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On some Siegel threefold related to the

tangent cone of the Fermat quartic surface

Takeo Okazaki and Takuya Yamauchi

Dedicated to Professors van Geemen, Nygaard, and van Straten

Let Z be the quotient of the Siegel modular threefold Asa(2, 4, 8)
which has been studied by van Geemen and Nygaard. They gave
an implication that some 6-tuple FZ of theta constants which is
in turn known to be a Klingen type Eisenstein series of weight 3
should be related to a holomorphic differential (2, 0)-form on Z.
The variety Z is birationally equivalent to the tangent cone of
Fermat quartic surface in the title.

In this paper we first compute the L-function of two smooth
resolutions of Z. One of these, denoted by W , is a kind of Igusa
compactification such that the boundary ∂W is a strictly normal
crossing divisor. The main part of the L-function is described by
some elliptic newform g of weight 3. Then we construct an auto-
morphic representation Π of GSp2(A) related to g and an explicit
vector EZ sits inside Π which creates a vector valued (non-cuspidal)
Siegel modular form of weight (3, 1) so that FZ coincides with EZ

in H2,0(∂W ) under the Poincaré residue map and various identifi-
cations of cohomologies.
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1. Introduction

For a positive integer N , let X0(N) be the modular curves with respect to
the congruence subgroup Γ1

0(N) (cf. [29]) which has a canonical structure
as a projective smooth curve over Q. Then the L-function of the first �-adic
etale cohomology H1

et(X0(N)Q,Q�) can be written in terms of automorphic
L-functions associated to newforms in S2(Γ

1
0(N)) (see Section 7 of loc.cit.).

Here S2(Γ
1
0(N)) is the space of elliptic cusp forms of weight two with respect

to Γ1
0(N).
The modular curve X0(N) is a typical, basic example of Shimura variety

of dimension one. So this phenomena makes us believe naively that Shimura
varieties can be written in terms of automorphic L-functions. However, if we
once move to the higher dimensional case, then the situation becomes much
more difficult. There are many reasons here. Firstly we have to classify all
automorphic representations in consideration to describe the L-functions of
Shimura varieties. Secondly if the dimension of a Shimura variety in consid-
eration is greater than one, then we have to study not only the cohomology
of middle degree, but also it of another degrees except for zero and top.

With this reasons it is important to possess many examples at hand to
understand the cohomology of Shimura varieties. The case of Siegel modu-
lar threefolds which the authors are interested in seems to be one of most
fascinating objects.

Let A(2, 4, 8) be the moduli space of abelian surfaces with some level
structure which has been studied by van Geemen, Nygaard, and van Straten
([8],[7]). It is the quotient space of the Siegel upper half plane H2 of degree
2 by the arithmetic subgroup Γ(2, 4, 8) of the symplectic group Sp2(Z) ⊂
GL4(Z). This congruence subgroup Γ(2, 4, 8) is contained in the principal
congruence subgroup Γ(4) := {γ ∈ Sp2(Z) | γ ≡ 14 mod 4} which is neat in
the sense of Borel (Section 17 of [3]) and so is Γ(2, 4, 8). It follows from
this that A(2, 4, 8) is a quasi-projective smooth threefold. By [7] we have
the projective model Asa(2, 4, 8) so called the Satake compactification of
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A(2, 4, 8) which is defined over Q in P13
Q as follows:

Y 2
0 = Q0(X0, X1, X2, X3) := X2

0 +X2
1 +X2

2 +X2
3

Y 2
1 = Q1(X0, X1, X2, X3) := X2

0 −X2
1 +X2

2 −X2
3

Y 2
2 = Q2(X0, X1, X2, X3) := X2

0 +X2
1 −X2

2 −X2
3

Y 2
3 = Q3(X0, X1, X2, X3) := X2

0 −X2
1 −X2

2 +X2
3

Y 2
4 = Q4(X0, X1, X2, X3) := 2(X0X1 +X2X3)

Y 2
5 = Q5(X0, X1, X2, X3) := 2(X0X2 +X1X3)

Y 2
6 = Q6(X0, X1, X2, X3) := 2(X0X3 +X1X2)

Y 2
7 = Q7(X0, X1, X2, X3) := 2(X0X1 −X2X3)

Y 2
8 = Q8(X0, X1, X2, X3) := 2(X0X2 −X1X3)

Y 2
9 = Q9(X0, X1, X2, X3) := 2(X0X3 −X1X2).

They considered three kinds of quotient varieties of Asa(2, 4, 8) which are
denoted by X,Y, Z in loc.cit. and computed their Hodge numbers and the
L-function of a smooth model of X and Y . For X (resp. Y) the middle (etale
or de Rham) cohomology H3 is related to a holomorphic Saito-Kurokawa
lift (resp. endoscopic lifts). They also computed Hodge numbers of Z, but
they left to study automorphic forms relate to holomorphic differential forms
on Z and any relation to the L-function of Z (though they also computed
a part of the L-function). Note that there are no holomorphic forms on X
and Y other than holomorphic 3-forms (since h2,0 = h1,0 = 0 in these cases).
Contrary to X and Y , there are no holomorphic 3-forms on Z, but Z has a
holomorphic 2-form as we will see below. This let the authors spur to study
the various kinds of second (or fourth) cohomologies of Z explicitly though
the general results have been already built up by Weissauer [33], [34] ,[35]
for any Siegel modular threefold with respect to a (principal) congruence
subgroup.

In this paper we first compute the L-function of Z explicitly and secondly
construct an explicit holomorphic 2-form on Z related to the computation
mentioned before. To explain the first main result, we need some notation.
Let ΓZ be a discrete subgroup of Sp2(Z) which is defined by Z (see Re-
mark 3.12). Then we will see that the Siegel threefold ΓZ\H2 is a smooth
quasi-projective variety. Then the Satake compactification of Z◦ := ΓZ\H2,
denoted by Z = (Z◦)sa, has the following defining equation in P7

Q:

Y 2
5 = 2(X0X2 +X1X3)(1.1)

Y 2
6 = 2(X0X3 +X1X2)(1.2)
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Y 2
8 = 2(X0X2 −X1X3)(1.3)

Y 2
9 = 2(X0X3 −X1X2)(1.4)

(see lines 12-23 at p.55 of [7] and p.69-70 of loc.cit. for the defining equation).
The singular locus of this variety consists of the two lines defined by

Li,i+1 : Y5 = Y6 = Y8 = Y9 = Xi = Xi+1 = 0, i = 0, 2.

Let Z̃ be the resolution of Z obtained by blowing up along Li,i+1, i = 0, 2.

The Hodge numbers of Z̃ is calculated in Proposition 2.14 of [7]:

h0,0 = h3,3 = h2,0 = h0,2 = 1,

h1,0 = h0,1 = h3,0 = h2,1 = h1,2 = h0,3 = 0, h1,1 = 23.
(1.5)

We denote by L̃i,i+1 be the proper transform of Li,i+1 in this blowing up.

Unfortunately, Z̃ is not a kind of Igusa’s desingularization (cf. [11]) of the
Satake compactification of Z◦ = ΓZ\H2 because Z̃ \ Zsm = L̃0,1

∐
L̃2,3 does

not make a normal crossing divisor where Zsm is the smooth locus of Z. Fur-
ther it is easy to see that Z◦ does not coincide with Zsm = Z \ L0,1

∐
L2,3.

A correct modification W of a resolution of Z such that the boundary
components consist of a normal crossing divisor and an explicit description of
W \ ∂W = Z◦ will be given in Section 3.2. This will be needed to understand
cohomology of ΓZ\H2. As we will see later, the variety Z◦ is a smooth,
geometrically irreducible scheme over Z[12 ]. Then we have the following result
on the L-function of Z◦:

Theorem 1.1. (Theorem 3.17) Keep the notation above. For a squarefree
integer a �= 0, 1, let χa be the Dirichlet character defined by the quadratic

residue symbol
(a
∗
)
. Let g be the unique newform in S3(Γ

1
0(16), χ−1). Then

L(s,H2
et(Z

◦
Q
,Q�)) = ζ(s− 1)8L(s− 1, χ−1)

7

× L(s− 1, χ2)
2L(s− 1, χ−2)

2L(s, g).

Here L(s, χ∗) is the Dirichlet L-function for χ∗ and ζ(s) is Riemann zeta
function. In particular, the LHS is independent of any choice of �.

This main theorem follows from Theorem 3.16 with Proposition 3.8. It
follows from [23] the �-independence of the L-function. Note that

L(s,H4
et,c(Z

◦
Q
,Q�)) = L(s− 1, H2

et(Z
◦
Q
,Q�))
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by Poincaré duality.
Since H3

! (Z
◦,Q) = Im(H3

c (Z
◦,Q) −→ H3(Z◦,Q)) = Im(H3(Z̃,Q) −→

H3(Z◦,Q)) = 0 by (1.5) and Theorem 5.6 of [19], Theorem 1.1 tells us that
most interesting part of the cohomology of Z◦ is H i, i = 2, 4 contrary to
the case X and Y (note that H2,0(X) = H2,0(Y ) = 0). Further it is quite
natural to predict some relation between holomorphic differential forms on
Z◦ (and also on ∂W ) and our CM modular form g.

To explain next main result we need more notation. Let M2
3 (ΓZ) be the

space of Siegel modular forms of weight 3 with respect to ΓZ and M2
3 (ΓZ)

KE

the subspace of M2
3 (ΓZ) consisting of all Klingen type Eisenstein series. Let

M2
(3,1)(ΓZ) be the space of vector valued Siegel modular forms of weight

det1 St2 ⊗ Sym2St2 with respect to ΓZ (cf. [1]). Let D̃[1] be the disjoint union
of all irreducible components of ∂W . As we will explain at Section 3.4, there
exist natural maps:

M2
3 (ΓZ)

KE ↪→
⊕
i=0,2

H2,0(L̃i,i+1,C)
rest←↩ H2,0(W,C)(1.6)


 H2,0(Z◦,C) ∼←− M2
(3,1)(ΓZ)

where the first map is given by the projection to the component⊕
i=0,2

H2,0(L̃i,i+1,C)

of the composite of Eichler-Shimura embedding and the Poincaré residue

mapH3(Z◦,C)
res[1]−→ H2(D̃[1],C) = C⊕40 ⊕

⊕
i=0,2

H2(L̃i,i+1,C). Note that this

map injects into
⊕
i=0,2

H2,0(L̃i,i+1,C). The last map of (1.6) is given by a natu-

ral identificationH2,0(Z◦,C) 
 H2,0(Z̃,C) 
 H2,0(W,C), since the holomor-
phic 2-forms are uniquely extend to those on any smooth projective model of
Z◦. Let FZ be the 6-tuple of theta constants defined by (4.12). By definition
of ΓZ , our form FZ belongs to M2

3 (ΓZ). Let Γ̃Z be the adelization of ΓZ in

GSp2(Ẑ) so that Γ̃Z ∩ Sp2(Q) = ΓZ which is introduced in Section 4.
From (1.6) one can expect that there exists a vector valued Siegel

modular form in M2
(3,1)(ΓZ) corresponding to FZ under (1.6) (note that

dimCM
2
(3,1)(ΓZ) = dimCH

2,0(Z,C) = dimCH
2,0(Z̃,C) = 1 by (1.5)). Then we

have the followings:
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Theorem 1.2. Keep the notation above. Let g be the unique CM newform
in S1

3(Γ
1
0(16), χ−1). Then

(i) FZ is a Hecke eigen form with respect to Hecke operators for any p �=
2 with the following Andrianov-Evdokimov’s L-function (of degree 4)
outside 2 (see (4.4) for the definition).

L(2)(s, FZ ; AE) =
∏
p �=2

Lp(s, g)Lp(s− 1, g).

(ii) dimCM
2
3 (ΓZ)

KE = 1 and FZ is a generator of M2
3 (ΓZ)

KE,

(iii) there exists a non-cuspidal automorphic representation Π of GSp2(A)
and a smooth Γ̃Z-fixed vector EZ such that
(a) (EZ)∞ has the highest weight vector in the minimal K-type (3, 1)

as a representation of U(2),
(b) EZ gives a generator of M2

(3,1)(ΓZ) and it coincides with FZ in⊕
i=0,2

H2(L̃i,i+1,C), under the maps (1.6).

(c) L(2)(s− 1, EZ ; AE) = L(2)(s, FZ ; AE) =
∏
p �=2

Lp(s, g)Lp(s+ 1, g).

PutW� = H2
et(Z

◦)⊕H4
et,c(Z

◦). LetW t
� be the transcendental part ofW�.

Corollary 1.3. The following equality holds:

L(2)(s,W t
� ) = L(2)(s− 1, EZ ; AE) = L(2)(s, FZ ; AE).

