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author, to orbifold symmetric products. It retains the same prop-
erties of quantization of the Hall conductance at integer multiples
of the fractional Satake orbifold Euler characteristics. We show
that it also allows for interesting composite fermions and anyon
representations, and possibly for Laughlin type wave functions.
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1. Introduction

A satisfactory model of the integer quantum Hall effect within the framework
of noncommutative geometry was developed in [9], [10]. In a 2-dimensional
periodic lattice, the presence of an external magnetic field turns the classical
Brillouin zone into a non-commutative torus, replacing the ordinary trans-
lational symmetries of the Hamiltonian by magnetic translations. These are
symmetries of the magnetic Laplacian, and they only commute up to a phase
factor, hence the appearance of the noncommutative torus as the new al-
gebra of observables. The integer quantization of the Hall conductance can
then be interpreted in terms of an index theorem on the noncommutative
torus.

In [49], [50], [51] a single particle model was developed for a charged
particle moving in a magnetic field within a curved geometry described by
a good 2-dimensional orbifold, with the curved geometry simulating an av-
eraged effect of the interaction with other particles. This model exhibits
quantization of the Hall conductance at fractional values given by integer
multiples of the Satake orbifold Euler characteristic. The results of [49], [50],
[51] are based on a generalization to the (fractional) orbifold case of a previ-
ous treatment, in [14], of the integer quantum Hall effect in the hyperbolic
geometry of a smooth Riemann surfaces of genus g > 2.

The main drawback of this noncommutative-geometric approach to the
fractional quantum Hall effect lies in the fact that it is still based on a single
particle model. While the integer quantum Hall effect is well described by
an independent electron approximation, which reduces it to a single particle
model, the fractional quantum Hall effect is intrinsically a many particle
phenomenon: while the single particle model used in [49], [50], [51] produces
a fractional quantization of the Hall conductance as a Kawasaki orbifold
index-theorem on the relevant noncommutative space, it does not account
for Laughlin type wave functions, nor for composite fermion (or anyon)
representations.

In this paper we propose a way to extend the noncommutative geometry
model of [49], [50], [51], so that it makes contact with field theories on
orbifolds, of the kind considered in relation to String Theory, see e.g. [1],
[21], [54], [69]. We consider systems of n indistinguishable particles moving
in the same type of homogeneous negatively curved geometry, under the
effect of an external magnetic field, so that a classical configuration of the
system is described by a point in the n-fold symmetric products of a good 2-
dimensional orbifold. As in the case of field theories on orbifolds, the relevant
Fock space is given by the sum of the orbifold K-theories (or the delocalized
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equivariant cohomology) of the twisted group C*-algebras of the wreath
products I';, = I'™ x S,,, with I the orbifold fundamental group of the good
2-dimensional orbifold. The quantization of the Hall conductance is still
obtained via a twisted higher index theorem as in [50] and is expressible in
terms of the Satake orbifold Euler characteristics of the orbifold symmetric
products. At the same time, the model now allows for interesting composite
fermion and anyon representations, whose classification depends on Seifert
invariants of orbifold line bundles. We also formulate some hypothesis, still
speculative at this stage, on how to obtain Laughlin type wave functions
from the geometry of the model.

The paper is structured as follows: in the rest of this introductory section
we discuss the geometry of 2-dimensional good orbifolds 3 and their sym-
metric products Sym"(X). In Section 2, we introduce the relevant groups
that we will be considering, related to various kinds of orbifold covers. In
particular, we extend to orbifold fundamental groups a result for smooth
Riemann surfaces, which identifies the (orbifold) fundamental group of the
symmetric products Sym"(X) with the abelianization of the (orbifold) fun-
damental group of ». In Section 3, we focus on K-theoretic aspects. We
compute the orbifold K-theory of Sym”(X), in terms of classifying spaces
for proper actions and we relate it to the K-theory of the group C*-algebras
C*(T',) via the Baum—Connes conjecture, which we show is satisfied by the
wreath products I',,. We also discuss a possible notion of orbifold-Jacobian
and its K-theoretic properties. In Section 4, we show that the magnetic field
determines a compatible family of U(1)-multipliers o, on I',,. We obtain
in this way twisted group C*-algebras C}(I',,, 0,,) generalizing the algebra
C}(T', o) considered in [49], [50], [51]. Using the Lyndon—Hochschild—Serre
spectral sequence for the group cohomology of the wreath products, we show
that the multipliers o,, define cocycles with trivial Dixmiar-Douady class.
We then show that the K-theory of the twisted group C*-algebra C (T, 0y,)
agrees with the K-theory of the untwisted C(I",,). To this purpose, we prove
the K-amenability of the wreath products SL(2,R)"™ x S,,, by adapting the
argument of [30] for the K-amenability of SL(2, R). Section 5 contains expos-
itory material, where we recall and compare the different notions of orbifold
Euler characteristic used in the Kawasaki index theorem and in string the-
ory on orbifolds. The former, which we refer to as the Satake orbifold Euler
characteristic is in general a rational number, while the latter, which we call
the string-theoretic orbifold Euler characteristic is an integer. We recall how
the latter relates to sectors and to inertia orbifolds, and how it generalizes
to orbifold Chern classes. We also recall the Segal construction of the Fock
space for orbifold symmetric products, based on equivariant K-theory, as
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in [64], [71]. In Section 6 we compute the twisted higher index theorem of
[50] for the orbifold symmetric products Sym"™(X). Using the same relation
between Hall conductance cocycle and area cocycle as in [14], [50], we show
that the Hall conductance is quantized at fractional values equal to integer
multiples of the Satake orbifold Euler characteristic x°"*(Sym™(X)). In Sec-
tion 7 we classify composite fermions and anyons on the symmetric products
Sym"™(X). We introduce a notion of orbifold braid group, which is the orb-
ifold fundamental group of the configuration spaces Conf(X, n), where the
orbifold singularities are coming from the orbifold cone points of . We show
that, similarly to what happens in the case of Riemann surfaces and ordi-
nary braid groups, if the orbifold 3 has genus g > 0, then the scalar unitary
representations can only be fermions or bosons, with no non-trivial anyons.
When the genus is g = 0, there are anyon representations and we show that
they are classified by the Seifert invariants of an orbifold line bundle with
integer orbifold Euler number. We also show that, for arbitrary genus, there
are anyon representations of higher dimensions N, which again depend on
Seifert invariants, for an orbifold line bundle whose orbifold Euler number is
inZ+ (g +mn—1)/N, and with fractional statistics 7i/N. Finally Section 8
contains some more speculative considerations on how to find Laughlin type
wave functions in this geometric setting, in terms of the Mathai—Quillen for-
malism for Euler classes of vector bundles, and local systems determined by
a given N-dimensional anyon representation. The relation between N and
#G imposed by the classification of anyon representations implies that one
finds powers of the Vandermonde determinant with exponents equal to the
denominators that appear in the quantization of the Hall conductance, as
expected in Laughlin wave functions. We also suggest the possibility that
Laughlin type functions may appear in computations via Selberg integrals
of the orbifold Euler characteristic of a moduli space of good 2-dimensional
orbifolds, analogous to the known calculations for moduli spaces of curves
with marked points.

In the rest of this introductory section we review some known material
that we need in the following.

1.1. Hyperbolic 2-dimensional good orbifolds

Let H denote the 2-dimensional hyperbolic plane. We will use either the up-
per half plane model H 2 {z = = + iy € C|3(z) > 0} with the metric ds? =
(dz? + dy?) /y? or the equivalent Poincaré disc model H =2 {z € C||z| < 1},
with the metric ds? = 4(dx? + dy?)/(1 — |2]?)%.
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On H we consider the isometric action of a discrete cocompact sub-
group I' C PSL(2,R), given by a Fuchsian group of signature (g,r) with

v=(v1,...,Vm). These groups have an explicit presentation with genera-
tors a;,b; with i =1,...,g and ¢; with j = 1,...,m, of the form

g
(1].) I'= F(g,g) = <6Li, b;, Cj H[ai, bi]Cl ceeem =1, C]% = 1> .

i=1

The quotient ¥ = ¥(g,v) = H/T" is a 2-dimensional hyperbolic good orb-
ifold. It is a Riemann surface of genus g with m cone points {z1,...,Zm},
where the point z; has stabilizer of order v;. Any such orbifold has a finite
branched covering by a smooth Riemann surface ¥4, with ¥(g,v) =3, /G
for a finite group G. The genus ¢’ is related to g by the Riemann-Hurwitz
formula for branched coverings:

(1.2) g’:1+# 209 —1)+ m—Zyj_l
J

The Riemann surface ¥, = H/I"” has a hyperbolic uniformization by I C
PSL(2,R), which is related to I'(g, v) by an exact sequence

(1.3) 1—Ty —T(g,v) — G—1

The Fuchsian group I' =T1'(g,v) is the orbifold fundamental group of the
2-dimensional orbifold ¥ = ¥(g,v), see [62].

1.2. Symmetric products

Let Sym"™(X) = X"/S,,, with S,, the group of permutations of a set of n
elements. It is well known that, for a smooth compact Riemann surface > of
genus g, the symmetric products Sym”(X) are smooth and are related to the
Jacobian of ¥ in the following way. Let Q!(2) be the space of holomorphic
1-forms with a basis {wi,...,wy}. The group Px of periods of ¥ is the
subgroup Psx, C CY given by the v = (v1,...,vy) € CY obtained as integrals
v = f7 w; for some v € 71(X). For a base point zg € X, and a path v/ from
o to x € 3, the integral fv’ w; then defines the Abel-Jacobi map

(1.4) A Y — J(X)=CI/Px, A:nm—)(/ wl,...,/ wg>,

0
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where the Jacobian .J(X) is a torus 729, which can also be identified with
HY(Z,R)/H(2,7Z). The Abel-Jacobi map extends to a map

(1.5)  A:Sym™(X) = J(X2), A:lxy,...,x5) = Alx1) + - + A(zy).

When n > 2g — 2, the symmetric products fiber over the Jacobian with fibers
that are projective spaces of dimension n — g,

(1.6) P"9(C) — Sym"(E) — J(X).

Moreover, it was shown in Remark 5.8 of [35] (see also [41] for a general-
ization) that the fundamental group of the symmetric products of a smooth
compact Riemann surface satisfies, for all n > 2,

(1.7) 1 (Sym™(2)) = m(2)? = HY(Z,Z) = m (J(2)).

In the following section we will consider the symmetric products Sym"™ ()
of a 2-dimensional hyperbolic orbifold ¥ = ¥(g,v) and we compute the orb-
ifold fundamental group.

2. Symmetric products, orbifold fundamental group, and
orbifold coverings

In this section we discuss various orbifold coverings of the symmetric prod-
ucts Sym" (X)) and their associated groups of symmetries.

