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Perversely categorified Lagrangian

correspondences

Lino Amorim and Oren Ben-Bassat

In this article, we construct a 2-category of Lagrangians in a fixed
shifted symplectic derived stack S. The objects and morphisms are
all given by Lagrangians living on various fiber products. A special
case of this gives a 2-category of n-shifted symplectic derived stacks
Sympn. This is a 2-category version of Weinstein’s symplectic cat-
egory in the setting of derived symplectic geometry. We introduce
another 2-category Sympor of 0-shifted symplectic derived stacks
where the objects and morphisms in Symp0 are enhanced with ori-
entation data. Using this, we define a partially linearized 2-category
LSymp. Joyce and his collaborators defined a certain perverse sheaf
on any oriented (−1)-shifted symplectic derived stack. In LSymp,
the 2-morphisms in Sympor are replaced by the hypercohomology of
the perverse sheaf assigned to the (−1)-shifted symplectic derived
Lagrangian intersections. To define the compositions in LSymp we
use a conjecture by Joyce, that Lagrangians in (−1)-shifted sym-
plectic stacks define canonical elements in the hypercohomology
of the perverse sheaf over the Lagrangian. We refine and expand
his conjecture and use it to construct LSymp and a 2-functor from
Sympor to LSymp. We prove Joyce’s conjecture in the most general
local model. Finally, we define a 2-category of d-oriented derived
stacks and fillings. Taking mapping stacks into a n-shifted sym-
plectic stack defines a 2-functor from this category to Sympn−d.
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1. Introduction

Since the early stages of the development of Symplectic Geometry it was
clear the important role played by Lagrangian correspondences as natural
generalizations of symplectomorphisms. Weinstein [33] considered a sym-
plectic “category” where the set of morphisms between two symplectic man-
ifolds M0 and M1 is the set of Lagrangian correspondences, that is subman-
ifolds of the product M−

0 ×M1. Composition in this category should be de-
fined as a fiber product, given Lagrangian correspondences L1 → M−

0 ×M1

and L2 → M−
1 ×M2, one considers the composition

L1 ×M1
L2 → M−

0 ×M2.

If this fiber product is transversal then this is again a Lagrangian correspon-
dence. Since we cannot guarantee transversality in general one is forced to
work with “categories” where the composition is only partially defined or to
consider strings of correspondences as is done by Wehrheim and Woodward
[32]. One then expects that symplectic invariants of symplectic manifolds
can be made functorial with respect to Lagrangian correspondences. We-
instein’s constructions were related to quantization where one associates
to each symplectic manifold a linear space and to each Lagrangian a linear
map. More recently Wehrheim and Woodward carried such a construction in
the context of Floer theory (under some technical restrictions) [32]. Namely,
they associated to each symplectic manifold its Donaldson–Fukaya category
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and to each Lagrangian correspondence a functor between those categories.
The Donaldson–Fukaya category is a category whose objects are Lagrangian
submanifolds and morphism spaces are the Floer cohomology groups. More-
over, they showed that this data can be assembled into a (weak) 2-category,
which they called the Weinstein–Floer 2-category.

In this paper we explore similar ideas in the context of derived sym-
plectic geometry recently introduced by Pantev, Toën, Vaquié and Vezzosi
in [25]. It turns out that all the basic constructions involving Lagrangian
correspondences have direct analogues in the derived world, with the advan-
tage that all fiber products (in the homotopy sense) exist and so we don’t
have to worry with transversality conditions. However there are two new
phenomena in the derived setting:

1) The intersection of two derived Lagrangians in a n-shifted symplec-
tic derived stack (or schemes) is naturally a (n− 1)-shifted symplectic
derived stack. This allows us to consider iterated Lagrangian corre-
spondences.

2) Each (oriented) (−1)-shifted symplectic derived stack carries a natural
perverse sheaf. Its hypercohomology will replace Floer cohomology in
our context.

The first phenomenon is the starting point of our first main result. Since
the (derived) intersection X ∩ Y of two n-shifted Lagrangians is (n− 1)-
shifted symplectic, one can think of Lagrangians in X ∩ Y as “relative”
Lagrangian correspondences between X and Y . It should be possible to it-
erate this construction and so define a symplectic k-category for each k.
More precisely since derived stacks form an ∞-category one expects that
there will be an (∞, k)-category of “relative” Lagrangian correspondences.
This was already proposed by Calaque in [8] and is subject of ongoing work
by Haugseng [26, 27] , Li-Bland [18], and others. Schreiber has written ex-
tensively on higher Lagrangian correspondences and their quantization in
Sections 1.2.10, 3.9.14, and 6 of [29]. In this paper, we only consider the
case of k = 2 and work with weak 2-categories (also known as bicategories),
as this is all we need for our main goal of constructing an analogue, in de-
rived algebraic geometry of the Weinstein–Floer 2-category. We prove the
following

Theorem 1.1. Let S be an n-shifted symplectic derived stack. There is
a weak 2-category Lag(S) whose objects are (derived) Lagrangians in S, 1-
morphisms are “relative” Lagrangian correspondences and 2-morphisms are
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“relative” Lagrangian correspondences between “relative” Lagrangian corre-
spondences.

As observed by Calaque [8], the point is a (n+ 1)-shifted symplectic
derived stack •n+1 and a Lagrangian in •n+1 is the same as a n-shifted
symplectic derived stack. Therefore as a corollary of the above we obtain a
2-category

Sympn = Lag(•n+1),

with objects n-shifted derived symplectic stacks. Additionally, we show that
this 2-category is symmetric monoidal as defined in [28].

These categories are highly non-linear and so not very manageable, our
goal is to construct a linear version of the category Sympn, in the case of
n = 0. As a by-product we will also obtain a linearization of Lag(S) when S
is a 1-shifted symplectic derived stack. In order to do this, one first needs to
chose some extra data on the Lagrangians, which goes by the general name of
orientation data. This is closely related to Kontsevich–Soibelman orientation
data [17]. Our version is partially inspired by the notion of relatively spin
Lagrangian from Lagrangian Floer theory introduced in [11]. We describe in
Theorem 5.12 a symmetric monoidal weak 2-category

Symporc ,

whose objects are 0-shifted symplectic derived stacks equipped with line bun-
dles, 1-morphisms are oriented 0-shifted Lagrangians correspondences and
2-morphisms are proper, oriented (−1)-shifted “relative” Lagrangian corre-
spondences. Also, there is a 2-functor of symmetric monoidal 2-categories
Symporc → Symp0 which forgets the orientation data.

Our second main result is a linearization of Symporc . This is related to
the second phenomenon mentioned above and can be thought as part of the
programme by Joyce and his collaborators [3, 4, 6, 13, 14], on the categorifi-
cation of Donaldson–Thomas invariants. One of the outcomes of this theory
is that a (−1)-shifted symplectic derived stack X, together with some orien-
tation data, carries a natural perverse sheaf PX . The idea of such perverse
sheaf was due to Behrend who suggested it as a sort of categorification of the
Behrend function, a function used to present Donaldson–Thomas invariants
as a weighted Euler characteristic on the moduli space of sheaves [7]. For
example in the case X is the moduli space of coherent sheaves on a Calabi–
Yau 3-fold, the Euler characteristic of the hypercohomology of PX is the
Donaldson–Thomas invariant of the 3-fold. In our setting we will be inter-
ested in the perverse sheaf in the intersection of two 0-shifted Lagrangians,
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which is (−1)-shifted symplectic as proved in [25]. In fact, the intersection of
any two Lagrangians carries such a perverse sheaf, even in the holomorphic
case as proved by Bussi in [5].

Joyce conjectured that Lagrangians in a (−1)-shifted symplectic derived
stack define sections of the sheaf PX . We reformulate this conjecture as a sort
of “quantization” of (−1)-shifted symplectic derived stacks. In other words,
a (−1)-shifted Lagrangian correspondence φ : M → X−

0 ×X1, together with
some orientation data, determines a map

μM : φ∗0PX0
[vdimM ] −→ φ!

1PX1
,

in the derived category of constructible sheaves of M . We formulate a more
detailed version of this in Conjecture 5.22, namely we describe the behavior
of μ under composition of Lagrangian correspondences. We also give the
local construction of the map μM in the case of derived schemes.

Assuming this conjecture we prove the following

Theorem 1.2. There exists a symmetric monoidal weak 2-category LSymp,
whose objects are 0-shifted symplectic derived stacks with line bundles, 1-
morphisms are oriented Lagrangian correspondences and the space of 2-
morphisms between X and Y is the hypercohomology

H•(PX∩Y [− vdimX]),

where vdimX is the virtual dimension of X.
Moreover there is a 2-functor of symmetric monoidal 2-categories

Symporc → LSymp.

Given two classical smooth algebraic Lagrangians (of complex dimension
n) in a smooth algebraic symplectic variety, these are examples of 0-shifted
Lagrangians, therefore their (derived) intersection X ∩ Y is (−1)-shifted
symplectic. If this intersection is clean one can show that the hypercoho-
mology H•(PX∩Y [− vdimX]) is isomorphic to the Floer cohomology of the
pair X,Y . In fact, this should hold in general and therefore we expect that a
version of the Weinstein–Floer 2-category for holomorphic symplectic man-
ifolds embeds in LSymp.

The method used to construct LSymp in fact applies to any 1-shifted
symplectic derived stack, not just to the point. Concretely let S be a 1-
shifted symplectic derived stack, in Theorem 6.13 we construct a 2-category
Lagorc (S) whose objects are Lagrangians in S equipped with line bundles.
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There is also a 2-functor

Lagorc (S) → Lag(S),

that forgets the orientation data. Then assuming Conjecture 5.22, the above
construction gives the following

Theorem 1.3. For each 1-shifted symplectic derived stack S there is a
weak 2-category LLag(S) whose objects are Lagrangians in S equipped with
line bundles. The 1-morphisms are “relative” oriented Lagrangian correspon-
dences and the space of 2-morphisms between X and Y is the hypercohomol-
ogy H•(PX∩Y [− vdimX]). Also there is a 2-functor Lagorc (S) → LLag(S).

It would be interesting to understand the information encoded by this
2-category for some specific examples of S, such as the loop space of the
classifying stack BG of a reductive smooth group scheme G; or the moduli
stack of perfect complexes in an elliptic curve.

The Rozansky–Witten topological sigma-model [15] predicts the exis-
tence of 2-category associated to each holomorphic symplectic manifold S
(in our context this is a 0-shifted symplectic derived scheme), with objects
holomorphic Lagrangians in S. The above theorem provides (at least for-
mally) an analogous 2-category in the 1-shifted case.

One of the main sources of examples of shifted symplectic derived stacks
is the following construction. Let S be a n-shifted symplectic derived Artin
stack and letX be aO-compact derived stack equipped with anO-orientation
of dimension d, as defined in [25]. Rather informally this can be thought of
as a volume form (of degree d) that allows us to “integrate functions” on X.
Then the mapping stack Map(X,S) inherits an (n− d)-shifted symplectic
structure by a theorem of [25].

There is also a relative version of O-orientation that we call fillings (or
relative O-orientations) of an O-oriented derived stack (X, [X]). Heuristi-
cally, these are objects whose boundary is X. They were introduced by
Calaque in [8] that also proved that the mapping stack takes relative orien-
tations to Lagrangians.

We elaborate on this constructions and show that there is a weak 2-
category Fill(X) whose objects are fillings of (X, [X]). Moreover we show
that there is a 2-functor

MS : FillC(X) −→ Lag (Map(X,S)) ,

where FillC(X) is an appropriate subcategory of Fill(X), dependent on S.
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As a particular case when X is the empty set thought of as a (d− 1)-
dimensional O-oriented, derived stack then the bicategory Ord := Fill(∅d−1)
is a symmetric monoidal weak 2-category of O-compact derived stacks with
O-orientations of dimension d. We then have a symmetric monoidal 2-functor

MS : OrdC −→ Sympn−d

determined by a n-shifted symplectic derived Artin stack S.
Finally one can check that, similarly to [8], the Betti stack construction

gives a 2-functor from the 2-category Cobord of cobordisms of d-dimensional
manifolds, defined in [28], to OrdC. Therefore composing withMS one obtains
a symmetric monoidal 2-functor

ZS : Cobord −→ Sympn−d.

Thus providing examples of extended Topological Filed Theories (TFT) with
values in our symplectic 2-category. Just as the shifted symplectic geometry
of [25] can be thought of as a mathematically rigorous framework for under-
standing the AKSZ formalism [1], we hope this article will be used towards
the understanding of classical BV theory (including boundaries) as in the
article [10].

The above constructions, in the case that n = d, give rise to the following
(in our opinion) very interesting question. Consider the following diagram
of 2-categories

? ��

��

Symporc

��

�� LSymp

OrdC
MS �� Symp0

Is there a natural 2-category that completes the above diagram? This should
amount to finding, for each specific S, some geometric structure on O-
oriented (or relatively oriented) derived stacks that naturally induces orien-
tations on the symplectic (or Lagrangian) derived stack Map(−, S). There
is work, related to this question, in the case of the moduli of coherent sheaves
by Cao–Leung [9] and Hua [12]. We leave this problem for future work.

This paper is organized in the following way. In Section 2 we review
some basics of shifted symplectic geometry and provide various construc-
tions of symplectic and Lagrangian structures on derived intersections of
Lagrangians. In Section 3 we define and study equivalences between shifted
symplectic and Lagrangian derived stacks. In Section 4 we construct the
2-category Lag(S), using the results from the previous two sections. In
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Section 5 we study orientation data, define Sympor and formulate Conjec-
ture 5.22. In Section 6 we construct LSymp and LLag(S) assuming Conjec-
ture 5.22. Finally, in Section 7 we construct the 2-category of fillings Fill(X)
and construct the 2-functors MS and ZS .

2. Derived Lagrangian intersections

2.1. Review of shifted symplectic geometry

We will review some of the basics of shifted symplectic geometry following
the work of Pantev, Toën, Vaquié and Vezzosi [25]. We start by establish-
ing some notation and conventions. We work relative to a fixed field k of
characteristic zero which we suppress from the notation with it being under-
stood that everything is relative to this field. We often suppress pullbacks
of (relative) tangent or cotangent complexes in order to simplify notation.
Also, since all of our fiber products are homotopy fiber products, we denote
them simply in the form X ×Z Y without any special emphasis on the fact
that these are homotopy fiber products. The same goes for other derived
functors.

We assume that all the derived Artin stacks are locally of finite presenta-
tion. In particular given such a derived Artin stack F , its cotangent complex
LF is dualizable and hence we define its tangent complex TF := L∨F . We call
a morphism of derived Artin stacks f : X −→ Y formally étale if the rela-
tive cotangent complex Lf vanishes. All the morphisms in this article are
assumed to be homotopically finitely presentable and so we do not distin-
guish between formally étale morphisms and étale morphisms.

