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BPS/CFT correspondence II:
Instantons at crossroads, Moduli and

Compactness Theorem
Nikita Nekrasov

Gieseker-Nakajima moduli spaces Mk(n) parametrize the charge k
noncommutative U(n) instantons on R

4 and framed rank n tor-
sion free sheaves E on CP

2 with ch2(E) = k. They also serve as
local models of the moduli spaces of instantons on general four-
manifolds. We study the generalization of gauge theory in which
the four dimensional spacetime is a stratified space X immersed
into a Calabi-Yau fourfold Z. The local model Mk(�n) of the cor-
responding instanton moduli space is the moduli space of charge
k (noncommutative) instantons on origami spacetimes. There, X
is modelled on a union of (up to six) coordinate complex planes
C

2 intersecting in Z modelled on C
4. The instantons are shared by

the collection of four dimensional gauge theories sewn along two di-
mensional defect surfaces and defect points. We also define several
quiver versions Mγ

k(�n) of Mk(�n), motivated by the considerations
of sewn gauge theories on orbifolds C

4/Γ.
The geometry of the spaces Mγ

k(�n), more specifically the com-
pactness of the set of torus-fixed points, for various tori, underlies
the non-perturbative Dyson-Schwinger identities recently found to
be satisfied by the correlation functions of qq-characters viewed as
local gauge invariant operators in the N = 2 quiver gauge theories.

The cohomological and K-theoretic operations defined using
Mk(�n) and their quiver versions as correspondences provide the
geometric counterpart of the qq-characters, line and surface de-
fects.

1. Introduction

Recently we introduced a set of observables in quiver N = 2 supersymmetric
gauge theories which are useful in organizing the non-perturbative Dyson-
Schwinger equations, relating contributions of different instanton sectors to
the expectation values of gauge invariant chiral ring observables. In this paper
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we shall provide the natural geometric setting for these observables. We also
explain the gauge and string theory motivations for these considerations.

�����������
Notations. We are going to explore the moduli spaces, which parametrize,
roughly speaking, the sheaves E supported on a union of coordinate complex
two-planes ≈ C2 inside C4. The C4 with a set of C2’s inside is a local model
(Z loc, X loc) of a pair (Z,X) consisting of a Calabi-Yau fourfold Z which
contains a possibly singular complex surface X ⊂ Z:

(1) Z loc = C
4, X loc =

⋃
A∈6

C
2
A, supp(E) =

⋃
A∈6

nAC
2
A

We denote by 4 the set of complex coordinates in C4:

(2) 4 = {1, 2, 3, 4} , a ∈ 4 ↔ za ∈ C

and by

(3) 6 =

(
4
2

)
=

{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

}

the set of two-element subsets of 4, i.e. the set of coordinate two-planes in
C4.

We shall sometimes denote the elements of 6 by the pairs ab = ba ↔
{a, b} ∈ 6. We also define, for A ∈ 6, Ā = 4\A, and

(4) ε(A) = εabcd, A = {a, b}, Ā = {c, d}, a < b, c < d

so that, e.g. 12 = 34, ε(23) = ε2314 = 1, ε(24) = ε2413 = −1.
The two-plane C2

A ⊂ C4 corresponding to A ∈ 6 is defined by the equa-
tions: zā = 0, for all ā ∈ Ā.

We denote by 3 the quotient 6/Z2 where Z2 acts by the involution A �→
Ā. The elements a ∈ 3 are the unordered pairs (A, Ā).

We can visualize the sets 3, 4, 6, using the tetrahedron:
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Figure 1: Tetrahedron with the sets 4 and 6 of vertices and edges, and the
set 3 = {red, green, orange} of crossed edges.

Our story will involve four complex parameters qa ∈ C×, a ∈ 4, obeying

(5)
∏
a∈4

qa = 1

We shall also use the additive variables ea ∈ C, a ∈ 4, obeying

(6)
∑
a∈4

ea = 0

Define the lattice

(7) Ze = Ze1 + Ze2 + Ze3 ⊂ C

which is the image of the projection:

(8) Z
4 → C , (i, j, k, l) �→ e1i+ e2j + e3k + e4l

We shall use the following functions on 6:

(9)

pA =
∏
a∈A

(1− qa) ,

qA =
∏
a∈A

qa ,

eA =
∑
a∈A

ea = −eĀ .

In what follows we denote by [n], for n ∈ Z>0, the set {1, 2, 3, . . . , n} ⊂ Z>0.
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Let S be a finite set, and (Vs)s∈S a collection of vector spaces. We use
the notation

(10)
∑
s∈S

Vs

for the vector space which consists of all linear combinations

(11)
∑
s∈S

ψs , ψs ∈ Vs .

1.1. Organization of the paper

We review the gauge and string theory motivation in the Section 2. The
moduli space Mk(�n) of spiked instantons is introduced in the Section 3.
The symmetries of spiked instantons are studied in the Section 4. The mod-
uli space of ordinary U(n) instantons on (noncommutative) R4 is reviewed
in Section 5. The Section 6 discusses in more detail two particular cases
of spiked instantons, the crossed instantons and the folded instantons. The
crossed instantons live on two four-dimensional manifolds transversely inter-
secting in the eight-dimensional ambient manifold (a Calabi-Yau fourfold),
the folded ones live on two four-dimensional manifolds intersecting trans-
versely in the six dimensional ambient manifold. The Section 7 constructs
the spiked instantons out of the ordinary ones, and studies the toric spiked
instantons in some detail. The Section 8 is the main result of this paper:
the compactness theorem. In Section 9 we enter the theory of integration
over the spiked and crossed instantons, and relate the analyticity of the par-
tition functions to the compactness theorem. The Section 10 discusses the
ADE-quiver generalizations of crossed instantons. The Section 11 describes
the spiked instantons on cyclic orbifolds, and the associated compactness
theorem. The Section 12 is devoted to future directions and open questions.
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Figure 2: The origami wolrdvolume X =
⋃
A

XA.

stonybrook.edu/video_portal/video.php?id=2202, at the Institute for
Advanced Studies at Hebrew University https://www.youtube.com/watch?
v=vGNfXQ3-Rjg, at the Center for Mathematical Sciences and Applications
at Harvard University http://cmsa.fas.harvard.edu/nikita-nekrasov-
crossed-instantons-qq-character/ and at the String-Math-2015 confer-
ence in Sanya, China.

2. Gauge and string theory motivations

2.1. Generalized gauge theory

We study the moduli spaces MX,G of what might be called supersymmetric
gauge fields in the generalized gauge theories, whose space-time X contains
several, possibly intersecting, components: see Fig. 2. We call such X the
origami worldvolume. The gauge groups G|XA

= GA on different components
may be different. The intersections XA ∪XB lead to the bi-fundamental
matter fields charged under GA ×GB. The arrangement is motivated by the
string theory considerations, where the open string Hilbert space, in the
presence of several D-branes, splits into sectors labelled by the boundary
conditions. It is well-known [10, 34] that some features of the open string
theory are captured by the noncommutative gauge theory. In fact, the theo-
ries we shall study descend from the maximally supersymmetric Yang-Mills
theory, which is twisted and deformed. One can view the fields of this theory
as describing the deformations of the four dimensional stratified manifolds
X = (XA, nA), i.e. singular, in general, spaces, which can be represented as
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unions X = ∪AXA of manifolds with certain conditions on closures and in-
tersections, endowed with multiplicities, i.e. the strata XA are allowed to
have different multiplicity nA. The local gauge group GA is simply U(nA).
The particular twist of the super-Yang-Mills theory we study corresponds to
X ↪→ Z × E, where E is a two torus T2, a cylinder R1 × S1, or a plane R2,
while Z is a special holonomy eight dimensional manifold, e.g. the Calabi-
Yau fourfold.

2.2. Gauge origami

Now suppose Z has non-trivial isometries (it ought to be non-compact).
It is natural, in this case, to deform the problem to take into account the
symmetries of Z. The partition function of the theory of stratified multiple
X’s localizes onto the set of fixed points, which are the configurations X =
(XA, nA) where XA’s are invariant under the isometries of Z. For example,
when Z is toric, with the three dimensional torus T acting by isometries,
preserving the holomorphic top form, then at each vertex z ∈ ZT pass at
most six strata XA, A ∈ 6.

We are interested in integrals over the moduli spacesMX,G. We shall view
MX,G as the “space, defined by some equations modulo symmetry”. More for-
mally, MX,G is the quotient of a set of zeroes of some Gg-equivariant section
s :M → V of Gg-equivariant vector bundle V → M over some smooth space
(vector space in our case) with Gg-action, with some Lie group Gg. If M is
compact the integral over MX,G of a closed differential form can be repre-
sented by the Gg-equivariant integral over M of the pull-back of the corre-
sponding form times the Euler class of V . In the non-compact case one uses
equivariant cohomology (mass deformation, in the physics language) with
respect to both Gg and some global symmetry group H, and Mathai-Quillen
representatives of the Euler class.

The resulting partition functions

(12) ZX,G(ξ) ∼
∫ Hequiv

MX,G

1 ∼ 1

Vol(Gg)

∫
Lie(Gg)

∫ (Gg×H)equiv

M
Euler(V )

are functions on the Lie algebra of HC, ξ ∈ Lie(HC). The analytic properties
of ZX,G(ξ) reflect some of the geometric and topological features of MX,G.
They are the main focus of this paper.

The equivariant localization expresses ZX,G as the sum over the fixed
points of H-action, which are typically labelled by multiple partitions, i.e.
collections of Young diagrams. The resulting statistical mechanical model is
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called the gauge origami and is studied in detail in the companion paper
[29].

2.3. Symmetries, twisting, equivariance

The partition functions ZX,G(ξ) are analytic functions of ξ ∈ Lie(HC), with
possible singularities. Given ξ ∈ Lie(HC), the closure of the subgroup exp tξ,
t ∈ C defines a torus Tξ. The partition function ZX,G(ξ) can be computed,
by Atiyah-Bott fixed point formula, as a sum over the Tξ-fixed points. Even
though the moduli space MX,G may be noncompact (it is noncompact for
noncompact X), the fixed point set, for suitable ξ, may still be compact, so
that the integrals over MX,G of the equivariant differential forms converge.
The set MTξ

X,G of Tξ-fixed points may have several connected components:

(13) M
Tξ

X,G =
⋃
f

(
M

Tξ

X,G

)
f

The contributions Zf of
(
M

Tξ

X,G

)
f
are rational functions on Lie(HC), they

have poles. In the nice situations the component
(
M

Tξ

X,G

)
f
has a normal

bundle in MX,G (or in the ambient smooth variety, as in the case of the
obstructed theory), Nf , which inherits an action of Tξ, and decomposes into
the sum of complex line bundles (real rank two bundles) Lf,w, with w going
through the set of Tξ-weights. The fixed point formula states

(14) Zf =

∫
(
M

Tξ
X,G

)
f

Eulerξ(Obsf )∏
w
(w(ξ) + c1(Lf,w))

The poles in Zf occur when the Lie algebra element ξ crosses the hyperplane
w(ξ) = 0 for some w occuring in the decomposition of Nf . Geometrically this
means that the ξ belongs to a subalgebra of LieT ⊂ Lie(HC) which fixes not
only

(
M

Tξ

X,G

)
f
, but also (at least infinitesimally, at the linearized order) a

two-dimensional surface passing through f , in the direction of Lf,w.
We shall be interested in the analytic properties of ZX,G and one of the

questions we shall be concerned with is whether the poles in Zf are cancelled
by the poles in the contribution of some other component

(
M

Tξ

X,G

)
f ′

of
the fixed point set. More precisely, once ξ → ξc where ξc belongs to the
hyperplane w(ξ) = 0 defined relative to the weight decomposition of Nf , the
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component of the fixed point set may enhance,

(15)
(
M

Tξ

X,G

)
f
⊂
(
M

Tξc

X,G

)
f ′′

,

reaching out to the other component
(
M

Tξ

X,G

)
f ′

(16)
(
M

Tξ

X,G

)
f ′
∩
(
M

Tξc

X,G

)
f ′′

�= ∅

If the enhanced component
(
M

Tξc

X,G

)
f ′′

is compact, then the pole at ξ = ξc

in Zf will be cancelled by the pole in Zf ′ .
So the issue in question is the compactness of the fixed point set for the

torus generated by the non-generic infinitesimal symmetries ξc.
In our case we shall choose a class of subgroups H ⊂ H. We shall show that

the set of H-fixed points is compact. It means that for generic choice of ξ̂ ∈
Lie(HC) the partition function ZX,G(ξ̂ + x) as a function of x ∈ Lie(HC)

⊥ ⊂
Lie(H) has no singularities.

The procedure of restricting the symmetry group of the physical system
to a subgroup is well-known to physicists under the name of twisting [38]. It
is used in the context of topological field theories, which are obtained from
the supersymmetric field theories having an R-symmetry group HR such that
the group of rotations Grot of flat spacetime can be embedded nontrivially
into the direct product

(17) Grot −→ Grot × HR .

We shall encounter a lot of instances of the procedure analogous to (17) in
what follows.

2.4. Gauge theories on stacks of D-branes

The maximally supersymmetric Yang-Mills theory in p+ 1-dimensions mod-
els [39] the low energy behavior of a stack of parallel Dp-branes. This descrip-
tion can be made p-blind by turning on a background constant B-field. In
the strong B-field the “non-abelian Born-Infeld/Yang-Mills” theory descrip-
tion of the low energy physics of the open strings connecting the Dp-branes
crosses over to the noncommutative Yang-Mills description [34]. In this pa-
per we shall use the noncommutative Yang-Mills to study the dynamics of
intersecting stacks of Dp-branes.
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2.4.1. The Matrix models. Recall the dimensional reductions of the
maximally supersymmetric Yang-Mills theory down to 0 + 0, 0 + 1 and 1 + 1
dimensions [4], [18], [9]. We take the gauge group to be Gg = U(N) for some
large N. Following [23] we shall view the model of [18]

1

VolGg

∫
R10|16⊗LieGg

DXmDθα exp

(
− 1

4

∑
m<n

Tr [Xm, Xn]2(18)

− 1

2

∑
m,α,β

Γm
αβTr θ

α[Xm, θβ ]

)

with the adjoint bosons Xm and the adjoint fermions θα transforming in
the representations 10 and 16 of Spin(10), respectively, as the cohomolog-
ical field theory in 0 dimensions, while [4] and [9] are obtained by the lift
procedure of [5].

The approach to the noncommutative gauge theory in which the gauge
field Am is traded for the (infinite) matrix Xm is used in the background-
independent (p-uniform) formalism of [33].

2.4.2. (0, 1)-formalism, Spin(7)-instantons. Let us start in the 1 + 1-
dimensional case. Let Σ be the worldsheet of our theory, with the local
complex coordinates z, z̄. The theory has a gauge field A = Azdz +Az̄dz̄, 8
Hermitian adjoint scalars Xm, and 16 adjoint fermions, which split into 8
right ψa

+, and 8 left χȧ
− ones. Here m, a and ȧ are the indices of the 8v, 8s

and 8c representations of the global symmetry group Spin(8), respectively.
The formalism that we shall adopt singles out a particular spinor among 8c.
The isotropy subgroup Spin(7) of that spinor has the following significance.
The representation 8c, under Spin(7), decomposes as 7⊕ 1, the 1 being the
invariant subspace. Accordingly, we split

(
χȧ
−
)
ȧ∈8c

−→
(
χi
−
)
i∈7 ⊕ η−. The

representations 8s and 8v become the spinor 8 of Spin(7). We shall also
need the auxiliary fields hi, which are the worldsheet scalars, transform in
the adjoint of the gauge group, and in the representation 7 of Spin(7). The
theory, in this formalism, has one supercharge δ+, which squares to the chiral
translation on the worldsheet

(19) δ2+ = D++ = ∂̄z̄ +Az̄
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(the conjugate derivative D−− = ∂z +Az) which acts on the fields of the
model as follows:

(20)
δ+X

m = ψm
+ , δ+ψ

m
+ = D++X

m = ∂̄z̄X
m + [Az̄, X

m]

δ+χ
i
− = hi, δ+h

i = D++χ
i
− = ∂̄z̄χ

i
− + [Az̄, χ

i
−]

δ+Az = η−, δ+η− = Fzz̄

The Lagrangian

(21) L = δ+

∫
Σ
Tr
(
ψm
+D−−X

m + χi
−
(
i℘i

mn[X
m, Xn]− hi

)
+ η−Fzz̄

)
becomes that of the standard N = 8 supersymmetric Yang-Mills once the
auxiliary fields hi are eliminated by their equations of motion. Here ℘i

mn is
the matrix of the projection ℘7 : Λ

28v = LieSpin(8) −→ 7 onto the orthog-
onal complement to LieSpin(7) ⊂ LieSpin(8) = LieSpin(7)⊕ 7.

Upon the dimensional reduction to 0 dimensions, the gauge field A be-
comes a complex scalar σ = Az̄ and its conjugate σ̄ = Az.