Lemma 2.1. Let X be a good 2-dimensional orbifold, with singular locus

Ysing given by a finite set of cone points, and with orbifold fundamental group
7o (). Then

(2.1) T (S") 2 (R)"

Proof. Let O be a good orbifold, with singular locus of (real) codimension
two, codimOging = 2. Then the orbifold fundamental group 7§"*(O) of an
orbifold O can be described ([68], §13) as the quotient

(2.2) 7"(0) = m1(Oreg) / H,

of the fundamental group m1(Oseg) of the regular part Oreg = O N Oging of
the orbifold (the complement of the singular locus) by the normal subgroup
H generated by the classes '7? in 71(Oreg), where ~; are loops around a
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component O; of Ogne with v; the order of the stabilizer G; of O;. In
particular, for a 2-dimensional good orbifold ¥ we have Y¥gne = {x;}j=1,...m
the cone points with stabilizers Z /v;Z. In the product X" we have (£")ging =
Uk—12sing,(k)» Where Yo (r) means a copy of Ygng in the k-th factor and
the full space X in all the other factors X, 1) = 3 X =+ X Xging X =+ X X,
Thus, the set of regular points (3X");ee = X" N\ X%, is given by (X")reg =

sing
(Yreg)", and we can unambiguously use the notation Xf,, for this locus. We
have m(X],) = m1(Zreg)”. The normal subgroup H of m (2}, ) is generated

by loops 7; 1 in X" that circle around the components ¥ x - -+ x {z;} x --- x
Y of Mging k- It suffices then to observe that for k # k" and for all j,j’, the
elements ~; x and 7, ;» commute in 7 (X}, ), so that the group H is a direct

product H = []}_, Hy, with each Hj, isomorphic to the normal subgroup of
the k-th factor m (Sreg), With m1(Sreg)/Hy = m$7°(X). Thus, we obtain

" (5") = m1(Steg) /H = m1(Sreg)"/ | [ Hie = 27 (2)"
k
O

Let I' be a discrete group. Let I'™ x S, be the semidirect product with
multiplication

(g17 -y 9n, U)(hla ce hnaT) - (glha'(l)7 s 7gnha'(n)7 UT);

and let (S,) C I'™ x S,, be the normal subgroup generated by the elements
of S,,.

The following argument is implicit in Remark 5.8 of [35]. We reformulate
it here in purely topological terms.

Lemma 2.2. Let X be a good 2-dimensional orbifold, with singular locus
Ysing gven by a finite set of cone points. Then the orbifold fundamental
groups of the symmetric products Sym™ (%) satisfy

(2.3) 7 (Sym™(8)) = 7" (2)" % Sp/(Sn).

Proof. As in (2.2) in the previous Lemma, we have 7¢"%(%) = m1(Syeg)/H.
The ordinary fundamental group mi(¥,es) classifies (ordinary) covering
spaces of ¥, in the sense that, to each normal subgroup N of m(X;eg)
there corresponds a regular covering space Xy of ¥,. Such a covering
space is a principal 71 (X;eg)/N-fibration over ¥,ee. In particular, the quo-
tient 7"%(X) = m1 (Sreg)/ H similarly classifies all such coverings of e that
extend to a branched covering of 3 with a trivial action of the stabilizers of

the singular points on the corresponding fibers. Such coverings correspond to
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normal subgroups N of m;(¥,eg) that contain the normal subgroup H gener-
ated by loops ; around the components of ¥;,s with the appropriate multi-
plicities v; as above. Next observe that a regular covering 3y of X,¢, can also
be described as an S,-equivariant covering ¥y of Yleg N A, the complement
of the diagonals in (X;¢g)" = (X" )reg. This means that there is an action of
S, on Yy, which is compatible with the action on Yleg N A, so that the
projection map of the covering is S,,-equivariant. These are classified by the
crossed product m1(Xf,, \ A) x Sy, of the action of S, on the fundamental
group m1 (e, \ A). Among all such coverings, we consider those that extend
to an S,-equivariant branched covering of 3", with a trivial action of the sta-
bilizers of the components of s and of the diagonals. These are then clas-
sified by a quotient of 71 (X}, \ A) x S, where we mod out by the normal
subgroup generated by the loops around the components of ;s and the el-
ements of Sy, that is, by the group 7§"*(X") x S,,/(S,). Finally, observe that
the data of an S,-equivariant branched covering of ¥ as above uniquely de-
termine a branched covering over the symmetric product Sym" (%) and vice

versa, so that we can identify 7¢"°(£") x S,,/(S,) = 7¢"*(Sym™(X)). O

The following observation is also implicit in Remark 5.8 of [35]. We spell
it out for convenience.

Lemma 2.3. Let I' xS, be as above, with (S,) C '™ x S, the normal
subgroup generated by the elements of Sy,. There is a group isomorphism

(2.4) I % Sy /(Sn) = re,
where T% =T'/[[',T] is the abelianization.

Proof. Let g;y denote the element g = (1,...,1,9,1,...,1) of I'" that has
the i-th coordinate equal to g € I and all the other coordinates equal to the
identity element 1. Since I'" is a direct product of copies of I, the different
factors I' commute with each other, hence for all g, h € T'; we have g h(;) =
h(jy9(;) whenever i # j, with the product equal to the element of I'"* with g in
the ¢-th place, h in the j-th place and 1 everywhere else. Moreover, observe
that, for any g € I" and for i # j, the element (g;), 1) in I'™ x S, is equal to
(L,04) " (9¢), 1) (1, 035), where 0;; € S, is the permutation that exchanges i
and j and fixes all other elements of {1,...,n}. For any v € I'™ x S,,, and for
all o € Sy, we have (1,0)"!y(1,0)y~! € (S,), hence v and (1,0) *y(1,0)
define the same class in the quotient I'* x S,,/(Sp). In particular, g(; and
g(;) define the same element in the quotient, for all g € I' and for all 7 # j.
Thus, we obtain that in the quotient the n-copies of I' in the product I'”
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are identified and commutators are killed, hence the quotient gets identified
with 190, O

Combining the results of Lemmata 2.1, 2.2, and 2.3, we obtain the analog
of (1.7) for orbifold fundamental groups.

Proposition 2.4. For n > 2, the symmetric products Sym™(X) of a good
2-dimensional orbifold 3 have orbifold fundamental group given by

(2.5) 7 (Sym™(8)) = a7 (£)*.

In the case of a 2-dimensional hyperbolic orbifold ¥ = ¥(g,r) one ob-
tains the following.

Corollary 2.5. ForY = %(g,v) andn > 2, we have 7§"(Sym"(X(g,v))) =
2% © L, where Z, = ©7L 2 /v L.

Proof. The abelianization of a group I' = I'(g, ) of the form (1.1) is given
by 229 &; Z./v;Z. O

Remark 2.6. The abelianization of the fundamental group is the first ho-
mology group, 71(X)% = H'(X,Z). In the case of the orbifold fundamental
group, there is a similar homological interpretation of its abelianization,
in terms of the ¢-singular homology defined in [65], 7¢"*(X)%® = tH(%, Z),
where the t-singular homology tH* is constructed using singular simplexes
that intersect transversely the singular locus of X, see [65] for details.

2.1. Geometry of some orbifold covering spaces

We consider some covering spaces of the orbifold symmetric products that
will be useful in the rest of the paper.

Proposition 2.7. For n > 2, let Sym™(X) be the symmetric product of
the 2-dimensional orbifold ¥ = ¥(g,v). Let (Sy,) be the normalizer of S, in
I' % S, and letS, = (Sp)/Sn. Let S*(H) := H"/(Sy). Let £y = H/I'y with
L'y as in (1.3) with finite quotient G =T'/T'y. Let G,, := G™ X Sp,.

1) Sym™(X) is orbifold covered by H", with Sym™(¥) = H"/T" x S,,.

2) Sym"™(X) is orbifold covered by S™(H), with

Sym" (%) = S"(H) /7" (Sym" ().
3) S*(H) is orbifold covered by D*™ = Sym"(H), with S*(H) = D?"/S,,.
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4) Sym" (%) is orbifold covered by the smooth manifold ¥7,, with
Sym" (%) = X7, /Gn.

Proof. The orbifold ¥ = ¥(g,v) has a finite branched cover by a smooth
surface Yy, of genus (1.2), so that 3 = 3, /G, with the finite group G as
in (1.3). Moreover, ¥ also has universal orbifold cover H, with ¥ = H/T", for
I' =T'(g,v). The isometric action of I on H induces an isometric action of
I' % S,, on the n-fold product H", with quotient H"/T" x S,, = Sym"(%).
Consider the normal subgroup (S,,) C I'™ x S,,. We can equivalently describe
the quotient above as (H"/(S,,))/(I'"™ % S,,/(Sy,)) = Sym™(%). The group S,
is normal inside (S,,) with quotient S,,, and we can further write the quotient
H"/(S,) = (H"/S,)/S, = Sym"™(H)/S,,. We identify the hyperbolic plane H
with its Poincaré disc model H = D? (the open unit disc in R? with the
hyperbolic metric). By Lemma 5 of [42], there is a homeomorphism of pairs

(D?",§D* = §27~1) = (Sym™(D?), Sym™(D?) ~. Sym™(D?)),
where D?" is an open 2n-dimensional disc. Thus, we can identify Sym™(H) =
D?", with the metric induced by the hyperbolic metric on H, so that
Sym”(H)/S,, = D?**/S,,. Finally, consider the sequence of groups (1.3). The
normal embedding Iy < I' determines a normal embedding I'j, — I'" %
Syn. The quotient group can be identified with G™ % S,,, where G =T"/T.
We then rewrite the quotient H"/I'"™ x S, = Sym™ (%) as (H"/T'y,)/(I'"™ x
Sy /Ty) = Xy, /Gp, with the finite group G, = G™ x S;,. O

3. Group algebras and K-theory

We now compute the orbifold K-theory groups of the symmetric products
Sym" (%) and we discuss their relation to the K-theory of group C*-algebras.

3.1. Orbifold K-theory

Let X be a good orbifold that is orbifold covered by a smooth manifold Y
with X = Y/G. Then the orbifold K-theory of X is given by

(3.1) ory(X) = Ko(Co(Y) % G) = Kg(Y),

orb

the G-equivariant K-theory of Y.
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We know from [26], [49] that, for a good 2-dimensional orbifold ¥ =
¥(g,v), with m cone points x; with stabilizers of order v;, the orbifold K-
theory is given by

2-m+v g —
(32 (%) = {Z -

orb

where v =310 v;.

For the symmetric products Sym"(X), using the covering (4) of Propo-
sition 2.7, we obtain
(3.3)  Kou(Sym"(2)) = Ku((C(Sg) % G)¥" %1 8p) = K s, (Zp),
where Ko(C(Xy) x G)) = K3,,(2). Using the orbifold cover (1) of Proposi-
tion 2.7, we see that it can also be described as
(3.4) Koy (Sym™(%)) = K s, (H").

These descriptions of the orbifold K-theory of the symmetric products
fall into a general framework for studying equivariant K-theory with respect
to the action on powers X" of the wreath products

(3.5) G~ S, = G" % Sy,

for a finite group G acting on a smooth manifold X. Several important
properties of the equivariant K-theory groups K¢, ¢ (X ") where studied
in [71]. We recall some of the main results of [71] and we apply them to our
case, described as in (3.3).