Let F be a derived stack. In [25], the authors define a space Ap(F, n) of
n-shifted p-forms on F and a space of n-shifted closed p-forms Ap,cl(F, n). In
order to define these one first considers the affine case. For a commutative
(non-positively graded) dg-algebra A one defines the simplicial sets

Ap(A, n) = |(∧pLA[n], d)|,

Ap,cl(A, n) =

⏐⏐⏐⏐⏐⏐
⎛⎝∏

i≥0
∧p+iLA[−i+ n], d+ dR

⎞⎠⏐⏐⏐⏐⏐⏐ ,

where d is the differential induced by the differential in LA, dR is the
de Rham differential and | − | is the realization functor. These define ∞-
functors on the ∞-category of commutative dg-algebras that satisfies étale
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descent, which can be then extended to two ∞-functors

Ap(−, n), Ap,cl(−, n) : dStop −→ S,

where dSt and S are the ∞-categories of derived stacks and simplicial sets.
The projection to the first component

∏
i≥0 ∧p+iLA[−i+ n] → ∧pLA[n]

then induces a morphism

Ap,cl(F, n) −→ Ap(F, n).

Given a closed p-form ω we call its image under this map the underlying
p-form and denote it by ω0. We would like to recall from [25], that if F is a
derived Artin stack we have the following description of the space of p-forms,
as the mapping space

Ap(F, n) ∼= MapLqcoh(F )(OF ,∧pLF [n])

where Lqcoh(F ) is the ∞-category of quasi-coherent sheaves on F .

Definition 2.1. Let S be a derived Artin stack. An element ω ∈ A2,cl(S, n)
is called an n-shifted symplectic form if the underlying 2-form ω0 is non-
degenerate. Non-degeneracy is the condition that the map induced by ω0:

Θω : TS −→ LS [n]

is a quasi-isomorphism. We will denote by Symp(S, n) the space of all sym-
plectic forms in S. We will call a pair (S, ω) a n-symplectic derived stack.

Example 2.2. A smooth symplectic scheme is an example of a 0-symplectic
derived stack. The point Spec(k) admits an unique n-shifted symplectic form,
for every n. We will denote this n-symplectic stack simply by •n.

Suppose that (S, ω) is an n-symplectic derived stack and consider a
morphism of derived Artin stacks f : X −→ S. An isotropic structure on f
is an element h ∈ P0,f∗ω(A2,cl(X,n)), that is a path in A2,cl(X,n) from 0 to
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f∗ω. This determines homotopy commutativity data for the diagram

(2.1) TX

��
0

��

f∗TS

f∗Θω

��

f∗LS [n] �� LX [n]

��

Recall that we have an exact sequence Lf [n− 1] −→ f∗LS [n] −→ LX [n],
therefore h induces a map

Θh : TX −→ Lf [n− 1].

We say h is non-degenerate, if this map is a quasi-isomorphism.

Definition 2.3. Let (S, ω) be a n-symplectic derived stack. A Lagrangian
structure on a morphism f : X → S is a non-degenerate isotropic structure
h. We denote by Lag(f, ω) the set of Lagrangian structures on f . A La-
grangian in (S, ω) is a pair (f, h) consisting of a morphism f : X → S and
an element h ∈ Lag(f, ω). The collection of Lagrangians in (S, ω) will be
written Lag(S, ω).

A simple, but conceptually important observation from [8] is the follow-
ing description of Lagrangians in a point.

Example 2.4. Let •n+1 be the point equipped with the canonical (n+ 1)-
shifted symplectic structure, let X be a derived Artin stack and let X

π−→
•n+1 denote the canonical morphism of derived Artin stacks. A Lagrangian
structure on π is equivalent to a n-shifted form on X. To see this note that, by
definition, an isotropic structure h on π is a loop (based at 0) in A2,cl(X,n+
1), thus h determines a class in π1(A2,cl(X,n+ 1)) 	 π0(A2,cl(X,n)). De-
note by ω this closed 2-form. It follows easily from the isomorphism LX 	 Lπ

that non-degeneracy of h implies non-degeneracy of ω. Hence ω is a n-shifted
symplectic structure on X.

We end this subsection with the definition of the product and the oppo-
site for n-symplectic derived stacks. It is straightforward to check that they
are indeed n-symplectic derived stacks.
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Definition 2.5. The product of n-symplectic derived stacks (S0, ω0) and
(S1, ω1) is given by (S0 × S1, ω0 � ω1 := p∗0ω0 + p∗1ω1) where p0, p1 are the
standard projections.

If (S, ω) is a n-symplectic derived stack we define its opposite as the
n-symplectic stack (S,−ω). Often we will denote (S, ω) simply by S, in that
case we use the notation S− for its opposite.

2.2. New Lagrangians out of old

In this subsection we will give several constructions of symplectic and La-
grangian structures obtained by considering various derived intersections of
Lagrangians. The first construction of this type that serves as inspiration
can be found in [25, Theorem 2.9]. Calaque in [8] proved that the classi-
cal result about composing Lagrangian correspondences holds in the shifted
setting.

Here we will show that all these constructions and a few new ones follow
from one basic result, Proposition 2.8, and two canonical Lagrangians: the
diagonal and the triple intersection of Lagrangians [2]. We start with an
elementary proposition.

Proposition 2.6. Let (S0, ω0) be an n-symplectic derived stack and f :
X −→ S0 be a map of derived stacks. There is a canonical bijection

Lag(f, ω0) −→ Lag(f,−ω0).

Moreover given another n-symplectic derived stack (S1, ω1) and a map
g : Y −→ S1 there is a canonical map

Lag(f, ω0)× Lag(g, ω1) −→ Lag(f × g, ω0 � ω1).

Next we show that, like in classical symplectic geometry, the diagonal
map is Lagrangian.

Proposition 2.7. Let (S, ω) be an n-symplectic derived stack. Then the
diagonal morphism

Δ : S −→ S− × S

has a canonical Lagrangian structure.

Proof. Denote by p0 and p1 the two natural projections S− × S −→ S. By
definition of Δ, p0 ◦Δ and p1 ◦Δ are homotopic to idS , therefore we have
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a natural path l from (p0 ◦Δ)∗ω to (p1 ◦Δ)∗ω in A2,cl(S, n). Translating l
by (p0 ◦Δ)∗ω we obtain a path from 0 to −(p0 ◦Δ)∗ω + (p1 ◦Δ)∗ω which
we denote by h. Next we compute

Δ∗(−ω0 � ω1) = Δ∗(p∗0(−ω) + p∗1(ω)) = −(p0 ◦Δ)∗ω + (p1 ◦Δ)∗ω

and conclude that h is an isotropic structure on Δ.
Next we check non-degeneracy of h. First note that p0 ◦Δ ∼= idS gives

the exact triangle

Δ∗Lp0
−→ Lid −→ LΔ −→ .

This implies LΔ[−1] 	 Δ∗Lp0
, since Lid = 0. Therefore

LΔ[−1] 	 Δ∗Lp0
	 Δ∗p∗1LS 	 LS ,

since p1 ◦Δ ∼= idS and Lp0
	 p∗1LS . Hence we obtain the following quasi-

isomorphism

TS
Θω	 LS [n] 	 LΔ[n− 1],

which we can easily see it is induced by h. �

From now on we will call a Lagrangian f : X −→ S−0 × S1, a Lagrangian
correspondence from S0 to S1.

The following proposition generalizes to the shifted setting a result in
classical symplectic geometry: (under appropriate transversality assump-
tions) a Lagrangian correspondence induces a map from the set of La-
grangians in one factor to the other. This result follows from Theorem 4.4
in [8], but we prove it here for the sake of completeness.

Proposition 2.8. Let (S0, ω0) and (S1, ω1) be n-symplectic derived stacks,
let

f = f0 × f1 : X −→ S−0 × S1

be a Lagrangian correspondence and let g : N −→ S0 be a morphism of de-
rived stacks. There is a map

Lag(g, ω0) −→ Lag(cf (g), ω1)

where cf (g) = f1 ◦ πX : N ×g,S0,f0 X −→ S1.



Perversely categorified Lagrangian correspondences 301

Proof. Let h be the Lagrangian structure in f , that is a path from 0 to

f∗(−p∗0ω0 + p∗1ω1) = −(p0 ◦ f)∗ω0 + (p1 ◦ f)∗ω1 = −f∗0ω0 + f∗1ω1.

As before, up to translations this is equivalent to a path from f∗0ω0 to f∗1ω1

(which we will still denote by h). Consider the following (homotopy) com-
mutative diagram

N ×S0
X

πX ��

πN

��

X

f0
��

N
g

�� S0

It gives us a path l from π∗Ng∗ω0 to π∗Xf∗0ω0. Let e be a Lagrangian structure
on g. We define a path H to be the concatenation π∗Ne • l • π∗Xh. This is a
path from 0 to π∗Xf∗1ω1, in other words an isotropic structure on cf (g).

We now need to check non-degeneracy of H. First observe that the map
cf (g) is homotopic to the following composition

N ×S0
X

g×S0
f−−−−→ S0 ×S0

(S0 × S1) ∼= S0 × S1
p−→ S1.

This gives the exact triangle

(g ×S0
f)∗Lp −→ Lcf (g) −→ L(g,f) −→,

which can be rewritten as

(f0 ◦ πX)∗LS0
−→ Lcf (g) −→ Lg � Lf −→,

since Lp 	 p∗0LS0
and L(g,f) 	 Lg � Lf . Rotating and shifting, we get the

exact triangle

(2.2) Lcf (g)[n− 1] −→ Lg[n− 1]� Lf [n− 1] −→ (f0 ◦ πX)∗LS0
[n].

Next we recall that, since e and h are Lagrangian structures we have the
commutative squares

TN
��

Θe

��

g∗TS0

g∗Θω0

��

Lg[n− 1] �� g∗LS0
[n]
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and

TX
��

Θh

��

f∗(TS0
� TS1

)

Θ−ω0
�Θω1

��

Lf [n− 1] �� f∗(LS0
� LS1

)[n]

We can pull back both diagrams to N ×S0
X and assemble them into the

following homotopy commutative square

TN � TX
��

Θe�Θh

��

(f0 ◦ πX)∗TS0

Θω0

��

(Lg � Lf )[n− 1] �� (f0 ◦ πX)∗LS0
[n]

and hence we get the commutative diagram

TN×S0
X

��

ΘH

��

TN � TX
��

Θe�Θh

��

(f0 ◦ πX)∗TS0

Θω0

��

Lcf (g)[n− 1] �� Lg[n− 1]� Lf [n− 1] �� (f0 ◦ πX)∗LS0
[n].

The top row is exact by general properties of homotopy fiber products and
the bottom row is exact by (2.2). Therefore we conclude that ΘH is a quasi-
isomorphism, since Θe, Θh and Θω0

are quasi-isomorphisms. This completes
the proof that H is a Lagrangian structure on cf (g). �

Definition 2.9. Let (S0, ω0) and (S1, ω1) be n-symplectic derived stacks
and let f = f0 × f1 : X −→ S−0 × S1 be a Lagrangian correspondence. Given
g : N −→ S0 a map of derived stacks, we define the map

Cf : Lag(g, ω0) −→ Lag(cf (g), ω1)

given by Proposition 2.8, where cf (g) = f1 ◦ πX : N ×g,S0,f X −→ S1.
We will sometimes use the notation CX instead of Cf . Also when the

map g and a particular Lagrangian structure h are fixed we write CX(N)
for the Lagrangian Cf (h) on the map cf (g).
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We will now use the map Cf (for several different Lagrangian structures
f) to give several constructions of new Lagrangians out of old ones, which
we will later use. The first one was already proved in [25, Theorem 2.9].

Corollary 2.10. Let (S, ω) be a n-symplectic derived stack and let f :
X −→ S and g : Y −→ S be maps of derived stacks. There is a map

Lag(f, ω)× Lag(g, ω) −→ Symp(X ×S Y, n− 1)

Proof. It follows from Proposition 2.6 that there is a mapping

(2.3) Lag(f, ω)× Lag(g, ω) −→ Lag(f × g,−ω � ω).

Proposition 2.7 determines a Lagrangian structure on the diagonal morphism
Δ : S −→ S− × S which can be interpreted as a Lagrangian structure on the
map Δ : S −→ (S− × S)− × •n. Now by Proposition 2.8 we get a map

CΔ : Lag(f × g,−ω � ω) −→ Lag(cΔ(f × g), •n).

where cΔ(f × g) is the canonical map (X × Y )×f×g,S×S,Δ S −→ •n. Now
recall from Example 2.4, that a Lagrangian structure in the canonical map
to the point is equivalent to a (n− 1)-shifted symplectic structure on the
domain. Therefore composing the above two maps we obtain a map

Lag(f, ω)× Lag(g, ω) −→ Symp((X × Y )×f×g,S×S,Δ S, n− 1),

which is the required map once we note that (X × Y )×f×g,S×S,Δ S ∼=
X ×S Y . �

Remark 2.11. Given Lagrangian structures hf on f : X → S and hg on
g : Y → S, the symplectic form which is produced from Corollary 2.10 in
A2,cl(X ×S Y, n− 1) can be thought of as the loop at 0 given by the con-
catenation

(2.4) π∗Xf∗ω

��
π∗
Xhf

π∗Y g
∗ω��

0

��
π∗
Y hg

in A2,cl(X ×S Y, n) where the top path is induced by the homotopy between
g ◦ πY and f ◦ πX . A Lagrangian structure on a morphism φ : N → X ×S Y
is then a homotopy between the constant loop at 0 in A2,cl(N,n) to the
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pullback of (2.4) by φ which is a loop at 0 in A2,cl(N,n). This is equivalent
to, in the path space P0(A2,cl(N,n)), to a path from φ∗π∗Xhf to φ∗π∗Y hg:

φ∗π∗Xhf �� φ∗π∗Y hg

satisfying the following: when we evaluate at the endpoint we obtain the
path in A2,cl(N) from π∗Xf∗ω to π∗Y g

∗ω that is homotopic to the natural
path induced by g ◦ πY ∼= f ◦ πX .

Remark 2.12. In the case that S is the point •n the map (2.3) takes the
pair (X,Y ) of (n− 1)-shifted symplectic stacks to X− × Y . Since in this
case we do not write anything below the product symbol, it should not cause
confusion that X ×•n Y = X− × Y as shifted symplectic derived stacks.

In the next corollary we recover the result about composition of La-
grangian correspondences proved in [8, Theorem 4.4].