2.4.3. (0, 2)-formalism, SU(4)-instantons. In this formalism we have
two supercharges Q+, Q̄+, obeying

(22) Q2
+ = Q̄2

+ = 0 , Q+Q̄+ + Q̄+Q+ = D++

so that δ+ = Q+ + Q̄+. We split 8 Hermitian adjoint scalars Xm into 4
complex adjoint scalars Za, a ∈ 4, and their conjugates Z̄ ā, and the same
for the fermions ψm

+ −→ ψa
+, ψ̄

ā
+. The 7 χi

−’s split as 6⊕ 1: (χi
−)i∈7 →(

χA,− = εAĀχ̄Ā,−
)
A∈6 ⊕ χ−. This splitting breaks the symmetry group

Spin(8)× Spin(2) ⊂ Spin(10) of (18) down to SU(4).
The Lagrangian (21), in this formalism, reads as follows:

L = δ+Ψ ,(23)

Ψ =

∫
Σ
Tr
(
ψa
+D−−Z̄

ā + ψ̄ā
+D−−Z

a + η−Fzz̄

)
+ i

∫
Σ
Tr

(
χab,−

(
[Za, Zb] +

1

2
εabcd[Z̄ c̄, Z̄ d̄]

)
+ χ−μ

)
−
∫
Σ
Tr
(
χ−h+ χab,−h

ab
)

where

(24) μ =
∑
a∈4

[Za, Z̄ ā]
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The supersymmetric (for flat Σ) solutions of (23) are the covariantly holo-
morphic matrices, solving the equations

(25) Dz̄Z
a = 0, Dz̄Z̄

ā = 0, a ∈ 4, μ = 0

and

(26) [Za, Zb] +
1

2
εabcd[Z̄ c̄, Z̄ d̄] = 0, {a, b} ∈ 6

For finite dimensional CN these equations imply that all matrices commute
and can be simultaneously diagonalized.

2.4.4. Noncommutative gauge theory. We now wish to consider a gen-
eralization of the model [18] in which the finite dimensional vector space CN

is replaced by a Hilbert space H. In order to keep the action (21) finite the
combination

(27) ℘i
mn[X

m, Xn]

could be deformed to

(28) ℘i
mn[X

m, Xn]− iϑi · 1H

for some constants ϑi. One possibility to have a finite action configuration
(after hi’s are integrated out) is to have the operators Xm obey the Heisen-
berg algebra:

(29) [Xm, Xn] = iϑmn · 1H

with the c-number valued matrix ϑmn = −ϑmn obeying

(30) ϑi =
∑
m<n

℘i
mnϑ

mn .

Since there are too many choices of ϑmn given ϑi, the modification (28) is
not what we need. A more sensible modification is to define the action (with
the auxiliary fields eliminated) to have the bosonic potential:

(31)
∑
m<n

TrH ( [Xm, Xn]− iϑmn · 1H )2

whose absolute minimuma are given by the representation of the Heisenberg
algebra (29) in H. These are classified, for the non-degenerate ϑmn, modulo
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the gauge group Gg = U(H), by the Stone-von Neumann theorem. Fix a
non-negative integer N , and a standard oscillator representation H of the
Heisenberg algebra [x̂m, x̂n] = iϑmn · 1H . Then H = L2(R4), H = CN ⊗H.
For example, let us choose a block diagonal basis for ϑmn, in which

(32) ẑa = x̂2a−1 + ix̂2a, ẑa† = x̂2a−1 − ix̂2a, a ∈ 4

obey

(33)
[ẑa, ẑb] = 0, [ẑa†, ẑb†] = 0, {a, b} ∈ 6

[ẑa, ẑb†] = −θa δab

The supersymmetric solution of the matrix model, the 0-dimensional reduc-
tion of (21) is given by the operators

(34)
Xm = 1N ⊗ x̂m, m = 1, . . . 8

σ = diag(σ1, . . . , σN )⊗ 1H

This solution, for θa �= 0 for all a ∈ 4 describes a stack of N D7 branes
whose worldvolume extends in the 1, . . . , 8 directions. They are localized
in the remaining two dimensions, parametrized by the eigenvalues of the
complex matrix σ.

Now let us assume all θa equal to ζ > 0. Take H = L2(R2) to be the Fock
space representation of the algebra

(35)
[c1, c2] = [c†1, c

†
2] = 0

[ci, c
†
j ] = ζδij , i, j = 1, 2

Define:

(36)

ẑ1 =
1√
2

(
1N12

⊗ c†1 + 1N13
⊗ c†1 + 1N14

⊗ c†1

)
ẑ2 =

1√
2

(
1N12

⊗ c†2 + 1N23
⊗ c†1 + 1N24

⊗ c†1

)
ẑ3 =

1√
2

(
1N13

⊗ c†2 + 1N23
⊗ c†2 + 1N34

⊗ c†1

)
ẑ4 =

1√
2

(
1N14

⊗ c†2 + 1N24
⊗ c†2 + 1N34

⊗ c†2

)
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These operators obey:

(37)
[ẑa, ẑb] = [ẑa†, ẑb†] = 0∑
a∈4

[ẑa, ẑa†] = −ζ1N⊗H

where

(38) N =
⊕
A∈6

NA

The solution (37) describes six stacks of D3-branes spanning the coordinate
two-planes C2 ⊂ C4, with nA = dimNA branes spanning the two-plane C2

A.
This is a generalization of the “piercing string” and “fluxon” solutions of
[13, 14].

We can easily produce more general solutions of the BPS equations. Take
six solutions Ĉ1

A, Ĉ
2
A of non-commutative instanton equations in R4, viewed

as operators in NA ⊗H, obeying:

(39) [Ĉ1
A, Ĉ

2
A] = 0 , [Ĉ1

A, Ĉ
1†
A ] + [Ĉ2

A, Ĉ
2†
A ] = ζ

Define operators in H =
⊕
A∈6

NA ⊗H:

(40) Ẑa =
1√
2

⊕
A�a

Ĉ
hA(a)†
A

where h{a,b}(a) = 1 for a < b, and h{a,b}(a) = 2 for a > b. These operators
satisfy the higher dimensional analogues of the noncommutative instanton
equations (26), (25), [28]:

(41)

+
1

2

∑
c,d

εabcd[Ẑ
d†, Ẑc†] = 0, a, b, c, d ∈ 4∑

a∈4
[Ẑa, Ẑa†] = −ζ1N⊗H

The aim of the next section is to produce the (almost) finite-dimensional
model of the moduli space of finite action solutions to (41). Some of these
solutions are of the form (40).

· · ·
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Recently the field theory description of two stacks of intersecting D3
branes in IIB string theory sharing a common 1 + 1-dimensional worldvol-
ume was explored in [6, 22]. The theories exibit unusual holographic and
renormalization properties.

· · ·

The string theory of two stacks of transversely intersecting D3 branes
in IIB theory has been recently studied in [35, 36], albeit in the ζ = 0 case.
None of the beauty (to the trained eye) of the picture presented below seem
to survive in this limit.

3. Spiked instantons

We are going to work with the collections of vector spaces and linear maps
between them. The vector spaces will be labelled by the coordinate complex
two-planes in the four dimensional complex vector space C4.

3.1. Generalized ADHM equations

We start by fixing seven Hermitian vector spaces: K and NA, A ∈ 6. Let
k = dimC(K), nA = dimC(NA). Consider the vector space Ak(�n) of linear
maps (B, I,J)

(42)
B = (Ba)a∈4 , Ba : K → K ,

I = (IA)A∈6 , IA : NA → K ,

J = (JA)A∈6 , JA : K → NA .

Figure 3: Seven vector spaces and maps between them.
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The vector spaces and the maps are conveniently summarized by the
tetrahedron diagram on Fig. 3. The choice of the matrices can be motivated
by the string theory considerations. Namely, consider k D(−1)-branes in the
vicinity of the six stacks of D3-branes (some of these stacks could be D3-
branes) spanning the coordinate two-planes C2

A ⊂ C4. The number of branes
spanning C2

A is nA.

Figure 4: Open string sectors: fields B, I, J.

Then the open strings stretched between the D(−1) and D(−1)’s pro-
duce, upon quantization, the matrices Ba, B

†
a, together with their superpart-

ners, and some auxiliary fields, which enter the effective Lagrangian in such
a way so as to impose the following

3.1.1. KK equations. Define, for A = {a, b}, a < b,

(43) μA = [Ba, Bb] + IAJA,

and

(44) sA = μA + ε(A)μ†
Ā
: K → K, A ∈ 6

obeying

(45) s†A = ε(A)sĀ
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Define the real moment map

(46) μ =
∑
a∈4

[Ba, B
†
a] +

∑
A∈6

(
IAI

†
A − J†

AJA

)
The symmetry (45) allows to view the collection �s = (sA)A∈6 ⊕ μ as the
U(K)-equivariant map

(47) �s : Ak(�n) −→ LieU(K)∗ ⊗ R
7 ,

as a sort of an octonionic version of the hyperkähler moment map [15].

· · ·

Likewise, the open strings stretched between the D(−1) and D3’s pro-
duce, upon quantization, the matrices IA, JA, I

†
A, J

†
A, together with their su-

perpartners, and some auxiliary fields,

Figure 5: Open string sectors: mutiplets of the equations σāA, sA.

which enter the effective Lagrangian in such a way so as to impose the
following

3.1.2. KN equations. For each pair (ā, A), where A ∈ 6, and ā ∈ Ā, de-
fine

(48) σāA = BāIA + εāb̄AB
†
b̄
J†
A : NA → K

where b̄ ∈ Ā, and b̄ �= ā.
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3.1.3. NN equations. Now, for each A ∈ 6 define

(49) ΥA = JĀIA − ε(A)I†
Ā
J†
A : NA → NĀ

which obey

(50) Υ†
A = −ΥĀ .

Because of the symmetry (50) the collection of the maps (ΥA)A∈6 takes
values in the real vector space of dimension

(51)
∑
A∈6

nAnĀ

The equations (50) result from integrating out the open strings connecting
the two stacks of D3-branes which intersect only at a point, the origin in C4.

· · ·

For each pair A′, A′′ ∈ 6, such that A′ ∩A′′ = {a}, and i ≥ 1, define

(52) ΥA′,A′′;i = JA′Bi−1
a IA′′ .

These equations result (conjecturally) from integrating out the 3− 3 strings
connecting the neighbouring stacks C2

A′ and C2
A′′ , intersecting along a real

two-dimensional plane C1
a.

· · ·

Finally, for each A = {a′, a′′} ∈ 6, e.g. a′ < a′′, and i, j ≥ 1, define

(53) ΥA;i,j = JAB
i−1
a′ Bj−1

a′′ IA
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3.1.4. A very useful identity. Let us compute∑
A∈6

Tr sAs
†
A +

∑
A∈6,ā∈Ā

Tr σāAσ
†
āA +

∑
A∈6

TrΥAΥ
†
A(54)

= 2
∑
A∈6

Tr μAμ
†
A +

∑
A∈6

ε(A)
(
Tr μAμĀ + Tr μ†

Aμ
†
Ā

)
+

∑
A∈6,a∈Ā

Tr
(
B†

aBaΠ
I
A +BaB

†
aΠ

J
A

)
+ 2

∑
A∈6

TrΠJ
AΠ

I
Ā

− 2
∑

A∈6,Ā={ā,b̄}
ε(A)Tr ([Bā, Bb̄]IAJA + c.c.)

−
∑
A∈6

ε(A)Tr (IAJAIĀJĀ + c.c.)

= 2
∑
A∈6

(
‖μA‖2+‖JĀIA‖2

)
+

∑
A∈6,a∈Ā

‖BaIA‖2+‖JABa‖2

where

(55) ΠJ
A = J†

AJA, ΠI
A = IAI

†
A

3.2. Holomorphic equations

Using the identity (54) it is easy to show that the equations

(56)
sA = 0, ΥA = 0, A ∈ 6

σāA = 0, ā ∈ Ā ,

which are not holomorphic in the variables B, I,J, imply stronger holomor-
phic equations: for each A ∈ 6,

(57)
μA = 0, JĀIA = 0

BāIA = 0 , JABā = 0 , ā ∈ Ā,

3.3. The moduli spaces M∗
k(�n)

DefineMi
k(�n) to be the U(k)-quotient of the space of solutions to (56) (which

imply, by the above argument, (57)), the additional equations

(58) ΥA′,A′′;j = 0, 1 ≤ j ≤ i,
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for all A′, A′′ ∈ 6 with #A′ ∩A′′ = 1, and the “moment map” equation

(59) μ = ζ · 1K

The group U(k) acts by:

(60) (B, I, J) �→ (g−1Bg, g−1I, Jg) , g ∈ U(k)

It is clear that, as a set

(61) M∞
k (�n) ⊂ · · · ⊂ Mi

k(�n) ⊂ Mi−1
k (�n) ⊂ · · · ⊂ M1

k(�n) ⊂ M0
k(�n)

and that the sequence stabilizes at i ≥ k (use the fact that a k × k matrix
obeys the degree k polynomial equation).

3.4. Stability

Imposing (59) with ζ > 0 and dividing by U(k) is equivalent to imposing
the stability condition and dividing by the action (60) with g ∈ GL(k) ≡
GL(k,C). Note that we deal with the equations (57) when talking about the
GL(k) symmetry. The stability condition reads:

(62)

Any subspace K ′ ⊂ K , such that

IA(NA) ⊂ K ′ , for all A ∈ 6

and

Ba(K
′) ⊂ K ′ , for all a ∈ 4

coincides with all of K , K ′ = K

in other words ,
∑
A∈6

C[B1, B2, B3, B4] IA(NA) = K

The proof is standard. In one direction, let us prove (62) holds given that
the GL(k)-orbit of the tuple (B, I,J) of matrices crosses the locus μ = ζ1K .
Indeed, assume there is K ′ which is B-invariant, and contains the image of
IA’s. Let K ′′ be the orthogonal complement K ′′ = (K ′)⊥. Let P ′, P ′′ be the
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orthogonal projections onto K ′, K ′′, respectively:

(63)
1K = P ′ + P ′′, P ′P ′′ = P ′′P ′ = 0,

(P ′)2 = (P ′)† = P ′, (P ′′)2 = (P ′′)† = P ′′

Since the images of I’s are in K ′, we have:

(64) P ′′IA = 0, A ∈ 6

Since B preserve K ′, we have:

(65) P ′′BaP
′ = 0, a ∈ 4

Define

(66)
ba = P ′′BaP

′′, b†a = P ′′B†
aP

′′, a ∈ 4 ,

jA = JAP
′′, P ′′J†

A = j†A, A ∈ 6

Thus:

(67) ζP ′′ = P ′′μP ′′ =
∑
a∈4

[ba, b
†
a]−

∑
a∈4

P ′′B†
aP

′BaP
′′ −

∑
A∈6

j†AjA

Now, taking the trace of both sides of (67) we arrive at the conclusion K ′′ =
0:

(68) 0 ≤ ζdimK ′′ = −
∑
a∈4

‖P ′BaP
′′‖2−

∑
A∈6

‖jA‖2≤ 0 =⇒ dimK ′′ = 0

Conversely, assume (62) holds. Let

(69) f =
1

2
Tr (μ− ζ1K)

2

Consider the gradient flow, generated by f with respect to the flat Kähler
metric

(70) ds2 = ‖dB‖2+‖dI‖2+‖dJ‖2

The function f decreases along the gradient trajectory. Moreover, the trajec-
tory belongs to the GL(k)-orbit. Eventually, the trajectory stops at a critical
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point of f . Either it is the absolute minimum, i.e. the solution to (59), or
the higher critical point, where

(71) 〈ξ,∇μ〉 = 0, ξ = μ− ζ1K �= 0

The one-parametric subgroup (exp tξ)t∈C ⊂ GL(K), preserves (B, I,J),

(72)
[Ba, ξ] = 0, a ∈ 4 ,

ξIA = 0, JAξ = 0, A ∈ 6

Define K ′ = kerξ. The Eq. (72) implies K ′ is B-invariant, and contains the
image of I. Therefore, by (62), K ′ = K, ξ ≡ 0, i.e. (59) is satisfied.

����������
Notation. We denote by [B, I,J] the GL(k)-orbit(

g−1Bag, g
−1IA, JAg

)
a∈4,A∈6,g∈GL(k)

.

4. The symmetries of spiked instantons

The moduli spaces M∗
k(�n) are acted on by a group H = H�n of symmetries,

defined below. The symmetry of M∗
k(�n) will be used in several ways. First,

we shall be studying H-equivariant integration theory of the spiked instanton
moduli, in cohomology and equivariant K-theory. Second, the shall define
new moduli spaces by studying the Γ-fixed loci (M∗

k(�n))
Γ in M∗

k(�n), for
subgroups Γ ⊂ H. These moduli spaces have the commutant CΓ(H) as the
symmetry group. Finally, the connected components M∗,γ

k (�n) ⊂ (M∗
k(�n))

Γ

can be defined using only the quiver of Γ, not the group Γ. The definition
can be then generalized to define more general quiver spiked instantons.
Their symmetry Hγ generalizes the commutant CΓ(H).