3.2. Classifying space for proper action and assembly map

It is known from [6] that, to a locally compact group G one can associate
a universal space for proper actions EG, and a classifying space for proper
actions given by the quotient BG = EG/G, so that there is a Kasparov
assembly map from the equivariant K-homology groups with G-compact
support K& (EG) to the K-theory of the reduced group C*-algebra

(3.6) w: KG(EG) —» K;(C}(G)),

which assigns to an abstract G-equivariant elliptic operator its index. The
group G satisfies the Baum—Connes conjecture if the map (3.6) is an iso-
morphism.
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The Baum—Connes conjecture (in fact the stronger form with coeffi-
cients) is implied by the Haagerup property, [53]. All finite groups satisfy
the Haagerup property, and Fuchsian groups are also in the list of groups
that are known to satisfy it, see [15], [53]. However, while it is known from
[18] that the class of groups satisfying the Haagerup property is closed
under wreath products, this only refers to “standard” wreath products
G ~ H := GH) x H where GH) = @, yG. A more general class of wreath
products, which includes the case G™ % S, that we are interested in, is given
by the “permutation wreath products” G ~x H = GX) x H, where X is an
H-set and the action of H on G&X) = @, xG is by permuting indices z € X
with the H action. As shown in [18], the Haagerup property is a lot more
delicate for the case of the permutation wreath products.

However, for two groups G and H that both satisfy the Haagerup prop-
erty, even if the more general permutation wreath products G ~x H =
G % H do not necessarily satisfy the Haagerup property, they all do sat-
isfy the Baum—Connes conjecture. This follows from the general result of
Oyono—Oyono on Baum—Connes for certain group extensions, [58]. Thus,
we have the following property.

Lemma 3.1. The groups I'™ x S,,, with ' =T'(g,v) a Fuchsian group, sat-
isfy the Baum—Connes conjecture, hence the assembly map

B.7)  p: KGp(Sym™ () = K g, (H") = Ko(Cr(I™ % Sn))

orb

18 an isomorphism.

Proof. The general result of [58] implies that the wreath products I'" x S,
satisfy the Baum—Connes conjecture. The result then follows by identifying
H" = E(I"™ x S,) and Sym"™(X) = B(I'™ x S,,), with models for the univer-
sal and classifying space for proper actions, respectively. To see this, we can
use the fact that if for a group G a G-space Y is a model of the universal
space for proper actions EG, and G’ C G is a subgroup, then Y is also a
model of EG’ (Corollary 1.9 of [6]) and that if G is a Lie group and K is
the maximal compact subgroup, then a model of EG is given by the quo-
tient G/K. A Lie group is virtually connected if it has only finitely many
connected components. For any virtually connected Lie group the quotient
G /K is diffeomorphic to a Euclidean space. We apply the above to the group
PSL(2,R)™ x S,,. O
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3.3. Orbifold K-theory and Lie group quotient

Consider as above the virtually connected Lie group PSL(2,R)™ x S,, and
let KC,, denote its maximal compact subgroup, with quotient PSL(2,R)" x
Sp/Kyn >~ H". The orbifold symmetric product is obtained as the double
quotient

Sym™ (%) = T, \PSL(2, R)" %1 Sy /K,

where I'), = I'"™ x 5,,. Let

(3.8) P, =T, \PSL(2,R)" x Sy,

Py =Ly \PSL(2,R)™ % S,.
Then we have the following.

Lemma 3.2. Let Py, 75n, and IC,, be as aboveAand let G, = G™ xSy, with
G =T/Ty. The algebras Co(Pyp) x Ky, and Co(Pn/Kpn) 3 Gn = C(E3) x G,

are strongly Morita equivalent.

Proof. By (3.8) and (3.9), and the fact that I'j, C I xS, is a normal sub-
group with quotient G,, = G™ x §,,, we obtain

Pn=Gn\Pn, and Pp/K,=T3\H" =237,

The Morita equivalence then follows as in Proposition 1.2 of [49], by applying
[34]. O

The orbifold C*-algebra is defined in [26] as
C*(Sym" (X)) = C(Fn) x SO(2n),

where F,, is the frame bundle of the orbifold tangent bundle of Sym"(X).
By the same argument of [26] it is shown to be strongly Morita equivalent
to

C*(Sym™(%)) = C(7) x Gy

Thus, combining [26] with Proposition 2.7, we obtain the following.

Corollary 3.3. The algebras C*(Sym™(X)), C(X3) x Gy, Co(H") x Iy,
Co(S™(H)) x I'®, and Co(Py) x K, are all strongly Morita equivalent.
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3.4. A notion of orbifold-Jacobian

Given a good 2-dimensional orbifold ¥ = ¥(g,v), we define the orbifold-
Jacobian of ¥ to be the product

(3.10) Jorb (%) ) X H 1y,

where J(X) = HY(X,R)/H'(X,Z) = T%, a real torus of rank 2g, and p,,
denotes the group of roots of unity of order v;. The group structure on
Jo(2) is the direct product T?9 x [T5%) po,-

For each cone point x;, j =1,...,m on the orbifold X, let C; be the
boundary of a small disc in X centered at x;. Let z;; for k=1,...,v; be
points on Cj. For such a collection of base points, we define an orbifold-
Abel-Jacobi map A" = {A; .} with

x
.Ach Y= TQQ X {Cj7k}, Ang W / w
Tj k

where (5 are the roots of unity in p,,. This extends to an orbifold-Abel-
Jacobi map A°™ : Sym™(X) — JoU(X) by Az, ..., z,] = A0 (21) 4+
.Aorb(flfn).

3.5. K-theory and the orbifold-Jacobian

The reduced group C*-algebra C)(G) of a discrete group G is the norm
closure in the algebra of bounded operators on £?(G) of the group ring
C[G], acting via the left regular representation Ly&(g') = £(g71g').

Lemma 3.4. The reduced group C*-algebra C;(m§"*(Sym"(X))) has K-
theory isomorphic to the topological K-theory of the orbifold-Jacobian
Jorb(E)_

Proof. The group 7™ (Sym" (X)) = 7¢"*(X)? is abelian. Thus, the K-theory
of the reduced group C*-algebra can be identified with the topological K-
theory of the dual group, under Pontrjagin duality,

(3.11) K (G (2))) = Kj(C(n{™(2))).

We have 7¢"0()% = 729 & P ; Z/vjZ. The Pontrjagin dual of a direct sum
of abelian groups is the direct product of the Pontrjagin duals. The dual of
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729 is a 2g-dimensional real torus T?9 = S x .. x S', while for each finite
group Z/v;Z the Pontrjagin dual is the subgroup f,, C S L of v;-th roots of
unity, which can be identified again with Z/v;Z. Thus, we obtain a direct
product

—

ﬂ-frb(z)ab - TQQ X Hlu’Vj'
J

3.6. A homotopy theoretic version

Consider a smooth surface ¥, = H/I'y uniformized by the hyperbolic plane
H. The surface ¥, is a model of the classifying space for proper actions
Yy = Bl'y, with H = ET';; a model for a universal space for proper actions,
[6].

It is known (see Theorem 1.1 of [70]) that a group homomorphism « :
I'y — I'y induces a commutative diagram

(3.12) KIV(ETy) —= K (C*(I'y))

K1*(ETs) —= K (C*(T'2)).

The analogous statement for reduced algebras C}(I';) holds in general only
for monomorphisms (Corollary 1.2 of [70]), but since the geometric left-
hand-side is always functorial, under the hypothesis that the Baum—Connes
conjecture holds, then the right-hand-side would also be functorial for the
reduced case, as observed in [70]. We focus on the case where I'y = T'y, and
I'y = Fgf’ = HY(S,,Z), witha : Ty — Fgf’ the quotient map. In this case, we
know that the groups involved satisfy the Baum—Connes conjecture, and we
can think of the left-hand-side of the diagram (3.12) as a kind of “homotopy-
theoretic Abel-Jacobi map” from the K-homology of the curve 3, to that
if its Jacobian,

(3.13) Koo (H) ~ Ko(3,) — Ko(C*(Ty))

Ko¥ (RY) = Ky (J(Sy)) L Ko(CH(227).

In a similar way, we obtain maps

(3.14)  KU(H) ~ K (D) B K (C* () = KJ(C* (%)) = K*(J(%))
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and similar maps for the symmetric products

(3.15)  KI"9n(H") ~ K (Sym™ (%)) & K (C*(I™ % Sy))
— Ko (C*(I™)) = K*(J"(%)),

where the last map is induced by the quotient map
I %S, = I xS,/(S,) ~T%,
4. The magnetic field and twisted group algebras
4.1. Twisted group ring and twisted group C*-algebra

Recall that, for a discrete group I', a multiplier on I' is defined as a map
o:T' xT' = U(1) satisfying the properties:

1) o(v,1) =0(1,y) =1, forall y € T,
2) o(v1,72)0 (1172, 73) = (71, 7273)0 (72, 73), for all 1,72, € T

The reduced twisted group C*-algebra C(I',0) is the norm closure in the
algebra of bounded operators on £2(T') of the twisted group ring C[I', o],
generated by the left translations Lf with relations LIL7, = oy, )L
represented on ¢2(I') by the left regular representation

(4.1) LIE(Y) = o(y, v 1Y) E( 1Y),
4.2. Cocycles from the magnetic field

In the system we are considering, we have n indistinguishable particles mov-
ing in a negatively curved geometry H, subject to a potential, which is gener-
ated by charges disposed along the vertices of an embedding (Cayley graph)
of a Fuchsian group I' in H, and to an external magnetic field.

Usually, in the “independent electron approximation” in the theory of
solids, one replaces the (unbounded) interaction potential of the many-
particle problem with a Hamiltonian with an effective potential of the form
H=3%",-A; +V(z;), with a (bounded) effective potential V(z) of a
single-particle problem that encodes an average of the interactions of one of
the charge carriers with the others, as well as with the atoms of the periodic
medium. Here we consider a more general situation, where the independent
electron approximation is perturbed by a (bounded) periodic interaction
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potential. This means that we consider a Hamiltonian as above with the
V(z;) replaced by a smooth bounded function W (xy,...,z,) on H", which
is invariant under the symmetry group I'" x S,,.

As in [14], [49], [50], [51] the magnetic field is described by a closed 2-
form w = dn on H. The form is invariant under the action of I' on H, so that
w —y*w = 0 for all v € I". However, the potential 7 is not ['-invariant. The
fact that d(n — y*n) = 0 for all v € I" implies the existence of a (real valued)
O-form ¢, on H satisfying v*n —n = d¢-, for all v € I'. The function

x
(4.2) by = / Y —n
To
satisfies the property that

(4.3) d)'y(x) + Oy (yr) — ¢'y’7($) = ¢y (vo)

is independent of x € H. Setting

(4.4) o(7,7") = exp(—ig (yx0)),

for a chosen base point xg € H, determines a multiplier of I', as in §4.1. The
magnetic Laplacian A" = (d — in)*(d — in) is invariant under the magnetic
translations Tff5 = e 1P T, and the algebra of magnetic translations satisfies

(4.5) TS = o(v,7) T2,
with o(v,7) as in (4.4). This follows from (4.3).

Consider now the product H" and the 2-form w =}, w;, where w; is
the pullback w; = 7fw of the magnetic field 2-form described above, under
the projection of H™ onto the j-th factor. In particular w; only depends on
the j-coordinate of H".