We should mention what Theorem 1.2 insists on. Even if we have the
equation (1.6), we do not know a priori any direct relation between M2

3 (ΓZ)
and M2

(3,1)(ΓZ) because the map is just comparing the elements in question

as an elliptic modular form. Further the shapes of Andrianov-Evdokimov (or
spinor) L-functions of eigenforms of each space are different each other (see
p.173, the last of Section 3.1 of [1]). Therefore what we have to do is firstly
to compute the image g of FZ under res[1] via Eichler-Shimura embedding
which is nothing but the image under the Siegel Φ-operator. Then next
we try to find EZ ∈ M2

(3,1)(ΓZ) related to g so that it coincides with FZ

under (1.6). As a result, one has L(2)(s− 1, EZ ; AE) = L(2)(s, FZ ; AE). An
interesting point is that our form EZ of weight (3, 1) contribute to the mixed
Hodge structure of H3(Z◦,C) via FZ of weight 3 which is an avatar of EZ in
some sense. This might provokes us to consider the pure of weight 4 part of
the mixed Hodge structure on the middle cohomology of a Siegel threefold



On some Siegel threefold related 591

in terms of the Klingen type Eisenstein series of weight (3, 1). Oda and
Schwermer have already mentioned this kind of observation at the end of
p.508, [19].

However, the construction of EZ seems not to be easy as was done in
[1] because the weight of EZ is small and therefore one will come across a
problem on the convergence. Thus we need some arguments as in [2] which
make use of the method of the analytic continuation of real analytic Eisen-
stein series. However even if it is defined as in loc.cit., though one should
extend the results to the vector valued case, it might be difficult to check
the non-vanishing of it because the group structure of ΓZ is slightly invis-
ible due to the definition. Furthermore, it might be difficult to construct
EZ starting from the classical setting (cf. p.63 of [14]) because we have
to customize EZ so that it has the central character χ−1 and belongs to
M(3,1)(ΓZ) = M(3,1)(Γ(2), χZ) simultaneously.

To overcome these difficulties, we will apply the Soudry lift which is
the theta lift from GO(2) to GSp(2), since the automorphic representa-
tion π = πg associated to the CM modular form g comes from a grossen-
character on A×

K , K = Q(
√−1). Then we extend the automorphic repre-

sentation μ of GSOK 
 K× to that of GOK = GO(2). By using Soudry
lift one can construct the desired irreducible representation Π contributes
to M2

(3,1)(ΓZ) 
 H2,0(Z◦,C) = H2,0(Z◦,C) ∩ EisQ where the last part is a

part of H2,0(Z,C) with respect to Klingen parabolic subgroup Q (see [26]).
A theta lifting is one of powerful tools to create various automorphic forms
on GSp2(A). However in our setting we have to take the level ΓZ into ac-
count. The group structure of ΓZ is somewhat invisible by the definition.
Therefore we need some observation of the theta kernel such that the image
of the lifting is ΓZ-invariant. This will be devoted to Section 4. We remark
that the construction of Klingen type Eisenstein series of weight (3, 1) from
CM elliptic modular forms has been already known for experts (see Section 6
of [19] and Section 4 of [34]).

The paper is organized as follows. In Section 2, we study an algebraic
description of Z◦ and determine the L-function of Z◦. Related to the results
of Section 2, we discuss about the differential forms on Z◦ and a vector
values Siegel modular form EZ related to FZ via maps between various
cohomologies in Section 3. As we mentioned, we analyze the property of FZ

and construct EZ in Section 4.
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2. Notation

For a prime number p and a power q of p, let Fq be the finite field with

the cardinality q. For any a ∈ Fq, we denote by
(a
q

)
the quadratic residue

symbol of a. For a finite set X, we denote by |X| its cardinality. For a
commutative algebra R, let R× denote the group of units of R. Let R1

denote the group of elements of norm 1 whenever a norm is once given on
R. Throughout this paper, � means any prime number.

3. two smooth models of Z and its cohomologies

In this section we will study two smooth resolutions Z̃ and W of Z as we
mentioned in Section 1 and its arithmetic. We will also study the mixed
Hodge structure on the cohomologies of Z and its relation to (non-cuspidal)
Siegel modular forms with respect to the discrete group ΓZ defined by Z.
Throughout this section we always assume a prime p (and hence its power
q) to be odd. We refer to Section 4 for the notation of modular forms in
various settings which we need in this paper.

3.1. L-function of Z̃

In this subsection we shall compute the L-function of Z̃. To do this we need
to take a few steps to reduce the defining equation of Z to more convenient
one. Most materials here have already obtained in [7], but we need some
modifications. We recall the defining equation of Z again and replace the
original coordinates Y5, Y6, Y8, Y9 by Y3, Y0, Y2, Y1 for simplicity:

Y 2
0 = 2(X0X3 +X1X2)(3.1)

Y 2
1 = 2(X0X3 −X1X2)(3.2)

Y 2
2 = 2(X0X2 −X1X3)(3.3)

Y 2
3 = 2(X0X2 +X1X3).(3.4)

Henceforth we consider the all geometric objects or morphisms betweem
them as Z[12 ]-schemes or Z[12 ]-morphisms and we will freely use the basic
facts on etale cohomology (cf. [16]).

Let Pn be the projective space of dimension n with the fixed coordinates
[Z0 : · · · : Zn] and F the quartic Fermat surface defined by Z4

0 − Z4
1 + Z4

2 −
Z4
3 = 0 in P3. Let Cone∞(F ) be the tangent cone of F at infinity in P4 which
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is defined by

Cone∞(F ) := {[t : Z0 : Z1 : Z2 : Z3] ∈ P4 | Z4
0 − Z4

1 + Z4
2 − Z4

3 = 0}.

As in Proposition 2.13 of [7], the birational map φ : Cone∞(F ) −→ Z is
given by sending [t : Z0 : Z1 : Z2 : Z3] to

[2Z0 : 2Z1 : 2Z2 : 2Z3 :
Z2
0 + Z2

1

t
:
−Z2

2 + Z2
3

t
:
t(Z2

2 + Z2
3 )

Z2
0 + Z2

1

: t].

Note that the constant c in Proposition 2.13 of [7] should be 2. It is easy to see
that the converse is given by sending [Y0 : Y1 : Y2 : Y3 : X0 : X1 : X2 : X3] to
[X3 :

Y0

2 : Y1

2 : Y2

2 : Y3

2 ]. For abbreviation we write the coordinates [X0 : X1 :
X2 : X3] as X and it is the same as well for Y and Z

The following proposition gives a modification of Proposition 2.13 of [7].

Proposition 3.1. Let U1 = {[t : Z] ∈ Cone∞(F ) | t �= 0 and Z2
0 + Z2

1 �= 0}
and U2 = {[Y : X] ∈ Z | Y 2

0 + Y 2
1 �= 0 and X3 �= 0}. Then the birational map

φ gives an isomorphism U1
∼−→ U2 as an open, geometrically irreducible

Z[12 ]-scheme.

Proof. It suffices to check the equivalence that Z2
0 + Z2

1 �= 0 ⇐⇒ Y 2
0 +

Y 2
1 �= 0. �

For i = 1, 2, we denote by U c
1 (resp. U c

2) the reduced closed subscheme
Cone∞(F ) \ U1 (resp. Z \ U2).

Proposition 3.2. The following equalities hold:

(1) |U c
1(Fq)| = |F (Fq)|+ 4q2 + 4q2

(−1

q

)
− 4q − 6q

(−1

q

)
+ 1 + 2

(−1

q

)
,

(2) |U c
2(Fq)| = 4q2 − 2q + 2 + (4q2 − 6q + 2)

(−1

q

)
,

(3) |Cone∞(F )(Fq)| = q|F (Fq)|+ 1.

Proof. We first prove (2). First we observe

|U c
2(Fq)| = |{Y 2

0 + Y 2
1 = 0}|+ |{X3 = 0}| −

∣∣∣∣{ Y 2
0 + Y 2

1 = 0
X3 = 0

}∣∣∣∣ .
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Since the last two terms are both equal to each other, one has

|U c
2(Fq)| = |{Y 2

0 + Y 2
1 = 0}| = |{X0X3 = 0}|

= |{X0 = 0}|+ |{X0 = 1, X3 = 0}|.

If X0 = 0, then the defining equation is as follows:

Y 2
0 = 2X1X2

Y 2
1 = −2X1X2

Y 2
2 = −2X1X3

Y 2
3 = 2X1X3.

Assume X1 = 0, then the number in consideration is nothing but it of all
[X2 : X3] ∈ P1(Fq), hence it is q + 1. If X1 �= 0, then the number in consid-
eration amounts to∑
X2,X3∈Fq

(
1 +

(
2X2

q

))(
1 +

(−2X2

q

))(
1 +

(−2X3

q

))(
1 +

(
2X3

q

))

=

⎧⎨⎩ ∑
X2∈Fq

(
1 +

(
2X2

q

))(
1 +

(−2X2

q

))⎫⎬⎭
2

=

⎧⎨⎩ ∑
X2∈Fq

(
1 +

(−2X2

q

)
+

(
2X2

q

)
+

(−4X2
2

q

))⎫⎬⎭
2

=

{
q + (q − 1)

(−1

q

)}2

= 2q2 − 2q + 1 + (2q2 − 2q)

(−1

q

)
.

Summing up, one has |{X0 = 0}| = 2q2 − q + 2 + (2q2 − 2q)

(−1

q

)
.

Assume that X0 = 1 and X3 = 0. Then one has

|{X0 = 1, X3 = 0}|

=
∑

X1,X2∈Fq

(
1 +

(
2X1X2

q

))(
1 +

(−2X1X2

q

))(
1 +

(
2X2

q

))2

= q +
∑

X1,X2∈Fq
X2 �=0

(
1 +

(
2X1

q

))(
1 +

(−2X1

q

))(
1 +

(
2X2

q

))2
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= q +
∑

X1∈Fq

(
1 +

(
2X1

q

))(
1 +

(−2X1

q

)) ∑
X2∈Fq
X2 �=0

(
1 +

(
2X2

q

))2

= q +

{
q + (q − 1)

(−1

q

)}
× 2(q − 1) = 2q2 − q + (2q2 − 4q + 2)

(−1

q

)
.

This claims (2).
For (1), one has

|U c
1(Fq)| = |{t = 0}|+ |{Z2

0 + Z2
1 = 0}| − |{t = 0, Z2

0 + Z2
1 = 0}|.

The first term is |F (Fq)|. For the second term, if Z0 = 0, then Z1 = 0. So

the number of {[t : 0 : 0 : Z2, Z3] ∈ Cone(F )(Fq)} is p
(
3 +

(−1

q

))
+ 1. Here

we use the formula |{x ∈ Fq | x4 = 1}| = 3 +
(−1

q

)
. If Z0 = 1, then the

number of {[t : 1 : Z1 : Z2 : Z3] ∈ Cone(F )(Fq)} is q
(
1 +

(−1

q

)){
1 + (q −

1)
(
3 +

(−1

q

))}
. This gives us the first assertion (1).

The last claim (3) follows from the definition of the tangent cone. This
completes the proof. �

Corollary 3.3. The equality |Z(Fq)| = (q − 1)|F (Fq)|+ 2q + 2 holds.

Proof. Since |Z(Fq)| = |Cone∞(F )(Fq)|+ |U c
2(Fq)| − |U c

1(Fq)|, the claim fol-
lows from Propositions 3.1, 3.2. �

We next study a resolution of singularities of Z. As mentioned in Sec-
tion 1, this variety has singularities along with the two lines defined by

Li,i+1 : Y0 = Y1 = Y2 = Y3 = Xi = Xi+1 = 0, i = 0, 2

(note that we have changed the numbering of the subscripts of Y∗). Let
π : Z̃ −→ Z be the resolution of Z obtained by blowing up along Li,i+1, i =

0, 2. Clearly Z̃ is defined over Q and even it can be regarded as a smooth
Z[12 ]-scheme.

Proposition 3.4. The notation is same as above. Let L̃i,i+1 be the proper

transform of Li,i+1 for i = 1, 2. Then L̃i,i+1 is isomorphic to F as a Z[12 ]-
scheme and they never intersect each other.
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Proof. Note that L0,1 
 P1 with coordinates [X2 : X3]. By the proof of

Proposition 2.12-(2) in [7], L̃0,1 is given by

(Z2
0 + Z2

1 )X2 = (Z2
2 + Z2

3 )X3

(−Z2
2 + Z2

3 )X2 = (Z2
0 − Z2

1 )X3

in P1 × P3 with coordinates ([X2 : X3], [Z]). One can see easily that the
natural projection to P3 gives an isomorphism L̃0,1

∼−→ F . It is the same for

L̃2,3.
The last claim follows from that L0,1 ∩ L2,3 = ∅. �

Corollary 3.5. The notation is same as above. Then

|Z̃(Fq)| = (q + 1)|F (Fq)|.