4.1. Framing and spatial rotations

First of all, we can act by a collection h = (hA)A∈6 of unitary matrices
hA ∈ U(nA), defined up to an overall U(1) multiple:

(73) h · [Ba , IA , JA] =
[
Ba , IAhA , h−1

A JA
]

We call the symmetry (73) the framing rotation.
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Secondly, we can multiply the matrices Ba by the phases Ba �→ qaBa, as
long as their product is equal to 1:

(74)
∏
a∈4

qa = 1

and we supplement this transformation with the transformation JA �→ qAJA:

(75) q · [Ba , IA , JA] = [qaBa , IA , qAJA]

We can view q as the diagonal matrix

(76) q = diag (q1, q2, q3, q4) ∈ U(1)3e ⊂ SU(4)

which belongs to the maximal torus U(1)3e of the group SU(4) of rotations
of C4 preserving some supersymmetry. We call (75) the spatial rotations.

The group

(77) H = P

⎛⎝∏
A∈6

U(nA)

⎞⎠ ×U(1)3e

is the symmetry of the moduli space of spiked instantons for generic ζ and �n.
The complexification HC preserves the holomorphic equations (57) and the
stability condition (62).

The center ZH of H is the eight dimensional torus

(78) ZH = U(1)5x × U(1)3e

The maximal torus TH of H is the torus

(79) TH =

((
×A∈6 TA

) /
U(1)

)
× U(1)3e

where

(80) TA ⊂ U(nA)

is the group of diagonal nA × nA unitary matrices, the maximal torus of
U(nA), TA ≈ U(1)nA . In the Eq. (79) we divide by the U(1) embedded di-
agonally into the product of all

∑
A nA U(1)’s.
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4.1.1. Coulomb parameters. Let (a, e) ∈ Lie(TH)⊗ C,

(81)
e = (e1, e2, e3, e4) , ea ∈ C,

∑
a∈4

ea = 0 ,

a = (aA)A∈6 , aA = diag (aA,1, . . . , aA,nA
) ∈ Lie(TA)⊗ C

The eigenvalues aA,α ∈ C are defined modulo the overall shift aA,α �→ aA,α +
x, x ∈ C.

The integrals (12) which we define below are meromorphic functions of
(e, a).

4.1.2. Symmetry enhancements. Sometimes the symmetry of the spiked
ADHM equations enhances. First of all, if all I = J = 0 (for NA = 0, for all
A), then the q-transformations can be generalized to the action of the full
SU(4) = Spin(6):

(82) Ba �→
∑
c∈4

gac̄Bc , gg† = 1, det(g) = 1

In the case of less punitive restrictions on NA’s, e.g. in the crossed instanton
case, the symmetry enhances to SU(2)× U(1)× SU(2), and, if ζ = 0, to
SU(2)3. Let us assume, for definiteness, that only N12 and N34 are non-zero.
Then the transformations:

(83)

(B1, B2, B3, B4, I12, J12, I34, J34)

�→ (uaB1 + ubB2,−ub̄B1 + uāB2, ūcB3 + ūdB4,

− ūd̄B3 + ūc̄B4, uI12, uJ12, ūI34, ūJ34) ,(
a b
−b̄ ā

)
∈ SU(2)12 ,

(
c d
−d̄ c̄

)
∈ SU(2)34 ,(

u 0
0 ū

)
∈ U(1)Δ ⊂ SU(2)Δ

aā+ bb̄ = cc̄+ dd̄ = uū = 1

preserve the crossed instanton equations (56). When ζ = 0 the U(1)Δ sym-
metry enhances to the full SU(2)Δ, acting by:



526 Nikita Nekrasov

(84)

(B1, B2, B3, B4), (I12, J12, I34, J34)

�→
(
uB1 − vB†

2, vB
†
1 + uB2, ūB3 − v̄B†

4, v̄B
†
3 + ūB4

)
,(

uI12 − vJ†
12, uJ12 + vI†12, ūI34 − v̄J†

34, ūJ34 + v̄I†34

)
,(

u v̄
−v ū

)
∈ SU(2)Δ , uū+ vv̄ = 1

The equation Υ12 ≡ J34I12 − I†34J
†
12, the equations s13 = −s†24, s14 = s†23, the

equations σ3,12, σ4,12 as well as the equations σ1,34, σ2,34 are SU(2)Δ-invariant,
while the equations s12, μ, s34 = s†12 form a doublet.

4.2. Subtori

In what follows we shall encounter the arrangement of hyperplanes Hl in
Lie(TH)⊗ C defined by the system of linear equations:

(85) Li(a, e) =
∑
A∈6

∑
α∈[nA]

�i;A,αaA,α +
∑
a∈4

ni;aea = 0

with �i;A,α ∈ {−1, 0,+1}, ni;a ∈ Z and the matrix �i;A,α of maximal rank.
Such equations (85) can be interpreted as defining a subtorus H = TL ⊂ TH:
simply solve (85) for the subset of aA,α’s for which the matrix �i;A,α is
invertible. We shall not worry about the integrality of the inverse matrix in
this paper, by using the covering tori, if necessary.

One of the reasons we need to look at the subtori TL is the following
construction.

4.3. Orbifolds, quivers, defects

In this section the global symmetry group H is equal to

H = P

⎛⎝∏
A∈6

U(nA)

⎞⎠× Grot

where
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1)

Grot = U(1)3e

if there are at least two A′ �= A′′ ∈ 6 with non-empty intersection with
nA′nA′′ �= 0, and to

2)

Grot = SU(2)A × U(1)Δ × SU(2)Ā

otherwise, i.e. there is at most one pair A, Ā with nAnĀ �= 0.

In all cases

Grot ⊂ SU(4) ,

so that to every γ ∈ Γ one associates a unitary 4× 4 matrix q = ‖qba(γ)‖a,b∈4
with unit determinant. In the first case this matrix is diagonal, in the second
case it is a 2× 2 block-diagonal matrix with unitary 2× 2 blocks of inverse
determinants.

The symmetry of M∗
k(�n) can be used to define new moduli spaces. Sup-

pose Γ ⊂ H is a discrete subgroup. Let HΓ ⊂ H be the maximal subgroup
commuting with Γ, the centralizer of Γ. Let Γ∨ be the set of irreducible uni-
tary representations (Rω)ω∈Γ∨ of Γ, and �k ∈ ZΓ∨

≥0. The representations NA,
A ∈ 6 of H decompose as representations of Γ

(86) NA =
⊕
ω∈Γ∨

NA,ω ⊗Rω

Let �n now denote the collection (nA,ω)A∈6,ω∈Γ∨ of dimensions

(87) nA,ω = dimNA,ω

of multiplicity spaces. The vector k = (kω)ω∈Γ∨ defines a representation of Γ:

(88) γ ∈ Γ �→ gγ ∈ U(K) , K =
⊕
ω∈Γ∨

Kω ⊗Rω , kω = dimKω

We call the components kω of the vector k fractional instanton charges. The
moduli space of Γ-folded spiked instantons of charge �k is the component
M∗,Γ

k (�n) set of Γ-fixed points (M∗
k(�n))

Γ. The representation (88) enters the
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realization of the Γ-fixed locus in the space of matrices (B, I,J):

(89) γ · (B, I,J) =
(
gγBg−1

γ , gγI,Jg
−1
γ

)
, gγ ∈ U(K)

where

γ · (B, I,J) ≡
(
qba(γ)Bb, IAhA(γ)

−1, qA(γ)hA(γ)JA

)
,(90)

γ ∈ Γ �→ (hA(γ))A∈6 × ‖qba(γ)‖a,b∈4 ∈ H

is the defining representation of Γ, with qA(γ) given by (9) in the case (1), and
by the projection to U(1)Δ in the case (2). The equations (89) are invariant
under the subgroup

(91)
∏
ω∈Γ∨

U(Kω) ⊂ U(K)

of unitary transformations of K commuting with Γ. The holomorphic equa-
tions (57) restricted onto the locus of Γ-equivariant i.e. obeying (89) matri-
ces B, I,J become the holomorphic equations defining MΓ

k(�n). The stability
condition (62) can be further refined, analogously to the refinement of the
real moment map equation μ =

∑
ω∈Γ∨ ζω1Kω

⊗ 1Rω
. We shall work in the

chamber where all ζω > 0.
The moduli spaces MΓ

k(�n) in the case (1) parametrize the spiked instan-
tons in the presence of U(1)3e-invariant surface operators, while in the case
(2) they parametrize the instantons in supersymmetric quiver gauge theories
on the ALE spaces, with additional defect.

The commutant HΓ acts on MΓ
k(�n), so that the partition functions we

study are meromorphic functions on Lie
(
HΓ
)
⊗ C.

Note that if Γ has trivial projection to Grot then the moduli space of
Γ-folded instantons is simply the product of the moduli spaces of spiked
instantons for Nω’s. In what follows we assume the projection to Grot to be
non-trivial.

4.3.1. Subtori for Γ-folds. Let us now describe the maximal torus THΓ

of the Γ-commutant as TL. In other words, the choice of a discrete subgroup
Γ ⊂ H defines the hyperplanes Li(a, e) = 0 in Lie(TH).

In the case (1) the Grot-part of Γ is abelian, i.e. it is a product of cyclic
groups (if Γ is finite) or it is a torus itself. In either case there is no restric-
tion on the e-parameters. The framing part of Γ reduces P (×AU(nA)) to
P (×A,ωU(nA,ω)) which means that some of the eigenvalues aA,α, viewed as
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the generators of LieU(nA), must coincide, more precisely to be of multiplic-
ity dimRω. The minimal case, when Γ is abelian, imposes no restrictions on
(a, e), so that THΓ = TH.

In the case (2) the Grot-part of Γ need not be abelian. Let us assume,
for definiteness, that A = 12, Ā = 34. If the image of Γ in SU(2)12 is non-
abelian, then e1 = e2. Likewise if the image of Γ in SU(2)34 is non-abelian
then e3 = e4. The non-abelian discrete subgroups of SU(2) have irreducible
representations of dimensions 2 and higher, up to 6. Thus the corresponding
aA,α eigenvalues will have the multiplicity up to 6.

4.3.2. Subtori for sewing. Let us specify the integral data for the subtori,
i.e. the explicit solutions to the constraints (85). Let e = (ea)a∈4, ea ∈ Z �=0,
be a 4-tuple of non-zero integers, with no common divisors except for ±1,
which sum up to zero:

(92)
∑
a∈4

ea = 0 .

Such a collection e defines a split 6 = 6+ � 6−, where 6± being the set of
A = {a, b} such that ±eaeb > 0.

For A = {a, b} ∈ 6−, i.e. eaeb < 0, let pA = gcd(|ea|, |eb|) > 0. Let us also
fix for such A ∈ 6− a partition νA = (νA,ι) of size nA, whose parts do not
exceed eA: 1 ≤ νA,ι ≤ pA. Let �A = �(νA) be its length.

Given νA we partition the set [nA] as the union of nonintersecting subsets

(93) [nA] =
⋃
ι

[nA]ι , #[nA]ι = νA,ι ,

[nA]ι′ ∩ [nA]ι′′ = ∅ for ι′ �= ι′′. Fix a map cA,ι : [nA]ι → Z obeying, for any
a′, a′′ ∈ [nA]ι, a′ �= a′′:

(94) cA,ι(a
′)− cA,ι(a

′′) �= 0 (mod pA)

When pA = 1 the condition (94) is empty.
For A = {a, b} ∈ 6+, let us fix a map cA : [nA]→ Z, obeying, for any

a′, a′′ ∈ [nA],

(95) cA(a
′)− cA(a

′′) /∈ Z>0ea + Z>0eb

Note that (95) does not forbid the situation where cA(a′) = cA(a
′′) for some

a′, a′′ ∈ [nA]. To make the notation uniform we assign to such A, νA = (nA),
�A = 1.
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The final piece of data is the choice ιA ∈ [�A] for each A ∈ 6−. Define
the set λA = [�A]\{ιA}, of cardinality �A − 1.

Now, we associate to the data

(96) L = (ν, λ, c, e) ,

the torus

(97) H = TL =

⎛⎝∏
A∈6

U(1)	A−1

⎞⎠ × U(1)

Note that only A ∈ 6− contribute to the product in (97). This torus is em-
bedded into TH as follows: the element

(98) (eiξ, eit) ≡
∏

A∈6−

(
eiξA,i

)
i∈λA

× eit ∈ TL

is mapped to [ ∏
A∈6−

diag−A ×
∏

A∈6+

diag+A

]
× diag

(
eieat

)
a∈4(99)

∈ P

⎛⎝∏
A∈6

U(nA)

⎞⎠× SU(4)

where diag±A ∈ U(nA) are the diagonal matrices with the eigenvalues

Eigen
(
diag−A

)
=
{

eicA,ιA
(α)t | α ∈ [nA]ιA

}
(100)

∪
{

ei(ξA,ι+cA,i(α)t) | ι ∈ λA, α ∈ [nA]ι

}
Eigen

(
diag+A

)
=
{

eicA(α)t| α ∈ [nA]
}

(101)

Thus, the torus TL corresponds to the solution of the Eqs. (85) with

(102)

ea = eau, a ∈ 4,

aA,α = cA(α)u, A ∈ 6+, α ∈ [nA]

aA,α = cA,ιA(α)u, A ∈ 6−, α ∈ [nA]ιA

aA,α = ξA,ι + cA,ι(α)u, A ∈ 6−, α ∈ [nA]ι , ι ∈ λA
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In other words, the Ω-background parameters are maximally rationally de-
pendent (the worst way to insult the rotational parameters), the framing of
the spaces NA, A ∈ 6+ is completely locked with space rotations (spin-color
locking), while the framing of the spaces NA, A ∈ 6− is locked partially.

4.4. Our goal: compactness theorem

Our goal is to establish the compactness of the fixed point sets Mk(�n)
TL

and
(
MΓ

k(�n)
)THΓ . Before we attack this problem we shall discuss a little

bit the ordinary instantons, then look at a few examples of the particular
types of spiked instantons: the crossed and the folded instantons, and then
proceed with the analysis of the general case. The reader interested only in
the compactness theorem can skip the next two sections at the first reading.

5. Ordinary instantons

In this section we discuss the relations between the ordinary four dimensional
U(n) instantons and the spiked instantons.

5.1. ADHM construction and its fine print

In the simplest case only one of six vector spaces is non-zero, e.g.

(103) NA = 0 , A �= {1, 2}.

Let n = n12. We shall now show that, set theoretically, the moduli space
of spiked instantons in this case is Mk(n), the ADHM moduli space (more
precisely, its Gieseker-Nakajima generalization).

Recall the ADHM construction of the U(n) framed instantons of charge
k on (noncommutative) R4 [3, 24, 27]. It starts by fixing Hermitian vector
spaces N and K of dimensions n and k, respectively. Consider the space of
quadruples (B1, B2, I, J),

(104) I : N → K, J : K → N, Bα : K → K, α = 1, 2

obeying

(105) �μ12 ≡
(
2μR

12, μC

12 + μC†
12 , i

(
μC

12 − μC†
12

) )
= (ζ, 0, 0) · 1K ,
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where

(106) μC

12 = [B1, B2] + IJ, 2μR

12 = [B1, B
†
1] + [B2, B

†
2] + II† − J†J

Note that the number of equations (105) plus the number of symmetries
is less then the number of variables. The moduli space Mk(n) of solutions
to (105) modulo the U(k) action

(107) (B1, B2, I, J) �→ (g−1B1g, g
−1B2g, g

−1I, Jg) , g ∈ U(k)

has the positive dimension

(108) dimRMk(n) = 4k(n+ k)− 3k2 − k2 = 4nk

Again, the μR
12-equation, with ζ > 0, can be replaced by the stability condi-

tion, and the GL(k)-symmetry:

(109)

Any subspace K ′ ⊂ K , such that I(N) ⊂ K ′ ,

and Bα(K
′) ⊂ K ′ , for all α = 1, 2

coincides with all of K , K ′ = K

in other words , C[B1, B2] I(N) = K

����������
Notation. We denote by [B1, B2, I, J ] the GL(k)-orbit(

g−1B1g, g
−1B2g, g

−1I, Jg
)
g∈GL(k)

.

5.2. Ordinary instantons from spiked instantons

Now, to show that the spiked instantons reduce to the ordinary instantons
when (103) is obeyed, we need to show that B3 = B4 = 0 on the solutions
of our equations (57). This is easy:

(110) B3f(B1, B2)I = f(B1, B2)B3I = 0

where we used [B1, B3] = μ13 = 0, [B2, B3] = μ23 = 0, and B3I = 0. There-
fore B3 acts by zero on all of K. The same argument proves the vanishing
of B4.
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5.3. One-instanton example

Let k = 1. We can solve the equations (106) explicitly. The matrices B1, B2

are just complex numbers, e.g. b1, b2 ∈ C. The pair I, J obeys IJ = 0,
‖I‖2−‖J‖2= ζ. Assuming ζ > 0 define the vectors w1 = J(K) ∈ N , w2 =

1√
ζ+‖J‖2

I†(K) ∈ N . They obey 〈w2, w1〉 = 0, 〈w2, w2〉 = 1. Dividing by the

U(1) = U(K) symmetry we arrive at the conclusion:

(111) M1(n) = C
2 × T ∗

CP
n−1

The first factor parametrizes (b1, b2), the base CPn−1 of the second factor is
the space of w2’s obeying ‖w2‖2= 1 modulo U(1) symmetry.