Lemma 4.1. The 2-form w on H" is invariant under the action of I';, =
'™ % S,. The potential, given by the 1-form ¢ = Zj n; 18 invariant under Sy,
hence it descends to a 1-form on Sym"(H) = H"/S,,. The form (, moreover,
satisfies g*C — ¢ = dipg, for g = (v,0) € I'" x Sy, with

(4.6) Pg(w) = Z by, (:Uff(j))’
j=1
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with ¢, as in (4.2) with a base point x gy = (vo,;). This function 1y : H" —
R satisfies

(4.7) Vg(x) + g (g2) — gg(z) = Py (935(0))7

independent of x = (x;) € H". This determines a multiplier o,, : I'y, x 'y —
U(1),

(4.8) on(9,9") = exp(—igy (g2 (0)))-
For g € '), the magnetic translations T;’b on H" satisfy
(4.9) THTY = 00(g.9) Ty,

Proof. The identity (4.3) implies that for all j = 1,...,n and all ; € I', and
all 0,0’ € S,, we have

d)’Ya/(j) (xa’a(j)) + ¢’y§ (70’(j)xo’a(j)) - QS’Y}'YC,/(]') (xcr’o(j)) = ¢’Y§ (fYU"(j)xO,U/O‘(j))7

so that by summing over j we obtain (4.7). The composition of two magnetic
translations then gives

e~ Wa(@) =Wy (97) £ (g ga) = ei(wg(:v)Jr%/(gx)*wg/g(:v))T;jg flz)
so we obtain (4.9) with the multiplier (4.8). O
4.3. K-theory of the twisted group algebra

The multiplier o, : T';, x I';, = U(1) described above determines a twisting
C(T'y,0p) of the group C*-algebra. The twisted group algebra provides
the algebra of observables for the n-particle system, in the presence of the
external magnetic field.

In [49] it was shown that the K-theory of the twisted group algebra
Cy(T', o) is isomorphic to the K-theory of the untwisted algebra, whenever
the multiplier o : I' x I' — U(1) has trivial Dixmier-Douady class d(o) = 0.
In the case of the algebras C (I, 0,,), we have a similar results, as we will
now discuss.

Proposition 4.2. Let o:T' xT'—= U(1) be a multiplier, with trivial
Dizmier—Douady class, 0[] = 0. Then it determines a multiplier o, : 'y, X
I’y = U(1), which also has trivial Dizmier—Douady invariants, §loy,] = 0.
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Proof. Recall that the exponential sequence
1-Z5RSU®1) -1,
with e(t) = exp(2mit), determines a long exact cohomology sequence

. — HXI',Z) > H*(I',R) = H*(T,U(1))
2 H3(T,Z) 5 H3T,R) — -

where § : H*(T',U(1)) — H3(T',Z) is the Dixmier-Douady map. The Fuch-
sian group I' = I'(g, ) has cohomology (see [49])

R j=0,2
(4.10) H/(T,R)={R¥ j=1
0 j>3

A multiplier o : ' x I' — U(1) determines a cocycle o € Z2(I',U(1)), with
cohomology class [0] € H?(T',U(1)). If the Dixmier-Douady class 6[c] = 0
in H3(T',Z), then the class [o] is in the range of the map e, : H*(I',R) —
H?*(T,U(1)), that is, there exists a cocycle ¢ € Z?(I',R) such that [o] =
[e(§)]. Using the branched covering of the 2-dimensional orbifold ¥ by a
smooth Riemann surface ¥, with ¥ = ¥, /G, for a finite group G, we can
identify H?(T,R) = H?(X,,R), since the finite group G has no nontrival
cohomology with real coefficients. Thus, we can realize the cocyle £ in terms
of a closed 2-form w on X4, or of its I'y-invariant lift to the universal
cover H, with [0] = [e(w)]. Consider then the cohomology H?(T,,R). By
the results of [47] [55] we know that the Lyndon-Hochschild-Serre spec-
tral sequence for the group cohomology of the wreath product I'" x S, de-
generates at the FEs-term, for both integral cohomology and cohomology
with coefficients in a field. In particular, this means that we can compute
the cohomology of I'), with real coefficients in terms of the cohomology
groups EY? = HP(S,,, H1(I'",R)), with HI(I'™,R) = @, +...yi,—cH" (T, R) x
---x H(T',R). For p+q=2, the only non-trivial term is H°(S,,, H*(I'",R)),
since for the symmetric group H7(S,,, R) = 0 for j > 1. There is a subspace in
H°(S,, H*(I'",R)) = H?(I'",R) that is isomorphic to H?(I',R)®", namely
the subspace given by the Kiinneth components involving only H? and H°
and not H'. This subspace can be identified with H?(3,,R)®", as above.
Using this identification, we see that the closed 2-form w(z) = 3, w(z;) on
¥ determines a class [eo] in this subspace of H 2(T'», R), hence it determines
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a multiplier class [0,] = [e(w)] € H?(I'n, U(1)), as the image under the map
e, in the cohomology exact sequence

(4.11) o= HA(Ty,, Z) 2 H*(n,R) = HX(I',,, U(1))
2 H3 (T, Z) = H3(T,,R) — -+

By construction, a representative o, : I';, x I';y — U(1) of this class will be
a multiplier with trivial Dixmier-Douady class, d[o,] = 0. O

Remark 4.3. In the case of the multiplier o : I' x I' — U(1) defined by
the magnetic field, we can take, in the argument of Lemma 4.2, the I'-
invariant 2-form w on H given by the magnetic field. The corresponding
multiplier o, : 'y, x I';y — U(1) will then agree with the one constructed in
the previous subsection. Thus, the ¢ and the o,, determined by the magnetic
field have trivial Dixmier—-Douady invariant.

With the K-amenability property discussed in §4.4 below, we have the
following.

Proposition 4.4. Let o, : 'y, x I')y = U(1) be a multiplier as above, with
d[on] =0. Then Ko(C} (L, 00)) >~ Ko(CHT)).

Proof. The argument is the same as in [49]. If d[oy,] = 0, we have [o,] =
[e(&,)] for some &, € Z?(T',,R), by (4.11). We can then use a homotopy
[ont] = [e(t&,)] with 0 <t < 1. Consider the discrete subgroup I'y, of G,, =
PSL(2,R)™ x Sy, with quotient I',\G,, = P,, and let A be an algebra with
an action of I';, by automorphisms. The crossed product (A @ Cy(Gy)) x Ty,
is Morita equivalent to the algebra of sections Cy(I';,\Gp,E) of the flat A-
bundle & — P, with £ = (A x G,)/T,, with the quotient taken with respect
to the diagonal action. Moreover, the algebras (A x I'),) ® Cy(Gy,) and (A ®
Co(Gn)) x Ty, have the same K,,-equivariant K-theory. Combined with the
previous Morita equivalence and the fact that G, /KC,, = H", we obtain

Kx, o(Co(Pn,E)) = Ki,, etrdim(G, /k,) (A X ) = Kic, o (A Ty).

As in [49], we use the Packer-Raeburn stabilization trick [59]. The algebra
A x5, T, is stably isomorphic to (A ® K) x I with K the algebra of compact
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operators, and we consider the flat A ® K-bundle
Er, = (AR K x Gp) /Ty, — Tp\Gh.
As in Proposition 2.2 of [49], we then have
Ko(C*(I'n, 0m)) = K (I'n\Gn, 6(By,))-

Here the twisted /C,-equivariant K-theory Kg(I';\Gp,d(Bs,)) is the same
as the Kp-equivariant K-theory of the continuous trace C*-algebra B, =
Co(T'p\Gn, &5, ) with Dixmier-Douady class §(B,, ). By Theorem 2.3 of [49],
using the K-amenability property of §4.4 below, we then have Ko(C* (I, 0y,))
= Ko(Cy(I'y,00)). We then obtain isomorphisms Ko(C) (', 0n,)) =
Ko (Cx(Ty)). O

Combining the isomorphism Ko(C; (I, 0n¢)) = Ko(C(I'y)) obtained
above with the Kasparov assembly map, we obtain a twisted Kasparov map
(as in [49], [50])

(4.12) fo, t K2, (Sym™ (D)) — Ko(CF (T, o).

orb

4.4. K-amenability

We now turn to the K-amenability property of the group SL(2,R)"™ x S,,. We
first recall some basic facts about K-amenability. A locally compact second
countable group G is amenable if the map A : C*(G) — C;(G) determined
by restriction of representations is an isomorphism. In particular, if G acts
on a C*-algebra A as a C*-dynamical system, and G is amenable, then
the map A4 : C*(G,A) — C}(G, A) is also an isomorphism. The notion of
K-amenability expresses a weaker K-theoretic form of this property. We
consider here two forms of the K-amenability property, as in [30]. Recall
that a Fredholm G-module is a pair (H, F') of a Hilbert space H = Ho ® H1
with unitary representations pg, p1 of G on Hg and H; and with a bounded
operator F': Hy — H1 with

g+ p1(g) o F' — Fopo(g)

a compact operator and with F*F — 1 and F'F* — 1 also compact opera-
tors. The trivial Fredholm module has Hy = C and #; = 0. The notion of a
homotopy of Fredholm module is similarly stated (see e.g. [30]).
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1) G is K-amenable if, for any C*-dynamical system (G, A), the map A4 4 :
K.(C*(G,A)) = K.(C:(G, A)) is an isomorphism.

2) G is K-amenable if there exists a Fredholm G-module (#H, F') such that
the representation of G on the Hilbert space H is weakly contained in
the left regular representation, with (#, F') homotopic to the trivial
Fredholm G-module.

The second version of the K-amenability property implies the first: we
are going to refer to this second property as K-amenability. It was shown
in [43] that any covering group of the identity component of SO(n,1) is
K-amenable. In particular, SL(2,R) is K-amenable. It is also shown in [19]
that the class of K-amenable groups is closed with respect to the operations
of taking subgroups and taking direct products. Thus, the groups SL(2,R)"
are K-amenable.

Proposition 4.5. The wreath product groups SL(2,R)" xS, are K-
amenable.

Proof. The K-amenability of SL(2,R) follows from the general result of [43]
mentioned above. A more explicit proof was given in [30], by constructing
a Fredholm module with the desired properties. This has Ho = L?(K/M)
where K is the maximal compact (the circle group), with basis ¢, () = e,
n € 2Z. and M ={+1} C K, and H1 = Hi2® H_o consisting of Hilbert
space completions of the two discrete series representations, respectively
given by the spans of {wy, |n € 2Z, n > 2} and {w, |n € 2Z, n < —2}, and
with F(¢p) =0 and F(¢,) = wy,. See §1 of [30] for more details. The K-
amenability of SL(2, R)™ follows, as mentioned above, from the general result
of [19] which in particular shows the property is preserved by direct prod-
ucts. The construction of a Fredholm module for SL(2,R)™ can be obtained
from the construction of [30] by tensor products. Notice that the weak con-
tainment of representations has the property that, if unitary representations
w1 and my are, respectively, weakly contained in unitary representations p;
and po, then m; ® ms is weakly contained in p; ® po. Let m be a unitary rep-
resentation of a locally compact group G on a Hilbert space H. It induces a
representation R, of the Banach algebra L'(G) on the same Hilbert space.
Moreover, one has a x-homomorphism R : L'(G) — C}(G). The representa-
tion 7 is weakly contained in the regular representation if ||R,(f)|| < ||R(f)]|
for all f € L'(G), see Definition 9.2.7 of [32]. For G,, = SL(2,R)" x S,,, con-
sider the G,-Fredholm module given by H®", with H the Fredholm module
of [30]. The operator induced by F' commutes with elements of S,,, and one
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obtains in this way a G,-Fredholm module. The representation of G, is still
weakly contained in the regular representation, because the inequality above
is still satisfied for f € L'(G,). O

As an alternative, it may also be possible prove the result above by
adapting the argument in Proposition 2.5 and Corollary 2.6 of [19].