Proof. Since

|Z̃(Fq)| = |Z(Fq)|+
∑
i=0,2

|L̃i,i+1(Fq)| −
∑
i=0,2

|Li,i+1(Fq)|,

the claim follows from Corollary 3.3 and Proposition 3.4. �

Remark 3.6. The Fermat quartic F gives a model over Q of the Sh-
ioda’s elliptic modular surface of level 4 (cf. p.71 of [7]). From this one
has H2,0(F,C) 
 S1

3(Γ
1(4)) 
 S1

3(Γ
1
0(16), χ−1).

We now compute the number of Fq-rational points of F . This seems to be a
well-known result for experts, but we give a proof here because we need to
take keeping the base field (that is Q) into account to our purpose.

Proposition 3.7. Let q be a prime power which is coprime to 2 and let
g =

∑
n≥1

an(g)q
n be the CM modular form g in Theorem 1.1. Then

|F (Fq)| = 9q + 7

(−1

q

)
q + 2

(
2

q

)
q + 2

(−2

q

)
q + aq(g).

Proof. We may assume q = p. Let C be the Fermat quartic defined by x40 +
x42 = x41 in P2 with coordinates [x0 : x1 : x2]. Consider a generically finite,
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rational map

ϕ : C × C −→ F ; ([x0 : x1 : x2], [y0 : y1 : y2]) �→ [x0y2 : x1y2 : x2y1 : x2y0].

By Corollary 2.6, p.126 of [20], one has the decomposition

H2
et(FQ,Q�) = Q�(−1)⊕9 ⊕Q�(−1)(χ−1)

⊕7(3.5)

⊕Q�(−1)(χ2)
⊕2 ⊕Q�(−1)(χ−2)

⊕2 ⊕ V�

where V� is a 2-dimensional �-adic geometric representation of GQ :=

Gal(Q/Q) with Hodge-Tate weights {2, 0} and χa : GQ −→ Q
×
� is the qua-

dratic character associated to the quadratic extension Q(
√
a)/Q for a =

−1, 2,−2. Suppose that V� is reducible then the semi-simple part becomes
V ss
� = Q�(2)ε1 ⊕Q�ε2 for some finite characters εi : GQ −→ Q

×
� , i = 1, 2

which are unramified outside 2. For any isomorphism ι : Q� −→ C as a field
and any prime p > 2, we have

|p2ι(ε1(p))| − |ι(ε2(p))| = p2 − 1 ≤ tr(Frobp|V�) ≤ 2p

by the Weil bound. But this contradicts to p > 2. Hence V� is irreducible.
By Table 8, p.454 of [27], C 
 X0(64) over Q and

J0(64) := Jac(X0(64))
Q∼ E2

32 × E64

where E32 : zy
2 = x3 − xz2 and E64 : zy

2 = x3 + xz2 are elliptic curves with
conductors 32 and 64 respectively. The curve E64 is the quadratic twist of
E32 by the quadratic field Q(

√−1)/Q. Then by looking pull-back of ϕ, the 2-
dimensional irreducible quotient ofH2

et(C × CQ,Q�) with Hodge-Tate weight
{2, 0} is a sub-quotient of ∧2H1

et(E32Q,Q�) 
 ∧2H1
et(E64Q,Q�). Note that

the isomorphism comes from the fact H1
et(E32Q,Q�) 
 H1

et(E64Q,Q�)(χ−1).
From this, one can see that V� is the �-adic realization of a CM motive of
rank two and it has to correspond to a CM elliptic newform h of weight 3. By
Lemma 3 of [28], the level of h is at most 32. Hence h is in S1

3(Γ
1
0(16), χ−1)

or S1
3(Γ

1
0(32), χ−1) by Stein’s table [30]. Compairing the Fourier coefficients

at p = 3, h should be our g since tr(Frob3|V�) = −6. Here we use the formula

tr(Frobp|V�) = |F (Fp)| − (p2 + 1)

−
{
9p+ 7

(−1

p

)
p+ 2

(
2

p

)
p+ 2

(−2

p

)
p

}
and |F (F3)| = 16. Hence one has V� 
 Vg,�. �
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Finally we study the etale cohomology of Z̃.

Proposition 3.8. For any i, H i
et(Z̃Q,Q�) is a semi-simple Q�[GQ]-module

and it is given as follows:

H i
et(Z̃Q,Q�) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Q� (i = 0)

Q�(−1)⊕H2
et(FQ,Q�) (i = 2)

Q�(−2)⊕H4
et(FQ,Q�) (i = 4)

Q�(−3) (i = 6)

0 (i = 1, 3, 5)

where

H2
et(FQ,Q�) = H4

et(FQ,Q�)(1)

= Q�(−1)⊕9 ⊕Q�(−1)(χ−1)
⊕7

⊕Q�(−1)(χ2)
⊕2 ⊕Q�(−1)(χ−2)

⊕2 ⊕ Vg,�

as a Q�[GQ]-module.

Proof. To prove this, it suffices to prove it only for i = 2. Let NS(Z̃)Q be the

Neron-Severi group generated by cycles defined over Q. Then NS(Z̃)Q ⊗Z Q
exhausts H1,1(Z̃,Q) by Proposition 2.14 of [7]. Let cl� : NS(Z̃)Q ⊗Z Q� −→
H2

et(Z̃Q,Q�) be the �-adic cycle map. Then by comparison theorem, Corol-

lary 3.5, and Proposition 3.7, one has H2
et(Z̃Q,Q�) = Im(cl�)⊕ Vg,� as a

Q�[GQ]-module, hence giving the claim. �

3.2. An algebraic description of Z◦

In previous section we have studied arithmetic of Z̃. To make a connec-
tion to Siegel modular forms on ΓZ more precisely, we have to investigate
an algebraic description of Z◦ = ΓZ\H2 and the difference between Z◦ and
Z = (Z◦)sa. We are starting from the following key Lemma. To explain this
we need more notation. Let A(2, 4) be the Siegel modular threefold asso-
ciated to Γ(2, 4) (see Section 1 of [7]). Then its Satake compactification
is isomorphic to P3 (Proposition 1.7 of [7]). Then the natural projection
π : Z −→ A(2, 4)sa 
 P3 induced by the inclusion ΓZ ⊂ Γ(2, 4) is given by
[X : Y ] �→ [X].
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We introduce the following 30 = 4× 6 + 6 lines in P3:

(3.6)

L
(±,±)
1 = {[±√−1X2 : ±

√−1X3 : X2 : X3] ∈ P3} Q(
√−1)
 P1

Q(
√−1)

L
(±,±)
2 = {[±√−1X1 : X1 : ±

√−1X3 : X3] ∈ P3} Q(
√−1)
 P1

Q(
√−1)

L
(±,±)
3 = {[±√−1X3 : ±

√−1X2 : X2 : X3] ∈ P3} Q(
√−1)
 P1

Q(
√−1)

L
(±,±)
4 = {[±X3 : ±X2 : X2 : X3] ∈ P3} Q
 P1

Q

L
(±,±)
5 = {[±X1 : X1 : ±X3 : X3] ∈ P3} Q
 P1

Q

L
(±,±)
6 = {[±X2 : ±X3 : X2 : X3] ∈ P3} Q
 P1

Q

li,j : Xi = Xj = 0 for 0 ≤ i < j ≤ 3 .

Lemma 3.9. The boundary ∂A(2, 4)sa = A(2, 4)sa \ A(2, 4) consists of the
above 30 lines.

Proof. This is already done at p.53-54, the proof of Proposition 1.7 of [7].
By the proof there, one can see that the boundary consists of the lines
which obtained by the intersections of all pair of ten quadratic equations
Qi(X0, X1, X2, X3) = 0, (0 ≤ i ≤ 9) in P3 (See Section 1 for Qi). �

We now determine the boundary Z \ Z◦. Let D±,±
i = π−1(L±,±

i )red for 1 ≤
i ≤ 6 where the superscript “red” means the reduced scheme structure and
Li,j = π−1(li,j)

red. For i = 1, 3, 4, 6, D±,±
i is isomorphic over Q(ζ8) to the

modular curve X(8) = Γ1(8)\H1 of genus 5. For k = 2, 5 and (i, j) = (0, 2),
(0, 3), (1, 2), (1, 3), each of D±,±

k and Li,j consists of two irreducible divisors
defined over Q(ζ8) which are isomorphic to P1 and intersect two points. The
lines L0,1 and L2,3 are nothing but those introduced in Section 1. Put

D =

6⋃
k=1

D±,±
k ∪

⋃
1≤i<j≤4

Li,j .

Proposition 3.10. The boundary Z \ Z◦ is given by D and it consists of
42 irreducible components. Further D can be regarded as a scheme over Z[12 ].

Proof. Recall that Z and A(2, 4)sa are both the Satake compactifications
and these are defined by the theta embeddings which are compatible with
natural projection ΓZ\H2 −→ A(2, 4) induced from the inclusion Γ ⊂ Γ(2, 4).
Therefore by definition of Satake compactification, the boundary should be
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given by π−1(∂A(2, 4)sa)red. Then by writing down all divisors explicitly,
one has the claims. �

Corollary 3.11. The variety Z◦ = Z \D is a smooth algebraic variety and
it is an algebraic description of Z◦(C) = ΓZ\H2. Further Z

◦ can be regarded
as a smooth, geometrically irreducible scheme over Z[12 ].

Proof. These are easy to follow from Proposition 3.10 and the defining equa-
tion of Z in Section 1. �

Remark 3.12. The variety Z is defined by the Zariski closure of the image
of the map from αZ : H2 −→ P7 by using the following theta functions:

θ(1,0,0,0)(τ), θ(1,1,0,0)(τ), θ(1,0,0,1)(τ), θ(1,1,1,1)(τ),

θ(0,0,0,0)(2τ), θ(0,1,0,0)(2τ), θ(1,0,0,0)(2τ), θ(1,1,0,0)(2τ),

(see section 4 for the definition of these theta constants θ). Then ΓZ is
defined by the subset of Γ(2, 4) consisting of an elements g such that g fixes
αZ . This means that for such g, there exists a non-zero constant cg such
that

θ∗(τ)|[g] = cgθ∗(τ), ∗ ∈ {(1, 0, 0, 0), (1, 1, 0, 0), (1, 0, 0, 1), (1, 1, 1, 1)}

and

θ∗(2τ)|[g] = cgθ∗(2τ), ∗ ∈ {(0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0)}

Using the transformation formula (cf. Lemma 4.3), one can find that ΓZ

is generated by Γ(4, 8) and

e1e4, e1e6, e1e
2
9, e28e3, e2e

2
10

in Γ(2, 4) where ei’s are defined in Section 4. Therefore, by Proposition 4.4,
a 2r-tuple product

∏2r
j=1 θmj

of even or odd theta constants belongs to

M2
r (ΓZ), if and only if∑

j

bjcj +
∑
j

cjdj ≡
∑
j

bjcj +
∑
j

cj

≡
∑
j

bj +
∑
j

ajdj ≡
∑
j

ajdj +
∑
j

dj

≡
∑
j

bjcj +
∑
j

ajcj − 1 ≡ 0 (mod 2)
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where mj = (aj , bj , cj , dj).

Finally we discuss another smooth compactification of Z◦ so that the bound-
ary consists of normal crossing divisors. It is straightforward that each irre-
ducible component of D necessarily intersects transversally another compo-
nent ofD. Further only three components pass at an intersection point. More
precisely, for such a point p0 ∈ D, the etale neighborhood of D at p0 is iso-
morphic to {x = y = 0}∪{y = z = 0}∪{z = x = 0} in A3= Spec(C[x, y, z]).
Furthermore, three components of D which are passing an intersection point
never be lying on the same plane. From this if we denote by W the resolution
of Z along the components of D, then one can see that the strict transform
D̃ of D forms a strictly normal crossing divisors of W . This should be called
a kind of Igusa compactification. We finish this subsection with studying the
cohomologies of W .

Proposition 3.13. H2(W,C)=H2(Z̃,C)⊕C⊕40 as a Hodge module (hence
C is of Hodge type (1, 1)) and in particular, H2,0(W,C) = H2,0(Z̃,C) 

H2,0(F,C) 
 S1

3(Γ
1(4)).

Proof. This follows from the result at p.443 of [15]. �

3.3. L-function of Z◦

In this subsection we study the �-adic cohomology of the second degree
of Z◦ and in particular, determine the L-function of H2

et(Z
◦
Q
,Q�)(−1) 


H4
et,c(Z

◦
Q
,Q�). The following fact will be used soon later. We denote by H∗

c

the Betti (singular) cohomology with compactly support.