5.4. U versus PU

In describing the action of H12 in (73) specified to the case of ordinary
instantons we use an element h of the group U(n) yet it is the group PU(n) =
U(n)/U(1) = SU(n)/Zn which acts faithfully onMk(n). Indeed, multiplying
h by a scalar matrix

(112) h → hũ, ũ ∈ U(1)

does not change the effect of the transformation (73) since it can be undone
by the U(k)-transformation (107) with g = ũ−11K ∈ U(k).

5.5. Tangent space

Letm ∈ Mk(n). Let (B1, B2, I, J) be the representative ofm = [B1, B2, I, J ].
Consider the nearby quadruple

(113) (B1 + δB1, B2 + δB2, I + δI, J + δJ)

Assuming it solves the ADHM equations to the linear order, the variations
δB1, δB2, δI, δJ are subject to the linearized μC

12 equation:

(114) d2 (δB1, δB2, δI, δJ) := [B1, δB2] + [δB1, B1] + (δI)J + I(δJ) = 0
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and we identify the variations which differ by an infinitesimal GL(K)-
transformation of (B1, B2, I, J):

(δB1, δB2, δI, δJ) ∼ (δB1, δB2, δI, δJ) + d1 (δσ) ,(115)
d1 (δσ) := ( [B1, δσ] , [B2, δσ], −δσ · I , J · δσ )

Since d2 ◦ d1 = 0, the tangent space is the degree 1 cohomology, TmMk(n) =
kerd2/imd1 = H1TmMk(n), of the complex

TmMk(n) = [0→ End(K)(116)
−→d1 End(K)⊗ C

2
12 ⊕Hom(N,K)⊕Hom(K,N)

−→d2 End(K)⊗ ∧2
C
2
12 → 0]

5.6. Fixed locus

In applications we will be interested in the fixed point set Mk(n)
T12 with

T12 ⊂ H12 a commutative subgroup. The maximal torus T12 ⊂ H12 is the
product of the maximal torus Tn ⊂ PU(n) and the two dimensional torus
U(1)12 × U(1)′12 ⊂ SU(2)12 × U(1)′12. Let

(117) a = i diag(a1, . . . , an) , aα ∈ R

be the generic element of Lie (Tn). It means that the numbers aα are defined
up to the simultaneous shift

(118) aα ∼ aα + a, a ∈ R

and we assume aα �= aβ , for α �= β. Let

(119) e12 =
1

2
( e1 − e2, e1 + e2 )

be the generic element of Lie (U(1)12 × U(1)′12). The pair (a, e12) generates
an infinitesimal transformation (73), (75) of the quadruple (B1, B2, I, J):

(120) δa,e12(B1, B2, I, J) = ( e1B1, e2B2, Ia, (e1 + e2 − a) J )

For the U(k)-equivalence class f = [B1, B2, I, J ] to be fixed under the in-
finitesimal transformation generated by the generic pair (a, e) there must
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exist an infinitesimal U(k)-transformation (107)

(121) δσ(B1, B2, I, J) = ( [B1, σ], [B2, σ], −σI, Jσ )

undoing it: δσ(B1, B2, I, J) + δa,e12(B1, B2, I, J) = 0. In other words, there
must exist the operators d̂α, d̂1, d̂2 ∈ End(K), such that:

(122)

σ =
∑
α∈[n]

aαd̂α + e1d̂1 + e2d̂2 ,∑
α∈[n]

d̂α = 1K

obeys:

(123)
eaBa = [σ,Ba] , a ∈ {1, 2}
Ia = σI , − (e1 + e2) J + aJ = Jσ ,

or, in the group form:

(124) qaBa = gtBag
−1
t , q1q2h

−1
t J = Jg−1

t , Iht = gtI

where qa = etea , gt = etσ, ht = eta. Here t is an arbitrary complex number,
the map t �→ gt defines the representation T12 → GL(k). The Eqs. (124)
imply:

(125) gt

(
Bi−1

1 Bj−1
2 I

)
= qi−1

1 qj−1
2

(
Bi−1

1 Bj−1
2 I

)
ht

The Eqs. (123) for generic (a, e) imply:

(126) K =
⊕
α∈[n]

Kα , d̂α|Kβ
= δα,β

The eigenspace Kα is generated by Iα = I(Nα), where Nα ⊂ N is the eigen-
line of a with the eigenvalue aα:

(127) Kα =
∑
i,j≥1

Bi−1
1 Bj−1

2 Iα .

The subspace Iα ⊂ K (it is one-dimensional for generic a) obeys:

(128) d̂βIα = δα,β , d̂1Iα = d̂2Iα = 0
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On Kα the operators d̂1, d̂2 have non-negative spectrum:

(129) σ
(
Bi−1

1 Bj−1
2 Iα

)
= (aα + e1(i− 1) + e2(j − 1))

(
Bi−1

1 Bj−1
2 Iα

)
Therefore, as long as aβ − aα /∈ e1Z>0 + e2Z>0,

(130) J
(
Bi−1

1 Bj−1
2 Iα

)
= 0 ,

as follows from the last Eq. in (123).
Thus, we have shown that

(131) J = 0, [B1, B2] = 0

Define an ideal I(α) ⊂ C[x, y] in the ring of polynomials in two variables by:

(132) P (x, y) ∈ I(α) ⇔ P (B1, B2)Iα = 0

Define the partition λ(α) =
(
λ
(α)
1 ≥ λ

(α)
2 ≥ · · · ≥ λ

(α)
	
λ(α)

)
by

(133) λ
(α)
i = min{ j |Bi−1

1 Bj
2Iα = 0 }

Thus, Kα = C[z1, z2]/Iλ(α) . Here we denote by Iλ ⊂ C[x, y] the ideal gener-
ated by the monomials xi−1yλi , i = 1, 2, . . . , �λ.

Conversely, given the monomial ideal Iλ(α) define the vector Iα ⊂ Kα

to be the image of the polynomial 1 in the quotient C[x, y]/Iλ(α) . The op-
erators B1, B2 act by multiplication by the coordinates x, y, respectively.
Furthermore,

(134) Kα =

	λ⊕
i=1

λi⊕
j=1

Kα;i,j

where

(135) d̂1|Kα;i,j
= i− 1, d̂2|Kα;i,j

= j − 1

The map (a, e12) �→ σ ∈ End(K) makes the space K a T12-representation.
Its character is easy to compute:

(136) Kχ := TrK gt =
∑
α∈[n]

etaα

	
λ(α)∑
i=1

qi−1
1

λ
(α)
i∑

j=1

qj−1
2
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The set of eigenvalues of σ is a union of n collections of centers of boxes of
Young diagrams λ(1), . . . , λ(n)

Figure 6: Eigenvalues of σ.

The space N is a T12-representation by definition:

(137) Nχ := TrN ht =
∑
α∈[n]

etaα

We also define:

(138) K∗
χ = TrK g−1

t , N∗
χ = TrN h−1

t

5.7. Tangent space at the fixed point

Finally, the tangent space TfMk(n) to the moduli space at the fixed point f is
also aT12-representation. Let us compute its character. Let f = [B1, B2, I, J ].
The quadruple (B1, B2, I, J) is fixed by the composition of the T12 trans-
formation (eta, ete12) ∈ TC

12 and the GL(k)-transformation etσ ∈ GL(k), for
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any complex number t, cf. (123). Now take the nearby quadruple(
B̃1 = B1 + δB1, B̃2 = B2 + δB2, Ĩ = I + δI, J̃ = J + δJ

)
and act on it by the combination of the TC

12 transformation (e
ta, ete12):(

B̃1, B̃2, Ĩ, J̃
)
�→
(
q1B̃1, q2B̃2, Ĩ, q1q2J̃

)
and the GL(k)-transformation gt:(

B̃1, B̃2, Ĩ, J̃
)
�→
(
g−1
t B̃1gt, g

−1
t B̃2gt, g

−1
t Ĩ , J̃gt

)
,

defining the T12-action on (δB1, δB2, δI, δJ):

et · [δB1, δB2, δI, δJ ](139)
=
[
q1g

−1
t δB1gt , q2g

−1
t δB2gt , g

−1
t δIht, q1q2h

−1
t δJgt

]
.

So the space T 1
f Mk(n) of variations (δB1, δB2, δI, δJ) is a T12 representa-

tion, with the character:

(140) Tr T 1
f Mk(n) (h, q) = (q1 + q2)KχK

∗
χ +NχK

∗
χ +N∗

χKχq1q2

The first two terms on the right hand side account for δB1, δB2, the third
term corresponds to the δI variations, and the last term accounts for the δJ
variations.

Now, the tangent space TfMk(n) is the degree 1 cohomologyH1TfMk(n)
of the complex (116), which has no H0 or H2 cohomology (for ζ > 0). The
character of TfMk(n) can be therefore computed by taking the alternating
sum of the characters of T 0

f Mk(n), T 1
f Mk(n) and T 2

f Mk(n), giving:

(141) Tr TfMk(n)(h, q) = NχK
∗
χ + q12N

∗
χKχ − p12KχK

∗
χ

Thus,

(142) Tr TfMk(n)(h, q) =
∑

α,β∈[n]
et(aα−aβ) Tχ(λ

(α), λ(β))

where

(143) Tχ(μ, λ) =
∑

(i,j)∈λ
q
i−λt

j

1 qμi+1−j
2 +

∑
(i,j)∈μ

q
μt

j+1−i
1 qj−λi

2
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We see that, as long as there is no rational relation between e1 and e2,
and aα − aβ /∈ e1Z+ e2Z the weights which appear in the character of the
tangent space are non-zero. In other words, the tangent space TfMk(n) does
not contain trivial representations of T12, i.e. f is an isolated fixed point.

5.8. Smaller tori

Let (Γ∨, d) be a pair consisting of a finite or a countable set Γ∨ (the meaning
of the notation will become clear later), and a function d : Γ∨ → N, which
we shall call the dimension. We assign to each ω ∈ Γ∨ a vector space

(144) Rω = C
d(ω)

of the corresponding dimension.
Let n be a d-partition of n,

(145) n =
∑
ω∈Γ∨

nωd(ω) , nω ≥ 0

with only a finite number of nω > 0. Let

(146) �n = #{ω |nω > 0 }

We associate to n a decomposition of N into the direct sum of tensor prod-
ucts:

(147) N =
⊕
ω∈Γ∨

Nω ⊗Rω

with nω-dimensional complex vector spaces Nω.
Define, for the d-partition n and a pair (e1, e2) of non-zero integers, the

sub-torus

(148) Tn;e ≈ Tn × U(1)e ⊂ PU(N)× Spin(4)12 .

Here U(1)e is embedded into U(1)12 × U(1)′12 ⊂ U(2)12 ⊂ Spin(4)12 by

(149) U(1)e : eiϑ �→
(
e

i

2
(e1+e2)ϑ, e

i

2
(e1−e2)ϑ

)
,

in other words, it acts on C2
12 by:

(150) (z1, z2) �→
(
eie1ϑz1, e

ie2ϑz2

)
.
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The torus Tn ⊂ Tn is defined to be a quotient of the product of the maximal
tori of U(nω) by the overall center U(1):

h =
⊕
ω∈Γ∨

hω ⊗ 1Rω
∈ U(N),(151) (

h1 : · · · : h	n
)
=
(
h1u : · · · : h	nu

)
∈ Tn ,

where hωh
†
ω = 1, ω ∈ Γ∨, hω = diag (uω,1, . . . , uω,nω

), and |u|2= 1.

5.9. Fixed points of smaller tori

Let us start with n = 1, so that T12 = Te. The Te-fixed points on Mk(1) =

Hilb[k](C2) are isolated for e1e2 < 0 and non-isolated for e1e2 > 0, as we see
from the Tχ(λ, λ) character (143). Indeed, as soon as the partition λ has
a box � = (i, j) whose arm plus one-to-leg, or leg plus one-to-arm ratio is
equal to e1 : e2,

(152)
e1(i− λt

j) + e2(λi + 1− j) = 0,

or e1(λ
t
j + 1− i) + e2(j − λi) = 0

then TλMk(1) contains trivial Te-representations, i.e. λ is not an isolated
fixed point. Geometrically, the fixed points of the Te-action for e1e2 > 0 are
the (e1, e2)-graded ideals I in C[x, y], i.e. the ideals which are invariant under
the C×-action:

(153) (x, y)→ (te1x, te2y)

For such an ideal I the quotient K = C[x, y]/I is also a graded vector space:

(154) K =

dK⊕
s=0

Ks

For general Γ∨ and the general partition n the Tn;e-fixed point set is a finite
union of finite product

(155) Mk(n)
Tn;e =

⋃
∑

ω∈Γ∨,α∈[nω ]

kα,ω=k

∏
ω∈Γ∨

∏
α∈[nω]

Mkα,ω
(d(ω))Te

of the Te-fixed point sets on the moduli spaces Mk′(n′). This is easy to show
using the same methods as we employed so far. It suffices then to analyze
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the structure of Mk(n)
Te where the torus Te ≈ U(1) acts on the matrices

(B1, B2, I, J) via:

(156) eit · [B1, B2, I, J ] =
[
eie1tB1, e

ie2tB2, I, e
i(e1+e2)tJ

]
As usual, the GL(K)-equivalence class of the quadruple [B1, B2, I, J ] is Te-
invariant if for every et ∈ C× there is an operator gt ∈ GL(K) which un-
does (156), i.e.

(157)
eie1tg−1

t B1gt = B1 , eie2tg−1
t B2gt = B2

g−1
t I = I , ei(e1+e2)tJgt = J

The correspondence et �→ gt splitsK as the sum of irreducible representations
of Te

(158) K =
⊕
s≥0

Ks ⊗Rs

with Ks being the multiplicity space of the charge s representation Rs: et �→
ets. Let

(159) ks = dimKs .

We have:

(160)
∑
s

ks = k

The grade 0 component is 1-dimensional:

(161) K0 = I(N) .

The operators B1, B2 raise the grading by e1 and e2, respectively:

(162) Ba : Ks → Ks+ea , a = 1, 2

The complex S0 and its cohomology P±
12 are also graded:

(163) P±
12 =

⊕
s

P±
12,s .
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The dimensions ks are constant throughout the connected component of the
set of (e1, e2)-homogeneous ideals. In fact, for e1 = e2 the component is a
smooth projective variety, [17]. See also [16], [20].

5.10. Compactness of the fixed point set

The topology of the fixed point set Mk(n)
T12 depends on the choice of the

torus T12. In other words, it depends on how non-generic the choice of (a, e)
is.

If there is no rational relation between a and e1, e2, more precisely, if for
any α, β ∈ [n] and p, q ∈ Z

(164) aα − aβ + e1p+ e2q = 0 =⇒ α = β , p = q = 0

then the fixed points f are isolated, f ↔
(
λ(α)

)
α∈[n]. Their total number, for

fixed k is finite, therefore the set of fixed points is compact.
What if there is a rational relation between aα − aβ and e1, e2? That is

for some non-trivial α, β ∈ [n] and p, q ∈ Z,

(165) aα − aβ + e1p+ e2q = 0 .

We shall assume all the rest of the parameters aγ , e1, e2 generic. In particular
we assume both e1, e2 non-zero. There are three cases to consider:

1) α �= β and pq > 0 ;

2) α = β and pq > 0;

3) pq < 0 and no restriction on α, β ;

In the case (1) the fixed locus is non-compact. It is parametrized by the value
of the invariant

(166) JβB
p−1
1 Bq−1

2 Iα

We therefore must make sure, in what follows, that the eigenvalues (aα)α∈[n]
of the infinitesimal framing rotations and the parameters (e1, e2) of the spa-
tial rotation do not land on the hyperplanes:

(167) aα − aβ + e1p+ e2q �= 0,

for all α �= β, and integer p, q ≥ 1.
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In the case (2) the fixed points corresponding to the monomial ideals are
isolated, since the weights in (143) have the form e1p

′ + e2q
′ with p′q′ ≤ 0.