Corollary 2.13. Let (Si, ωi) be n-symplectic derived stacks for i = 0, 1, 2
and let f : X −→ S0 × S1 and g : Y −→ S1 × S2 be maps of derived stacks.
There is a map

Lag(f,−ω0 � ω1)× Lag(g,−ω1 � ω2) −→ Lag(f ×S1
g,−ω0 � ω2),

where f ×S1
g : X ×S1

Y −→ S0 × S2. When S0, S1, S2, f and g are clear, we
write this map as (X,Y ) �→ Y •X.

Proof. According to Proposition 2.7 the morphism

Δ : S0 × S1 × S2 −→ S0 × S−1 × S1 × S−2 × S−0 × S2

has a canonical Lagrangian structure. Using Proposition 2.8 and arguing as
in the proof of Corollary 2.10 we construct the map

CΔ : Lag(f,−ω0 � ω1)× Lag(g,−ω1 � ω2) −→ Lag(cΔ(f × g),−ω0 � ω2),

where

cΔ(f × g) : (X × Y )×S0×S1×S1×S2
S0 × S1 × S2 −→ S0 × S2

is the natural map induced by f × g. To complete the proof simply note that

(X × Y )×S0×S1×S1×S2
(S0 × S1 × S2) ∼= X0 ×S1

X1.

�
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Our next goal is to prove a relative version of the previous corollary.
In order to do that we need to use a theorem from [2]. We give a slightly
different proof here in order to match the spirit of the current article.

Theorem 2.14. Let (S, ω) be a n-symplectic derived stack and let fi :
Xi −→ S be Lagrangians, for i = 0, 1, 2. Denote by Xij = (Xi ×S Xj , ωij)
the (n− 1)-symplectic derived stacks constructed in Corollary 2.10. Then
the natural morphism

ϕ : Z = X0 ×S X1 ×S X2 −→ X01 ×X12 ×X20

has a canonical Lagrangian structure.

Proof. The construction of a natural isotropic structure on the morphism ϕ
can be found in [2] or in Proposition 3.9. We denote this isotropic structure
by H and show it is non-degenerate as follows. Using the canonical equiva-
lence Z ∼= X01 ×X1

X12, we let π : Z −→ X1 be the natural projection and
get an exact triangle

TZ −→ TX01
� TX12

−→ π∗TX1
−→

If we denote by q the composition

Z
ϕ−→ X01 ×X12 ×X20

π20−−→ X20,

where π20 is the obvious projection, we obtain the exact triangle

ϕ∗Lπ20
−→ Lq −→ Lϕ −→ .

Next we observe that as the following square is Cartesian

X0 ×S X1 ×S X2
q

��

π

��

X0 ×S X2

��

X1
f1

�� S

we have that Lq
∼= π∗Lf1 . Also Lπ20

∼= LX01
� LX12

. Putting everything to-
gether we get the exact triangle

LX01
� LX12

−→ π∗Lf1 −→ Lϕ −→
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or equivalently, the exact triangle

Lϕ[−1] −→ LX01
� LX12

−→ π∗Lf1 −→ .

Now consider the following diagram

(2.5) TZ
��

ΘH

��

TX01
� TX12

��

Θω01
�Θω12

��

π∗TX1

π∗Θh1

��

Lϕ[n− 2] �� LX01
[n− 1]� LX02

[n− 1] �� π∗Lf1 [n− 1],

where h1 is the Lagrangian structure in f1. It follows from the construction
of ωij that both squares commute. Moreover the above discussion shows that
both rows are exact. Therefore we conclude that ΘH is a quasi-isomorphism
since the other two vertical arrows in the diagram are also quasi-isomorphism.
One can see from the definition of H in Proposition 3.9 and a bit of diagram
chasing that the left vertical map is in fact ΘH . �

As a corollary of this theorem we obtain a “relative” version of Corol-
lary 2.13 that will later be used to define the composition of 1-morphisms
(and vertical composition of 2-morphisms) in the 2-category we construct in
Section 4.

Corollary 2.15. Let (S, ω) be a n-symplectic derived stack and fi : Xi −→
S be Lagrangians, for i = 0, 1, 2. Denote by Xij = (Xi ×S Xj , ωij) the (n−
1)-symplectic derived stack constructed in Corollary 2.10. Given morphisms
φ : N1 −→ X01 and ψ : N2 −→ X12, there is a map

Lag(φ, ω01)× Lag(ψ, ω12) −→ Lag((φ, ψ), ω02)

where (φ, ψ) : N1 ×X1
N2 −→ X02 is the morphism induced by φ and ψ.

Proof. Theorem 2.14 defines a Lagrangian structure on the morphism

ϕ : X0 ×S X1 ×S X2 −→ (X01 ×X12)
− ×X02.

Now we apply Proposition 2.8 to this Lagrangian structure and, as before,
obtain a map

Cϕ : Lag(φ, ω01)× Lag(ψ, ω12) −→ Lag(cϕ(φ× ψ), ω02)
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where

cϕ(φ× ψ) : (N1 ×N2)×X01×X12
(X0 ×S X1 ×S X2) −→ X02,

is the natural map induced by φ× ψ. To complete the proof note that we
have the following equivalences of derived stacks

(N1 ×N2)×X01×X12
(X0 ×S X1 ×S X2)

= (N1 ×N2)×(X0×SX1)×(X1×SX2) (X0 ×S X1 ×S X2)
∼= (N1 ×N2)×X1×X1

X1

∼= N1 ×X1
N2,

where we have used the universal property of homotopy fiber products. �

Remark 2.16. As we saw in Remark 2.11, the isotropic structure hN1
can

be interpreted as a path between φ∗0h0 and φ∗1h1 in P0(A2,cl(N1)). Under this
interpretation, one can easily check that the isotropic structure constructed
above is given by the following concatenation

π∗1φ∗0h0 ��

π∗
1hN1

π∗1φ∗1h1 �� π∗1ψ∗1h1 ��

π∗
2hN2

π∗1ψ∗2h2

Where the middle path is induced by the homotopy commutativity of the
following diagram:

(2.6) N1 ×X1
N2

π2

��

π1

		

N1

φ1

��

φ0





N2

ψ2

��

ψ1

		

X0 X1 X2

We need one more map between sets of Lagrangian structures, which
will be used later to define the horizontal composition in the 2-category
to be defined in Section 4. For this we need the appropriate Lagrangian
correspondence. The next proposition will provide such a correspondence
and also be useful to describe symplectomorphisms (which will be introduced
in Section 3).

Proposition 2.17. Let (S, ω) be an n-symplectic derived stack and let
f : X −→ S and g : Y −→ S be Lagrangians, with isotropic structures hf
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and hg. Consider a morphism of derived stacks Δ : W −→ X ×S Y and de-
note by u and v the compositions of Δ with the projections to X and Y ,
respectively. Assume we are given a homotopy H between the paths u∗hf and
v∗hg, which when evaluating at one endpoint gives a path between u∗f∗ω and
v∗g∗ω homotopic to the path induced by f ◦ u ∼= g ◦ v.

If u and v are étale then H induces a Lagrangian structure on Δ with
respect to the symplectic structure on X ×S Y constructed in Corollary 2.10.
On the other hand, if Δ has a Lagrangian structure then u is étale if and
only if v is étale.

Proof. Consider the (homotopy) commutative diagram

(2.7) W

Δ

��

v




u

��

X ×S Y

��

�� Y

g

��

X
f

�� S

Pulling back ω and the Lagrangian structures along the maps in this diagram
gives rise to the following picture in A2,cl(W,n)

(2.8) 0

��

Δ∗π∗
Y hg

��Δ∗π∗
Xhf

��u∗hf


v

∗hg

u∗f∗ω

��

�� v∗g∗ω

Δ∗π∗Xf∗ω �� Δ∗π∗Y g
∗ω

��

The commutativity of the diagram (2.7) determines a 2-simplex that fills
the base of the diagram, i.e. it interpolates between the four ways of pulling
back ω. By definition, the boundary of the front triangle is the pullback by Δ
of the loop that defines the (n− 1)-shifted symplectic structure on X ×S Y .
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By assumption, H determines a 2-simplex that fills the back triangle. All
of the other faces of the pyramid are filled in by homotopies induced by
the commutativity of the two triangles in the diagram in Equation 2.7.
Therefore, the front triangle bounds a 2-simplex A2,cl(W,n). This defines
an isotropic structure hΔ on the morphism Δ.

In order to check the non-degeneracy of

ΘΔ : TW −→ LΔ[n− 2]

notice that πX ◦Δ is homotopic to u which gives the exact triangle

Δ∗LπX
−→ Lu −→ LΔ −→

Now, because u is étale, Lu = 0 and so we get isomorphisms

LΔ[−1] 	 Δ∗LπX
	 Δ∗π∗Y Lg 	 v∗Lg

where the middle isomorphism follows from the fact that the square in (2.7)
is Cartesian. By definition we have the exact triangle

Tv −→ TW −→ v∗TY −→ .

which implies that TW 	 v∗TY , since v is étale. Putting together these equiv-
alences, we obtain

(2.9) LΔ[n− 2] 	 v∗Lg[n− 1]
v∗Θg←− v∗TY 	 TW .

where Θg is an equivalence because g has a Lagrangian structure. One can see
by diagram chasing that this chain of equivalences is precisely ΘΔ. Tracing
back the argument, if we start by assuming that Δ is Lagrangian and u is
étale then (2.9) gives an equivalence v∗TY 	 TW and so v is étale. �

Remark 2.18. The reader may have wondered why u∗Θf and v∗Θg were
not both used in the proof, but because we are assuming the existence of
H, they do not really define different maps.

As a simple corollary of Proposition 2.17 we have

Corollary 2.19. Let (S, ω) be a n-symplectic derived stack and f : X −→ S
a Lagrangian in S. Then the diagonal ΔX : X −→ X ×S X has a Lagrangian
structure where X ×S X has the symplectic structure from Corollary 2.10.
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Proof. We take X = Y and Δ to be the diagonal and u and v the iden-
tity morphisms in Proposition 2.17. This gives an obvious choice for the
(constant) homotopy H. �

Proposition 2.20. Let (S, ω) be a n-symplectic derived stack and X0, X1

and X2 be Lagrangians in S. Consider the (n− 1)-symplectic derived stacks
X01 = X0 ×S X1, X12 = X1 ×S X2, and X02 = X0 ×S X2 determined by
Corollary 2.10 and let M0 and M1 be Lagrangians in X01 and N0 and
N1 be Lagrangians in X12. Corollary 2.15 defines two new Lagrangians
P0 = M0 ×X1

N0 −→ X02 and P1 = M1 ×X1
N1 −→ X02.

Given morphisms α : U−→M0 ×X01
M1 and β : V −→N0 ×X12

N1 there
is a map

Lag(α, ωM01
)× Lag(β, ωN01

) −→ Lag(α×X1
β, ωP01

),

where ωM01
, ωN01

and ωP01
are the (n− 2)-shifted symplectic structures on

M0 ×X01
M1, N0 ×X12

N1 and P0 ×X02
P1, respectively, determined by Corol-

lary 2.10 and α×X1
β is the induced map

α×X1
β : U ×X1

V −→ P0 ×X02
P1.

Proof. The proof is analogous to previous ones, first we claim that the nat-
ural map

ϕ : P0 ×X0×SX1×SX2
P1 −→ (M0 ×X01

M1)× (N0 ×X12
N1)× (P1 ×X02

P0),

has a Lagrangian structure. To see this note that Corollary 2.13 implies that
M0 ×X0

M1 and N0 ×X2
N1 are Lagrangians in X1 ×S X1. Also the diago-

nal Δ : X1 −→ X1 ×S X1 has a Lagrangian structure according to Corol-
lary 2.19. Applying Theorem 2.14 to these three Lagrangians we conclude
that the triple intersection:

(M0 ×X0
M1)×X1×SX1

(N0 ×X2
N1)×X1×SX1

X1(2.10)
∼= (M0 ×X1

N0)×X0×SX2
(M1 ×X1

N1)×X1×SX1
X1

∼= (M0 ×X1
N0)×X0×SX1×SX2

(M1 ×X1
N1)

= P0 ×X0×SX1×SX2
P1
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is Lagrangian in the product

((M0 ×X0
M1)×X11

X1)× (X1 ×X11
(N0 ×X2

N1))

× ((N0 ×X2
N1)×X11

(M0 ×X0
M1))

∼= (M0 ×X01
M1)× (N0 ×X12

N1)

× ((M1 ×X1
×N1)×X0×SX2

(M0 ×X1
N0))

∼= (M0 ×X01
M1)× (N0 ×X12

N1)× (P1 ×X02
P0).

This proves the claim once we establish that the above equivalences preserve
the symplectic structures, that is they are symplectomorphic, in next sec-
tion notation. We omit the details of this. In Lemma 3.11 we will give an
alternative description of this Lagrangian.

Now we apply Proposition 2.8 to this Lagrangian correspondence and
obtain a map

Cϕ : Lag(α, ωM01
)× Lag(β, ωN01

) −→ Lag(cϕ(α× β), ωP01
).

To complete the proof we just need to check that cϕ(α× β) = α×X1
β, for

this note:

(U × V )×(M0×X01M1)×(N0×X12N1) (P0 ×X0×SX1×SX2
P1)(2.11)

∼= (U × V )×(M0×X01
M1)×(N0×X12

N1)

((M0 ×X0
N0)×X0×SX1×SX2

(M1 ×X1
N1))

∼= (U×V )×(M0×X01
M1)×(N0×X12

N1)((M0 ×X01
M1)×X1

(N0×X12
N1))

∼= U ×X1
V.

�

Remark 2.21. We now explain the operation in Proposition 2.20 in a way
that will be helpful later. Consider the following commutative diagram

(2.12) M0

φ1

��

φ0





X0 U

α0

��

α1

��

X1

M1

ψ1

��

ψ0

��

determining a map α : U → M01. Recall from Remark 2.11 that a Lagrangian
structure in φ is given by an appropriate path h0 in P0(A2,cl(M0, n)). Using
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this interpretation, an isotropic structure on α : U → M01 is equivalent to a
filling HU of the square

(2.13) α∗0φ∗0h0

HU

��
α∗

0hM0

��

α∗0φ∗1h1
��

α∗1ψ∗0h0 ��

α∗
1hM1

α∗1ψ∗1h1

in the path space P0(A2,cl(U, n)) satisfying an additional requirement. Eval-
uating at the endpoint HU determines a 2-simplex in A2,cl(U, n) interpolat-
ing between the four ways of pulling-back ω to U , we require that this is
homotopic to the 2-simplex induced by the commutativity of (2.12).