5. Different notions of orbifold Euler characteristic

There are several different notions of orbifold Euler characteristic used in
the literature. We will recall here some of the main versions and their rela-
tion. One of the main difference is that some orbifold Euler characteristics
are rational valued, while other, even though they appear to be defined as
fractions, are in fact integer valued. In particular, we are interested here in
distinguishing between the Satake notion of (rational valued) orbifold Euler
characteristic, which plays an important role in the noncommutative geom-
etry approach to the fractional quantum Hall effect developed in [49], [50],
[51], and the notion of orbifold Euler characteristic that arises naturally in
string theory, [21], [69]. It was shown in [37], by a simple calculation, that
the latter is integer valued. We restrict our attention here to the case of good
orbifolds, which are global quotients, since the specific cases we intend to
focus on, the symmetric products Sym"(X) of good 2-dimensional orbifolds,
belong to this class: they are global quotients Sym"(¥) = X7, /G™ x Sy, as
we discussed above.

Let X be a smooth manifold and G a finite group, acting on X with an
orbifold quotient X/G. Then the Satake orbifold Euler characteristic, [60],
which we simply write as x°*(X/G) is given by

(51) X/G) = 5 X(X) €Q
In [60] a Gauss-Bonnet theorem is proved for orbifolds, where the usual
topological Euler characteristic is replaced by the orbifold version (5.1),
which is no longer, in general, an integer. The index theorems for elliptic
operators on orbifolds proved in [44], [45] generalize the result of [60]. They
were used in [49], [50] to obtain fractional values of the Hall conductance as
values of a higher twisted index theorem modeled on [44] and on the higher
index theorem of [17].

A different notion of orbifold Euler characteristic arises naturally in the
context of string theory on orbifolds, [21], [69]. We will refer to it here
as “string-theoretic orbifold Euler characteristic”, and we will denote it by
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x°"*(X, @), again assuming that the orbifold is a global quotient X/G of a
smooth manifold by a finite group action. This version of the orbifold Euler
characteristic is defined as

orb i
(5.2) (X,G) = G > x(

gh=hg

where the sum is over all pairs of commuting elements in G and X (9" is
the (common) fixed point set of g and h. Although from this definition this
also appears to be rational valued, it is shown in [37] that the sum in (5.2)
can be equivalently written as

(5.3) XX, G) =) x(X9/C(g)),
l9]

where now the sum is over conjugacy classes [g] and C(g) is the central-
izer of g in GG. The denominator #G disappears due to the simple fact
that #[g] - #C(g) = #G. In orbifold string theory, the sum in (5.2) corre-
sponds to the sum over the different sectors. Notice that the Satake orb-
ifold Euler characteristic x°"*(X/G) appears in the sum (5.2) as the term
corresponding to the trivial sector with g =h =1. It was shown in [4]
that (X, G) = rank K2 (X) — rank K5 (X), the difference of ranks of the
equivariant K-theory.

Example 5.1. In the case of the 2-dimensional good orbifold ¥ = X, /G
the Satake orbifold Euler characteristic is given by x"*(2) = (#G) *x(2y)
X(2) +>2;(v; " — 1), while the string-theoretic orbifold Euler character-

istic is X‘”””(Eg ,G) X(Eg) + 22, —1).
5.1. Orbifolds of A-sectors and inertia orbifolds

The Satake orbifold Euler characteristic and the string-theoretic orbifold
Euler characteristic admit a family of common generalizations, see [66], [67]
and in [27], [28], [29]. As above, let Y = X/G be a good orbifold. We denote
by G = G(Y) the associated orbifold groupoid. In this setting one considers
the additional data of a finitely generated discrete group A and defines the
orbifold Y4 of A-sectors of Y through its orbifold groupoid, which is given by
G(Ya) = G(Y) x Hom(A,G(Y)). One then defines the orbifold Euler charac-
teristic x4°(X,G) as

(5-4) XA(X,G) = X" (Ya),
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namely the Satake orbifold Euler characteristic of the orbifold Y4. When
A = 7™ one recovers the orbifold Euler characteristics x97?(X, @) of [13]. In
particular, x%:°(X, G) = x°"°(X, G), with Yz: the inertia orbifold.

5.2. Orbifold Chern-Schwartz-MacPherson classes

A generalization of the generating function of (string theoretic) orbifold Eu-
ler characteristics (5.10) was given in [66], by considering the orbifold Euler
characteristics x%°(X™, G" x S,,), with G a finite group. The case of the
string-theoretic orbifold Euler characteristics of (5.2) and (5.10) is recovered
for A = Z%. A further generalization of both (5.10) and the result of [66] was
obtained in [56] as a generating function of orbifold characteristic classes,
where the latter are defined as (equivariant) Chern-Schwatz-MacPherson
classes, whose zero-dimensional component recovers the Euler characteris-
tic. The notion of orbifold Chern-Schwatz-MacPherson classes considered in
[56] is closely related to the stringy Chern classes of [2] and [20]. The orbifold
CSM class is defined in [56] as the image under the equivariant MacPherson
natural transformation C& (see [57]) of the canonical constructible function

1
121 ,,Gn #G Z 1(2;,)p(z2)a

" peHom(22,G.,)

where (Z;‘,)p(zz) is the fixed point set of the action of p(Z?) C G,, on Xy
Then the generating function of the orbifold CSM classes is then obtained by
applying C&*V™ = [1,,CS" to the series I%i,uanq”. This gives (Propo-
sition 4.2 of [56]) ’

oo

>t =] —g"ah ",

(=1

as in Theorem 1.2 of [56] with A = Z2, and with A the morphism on homol-
ogy induced by the diagonal embedding A : 3, — Zg/. The string-theoretic
orbifold Euler characteristics (5.10) are obtained by taking the 0-component
of the CSM class, see (2.2) of [56]. Moreover, one can view the orbifold CSM
class as in (2.2) and (2.4) of [56], as a sum

CoNX/G) = Culmak g) = maCE (1, Zac (X7/C(g)),
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where m maps G-invariant constructible functions on X to constructible
functions on X/G and ¢* is the homomorphism from HE(X) to H.(X) (in-
clusion of X as fiber of X xg EG — BG); the last sum is over conjugacy
classes of elements g € G, and C(g) is the centralizer of g. In the latter form,
these classes can be viewed (after reinterpreting them cohomologically) as re-
siding in the delocalized equivariant cohomology H*(X,G) = @H*(X9)¢),
see [7]. Delocalized equivariant cohomology for symmetric products was con-
sidered in [72]. In the more general case of orbifolds X™/G,, with a wreath
product G,, = G™ x S,,, the delocalized equivariant cohomology is obtained
as image under the Connes—Chern character of the K-theoretic construction
of [71] recalled in §5.3 below. Delocalized equivariant cohomology is also the
natural cohomology for string theory on orbifolds, in the sense of [21], [69].

Although the Chern-Schwartz-MacPherson classes are defined as homo-
logical Chern classes of singular varieties, they still admit a Chern—Weil
type formulation in terms of curvature forms (currents), as shown in [31].
The construction of Chern—Weil representatives is based on an embedding
of the singular variety X in a smooth ambient variety M, and in univer-
sal differential forms (currents) v obtained from the pullbacks to P(7™*M)
of the Chern classes Cy(M) and the powers (" of a 2-form ¢ on P(T*M)
determined by the property that, on the total space S(T*M) of the Hopf
bundle g : S(T*M) — P(T*M) with fiber S', one has 7},¢ = dB, with
the generator of the cohomology of the fiber S*. More precisely, one has (§2
of [31])

SC | ATy = 3 (—1y My

r>0 k

which, using the Chern-Weil curvature forms for C, (7% M) leads to Chern-
Weil representatives for the 7, The Chern-Schwartz-MacPherson class of
X C M is then obtained as the current C,(X) whose pairing with a form w
is given by

(O = POV wnw = [ e

where N*(X) is the Legendrian conormal cycle defined in §1 of [31] an
P(N*(X)) = my3(N*(X)[B), that is, N*(X) is the extension of P(N *(X))
to the total space of the Hopf bundle H, N*(X) = P(N*(X)) xy [S']. T
case of a smooth variety X one has N*(X) = (—1)dmM- dlmX[IP’(Z/ (X))]
where v*(X) is the conormal bundle.
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5.3. The Fock space of orbifold symmetric products

Following results of Segal for the equivariant K-theory of symmetric prod-
ucts [64], Weigiang Wang established in [71] analogous results for the more
general case of wreath products G ~ S, = G" xS, for a finite group G
acting on a locally compact Hausdorff paracompact G-space X.

We use the notation G, = G" xS, as in [71]. Let K¢ (X") be the
equivariant K-theory and let K¢, ~(X") = K¢ (X") ®z C. The Fock space
Fe(X) is given by ’ '

(5.5) Fa(X) = @n>04" Kgnys, c(X"),

with ¢ a formal variable (which keeps count of the graded structure) and
with the term n =0 equal to C. It is proved in [71] that the Fock space
Fe(X) has the following properties:

e Fi(X) is a graded connected Hopf algebra with multiplication defined
by

K Ind

(5.6) K& o(X")®@Kg o(X™) = K «q, c(X™T) T K o(X),
where the first map K is the Kiinneth isomorphism and the second
map Ind is the induction maps for subgroups; the comultiplication is

given by

o R L]
(5.7) K¢, o(X") = @5,20KG, xa,_,..c(X")

B or K& (XM @ KE (XM,

n—m;

where the first map R is restriction from G,, to subgroups G, X Gp,—m,
and the second map K ! is the inverse of the Kiinneth isomorphism.

e As a graded algebra (graded over Z* x Z/27), F(X) is isomorphic
to the algebra

(5.8) S(®n210" Kg o (X)) ® M@nz14" K (X)),

where § denotes the symmetric algebra and A the exterior algebra.
The graded dimension satisfies

H£>1(1 +qﬁ)dimKé=C(X)
(5.9)  dimg Fa(X) =3 ¢"dim K¢, o(X") = =2 S
a 7;) H521(1 _ q£)d K& o(X)



478 M. Marcolli and K. Seipp

e The orbifold Euler characteristics (in the string theory sense) of the
symmetric products have a generating function

(5.10) D OXTHX™ G) " = [](1 = gf) T,
/=1

n>1

o Fu(X) is a free A\-ring generated by K&C(X).