We shall show below that

the U(1)-fixed points in the case pq > 0 correspond to the monomial ideals.
In other words they are U(1)× U(1)-invariant

For fixed k the sizes of the Young diagrams λ(α) are bounded above, since

(168)
n∑

α=1

|λ(α)| = k

Since the number of collections of Young diagrams which obey (168) is finite,
the set of points fixed by the action of the maximal torus T is compact. This
set, as we just showed, is in one-to-one correspondence with the collections

(169) f ↔
(
λ(α)

)
α∈[n]

obeying (168).
In the case (3) the fixed points are not isolated, but the fixed point set

is compact. Let us show the Tn;e-fixed point set is compact. There are two
cases:

1) e1e2 > 0. In this case the minimal torus corresponds to Γ∨ = {0},
d(0) = n, n0 = 1, i.e. for Tn = 1, Tn;e = Te. The corresponding
Coulomb parameter vanishes, a = 0.
We are going to demonstrate that for all Tn;e-fixed points on Mk(n)

the L2-norm of (B1, B2, I, J) is bounded above by a constant which
depends only on n, k, and ζ. We use the real moment map equation
(46):

(170)
kζ = TrK (μ) = ‖I‖2−‖J‖2

ζTrKσ = TrK (σμ) = e1‖B1‖2+e2‖B2‖2+(e1 + e2)‖J‖2

where we used the Eqs. (123) with the specialization e1 = e1, e2 = e2:

(171)
eaBa = [σ,Ba] , eaB

†
a = [B†

a, σ] , a = 1, 2 ,

0 = σI , 0 = I†σ , (e1 + e2)J = −Jσ , J†(e1 + e2) = −σJ† ,



544 Nikita Nekrasov

The Eqs. (171) imply, by the same arguments as before, that the spec-
trum of σ has the form:

(172) s = e1(i− 1) + e2(j − 1), (i, j) ∈ Σ

for a finite set Σ of pairs (i, j) of positive integers, and that J maps
the eigenvectors of σ in K to zero, unless the eigenvalue is equal to
−e1 − e2. Now, the eigenvalues of σ are of the form (172), which are
never equal to −e1 − e2. Thus, J |K= 0, therefore B1 and B2 commute
on K.
Now, σ|I(N)= 0, i.e. m0 = dim (imI) ≤ n. Now, the vector spaces

(173) Ki,j = C ·Bi−1
1 Bj−1

2 I(N)

if non-zero, contribute dimKi,j ≤ n to ks with s = e1(i− 1) + e2(j −
1). It is clear that

ks = dim
∑

e1(i−1)+e2(j−1)=s

C

(
Bi−1

1 Bj−1
2 I(N)

)
(174)

≤
∑

e1(i−1)+e2(j−1)=s

dimC

(
Bi−1

1 Bj−1
2 I(N)

)
≤ nCoeffts

(1− tke1)(1− tke2)

(1− te1)(1− te2)
,

since both i and j cannot be greater then k. The trace TrKσ can be
estimated by

TrK σ =
∑
s∈Σ

s ks ≤ n

∞∑
s=0

s Coeffts
(1− tke1)(1− tke2)

(1− te1)(1− te2)
(175)

= n t
d

dt

∣∣∣∣∣
t=1

(1− tke1)(1− tke2)

(1− te1)(1− te2)

=
1

2
k2(k − 1)n(e1 + e2)

Thus, J = 0, the norms ‖B1,2‖2 of the operators B1,2 are bounded
above, while the norm of the operator I is fixed:

(176) ‖I‖2= ζk ,
e1

e1 + e2
‖B1‖2+

e2
e1 + e2

‖B2‖2 ≤ ζ

2
k2(k − 1)n
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2) e1e2 < 0. In this case we take Γ∨ = [n], d(ω) = 1 for all ω ∈ [n]. The
Coulomb parameters are the generic n complex numbers aα ∈ C, α ∈
[n], defined up to an overall shift. Below we further restrict the pa-
rameters aα to be real, so that they belong to the Lie algebra of the
compact torus Tn;e. The equations (171) generalize to:

(177)
eaBa = [σ,Ba] , eaB

†
a = [B†

a, σ] , a = 1, 2 ,

Ia = σI , aI† = I†σ , (e1 + e2 − a)J = −Jσ ,

J†(e1 + e2 − a) = −σJ† ,

The fixed point set Mk(n)
Tn;e splits:

(178) Mk(n)
Tn;e =

⋃
k1+···+kn=k

∏
α∈[n]

Mkα
(1)Te

The fixed points are isolated, these are our friends (λ(α))α∈[n], the n-
tuples of partitions with the total size equal to k. Since it is a finite
set, it is compact.
Note that we couldn’t restrict the torus Tn;e any further in this case.

Indeed, the crucial ingredient in arriving at (178) is vanishing of the J
matrix for the Tn;e-invariant solutions of the ADHM equations. The
argument below the Eq. (172) we used before would not work for e1e2 <
0, since aα − (e1 + e2) may be equal to aβ + e1(i− 1) + e2(j − 1) for
some α, β ∈ [n], i, j ≥ 1. In this case J may have a non-trivial matrix
element, giving rise to a non-compact fixed locus. Now, insisting on
the Tn;e-invariance with Tn = U(1)n−1 means aα’s in (177) are com-
pletely generic, in particular, for α �= β, aα − aβ /∈ Z. This still leaves
the case α = β as a potential source of noncompactness. But this is the
case of the Te-action on Mk(1) = Hilb[k](C2). In this case J vanishes
not because of the toric symmetry, but rather because of the stability
condition [25]:

JI = Tr IJ = Tr [B2, B1] = 0,(179)
J(xB1 + yB2)

lI = Tr (xB1 + yB2)
l[B2, B1]

= Tr (xB1 + yB2)
l[xB1 + yB2, x

′B1 + y′B2] = 0,

for any x, y, x′, y′, s.t. x′y − xy′ = 1 ,
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Jf(B1, B2)B1B2g(B1, B2)I

= Jf(B1, B2)B2B1g(B1, B2)I

+ (Jf(B1, B2)I) (Jg(B1, B2)I) = 0 , by induction

=⇒ JC[B1, B2]I = 0 =⇒ J = 0, by stability

The compactness of Mk(n)
Tn;e is thus established.

5.11. Ordinary instantons as the fixed set

Let us now consider the particular Tx = U(1)5 symmetry of the spiked in-
stanton equations,

(180) ( IA , JA ) −→
(
eiϑAIA , e−iϑAJA

)
where �ϑ = (ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6) ∼ (ϑ1 + ϑ, ϑ2 + ϑ, ϑ3 + ϑ, ϑ4 + ϑ, ϑ5 + ϑ,
ϑ6 + ϑ) for any ϑ. The Tx-invariant configuration [B, I,J] defines a homo-
morphism of the covering torus T̃x ≈ U(1)6 −→ U(k), via the compensating
U(k)-transformation g(�ϑ) obeying:

(181) eiϑAIA = g(�ϑ)IA , e−iϑAJA = JAg(�ϑ)
−1 , g(�ϑ)Bag(�ϑ)

−1 = Ba

The space K splits as the orthogonal direct sum

(182)
K =

⊕
A∈6

KA , g(�ϑ)|KA
= eiϑA ,

KA = C[Ba, Bb]IA(NA) , for A = {a, b}

This decomposition is preserved by the matrices B, I,J. Thus the solution
is the direct sum of the solutions of ADHM equations:

(183) M∗
k(�n)

Tx =
⋃

∑
A∈6 kA=k

∏
A∈6

MkA
(nA)

6. Crossed and folded instantons
Distorted shadows fell

Upon the lighted ceiling:

Shadows of crossed arms, of crossed legs-

Of crossed destiny.†

† Winter night, from “Dr. Zhivago”, B. Pasternak, English translation by Bernard
G. Guerney.
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The next special case is where only two e.g. NA′ and NA′′ out of six
vector spaces NA are non-zero. There are two basic cases.

6.1. Crossed instantons

Suppose A′ ∪A′′ = ∅, e.g. A′ = {1, 2} and A′′ = {3, 4}. In this case we define

(184) M+
k (n,w) =M0

k(n12 = n, 0, 0, 0, 0, n34 = w)

We call the space M+
k (n,w) the space of (n,w)-crossed instantons.

The virtual dimension of the space M+
k (n,w) is independent of k, it is

equal to −2nw. As a set, M+
k (n,w) is stratified

(185) M+
k (n,w) =

⋃
k′+k′′≥k

M+
k′,k′′;k(n,w) .

The stratum

(186) M+
k′,k′′;k(n,w) =

{
[B, I,J] | dimK12 = k′, dimK34 = k′′

}
parametrizes the crossed instantons, whose ordinary instanton components
have the charges k′ and k′′, respectively: the crossed instanton [B, I,J] defines
two ordinary instantons, [B1, B2, I12, J12] on C2

12 and [B3, B4, I34, J34] on C2
34,

of the charges

(187) k′ = dimK12 , k′′ = dimK34

6.2. One-instanton crossed example

When k = 1 the matrices Ba are just complex numbers ba ∈ C, a ∈ 4. The
equations b1I34 = b2I34 = 0 and b3I12 = b4I12 = 0 imply that if (b1, b2) �= 0,
then I34 = 0, I12 �= 0, (b3, b4) = (0, 0), K = K12 and the rest of the matrices
define the ordinary charge 1 U(n) instanton, parametrized by the space (111).
Likewise, if (b3, b4) �= 0, then I12 = 0, I34 �= 0, (b1, b2) = (0, 0), K = K34 and
the rest of the matrices define the ordinary charge 1 U(w) instanton. Fi-
nally, if (b1, b2, b3, b4) = 0, then both I12, I34 need not vanish. If, indeed,
both I12, I34 do not vanish, then J12 and J34 vanish, by the υ-equaitons,
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while I12, I34 obey

(188) ‖I12‖2+‖I34‖2= ζ ,

which, modulo U(1) = U(K) symmetry, define a subset in CP
n+w−1, the

complement to the pair of “linked” projective spaces, CPn−1 and CP
w−1,

corresponding to the vanishing of I34 and I12, respectively. The result is,
then

(189) M+
1 (n,w) = C

2 × T ∗
CP

n−1 ∪ CP
n+w−1 ∪ C

2 × T ∗
CP

w−1 ,

the first and second components intersect along (0, 0)× CP
w−1 the second

and the third components intersect along (0, 0)× CP
n−1, where CP

n−1 ∪
CP

w−1 ⊂ CP
n+w−1 are non-intersecting CP

n−1 ∩ CP
w−1 = ∅ projective sub-

spaces.

Figure 7: Charge one crossed instanton moduli space: the planes represent the
complex plane factors C2

12 and C2
34, the girl represents the T ∗CPw−1 factor,

the man represents the T ∗CPn−1 factor, the orange ball is the CP
n+w−1

component, the blue and green dots are the CP
n−1 and CP

w−1 loci of the
intersections of components.

6.3. Folded instantons

In this case A′ ∩A′′ = {a}, e.g. A′ = {1, 2}, A′′ = {1, 3}, a = 1.
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We define:

(190) M
|_
k (n,w) =Mk

k(n12 = n, n13 = w, 0, 0, 0, 0)

We call the space M
|_
k (n,w) the space of (n,w)-folded instantons.

There exists an analogue of the stratification (185) for the folded in-
stantons. Again, the folded instanton data [B1, B2, B3, B4, I12, I13, J12, J13]
defines two ordinary noncommutative instantons on R4, one on C2

12, [B1, B2,
I12, J12], another on C2

13, [B1, B3, I13, J13]. The stability implies that B4

vanishes. The spaces K12 = C[B1, B2]I12(N12) and K13 = C[B1, B3]I13(N13)
generate all of K,

(191) K = K12 +K13.

6.4. One-instanton folded example

When k = 1, as before, the matrices Ba are the complex numbers ba, a ∈ 4,
except that b4 vanishes. Now, the equation b2I13 = 0 implies that if b2 �= 0
then I13 = 0, and we have the charge one ordinary U(n) instanton on C2

12.
Likewise the equation b3I12 = 0 implies that if b3 �= 0 then I12 = 0 and we
have the charge one ordinary U(w) instaton on C2

13. Finally, when both
b2 = b3 = 0, the remaining equations J12I13 = J13I12 = J12I12 = J13I13 = 0,
and ‖I12‖2+‖I13‖2−‖J12‖2−‖J13‖2= ζ, define the variety which is a product
of a copy of C1 (parametrized by b1) and our friend the union of three pieces:
CP

n+w−1 (this is the locus where J12 = J13 = 0), T ∗CPn−1 (the locus where
I13 = J13 = 0) and T ∗CPw−1 (the locus where I12 = J12 = 0):

(192) M
|_
1 (n,w) = C

2 × T ∗
CP

w−1 ∪ C
1 × CP

n+w−1 ∪ C
2 × T ∗

CP
n−1 ,

the first and second components intersect along C1 × CP
w−1 the second and

the third components intersect along C1 × CP
n−1, where CPn−1 ∪ CP

w−1 ⊂
CP

n+w−1 are non-intersecting CP
n−1 ∩ CP

w−1 = ∅ projective subspaces.

6.5. Fixed point sets: butterflies and zippers

Let us now discuss the fixed point sets of toric symmetries of the crossed and
folded instantons. The torus Tn,w × U(1)3e acts on M+

k (n,w) and M
|_
k (n,w):

(193) (Ba, IA, JA) �→
(
eiteaBa, IAe

−itaA , eiteAeitaAJA
)
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Here aA = diag (aA,1, . . . , aA,nA
) where the complex numbers aA,α, α ∈ [nA]

are defined up to the overall shift

(194) aA,α ∼ aA,α + y ,

with y ∈ C. Let e = (e1, e2, e3, e4),

(195)
∑
a∈4

ea = 0

We assume ea �= 0 for each a ∈ 4.

6.5.1. Toric crossed instantons. The fixed point setM+
k (n,w)

Tn,w×U(1)3e

is easy to describe. The infinitesimal transformation generated by (a, e)
is compensated by the infinitesimal GL(k) transformation, generated by
σ ∈ End(K). As in the previous section this makes K a representation of
Tn,w × U(1)3e . The space K contains two subspaces, K12 and K34, whose
intersection K12,34 = K12 ∩K34 belongs to both P12 and P34:

(196) K12,34 ⊂ P12 ∩ P34

Figure 8: The butterfly.
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The eigenvalues of σ on K12 have the form:
(197)
Eigen (σ|K12

) =
{
a12,α + e1(i− 1) + e2(j − 1)

∣∣∣ α ∈ [n] , (i, j) ∈ λ(12,α)
}

The eigenvalues of σ on K34 have the form:
(198)
Eigen (σ|K34

) =
{
a34,β + e3(i− 1) + e4(j − 1)

∣∣∣ β ∈ [w] , (i, j) ∈ λ(34,β)
}

These two sets do not overlap when all the parameters aA,α, ea are generic.
Therefore K12 ⊥ K34 and the Tn,w × U(1)3e-fixed points are isolated. These
fixed points are, therefore, in one-to-one correspondence with the pairs

(199) (λ12;λ34)

consisting of n- and w-tuples

λ12 =
(
λ(12,1), . . . , λ(12,n)

)
; λ34 =

(
λ(34,1), . . . , λ(34,w)

)
,

of partitions, obeying

(200)
∑
α∈[n]

∣∣∣∣λ(12,α)

∣∣∣∣ + ∑
β∈[w]

∣∣∣∣λ(34,α)

∣∣∣∣ = k

Their number is finite, therefore the set M+
k (n)

Tn,w×U(1)3e of fixed points is
compact.

Now let us try to choose a sub-torus T′ ⊂ Tn,w × U(1)3e , restricted only
by the condition that J12 = J34 = 0 for the T′-invariant solutions of (57).
We wish to prove that the set of T′-fixed points is compact in this case as
well. In the next sections we shall describe such tori in more detail.

We start by the observation that if K12,34 �= 0 then the two sets (197)
and (198) of σ-eigenvalues must overlap. Therefore, for some (α, β) ∈ [n]×
[w], and for some (i′, j′) ∈ λ(12,α), (i′′, j′′) ∈ λ(34,β)

(201) a12,α + e1(i
′ − 1) + e2(j

′ − 1) = a34,β + e3(i
′′ − 1) + e4(j

′′ − 1)

Note that (201) is invariant under the shifts (194). Moreover, if (cf. (7))

(202)
a12,α′ − a12,α′′ /∈ Ze , α′ �= α′′

a34,β′ − a34,β′′ /∈ Ze , β′ �= β′′

and 0 /∈ Ze, then the condition (201) determines (α, β) and i′j′ and i′′j′′

uniquely, up to the shifts (i′, j′, i′′, j′′) �→ (i′ + k, j′ + k, i′′ − k, j′′ − k), k ∈
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Z. The relation (201) defines the codimension 1 subtorus T′ ⊂ Tn,w × U(1)3e .
Let us describe its fixed locus.

Figure 9: � = K12,34, a = a12,α, ν = a34,β , λ = λ(12,α), μ = λ(34,β).

The component of
the fixed point set
corresponding to (201)
is a copy of the complex
projective line: P (H12 ⊕H34) .
It parametrizes rank one
linear relations
between H12 and H34

Figure 10: The component P (H12 ⊕H34).

If the condition (201) on a, e is obeyed, it does not imply that K12,34 �= 0.
However, if in addition to (201) also the condition (202) is obeyed, then the
intersection K12,34 is not more then one-dimensional. Let H12 = P12;α;i′j′ ⊂
P12, H34 = P34;β;i′′j′′ ⊂ P34 be the one-dimensional eigenspaces of σ corre-
sponding to the eigenvalue (201). If an eigenbasis of N12 for a12 and the
eigenbasis of N34 for a34 are chosen, then H12 and H34 are endowed with the
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basis vectors as well (act on the eigenvector of a12 corresponding to a12,α by
Bi′−1

1 Bj′−1
2 I12 to get the basis vector of H12).

Let z be the coordinate on P (H12 ⊕H34) such that z =∞ corresponds
to the line H12 while z = 0 corresponds to the line H34. For z �= 0,∞ the
linear spaces H12 and H34 coincide, z being the isomorphism. When z → 0
the image (p1(z = 0), p2(z = 0)) is the pair (λ̃12, λ34), the image (p1(z =
∞), p2(z =∞)) is the pair (λ12, λ̃34). Here λ̃12 is the n-tuple of partitions
which differs from λ12 in that the Young diagram of λ̃(12,α) (λ̃ on the Fig. 10)
is obtained by removing the (i′, j′) square from the Young diagram of λ(12,α).
Similarly, the w-tuple λ̃34 (μ̃ on the Fig. 10) is obtained by modifying λ(34,β)

by removing the box (i′′, j′′).
In the next chapters we shall relax the condition (202). In other words,

we shall consider a subtorus in Tn,w × U(1)3e .