Proposition 3.14. For any smooth variety Z ′ and an open immersion
Z◦ ↪→ Z ′, one has H5

c (Z
◦,Q) = H5

c (Z
′,Q) = 0.

Proof. First of all we prove that H5
c (Z

◦,Q) = 0. Since Z◦(C) 
 ΓZ\H2,
then it follows from Poincaré duality that H5

c (Z
◦(C),Q) 
 H1(ΓZ\H2,Q) =

ΓZ/[ΓZ ,ΓZ ]⊗Z Q = 0.
Put D := Z ′ \ Z◦. Then H5

c (D,Q) = 0 since the dimension of D as an
algebraic variety is at most 2. Then the claim follows from the long exact
sequence

· · · −→ H5
c (Z

◦,Q) −→ H5
c (Z

′,Q) −→ H5
c (D,Q)

with H5
c (Z

◦,Q) = H5
c (D,Q) = 0. �
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Corollary 3.15. For any smooth variety Z ′ over Q and an open immersion
Z◦ ↪→ Z ′ over Q, one has H5

et,c(Z
◦
Q
,Q�) = H5

et,c(Z
′
Q,Q�) = 0.

Proof. Since Z◦ and Z ′ are both smooth, by the comparison theorem be-
tween etale and singular cohomologies, one has the claim with Proposi-
tion 3.14. �

We now compute the cohomology of H4
et,c(Z

◦,Q�).

Theorem 3.16. The following description holds:

H2
et(Z

◦
Q
,Q�)(−1) 
 H4

et,c(Z
◦
Q
,Q�) = H4

et(Z̃Q,Q�)/Q�(−2)⊕2.

Proof. We first compute H4
et,c(Z

sm
Q,Q�). Recall that Z̃ \ Zsm = L̃0,1

∐
L̃2,3

and L̃i,i+1, i = 0, 1 is isomorphic to the Fermat quartic F over Q. Consider
the following exact sequence

H3
et,c((L̃0,1

∐
L̃2,3)Q,Q�) −→ H4

et,c(Z
sm

Q,Q�)

−→ H4
et,c(Z̃Q,Q�) = H4

et(Z̃Q,Q�)

−→ H4
et,c((L̃0,1

∐
L̃2,3)Q,Q�)

−→ H5
et,c(Z

sm
Q,Q�) = 0.

The vanishing of the last cohomology is due to Corollary 3.15. One can see
that

H3
et,c((L̃0,1

∐
L̃2,3)Q,Q�) 
 H3

et(FQ,Q�)
⊕2 = 0

andH4
et,c((L̃0,1

∐
L̃2,3)Q,Q�) 
 H4

et(FQ,Q�)
⊕2 = Q�(−2)⊕2. By Lemma 3.15,

one has

H4
et,c(Z

sm
Q,Q�) 
 H4

et(Z̃Q,Q�)
ss/Q�(−2)⊕2.

Put D′ = Zsm \ Z◦. Then D′ consists of curves by Proposition 3.10. The
claim follows from the exact sequence H3

et,c(D
′
Q
,Q�) −→ H4

et,c(Z
◦
Q,Q�) −→

H4
et,c(Z

sm
Q,Q�) −→ H4

et,c(D
′
Q
,Q�) with H i

et,c(D
′
Q
,Q�) = 0 for i > 2. �

Putting (3.5), Proposition 3.8, and Theorem 3.16 together, one has

Theorem 3.17. L(s,H2
et(Z

◦
Q
,Q�))=ζ(s− 1)8L(s− 1, χ−1)

7L(s− 1, χ2)
2×

L(s− 1, χ−2)
2L(s, g).
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3.4. Differential forms on Z◦

In this subsection, we shall discuss the relation of differential forms on Z◦

and some Siegel modular form of weight (3, 1). Throughout this subsection,
we freely use the terminology of [19]. Note that we are in position to apply
the results of [19] because W is a smooth compactification of Z◦ so that the
boundary is a normal crossing divisor.

Since ΓZ\H2 is an Eilenberg-MacLane space of ΓZ , we haveH
3(ΓZ ,C) =

H3(ΓZ\H2,C) = H3(Z◦,C). Put j : Z◦ ↪→ W . Then the parabolic cohomol-
ogy of ΓZ\H2 is defined by using Borel-Serre compactification and by The-
orem 5.6 of [19], one has

H3
! (Z

◦,C) = Im(H3
c (Z

◦,C) −→ H3(Z◦,C))

= Im(H3(W,C)
j∗−→ H3(Z◦,C)).

Since the LHS is independent of the choice of a smooth compactification of

Z◦, the identification H3
! (Z

◦,C) = Im(H3(Z̃,C)
j′∗−→ H3(Z◦,C)) holds

for the natural inclusion j′ : Z◦ ↪→ Z̃ and therefore H3
! (Z

◦,C) = 0 since

H3(Z̃,C) = 0. It is well-known (cf. Section 7 in [19]) that H3(Z◦,C) =
H3

! (Z
◦,C)⊕H3

Eis(Z
◦,C) = H3

Eis(Z
◦,C). Then via Eichler-Shimura embed-

ding and the Poincaré residue map, one has

M2
3 (ΓZ)

KE ES
↪→ H3(Z◦,C) = H3

Eis(Z
◦,C)

res[1]−→ H2(D̃[1],C)
P−→
⊕
i=0,2

H2(L̃i,i+1,C)

where the map P is the natural projection with respect to the Hodge decom-
position H2(D̃[1],C) = C⊕40 ⊕⊕i=0,2H

2(L̃i,i+1,C). Let us explain Eichler-
Shimura map as follows. By Corollaire (3.2.13)-(ii) of [5], one has a natural
isomorphism

(3.7) H0(W,Ω3(log ∂W ))
∼−→ F 3H3(Z◦,C) ⊂ H3(Z◦,C)

where F ∗ is the decreasing filtration on H3(Z◦,C). For F ∈ M2
3 (ΓZ)

KE, the
(logarithmic) differential 3-form

F

([
τ1 τ2
τ2 τ3

])
dτ1 ∧ dτ2 ∧ dτ3

extends uniquely to W and hence gives an element of H0(W,Ω3(log ∂W )).
Combining this with (3.7), one obtains ES(F ) ∈ H3(Z◦,C). The Poincaré
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residue map res[1] is injective since Ker(res[1]) = W3H
3(Z◦,C) =

H3
! (Z

◦,C) = 0 (see p.492, (8) of [19] ). By p.486, the last part of Sec-

tion 1 of [19], one has H2,0(L̃i,i+1,C) = S1
3(Γ

1(4)) and further S1
3(Γ

1(4))
∼−→

S1
3(Γ

1
0(16), χ−1) where the isomorphism is given by f(τ) �→ f(4τ). One can

see that the composite map of ES, res[1], and P injects into⊕
i=0,2

H2(L̃i,i+1,C).

On the other hand, the natural inclusion map ∂W ↪→ W induces

H2,0(W ) ↪→ H2,0(∂W ) = H2(L̃0,1,C)⊕H2(L̃2,3,C)

(note that the injectivity is not the case and it strongly depends on our
situation) and by Satz 6 of [32], one has a natural identification

(3.8) H2,0(W,C) = H2,0(Z◦,C) 
 M2
(3,1)(ΓZ).

To make what we carry out more precise, we need to mention the relation
between Satake compactification and the Siegel Φ-operator. Recall that for
a function F on H2, the Siegel Φ-operator is defined by

Φ(F )(τ1) := lim
t→∞F

([
τ1 0
0

√−1t

])
, τ1 ∈ H1.

The coordinates Y3, Y0, Y2, Y1, X0, X1, X2, X3 correspond to

θ(1,0,0,0)(τ), θ(1,1,0,0)(τ), θ(1,0,0,1)(τ), θ(1,1,1,1)(τ),

θ(0,0,0,0)(2τ), θ(0,1,0,0)(2τ), θ(1,0,0,0)(2τ), θ(1,1,0,0)(2τ), τ ∈ H2

respectively as we explained already at Remark 3.12.

Put s =

[
0 1
1 0

]
and s′ =

[
0 0
2 0

]
. Define g0, g2 ∈ Sp2(Q) by

g0 =

[
s 02
02 s

]
, g2 =

[
s 02
s′ s

]
.(3.9)

Since L̃i,i+1 is a part of the boundary of the Satake compactification Z, all
of theta functions corresponding to the coordinates Y0, Y1, Y2, Y3, Xi, Xi+1

should be zero under the Siegel Φ-operator. However it is easily checked that
Xi and Xi+1 never be zero under Φ simultaneously. This means that the
usual Siegel Φ-operator does not directly relate to L̃i,i+1. This is compatible
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with the fact that Φ(FZ) = 0. So we have to modify this. Fortunately one
can easily see that

Φ(Y0|[gi]) = Φ(Y1|[gi]) = Φ(Y2|[gi]) = Φ(Y3|[gi])
= Φ(Xi|[gi]) = Φ(Xi+1|[gi]) = 0 for i = 0, 2

(see p.470 of [25] and use Lemma 4.3) and by definition of Satake compact-
ification, the pullback g∗i (L̃i,i+1) is also a part of the boundary of Z. This is
compatibles with the fact that

Φ(FZ |[g0])(τ1) = Φ(FZ |[g0])(τ1) = g
(τ1
4

)
= θ2(0,0)(τ1)θ

2
(0,1)(τ1)θ

2
(1,0)(τ1)

where g ∈ S3(Γ
1
0(16), χ−1) is our elliptic newform. The pullback induces the

isomorphism H2(g∗i (L̃i,i+1),C) 
 H2(L̃i,i+1,C). This gives a natural injec-
tion

H2,0(Z◦,C) 
 H2,0(W,C) ↪→−→
⊕
i=0,2

H2(L̃i,i+1,C)(3.10)



⊕
i=0,2

H2(g∗i (L̃i,i+1),C)

Summing up, one has the following commutative diagram:

H3(ΓZ\H2,C) = H3
Eis(ΓZ\H2,C)

P◦res[1]−−−−−→ ⊕
i=0,2H

2(g∗i (L̃i,i+1),C)
(3.10)←↩←−−−− H2,0(Z◦,C)

ES
�⏐⏐ ↪→

�⏐⏐ (3.8)

�⏐⏐

M2
3 (ΓZ)

KE Φ1−−−−→ S1
3(Γ

1(4))⊕ S1
3(Γ

1(4))
Φ2←−−−− M2

(3,1)(ΓZ).

The bottom maps are defined by Φi(F ) = (Φ(F |[g0]),Φ(F |[g2])), i = 1, 2
where Φ is the Siegel operator (see [1] for the Siegel Φ-operator in case
vector valued Siegel modular forms). Summing up, we have shown the fol-
lowing:

Proposition 3.18.

dimCM
2
3 (ΓZ)

KE = dimCM
2
(3,1)(ΓZ) = dimCH

2,0(Z◦,C) = 1.

Recall our 6-tuple FZ of theta constants. It will be proved at next section
that FZ is an element of M2

3 (ΓZ)
KE, hence giving a generator. Then by

above commutative diagram, it is quite natural to find out the generator EZ

of M2
(3,1)(ΓZ) so that Φ1(FZ) = Φ2(EZ). This study will be a main topic of

next section.
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4. Siegel modular forms on Z◦ = ΓZ\H2

Let A be the ring of adeles of Q and Ẑ be the profinite completion of Z. For
a commutative ring R, let

GSpn(R) =

{
g ∈ GL2n(R)

∣∣∣∣∣ g
[
0n −1n
1n 0n

]
tg = ν(g)

[
0n −1n
1n 0n

]

for some ν(g) ∈ R×
}

where ν is the similitude character given by g �→ ν(g). Let Spn(R) = Ker(ν).
For ti ∈ R×, let diag(t1, . . . , tn) denote the diagonal matrix of size n.