Remark 5.2. This construction, applied to X =X, and G =I'(g,v)/I'y
provides a Fock space Fg(X, ) for our setting, with all the properties listed
above, and

(511) Zxorb En Gn v S _ lo_o[ 1 7q X (S, G)

n>1 =1
6. Higher twisted index theory

Let £ be an orbifold vector bundle on the good 2-dimensional orbifold 3.
It defines a class [£] in K} ,(X). On the n-fold product X" we consider
the orbifold bundle £¥". This determines an orbifold vector bundle &, on
the symmetric product Sym™(X). Let £ be the pull back of £ to H and
ER®n the corresponding bundle on H”. Similarly, we consider the pullback &’
to ¥, and the bundle £&’%" on Yy The class [€,] € K3, (Sym" (X)) corre-
sponds to the classes [E%"] and [’ &"] respectively, under the identifications

K5, (Sym" (%)) = Kp (H") = Kg, (2},). Let @;f be the twisted Dirac oper-
ator on H and let V = d — in be the hermitian connection on H with cur-
vature V2 = jw, where w is the I' invariant 2-form defined by the magnetic
field. The operator (,79+ ® V commutes with the projective action (I', o). Sim-
ilarly, we write éﬁ for the twisted Dirac operator on H" and we consider
(/9 L ®V, Where Vi =d —i¢ where ¢ = >, ; is the 1-form of Lemma 4.1.
By the argument of Lemma 4.1, we see that @Em ® V,, commutes with the
projective action (I',, 0,,). The analytic index is the image under the twisted
Kasparov assembly map piq, : K3, (Sym" (X)) = Ko(Cy(I'y, 00)) of (4.12),

(6.1) Ind(rn,on)(@gﬁn ® Vi) = o, ([En]),
with the property that (§2.3 of [49])

(6.2) Indre(@fy, ® Vi) = tr(Ind(r, o,)(J5, @ Va).
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A cyclic 2-cocycle on an algebra R is a multilinear map ¢ : R x R x R —
C satistying
t(a,b,c) =t(c,a,b) =t(b,c,a)

t(ab, c,d) — t(a,be,d) + t(a, b, cd) — t(da, b, c) = 0.

A dense involutive subalgebra R(I', o) C C}(T', o), which contains the twisted
group ring C[I', o] and is closed under holomorphic functional calculus is con-
structed in §4 of [51], as the intersection of the domains of the powers §* of
the derivation § = [D, -] associated to the operator D ¢, = £(y)d, that mul-
tiplies group elements by the word length ¢(-y). The Haagerup inequality for
surface groups shows that group cocycles on I' with polynomial growth de-
fine cyclic cocycles on C[I', o] that extend continuously to R(I', o), see [51].
In particular, given a bounded 2-cocycle ¢ € Z2(T'), one has an associated
cyclic 2-cocycle tr. on R(I', o). This gives an additive map on Ky, which we
still denote by tr.. Arguing as we did in §4 for the cocycle defined by the
magnetic field, we can identify H?(I')®" with a subspace of H?(T',,), as in
Proposition 4.2. Let ¢, denote the cocycle in H?(I')®" defined by n copies of
the 2-cocycle ¢ € H?(I'), and let tr., be the corresponding cyclic 2-cocycle
on R(I'y,04). As in [17] and in §3.2 of [50], one has an associated higher
twisted analytic index

(6'3) Ind(cn,Fman)(agxn @ Vn) = trcnlnd(lﬂman)(a;}-_&n ® Vn)
= ([tre, ], po, ([€n])) = (e [En])-

We have the following index theorems (Theorem 1.1 of [49] and Theo-
rem 2.2 of [50]), based on the Kawasaki index theorem on orbifold, [44], [45],
see also [26], and on the higher index theorem of [17].

Proposition 6.1. Suppose given a cocycle c € H*(T') as above, with ¢, the
corresponding cocyle on Ty, together with a multiplier o : T'x T' — U(1) as
in §4, determined by the closed I'-invariant 2-form w of the magnetic field,
and the corresponding 2-form wy, on Xy,. Then the higher twisted index (6.3)
is given by

(6.4) tre,Ind(r, 5.)(Pfg, ® Vn)
- 1 N Re'E
—(2n)nn! (#G)" s, Al )ir(e )& len

Ddn

where &, is a 2-form representative of the class in HZ(Eg/) corresponding

to ¢, € H*(I)®" ¢ H*(T,,), and n!(#G)" = #G,.
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The case (6.2), without the cyclic cocycle ¢, computes the range of the
trace on K-theory, which is useful for gap labelling purposes, see [49], [51].
Here we focus on the higher version with the cyclic cocycle, as that will
provide the quantization of the Hall conductance as in [51].

Lemma 6.2. Let £ be an orbifold vector bundle over the good 2-dimensional
orbifold ¥ =3, /G =H/T' and £ the pull back to 4. Given a cocycle
c € H*(T) with the induced ¢, on Ty, =™ x Sy, and let w be the 2-form de-
termined by the magnetic field. Then the twisted higher index theorem (6.4)
can be written as

(6.5) tre,Ind(p, o) (5, © Vn)

N Qa1 n
~ (2m)"nl (#G)" ( - A(Q)tr(e™ ) Ec) :

Proof. The A—genus is multiplicative over products, and the form A(Qn) on
¥ is the product of n copies of A(Q2) on X;. The Chern character ch(€) =

Rg/ Xn

tr(e®) is multiplicative for external tensor products, hence tr(e ) on
Y7 is also a product of n copies of tr(eRS ) each depending only on one of
the factors ¥g. The form w, is by construction (see §4) a sum of n copies
of the 2-form w, each depending only on the coordinates of one of the X,
factors, hence e“~ is also a product. Moreover, as we have seen above, the
2-form &, on X7, is also a product of copies of a 2-form & on Xy . Thus, the
integrand in (6.4) splits as a product of identical terms depending on only

one of the factors. O

The area 2-cocycle ¢ € H?(I') is the restriction to I' C PSL(2,R) of the
hyperbolic area c¢: PSL(2,R) x PSL(2,R) — R, where ¢(vy1,72) is the ori-
ented hyperbolic area of the geodesic triangle in H with vertices (zo, v 120,
~v220), for a chosen base point zg.

Corollary 6.3. In the case where c € H?(I") is the area 2-cocycle, the range
of values of the twisted higher index theorem, while varying the choice of the
orbifold vector bundle £ on X is given by

(6.6) X (Sym" (%)) Z C Q,

where x°"(Sym™ (X)) is the Satake orbifold Euler characteristic of Sym™(X).
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Proof. The integral

1 N REN w
G /g/ A(Q)tr(e™ )e*E,

is the twisted higher index theorem computed in [50]. It is shown in Corol-
lary 3.2 of [50] that, when ¢ € H?(T) is the area 2-cocycle, this integral is
given by

x;ig;,) -rank(€) = (L) - rank(€).

Thus, for the area cocycle, the twisted higher index theorem (6.5) is given

— -rank(&)" = X (Sym™ (%)) - rank(£)™.
]

The Hall conductance on 3 is also described by a cyclic 2-cocycle on the
twisted group algebra C[I', o], given by

g
(6.7) trx (fo, f1. f2) = Z 6;(f1)8j+¢(f2) — j44(f1)8;(f2))),
where g is the genus and the d;, for j = 1,...,2g are derivations associated

to the elements of a symplectic basis of H'(X, R). If P denotes the spectral
projection associated to the Fermi level, then the Hall conductance is given

by
op = tI‘K(PE, Pg, PE)

A derivation of this expression for the Hall conductance can be obtained
as a quantum adiabatic limit, see [14]. As shown in Theorem 4.1 of [50],
the conductance cocycle and the area cocycle are cohomologous. Since the
twisted higher index theorem, seen as a pairing of cyclic cohomology and
K-theory, only depends on the class of the cyclic cocycle, the range of the
twisted higher index theorem also determines the possible range of values
of the Hall conductance. We summarize the conclusion of this section as
follows: the single particle theory on ¥ with the external magnetic field w
extends in a compatible way to a many particles model on the symmet-
ric products Sym"(X). In this model, the range of quantized values of the
Hall conductance consists of integer multiples of the Satake orbifold FEuler
characteristics x°"®(Sym™(%)).
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7. Orbifold braid groups and anyons

In this section we analyze what types of anyons and composite fermions
one obtains within this model of fractional quantum Hall effect. These are
related to a notion of “orbifold braid groups” that we introduce below.
The configuration space of n (ordered) points on H is given by the com-
plement of the diagonals F'(H,n) =H" \ A. The configuration spaces of
unordered points is defined as the quotient by the action of the symmetric

group

(7.1) Conf(H,n) := (H" ~ A)/S, = F(H,n)/S,.

These have fundamental group 71 (Conf(H, n)) = B,,, the Artin braid group,
with generators o;, i = 1,...,n — 1 and relations o;0; = oj0; for |i — j| > 2
and 0;04410; = 0;41040;41, for i=1,...,n—2. In fact, the spaces

Conf(H, n) are topologically Eilenberg-MacLane spaces K (B, 1), see [23].
Given a 2-dimensional compact (topological) surface ¥, and a finite set of
points @ = {xj}j=1..m on X, one similarly defines the configuration spaces

FENQn)=ENQ)"~\A
(7.2) Conf(X\Q,n)=F(X~Q,n)/Sy.

For r < n, the projections I, (21, ..., 2n) = (21, ..., 2,) define locally trivial
fibrations F(X N\ Q,n) = F(X ~\ @Q,r) with the fiber over w = (w1, ..., w;)
given by the configuration space F/(X \ (Q U {w;}i=1,.. »),n —r). The braid
group of ¥\ @ on n strings is given by the fundamental group

(7.3) B,(2 N\ Q) :=m(Conf(X N Q,n)).

In particular, if ¥ is a 2-dimensional orbifold and @ C X is the set of cone
points, we have corresponding braid groups

(7.4) Bu(Sreg) = m1(Conf (Sreg, n)) = m1((Sy ~ A)/Sy).

7.1. Orbifold braid group

For a good 2-dimensional orbifold 2, we can also associate to the configura-
tion space Conf(X,eq,n) an orbifold braid group, defined as

(7.5) Bo(%) := 7" (Conf (X, n)),

using the orbifold fundamental group of Conf (X%, n).
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Proposition 7.1. The orbifold braid group of ¥ is a quotient of the or-
dinary braid group of X by a normal subgroup generated by powers 'y;j,
with v; the order of the stabilizer of the j-th cone point x; of ¥, and with v;
a loop in Conf(X,ee,n) that winds around the j-th component of the (real)
codimension two stratum of Conf(X, n)sing.

Proof. We have Conf(3yeg, n) = (Efeg N A)/Sp C Sym"™ (X)yeg, as in Lemma
2.2, where

("N A)eg = (" NA)N XN

reg

= {(Zl,...,Zn) € E?eg"zi 7ézj VZ,}
={(z1,...,2n) € X" |2; € Xyeg and z; # z; Vi,j}
=" ~NA.

reg

Moreover, ((Xjeg N A)/Sn)reg = (Sfeg \ A)/Sn, hence we can write the orb-
ifold fundamental group as

7" (Conf (2, n)) = 71 (Conf(Syeg, n))/H,

where H is the normal subgroup generated by elements ~/*, where the v,
are loops in Conf(X,eq,n) around a component X, of the singular locus
Conf(X, n)sing with v, the order of the stabilizer of X,. The singular lo-
cus Conf(X, n)sing = (X" N A)sing /Sy, only comes from the cone points of 3,
namely

(En AN A)sing = (Zn)sing AN Aa
where (X")sing = U1 Ysing k, With

Seingk = 2 X o+ X 0 X Ngipg X X X B,

with a copy of ¥, in the k-th factor and X in all the other factors. We
denote by Xging k(2;) C Lsing,k the component of the (real) codimension two
stratum of (X")sing that has a cone point {z;} C Egne in the k-th factor.
Thus, the components of the (real) codimension two stratum of (£")ging ~ A
are of the form Yg,g 1(2;) ~ A. Let ;1 be a loop in 3™ \ A that winds
around the component Yg,g 1 (2;). The power 'y;]k, where v; is the order of
the stabilizer of the cone point z; in ¥ is a generator of the subgroup H of
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m1 (X" . A) such that
T(ET N A) = 1 (8" N A)/H.