6.5.2. Toric folded instantons. Now let us explore the folded instantons
invariant under the action of the maximal torus Tn,w × U(1)3e . It is easy to
see that these are again the pairs (λ12, λ13), with λ12 = (λ(12,1), . . . , λ(12,n)),
λ13 = (λ(13,1), . . . , λ(13,w)). The spaces K12 and K13 do not intersect, K =
K12 ⊕K13. In other words, the only Tn,w × U(1)3e-invariant folded instan-
tons are the superpositions of the ordinary instantons on C2

12 and C2
13, of the

charges k12 and k13, respectively, with k = k12 + k13.
Now let us consider the non-generic case, such that K12,13 �= ∅. We call

the corresponding fixed point “the zipper”, see the Fig. 11. The codimension
one subtorus for which this is possible corresponds to the relation a12,α −
a13,β /∈ Ze between the parameters of the infinitesimal torus transformation.

Figure 11: The zipper.
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The non-empty overlap K12 ∩K13 implies the sets of eigenvalues of σ on
K12 and K13 overlap, leading to

(203) a12,α + e1(i
′ − 1) + e2(j

′ − 1) = a13,β + e1(i
′′ − 1) + e3(j

′′ − 1)

for some α ∈ [n], β ∈ [w], i′, j′, i′′, j′′. Unlike the Eq. (201) the Eq. (203) the
integers i′, i′′ are not uniquely determined. Since the left hand side of (203) is
the eigenvalue of σ|L1,2

, while the right hand side is the eigenvalue of σ|L1,3
,

we conclude:

(204)
(i′, j′) ∈ λ(12,α) , (i′′, j′′) ∈ λ(13,β) ,

(i′, j′ + 1) /∈ λ(12,α) , (i′′, j′′ + 1) /∈ λ(13,β)

i.e. j′ = λ
(12,α)t
i′ , j′′ = λ

(13,β)t
i′′ . The change (i′, i′′) �→ (i′ ± 1, i′′ ± 1) maps the

solution of (203) to another solution of (203). Let l ≥ 0 be the maximal
integer such that j′ = λ

(12,α)
i′−l , j′′ = λ

(13,β)
i′′−l , and let l ≥ m ≥ 0 be the maximal

integer such that j′ = λ
(12,α)
i′−m , j′′ = λ

(13,β)
i′′−m , and e12 = Bi′−m−1

1 Bj′−1
2 I12,α ∈

K12,13, e13 = Bi′′−m−1
1 Bj′′−1

3 I13,β ∈ K12,13. In other words the vectors e12
and e13 are linearly dependent, e12 = ze13. Consequenly, the arm-lengths
ai′−m,j′ = λ

(12,α)t
j′ − i′ +m, ai′−m,j′ = λ

(13,β)t
j′′ − i′′ +m must be equal:

(205) λ
(12,α)t
j′ − i′ +m = ai′−m,j′ = λ

(13,β)t
j′′ − i′′ +m

The component of
the fixed point set
corresponding to (203)
is a copy of the complex
projective line: P (Ce12 ⊕ Ce13) .
It parametrizes rank one
linear relations
between e12 and e13

Let z be the coordinate on P (Ce12 ⊕ Ce13) such that z =∞ corresponds
to the line Ce12 while z = 0 corresponds to the line Ce13. Then the im-
age (p1(z = 0), p2(z = 0)) is the pair (λ̃(12,α), λ(13,β)), the image (p1(z =
∞), p2(z =∞)) is the pair (λ(12,α), λ̃(13,β)). Here we defined λ̃(12,α) to be
the partition whose Young diagram is obtained by removing the block of
squares (i′ −m, j′) · · · (λ(12,α)t

j′ , j′) from the Young diagram of λ(12,α). Sim-
ilarly, the Young diagram of λ̃(13,β) is obtained by removing the block of
squares (i′′ −m, j′′) · · · (λ(13,β)t

j′′ , j′′) from the Young diagram of λ(13,β).
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Note that the pair
of Young diagrams
λ(12,α), λ(34,β) gives rise
to several components of
the fixed point set,
isomorphic to CP

1,
e.g. the ones corresponding
to the blocks of horizontal
boxes of different length,

see the pictures above on the left and on the right. But they actually belong
to moduli spaces of folded instantons of different charges (in computing the
charge k we subtract the length of the block from the sum of the sizes of
Young diagrams). So despite the similarity in graphic design, these are pieces
of different architectures.

7. Reconstructing spiked instantons

In this section we describe the sewing procedure, which produces a spiked
instanton out of six ordinary noncommutative instantons. We then use the
stitching to describe the spiked instantons invariant under the toric symme-
try, i.e. the TL-fixed locus.

7.1. The local K-spaces

For A = {a, b} ∈ 6 we define:

(206) KA = C[Ba, Bb] im(IA) ⊂ K

By definition, this is the minimal Ba, Bb-invariant subspace of K, containing
the image im(IA) = IA(NA) of NA.

The equations (57), (58) for i ≥ k imply that

(207) JB(KA) = 0, B �= A

and

(208) Bb(KA) = 0, b /∈ A
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7.2. Toric spiked instantons

Now let us describe the spiked instantons, invariant under the torus action.
The tori in question are the subgroups of H, the global symmetry group. We
consider first the maximal torus TH (cf. (79)) and then its subtori TL for
various choices of the L data.

7.2.1. Maximal torus. First of all, let us consider the TH-fixed points.
Let a = (aA)A∈6 be the collection of diagonal matrices aA = diag(aA,1, . . . ,
aA,nA

) ∈ LieU(nA). The spiked instanton [B, I,J] is TH-invariant iff for any
a and e there exists an operator σ ∈ End(K), such that:

(209)
eaBa = [σ,Ba] , a ∈ 4

(eA − aA)JA = −JAσ ,

IAaA = σIA , A ∈ 6

Let NA,α, α ∈ [nA], be the eigenspace of aA with the eigenvalue aA,α. Let
IA,α = IA(NA,α). We have (for A = {a, b}, a < b):

(210) KA =
∑

α∈[nA], i,j≥1

Ki,j
A,α , Ki,j

A,α = Bi−1
a Bj−1

b IA,α

The eigenvalue of σ on Ki,j
A,α is equal to

(211) σ|Ki,j
A,α
= aA,α + ea(i− 1) + eb(j − 1)

On the other hand, Eq. (209) implies that the vector

(212) ψ = JA(K
i,j
A,α) ∈ NA

is an eigen-vector of aA with the eigen-value:

(213) aAψ = (aA,α + eai+ ebj)ψ

The TH-invariance means we are free to choose the parameters aA,α, ea in an
arbitrary fashion. It means, that aA,α + eai+ ebj �= aA,β for i, j ≥ 1, α, β ∈
[nA]. Therefore JA vanishes on allKi,j

A,α subspaces, and therefore on all ofKA.
Therefore, all Ba’s commute with each other. Also, the eigenvalues (211) are
different for different (A,α; i, j). Therefore, the spaces Ki,j

A,α are orthogonal
to each other.
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Define, for A ∈ 6, α ∈ [nA] the partition λ(A,α), by:

(214) λ
(A,α)
i = sup

{
j | j ≥ 1,Ki,j

A,α �= 0
}

We have:

(215) kA =
∑

α∈[nA]

|λ(A,α)|

The TH-fixed points are, therefore, in one-to-one correspondence with the
collections

(216) Λ =
(
λ(A,α)

)
A∈6,α∈[nA]

of

(217) n =
∑
A∈6

nA

Young diagrams. In the companion paper [29] we shall be studying the sta-
tistical mechanical model, where the random variables are the collections Λ,
while the complexified Boltzman weights are the contributions of Λ to the
gauge partition function, defined below.

7.2.2. Subtori. Now fix the data L and consider the TL-invariant spiked
instantons [B, I,J]. As usual, these come with the homomorphism TL →
U(K) which associates the compensating U(K)-transformation gt,ξ for every
(eiξ, eit) ∈ TL. Since K decomposes into the direct sum of weight subspaces

(218) K =
⊕
w,n

Kw,n

where

(219) gt,ξ|Kw,n= ei〈w,ξ〉+int

where n ∈ Z, while w belongs to the weight lattice of
∏

A∈6− U(1)	A−1.
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The relations:

(220)

eieatBa = gt,ξBag
−1
t,ξ ,

IA(NA,α)e
icA(α)t = gt,ξIA(NA,α) , A ∈ 6+ , α ∈ [nA]

IA(NA,ι,α)e
icA,ι(α)t = gt,ξIA(NA,ι,α) , A ∈ 6− , α ∈ [nA]ι

imply:

(221)

IA(NA,α) ∈ K0,cA(α) , α ∈ [nA], A ∈ 6+ ,

IA(NA,ιA,α) ∈ K0,cA,ιA
(α) , α ∈ [nA]ιA , A ∈ 6− ,

IA(NA,ι,α) ∈ K�A,ι,cA,ι(α) , α ∈ [nA]ι, ι ∈ λA, A ∈ 6−

Ba(K
w,n) ⊂ Kw,n+ea , a ∈ 4

where �A,ι is the fundamental weight, 〈�A,ι, ξ〉 = ξA,ι.
Finally, the TL-invariance translates to

(222) JA(K
w,n) ∈ NA,α , A ∈ 6+, α ∈ [nA] ⇔ n = cA(α)− eA , w = 0 ,

JA(K
w,n) ∈ NA,ιA,α , A ∈ 6−, α ∈ [nA]ιA ⇔ n = cA,ιA(α)− eA , w = 0 ,

JA(K
w,n) ∈ NA,ι,α , A ∈ 6−, α ∈ [nA]ι ⇔ n = cA,ι(α)− eA , w = �A,ι .

which imply, with our choice of TL, that JA = 0. This is shown using the
same arguments as we used around the Eq. (213).

7.2.3. K-spaces for toric instantons. Let A ∈ 6+. The local space KA

is gt,ξ-invariant, and decomposes as

(223) KA =
⊕
n

Kn
A

with integer n, via

(224) gt,ξ|Kn
A
= eint

where n≥c−A=infα∈[nA]cA(α), when ea, eb>0 and n≤c+A=supα∈[nA] cA(α)
when ea, eb < 0. For ea, eb > 0 both operators Ba, a ∈ A raise the grad-
ing. For ea, eb < 0 both operators Ba, a ∈ A lower the grading. Let kA,n =
dimKn

A. Since KA is finite dimensional, kA,n vanish for |n|> CA for some
some constant CA ≤ k.
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Let A ∈ 6−. The local space KA is gt,ξ-invariant, and decomposes as

(225) KA =
⊕
n

Kn
A ⊕

⊕
ι∈λA,n

Kn
A,ι

with

(226) gt,ξ|Kn
A,ι
= eint+iξA,ι

for i ∈ λA, and

(227) gt,ξ|Kn
A
= eint

Since the eigenvalues of gt,ξ on Kn
A,ι for ι ∈ λA differ from each other and

from those on Kn′
B for all B ∈ 6, n′ ∈ Z, the spaces Kn

A,ι are orthogonal to
Kn′

B and to each other:

(228)
Kn′

A,ι′ ⊥ Kn′′
A,ι′′ , ι′ �= ι′′

Kn′
A,ι ⊥ Kn′′

A

The action of B, I-operators respects the orthogonal decomposition (228).
We now prove that the spaces Kn

A and Kn
A,i have an additional U(1)-

action. Indeed, let fa, fb be the two positive mutually prime integers, such
that

(229) eafa + ebfb = 0 ,

so that ea = pabfb, eb = −pabfa (assuming ea > 0 > eb). Then the operator

(230) E = Bfa
a Bfb

b

commutes with gt,ξ, thanks to (220). Since all the eigenvalues of Ba and Bb

vanish (again, thanks to (220)), the operators Ba, Bb, and E are nilpotent.
By Jacobson-Morozov theorem, E can be included into the sl2-triple, i.e. for
each Kn

A, K
n
A,i there are operators H, E∨, such that

(231) [E,E∨] = H, [H,E] = 2E, [H,E∨] = −2E∨

so that

(232) Kn
A =

⊕
h

Kn,h
A , Kn

A,ι =
⊕
h

Kn,h
A,ι
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with h standing for the eigenvalue of H. Now, it is not difficult to prove that
the (n, h)-grading is equivalent to the (i, j)-grading, with i, j ≥ 1:

(233)

i = i′ + (h− h′A(α))fa ,

j = j′ + (h− h′A(α))fb ,

n = cA(α) + pA(fb(i
′ − 1)− fa(j

′ − 1)) ,

i′, j′ ≥ 1 , i′ ≤ fa and/or j
′ ≤ fb

h′A(α) = inf Spec(H|Kn
A
)

and α is uniquely determined by nmod pA = cA(α)mod pA. Thus,

(234) KA =
⊕
i,j≥1

Ki,j
A , KA,ι =

⊕
i,j≥1

Ki,j
A,ι

with

(235) Ba(K
i,j
A ) ⊂ Ki+1,j

A , Bb(K
i,j
A ) ⊂ Ki,j+1

A

Now we are ready for the final push:

8. The compactness theorem

We now prove the compactness theorem which establishes the analyticity of
the partition function defined in the next chapter. To this end we estimate
the norm of (B, I,J) whose U(k)-orbit is invariant with respect to the action
of any minimal torus TL.

Since JA’s vanish, the real moment map equation reads as follows:

(236)
∑
a∈4

[Ba, B
†
a] +

∑
A∈6

IAI
†
A = ζ1K

The trace of this equation gives the norm of IA’s:

(237)
∑
A∈6

‖IA‖2= ζk
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But we need to estimate the norms ‖Ba‖2 which drop out of trace. However,
it is not too difficult to chase them down. We have:∑

a∈4
‖Ba‖2+

∑
A∈6

‖IA‖2 =
∑
a∈4

TrKBaB
†
a +

∑
A∈6

TrKIAI
†
A(238)

≤
∑
A∈6

TrKA

⎛⎝∑
a∈4

BaB
†
a +

∑
C∈6

ICI
†
C

⎞⎠
=
∑
A∈6

⎛⎝ζkA + TrKA

∑
a∈4

B†
aBa

⎞⎠
= ζ

∑
A∈6

kA +
∑

A∈6,a∈A
TrKA

B†
aBa

where we used the moment map equation (59), projected onto KA, and the
Eq. (208). Define:

(239)

δA,n =
1

ζ
TrKn

A

⎛⎝∑
a∈4

BaB
†
a +

∑
A′∈6

IA′I†A′

⎞⎠
δA =

1

ζ
TrKA

⎛⎝∑
a∈4

BaB
†
a +

∑
A′∈6

IA′I†A′

⎞⎠ =
∑
n

δA,n

Now for A ∈ 6+ use the decomposition (223), and (208) to show, that for
ea �= eb:

(240) δA,n = kA,n +
1

ζ

∑
a∈A

TrKn+ea
A

(
BaB

†
a

)
≤ kA,n +

∑
a∈A

δA,n+ea

where we very conservatively estimated:

(241) TrKn
A

(
BaB

†
a

)
≤ δA,n ,

for any a ∈ 4. This very conservative inequality can be used to show the
boundeness of δA,n.

From now on let us assume ea > eb > 0. The case of negative ea, eb is
treated analogously. First of all, let introduce the sequence of generalized
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Fibonacci numbers F p,q
n , n ∈ Z, for positive integeres p > q > 0, by:

(242)
F p,q
n = 0 , 1− p ≤ n ≤ 0

F p,q
1 = 1 ,

F p,q
n = F p,q

n−p + F p,q
n−q , n > 0

It is easy to write the formula for F p,q
n in terms of the roots λω, ω = 0, . . . , p−

1, of the characteristic equation

λp
ω = λp−q

ω + 1 ,(243)

F p,q
n =

∑
ω

fωλ
n
ω(244)

where the coefficients fω are to be found from the linear equations F p,q
n =

δn,1, 1− p ≤ n ≤ 1.
Now, we can estimate δA,n by induction in n:

(245) δA,n ≤
∑
n′≥n

kA,n′F ea,eb
n′+1−n

This leads to the following, also very conservative, bound on δA:

(246) δA < kAF
ea,eb
kA

When ea = eb = eA/2 ≥ 1 we can make a better estimate:

(247) δA,n = kA,n +
1

ζ

∑
a∈A

TrKn+ea
A

(
BaB

†
a

)
≤ kA,n + δA,n+eA/2

which, by iteration, implies:

(248) δA,n ≤ kA,n + kA,n+eA/2 + kA,n+eA + · · ·

which in turns implies the upper bound on

(249) δA ≤ 1

eA
kA(kA + 1)

It remains to estimate δA for A ∈ 6−. This is easy to do using the (i, j)-
grading (234). Define:

(250) δA,n =
1

ζ

∑
i+j=n+2

TrKi,j
A

⎛⎝∑
a∈4

BaB
†
a +

∑
A′∈6

IA′I†A′

⎞⎠
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Then, using (59), projected onto Ki,j
A , and (235), we derive the estimate:

(251) δA,n ≤ δA,n+1 +
∑

i+j=n+2

dimKi,j
A

from which we get the estimate:

(252) δA ≤ 1

2
kA(kA + 1)

9. Integration over the spiked instantons

The moduli spaces Mi
k(�n) are not your favorite smooth varieties. They can

be stratified by smooth varieties of various dimensions. Over these smooth
components the obstruction bundles keep track of the non-genericity of the
equations we used to define the spaces Mi

k(�n).
In applications we need to compute the integrals over the spaces M∞

k (�n),
as well as to define and compute the equivariant indices of various twisted
Dirac operators (for five dimensional theories compactified on a circle).