Suppose that η is a Dirichlet character η defined modulo N . We obtain
from η the automorphic character ⊗pηp on A× by the rule ηp(p) = η(p)−1

for all p � Nvia the class field theory and denote this character by the same
symbol η. For a congruence subgroup Γ of Spn(Z), let Γp denote the com-
pletion of Γ at a nonarchimedean place p, and ΓA =

∏
p<∞ Γp. Denote by

Γn(N) (resp. Γn
0 (N)) the subgroup of Spn(Z) consisting of the elements

g =

[
Ag Bg

Cg Dg

]
so that g ≡ 12n mod N (resp. Cg ≡ 0n mod N). For a char-

acter ξ of Γ/Γn(N), define ξp on Γp via ξp(up) = ξ−1(u) by using an element
u ∈ Γ such that u ≡ up (mod NM2n(Zp)) and u ≡ 1 (mod NM2n(Zv)) for
v �= p. Define

An(Zp) = {an(t) :=
[
In 0n
0n tIn

]
| t ∈ Z×

p },(4.1)

Ln(Zp) = {ln(t1, . . . , tn) := diag(t1, . . . , tn, t
−1
1 , . . . , t−1

n ) | ti ∈ Z×
p }.(4.2)

We denote by Γ̃p the compact subgroup of GSpn(Qp) generated by Γp and

An(Zp), and define Γ̃A =
∏

p<∞ Γ̃p. Let (ρ, Vρ) be an algebraic irreducible
representation of GLn(C). Let Hn be the Siegel upper half space of degree

n. Let an element γ =

[
A B
C D

]
∈ GSpn(R) act on τ ∈ Hn by γτ := (Aτ +

B)(Cτ +D)−1, and F |[γ]ρ(τ) := ρ−1(J(γ, τ))F (γτ) for a Vρ-valued function
F onHn, where J(γ, τ) = Cτ +D. For a congruence subgroup Γ with a finite
character ξ on Γ, we denote by Mn

ρ (Γ, ξ) the space of Vρ-valued holomorphic
functions F satisfying the condition:

F |[γ]ρ = ξ(γ)F, γ ∈ Γ
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and if n = 1, we further impose the condition:

lim
τ→√−1∞

F (γτ) < ∞ for any γ ∈ Sp1(Q) = SL2(Q).

We sometimes drop ξ when ξ is trivial and n when n is clear from the
context. For a pair of positive integers (k1, k2) so that k1 ≥ k2, we define the
algebraic representation ρk1,k2

of GL2 by Vk1,k2
= detk2St2 ⊗ Symk1−k2St2

where St2 is the standard representation of dimension 2. We write Mn
k (Γ, ξ)

(resp. M2
(k1,k2)

(Γ, ξ)), if ρ = detk (resp. n = 2 and ρ = ρk1,k2
). By the strong

approximation theorem for Spn, one can write any element of Spn(A) as
g = γg∞u with γ ∈ Spn(Q), g∞ ∈ Spn(R), u ∈ ΓA. Using this expression, one
obtains from F ∈ Mn

ρ (Γ, ξ) the automorphic form F � on Spn(A) by

F �(g) = F �(γg∞u) = F �(g∞u) = F (g∞in)ρ(J(g∞, in))
∏
p

ξp(up),

where in =
√−1In ∈ Hn. We call F � the standard extension of F . Fur-

ther, one can express any element of GSpn(A) as g = zγgan(t) with γ ∈
GSpn(Q), z ∈ R×

+, g ∈ Spn(A) and t ∈ Ẑ×. Let us denote by (c1, . . . , cn) the
highest weight of ρ with c1 ≥ . . . ,≥ cn, and put

c(ρ) =

(
n∑

i=1

ci

)
− n(n+ 1)

2
.

We extend F � to the function F̃ on GSpn(A) by

F̃ (g) = zc(ρ)F �(g′),(4.3)

according to the cohomological interpretation of Siegel modular forms and
the geometric Hecke operators (cf. [9]). We also call F̃ the standard extension
of F or that of F �. The central character wF̃ = ⊗pwp of F̃ has weight c(ρ)
and determined by the values wp(t) = ξp(l(t, . . . , t)) for t ∈ Z×

p at all bad
places p. We define

Γn
d (N) = Γd(N) := {(mij) ∈ Spn(Z) | mij ≡ 0 (mod N), if i �= j}

and decompose

Mn
ρ (Γ(N)) =

⊕
δ

Mn
ρ (Γd(N), δ)
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where δ = (δ1, . . . , δn) sending l(t1, . . . , tn) to
∏

i δ(ti) runs all characters
over Γn

d (N)/Γn(N) 
 ((Z/NZ)×)n. Let p be a prime such that p � N . Let
Δp = {ln(pt1 , . . . , ptn)an(pt) | t, ti ∈ Z}. For h ∈ Δp, decompose Γ(N)hΓ(N)
= �jΓ(N)hj . Then, each hj is congruent to h modulo N . Following Evdoki-
mov [6], we define a classical Hecke operator

T∞(h)F :=
∑
j

F |[hj ]ρ

for F ∈ Mρ(Γd(N), δ). Let ev denote the usual embedding GSpn(Q) →
GSpn(Qv). Then, it holds that

GSpn(Zp)ep(h)GSpn(Zp) = �jep(hj)GSpn(Zp).

We define the local Hecke operator Tp(h)F̃ (g) =
∑

j F̃ (gep(hj)). If F̃ belongs

to an unramified irreducible representation of GSpn(Qp), then F̃ is an eigen
function for Tp(h). These T∞(h), Tp(h) are endomorphisms of Mρ(Γd(N), δ).

Proposition 4.1. Let F ∈ Mn
ρ (Γd(N), δ). The standard extension F̃ gen-

erates an unramified irreducible representation of GSpn(Qp) if and only if
F is an eigenform for T∞(h) for any h = ln(p

t1 , . . . , ptn)an(p
t) ∈ Δp with

p � N . Further it holds that

λ∞
p = λpδ

(
ln(p

t1 , . . . , ptn)
)
,

where λ∞
p (resp. λp) is the eigenvalue of T∞(h) (resp.Tp(h)). Here we iden-

tify ln(p
t1 , . . . , ptn) with an element of Γd(N)/Γ(N).

Proof. Using the relation (4.3), and the left GSpn(Q)-invariance property of
F̃ , we have

T∞(h)F (z) =
∑
j

F |[hj ]ρ(z)

=
∑
j

F̃ (e∞(hj)g∞)ρ(g∞, in)

=
∑
j

F̃

(
g∞

∏
v<∞

ev(h
−1
j )

)
ρ(g∞, in),
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where z = g∞in. Since F̃ is right Γ̃(N)v-invariant for all v < ∞,

T∞(h)F (z) =
∑
j

F̃

⎛⎝g∞ep(h
−1
j )
∏
v|N

ev(h
−1
j )

⎞⎠ ρ(g∞, in)

= δ(ln(p
t1 , . . . , ptn))

∑
j

F̃
(
g∞ep(h

−1
j )
)
ρ(g∞, in)

= λpδ
(
ln(p

t1 , . . . , ptn)
)
F̃ (g∞)ρ(g∞, in)

= λpδ
(
ln(p

t1 , . . . , ptn)
)
F (z).

Now the assertion follows immediately. �
Define Tp(p

n) by the sum of all double cosets GSpn(Zp)hGSpn(Zp) such
that ν(h) = pn (Note that all h can be taken from Δp). For an unramified
irreducible representation of Πp of GSpn(Qp), let λ(p

n) be the eigenvalue of
a right GSpn(Zp)-fixed vector f ∈ Πp. Then, λ(p

n) is independent from the
choice of f ∈ Πp and the denominator polynomial Qn(p

−s) of the Dirichlet

series

∞∑
n=0

λ(pn)p−ns is of degree 2n. We call Qn(p
−s) the spinor L-function

of Πp and denote by L(s,Πp; spin).
For the case of n = 2, following [1] and [6], we define the L-function of

F ∈ Mk1,k2
(Γ(N), δ) such that T∞(a2(p

i))F = λ∞(a2(p
i))F for i = 1, 2 by(

1− λ∞(a2(p))p
−s +

(
λ∞(a2(p))

2 − λ∞(a2(p
2))− δ−1(l2(p, p))p

μρ−1
)
p−2s

− δ−1(l2(p, p))λ∞(a2(p))p
μρ−3s + δ−1(l2(p, p))

2p2μρ−4s
)−1

with μρ = k1 + k2 − 3. We denote this L-function by L(s, F ; AE)p. By using
Proposition 4.1, one finds

L(s, F ; AE)p = L(s, π∨
p ; spin)(4.4)

where π∨
p = πp ⊗ ω−1

πp
indicates the contragradient of the unramified irre-

ducible representation πp generated by F̃ . Similarly, for an elliptic modular
form f which is eigenform at p, L(s, f)p of the classical L-function of f

coincides with L(s, π∨
f̃ ,p

) of π
f̃
generated by f̃ .

We fix a standard additive character ψ = ⊗vψv on Q\A by ψ∞(z) =
exp(2π

√−1z) for z ∈ R and ψp(z) = exp(−2π
√−1Fr(z)), where Fr(z) indi-

cates the fractional part of z ∈ Qp. For a ∈ Q, define ψa by ψa(z) = ψ(az).
LetS2(R) = {m = tm ∈ M2(R)} for an algebra R. For an automorphic form
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F on Sp2(A), the Fourier coefficient FT of F associated to T ∈ S2(Q) is de-
fined by

FT (g) = vol(S2(Q)\S2(A))−1

∫
S2(Q)\S2(A)

ψ(tr(sT ))−1F

([
12 s
02 12

]
g

)
ds.

A) Suppose rank(T ) = 2. Let GOT = {g ∈ GL2 | tgTg = ν(g)T} and OT

the kernel of the similtude character ν. Let GSOT (Qv) denote the ker-
nel of det−1 ·ν and let SOT (Qv) = GSOT (Qv) ∩OT (Qv). Then, GSOT (Qv),
SOT (Qv) are commutative. For an automorphic quasi-character ξ on SOT (A),
the Bessel function F ξ

T is defined by

F ξ
T (g) = vol(SOT (Q)\SOT (A))−1

×
∫
SOT (Q)\SOT (A)

ξ(k)−1FT

([
k 02
02

tk−1

]
g

)
dk.

Since SOT (Q)\SOT (A) is compact, this integral converges.

B)Suppose rank(T )=1. Then GSOT (Q) is isomorphic to the Borel parabolic
subgroup B(Q) of GL2(Q), and SOT (Q) is isomorphic to the unipotent
radicals of B(Q). For the additive character ψa on Q\A, the Bessel function
Fψa

T is defined by

Fψa

T (g) = vol(Q\A)−1

∫
Q\A

ψa(b)
−1FT

([
nb 02
02

tn−1
b

]
g

)
db,

where nb indicates the element of GL2(A) correponding to

[
1 b

1

]
via the

above isomorphism. Therefore, from the Fourier expansion of F , we obtain
a closer expansion:

(4.5) F = F0 +
∑

T :rank(T )=2

∑
ξ

F ξ
T +

∑
T :rank(T )=1

∑
a∈Q

Fψa

T .

Remark 4.2.

i) All of Fψ0

T and F0 vanish, if and only if F is a cusp form.

ii) Let Tα =

[
0 0
0 α

]
with α ∈ Q. For g ∈ GL2(A), E

ψ0

Tα
(1, g) coincides with

the α-th Fourier coefficient of the elliptic modular form Φ(E), and
therefore Φ(E)(g) =

∑
αE

ψ0

Tα
(1, g), where (1, g) indicates the image of

(1, g) by the embedding (4.6).
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iii) F ξ
T and Fψa

T are decomposable: F ξ
T = ⊗vF

ξ
T,v, F

ψa

T = ⊗vF
ψa

T,v.

Let us recall some results of Sally and Tadić [24] on parabolic induced
representations of GSp2 over nonarchimedean local field. Let Q be the Klin-
gen parabolic subgroup with Levi decomposition Q = NQMQ, and B be the
Borel one with B = NBMB. We make the following identifications GL1 ×
GL2 (resp. GL1 ×GL1 ×GL1) and MQ (resp. MB):

(
t,

[
a b
c d

])
−→

⎡⎢⎢⎢⎣
t 0 0 0
0 a 0 b

0 0
ad− bc

t
0

0 c 0 d

⎤⎥⎥⎥⎦(4.6)

∈ MQ ⊂ Q =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 ∗ ∗ ∗

⎤⎥⎥⎦ ∈ GSp2

⎫⎪⎪⎬⎪⎪⎭
(resp.

(t, a, d) −→

⎡⎢⎢⎣
t 0 0 0
0 a 0 0

0 0 d
t 0

0 0 0 d
a

⎤⎥⎥⎦ ∈ MB ⊂ B =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 ∗ ∗

⎤⎥⎥⎦ ∈ GSp2

⎫⎪⎪⎬⎪⎪⎭).

