

(1/4)
� with probability

1−O(N−D) ∣∣∣G̃g
ij(z, yk)

∣∣∣ = O
(
(Nη)−1/2N ε

)
.

This completes the proof of (6.20) and Lemma 6.3. �

6.2. Operator bound of G(z, z′).

As explained in the beginning of this section, we are going to prove Theo-
rem 6.1 with Corollary 6.4. For this purpose, we need to prove that band
matrix satisfies the assumption (6.16). In this subsection, we prove a suffi-
cient condition for (6.16). We formulate the result in a non-random setup
and later we will check that the conditions hold with very high probability
in case of our random band matrix.
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Lemma 6.5. Let H be a (non random) symmetric N ×N matrix and con-
sider its block decomposition as

H =

(
A B∗

B D

)
.

Suppose that for (small) μ > 0 and C0, the following holds:

(i) there does not exist e ∈ R, u ∈ RN such that

(6.27) ‖u‖ = 1, ‖B∗u‖ � μ, ‖(D − e)u‖ � μ.

(ii) The submatrices are bounded:

(6.28) ‖A‖+ ‖B‖+ ‖D‖ � C0.

Define

G(z, z′) :=
(
A− z B∗

B D − z′

)−1

.

Then for any large C ′′ > 0, there exists C ′ > 0, depending only on C ′′, μ
and C0, such that if

z, z′ ∈ C, 0 � Im z′ � Im z, |z|+ |z′| � C ′′,

then we have

(6.29) ‖G(z, z′)‖ � C ′

Im z
.

Proof of Lemma 6.5. Define the symmetric matrix

P :=

(
A− Re z B∗

B D−Re z′

)
,

then by resolvent identity we have

G = G(z, z′) =
1

P − i Im z
+

1

P − i Im z
(Im z′ − Im z)iJG,

where the matrix J was already defined by Jij = 11�i�W δij . Here W is the
size of the block A. Then

‖G‖ � (Im z)−1 +
Im z − Im z′

Im z
‖G‖,
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which implies ‖G‖ � (Im z′)−1. Furthermore, with

∂z′G = GJG,

it is easy to see by integrating ∂z′G from z′ = e′ to z′ = e′ + iη′ that we only
need to prove (6.29) for the case Im z′ = 0. Hence from now on, we assume
that

z = e+ iη, z′ = e′.

Applying Schur formula, we obtain

G = G(z, z′) =
(
A− z B∗

B D − z′

)−1

=

(
1

A−z−B∗(D−z′)−1B − 1
A−zB

∗ 1
D−z′−B(A−z)−1B∗

− 1
D−z′−B(A−z)−1B∗B

1
A−z

1
D−z′−B(A−z)−1B∗

)
.

First with Im z′ = 0, we have the trivial bounds (which follows by ‖(P +
iη)−1‖ � η−1 for any symmetric matrix P ):

(6.30)

∥∥∥∥∥
(
A− z −B∗ 1

D − z′
B

)−1
∥∥∥∥∥ � 1

| Im z| ,
∥∥∥(A− z)−1

∥∥∥ � 1

| Im z| ,

which controls the upper left corner of G. Second, we claim that

(6.31)

∥∥∥∥∥ 1

A− z
B∗ 1

D − z′ −B 1
A−zB

∗

∥∥∥∥∥
2

� 1

| Im z|

∥∥∥∥∥ 1

D − e′ −B 1
A−zB

∗

∥∥∥∥∥ .
For the proof, picking any nonzero vector v and setting u = (D − e′ −
B 1

A−zB
∗)−1v, we have

‖v‖ =

∥∥∥∥(D − e′ −B
1

A− z
B∗
)
u

∥∥∥∥ � 1

‖u‖
∣∣∣∣〈u,(D − e′ −B

1

A− z
B∗
)
u

〉∣∣∣∣
=

1

‖u‖

∣∣∣∣∣
〈
u,

(
D − e′ −B

A− e

(A− e)2 + η2
B∗
)
u

〉

− i

〈
u,

(
B

η

(A− e)2 + η2
B∗
)
u

〉 ∣∣∣∣∣
� η

‖u‖
〈
u,B

1

(A− e)2 + η2
B∗u

〉
=

η

‖u‖
〈
u,B

1

|A− z|2B
∗u
〉

=
η

‖u‖
∥∥∥∥ 1

A− z
B∗u

∥∥∥∥2 .
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Changing the vector u back to v, we have∥∥∥∥∥ 1

A− z
B∗ 1

D − e′ −B 1
A−zB

∗v

∥∥∥∥∥
2

� 1

| Im z|

∥∥∥∥∥ 1

D − e′ −B 1
A−zB

∗v

∥∥∥∥∥ ‖v‖,
which implies (6.31). Now it only remains to bound

∥∥(D − e′ −B 1
A−zB

∗)−1∥∥
by C/η, which would then control all other three blocks of G. Suppose for
some normalized vector u and small μ̃ > 0, we have

(6.32)

∥∥∥∥(D − e′)u−B
1

A− z
B∗u

∥∥∥∥ � μ̃η.

Then

μ̃η �
∣∣∣∣Im〈u, (D − e′)u+B

1

A− z
B∗u

〉∣∣∣∣ = 〈u,(B η

(A− e)2 + η2
B∗
)
u

〉
.