Passing to the quotient F'(X,n)=%" \ A— Conf(X,n)= (X" ~ A)/Sy, the
(real) codimension two stratum of the singular locus is the image of the
Sy, invariant configuration of components in F'(¥,n) given by X, (2;) :=
U1 Ysing k(xj), for a given cone point z;. We denote by 7; a loop in
Conf(X, n) winding around 3§, , (x;). The powers 'y;j generate the subgroup
H with
7" (Conf (%, n)) = 71 (Conf(Syeg, 1))/ H.
O

The braid groups of a 2-dimensional orientable (topological) surface of
genus g with m punctures were computed explicitly in [11], [12] (see also [63],
[8] for a slightly different form of the presentation). With the presentation
given in (8], if ¥ has genus g with a set Q = {x;}=1,....,m of m punctures, the
braid group B, (X \ @) has additional generators with respect to the Artin
braid group B,,. Namely, the generators are given by

o, 1=1,...n—1
ap, L=1,...,¢g

bg, 521,...79

¢, j=1,....m—1

(7.6)

with relations

00 = 005, when i — j| > 2
0i0i410; = 0i4+10i0i4+1, t=1,...,n—2,

(7.7)

and in the Artin braid group, and additional relations, for all ¢,

apo; = ozay, 1 # 1,

(7.8) beo; = oiby, i # 1,

al_llagal_llag = agal_llagal_ll
01,1b601,1b£ = bzal,lbeal
oy agoy by = byo; apoq
(7.9) al_lagalar = aral_lagal L <,
al_lbgalbr = bral_lbgal l<r,
aflagalbr = braflagal <,
0'1_1()@0'1&7« = araflbml l<r,
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and for all £,r and all j

Cj0; = 0iCy, 1 7'5 1,
ol_lcjalar = arol_lcjal n>1,
(7.10) aflcjalbr = bTUflcjal n>1,

-1 1 .
(711 CjOllck:Ck(TlleOll J <k,
01 CjO1 Cj = CjO1 CjOq .

In the case without punctures, the braid group B,(X) has generators oy,
ag, by as above with the same relations (7.7), (7.8), (7.9), but with (7.10)
replaced by

g
(7.11) H[ag,bz_l] = 0109021 - 0907].
(=1

Proposition 7.2. Let 3 be a 2-dimensional good orbifold of genus g, with
m cone points. The orbifold braid groups B2°(X) has generators o;, i =
L....n—1,ap, b, L=1,...,g andc;, j = 1,...,m with relations as above,
and with the additional relation

g
(7.12) [lae, ;" ot oyt 0,2 oy o e em =1
/=1

and c;-/j =1, where v; 1is the order of the stabilizer of the cone point.

Proof. As shown in [8], the generators ay and by correspond geometrically,
in terms of a fundamental domain for 3 given by a 4g-gons with pairwise
identified sides marked by the generators ay and 5y of 71 (X). The braid ay is
a string that crosses the «y sides and by the [y side (with the opposite orien-
tation), while the ¢; wind around the j-th puncture. The generators o; have
the usual meaning as in the Arting braid group. The relations are explained
geometrically in §2.2 of [8], where it is also shown that one can equivalently
introduce an additional generator c,,, as the braid that winds around the
last puncture, and the additional relation (7.12). This corresponds to writing
the fundamental group of the punctured surface ¥ \ Q = X,¢g as

m(ENQ) = <{az,bz}e=1,...,g, {¢j}i=1,..m ‘ H[aeybg_l]q O = 1> ,
¢

instead of writing it solely in terms of the generators ag,bs,c; with j =
1,...,m — 1. In particular, the generators c¢; provide loops in the configura-

tion space Conf(Xieg, n) that wind around the component Xf  (z;). Thus,
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by Proposition 7.1 we obtain B2"*(2) from By, (3yeg) by imposing the further
relations c;-'j = 1. O

7.2. Anyons

Fractional-statistics particles, or anyons, have the property that, when two
particles get interchanged, the wavefunction changes by a phase factor
exp(ima), for some o € (—1,1]. The cases @« = 0 and a = 1 correspond, re-
spectively, to bosons and fermions. It is known [22], [38] (see also [48]) that,
for 2-dimensional systems, the surface topology plays an important role in
determining what type of anyons can arise. More precisely, these are clas-
sified by 1-dimensional unitary representations of the braid group of the
surface. The case of the orbifold braid group is similar.

Lemma 7.3. Let X be a 2-dimensional good orbifold of genus g > 0, with m
cone points. One-dimensional unitary representations R of the orbifold braid
group By (X) have the generators o; acting as R(o;) = =1, the generators ay
and by, respectively, acting as phase factors R(ay) = e*™% and R(by) = >
and the generators cj acting as R(c;) = e2miB5/vi  where vj is the order of
the stabilizer of the j-th cone point and the B; satisfy Z;”Zl Bj/v; € L.

Proof. The fact that the o; must act like +1 follows from the relation
Ul_lagal_lbg = bgUl_lagUl in (7.9), which implies that o1 acts as £1 and the
relations (7.7), which imply that all the o; must then also act in the same
way. The action of the a; and by is unconstrained by the relations, hence we
get independent phase factors for each of them, while the ¢; are constrained
by the relations c;j =1 and (7.12), which implies R(c;---¢y) = 1. These
give R(c;) = e>™5i/vi with > Bilvi € L. O

Remark 7.4. Since the braids o; correspond to exchanging two particles,
all the representations in Lemma 7.3 are either fermions or bosons, whenever
g > 0. The 3; can be viewed as the Seifert invariants of an orbifold line
bundle over ¥ that has integer orbifold Euler number (hence is an actual
line bundle). See §7.3 for more details.

In the case of good 2-dimensional orbifolds of genus g = 0 with m cone
points, we have the following result.

Lemma 7.5. Let X be a 2-dimensional good orbifold of genus g = 0, with
m cone points. Then the one-dimensional unitary representations R of the
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orbifold braid group B, (X) have R(o;) = ™ and R(c;) = 2 %i/¥i where
vj is the order of the stabilizer of the j-th cone point and the B; satisfy

(7.13) a—z% €.
j=1"7

Proof. The argument is exactly as in the previous lemma, except that we
do not have the generators ay, by and the only relations are the (7.7) and

Cj0; = 04Cy, 7 75 1
1 . 1 .
011 ijfllck = o, lcjal : 7 <k,
01 CjOy Cj =Cjoy €Oy

0'10'2...0'7171...0'20'1:cl...cm

8,

and c?j = 1. This last relation gives, as before, R(c;) = 627””7‘. The rela-
tions (7.7) imply that all the o; must act by the same phase factor R(o;) =
e"™ and the last displayed relation then implies that e2™® = 2™ L Bilvs
hence we obtain (7.13). O

Remark 7.6. Thus, in the case of good orbifolds of genus zero, there are
non-trivial anyons (that are neither fermions nor bosons) and the fractional
statistics they satisfy depends on the datum of an orbifold line bundle on
Y, through the Seifert invariants ;, see §7.3 below.

Moreoever, it is known that two-dimensional systems on surfaces of genus
g > 0 do admit fractional statistics arising from higher dimensional irre-
ducible unitary representations of the braid group B, (X), [22], [38], provided
a satisfies exp(2mi(n + g — 1)a) = 1. We describe the analog for the orbifold
braid group.

Consider the N x N matrices

(7.14) Uy = 3 . with &, = exp(mi/N),

2(N—1)
N
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01 0 0 0

00 1 0 0
(7.15) Vy =

00 0 0 1

10 0 0

They satisfy the commutation relation
(7.16) Vv Uy = €% Uy V.

Proposition 7.7. Let Y be a good 2-dimensional orbifold of genus g with m
cone points. The orbifold braid group B*(X) has unitary representations of
dimension N9 with R(o;) = £y and R(a;) = Uny and R(bg) = Vi 4, where
Unye and Vg act as Un and Vi, respectively, in the (-th factor of the
tensor product of g-copies of CN and the identity on the other factors. The
generators c; act as R(cj) = e2™iB5/vi where vj is the order of the stabilizer
of the j-th cone point and the [3; satisfy the relation

(g+n—1) <=5
(7.17) N+jzlyj €Z.

Proof. The relation o, 1agal_ 1y, = beo, Lagoy is now satisfied, since the left-
hand-side §12VU ~N,¢Vn, and the right-hand-side VyUy agree by (7.16). The
rest of the relations (7.9) are also satisfied, since for ¢ # r Uy, and Vi,
commute. The relation ¢’ = 1 is satisfied by R(c;j) = 2™ /¥ and the rest
of the relations (7.10) are also satified. The remaining relation (7.12) for the
orbifold braid groups implies

[ BUae,b,") T Re:) > Rer---em) =1
=1 i
Note that from (7.16) we have UN,EVAZ% = £]2VV]\7’}UN¢. Thus, we obtain

Bj

2mi Y =L
e v =1,

SIS

which gives exp(27i((g +n —1)/N + >, 8;/v;)) = 1, namely (7.17). O



Twisted index, orbifold symmetric products, and FQHE 489

7.3. Orbifold line bundles and orbifold Euler numbers

We clarify here the relation (mentioned in Remarks 7.4 and 7.6) between the
anyon representations described above and the Seifert invariants of orbifold
line bundles. For a complex vector bundle £ of rank n over a manifold X of
real dimension 2n, the Euler number (&) is the integral on X of the Euler
class e(€). In the case of a line bundle on a 2-dimensional surface, the Euler
number is the integral of the first Chern class. For an orbifold line bundle
L on a (good) 2-dimensional orbifold ¥, the Euler number x(£) is replaced
by an orbifold Euler number (see [62], p.437)

(718) L) = x() -3
j=1"7

where the Euler number (L) is corrected by a contribution for each cone
point x;, j =1,...,m of the orbifold. These corrections are of the form
Bj/vj, where v; is the order of the stabilizer Z/v;Z of the cone point x;
and the 3; are the Seifert invariants of the orbifold line bundles. These are
obtained by considering the associated principal U(1)-bundle P and the
exact sequence

1>Z—m(P)—T—=1,

where if ¢; is one of the generators of I' with c;j =1 and « is the generator
of the fundamental group Z of the fiber, then the g;, with 0 < 8; <wv; — 1,
are defined by the relation

Oz’Bj Zéj,

where ¢; is a preimage of ¢; in 71 (P). By the Hopf theorem, the Euler number
of a line bundle on a 2-dimensional surface is a sum over zeros of a section of
the line bundle, counted with multiplicity. One can then think of the orbifold
Euler number (7.18) as a modification of this counting, where additional
zeros are counted at the cone points, with multiplicities 3;, but so that
each zero only contributes a fraction 1/v; of a zero at a regular point. This
is consistent with the Satake orbifold Euler characteristic x°"?(X), where
vertices of a triangulation that are located at cone points are counted with
a factor of 1/v;. In fact x°"°(X) is the orbifold Euler number of the orbifold
tangent bundle.
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8. Laughlin-type wave functions

This section is more speculative in nature. It contains some observations
on how one may naturally encounter some Laughlin-type functions in the
geometric setting described in the previous sections. The Laughlin wave
function can be regarded as a generalization of the Slater function

2
n ozl

(8.1) Ustater (21, -1 20) = V(21 20) - € Dit i,

with the Vandermonde determinant

V(zl,...,zn): H (Zi—Zj)

1<i<j<n

and with the magnetic length ¢ = 4/ eh—g. The Slater function describes non-
interacting fermions in a magnetic field, for the full filling of the lowest
Landau level. The Laughlin wave function takes the form

2
_ n Bl

(8.2) \I’Laughlin(zla ceey Zn) = V(Zl, cey Zn)p -e =142

so that it acquires a p-fold zero along the diagonals z; = z;. The exponent
p is taken to be an odd integer, so that antisymmetry is preserved. In the
case where p is an even integer, one considers functions of the form

o l=l?