If we also consider

(2.14) N0

τ2

��

τ1





X1 V

β0

��

β1

��

X2

N1

κ2

��

κ1

��

the isotropic structure on α×X1
β constructed in Proposition 2.20 is the

concatenation of the three squares in the diagram

(2.15) π∗Uα
∗
0φ
∗
0h0

π∗
UHU

π∗
Uα∗

0hM0��

��

π∗Uα
∗
0φ
∗
1h1

��

�� π∗V β
∗
0τ
∗
1h1

π∗
V HV

��
π∗
V β∗

0hN0

��

π∗V β
∗
0τ
∗
2h2

��

π∗Uα
∗
1ψ
∗
0h0

��

π∗
Uα∗

1hM1

π∗Uα
∗
1ψ
∗
1h1

�� π∗V β
∗
1κ
∗
1h1

��

π∗
V β∗

1hN1

π∗V β
∗
1κ
∗
2h2

where the filling of the middle square comes from the homotopy given by
pulling h1 back to U ×X1

V in the four different ways from X1.

3. Symplectomorphisms and Lagrangeomorphisms

In this section we will introduce the notions of equivalence of n-symplectic
derived stacks and Lagrangians, which we will call symplectomorphism and
Lagrangeomorphism respectively. We will then show that the Lagrangians
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constructed in Theorem 2.14 and Proposition 2.20 are unique up to La-
grangeomorphism and the operation defined in Corollary 2.15 is associative
up to Lagrangeomorphism.

Definition 3.1. Let S0 and S1 be n-symplectic derived stacks. A symplec-
tomorphism is a pair consisting of an equivalence φ : S0 −→ S1 of derived
stacks and a Lagrangian structure on the graph of φ,

Γφ : S0 −→ S0 × S1.

Definition 3.2. Let (S, ω) be an n-symplectic derived stack and let f0 :
X0 −→ S and f1 : X1 −→ S be Lagrangians. A Lagrangeomorphism consists
of an equivalence φ : X0 −→ X1 of derived stacks together with a homotopy
f1 ◦ φ ∼= f0 and a Lagrangian structure on the morphism

Γφ : X0 −→ X0 ×S X1,

induced by the graph of φ and the homotopy. Here we are using the (n− 1)-
symplectic structure on X0 ×S X1 from Corollary 2.10.

Remark 3.3. If we take S = •n in Definition 3.2 then X0 and X1 are
(n− 1)-shifted symplectic derived Artin stacks and an isomorphism φ is a
Lagrangeomorphism of these Lagrangians in •n if and only if it is a sym-
plectomorphism.

We now give two corollaries of Proposition 2.17.

Corollary 3.4. Let S0 and S1 be n-symplectic derived stacks and let φ :
S0 −→ S1 be an equivalence of derived stacks. A path h in A2,cl(S0, n) be-
tween φ∗ω1 and ω0 determines a Lagrangian structure on Γφ and so a sym-
plectomorphism. On the other hand, any symplectomorphism determines
such data (φ, h).

Proof. Take S to be a point in Proposition 2.17 and let Δ = Γφ. �

Corollary 3.5. Let (S, ω) be an n-symplectic derived stack and f : X −→
S and g : Y −→ S be Lagrangians in S. Let φ : X −→ Y be an equiva-
lence of derived Artin stacks such that g ◦ φ ∼= f . Let H be a homotopy in
P0(A2,cl(X0, n)) between hf and φ∗hg, which evaluates at the endpoint to
a path homotopic in A2,cl(X0, n) to the path between f∗ω and (g ◦ φ)∗ω in-
duced by g ◦ φ ∼= f . Then H induces a Lagrangian structure on Γφ : X −→
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X ×S Y , that is, a Lagrangeomorphism. Moreover any Lagrangeomorphism
is determined in this way.

Proof. In Proposition 2.17, take Δ = Γφ, u = id and v = φ. This immedi-
ately proves the statement. �

Lemma 3.6. Lagrangeomorphism is an equivalence relation for Lagrangians
in a n-symplectic derived stack (S, ω).

Proof. Let f : X −→ S be a Lagrangian, Corollary 2.19 shows that the di-
agonal Δ : X −→ X ×S X is a Lagrangian which implies reflexivity, since
ΓidX

= ΔX .
Next we show symmetry, let g : Y −→ S be another Lagrangian and

suppose we have a Lagrangeomorphism (φ,Hφ) from X to Y . By definition
φ : X → Y is an equivalence of derived stacks so we can choose an inverse
ψ : Y −→ X. Then we have homotopies f ◦ ψ ∼= g and φ ◦ ψ ∼= id. This last
homotopy induces a path from ψ∗φ∗hg to hg which we concatenate with
ψ∗hφ to obtain a path from hg to ψ∗hf . Corollary 3.5 now shows that this
data determines a Lagrangeomorphism from Y to X.

Consider two Lagrangeomorphisms φ0 : X0 −→ X1 and φ1 : X1 −→ X2

over S given by Lagrangian structures on

Γφ0
: X0 −→ X0 ×S X1 and Γφ1

: X1 −→ X1 ×S X2.

Corollary 2.15 implies that

X0 ×X1
X1

q−→ X0 ×S X2

is Lagrangian where q is induced by idX0
× φ1 : X0 ×X1 −→ X0 ×X2. Be-

cause there is an equivalence between X0 ×X1
X1 and X0 commuting up

to homotopy with the morphisms q and Γφ1◦φ0
over X0 ×S X2 we can pull-

back this Lagrangian structure to Γφ1◦φ0
: X0 → X0 ×S X2. This gives a La-

grangeomorphism X0 → X2 and hence proves transitivity. �
The next two propositions show that the operation defined in Corol-

lary 2.15 is associative up to Lagrangeomorphism. Moreover the diagonal
serves as a unity and Lagrangeomorphisms are invertible with respect to
this unit, again up to Lagrangeomorphism. From now on we refer to this
operation as composition of relative Lagrangian correspondences.

Proposition 3.7. Let Xi, for i = 0, 1, 2, 3 be Lagrangians in a n-symplectic
derived stack S and consider Lagrangians N1 → X01, N2 → X12, N3 → X23.
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Applying Corollary 2.15 we obtain Lagrangians N1 ×X1
(N2 ×X2

N3) and
(N1 ×X1

N2)×X2
N3 in X03. There is a canonical Lagrangeomorphism be-

tween them.

Proof. Let

ρ : N1 ×X1
(N2 ×X2

N3) −→ (N1 ×X1
N2)×X2

N3

be one of the canonical equivalences coming from the universality of homo-
topy limits. Then ρ (homotopy) commutes with the induced morphisms of
the two sides to X0 ×S X3. According to Corollary 3.5 to determine a La-
grangeomorphism we need to construct a homotopy between the isotropic
structure on N1 ×X1

(N2 ×X3
N3) and the pullback by ρ of the isotropic

structure on (N1 ×X1
N2)×X3

N3. It will be clear from our construction that
our homotopy will satisfy the additional requirement stated in the corollary.
Consider the commutative diagram:

N1 ×X1
(N2 ×X2

N3)

ρ

��

π
1(23)
23

��

π
1(23)
1

��

(N1 ×X1
N2)×X2

N3

π
(12)3
12

��

π
(12)3
3

��

N1 ×X1
N2

π12
1

��

π12
2

��

N2 ×X2
N3

π23
2		

π23
3 ��

N1

φ0





φ1

��

N2

ψ2

��

ψ1

��

N3

τ3

��

τ2

		

X0 X1 X2 X3

Applying Remark 2.16, and working in the path space P0(A2,cl(N1 ×X1

(N2 ×X2
N3), n)) the Lagrangian structure on N1 ×X1

(N2 ×X3
N3) is given

by the top row of the following diagram while the bottom row is the pullback
by ρ of the Lagrangian structure on (N1 ×X1

N2)×X3
N3.
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π
1(23)∗
1 φ∗0h0 ��

��
π

1(23)∗
1 hN1

ρ∗π(12)3∗
12 π12∗

1 φ∗0h0
��
ρ∗π(12)3∗

12 π12∗
1 hN1

π
1(23)∗
1 φ∗1h1 ��

��

ρ∗π(12)3∗
12 π12∗

1 φ∗1h1
��

π
1(23)∗
23 π23∗

2 ψ∗1h1 ��

��
π

1(23)∗
23 π23∗

2 hN2

ρ∗π(12)3∗
12 π12∗

2 ψ∗1h1
��
ρ∗π(12)3∗

12 π12∗
2 hN2

π
1(23)∗
23 π23∗

2 ψ∗2h2 ��

��

ρ∗π(12)3∗
12 π12∗

2 ψ∗2h2
��

π
1(23)∗
23 π23∗

3 τ∗2h2 ��

��
π

1(23)∗
23 π23∗

3 hN3

ρ∗π(12)3∗
3 τ∗2h2

��
ρ∗π(12)3∗

3 hN3

π
1(23)∗
23 π23∗

3 τ∗3h3 �� ρ∗π(12)3∗
3 τ∗3h3

The homotopy is given by patching together homotopies which fill in
the squares in this diagram. The top square is filled in using the homotopy

between π12
1 ◦ π(12)3

12 ◦ ρ and π
1(23)
1 . The next square to the down comes from

the fact that there are four homotopic maps in the diagram from N1 ×X1

(N2 ×X2
N3) to X1. The fourth one from the top is analogous to the second

one and third and the fifth squares from the top are analogous to the top
square. This completes the proof of the proposition. �

Proposition 3.8. Let X0 and X1 be Lagrangians in a n-symplectic de-
rived stack S and consider a Lagrangian φ : N → X01. Then the Lagrangians
N ×X1

ΔX1
and ΔX0

×X0
N in X01 are Lagrangeomorphic to N by canonical

Lagrangeomorphisms.
If N = Γϕ is a Lagrangeomorphism then M = Γψ, the graph of ψ a ho-

motopy inverse of ϕ, is a Lagrangeomorphism. Moreover N ×X1
M is La-

grangeomorphic to ΔX0
and M ×X1

N is Lagrangeomorphic to ΔX1
.
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Proof. By definition of fiber product we can choose an equivalence of derived
stacks ρ : N ×X1

ΔX1
−→ N . Now consider the following diagram

(3.1) N ×X1
ΔX1

ρ

		

πX1

��

N
φ0

��

φ1

��

ΔX1

id

��

id

��

X0 X1 X1

In the path space P0(A2,cl(N ×X1
ΔX1

, n)) we have

(3.2) ρ∗φ∗0h0 ��
ρ∗hN

��

ρ∗φ∗1h1

��

�� π∗X1
h1 ��

��

π∗X1
h1

��

ρ∗φ∗0h0 ��

ρ∗hN

ρ∗φ∗1h1

.

where the unlabeled edges are homotopies determined by the commutativity
of (3.1). Then it follows from the definitions that the top path is the La-
grangian structure on N ×X1

ΔX1
while the bottom path is the Lagrangian

structure on N . Again commutativity of the previous diagram provides ho-
motopies filling the square and the triangles. This homotopy, together with
ρ, determines the required Lagrangeomorphism. The proof for ΔX0

×X0
N

is similar.
For the second part of the statement we proceed as follows. The proof

of Lemma 3.6 shows that M is a Lagrangeomorphism. Then notice that
Γφ ×X1

Γψ is equivalent as a derived stack over X00 to Γψ◦φ which is equiv-
alent to the diagonal ΔX0

. An argument analogous to the above shows that
their Lagrangian structures are homotopic via this equivalence and so we get
a Lagrangeomorphism between N ×X1

M and ΔX0
. Finally the Lagrangeo-

morphism between M ×X1
N and ΔX1

is constructed in the same way. �

The next few propositions characterize, up to Lagrangeomorphism, the
Lagrangians we constructed in Theorem 2.14 and in the proof of Proposi-
tion 2.20, as well as a few other Lagrangians that we construct using the
results from Section 2.
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Proposition 3.9. Let (S, ω) be n-symplectic derived stack and let X0, . . . ,
Xm be Lagrangians in S. Denote by Xij be the (n− 1)-symplectic derived
stacks Xi ×S Xj and consider the (n− 1)-symplectic derived stack W =
X01 ×X12 × · · · ×X(m−1)m ×Xm0 with the product (n− 1)-symplectic form
ωW . We have the following

(a) The canonical morphism

φ : X01···m = X0 ×S X1 ×S · · · ×S Xm → W

has a Lagrangian structure

(b) The Lagrangian from (a) can be uniquely characterized as follows: any
Lagrangian ψ : N → W satisfying conditions (1) and (2) below is La-
grangeomorphic to X01···m.
1) As a derived stack, N is a homotopy limit of the following diagram

(3.3) X01



 ��

X12



 ��

· · · X(m−1)m

��

Xm0

��
��X0

  

X1

��

X2

��

· · · Xm

!!S

2) The isotropic structure on ψ, considered as a 2-simplex in
A2,cl(N,n) with boundary the pullback of the loop defining ωW , is
homotopic (relative to its boundary) to the 2-simplex ΘN := Θ +∑n

i=0Θi. Here ΘN is defined as follows: each of the isotropic struc-
tures hi in Xi pulls back in two different ways to N , by definition of
N there is homotopy between these which we call Θi. Note that since
hi is a path in A2,cl(Xi, n), Θi is a 2-simplex in A2,cl(N,n). Also,
because N is a homotopy limit, there is a 2-simplex Θ in A2,cl(N,n)
providing a homotopy between the 2(m+ 1) ways of pulling back ω,
along all the morphisms in the diagram, from S to one of the Xi

and then to one of the Xij and finally to N .

Proof. Part (a) was the main theorem in [2] and this general case is entirely
analogous to the special case discussed in Theorem 2.14. To prove (b) one
must first observe that X01···m is a homotopy limit of the diagram (3.3) and
the isotropic structure on φ certainly satisfies these requirements as that is
how it was constructed in [2]. The existence of the required Lagrangeomor-
phism now follows from Corollary 3.5. �
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Corollary 3.10. Let X0, X1, X2, X3 be Lagrangians in S. Then we have
the following Lagrangian correspondences

X012 ×ΔX23
−→ (X01 ×X12 ×X23)

− × (X02 ×X23)

ΔX01
×X123 −→ (X01 ×X12 ×X23)

− × (X01 ×X13).

The following two Lagrangian correspondences (obtained by composition) are
Lagrangeomorphic

(3.4) X023 • (X012 ×ΔX23
) ∼= X013 • (ΔX01

×X123)

as Lagrangians in (X01 ×X12 ×X23)
− ×X03.