Let F be a local field. From a pair of quasi-character ξ of F× and irreducible
admissible representation π of GL2(F) (resp. a triple of quasi-characters
ξ1, ξ2, ξ3 of F×), we obtain a representation ξ ⊗ π sending MQ � (t, g) →
ξ(t)π(g) (resp. ξ1 ⊗ ξ2 ⊗ ξ3 sending MB � (t, a, d) → ξ1(t)ξ2(a)ξ3(d)), and
extend it to Q = NQMQ (resp. B = NBMB) trivially. We call the parabolic
induced representation to GSp2(F) from this representation the local Klin-
gen (resp. Borel) parabolic induction associated to ξ, π (resp. ξ1, ξ2,
ξ3), and denote it by ξ � π (resp. ξ1 × ξ2 � ξ3). If χ is a quadratic character

of F× and π is supercuspidal, then | ∗ |pχ× χ� | ∗ |−1/2
p ξ has four irreducible

constituents, and | ∗ |pχ� | ∗ |−1/2
p π has two irreducible constituents, generic

δ(| ∗ |pχ, | ∗ |−1/2
p π) and non-generic L(| ∗ |pχ, | ∗ |−1/2

p π).

4.1. Theta constants

Let m = (m1, . . . ,m2n) ∈ Rn, and write m = (m′,m′′) with m′,m′′ ∈ Rn.
The so-called Igusa theta constant for m (m is called a characteristic) is
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defined by

θm(τ) =
∑
a∈Zn

exp

(
π
√−1

(
τ

[
a+

m′

2

]
+

(
a+

m′

2

)
tm′′

))
,

where τ ∈ Hn and τ [x] = xτ tx. Igusa theta constants are Siegel modular
forms of weight 1

2 for some congruence subgroup. In the case that all of
entries of m are integers, θm(τ) is determined by the values of mi modulo
2, and θm (resp. m) is called an even or odd theta constant (resp. even or
odd characteristic), according to m′tm′′ ≡ ±1 (mod 2). Although odd theta
constant itself is vanishing (cf. p. 226 of [10]), ‘local’ odd theta constant
is not vanishing in the sense as explained below. Let V2r = (V2r, Q2r) be
the 2r-dimensional anisotropic quadratic space over Q with Q2r(x, y) =

txy.
Obviously,

V2r 
 V2 ⊥ · · · ⊥ V2︸ ︷︷ ︸
r

. (isometric)

We embed Spn ×OV2r
into Sp2nr(Qv) in the usual way, and obtain the Weil

representation ωn,2r
v (g, h) of (g, h) ∈ Spn ×OV2r

on S(V2r(Qv)
n) associated

to ψv such that

ωn,2r
v (1, h)ϕ(x) = ϕ(h−1x),(4.7)

ωn,2r
v

([
a 0
0 ta−1

]
, 1

)
ϕ(x) = χ−1(det a)

r| det a|rvϕ(xa),(4.8)

ωn,2r
v

([
In b
0 In

]
, 1

)
ϕ(x) = ψv

(
tr(bQ2r(x, x))

2

)
ϕ(x),(4.9)

Then, we can regard each 2r-tuple product θ(τ) of theta constants θm1
(τ),

. . . , θm2r
(τ) as the classical form of the automorphic form

ϑm1,...,m2r
(g) =

∑
x∈V2r(Q)n

(∏
v

ωn,2r
v (gv)ϕv(x)

)
(4.10)

on Spn(A) for ϕ∞(x1, . . . , xn) = exp
(−2π(tx1x1 + · · ·+ nxnxn)

)
and some

ϕp belonging to S(V2r(Qp)
n), the space of Schwartz-Bruhat functions on

V2r(Qp)
n. In the remainder of this section, we will consider only the case

that all entries of mi are integers. In this case, at (4.10),

ϕp(x1, . . . , xn) =

n∏
i=1

Ch (xi;V2r(Zp))
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for all odd prime p, where Ch indicates the characteristic function.

Lemma 4.3 (Igusa’s theta transformation formula). For an element

M =

[
A B
C D

]
∈ Sp2n(Z), and a characteristic m ∈ Q2n, put M ·m =

mM−1 + 1
2(diag(C

tD), diag(AtB)), and

φm(M) = −1
2

(
m′tDBtm′ − 2m′tBCtm′′

+m′′tCAtm′′ − (m′tD −m′′tC)tdiag(AtB)
)
.

Then, for τ ∈ H2n, it holds that

θM ·m(Mτ) = κ(M) exp(2πiφm(M))J(M, τ)
1

2 θm(τ),

where κ(M) is a root of unity depending on M and the choice of the square
root of J(M, τ). In case of γ ∈ Γ(2), it holds that κ(M)2 = (−1)trace(D−1)/2.

By using Lemma 4.3, from a 2r-tuple product θm(τ), one obtains a con-
gruence character on Γ(2) by θm|γ/θm which is trivial on Γ(4, 8) (cf. section
5,6 of [8]). We will denote this character by χm. In the case that all entries of
m are integral, Lemma 4.3 is able to be considered as the Spn(Z2) transfor-
mation formula for ϑm1,...,m2r

, and is determined by the 2-adic component of
the Schwartz-Bruhat function. We will observe this component in the case
of r = 1, n = 2, and denote it by ϕm1,m2

. The finite group Γ(2)/Γ(4, 8) for
Γ(2) ⊂ Sp2(Z) is abelian, and generated by the following ten elements (cf.
[8]):

e1 =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
0 0 1 −2
0 0 0 1

⎤⎥⎥⎦ , e3 =

⎡⎢⎢⎣
1 0 0 2
0 1 2 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ ,

e2 =
te1, e4 =

te3, e5 = −I4,

e6 =

⎡⎢⎢⎣
−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤⎥⎥⎦ , e7 =

⎡⎢⎢⎣
1 0 2 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , e8 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ ,

e9 =
te7, e10 =

te8.
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In section 6 of [8], using Igusa’s transformation formula, van Geemen and
van Straten obtained the table (see TABLE 1 below) of the values χm1,m2

(ei)
in case that each mj = (aj , bj , cj , dj) is even and n = 2.

i 1 2 3 4 5

χm1,m2
(ei) (−1)

∑
bjcj (−1)

∑
ajdj (−1)

∑
ajbj (−1)

∑
cjdj 1

i 6 7 8 9 10

χm1,m2
(ei) (−1)1+

∑
ajcj i

∑
aj i

∑
bj i

∑
cj i

∑
dj

Table 1.

Proposition 4.4. The above TABLE 1 is still valid for χm1,m2
even if m1

or m2 is odd.

Proof. In case that mi for i = 1, 2 is odd (resp. even), take its extension
ni = ((m′

i, 1), (m
′′
i , 1)) ∈ R6 (resp. ni = ((m′

i, 0), (m
′′
i , 0)) ∈ R6). Then, this

ni is even, and therefore Igusa’s transformation formula works for θni
. We

can write

ϕn1,n2
(x1, x2, x3) = φ(x1, x2)φ

′(x3)

by some φ ∈ S(V2(Q2)
2) and φ′ ∈ S(V2(Q2)). It holds that

ϕn1,n2
(x1, x2, x3)ω

2,2
2 (g, 1)φ(x1, x2)(4.11)

= φ(x1, x2)ω
3,2
2 (i32(g), 1)ϕn1,n2

(x1, x2, x3)

for g ∈ Sp2(Qv), where i32 indicates the embedding of Sp(2) into Sp(3):

g =

[
a b
c d

]
−→

⎡⎢⎢⎣
a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎤⎥⎥⎦ .

It follows from (4.11) that

J(γ, τ)θn1
θn2

([
τ 0
0

√−1

])
ω2,2
2 (γ, 1)ϕm1,m2

= θn1
θn2

([
γτ 0
0

√−1

])
ϕm1,m2
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for γ ∈ Γ(2). Using this relation, and applying Lemma 4.3 to θn1
θn2

, one
can verify the assertion. �

4.2. Siegel threefold Z and a six tuple product of theta constants.

As mentioned in Section 1, van Geemen and Nygaard in [7] studied the
Siegel threefold variety A(2, 4, 8) defined by the Igusa group Γ(2, 4, 8) using
a theta embedding to P13 via the 10 even theta constants and 4 ones twisted.
Then, the set of six tuple products of distinct even theta constants contains
210 Siegel modular forms of weight 3 for the Igusa group

Γ(4, 8) =

{[
A B
C D

]
∈ Γ(4)(⊂ Sp2(Z)) | diag(B) ≡ diag(C) ≡ 0 (mod 8)

}
.

Under the actions of Sp2(Z), this set breaks into three Sp2(Z)-orbits O1,
O2, O3. In [7], they showed that the standard extension of each form in
O1 is a Hecke eigen cusp form outside 2, and its spinor L-function coin-
cides with L(s, π1 ⊗ χ−1)L(s− 1, χ−1)L(s− 2, χ−1), outside 2, where π1 is
the unique irreducible automorphic cuspidal representation of GL2(A) gen-
erated by the unique newform of S1

4(Γ
1
0(8)). It is possible to show that O1

is contained in the χ−1-twist of a constituent of the global Saito-Kurokawa
packet associated to π1 (cf. [17]). In [17], it is also showed that O2 is con-
tained a weak endoscopic lift of the pair π(μ) and π(μ3), where μ is the
größen-character over Q(

√−1)×A such that L(s, μ) = L(s, E32) for the ellip-
tic curve E32 : y

2 = x3 − x, and π(μi) indicates the irreducible automorphic
cuspidal representation associated to μi (c.f. section 12 of [12]). Now, the
last orbit O3 composed of 15 forms is generated by the following six tuple
product of distinct theta constants:

(4.12) FZ(τ) := θ(0,0,0,0)θ(0,0,0,1)θ(0,0,1,0)θ(0,0,1,1)θ(0,1,1,0)θ(0,1,0,0)(τ).

Applying the Siegel Φ-operator after twisting by g0 on FZ (see (3.9) for the
definition of g0), we obtain a nontrivial elliptic modular form of weight 3 as
follows. With τ1 ∈ H1,

Φ(FZ |[g0])(τ1) = lim
t→∞FZ

([√−1t 0
0 τ1

])
,

= θ2(0,0)θ
2
(0,1)θ

2
(1,0)(τ1).

Thus, FZ is not a cusp form. By using Igusa’s transformation formula, one
can find that Φ(FZ |[g0])(4τ1) belongs to M1

3 (Γ
1
0(16), χ−1), and that any
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SL2(Z)-translation of θ2(0,0)θ
2
(0,1)θ

2
(1,0) does not have a constant term. Thus

Φ(FZ |[g0])(4τ1) ∈ S1
3(Γ

1
0(16), χ−1).

This gives Theorem 1.2-(ii) with Proposition 3.18.
On the one hand, the central character of π(μ2) is χ−1| ∗ |3. The conduc-

tor of π(μ2) is calculated as 16, since the conductor of μ2 is 4 and the determi-
nant of Q(

√−1) over Q is 4. On the other hand, according to William Stein’s
table, S1

3(Γ
1
0(16), χ−1) is of dimension one. Therefore, S1

3(Γ
1
0(16), χ−1) is gen-

erated by the new form fnew
μ2 of π(μ2), and Φ(FZ |[g0])(4τ1) is a constant

multiple of fnew
μ2 . However, since all elements F ′

Z of the orbit O3 except FZ

is a multiple of θ(1,1,1,1) or θ(1,0,0,1), it follows that

(4.13) Φ(F ′
Z |[g0]) = 0

from the property Φ(θ(∗,1,∗,∗)|[g0]) = 0. We will show that F̃Z is a Hecke
eigenform outside 2 and determine L(s, FZ ; AE), using the following propo-
sition. This proposition is a generalization of the so-called Zharkovskaya
relation.

Proposition 4.5. Let Γ ⊃ Γ2(N) be a congruence subgroup such that Γv

contains all l2(t, t
′) for all t, t′ ∈ Z×

v at each v | N (see (4.2) for the defini-
tion of l2). Let χ be a character on Γ which is trivial on Γ(N), and ξ1, ξ2
be the (unitary) automorphic characters determined by ξ1,v(t) = χv(l2(t, 1)),
ξ2,v(t) = χv(l2(1, t)) for all v | N . Let {πi} be the set of irreducible automor-
phic representations of GL2(A) which have vectors in M1

k (Γ
1
0(N

2), ξ−1ωE).
Suppose that E ∈ M2

k (Γ, χ) has a nontrivial Φ(E). Then,

(4.14) Φ(E)(Nτ) ∈ M1
k (Γ

1
0(N

2), ξ2).

Further, the followings are valid.
1) If Ẽ belongs to an unramified irreducible representation Πp of GSp2(Qp),
then Πp is a constituent of | ∗ |k−2

p ξ1,p � πi,p for some i, and

L(s,Πp; spin) = L(s− k + 2, πi,p ⊗ ξ1)L(s, πi,p).