)-V(zl,...,zn)p-e =1 a7

Zi — Zj

(83) \Iijafﬁan(Zla ceey Zn) = Pfaff (

Explicit algorithmic methods for expressing even powers of the Vander-
monde determinant as combinations of Schur functions, and Laughlin wave
functions as combinations of Slater functions, are discussed in [5], [61].

By analogy with the expression [[,(2z; — 2)P for a vortex of vorticity p
centered at z, the Vandermonde determinant V'(z1,...,z2,) in the Slater
wave function can be thought of as describing cyclotron motion of n non-
interacting fermions on the plane with magnetic field corresponding to a
completely filled lower Laudau level v = 1, and the corresponding powers
V(z1,...,2,)? in the Laughlin wave function can then be thought of similarly
as vortices with vorticity p, see [39], [40].

We seek here some geometric interpretation of Laughlin type wave func-
tions related to the anyon representations described in the previous section
and the geometry of the orbifold symmetric products.
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8.1. Anyon representation and orbifold vector bundle

We associate orbifold vector bundles to the anyon representations described
in the previous section.

Lemma 8.1. An N-dimensional anyon representations as in Proposition 7.7
determines an orbifold line bundle £ on X, with pullback L' to ¥4, and an
orbifold local system Vi of (complex) rank N. These data in turn determine
a rank nN orbifold vector bundle over Conf(X,n) C Sym™(X) of the form
Vi, N =Wy @ Vi, where W, is the restriction to Conf(X,n) of the orbifold
vector bundle on Sym™(X) determined by the external Whitney sum LB
on g,

Proof. By construction, the anyon representation is representation of
77" (Conf (X, n)) hence it determines an orbifold local system on Conf(3, n),
in the same way as representations of the ordinary fundamental group define
local systems. The Seifert data 3; of the anyon representation determine an
orbifold line bundle £ over . The product W, ® Vi is then an orbifold
vector bundle over Conf(3,n) of complex rank nN. O

The orbifold Chern number of W, is obtained as follows.

Lemma 8.2. Let L be an orbifold line bundle on the good 2-dimensional
orbifold ¥ = ¥4 /G. Let L be the pullback G-equivariant line bundle on Xy .
Consider the n-fold external Whitney sum L£'B" over Xy, and let Wy, be the
corresponding orbifold vector bundle over Sym™(X). Then the orbifold Euler
number is given by

(£ 1

(8.4) Xorb(Wn) = W = mxorb(ﬁ)n.

Proof. By Theorem 3.6 of [62] the orbifold Euler number x°"*(£) of an orb-
ifold line bundle on ¥ is related to the Euler number of a line bundle £’ on
Y4 that orbifold covers £ by

(8.5) x(L') =x""(L) =,

where m is the number of times the circle in the fiber of the principal U(1)-
bundle P(L") wraps around the circle in the fiber of P(£). When m = 1, one
obtains x?"*(L) = (#G)~'x(L'). The external Whitney sum is the Whitney
sum @ 7/ L', where ; : ¥, — ¥y is the projection to the i-th factor. The
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Euler class of a Whitney sum is the cup product of the Euler classes, hence we
have e(£'#") = A" e(£) and the Euler number is x(£'®") = Jsn e(L! fin) —
x(£)". Finally, the relation between the orbifold Euler number of W, on
the symmetric products Sym”(X) and the Euler number of £'®" on ¥y is

!
~ #Gy,

X(ﬁlﬁn) _ TI%L _ %wa(ﬁ)n,

Xorb (Wn)
O

Local systems have torsion Chern classes, hence they do not change the
differential form realizing the Euler class of £'®" and its integration on Xy

8.2. Mathai—Quillen formalism

For a vector bundle £ of (real) rank 2n over a smooth manifold X of (real)
dimension 2n, the Euler class, whose integral x(£) = [ e(£) computes the
Euler number, is the pullback along the zero section of the bundle of a
representative of the Thom class. Pullbacks es(&) along other sections give
the same cohomology class. By Chern—Weil theory, the Euler form can be
written as the Pfaffian of the curvature Qf of a hermitian connection on the
bundle &,

1
e(l) = —=
The Pfaffian of an antisymmetric matrix can be written in terms of the
Berezin integral in fermionic coordinates

Pfaffian(Q°).

Pfaffian(A) = /D£ exp <;§iAijfj> ;

hence one can write the Euler form as

1 1, o
“(6) = o | D6 o (50567 )
An explicit representative for the Thom class, which is exponentially decay-
ing along the fibers (with normalizaed integral) and pulls back to the Euler
form along the zero section is given in [52] as
7/

Drrq(€) = (_%)73 / D¢ exp (;Eiﬁfjéj +iVni£¢> :

where 71 are the fiber coordinates. It is shown in [52] that this is indeed a
closed form representing the Thom class. The pullback along a nontrivial
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section gives

_ g2 . . .
(8.6) es(€) = ( ;ﬁ)/j / DE exp Gglﬂfjgﬂ n N%) .

If the section s is scaled by a factor A, in the limit of large A — oo the form
es(€) localizes on the zero set Zs = {x € X |s(x) = 0} of the section, hence
recovering the Hopf theorem. The Mathai—Quillen formalism has found use-
ful applications in physics, based on the observation [3] that the partition
function of certain N = 1 supersymmetric gauge theories can be written as
formal functional integral analog of [y es(€).

8.3. Vandermonde determinants and symmetric products

For S = (s1,...,5n), let €;(5) be the j-th elementary symmetric function in
these variables, with

ﬁ(l +tsj) = zn:tjej(S).
j=1 j=0

Given n symmetric polynomials fi,..., f,, the Jacobian
Ofi
J ceoy fn) =det ,
(f17 s f ) e <(93j>

while in the variables e;, the Jacobian

_ Afi
Je(fla . ,fn) = det <aej>

is related to J(f1,..., fn) by

J(fla'-'afn) :Je(fla"'afn)'v7

where
V(sty .oy 8pn) = H (si —s5) =J(er,...,en)
1<i<j<n

is the Vandermonde determinant, see [46], where explicit expressions in
terms of Schur functions are given for the Jacobians J, of complete functions
and power sums. Thus, on the symmetric products Sym"(X) we should in-
terpret the Vandermonde determinant V'(sq,...,s,) as the Jacobian of the
change of local coordinates between the coordinates (s1,. .., s,) of £™ to the
coordinates given by the symmetric functions (eq, ..., e,).
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8.4. Laughlin type functions from anyon representations

Consider an N-dimensional anyon representation as in Proposition 7.7 and
the associated orbifold vector bundle V,, 5 on Conf(X,n), constructed as
in Lemma 8.1. Let £ be the orbifold line bundle on ¥ determined by the
Seifert data of the anyon representation and L’ the pullback to X, . Let
s be a section of £'#" determined by a n-tuple of sections of £/, and let
es(L'®") be the Mathai-Quillen representative of the Euler class. For the
orbifold vector bundle W, integration in the fiber direction now takes place
with respect to coordinates given by the elementary symmetric functions
in the original coordinates. This can be expressed in terms of the original
coordinates by introducing the change of variables, as above, in the form
of the Vandermonde determinant V'(s). Thus, we obtain an expression that
has a product of V(s) combined with an exponentially decaying factor in
the fiber coordinates, as in the Slater wave function. When we further ten-
sor with the local system Vj, each block of n-coordinates in the measure
along the fiber directions acquires a factor equal to the Vandermonde de-
terminant, while the Euler class is unchanged, hence producing a product
of a power V(s)" of the Vandermonde determinant with an exponentially
decaying factor in the s-coordinates, as in the Laughlin wave function. We
still need to check that the power IV is related to the denominators of the
fractions in the Hall conductance, as is the case for the Laughlin wave func-
tions. This is satisfied in our setting, because of the relation (7.17) in the
anyon representation. In fact, notice that, for the data of an orbifold vector
bundle on ¥ the quantization of the Hall conductance is given, through the
higher twisted index theorem, by integer multiples of Stake orbifold Euler
characteristics x°(%) = x(24)/#G, hence the denominator is the order of
G, which is also the least common multiple of the orders v; of the stablizers
of the cone points (Lemma 7.11 of [25]). The relation (7.17) then relates N
to #G.

8.5. Vandermonde determinants, Selberg integrals, and Euler
characteristics

The description of the Vandermonde determinant as Jacobian of the change

of coordinates on symmetric products also leads to the well known proba-
bility distributions in random matrix theory

(8.7) /VF(n)exp(—HyHQ/Q)dy = /i/RnV(azl, ooy @)Y exp (— zzjx?ﬁ) dz,
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where Vp(n) is the space of n x n-hermitian matrices, with F either the
real numbers, the complex numbers or the quaternions, respectively with
a=dimgF € {1,2,4}. The numerical factor x can be computed explicitly
using Selberg integrals, in terms of Gamma functions, see [24] p.121.

Selberg integrals, and expectation values with respect to the random
matrix probability distribution

V(zy,...,xp exp( Zx2/2> dzx,

play a crucial role in the Harer—Zagier computation of the orbifold Euler
characteristic of the moduli spaces M, ,, of algebraic curves of genus g with
n marked points, [36]. More recently, a parameterized Euler characteristic
of Mg, was introduced in [33]. This depends on a continuous parameter -y
and interpolates between the case of complex and real curves, respectively
corresponding to v = 1 and v = 1/2. The parameterized Euler characteristic
is expressed in [33] in terms of Jack symmetric functions and of expectation
values

fR ’2’7 e—gpz(A)d)\
f]Rn ‘27 e 3P Nd)

with pa(A) = >0, )\?. More precisely, the parameterized Euler characteris-
tic is explicitly computed in [33] in terms of Selberg integrals of the form

n A\ T A\ A
V(N> <1+N> (1—2'3) d\,
| vl I( :

which again can be computed explicitly in terms of Gamma functions.

It would be interesting to see if Laughlin type wave functions would
arise in analogous computations of orbifold Euler characteristic of moduli
spaces of good 2-dimensional orbifolds. Notice that a Teichmiiller theory for
orbifold was developed in [68], see also [16].

(8.8) (f) =

)
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