Mathematically one can take the so-called virtual approach [12], where
the fundamental cycle [M∞

k (�n)] is replaced by the virtual fundamental cycle
[M∞

k (�n)]
vir, which is defined as the Euler class of the bundle of equations

over the smooth variety of the original variables (B, I,J). There are two
difficulties with this definition: i) the space of (B, I,J), being a vector space,
is non-compact; ii) the bundle of equations is infinite dimensional, unless we
are in the situation with only the crossed or ordinary instantons.

The problem i) is solved by passing to the equivariant cohomology. The
problem ii) is cured by working with Mi

k(�n) for large but finite i, and then
regularize the limit i → ∞ by using the Γ-functions.

Physically, the problem is solved by the considerations of the matrix
integral (matrix quantum mechanics) of the system of k D(−1)-branes (k
D0-branes whose worldlines wrap S1) in the vicinity of six stacks of D3
branes (D4 branes) wrapping coordinate two-planes C2

A (times a circle S1)
in the IIB (IIA) background R2 × C4 (R1 × S1 × C4).

One can also define the elliptic genus by the study of the two-dimensional
gauge theory corresponding to the stack of k D1-strings wrapping a T2

shared by six stacks of D5 branes in IIB string theory, wrapping T2 × C2
A.
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9.1. Cohomological field theory

Let us briefly recall the physical approach. For every variable, i.e. for ev-
ery matrix element of the matrices Ba, IA, JA, we introduce the fermionic
variables ΨB

a ,Ψ
I
A,Ψ

J
A with the same H× U(K) transformation properties.

For every equation sA, μ, σāA,ΥA,ΥA,B;i we introduce a pair of fermion-
boson variables valued in the dual space: (χA, hA), (χ, μ), (χāA, hāA), (ξA, rA),
(�A′,A′′;i, yA′,A′′;i).

Finally, we need a triplet of variables (σ, σ̄, η) (two bosons and a fermion),
valued in the Lie algebra of U(K).

Our model has the fermionic symmetry acting by:

(253)
δBa = ΨB

a , δΨB
a = −[σ,Ba] + eaBa

δIA = ΨI
A , δΨI

A = −σIA + IAaA

δJA = ΨJ
A , δΨJ

A = −aAJA + JAσ + eAJA

(cf. (209)) and

(254)

δχA = hA , δhA = −[σ, χA] + eAχA ,

δχ = h , δh = −[σ, χ] ,
δχāA = hāA , δhāA = −aAχāA + χāAσ − eāχāA ,

δξA = rA , δrA = aĀξA − ξAaA + eAξA ,

δ�A′,A′′;i = yA′,A′′;i ,

δyA′,A′′;i = −aA′�A′,A′′;i +�A′,A′′;iaA′′ + (i− 1)ea�A′,A′′;i ,

whenever A′ ∩A′′ = {a}

and

(255) δσ̄ = η, δη = [σ, σ̄], δσ = 0

Now we can define the partition function

Z i
k(�n; e, a) =

∫
e−Si

Dσ

Vol(U(k))
DBDB†DΨBDΨB† · · ·DχDh · · ·Dσ̄Dη(256)

×
i−1∏
j=1

DχA,B;jDhA,B;jDχ̄A,B;jDh̄A,B;j
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where

(257)

Si = δΞi ,

Ξi = Ξs + Ξf + ΞK +
∑
A

ΞN
A +

∑
A′,A′′;#A′∩A′′=1

i−1∑
j=1

ΞN
A′A′′,j ,

Ξs = TrK η[σ, σ̄] ,

Ξf = TrK
∑
a

(
ΨB

a

(
−[σ̄, B†

a] + ε̄aB
†
a

)
+ c.c.

)
+ TrK

∑
A

(
(−σ̄IA + IAāA)Ψ

I†
A + c.c.

)
+ TrK

∑
A

(
ΨJ†

A (JAσ̄ − āAJA + ε̄AJA) + c.c.
)
,

ΞK = TrK χ (−i (μ− ζ1K) + h)

+
∑
A

⎛⎝χĀ (−isA + hA) +
∑
ā∈Ā

χ†
āA (−iσāA + hāA)

⎞⎠ .

ΞN
A = TrNA

(
ξ†A (−iΥA + rA) + c.c.

)
,

ΞN
A′,A′′;j = TrNA

(
�†

A′,A′′;j (−iΥA′,A′′;j + yA′,A′′;j) + c.c.
)

Here ε̄a, āA are auxiliary elements of the Lie algebra of H, which can be
chosen arbitrary, as long as the integral (256) converges.

9.2. Localization and analyticity

The usual manipulations with the integral (256), for generic (e, a), express
it as a sum over the fixed points, which we enumerated in the Eq. (216).
Each fixed point contributes a homogeneous (degree zero) rational function
of aA,α’s, 1 ≤ α ≤ nA and ea, times the product

∏
A∈6, 4∈Ā

nA∏
α=1

nĀ∏
β=1

(
aA,α − aĀ,β + eĀ

)
(258)

×
∏

A,B∈6, A∩B={c}

nA∏
α=1

nB∏
β=1

i−1∏
j=1

(aA,α − aB,β + ec(j − 1))

The compactness theorem of the previous chapter implies, among other
things, that the partition functions Z i

k(�n; e, a), for i > k, have no singularities



566 Nikita Nekrasov

in

(259) xA =
1

nA

nA∑
α=1

aA,α

with fixed ea’s and ãA,α = aA,α − xA. In other words, they are polynomials
of xA.

10. Quiver crossed instantons

10.1. Crossed quivers

For oriented graph γ let Vγ denote the set of its vertices, and Eγ the set
of edges, with s, t : Eγ → Vγ the source and the target maps. Sometimes
we write γ = (Vγ ,Eγ , s, t). The crossed quiver is the data X = (γ+, γ−, p),
where γ± are two oriented graphs, and p ∈ Z≥0 is a non-negative integer.
Let Ξp = Z/pZ be the additive group with p elements, for p > 0 and Z for
p = 0. Define VX = Vγ+ × Vγ− × Ξp. The group Ξp acts on VX by transla-
tions of the third factor. The generator of Ξp acts by ω = (v+, v−, n) �→ ω +
1 ≡ (v+, v−, n+ 1), with v± ∈ Vγ

±. We also define ±EX = Eγ± × Vγ∓ × Ξp

and the natural maps s, t : ±EX → VX, e.g. s(e, u, n) = (s(e), u, n) for e ∈
Eγ+ , u ∈ Vγ− , t(e, v, n) = (v, t(e), n) for e ∈ Eγ− , v ∈ Vγ+ etc. The group Ξp

also acts on ±EX, so we shall write: η = (e, u, n) �→ η ± 1 ≡ (e, u, n± 1). The
source and target maps are Ξp-equivariant, i.e. s(η ± 1) = s(η)± 1.

10.1.1. Paths and integrals. We shall use the notion of a path. Define
the path p±ω′,ω′′ of length � to be a sequence of pairs:

(260) p±ω′,ω′′ = (η1, or1), (η2, or2), . . . , (η	, or	)

with ηj ∈ ±EX, orj ∈ {−1,+1}, (we call orj the orientation of the edge ηj
relative to p±ω′,ω′′) such that for any j = 1, . . . , �− 1 either

(261)

s(ηj+1) = t(ηj±1), orj = orj+1 = 1,

or t(ηj+1) = t(ηj), orj = −orj+1 = 1,

or s(ηj+1) = s(ηj), − orj = orj+1 = 1,

or t(ηj+1) = s(ηj∓1), − orj = −orj+1 = 1,

and also either s(η1) = ω′ (or1 = 1) or t(η1 ± 1) = ω′ (or1 = −1) and also
either s(η	) = ω′′ (or	 = −1) or t(η	±1) = ω′′ (or	 = 1).
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For a function b : ±EX → R (a 1-chain) and a path p±ω′,ω′′ define the
integral

(262)
∫
p±
ω′,ω′′

b =

	∑
j=1

orjb(ηj)

The function b :± EX → R is a coboundary, b = δc, of a 0-chain c : VX → R,
iff b(η) = c(t(η±1))− c(s(η)). The integral of a coboundary obeys Stokes
formula:

(263)
∫
p±
ω′,ω′′

δc =

	∑
j=1

orj (c(t(ηj ± 1))− c(s(ηj))) = c(ω′′)− c(ω′)

10.1.2. Representations of crossed quivers. Fix four dimension vec-
tors k,n+,n−,m : VX → Z≥0. Let (Kω, N

±
ω ,Mω)ω∈VX be a collection of

complex vector spaces whose dimensions are given by the components of
the corresponding dimension vectors, e.g. dimKω = kω ≡ k(ω). We view the
spaces N±

ω ,Mω as fixed, e.g. with some fixed basis, while the spaces Kω are
varying, i.e. defined up to the automorphisms. We also fix a decomposition
Mω =M ′

ω ⊕M ′′
ω as an additional refinement of our structure.

10.1.3. Weight assignment for crossed quivers. For the crossed quiver
γ and its representation let us fix the integral data: (n±

ω ,m
′
ω,m

′′
ω)ω∈Vγ

,
t = (t(ω))ω∈VX

and e = (e(η))η∈EX
, with integers t(ω), e(η) ∈ Z, obeying

t(ω + 1) = t(ω), e(η + 1) = e(η), and the integral vectors n±
ω =

(
n±
ω,α

)n±
ω

α=1
∈

Zn±
ω etc. The data (n±, e,m′,m′′) is defined up to the action of the lattice

ZVγ : a function f : Vγ → Z shifts the data (289) by:

(264) n±
ω,α �→ n±

ω,α − f(ω) , e �→ e+ δf

10.1.4. Crossed quiver instantons. Consider the vector superspace
Aγ

k(n
±,m) of linear maps (B, I,J,Θ)

(265)

bosons : B = (B±
η , B̃

±
η )η ∈±EX

, I = (I+ω , I−ω )ω∈VX ,

J = (J+
ω , J−

ω )ω∈VX ,

B±
η : Ks(η) → Kt(η)±1 , B̃±

η : Kt(η) → Ks(η)±1 , η ∈ ±EX

I±ω : N±
ω → Kω±1 , J±

ω : Kω → N±
ω±1 , ω ∈ VX

fermions : Θ = (Θ′
ω,Θ

′′
ω)ω∈VX ,

Θ′
ω ∈ ΠHom(Kω,M

′
ω) , Θ′′

ω ∈ ΠHom(M ′′
ω−1,Kω)
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Let Gγ
k,G

Cγ
k be the groups:

(266) Gγ
k =

∏
ω∈VX

U(kω) , GCγ
k =

∏
ω∈VX

GL(kω,C) ,

which act on Aγ
k(n

±,m) via:

(267) ( gω )ω∈VX
· (B, I,J,Θ) =(

gt(η)±1B
±
η g

−1
s(η), gs(η)±1B̃

±
η g

−1
t(η) ; gω±1I

±
ω , J±

ω g−1
ω ; Θ′

ωg
−1
ω , gωΘ

′′
ω

)
We impose the following analogues of the Eqs. (56):

(268)

μω = ζω1Kω
, ω ∈ VX, ζω > 0

se+,e−;n = 0 , e± ∈ Eγ± , n ∈ Ξp

s̃e+,e−;n = 0 , e± ∈ Eγ± , n ∈ Ξp

sω = 0 , ω ∈ VX

Ση = 0 , η ∈ EX ,

Σ̃η = 0 , η ∈ EX ,

Υω = 0 , ω ∈ VX,

where

(269)

Σ· = σ· + σ̂ †
· ,

Σ̃· = σ̃· − ̂̃σ †
· ,

s··· = μ13
··· −

(
μ24
···
)†

,

s̃··· = μ14
··· +

(
μ23
···
)†

,

s··· = μ12
··· +

(
μ34
···
)†

,

Υ· = υ+·−1 −
(
υ−·+1

)†
with the linear maps

(270)

ση : N
±
s(η) → Kt(η) , for η ∈ ∓EX

σ̃η : N
±
t(η) → Ks(η) , for η ∈ ∓EX

υ±ω∓1 : N
∓
ω → N±

ω ,

and
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(271)

μω : Kω → Kω ,

μ12
ω : Kω → Kω+2 ,

μ34
ω : Kω → Kω−2 ,

μ13
e+,e−;n : Ks(e+),s(e−),n → Kt(e+),t(e−),n ,

μ24
e+,e−;n : Kt(e+),t(e−),n → Ks(e+),s(e−),n ,

μ14
e+,e−;n : Ks(e+),t(e−),n → Kt(e+),s(e−),n ,

μ23
e+,e−;n : Kt(e+),s(e−),n → Ks(e+),t(e−),n .

The maps (270), for η ∈ ±EX, are given by:

(272)
ση = B∓

η±1I
±
s(η) , σ̂η = J∓

s(η)±1B̃
±
η ,

σ̃η = B̃∓
η±1I

±
t(η) ,

̂̃ση = J∓
t(η)±1B

±
η ,

and

(273) υ±ω∓1 = J±
ω∓1I

∓
ω

The crossed quiver analogues (271) of real and complex moment maps are
given by: for ω ∈ Vγ ,
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μω = I+ω−1

(
I+ω−1

)†
+ I−ω+1

(
I−ω+1

)† − (
J+
ω

)†
J+
ω −

(
J−
ω

)†
J−
ω(274)

−
∑

η∈s−1(ω)∩+EX

(
B+

η

)†
B+

η −
∑

η∈t−1(ω)∩+EX

(
B̃+

η

)†
B̃+

η

−
∑

η∈s−1(ω)∩−EX

(
B−

η

)†
B−

η −
∑

η∈t−1(ω)∩−EX

(
B̃−

η

)†
B̃−

η

+
∑

η∈s−1(ω)∩+EX

B̃+
η−1

(
B̃+

η−1

)†
+

∑
η∈s−1(ω)∩−EX

B̃−
η+1

(
B̃−

η+1

)†
+

∑
η∈s−1(ω)∩+EX

B+
η−1

(
B+

η−1

)†
+

∑
η∈s−1(ω)∩−EX

B−
η+1

(
B−

η+1

)†
,

and

μ12
ω =(275)

I+ω+1J
+
ω +

∑
η ∈+EX∩t−1(ω)

B+
η+1B̃

+
η −

∑
η ∈+EX∩s−1(ω)

B̃+
η+1B

+
η

μ34
ω =(276)

I−ω−1J
−
ω +

∑
η ∈−EX∩t−1(ω)

B−
η−1B̃

−
η −

∑
η ∈−EX∩s−1(ω)

B̃−
η−1B

−
η

for e± ∈ Eγ± , n ∈ Ξp,

μ13
e+,e−;n =(277)

B+
e+,t(e−),n−1B

−
e−,s(e+),n −B−

e−,t(e+),n+1B
+
e+,s(e−),n
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μ24
e+,e−;n =(278)

B̃+
e+,s(e−),n−1B̃

−
e−,t(e+),n − B̃−

e−,s(e+),n+1B̃
+
e+,t(e−),n

μ23
e+,e−;n =(279)

B̃+
e+,t(e−),n−1B

−
e−,t(e+),n −B−

e−,s(e+),n+1B̃
+
e+,s(e−),n

μ14
e+,e−;n =(280)

B+
e+,s(e−),n−1B̃

−
e−,s(e+),n − B̃−

e−,t(e+),n+1B
+
e+,t(e−),n

The moduli space of quiver crossed instantons Mγ
k(n

±,m) is the space of
solutions to (268) modulo the action (266) of Gγ

k.
The identity∑

η∈Eγ

TrKt(η)
(σησ̂η)− TrKs(η)

(
σ̃η ̂̃ση

)
(281)

+
∑
ω∈Vγ

TrN+
ω

(
υ+ω−1υ

−
ω+1

)
+ TrKω

(
μ12
ω−2μ

34
ω

)
+

∑
e±∈Eγ± , n∈Ξp

TrKt(e+),s(e−),n

(
μ14
e+,e−;nμ

23
e+,e−;n

)
− TrKt(e+),t(e−),n

(
μ13
e+,e−;nμ

24
e+,e−;n

)
= 0

can be used to demonstrate, by the argument identical to that in (54), that
the equations (268) imply the holomorphic equations