Proof. To prove this we apply Proposition 3.9 for m = 4. It follows from
general properties of fiber products that both sides of (3.4) are equivalent to
X0123 as derived stacks. A long but straightforward check then shows that
the Lagrangian structures are homotopic to the one described in Proposi-
tion 3.9. Therefore we can apply Proposition 3.9 and prove the claim. �

We now give a characterization of the Lagrangian which appears in
the proof of Proposition 2.20. Recall the situation, we have Lagrangians
X0, X1, X2 in S and Lagrangians M0,M1 in X01 and N0, N1 in X12. We
denote by Pi = Mi ×X1

Ni the Lagrangians in X02 obtained by composition
of relative Lagrangian correspondences. In the proof of Proposition 2.20 we
constructed a Lagrangian:

(3.5) P0 ×X012
P1 → (M01 ×N01)

− × P01

We will show this is unique in the appropriate sense. Consider the diagram:

(3.6) M01

�� ��

P01

���� ��
��

N01

����

M0

��
��

M1

�� ��

N0

����

N1




��

X0

��

X1

��

X2

��
S
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Let K be a homotopy limit of the above diagram. The universal property of
homotopy limit gives a map

(3.7) K → (M01 ×N01)
− × P01

We now construct directly an isotropic structure on the morphism (3.7).
Recall that the Xi come with isotropic structures hi, the Mi with isotropic
structures hMi

and the Ni with isotropic structures hNi
. Let ΘM0

be the 2-
simplex in P0(A2,cl(K,n)) giving the homotopy between the two pullbacks
of hM0

along K → P01 → M0 and K → M01 → M0 and similarly for ΘN0
,

ΘM1
and ΘN1

. Additionally denote by Θi the homotopy between the four
different pullbacks of hi to K.

In the space P0(A2,cl(K,n)) (and suppressing pullbacks) we get the di-
agram

(3.8) h0

ΘM0

��

��

��

��
hM0

h1 ��

��

h1

ΘN0

��

��
hN0

h2

��

""

��

h0

Θ0 ��

��

hM0

h1

Θ1��

h1

��

��

hN0

h2

Θ2��

h0

ΘM1

��

��

hM1

h1

��

h1

ΘN1

��

��

hN1

h2

��

h0 ��

hM1

h1 �� h1 ��

hN1

h2

Note that, by definition, the boundary of the two unlabeled squares are
(the pullback of) the (n− 2)-shifted symplectic structures on M01 and N01,
respectively. Also (the pullback of) the (n− 2)-shifted symplectic structure
on P01 is the outside boundary of the diagram. The sum Θ0 +Θ1 +Θ2 +
ΘM0

+ΘN0
+ΘM1

+ΘN1
therefore gives a homotopy between ωM01

+ ωN01

and ωP01
(suppressing pullbacks toK), that is an isotropic structure on (3.7).
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Lemma 3.11. Up to Lagrangeomorphism, there is a unique Lagrangian
K whose underlying derived stack is the homotopy limit of (3.6) and whose
isotropic structure is homotopic to the one explained above. Furthermore, the
Lagrangian P0 ×X012

P1 → (M01 ×N01)
− × P01 which appears in the proof of

Proposition 2.20 has these properties.

Proof. The uniqueness follows immediately from the definition of Lagrange-
omorphism. Tracing back through the construction in Proposition 2.20 we
can see that the Lagrangian structure defined there is homotopic to the one
just described above. As a result of this and Proposition 2.20 the isotropic
structure on K is in fact non-degenerate and so K is Lagrangian. �

Consider now the same situation as described above but with extra La-
grangians M2 in X01 and N2 in X12. We will now prove one more uniqueness
result for composition of the Lagrangians obtained in Lemma 3.11. Consider
the diagram

(3.9) M01

����

M12

�� ��

P02

��
!!

��
##

N01

�� ��

N12

����

M0



 ##

M1

��




M2

�� ��

N0

����

N1

��
��

N2

��!!
X0

��

X1

��

X2

��
S

A homotopy limit K of this diagram has a natural morphism

(3.10) K → (M01 ×M12 ×N01 ×N12)
− × P02.

We now construct an isotropic structure on this morphism. This is very
similar to the discussion before Lemma 3.11. In the space P0(A2,cl(K,n))
we have 2-simplices ΘMi

for i = 0, 1, 2, 2-simplices ΘNi
for i = 0, 1, 2 and

also 2-simplices Θi for i = 0, 1, 2. A diagram similar to (3.8) and similar
considerations show that

∑2
i=0(ΘMi

+ΘNi
+Θi) determines an isotropic

structure on the morphism (3.10).

Lemma 3.12. Up to Lagrangeomorphism, there is a unique Lagrangian K
whose underlying stack is the homotopy limit of (3.9) and whose isotropic
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structure is homotopic to the one explained above. One such Lagrangian K
can be constructed as the composition

(P0 ×X012
P2) • (M012 ×N012)

We end this section by describing the behavior of the operation Cf de-
fined in Proposition 2.8 under Lagrangeomorphism and composition of La-
grangian correspondences.

Proposition 3.13. Let S0, S1 and S2 be n-symplectic derived stacks and let
f : X −→ S−0 × S1, g : Y −→ S−0 × S1 and h : Z −→ S−1 × S2 be Lagrangian
correspondences and consider Lagrangians e : N −→ S0 and e′ : N ′ −→ S0.
We have the following:

(a) If X is Lagrangeomorphic to Y and N is Lagrangeomorphic to N ′ then
CX(N) and CY (N

′) are Lagrangeomorphic in S1.

(b) We have a Lagrangeomorphism

CZ(CX(N)) ∼= CZ•X(N),

where Z •X is the Lagrangian constructed in Corollary 2.13.

Proof. The first part of the statement is easy and left to the reader. The
second part follows from Proposition 3.7 by taking S = •n+1, X0 = •n, X1 =
S0,X2 = S1 andX3 = S2,N1 = N ,N2 = X andN3 = Z in that proposition.

�

Remark 3.14. A different but equivalent way to establish associativity,
that is to prove Proposition 3.7, would be to first prove Proposition 3.13
and use part (b) to show that

(N1 ×X1
N2)×X2

N3
∼= CX023•(X012×ΔX23

)(N1 ×N2 ×N3)

and

N1 ×X1
(N2 ×X2

N3) ∼= CX013•(ΔX01
×X123)(N1 ×N2 ×N3).

Then Corollary 3.10 and part (a) of Proposition 3.13 imply associativity.

4. A 2-category of Lagrangians

Fix a n-symplectic derived stack (S, ω). In this section we will define a
bicategory (or weak 2-category) Lag(S, ω), whose objects are Lagrangians
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in S. But first we review some basics of bicategories (following [28]) and set
up some notation.

4.1. Basics of 2-categories

We start by defining a weak 2-category, also called a bicategory. From now
on we adopt the name bicategory for simplicity.

Definition 4.1. A bicategory (or weak 2-category) C consists of the fol-
lowing data:

1) a collection of objects C0;

2) for each two objects X,Y a category C(X,Y );

3) for any three objects X0, X1, X2, composition functors

μXY Z : C(Y, Z)× C(X,Y ) −→ C(X,Z);

4) for each object X, an object IX ∈ C(X,X);

5) for any four objects W,X, Y, Z, natural isomorphisms

a : μWXZ ◦ (μXY Z × idC(W,X)) → μWY Z ◦ (idC(Y,Z)×μWXY ) (associator)

l : μXY Y ◦ (IY × idC(X,Y )) → idC(X,Y ) (left unitor)

r : μXXY ◦ (idC(X,Y )×IX) → idC(X,Y ) (right unitor)

and therefore 2-isomorphisms ahgf : (h ◦ g) ◦ f → h ◦ (g ◦ f), lf : IY ◦
f → f and rf : f ◦ IX → f .

These are required to satisfy the pentagon and triangle axioms which we
will write explicitly in Lemmas 4.8 and 4.10.

Given objects X,Y in C, the objects of C(X,Y ) are called 1-morphisms
of C, this collection is denoted C1(X,Y ). For each object X in C we call
IX the identity 1-morphism. The morphisms of C(X,Y ) are referred to
as 2-morphisms of C. Given f, g ∈ C1(X,Y ), we write C2(f, g) for the set
of morphisms from f to g in C(X,Y ). For any 1-morphism f we call 1f ∈
C2(f, f) the identity 2-morphism. We will use the notation μXY Z(g, f) = g ◦
f for f an object of C(X,Y ) and g an object of C(Y, Z). For α a morphism
in C(X,Y ) and β a morphism in C(Y, Z) we write μXY Z(β, α) = β ∗ α, this
is called the horizontal composition of α and β. The composition in the
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categories C(X,Y ) is called vertical composition and for ξ, η composable
morphisms in C(X,Y ) we write their composition as η � ξ.

Definition 4.2. Let C and D be bicategories. A homomorphism of bicat-
egories (or weak 2-functor) F : C → D consists of the following data

1) a function F : C0 −→ D0;

2) for each two objects X,Y , a functor

FXY : C(X,Y ) −→ D(F (X), F (Y ));

3) for any three objects X,Y, Z, natural isomorphisms

FXY Z : μD
F (X)F (Y )F (Z) ◦ (FY Z × FXY ) → FXZ ◦ μC

XY Z ,

FX : FXX ◦ ICX → IDF (X).

and therefore 2-isomorphisms Fg,f : F (g) ◦ F (f) → F (g ◦ f) and FX :
F (ICX) → IDF (X).

These must satisfy the following identities

Fg,f◦e � (1F (g) ∗ Ff,e)� aDF (g)F (f)F (e) = F (aCgfe)� Fg◦f,e � (Fg,f ∗ 1F (e)),

F (rCf )� Ff,IX = rDF (f) � (1F (f) ∗ FX),

F (lCf )� FIY ,f = lDF (f) � (FY ∗ 1F (f)).

One can also define bicategories enriched in some symmetric monoidal
categoryM. We require that, for each pair of objects X,Y in C, the category
C(X,Y ) is enriched over M, the functors μ012 are functors of M-enriched
categories and finally a, r and l are M-natural transformations.

In this article, we will construct bicategories enriched over two different
symmetric monoidal categories (other than the category of sets). First we
will take M to be the category gr-Vect of graded vector spaces (and degree
preserving homomorphisms), with the monoidal structure given by the ten-
sor product and symmetric structure given by a⊗ b → (−1)|a||b|b⊗ a, where
| · | stands for degree.

We will also consider a less common symmetric monoidal category, that
we will denote by gr-Inv. Objects are sets S equipped with an involu-
tion −1 : S → S and a degree function | · | : S → Z, invariant under −1,
and whose morphism are maps that preserve both structures. The monoidal
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structure is defined as

S ⊗ T = S × T/ ∼,

where we take the equivalence relation (−s, t) ∼ (s,−t) and define the degree
in the product as the sum of the degrees on each factor. The symmetric
structure is defined as (s, t) → (−1)|s||t|(t, s).

The most visible difference between a standard bicategory and a bicate-
gory enriched over one of the symmetric monoidal categories just described
is in the compatibility between the horizontal and vertical composition of 2-
morphisms. This is equivalent to the statement that μXY Z is a functor, and
for 1-morphisms fj ∈ C1(X,Y ) and gj ∈ C1(Y, Z) (for j = 0, 1, 2) it states

(η2 ∗ ξ2)� (η1 ∗ ξ1) = (η2 � η1) ∗ (ξ2 � ξ1)

for any 2-morphisms ξi ∈ C2(fi−1, fi) and ηi ∈ C2(gi−1, gi) for i = 1, 2. While
in the enriched case it reads

(η2 ∗ ξ2)� (η1 ∗ ξ1) = (−1)|η1||ξ2|(η2 � η1) ∗ (ξ2 � ξ1).

Similarly we can easily define homomorphism of bicategories enriched
over M. Or, if we are given a symmetric monoidal functor M1 → M2, we
can also consider homomorphisms from a M1-enriched bicategory to a M2-
enriched bicategory.

For us the relevant examples are the following functors. First we have
gr-Inv → Sets which sends (S,−1, | − |) to the quotient S/− 1 and forgets
the grading. Secondly we have gr-Inv → gr-Vect which sends (S,−1, | − |)
to the graded vector space generated by the set S/− 1.

Finally we will also need the definitions of a symmetric monoidal bicat-
egory and homomorphisms of these. We refer the reader to Chapter 2.2 of
[28] for these.

4.2. The 2-category Lag(S)

We now define the objects, morphisms and compositions in what will become
our bicategory of Lagrangians. We will denote the bicategory by Lag(S, ω),
or Lag, when (S, ω) is fixed.

Definition 4.3. Let (S, ω) be an n-symplectic derived stack. The objects
of Lag(S, ω) are Lagrangians in (S, ω). Given two Lagrangians X0 and X1



326 L. Amorim and O. Ben-Bassat

in S the 1-morphisms are defined to be

Lag1(X0, X1) = Lag(X0 ×S X1).

Given two LagrangiansN0, N1 inX0 ×S X1, we define the set of 2-morphisms
between them as

Lag2(N0, N1) = Lag(N0 ×(X0×SX1) N1)/ ∼,

that is, Lagrangeomorphism equivalence classes of Lagrangians. In the def-
initions of 1-morphisms and 2-morphisms we chose a model for the ho-
motopy fiber products and use the (n− 1)-symplectic derived stack X01 =
(X0 ×S X1, ω01) and (n− 2)-symplectic derived stack N01 = (N0 ×(X0×SX1)

N1, ωN01
) provided by Corollary 2.10.

The composition of 1-morphisms is defined by

Lag1(X1, X2)× Lag1(X0, X1)
◦−→ Lag1(X0, X2)(4.1)

(N1, N0) �→ N1 ◦N0

where N1 ◦N0 is the pair consisting of the map N0 ×X1
N1 → X02 and the

Lagrangian structure discussed in Corollary 2.15. Using the notation from
Definition 2.9 N1 ◦N0 = CX012

(N0 ×N1), where X012 is the Lagrangian con-
structed in Theorem 2.14. Again here we choose a representative for the
homotopy fiber product.

The vertical composition of 2-morphisms

(4.2) Lag2(N1, N2)× Lag2(N0, N1)
�−→ Lag2(N0, N2)

is defined as

(U1, U0) �→ U1 � U0

where U1 � U0 is the pair consisting of the natural morphism U0 ×N1
U1 →

N02 along with the Lagrangian structure constructed in Corollary 2.15,
therefore U1 � U0 = CN012

(U0 × U1).
Denote P0 = N0 ◦M0 and P1 = N1 ◦M1, we define horizontal composi-

tion of 2-morphisms as

(4.3) Lag2(N0, N1)× Lag2(M0,M1)
∗−→ Lag2(N0 ◦M0, N1 ◦M1)

by

(V,U) �→ V ∗ U = CP0×X012
P1
(U × V )
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where P0 ×X012
P1 is the Lagrangian constructed in in Proposition 2.20. Re-

call that the underlying morphism of derived stacks of V ∗ U is the induced
morphism U ×X1

V → P0 ×X02
P1.