Then for some C1 > 0, we have

(6.33) μ̃ �
〈
u, B

1

|A− z|2B
∗u
〉

� 1

C1
‖B∗u‖2

where we used that the fact |A− z|2 is bounded. This shows that

(6.34) ‖B∗u‖ �
√

C1μ̃, ‖BB∗u‖ �
√

C0C1μ̃

by (6.28). From (6.33), we also have∥∥∥∥B 1

A− z
B∗u

∥∥∥∥2 = 〈u, B 1

A− z̄
B∗B

1

A− z
B∗u

〉
� C0

〈
u, B

1

|A− z|2B
∗u
〉

� C0μ̃.

Then with (6.32), for small enough μ̃, we have

(6.35) ‖(D − e′)u‖ �
∥∥∥∥B 1

A− z
B∗u

∥∥∥∥+ μ̃η �
√

C0μ̃+ μ̃η � C
√

μ̃.

Combining (6.34), (6.35) and (6.27), we obtain (6.32) does not hold for
small enough μ̃. Together with (6.30) and (6.31), we completed the proof
of Lemma 6.5. �
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6.3. Proof of Theorem 6.1.

Now we return to prove Theorem 6.1, i.e., the local law of the Green’s
function of some particular matrices which are derived from band matrix.

Proof of (6.2). As explained in (6.8), we know that Qg
e (t, q) is a matrix of

the form in (6.7). We will apply Lemma 3.2 with M = W and L = N −W .
Since H is a band matrix with band width 4W − 1, see (2.4), the upper
W ×W block of B has variance (4W − 1)−1, i.e.

sij = EB2
ij =

1

4W − 1
, 1 � i, j � W.

Using this information in (3.5) to estimate
∑

1�i�W |ui|2 from below and
inserting this into the last condition in (3.1), we learn that for some small
μ > 0 we have

P
(∃e ∈ R, ∃u ∈ R

N−W : ‖u‖ = 1, ‖B∗u‖ � μ, ‖(Dg − e)u‖ � μ
)
� N−D.

We also know that ‖H‖, hence ‖A‖, ‖B‖ and ‖D‖ are all bounded by a large
constant with very high probability. Then using Lemma 6.5, we obtain that
for some large C > 0, we have

P

(
∃z, z′ ∈ C : |z|, |z′| � 3, Im z � Im z′ � 0,

‖G̃g(z, z′)‖ � C(Im z)−1
)
� N−D.

With this bound, we can use Corollary 6.4. Together with (6.12), we com-
plete the proof of (6.2). �

Proof of (6.3). Because of (6.2), it only remains to prove (6.3) for

(6.36) |E − e| � N−ω, N−ω � η � 1.

Recall ξgk (e, t, q), 1 � k � W is the k-th eigenvalue of Qg
e (t, q). Then

Im
∑
j

[
Qg

e (t, q)− z
]−1

jj
= ImTr

1

Qg
e (t, q)− E − iη

=
∑
k

η

|ξgk (e, t, q)− E|2 + η2
, z = E + iη.
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In our case (6.36), we know

|ξgk (e, t, q)− E|2 + η2 ∼ |ξgk (e, t, q)− e|2 + η2.

Therefore, we only need to prove that there exists c > 0 such that

P

(
∃η, N−ω � η � 1 s.t.

1

W
ImTr

1

Qg
e (t, q)− e− iη

/∈ [c, c−1]

)
� N−D.

After adjusting the constant c, it will be implied by the following high prob-
ability bound on the eigenvalue density:

P
(∃η, N−ω � η � 1(6.37)

s.t. (Nη)−1#
{
k : ξgk (e, t, q) ∈ [e− η, e+ η]

}
/∈ [c, c−1]

)
� N−D.

From Section 4.2 recall the definition of curves Cg
k (e) constructed from the

matrix (4.8). Similarly, starting with the matrix H̃g, see (6.6) and (6.8),
we can define the curves e → Cg

k (e, t, q) for any fixed parameters t, q. As in
Lemma 4.4, we have that for any K, there exists CK such that

(6.38) P

(
sup

e �∈σ(Dg)
sup
k

1(|Cg
k (e, t, q)| � K)

∣∣∣dCg
k

de
(e, t, q)

∣∣∣ � CK

)
� N−D.

It means the slopes of these curves are bounded in [−K,K]2. The crossing
points of these curves with x = y line are exactly the points

(λg
k(t, q), λ

g
k(t, q)), 1 � k � N,

where λg
k(t, q) is the k-th eigenvalue of H̃g. By simple perturbation theory

and using |t− q| � N−1/2, ‖σ‖ � N−1/2, it is easy to see that with high
probability, we have

|λk − λg
k(t, q)| � N−ω, λk := λk(q, q).

Note λk(q, q) is the eigenvalue of a regular generalized Wigner matrix, i.e.
H̃g=0 at t = q has variances summing up exactly to one in each row. Then
together with the rigidity of λk, we know

P
(∃N−ω � η � 1

s.t. (Nη)−1#
{
k : Cg

k (e, t, q) ∈ [e− η, e+ η]
}
/∈ [c, c−1]

)
� N−D.

With (6.38), (note
dCg

k

de � 0 as in (4.28)) we obtain (6.37) and complete the
proof of (6.3). �
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Proof of (6.4). With (6.3), we know that

P
(∃x, y ∈ [e−N−ω, e+N−ω], |x− y| � N−1+ω,

N−1#
{
k : ξgk (e, t, q) ∈ [x, y]

}
� |x− y| logN) � N−D.

It is easy to see that it implies (6.4), which completes the proof of Theo-
rem 6.1. �
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[12] L. Erdős, A. Knowles, H.-T. Yau, and J. Yin, The local semicircle law
for a general class of random matrices, Elect. J. Prob. 18 (2013), no. 59,
1–58.
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