2) If Φ̃(E) belongs to πi,p for some i, then Πp is a constituent of | ∗ |k−2
p ξ1,p �

πi,p
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Proof. Since Φ(E) �= 0 and E ∈ M2
k (Γ, χ), we may consider that Πp has a

nontrivial generalized Whittaker model Fψ0

T1
such that

Fψ0

T1
((t, g)) = |t|kpξ1,p(t)Fψ0

T1
((1, g))

for t ∈ Q×
p , g ∈ SL2(Qp). From this and that Φ(E) ∈ M1

k (Γ
1(N)), (4.14) fol-

lows immediately. 1) The Siegel Φ-operator gives a linear mapping

Πp|MQ
→ | ∗ |k−2

p ξ1 ⊗
∑
i

πi,p.

Therefore, HomQ(Πp|Q, | ∗ |k−2
p ξ1,p ⊗ πi,p) �= 0 for some i. By the Frobenius

reciprocity 2.28 of [4], HomGSp2
(Πp, | ∗ |k−2

p ξ1,p � πi,p) �= 0. Thus, irreducible

Πp is a constituent of | ∗ |k−2
p ξ1,p � πi,p, and the L-function of Πp is as above.

2) Similar to 1). �

Remark 4.6. When E is of weight (k + l, k) with k ≥ 2 or k = 1, l = 2
such that Φ(E) �= 0, an argument of a theta correspondence shows that
Φ(E) ∈ Mk+l. In this case, the analogous relation holds.

Since π(μ2)p for odd p is an unramified principal series representation, we
may write

(4.15) π(μ2)p = π(| ∗ |pξp, | ∗ |pξ−1
p χ−1,p)

by a unitary unramified quasi-character ξp of Q×
p in the sense of [12]. Since

the square of μ2 does not factor through Q×
2 , π(μ

2)2 is supercuspidal.

Theorem 4.7. The standard extension F̃Z of FZ in (4.12) belongs to the
irreducible automorphic representation Π = ⊗vΠv with

Πv =

⎧⎪⎨⎪⎩
holomorphic discrete series of minimal K-type (3, 3) v = ∞,

L(| ∗ |pχ−1,p, π(μ
2)2) v = 2,

L(| ∗ |pχ−1,p, χ−1,pξ
−2
p � | ∗ |pξp) otherwise.

See [22] for the meaning of non-supercuspidal irreducible admissible repre-
sentations appearing above. In particular,

(4.16) L(s,Π; spin) = L(s, μ2)L(s− 1, μ2).
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Proof. From Proposition 3.18, it follows that F̃Z is a Hecke eigen form out-
side 2. Since FZ |[e6] = −FZ , it follows from Proposition 4.5 that

F̃Z ∈ | ∗ |pχ−1 � π(μ2)p.

Let Π be the representation generated by F̃Z . Consulting the Table A.8 of
[22] on spinor L-functions of non-supercuspidal representations, noting that
Πp is unramified, one can determine Πp for odd p. Consulting the Table
A.4 of loc.cit. on the semi-simplifications of Jacquet modules with respect

to NQ, and noting the fact that Φ̃(FZ) ∈ π(μ2), one can determine Π2, and
find L(s,Π2; spin) = 1. Finally, we will show the irreducibility of Π. It is
easy to show that any f ∈ Π has a nontrivial Φ(f). Therefore, the mapping
Π � f → fψ0

T1
is injective. Since fψ0

T1
= ⊗vf

ψ0

T1,v
, and fψ0

T1,v
∈ Πv, we have now

an injection Π → ⊗vΠv. Since each Πv is irreducible, ⊗vΠv is irreducible,
and so is Π. This completes the proof. �

Corollary 4.8. The standard extension F̃Z is a Hecke eigen form with
respect to the classical Hecke operators T∞(h) for all h ∈ Δp with p �= 2.
Further, M2

3 (ΓZ)
KE = CFZ is closed with respect to these operators.

Proof. Since an irreducible unramified representation πp of GSp2(Qp) has

the unique GSp2(Zp)-fixed vector up to multiples, F̃Z ∈ Πp is a Hecke eigen
form with respect to local Hecke operator Tp(h). The assertions follow from
Proposition 4.1 and the one-dimensionality of M2

3 (ΓZ)
KE showed in Propo-

sition 3.18. �

Remark 4.9. Let Γ ⊂ Spn(Z) and χ be a character on Γ. As pointed in
Lemma 3.1. of [25], in general T∞(h) does not preserve Mρ(Γ, χ) even if
dimCMρ(Γ, χ) = 1. Indeed, for example T∞(a2(p)) with p ≡ −1 (mod 4)
sends M3(Γ(2), χZ) to M3(Γ(2), χZ), where χZ is the character obtained
from FZ by the Igusa transformation formula, and χZ( �= χZ) denotes a con-
jugation of χZ (see loc. cite.). However, T∞(a2(p))FZ is 0, and still lives in
M3(Γ(2), χZ). Let M3(Γ)

SE− denote the subspace of M2
3 (Γ) generated by

Siegel modular forms F such that Φ(F |[γ]) is cuspidal for any γ ∈ Sp2(Z).
Then, M3(Γ)

SE− is the direct sum of M3(Γ)
KE and S3(Γ). Then, since

dimCM3(ΓZ)
SE− = 1 and ΓZ ⊂ Ker(χZ) = Ker(χZ),

M3(ΓZ)
SE− = M3(Ker(χZ))

SE−

= M3(Γ(2), χZ)
SE− = CFZ , M3(Γ(2), χZ)

SE− = 0.
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4.3. Soudry lift.

Let Kv = Qv(
√
d) with d ∈ Q×

v \ (Q×
v )

2 or Q2
v for a place v of Q. Let c be

the generator of Gal(Kv/Qv). In case Kv = Q2
v (resp. Kv = Qv(

√
d)), we

define a quadratic form by ((x, y), (x′, y′)) = xy′ + x′y for (x, y), (x′, y′) ∈
Q2

v (resp. (z, z′) = 1
2(zz

′c + zcz′) for z, z′ ∈ Qv(
√
d)). Let GOKv

(Qv) denote
the generalized orhogonal group of Kv, and ν the similitude character of
g ∈ GOKv

(Qv). Let GSOKv
= Ker(det /ν). Then, GSOKv

(Qv) is isomorphic
to K×

v , and

GOKv
(Qv) 
 K×

v � Z/2Z.

In case of Kv = Qv(
√
d), Z/2Z = {1, c} 
 Gal(Kv/Qv) acts on Kv, and in

case of Kv = Q2
v, {1, c} acts on Q2

v by the permutation. The law of group is
defined by (h, cn)(h′, cm) = (hh′cn , cn+m).

Let σ be an automorphic, unitary, quasi-character on K×
A . Let Ind(σv)

denote the induced (2-dimensional) representation of GOK(Qv) from σv of
GSOK(Qv). If σv �= σc

v, then Ind(σv) is irreducible. If σv = σc
v, then Ind(σv) =

σ+
v ⊕ σ−

v with σ±
v irreducible, where σ+

v (h, c
n) = σv(h), σ−

v (h, c
n) =

(−1)nσv(h). Let S be the set of places v at which σv is ramified, and

R = {v | σc
v = σv}.

Although |S| is finite, |R| may be infinite. Each automorphic irreducible
constituent σ̂ of the induced representation from σ is in a shape of(⊗v∈R+

σ+
v

)⊗ (⊗v∈R−σ
−
v

)⊗ (⊗v �∈RInd(σv))

where R = R+ �R− and |R−| < ∞. If p ∈ S ∪R−, then σ̂p is ramified.
There is a vector f0 = ⊗vf0v ∈ σ̂ such that

(4.17) f0v(h, c
l) =

{
(−1)lσv(h) at v ∈ R−,
σv(h) otherwise.

Let wn
v denote the Weil representation of Spn ×OK . For ϕ = ⊗vϕv ∈ S(Kn

A),
we define the θ-kernel associated to ϕ by

θn(ϕ)(g, u) =
∑
z∈Kn

⊗vw
n
v (g, u)ϕv(z).
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Further, for f = ⊗vfv ∈ σ̂, we define

(4.18) θn(ϕ, f)(g) =

∫
OK(Q)\OK(A)

θn(ϕ)(g, u)f(u)du,

which is an automorphic form on Spn(A). The standard extension associ-
ated θn(ϕ, f) naturally is also denoted by θn(ϕ, f). We denote by θn(σ̂) the
subspace of automorphic forms on GSpn(A) spanned by them. The central
character of θn(σ̂) is σ|A× .

Definition 4.10 (Soudy lift). We call θ2(σ̂) a Soudry lift of σ.

Remark 4.11. θ2(σ̂) is cuspidal, if and only if R− �= ∅ (cf. Lemma 1.3 of
[31]).

By a computation of Hecke operators as in [36], one can find that

L(s, θ2(σ̂)v; spin) = L(s, σv)L(s− 1, σv)(4.19)

for v �∈ S. Let us observe Bessel functions of F ∈ θ2(σ̂). Let ϕ = ⊗vϕv ∈
S(K2

A), f = ⊗vfv of an irreducible automorphic representation σ̂ of GOK(A),
and F = θ2(ϕ, f). First of all, FT is given by

FT (g) =

∫
OK(Q)\OK(A)

∑
γ∈OK(Q)

w(g, u)ϕ(γ−1z1, γ
−1z2)f(u)du

if T =

[
(z1, z1) (z1, z2)
(z1, z2) (z2, z2)

]
. Therefore − det(T ) ∈ NK/Q(K).

A) Suppose that K = Q(
√−dK) with −dK ∈ Q× \ (Q×)2. Put z0 =

√−dK ,

and T =

[
1 0
0 dK

]
. Then,

FT (g) =

∫
OK(Q)\OK(A)

∑
γ∈OK(Q)

w(g, γu)ϕ(1, z0)f(u)du

=

∫
OK(A)

w(g, u)ϕ(1, z0)f(u)du =
⊗
v

FT,v(gv),(4.20)

FT,v(gv) =

∫
OK(Qv)

wv(gv, uv)ϕv(1, z0)fv(uv)duv(4.21)
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where we normalize the Haar measure duv so that vol(OK(Q)\OK(A)) = 1.
Let ξ be an automorphic character on K1\K1

A. The Bessel function associ-
ated to ξ is calculated as

F ξ
T (g) =

∫
K1\K1

A

ξ(k)−1

∫
OK(A)

w

([
k 02
02

tk−1

]
g, 1

)
ϕ(u−1, u−1z0)f(u)dudk

=

∫
K1\K1

A

ξ(k)−1

∫
OK(A)

w(g, 1)ϕ
((
u−1, u−1z0

)
k
)
f(u)dudk

=

∫
K1\K1

A

ξ(k)−1

∫
OK(A)

w(g, 1)ϕ
(
u−1k, u−1kz0

)
f(u)dudk(4.22)

where we normalize the Haar measure dk so that vol(K1\K1
A) = 1. From

this equality it follows that F ξ
T vanishes if ξ �= (σ|K1

A
)−1. Thus, we have the

equality

FT = F σ−1

T .

B) Suppose thatK = Q2. In this case,K× = (Q×)2,K1 
 Q×, and σ factors
as σ(a, b) = σ1(a)σ2(b) for characters σ1, σ2 of Q×

v . Let {e+, e−} be the stan-

dard basis of K: (e+, e−) = 1, (e+, e+) = (e−, e−) = 0. Put T =

[
0 1
1 0

]
, and

replace the above (1, z0) with (e+, e−). Then, SOT (Qv) =

{[
a 0
0 a−1

] ∣∣∣∣∣ a ∈

Q×
p (R

× if v = ∞)

}
, and denote by ξ the character sending

[
a 0
0 a−1

]
to

ξ(a). Then, we have

FT (g) =

∫
Q×\A×

ξ(a)−1(4.23)

×
∫
Q×\A×

w(g, 1)ϕ
(
ak−1e+, a

−1ke−
)
σ1σ

−1
2 (a)dadk

+

∫
Q×\A×

ξ(a)−1

×
∫
Q×\A×

w(g, 1)ϕ
(
ak−1e−, a−1ke+

)
σ1σ

−1
2 (a)dadk.

and therefore FT = F
σ−1
1 σ2

T . Now, consider the case of f = f0 as in (4.17).
Let ov denote the ring of integers of Kv. Let K denote the maximal compact
subgroup of GOK(A) such that, via the isomorphism SOK(Qv) 
 K1

v , it
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holds

Kv ∩ SOK(Qv) 


⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C1 if v = ∞ and Kv 
 C,

{(1, 1)} ∈ (R×)2 if v = ∞ and Kv 
 R2,

o1v if v < ∞ and

Kv/Qv does not split,

{(a, a−1) ∈ (Z×
v )

2}(
 Z×) if v < ∞ and Kv 
 Q2
v,

and therefore we will identify them.
For future use and simplicity, we introduce the following notion. The

reader should not be confused with the similar notion in “fundamental
lemma” for orbital integrals.