For each object X define the identity 1-morphism IX to be the diagonal
ΔX : X → X ×S X constructed in Corollary 2.19. The identity 2-morphisms
will be introduced in the proof of Lemma 4.4.

We will now prove a sequence of lemmas which show that the data

{◦, ∗,�, Lag(S, ω)1(−,−), Lag(S, ω)2(−,−)}

along with the unitors and associators which we define in Definitions 4.6
and 4.9 define a bicategory.

Lemma 4.4. The vertical composition of 2-morphisms defined in (4.2) is
associative and has units.

Proof. Associativity follows immediately from Proposition 3.7. Given M ∈
Lag1(X0, X1), we define the identity 2-morphism 1M to be the Lagrangian
Δ : M → M ×X01

M constructed in Corollary 2.19. Finally Proposition 3.8
shows that this is indeed an identity for �. �

Lemma 4.5. Vertical and horizontal composition of 2-morphism are com-
patible. This means that given objects X0, X1 and X2, 1-morphisms M0,M1,
M2 ∈ Lag1(X0, X1) and N0, N1, N2 ∈ Lag1(X1, X2), and 2-morphisms U1 ∈
Lag2(M0,M1), U2∈Lag2(M1,M2), V1∈Lag2(N0, N1) and V2∈Lag2(N1, N2)
we have:

(V2 ∗ U2)� (V1 ∗ U1) = (V2 � V1) ∗ (U2 � U1).

Proof. From the definitions we have

(V2 ∗ U2)� (V1 ∗ U1) = CP012

(
CP0×X012P1

(U1 × V1)× CP1×X012P2
(U2 × V2)

)
∼= CP012•((P0×X012P1)×(P1×X012P2))

(
U1 × U2 × V1 × V2

)
,

using Proposition 3.13(b). If we denote by ρ the symplectomorphism

ρ : M01 ×M12 ×N01 ×N12 −→ M01 ×N01 ×M12 ×N12,

which interchanges the two middle factors, then we have the Lagrangeomor-
phism

CΓρ

(
U1 × U2 × V1 × V2

) ∼= U1 × V1 × U2 × V2.
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Therefore, by a similar argument we have

(V2 � V1) ∗ (U2 � U1)(4.4)
∼= C(P0×X012

P2)•(M012×N012)

(
U1 × V1 × U2 × V2

)
.

∼= C(P0×X012
P2)•(M012×N012)•Γρ

(
U1 × U2 × V1 × V2

)
.

Hence, by Proposition 3.13(a), the proof will be complete once we establish
a Lagrangeomorphism

P012 • ((P0 ×X012
P1)× (P1 ×X012

P2)) ∼= (P0 ×X012
P2) • (M012 ×N012) • Γρ.

In turn, the existence of such Lagrangeomorphism follows from Lemma 3.12.
For this note that both Lagrangians are homotopy limits of the diagram (3.9)
as derived stacks. Inspecting the constructions of the Lagrangian structures
in both cases one can see that they are homotopic to the one described in
Lemma 3.12. Hence we can apply the lemma to conclude the proof. �

Definition 4.6. Consider a sequence of 1-morphisms

X0
N1−→ X1

N2−→ X2
N3−→ X3

We define the associator

WN3N2N1
∈ Lag2((N3 ◦N2) ◦N1, N3 ◦ (N2 ◦N1))

as the Lagrangian constructed in Proposition 3.7. It follows from Proposi-
tion 3.8 that this is invertible and hence a 2-isomorphism.

Lemma 4.7. The associator is natural, meaning that given 2-morphisms
Ui ∈ Lag2(Mi, Ni), for i = 1, 2, 3, we have

(U3 ∗ (U2 ∗ U1))�WM3M2M1
= WN3N2N1

� ((U3 ∗ U2) ∗ U1).

Proof. We will denote by Li = Mi ×Xi−1,i
Ni the (n− 2)-symplectic derived

stack and by M12 = M1 ×X1
M2 the Lagrangian in X02. Recall from defini-

tion and the properties of C− we have

U3 ∗ (U2 ∗ U1) = C(M(12)3×X023N(12)3)•((M12×X012N12)×ΔL3 )
(U1 × U2 × U3).
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Also, by the definition of � and Proposition 3.9 we have

WN3N2N1
� ((U3 ∗ U2) ∗ U1)�W−1

M3M2M1

= CJ(W
−1
M3M2M1

× ((U3 ∗ U2) ∗ U1)×WN3N2N1
),

where J = M(12)3 ×X03
M1(23) ×X03

N1(23) ×X03
N(12)3. Now as above, (U3 ∗

U2) ∗ U1 = CK(U1 × U2 × U3), with K = (M1(23) ×X013
N1(23)) • (ΔL1

×
(M23 ×X123

N23)). Next we observe that the associator WN3N2N1
, which was

defined as the graph of a Lagrangeomorphism ΓρN
, can equivalently be de-

scribed as CΓρN
(•) where we consider ΓρN

as a Lagrangian correspondence
from a point to N1(23) ×X03

N(12)3. Therefore we have

WN3N2N1
� ((U3 ∗ U2) ∗ U1)�W−1

M3M2M1

= CJ•(Γ
ρ
−1
M
×K×ΓρN

)(U1 × U2 × U3).

Hence the lemma will be a consequence of the following Lagrangeomor-
phism

(M(12)3 ×X023
N(12)3) • ((M12 ×X012

N12)×ΔL3
)(4.5)

∼= J • (Γρ−1
M

×K × ΓρN
),

between Lagrangians in (L1 × L2 × L3)
− × (M(12)3 ×X03

N(12)3). The exis-
tence of such Lagrangeomorphism follows from a statement analogous to
Proposition 3.9 and Lemma 3.11, that is we can show that there is a unique
Lagrangian in (L1 × L2 × L3)

− × (M(12)3 ×X03
N(12)3) satisfying a natural

condition that we will not spell out. Then one checks that both Lagrangians
in (4.5) satisfy this requirement. �

Lemma 4.8. The associator satisfies the pentagon axiom. This states that
given a sequence of 1-morphisms

X0
N1−→ X1

N2−→ X2
N3−→ X3

N4−→ X4,

we have

W43(21) �W(43)21 = (1N4
∗W321)�W4(32)1 � (W432 ∗ 1N1

)

where we have simplified the notation so that W(43)21 stands for W(N4◦N3)N2N1
.

Proof. To prove the pentagon axiom, we first notice that the underlying
space of W321 is Γρ321

where ρ321 is the morphism ρ appearing in the proof of
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Proposition 3.7. Notice that the �-composition of two graphs of morphisms
is the graph of the composition of these morphisms. Also, we can see that
W432 ∗ 1N1

is Lagrangeomorphic to ΓidN1
×X1

ρ432
, where

idN1
×X1

ρ432 : N1 ×X1
(N2 ×X2

(N3 ×X3
N4))

−→ N1 ×X1
((N2 ×X2

N3)×X3
N4).

Similarly 1N4
∗W321 is Lagrangeomorphic to Γρ321×X3

idN4
. Therefore the

equation we are trying to show, follows from establishing a Lagrangeomor-
phism between the graphs of ρ43(21) ◦ ρ(43)21 and (ρ321 ×X3

idN4
) ◦ ρ4(32)1 ◦

(idN1
×X1

ρ432).
First we can choose a homotopy equivalence

(4.6) ρ43(21) ◦ ρ(43)21 → (ρ321 ×X3
idN4

) ◦ ρ4(32)1 ◦ (idN1
×X1

ρ432).

This is because (1) both sides are equivalences between N1 ×X1
(N2 ×X2

(N3 ×X3
N4)) and ((N1 ×X1

N2)×X2
N3)×X3

N4 which homotopy commute
with the system given by the projections to the Ni and Xj and (2) both
N1 ×X1

(N2 ×X2
(N3 ×X3

N4)) and ((N1 ×X1
N2)×X2

N3)×X3
N4 are ho-

motopy limits of the same system.
The equivalence of graphs induced by (4.6) homotopy commutes with

the projections of both graphs to (((N4 ◦N3) ◦N2) ◦N1)))×X04
(N4 ◦ (N3 ◦

(N2 ◦N1))). According to Corollary 3.5 what remains is to show that that
there is a homotopy between the two isotropic structures (one of which is
pulled back by this equivalence of graphs). We do not include the details
of the diagrams needed to establish this homotopy as similar proofs appear
throughout this article. �

Definition 4.9. Fix objects X0 and X1 and consider M ∈ Lag1(X0, X1).
We define the unitors lM ∈ Lag2(IX1

◦M,M) and rM ∈ Lag2(M ◦ IX0
,M)

to be the graphs of the Lagrangeomorphisms ρl : M ×X1
ΔX1

→ M and ρr :
ΔX0

×X0
M → M constructed in Proposition 3.8.

We leave the proof of the following lemma to the reader as it can be
proved using the same techniques as the previous lemmas.

Lemma 4.10. The unitors are natural, which means given objects X0 and
X1 and 1-morphisms M,N ∈ Lag1(X0, X1) we have U � rM = rN � (U ∗
1IX0

) and U � lM = lN � (1IX1
∗ U), for any U ∈ Lag2(M,N).
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Moreover they satisfy the triangle axiom which states that

(1P ∗ lM ) ◦WP,IX1 ,M
= rP ∗ 1M ,

for any 1-morphism P ∈ Lag1(X1, X2).

Summarizing the results in this section, we have proven the following

Theorem 4.11. Let (S, ω) be a n-symplectic derived stack. Then Lag(S, ω)
as defined above is a bicategory.

In the case of S = •n+1 we use the notation Sympn = Lag(•n+1, ω). In
this case the theorem gives the following

Corollary 4.12. There exists a bicategory Sympn whose objects are n-
symplectic derived stacks, the 1-morphisms are Lagrangian correspondences,
and the 2-morphisms are relative Lagrangian correspondences up to La-
grangeomorphism.

The bicategory Sympn has an additional structure, namely that of a
symmetric monoidal bicategory (see Definition 2.1 [28]).

Theorem 4.13. The bicategory Sympn is a symmetric monoidal bicategory.
The monoidal structure

Sympn × Sympn → Sympn,

at the level of objects, sends ((S1ω1), (S2, ω2)) to (S1 × S2, ω1 � ω2) and has
the point •n as the unit.

Proof. We define the monoidal structure on morphisms by product of La-
grangians, as defined in Proposition 2.6. Together with some natural isomor-
phisms which we do not write down, this defines a morphism of bicategories.
This morphism of bicategories along with several obvious compatibility nat-
ural transformations defines the structure of a symmetric monoidal bicate-
gory in the sense of Definition 2.1 of [28]. The details are straightforward
but tedious. �

5. Orientations and perverse sheaves

In this section we will discuss some facts about perverse sheaves that are
needed to linearize the bicategory Symp0. The starting point is the construc-
tion in [6] and [3] of a canonical perverse sheaf on oriented (−1)-symplectic
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derived stacks. The second ingredient is a conjecture by Joyce that an ori-
ented Lagrangian in a (−1)-symplectic derived stack determines a section
of the perverse sheaf. Here we give a more refined version of this conjecture
and provide a local construction of the section.

But for all of these constructions we need to impose some orientability
requirements, so we cannot linearize Symp0 directly. We will rather linearize
an oriented version of it which we denote by Sympor.

5.1. Orientations on Lagrangians

We will define two distinct notions of orientations for Lagrangians. One for
Lagrangians in 0-symplectic derived stacks and another for Lagrangians in
(−1)-symplectic derived stacks.

First we establish some notation. For a derived Artin stack Q, we define
its canonical bundle KQ as the line bundle det(LQ). If the derived Artin
stack Q has a 0-symplectic structure ωQ then this can be used to trivialize
KQ = det(LQ) and we always use this trivialization.

We start with the definition of (relatively) oriented Lagrangian in a
0-symplectic derived stack. It is inspired in the notion of relatively spin
Lagrangian introduced in Lagrangian Floer cohomology.

Definition 5.1. Let (S, ω) be a 0-symplectic derived stack and let E be a
line bundle on S. An E-oriented Lagrangian in S is a triple consisting of a
Lagrangian f : L → S, a line bundle RL on L and an isomorphism

γL : R⊗2L → KL ⊗ f∗E.

When S is a point, L is (−1)-symplectic and this recovers the notion
of orientation on a (−1)-symplectic derived stack X introduced in [3]. Con-
cretely it consists of line bundle RX and an isomorphism

γX : R⊗2X −→ KX

Example 5.2. Given a smooth scheme U and a regular function f ∈ O(U)
consider the derived critical locus

Crit(f) := U ×df,T ∗U,0 U
ι→ U,

which is a (−1)-symplectic derived scheme. Denoting by α : Crit(f) → T ∗U
the induced morphism, we have KCrit(f)

∼= ι∗K⊗2
U ⊗ α∗K−1

T ∗U
∼= ι∗K⊗2

U , since



Perversely categorified Lagrangian correspondences 333

T ∗U is symplectic. This defines a canonical orientation on Crit(f), with
RCrit(f) = ι∗KU .

Let X be a (−1)-symplectic derived stack and φ : M → X be a La-
grangian. Then we have by definition a quasi-isomorphism TM

∼= Lφ[−2].
Using the exact triangle φ∗LX → LM → Lφ we get

det(LM )−1 ∼= det(TM ) ∼= det(Lφ) ∼= (det(LM ))⊗ φ∗ det(LX)−1.

Therefore, this determines a canonical isomorphism

(5.1) αM : (detLM )⊗2 → φ∗(detLX).

Definition 5.3. Consider a (−1)-symplectic derived stackX with an orien-
tation RX . An oriented Lagrangian in X is a pair consisting of a Lagrangian
φ : M → X and an isomorphism

βM : KM −→ φ∗RX

such that γX ◦ β⊗2M = αM .

Remark 5.4. Note that the space of orientations on a (−1)-Lagrangian
M has a Z2 action, given by multiplying the orientation βM by ±1. If M
is a (−1)-Lagrangian with some orientation βM , we will denote by −M the
same Lagrangian with orientation −βM , which we refer to as the reverse
orientation.

We now prove several lemmas establishing some properties of orienta-
tions.

Lemma 5.5. Let S0 and S1 be 0-symplectic derived stacks with line bundles
Ei in Si, for i = 0, 1. Given an E0-oriented Lagrangian X0 → S0 and an E1-
oriented Lagrangian X1 → S1, there is an induced E0 � E1-orientation on
the product Lagrangian X0 ×X1 → S0 × S1 discussed in Proposition 2.6.