(282)

ση = 0, σ̃η = 0, σ̂η = 0, ̂̃ση = 0,

μ12
ω = 0, μ34

ω = 0, μ13
e+,e−;n = 0,

μ14
e+,e−;n = 0, μ23

e+,e−;n = 0, μ24
e+,e−;n = 0,

υ±ω = 0
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Thus, Mγ
k(n

±,m) is the space of stable solutions of (282) modulo the ac-
tion (266) of GCγ

k . Here, the stability condition is formulated as follows:

(283)

Any collection (K ′
ω)ω∈VX of subspaces K ′

ω ⊂ Kω , such that

I±ω (N
±
ω ) ⊂ K ′

ω±1

and

B±
η (K

′
s(η)) ⊂ K ′

t(η)±1 , for all η ∈ ±EX

B̃±
η (K

′
t(η)) ⊂ K ′

s(η)±1 , for all η ∈ ±EX

coincides with all of Kω , K ′
ω = Kω ,

in other words ,

Kω = K+
ω +K−

ω

where K±
ω ⊂ Kω is the subspace, generated by acting with arbitrary (non-

commutative) polynomials in B±
η , B̃±

η ’s with η ∈ ±EX on the image∑
ω′∈VX

I±ω′(N±
ω′):

(284) K±
ω =

∑
ω′∈VX

(
C

[
B±

η , B̃
±
η

]
η∈ ±EX

I±ω′(N±
ω′)

)
∩ Kω

The space Mγ
k(n

±,m) is acted upon by the group

(285) Hγ =
(
Hγ
ff × Hγ

edg

)
/Hγ

ver × U(1)u ,

where

(286)

Hγ
ff =

∏
ω∈Vγ

U(N+
ω )× U(N−

ω )× U(M ′
ω)× U(M ′′

ω) ,

Hγ
edg =

∏
η∈Eγ+�Eγ−

U(1) , Hγ
ver =

∏
ω∈Vγ

U(1)

and the embedding of Hγ
ver into Hγ

ff × Hγ
edg is given by:

(uω)ω∈Vγ
�→
(
uω · 1N+

ω
, uω · 1N−

ω
, uω · 1M ′

ω
, uω · 1M ′′

ω

)
ω∈Vγ

(287)

×
(
u−1
s(η)±1ut(η)

)
η∈±EX
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The group (285) acts on Mγ
k(n

±,m) in the following fashion:((
h+ω , h

−
ω ,m

′
ω,m

′′
ω

)
ω∈Vγ

× (uη)η∈Eγ
× u

)
· [B, I,J,Θ](288)

=
[
u±1uηgt(η)±1B

±
η g

−1
s(η) , u

±1u−1
η gs(η)±1B̃

±
η g

−1
t(η) |η∈Eγ

u±1gω±1I
±
ω

(
h±ω
)−1

, h±ω±1J
±
ω g−1

ω u±1, m′
ωΘ

′
ω, Θ

′′
ω

(
m′′

ω

)−1 |ω∈Vγ

]
,

where we indicated the compensating Gγ
k-transformations. It is obvious from

the Eq. (288) that the Hγ
ff × Hγ

edg-transformations which are in the image of
Hγ
ver can be undone by a Gγ

k-transformation.

10.1.5. Compactness theorem in the crossed quiver case. Let us
demonstrate the compactness of the set

(
Mγ

k(n
±,m)

)Tγ

of Tγ-fixed points
in Mγ

k(n
±,m), where Tγ ⊂ Hγ is a subtorus of the global symmetry group.

The choice of Tγ is restricted by the following requirement: it must contain
a U(1)-subgroup, to be denoted by U(1)v, such that 1) the composition
p ◦ i, where i : U(1)v ↪→ Hγ is the embedding, and p : Hγ → U(1)u is the
projection, is a non-trivial homomorphism, v �→ vk, k �= 0, 2) the embedding
into Hγ is parametrized by the collection

(289) v ∈ U(1)v �→
(
vn

+
ω , vn

−
ω , vm

′
ω , vm

′′
ω

)
ω∈Vγ

× ve × vk

The symmetry (264) reflects the quotient by Hγ
ver in (285).

We shall impose an additional requirement on the data (n±
Vγ
,m′

Vγ
,m′′

Vγ
,

e, k): for any ω′, ω′′ ∈ Vγ and any α′ ∈ [n±
ω′ ], α′′ ∈ [n±

ω′′ ]

(290) n±
ω′,α′ − n±

ω′′,α′′ ± k(�+ 1) +

∫
path±

ω′,ω′′

e �= 0

for any path p±ω′,ω′′ . Note (290) is invariant under (264). The requirement (290)
can be slighlty weakened, namely one can allow (290) to fail for a single pair
(ω′, α′) = (ω′′, α′′). In what follows we insist on (290), though.

The proof goes as follows: Define the function δ on the Grassmanian of
subspaces V ⊂ ⊕ωKω:
(291)

δV = Tr V

⎛⎝ ∑
η∈Eγ ,±

B±
η

(
B±

η

)†
+ B̃±

η

(
B̃±

η

)†
+
∑
ω,±

I±ω
(
I±ω
)†
+ J±

ω

(
J±
ω

)†⎞⎠
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The function δ is monotone: δV ′ ≤ δV ′′ for V ′ ⊂ V ′′. We have:

(292) ‖B, I,J‖2=
∑
ω∈Vγ

δKω

Now, the Tγ-invariance implies, by the usual arguments, that the spaces
K±

ω ,Kω, for each ω ∈ Vγ are Tγ-representations,

(293) K±
ω =

⊕
w∈T∨

γ

K±
ω,w ⊗Rw

where Rw are the irreps of Tγ .
First, we need to prove that J±

ω = 0 for the Tγ-invariant (B, I,J). The
equations (282) imply that J±

ω (K
∓
ω ) = 0. Let us restrict (293) onto U(1)v:

(294) K±
ω =

⊕
w∈Z

K±
ω,w ⊗Rw

where Rw are the irreps of U(1)v: v �→ vw. We have:

(295) I±ω (N
±
ω ) =

n±
ω⊕

α=1

N±
ω,α ⊗Rn±

ω,α

and

(296) B±
η (K

±
s(η),w) ⊂ K±

t(η)+1,w+k+e(η) , B̃±
η (K

±
t(η),w) ⊂ K±

s(η)+1,w+k−e(η)

Thus the weights s which occur in the decomposition (294) have the form:

(297) n±
ω′,α′ ± k�+

∫
p±
ω′,ω

e

for some ω′ ∈ Vγ and some length � path p±ω′,ω.
Now the U(1)v equivariance implies that J±

ω (Kω,w ⊗Rw) belongs to the
eigenspace of v ∈ U(1)v in N±

ω±1 with the eigenvalue vw∓k. Since the eigen-
values of v ∈ U(1)v on N±

ω±1 are given by: vn
±
ω±1,α the non-vanishing J±

ω

means that for some ω′, α′ the eigenvalue (297) coincides with nω±1,α ∓ k,
which contradicts (290). Thus, J = 0.



BPS/CFT, Instantons at crossroads, Gauge origami 575

Now, use the real moment map equation to deduce:

δK±
ω,w

= ζω dim(K
±
ω,w) + +

∑
η∈s−1(ω)∩±EX

TrK±
t(η)±1,w+k+e(η)

B±
η

(
B±

η

)†(298)

+
∑

η∈t−1(ω)∩±EX

TrK±
s(η)±1,w+k−e(η)

B̃±
η

(
B̃±

η

)†
≤ ζω dim(K

±
ω,w) +

∑
η∈s−1(ω)∩±EX

δK±
t(η)±1,w+k+e(η)

+
∑

η∈t−1(ω)∩±EX

δK±
s(η)±1,w+k−e(η)

Now repeat the same estimate by pushing the arguments w′ of the δKω′,w′ ’s
in the right hand side of (298) outside the domain where the corresponding
Kω′,w′ spaces are non-trivial (this is possible because the total dimension of
the K space is finite). In this way we get an upper bound on δKω′,w′ ’s and
the norms of B’s, I’s and J’s, as promised.

10.2. Orbifolds and defects: ADE × U(1) × ADE

The construction above can be motivated by the following examples.
Recall that the moduli space M+

k (n,w) of crossed instantons has an
SU(2)×U(1)× SU(2) symmetry.

10.2.1. Space action. Let Γ be a discrete subgroup of SU(2)12 ×U(1)Δ ×
SU(2)34,

(299) ι : Γ −→ Grot = SU(2)12 ×U(1)Δ × SU(2)34 ,

10.2.2. Framing action. Now let us endow the spaces N12 and N34 with
the structure of Γ-module:

(300)

N12 =
⊕
ω∈Γ∨

Nω ⊗Rω ,

N34 =
⊕
ω∈Γ∨

Wω ⊗Rω ,

in other words let us fix the homomorphisms

(301) ρA : Γ −→ U(nA)

Let us denote by n,w the vectors of dimensions (dimN12,ω)ω∈Γ∨ ,
(dimN34,ω)ω∈Γ∨ , respectively.
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The data (300), (299) defines the embedding of the group Γ into H, the
symmetry group of M+

k (n,w).

10.2.3. New moduli spaces. The set of Γ-fixed points inM+
k (n,w) splits

into components

(302) M+
k (n,w)

Γ =
⋃
k

M
+,γΓ

k (n,w)

This is a particular case of the space Mγ
k(n,w, 0). Indeed, let Vγ = Γ∨, while

Eγ
± are defined by decomposing

(303) Rω ⊗ C
2
12
34
=

⊕
e∈s−1(ω)∩Eγ

±

Rt(e)

⊕
e∈t−1(ω)∩Eγ

±

Rs(e)

The requirement that Γ preserves the U(k)-orbit of (B, I,J) translates to
the fact that Γ is unitary represented in K, so that

(304) γ · (B, I,J) = (gγBg−1
γ , gγI,Jg

−1
γ ) , γ �→ gγ ∈ U(K)

Thus, we can decompose K into the irreps of Γ:

(305) K =
⊕
ω∈Γ∨

Kω ⊗Rω

The operators B, I,J then become linear maps between the spaces Kω′ ,
NA,ω′′ , which can be easily classified by unraveling the equivariance condi-
tions (304).

The components M
+,γΓ

k (n,w) can then be deformed by modifying the
real moment map equation to

(306) μ =
∑
ω∈Γ∨

ζω 1Kω

In the particular case Γ ⊂ SU(2)34 the orbifold produces the moduli spaces
of supersymmetric gauge configurations in the

(307) Gg =
∏
ω∈Γ∨

U(nω)

gauge theory in the presence of a point-like defect, the qq-character

(308) X(wω)ω∈Γ∨ (x, νω,β)

The gauge theory in question is the affine ADE quiver gauge theory.
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10.2.4. Odd dimensions and finite quivers. We can also obtain the
moduli space of supersymmetric gauge field configurations in the quiver
gauge theories built on finite quivers. The natural way to do that is to start
with an affine quiver and send some of the gauge couplings to zero, i.e. by
making some of dimensions kω vanishing.

Remarkably, this procedure produces the superspace, the odd variables
originating in the multiplet of the cohomological field theory. Let us explain
this in more detail. Let us consider, for simplicity, the group Γ ⊂ SU(2)34,
so that Eγ

+ has one element.
The linear algebra data(

B1,ω , B2,ω , I12,ω , J12,ω , I34,ω , J34,ω , Be , B̃e

)
∈ Aγ

k(n,w, 0)

is parametrized by the

(309) 2
∑
ω∈Γ∨

kω (kω + nω + wω) + 2
∑
e∈E

kt(e)ks(e)

complex dimensional space. The Eqs. (268) plus the GLγ(k)-invariance re-
move

(310)
∑
ω∈Γ∨

(nωwω + 2kω(kω + wω)) +
∑
e∈E

2ks(e)kt(e) + ks(e)nt(e) + kt(e)ns(e)

dimensions (this is half the number of equations (282)). The result is k-linear,

(311) virtual dimM
+,γ
k (n,w) =

∑
ω∈Γ∨

(kωmω − nωwω)

where

(312) mω = 2nω −
∑

e∈s−1(ω)

nt(e) −
∑

e∈t−1(ω)

ns(e)

Now, if for all ω ∈ Γ∨ the deficits mω are non-negative, and at least for one
vertex the deficit is positive then the quiver is, in fact, a finite ADE Dynkin
diagram. In this case we can add the odd variables taking values in the spaces
Hom(Kω,Mω) with the complex vector space Mω of dimension mω, and de-
fine the moduli space to be the supermanifold which is the total space of the
odd vector bundle ΠHom(Kω,Mω) over the previously defined bosonic mod-
uli space. In practice this means that the integration over the “true” moduli
space is the integral over the coarse moduli space of the equivariant Euler
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class of the vector bundle Hom(Kω,Mω). This is what the cohomological field
theory applied to the affine quiver case with the subsequent setting kω′ = 0
for some ω′ ∈ Γ∨ would amount to. With the “compensator” vector bundle
in place the virtual dimension of the moduli space becomes k-independent.
This is the topological counterpart of the asymptotic conformal invariance
of the gauge theory.

11. Spiked instantons on orbifolds and defects

Now let us go back to the general case of spiked instantons. Choose a
discrete subgroup Γ of U(1)3e , e.g. Γ ≈ Ξp1

× Ξp2
× Ξp3

, Γ∨ ≈ Γ. Let ta :
Γ→ U(1), a ∈ 4 be the homomorphisms corresponding to the embedding
U(1)3e ⊂ SU(4). We have:

(313)
∏
a∈4

ta(γ) = 1

Let Ra ∈ Γ∨, a ∈ 4 be the corresponding one-dimensional representations
of Γ, e.g R1 = R1,0,0, R4 = R−1,−1,−1. We shall use the additive notation,
Ra = R��a

so that R�ω ⊗Ra = R�ω+��a
. Fix the framing homomorphisms:

ρA,Γ → U(nA):

(314) NA =
⊕
�ω∈Γ∨

NA,�ω ⊗R�ω

The set of Γ-fixed points in Mk(�n) splits into components

(315) Mk(�n)
Γ =

⋃
k

MγΓ

k (�n)

It describes the moduli spaces of spiked instantons in the presence of addi-
tional surface and point-like conical defects. The compactness theorem holds
in this case. The proof is a simple extension of the proof of Section 8 with
the spaces KA replaced by KA,�ω, where �ω = (ω1, ω2, ω3), ωi ∈ Ξpi

:

(316) KA,�ω =
∑

�ω′∈Γ∨

∑
f∈C[x,y]

f(Ba, Bb)IA(NA,�ω′)

where the sum is over polynomials obeying:

(317) f(ta(γ)x, tb(γ)y) = χR
ω−
ω′ (γ)
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for all γ ∈ Γ. As before Bc,�ω′(KA,�ω) = 0 whenever c /∈ A. The vector k en-
codes the dimensions of the spaces

(318) K�ω =
∑
A∈6

KA,�ω

the operators Ba have the block form:

(319) Ba(K�ω) ⊂ K�ω+��a

The norms ‖Ba‖2 are estimated with the help of the quantities

(320) δA,�ω,n = TrKA,
ω

(∑
a

BaB
†
a +

∑
C

ICI
†
C

)

12. Conclusions and future directions

In this paper we introduced several moduli spaces: M+,M|_,M∗ of matri-
ces solving quadratic equations modulo symmetries. These moduli spaces
generalize the Gieseker-Nakajima partial compactification M of the ADHM
moduli space of U(n) instantons on R4. We gave some motivations for these
constructions and proved the compactness theorem which we shall use in
the next papers to establish useful identities on the correlation functions of
supersymmetric gauge theories in four dimensions.

In this concluding section we would like to make a few remarks.
First of all, one can motivate the crossed instanton construction by start-

ing the with the ordinary ADHM construction and adding the co-fields [7, 8]
which mirror the embedding of the N = 2 super-Yang-Mills vector multiplet
into the N = 4 super-Yang-Mills vector multiplet [37].

Secondly, we would like to find the crossed instanton analogue of the
stable envelopes of [21].

Third, it would be nice to generalize the spiked instanton construction
to allow more general orbifold groups Γ ⊂ SU(4), and more general (La-
grangian?) subvarieties in C4/Γ.

Now, to the serious drawbacks of our constructions. The purpose of the
ADHM construction, after all, is the construction of the solutions to the
instanton equations

F+
A = 0
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We didn’t find the analogue of the ADHM construction for the spiked in-
stantons. Conjecturally, the matrices [B, I,J] solving the Eqs. (56) are in
one-to-one correspondence with the finite action solutions to Eqs. (41).

Finally, we have proposed a definition of quiver crossed instantons, which
are defined for quivers more general then the products of ADE Dynkin dia-
grams. It would be interesting to find the precise restrictions on these quivers
compatible with the compactness theorem.

In the forthcoming papers the compactness theorem will be used to derive
the main statements of the theory of qq-characters [30]. While this paper was
in preparation, the algebraic counterpart of our compactness theorem was
studied in [19]. Various consequences of the compactness theorem will be
studied in [29]. Some of them have already been observed in [1, 2, 11, 26, 31,
32].
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