Definition 4.12. (Matching of Schwartz-Bruhat functions) Let n be a
positive integer. If ϕv ∈ S(Kn

v ) satisfies the following condition, we say that
ϕv matches to σ̂v. For any h ∈ Kv,

(4.24) wv(1, (h, c
l))ϕv = ϕv ×

{
(−1)lσv(h)

−1 if v ∈ R−,
σv(h)

−1 otherwise.

If ϕv matches to σ̂v, then we have∫
OK(Qv)

wv(g, u)ϕv(z1, z2)f0(u)du(4.25)

= 2

∫
SOK(Qv)

wv(g, u)ϕv(z1, z2)σ(u)du

= 2

∫
K1

v/Kv∩SOK(Qv)
wv(g, u̇)ϕv(z1, z2)σ(u̇)du̇,

where u̇ the image of u ∈ K1
v by the projection K1

v → K1
v/Kv ∩ SOK(Qv).

We are going to give such a ϕv.

i) In case that v = ∞ and Kv 
 C, suppose that σ∞(z) = (z/|z|)ε with
ε ∈ Z. Then, letting X,Y indeterminants,

ϕ∞(z1, z2) = Pε(Xz1 + Y z2) exp
(−2π(|z1|2 + |z2|2)

)
×
{
Im(z1z

c
2) if ∞ ∈ R−,

1 if ∞ �∈ R−,
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where

Pε(z) =

{
(z)ε if ε ≥ 0,

z−ε if ε < 0.

Only in case of ε = 0, R− may contain ∞ (cf. [13]), and the automorphic
form given by the θ-lift (4.18) for an arbitrary f and ϕ with ϕ∞ as above
is a holomorphic Siegel modular form of weight (1, 1) if ∞ �∈ R−(resp. (2, 2)
if ∞ ∈ R−) since K∞ is a positive definite quadratic space. In case of ε ∈
Z>0 (resp. ε ∈ Z<0), the automorphic form given by (4.18) has weight (ε+
1, 1) (resp. (ε− 1,−1)), and is holomorphic (resp. anti-holomorphic) Siegel
modular form. In particular, only in cases of ε = ±2 the θ-lifts (4.18) may
contribute to H2(Γ\H2,C) for a sufficiently small subgroup Γ (cf. p. 489 of
[19]).

ii) In case that v = ∞ and Kv 
 R2, suppose that σ∞(x, y) = (xy)ε with
ε ∈ Z. Then, writing zi = (xi, yi),

ϕ∞(z1, z2) = Qε(Xz1 + Y z2) exp
(−2π(|x1|2 + |x2|2 + |y1|2 + |y2|2)

)
×
{
x1y2 + x2y1 if ∞ ∈ R−,
1 if ∞ �∈ R−,

where

Qε(z) = exp(2π(x2 + y2))

×
{∫∞

−∞ exp(2π
√−1yy′) exp(−2π(x2 + y′2))(x+

√−1y′)εdy′ if ε ≥ 0,∫∞
−∞ exp(2π

√−1yy′) exp(−2π(x2 + y′2))(x−√−1y′)−εdy′ if ε < 0.

iii) In case that v = p and Kp does not split,

ϕp(z1, z2) =

⎧⎪⎨⎪⎩
Ch(op; z1)Ch(op; z2) if p �∈ S ∪R−,
σ(z1)Ch(o

×
p ; z1)Ch(op; z2) if p ∈ S \R−,

φp(z1z
c
2)Ch(o

×
p ; z1)σp(z1) if p ∈ R−,

where Ch indicates the characteristic function. Here φ−
p ∈ S(Kp) is defined

so that φ−
p (z

c) = −φ−
p (z) and supp(φ−

p ) = o×p (this is possible).
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iv) In case that v = p and Kp 
 Q2
p, writing zi = (xi, yi),

ϕp(z1, z2) =

⎧⎪⎨⎪⎩
Ch(Z2

p; z1)Ch(Z
2
p; z2) if p �∈ S ∪R−,

σ(z1)Ch((Z×
p )

2; z1)Ch(Z2
p; z2) if p ∈ S \R−,

φp(x1y2 + x2y1)Ch((Z×
p )

2; z1)σp(z1) if p ∈ R−,

where φ−
p ∈ S(Qp) is defined so that φ−

p (−x) = −φ−
p (x) and supp(φ−

p ) = Z×
p .

Under the above conditions, it is easy to check that (4.25) does not vanish for
g = 1, (z1, z2) = (1, z0), and therefore FTv

(1) �= 0 by (4.21). Thus FT (1) �= 0
by (4.20). Summarizing,

Theorem 4.13. Let K = Q(
√−d) (resp. Q2). Let σ be an automorphic

character of K×
A , and σ̂ an irreducible automorphic constituent of Ind(σ).

Then, for f0 ∈ σ̂ and ϕ ∈ S(K2
A) as above, F = θ2(ϕ, f0) has a nontriv-

ial Bessel function F σ−1

T which coincides with FT for T = diag(1, d) (resp.[
0 1
1 0

]
).

Remark 4.14. Let V be a quadratic space over Qv. For a local θ-lift from
OV (Qv) to Spn(Qv), in order to have a Whittaker model, dimV ≥ 2n and
H(n−1) ⊂ V are needed, where H indicates the hyperbolic plane. In particu-
lar, for any σ, the local component θ2(σ̂)v of the above theta lift from O(2)
to Sp(2) does not have a Whittaker model, i.e., non-generic. According to
Roberts, Schmidt [22], every irreducible, admissible, generic representation
πv of PGSp2(Qv) for v < ∞ has a K(N)-fixed vector for a minimal N ∈ Z>0

which is called new form of π, where K(N) is the paramodular group de-
termined by the functional equation of L(s, πv; spin). But, it is possible to
show that θ2(σ̂)v has no such a vector. So, it is also a problem to determine
a new form of such a representation.

Remark 4.15. Let p be a prime, K = Q(
√−p), and V (pn) = Γ2(pn)\H2.

Suppose p ≡ 3 (mod 4). Theorem 6.7 of [19] implies that, for every größen-
character σ on K×

A , each θ-lift θ2(σ̂) which contributes to the (2, 0)-part of
H2(V (p),C) (see p. 505 of loc.cit. for the decomposition of H2(V (p),C)) is
not cuspidal. Note that θ2(σ̂) is holomorphic or anti-holomorphic, and hence
cannot contribute to (1, 1)-part. This non-cuspidality is also explained as fol-
lows. Suppose that θ2(σ̂) contributes to the (2, 0)-part ofH

2(V (p),C). Then,
from the explanation of the Soudry lift, it follows that σ∞(z) = (z/|z|)2,
S ⊂ {p}, and that R− ⊂ {p}. But, noting Kp/Qp is ramified, we find that
every ϕp ∈ S(K2

p) matching to σ−
p is not Γ2(p)-fixed, and therefore the lo-

cal theta lift θ2(σ
−
p ) has no Γ2(p)-fixed vector. Hence, R− = ∅, and θ2(σ̂) is
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not cuspidal. However, each cuspidal θ2(σ̂) with σ∞(z) = (z/|z|)2,∞ ∈ R+

may contribute to the (2, 0)-part of H2(V (pn),C) for a sufficiently large
n. In case of p ≡ 1, 2 (mod 4), since K2/Q2 is ramified, any θ2(σ̂) has no
GSp2(Z2)-fixed vector, and thus cannot contribute to H2(V (pn),C).

4.4. The explicit differential 2-form on Z.

Let σ = μ2. Take the irreducible constituent σ̂ of ⊗vInd(σv) such that R− =
∅. Then, θ2(σ̂) is not cuspidal. As explained before, the product

√−1

2
θ(1,0,1,0)θ(1,0,1,1)

of odd theta constants defines a Schwartz-Bruhat function ϕ2 ∈ S(K2
2 )

with K = Q(
√−1) 
 V2. Set ϕ = ϕ2 ⊗

⊗
v �=2 ϕv with ϕv as above. By Re-

mark 3.12, the θ-kernel θ2(ϕ) is ΓZ-fixed. Identifying V2 with K via an
isomorphism, we can describe ϕ2 as

ϕ2(z1, z2) =

√−1

2
(−1)x1+y1+x2Ch

(
z1;

1 +
√−1

2
+ o2

)
Ch(z2; o2),

where we write

z1 =

(
1

2
+ x1

)
+

(
1

2
+ y1

)√−1, z2 = x2 + y2
√−1 ∈ K2.

Put EZ = θ2(ϕ, f0). In order to see the non-triviality of EZ (non-cuspidal if
nontrivial), we observe Φ(EZ) = θ1(Pr(ϕ), f0), where

Pr(ϕ)v(z) = Pr(ϕv)(z) = ϕv(z, 0).

Then, Pr(ϕv) ∈ S(Kv) satisfies the condition (4.24). Therefore, one can find
that the classical form corresponding to θ1(Pr(ϕ), f0) is given by

√−1

2

∑
x+y

√−1∈( 1+
√−1

2
+oK)

(
√−1x+ y)2(−1)

(x+y)

2 exp
(
π
√−1(x2 + y2)τ1

)
.

Then this coincides with g( τ14 ) giving the non-triviality of EZ and the claim
(iii)-(b) of Theorem 1.2 simultaneously. This non-cuspidal form EZ is a
C3-valued function EZ(τ) = (h0(τ), h1(τ), h2(τ)) of weight det

1 ⊗ Sym2 (of
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U(2)(C)) in the classical sense, where

hi(τ) =
∑
zj∈K

(⊗
v<∞

ϕv(z1, z2)

)
z2−i
1 zi2

× exp(2π
√−1tr

(
τ

[
N(z1) Re(z1z2)/2

Re(z1z2)/2 N(z2)

])
).

Then, the differential 2-form E�
Z on Z is given by

E�
Z(τ) = h0(τ)dτ1 ∧ τ2 + h1(τ)dτ1 ∧ τ3 + h2(τ)dτ3 ∧ τ2,

(
τ =

[
τ1 τ2
τ2 τ3

])
.

By (4.19) and the same argument as in Theorem 4.7, one can determine each
local component of the non-cuspidal representation and show that θ2(σ̂) is
irreducible. Summing up,

Theorem 4.16. With notations as above, the (non-cuspidal) automorphic
representation θ2(σ̂) = ⊗vθ2(σ̂)v is irreducible, and

θ2(σ̂)v =

{
w5( �= Π∞) v = ∞,

Πv ⊗ | ∗ |v v �= ∞

(see p. 489 of [19] for the definition of w5). The C3-valued holomorphic
Klingen type Eisenstein series EZ ∈ θ2(σ̂) defines the unique (up to scalar
multiples) differential 2-form E�

Z on the Siegel threefold Z.

Remark 4.17. From the non-genericity of θ2(σ̂)v (cf. Remark 4.14), one
can also find that θ2(σ̂)v = Πv ⊗ | ∗ |v for nonarchimedean v consulting the
table A.1. of [22].

Remark 4.18. It is natural to hope that some period of ẼZ is equal to
L(s, Z◦) = L(s, θ2(σ̂)) since E�

Z is a unique differential form on Z. It is pos-
sible to show that

Z(s, ẼZ) :=

∫
Q×\A×

ẼZ(a2(t))|t|s−3/2dt

coincides with L(s, θ2(σ̂)) up to a scalar multiple.

Remark 4.19. Let Γ be a congruence subgroup of Sp2(Z) (may have tor-
sion elements) and SΓ = Γ\H2 the corresponding Siegel 3-fold. Then one can
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prove that any Hecke eigen form F inM(3,1)(Γ) is either CAP form associated
to Klingen or Klingen Eisenstein series as follows. As in [19] one can prove
that H2(SΓ,C) is pure of weight 2. By the classification of automorphic
representation of GSp2(A) contributing to M(3,1)(Γ) 
 H2,0(SΓ,C) due to
Weissauer [33],[35], one can conclude the claim. We denote by M3(Γ)

KE,CM

the space generated by Klingen Eisenstein series whose image under Φ is
a CM modular form. Then it seems to be interesting to discuss whether
M(3,1)(Γ)

Eisen is naturally isomorphic to M3(Γ)
KE,CM as a Hecke module or

not.
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[2] S. Böcherer and R. Schulze-Pillot, On a theorem of Waldspurger and in
Eisenstein series of Klingen type, Math Ann. 288 (1990), no. 3, 361–
388.

[3] A. Borel, Introduction aux groupes arithmétiques, Publications de
l’Institut de Mathématique de l’Université de Strasbourg, XV, Ac-
tualités Scientifiques et Industrielles, No. 1341 Hermann, Paris 1969,
125pp.

[4] I. N. Bernstein and A. N. Zelevinskii, Representations of the group
GL(n, F ) where F is a nonarchimdean local field, Russian Math. Survay
31 (1976), 1–68.
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