Let Y0 and Y1 be oriented (−1)-symplectic derived stacks. Given oriented
Lagrangians M0 → Y0 and M1 → Y1, there is an induced orientation on the
product Lagrangian M0 ×M1 → Y0 × Y1.
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Proof. The first statement easily follows from the fact thatKX0×X1
∼= KX0

�
KX1

. For the second part note that the map α defined in 5.1 satisfies

αM0×M1
= αM0

� αM1
,

for a product Lagrangian. This implies the result. �

Lemma 5.6. Let S0, S1, S2 be 0-symplectic derived stacks with line bundles
Ei on Si for i = 0, 1, 2. Given f : N1 → S−0 × S1, a (E−10 � E1)-oriented La-
grangian and g : N2 → S−1 × S2, a (E−11 � E2)-oriented Lagrangian. Then
the Lagrangian N2 •N1 has a natural (E−10 � E2)-orientation.

Proof. Let (RNi
, γNi

) be the orientations of the Ni for i = 1, 2. Recall the
Lagrangian N2 •N1 is defined as a Lagrangian structure on the map h :
N1 ×S1

N2 → S−0 × S2, induced by f0 and g2. We define an (E−10 � E2)-
orientation by taking RN1×S1

N2
= RN1

�RN2
and γN1×S1

N2
equal to the

composition

R⊗2N1×S1
N2

∼= R⊗2N1
�R⊗2N2

(5.2)

γN1
�γN2−−−−−−→ (KN1

⊗ f∗(E−10 � E1))� (KN2
⊗ g∗(E−11 � E2))

∼= (KN1
�KN2

)⊗ h∗(E−10 � E2)

∼= KN1×S1
N2

⊗ h∗(E−10 � E2).

Here we have use the fact that KS1
and f∗1 (E1)� g∗1(E

−1
1 ) have canonical

trivializations. �

Lemma 5.7. Let S be a 0-symplectic derived stack with line bundle E and
consider N0, N1, N2, E-oriented Lagrangians in S.

(a) The E-orientations on N0, N1 induce an orientation on the (−1)-
symplectic derived stack N01 = N0 ×S N1.

(b) Using the orientations on N01, N12, N20 from part (a) and the orien-
tation on their product discussed in Lemma 5.6, there is a natural
orientation on the Lagrangian

ϕ : N0 ×S N1 ×S N2 → N01 ×N12 ×N20

defined in Theorem 2.14.

Proof. Denote by fi : Ni → S the Lagrangian morphisms and by (RNi
, γNi

)
the orientations. For part (a) we define RN01

= (RN0
⊗ f∗0E−1)�RN1

. The
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composition defining γN01
can be easily constructed using the isomorphism

KN01
∼= KN0

�KN1
.

For part (b) we define the orientation on the triple fiber product as the
composition:

KN012
∼= KN0

�KN1
�KN2

∼= (R⊗2N0
⊗ E−1)� (R⊗2N1

⊗ E−1)� (R⊗2N2
⊗ E−1)

∼= (RN0
⊗ E−1 ⊗RN1

)� (RN1
⊗ E−1 ⊗RN2

)� (RN2
⊗ E−1 ⊗RN0

)
∼= ϕ∗(RN01×N12×N20

),

where we have omitted the pullbacks from the notation. It’s easy to check
that this map satisfies the required property. �

Lemma 5.8. Given X0, X1 oriented (−1)-symplectic derived stacks and
oriented Lagrangians g : N −→ X0 and (f0, f1) : M −→ X−

0 ×X1 the La-
grangian cf (g) : N ×X0

M −→ X1 from Proposition 2.8 has an induced ori-
entation

Proof. We have isomorphisms βN : KN →g∗RX0
and βM : KM →(f∗0RX0

)⊗
(f∗1RX1

) and γX0
: R⊗2X0

→ KX0
. Define βN×X0M

as the composition

KN×X0M
∼= (KN ⊗ g∗K−1

X0
)�KM

(βN⊗id)�βM−−−−−−−−→ g∗(RX0
⊗K−1

X0
)� ((f∗0RX0

)⊗ (f∗1RX1
)) ∼= cf (g)

∗RX1

where in the last isomorphism we use γX0
. It is easy to check that γX1

◦
β⊗2N×X0M

= αN×X0
M . �

As in the unoriented case, we will use the notation CM (N) for the ori-
ented Lagrangian constructed in the above lemma.

Definition 5.9. Let S be a 0-symplectic derived stack with a line bun-
dle E. An oriented Lagrangeomorphism between E-oriented Lagrangians
(X0, RX0

, γX0
) and (X1, RX1

, γX1
) is a pair consisting of a Lagrangeomor-

phism ρ : X0 → X1 and an isomorphism ζ : ρ∗RX1
→ RX0

.
Let Y be an oriented (−1)-symplectic derived stack and (f0 : N0 −→

Y, βN0
), (f1 : N1 −→ Y, βN1

) be oriented (−1)-Lagrangians. An oriented La-
grangeomorphism between N0 and N1 consists of a Lagrangeomorphism
ψ : N0 −→ N1 such that βN0

equals

KN0
∼= ψ∗(KN1

)
ψ∗βN1−−−−→ ψ∗(f∗1 (RY )) ∼= f∗0 (RY ).
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Remark 5.10. Notice that the condition of oriented Lagrangeomorphism
between 0-Lagrangians gives the following isomorphism of line bundles

KX0
∼= R⊗2X0

⊗ f∗0 (E
−1) ∼= RX0

⊗ ρ∗(RX1
)⊗ f∗0 (E

−1) ∼= Γ∗ρ(RX01
).

We can easily see that this determines an orientation on the Lagrangian
Γρ : X0 → X01, and in fact it is equivalent to it.

From now on we will use vdimM to denote the virtual dimension of a
derived Artin stack, that is the Euler characteristic of its tangent complex
TM .

The operation CM (·) satisfies similar properties to the unoriented one,
stated in Proposition 3.13. We collect the most important ones in the fol-
lowing lemma whose proof is elementary.

Lemma 5.11. Let X0, X1 and X2 be oriented (−1)-symplectic derived
stacks and let M0,M

′
0 −→ X−

0 × Y0, M1 −→ X−
1 × Y1 and N0 −→ Y −0 × Z0

be oriented Lagrangian correspondences and consider oriented Lagrangians
U1, U

′
1 −→ X0 and U1 −→ X1. We have the following:

(a) If M0 is oriented Lagrangeomorphic to M ′
0 and U0 is oriented La-

grangeomorphic to U ′0 then CM0
(U0) and CM ′

0
(U ′0) are oriented La-

grangeomorphic.

(b) We have an oriented Lagrangeomorphism

CN0
(CM0

(U0)) ∼= CN0•M0
(U0),

where N0 •M0 is the oriented Lagrangian constructed in Lemma 5.6.

(c) We have an oriented Lagrangeomorphism

CM0×M1
(U0 × U1) ∼= (−1)m0u1CM0

(U0)× CM1
(U1),

where m0 = vdimM0 and u1 = vdimU1.

Now we have the tools to carry out all the constructions of Section 4 in
the oriented setting. This gives the following

Theorem 5.12. There exists a symmetric monoidal bicategory Sympor en-
riched over gr-Inv. The objects are pairs consisting of a 0-symplectic derived
stack S and a line bundle E on S. The 1-morphisms in Sympor1 ((S0, E0),
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(S1, E1)) consist of (E
−1
0 � E1)-oriented Lagrangians in S−0 × S1 and the 2-

morphisms Sympor2 (X0, X1) are oriented Lagrangeomorphism classes of ori-
ented Lagrangians in X0 ×S X1.

Moreover there is a symmetric monoidal homomorphism Sympor→Symp0

which forgets the orientation data.

Proof. We first discuss the enrichment over gr-Inv. Given M ∈
Sympor2 (X0, X1) we define its degree as |M | = n− vdimM , where n =
vdimX0. The involution sends M to the same Lagrangian with the reverse
orientation.

The composition of 1-morphism is defined as Corollary 4.12, using
Lemma 5.6 to define the orientations. Using Lemmas 5.7 and 5.8 we de-
fine the compositions of 2-morphisms as follows. Consider X0, X1, X2 ∈
Sympor1 (S0, S1) and Y0, Y1 ∈ Sympor1 (S1, S2). Given M ∈ Sympor2 (X0, X1),
N ∈ Sympor2 (X1, X2) and P ∈ Sympor2 (Y0, Y1) we take

N �M = (−1)vdimN(n0+n1)CX012
(M ×N) and

P ∗M = (−1)(n0+n1)(n1+n2)CZ0×S0×S1×S2
Z1
(M × P ),

where ni = (vdimSi)/2. Recall that the Lagrangian Z0 ×S0×S1×S2
Z1 can

be described as a triple intersection of oriented 0-Lagrangians and hence
Lemma 5.7 (b) assigns it an orientation.

Using Lemma 5.11 we can easily show that we have

M2 � (M1 �M0) = (−1)vdimM1(n0+n1)CX023•(X012×ΔX23
)(M0 ×M1 ×M2)

and

(M2 �M1)�M0 = (−1)vdimM1+n0+n1CX013•(ΔX01
×X123)(M0 ×M1 ×M2).

Now following our conventions for orientations we can easily check that there
is an oriented Lagrangeomorphism X023 • (X012 ×ΔX23

) ∼= (−1)n0+n1X013 •
(ΔX01

×X123). Putting these facts together we conclude that � is associa-
tive. We proceed similarly and compute

(N2 ∗M2)� (N1 ∗M1)(5.3)

= (−1)(n0+n2)(vdimM2+vdimN2)

· C
Z012•

(
(Z0×S012Z1)×(Z1×S012Z2)

)(M1 ×N1 ×M2 ×N2).
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Next using the symplectomorphism ρ as in the proof of Lemma 4.5 and using
our conventions for orientations we have the oriented Lagrangeomorphism

CΓρ
(M1 ×M2 ×N1 ×N2) ∼= (−1)vdimN1 vdimM2M1 ×N1 ×M2 ×N2.

Therefore we have

(N2 �N1) ∗ (M2 �M1)(5.4)

= (−1)εC(Z0×S012
Z2)•(X012×Y012)•Γρ

(M1 ×N1 ×M2 ×N2),

where ε = (n0 + n1)(n1 + n2 + vdimN1 + vdimN2) + (n0 + n2)(vdimM2 +
vdimN2) + vdimN1 vdimM2. Tracing back through our conventions for ori-
entations we can check that the Lagrangeomorphism

Z012 •
(
(Z0 ×S012

Z1)× (Z1 ×S012
Z2)

) ∼= (Z0 ×S012
Z2) • (X012 × Y012) • Γρ,

constructed in Lemma 4.5 is in fact an oriented Lagrangeomorphism. There-
fore we conclude that (5.3) and (5.4) differ by

(−1)(n0+n1)(n1+n2)+vdimM2(n1+n2)+vdimN1(n1+n2)+vdimN1 vdimM2

= (−1)|M2||N1|,

which finishes the proof of the compatibility of vertical and horizontal com-
position of 2-morphisms.

The rest of the proof of the theorem doesn’t differ from Corollary 4.12.
Recall that the identity 1-morphisms in Symp0 are given by Δ : S → S− ×
S. This has the canonical orientation RS = OS since there is a canoni-
cal isomorphismKS ⊗OS

Δ∗(E−1 � E) ∼= OS ⊗OS
OS

∼= OS . The identity 2-
morphisms, associators and unitors in Symp0 were all described as the graphs
of certain Lagrangeomorphisms. To assign them orientations in the sense of
Definition 5.9 is simply a matter of choosing the obvious ζ-morphisms needed
in that definition.

The monoidal structure can be constructed as in Corollary 4.12 using
Lemma 5.5 to define the necessary orientations. Finally the existence of the
forgetful homomorphism is obvious. �

5.2. Constructible sheaves

In the remainder of this chapter and in the next one, we take the ground
field k to be C for simplicity. We will work in the context of algebraically
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constructible sheaves of F-vector spaces on higher algebraic Artin stacks
over C. This theory itself has two approaches. The first is the theory of
constructible sheaves on the lisse-étale topos of an algebraic Artin stack
for which F can be taken to be Z/lZ, for some prime l or closely related
categories using l-adic coefficients of various types with some slight technical
difficulties (for example restriction on the values of l). The second (see for
instance [30]) is the theory of constructible sheaves on the Lisse-analytic
topos of the analytification of an Artin stack over C. In this case, we can
take F = Z/lZ again but now alsoQ or C or any Noetherian ring is fine. Rigid
(or Berkovich or Huber) geometry allows us to consider analytifications of
stacks defined over fields other than C if the field is equipped with a valuation
and there are also theories of algebraically constructible sheaves on those
analytifications but we do not pursue this here. For a derived algebraic
Artin stack X over C we use the notation Dc(X), D+

c (X), D−c (X), Db
c(X)

to denote the (triangulated) categories of algebraically constructible sheaves
of F-modules on the underlying Artin stack of X, and its bounded below,
above, and bounded versions. Categories of constructible sheaves on stacks
in the (algebraic) étale topology are defined in the work [21] of Y. Liu and
W. Zheng, following Lurie and the work of Laszlo and Olsson [19], [20].
Categories of algebraically constructible sheaves on analytic stacks in the
classical analytic topology are discussed in [30] (see also [24]). In the case
of rings F where both theories make sense, such as F = Z/lZ there is no
ambiguity in this notation as shown in the comparison theorem proven in
[30].

We consider only morphisms between derived Artin stacks which are lo-
cally of finite type, quasi-compact and quasi-separated. For all types of pull-
back and pushforward functors for morphisms of derived Artin stacks, we
work with the associated morphisms on the reduced Artin stacks. For a mor-
phism f : X → Y of derived Artin stacks we have a functor f∗ : D+

c (X) →
D+

c (Y ) with left adjoint the restriction of a functor f∗ : Dc(Y ) → Dc(X)
to D+

c (X). There is also a duality functor DX : Dc(X) → Dc(X). We also
sometimes use the pushforward with proper support, f! = DY ◦ f∗ ◦DX :
D−c (X) → D−c (Y ), which is used in the definition of the perverse sheaf of
vanishing cycles. We denote by f ! : D−c (Y ) → D−c (X) the right adjoint of f!
which is actually the restriction of a functor Dc(Y ) → Dc(X). See Lemma
6.3.3 and Proposition 6.3.4 of [21] for the existence of these functors and
their adjointness properties.
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We define the graded vector space

Γ•(S, T ) =

∞⊕
i=−∞

HomDb
c(X)(S, T [i]),

graded by i. We will denote by H•(X,S) the graded vector space Γ•(FX ,S)
and call it the hypercohomology of S.

Consider derived Artin stacks X,Y together with morphisms πX from
X to a point and πY from Y to a point. Then for any S ∈ Dc(X) and
T ∈ Dc(Y ) we know by the Künneth Formula (Proposition 6.1.3 of [21]) and
by the compatibility of the duality functor with the derived box-product (see
Proposition 5.6.4 of [19]) that

(πX × πY )!(DX×Y (S � T )) ∼= (πX × πY )!(DXS �DY T ))
∼= (πX!DXS)⊗ (πY !DY T )

and therefore,

(πX × πY )∗(S � T ) ∼= (πX∗S)⊗ (πY ∗T )

and so we have

(5.5) H•(X × Y, S � T ) ∼= H•(X,S)⊗H•(Y, T ).

Lemma 5.13. If f : X → Y is a proper morphism of derived Artin stacks
then f∗ = f! as a functor Db

c(X) → Db
c(Y ). If f is a closed embedding of

derived schemes then f∗f∗ = id = f !f!. Given any Cartesian diagram,

(5.6) X ×S Y
πY ��

πX

��

Y

g

��

X
f

�� S

of derived Artin stacks there are base change natural isomorphisms

f∗g! ∼= (πX)!π
∗
Y and g∗f! ∼= (πY )!π

∗
X .

Additionally there is a natural transformation

cf,g : π∗Xf ! =⇒ π!
Y g
∗
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Proof. The first statement is trivial. The second can be found on page 12 of
[22] in the complex analytic context. The third statement can be found in
Proposition 3.2 of [23] in the complex analytic context or in Proposition 6.1.1
of [21] in the algebraic étale context. For the last statement see Proposition
3.1.9 of [16] in the complex analytic context or in either context simply
notice that

Hom(π∗Xf !S, π!
Y g
∗S) ∼= Hom(πY !π

∗
Xf !S, g∗S) ∼= Hom(g∗f!f !S, g∗S)

and the right hand side has a canonical element corresponding to the pull-
back by g of the canonical morphism f!f

!S → S. �

We will now review the construction, and some properties, of the per-
verse sheaf of vanishing cycles of a regular function. Recall that given a
regular function f on a variety U over C, we can define a sheaf of nearby
cycles of F ∈ Db

c(U) in Db
c(U

0) where U0 = f−1(0). It is defined using the
commutative diagram

(5.7) U0
ι ��

��

U

f

��

T (U0) \ U0

��

j
�� E

��

π
��

{0} �� C Dε \ {0}�� D̃ε
��

where Dε is a disk of radius ε at 0 in C, D̃ε the universal cover of Dε \ {0},
T (U0) = f−1(Dε) and each square is Cartesian. Then the sheaf of nearby
cycles of F ∈ Db

c(U) is defined as

ψfF = ι∗(j ◦ π)∗(j ◦ π)∗F .

The sheaf of vanishing cycles of F ∈ Db
c(U) is defined as the object φfF

making

(5.8) ι∗F → ψfF → φfF →

into an exact triangle where we have used the natural morphism F → (j ◦
π)∗(j ◦ π)∗F .

We will be interested on the sheaf of vanishing cycles not only of f but
also all translations f − c where c is a critical value of f , so we introduce
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the following perverse sheaf

(5.9) PU,f =
⊕

c ∈ f(Crit(f))

φf−c(FU [dimU ])|Crit(f)

on the critical locus of f which we will simply call the sheaf of vanishing
cycles of f .

Suppose now that we are given a morphism Φ : V → U. We can consider
the morphism

(5.10) V0

Φ0

��

ιV �� V

Φ
��

T (V0) \ V0

��

jV
�� EV

Φ̃
��

πV��

U0
ιU �� U T (U0) \ U0

jU
�� EU

πU��

of diagrams living over the bottom row of (5.7). Each square in this diagram
is Cartesian. Then we have natural equivalences Φ̃!(jV ◦ πV )∗ = (jU ◦ πU )∗Φ!

and Φ0!i
∗
V = i∗UΦ! using base change. Also there is natural morphism Φ!(jV ◦

πV )∗ → (jU ◦ πU )∗Φ̃! (which is a natural equivalence if Φ is proper). This
morphism is constructed in (2.5.7) of Proposition 2.5.11 of [16]. Let g =
f ◦ Φ. Putting these all together we get for any F ∈ Db

c(V ) morphisms

ϕ0!ψgF = Φ0!ι
∗
V (jV ◦ πV )∗(jV ◦ πV )∗F

= i∗UΦ!(jV ◦ πV )∗(jV ◦ πV )∗F → i∗U (jU ◦ πU )∗Φ̃!(jV ◦ πV )∗F

and

(5.11) i∗U (jU ◦ πU )∗Φ̃!(jV ◦ πV )∗F = i∗U (jU ◦ πU )∗(jU ◦ πU )∗Φ!F = ψfΦ!F .

So for any F ∈ Db
c(V ) we have a canonical morphism

Φ0!(ψf◦ΦF) → ψf (Φ!F)

and hence by (5.8) we also have a canonical morphism

(5.12) Φ0!(φf◦ΦF) → φf (Φ!F).

If Φ is proper these are isomorphisms.
In the next lemma, we construct a “pull-push” map between the hyper-

cohomology of sheaves and prove some useful properties.
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Lemma 5.14. Consider a diagram

X0 W
Φ0��

Φ1 �� X1

of Artin stacks and suppose that Φ1 is proper and we have objects S0 ∈
Db

c(X0), and S1 ∈ Db
c(X1). The following holds:

(a) A morphism μ ∈ HomDb
c(W )(Φ

∗
0S0,Φ

!
1S1) induces a map

μ∗ : H•(X0,S0) → H•(X1,S1).

(b) Given another diagram

X0 U
T0��

T1 �� X1

and an equivalence Θ : W → U such that Ti ◦Θ is equivalent to Φi,
along with morphisms μ : Φ∗0S0→Φ!

1S1 and η : T∗0S0→T!
1S1 such that

Θ∗η = μ then μ∗ = η∗.

(c) The maps μ∗ compose correctly: given a diagram

(5.13) W ×X1
V

πW

$$

πV

��
W

Φ0





Φ1

��

V
Ψ1

$$

Ψ2

%%

X0 X1 X2

with Φ1 and Ψ2 proper and morphisms μ : Φ∗0S0→Φ!
1S1 and η : Ψ∗1S1→

Ψ!
2S2 then

(5.14) (π!
V (η) ◦ c ◦ π∗W (μ))∗ = η∗ ◦ μ∗

where c comes from the natural transformation π∗Wφ!
1 =⇒ π!

V Ψ
∗
1 dis-

cussed in Lemma 5.13.

(d) When X0 = X = X1 and W is the diagonal X → X ×X and S0 =
S = S1 and Φ0 = idX = Φ1 we have Φ∗0S = S = Φ!

1S, μ = idS and us-
ing these identifications, μ∗ = idH•(X,S).
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(e) Given another diagram

Y0 V
Ψ0��

Ψ1 �� Y1

morphisms μ : Φ∗0S0 → Φ!
1S1 and η : Ψ∗0T0 → Ψ!

1T1, consider

μ� η : (Φ0 ×Ψ0)
∗(S0 � T0) → (Φ1 ×Ψ1)

!(S1 � T1).

Then we have (μ� η)∗ = μ∗ ⊗ η∗ via the natural isomorphism H•(Xi ×
Yi,Si � Ti) ∼= H•(Xi,Si)⊗H•(Yi, Ti) for i = 0, 1 from equation (5.5).

Proof. We define the morphism μ∗ : Γ•(FX0
,S0) → Γ•(FX1

,S1) to be the
following composition:

Γ•(FX0
,S0) → Γ•(FW ,Φ∗0S0)(5.15)

→ Γ•(FW ,Φ!
1S1) ∼= Γ•(Φ1∗FW ,S1) → Γ•(FX1

,S1)

Here the first map is simply Φ∗0 and the second is post-composition with
μ. The isomorphism is adjunction plus the fact that (Φ1)∗ = (Φ1)!, since
Φ1 is proper, and the last is pre-composition with the canonical morphism
FX1

→ Φ1∗FW .
In order to prove (b) consider the commutative diagram

Γ•(FX0
,S0)

Φ∗
0 ��

Ψ∗
0 &&

Γ•(FW ,Φ∗0S0) �� Γ•(FW ,Φ!
1S1)

∼= �� Γ•(Φ1∗FW ,S1) ��

��

Γ•(FX1
,S1)

Γ•(FV ,Ψ
∗
0S0)

Θ∗

��

�� Γ•(FV ,Ψ
!
1S1)

Θ∗

��

�� Γ•(Ψ1∗FV ,S1)

''

where the map from Γ•(Φ1∗FW ,S1) to Γ•(Ψ1∗FV ,S1) is given by pre-
composing by the pushforward by Ψ1 by the canonical map FV → Θ∗FW .
Since each square and triangle commutes the two paths from Γ•(FX0

,S0) to
Γ•(FX1

,S1) agree.
We now prove (c). Let U = W ×X1

V . A straightforward but tedious
check shows that every sub-diagram of the following three diagrams com-
mutes. Each arrow is some combination of a canonical adjunction, base
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change, pullback, and the morphisms c, μ and η.

(5.16) Γ•(FX0
,S0) ��

((

Γ•(FW ,Φ∗0S1) ��

��

Γ•(FW ,Φ!
1S1)

��

�� Γ•(Φ1∗FW ,S1)

��

Γ•(Ψ∗1Φ1∗FW ,Ψ∗1S1)

��

Γ•(πV ∗FU ,Ψ
∗
1S1)

Γ•(FU , π
∗
WΦ∗0S1) �� Γ•(FU , π

∗
WΦ!

1S1) �� Γ•(FU , π
!
V Ψ

∗
1S1)

��

(5.17) Γ•(Φ1∗FW ,S1)

��

�� Γ•(FX1
,S1) �� Γ•(FV ,Ψ

∗
1S1) �� Γ•(FV ,Ψ

!
2S2)

Γ•(Ψ∗1Φ1∗FW ,Ψ∗1S1)

))

��

Γ•(πV ∗FU ,Ψ
∗
1S1) �� Γ•(πV ∗FU ,Ψ

!
2S2)

��

Γ•(FU , π
!
V Ψ

∗
1S1)

��

�� Γ•(FU , π
!
V Ψ

!
2S2)

��

(5.18) Γ•(FV ,Ψ
!
2S2) �� Γ•(Ψ2∗FV ,S2) �� Γ•(FX2

,S2)

Γ•(πV ∗FU ,Ψ
!
2S2)

��

Γ•(FU , π
!
V Ψ

!
2S2)

��

�� Γ•((Ψ2 ◦ πV )∗FU ,S2)

�� **

Putting together the above three diagrams we have the proof of (c). Item
(d) is obvious since in this situation, all the maps in equation (5.15) are the
identity.
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In order to prove (e), notice that (μ� η)∗ can be decomposed into tensor
product morphisms

Γ•(FX0
,S0)⊗ Γ•(FY0

, T0) → Γ•(FW ,Φ∗0S0)⊗ Γ•(FV ,Ψ
∗
0T0)

→ Γ•(FW ,Φ!
1S0)⊗ Γ•(FV ,Ψ

!
1T0)

followed by

Γ•(FW ,Φ!
1S0)⊗ Γ•(FV ,Ψ

!
1T0) → Γ•(Φ1∗FW ,S0)⊗ Γ•(Ψ1∗FV , T0)

→ Γ•(FX1
,S1)⊗ Γ•(FY1

, T1).
�

5.3. Joyce’s conjecture

The starting point for the linearization comes from the fact that on an ori-
ented (−1)-symplectic derived stack (X,ω) there is ([3], [6]) a perverse sheaf
P(X,ω) on its underlying reduced Artin stack which is locally modeled on the
perverse sheaf of vanishing cycles of a certain algebraic function appearing
in the local Darboux model [4]. As usual, we continue to assume that X is
defined over C for simplicity, but as emphasized in [6], this perverse sheaf
can be constructed in other contexts including the algebraic étale context
when X is defined over a general field k. For simplicity however, we stick
to the complex analytic context where techniques of classical topology are
used. The following theorem is a rephrasing of a theorem which appeared in
[6].

Theorem 5.15. Let (X,ω) be a (−1)-symplectic derived stack with orien-
tation (SX , μX). Then we may define a perverse sheaf PX,ω on X uniquely
up to canonical isomorphism. It is characterized in the following way. The
Darboux theorem implies the existence of local models

V
(i,ϕ)−→ Crit(f)− ×X

where U is a smooth scheme, f ∈ O(U), and V is a derived scheme, ϕ is
smooth of dimension n, and the morphism (i, ϕ) is an oriented Lagrangian.
Here we use the canonical orientation on Crit(f) and the product orientation
on Crit(f)− ×X. The perverse sheaf PX,ω satisfies the following condition:
ϕ∗(PX,ω)[n], is canonically isomorphic to i∗(PU,f ) where PU,f is the perverse
sheaf of vanishing cycles of f .
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Remark 5.16. In [6] it was written that V is coisotropic but the fact
that it is an oriented Lagrangian was not mentioned. Instead, two other
properties were given. For the reader familiar with [6] we now explain why
our statement is equivalent to the one in [6]. The Lagrangian condition is
equivalent1 to the fact that LV/Crit(f)

∼= TV/X [2]. This is the first of two
conditions on V given in [6]. Indeed we have a pair of exact triangles and a
morphism between them

(5.19) TV/X
��

��

TV
��

��

TX

��

LV/Crit(f)[−2] �� L(i,ϕ)[−2] �� LX [−1].

Since the rightmost and center downward arrows give isomorphisms in the
homotopy category we can conclude that the leftmost downward arrow is
also an isomorphism in the homotopy category. The orientation is a isomor-
phism

det(LV ) → (i, ϕ)∗SCrit(f)−×X
inducing the canonical isomorphism det(LV )

⊗2 ∼= det(LCrit(f)−×X). How-
ever, we can rewrite this as an isomorphism

KV/X ⊗ ϕ∗KX → i∗SCrit(f) ⊗ ϕ∗SX
∼= i∗KU ⊗ ϕ∗SX

or using S⊗2X
∼= KX an isomorphism

KV/X ⊗ ϕ∗SX → i∗SCrit(f)
∼= i∗KU

or ϕ∗(SX)∼= i∗(KU )⊗ΛnTV/X which is the second condition of the two
conditions given in [6].

The theorem we are citing from [6] was shown in the case of derived
schemes in [4], [3]. In that case, one can take ϕ to be smooth of dimension 0
(in fact a Zariski open) and i to be an isomorphism, which gives the following

Corollary 5.17. Let (X,ω) be a (−1)-symplectic derived scheme with ori-
entation (SX , μX). For each closed point p in X, there is an open neigh-
borhood W symplectomorphic to Crit(f) where f is a regular function on a
smooth scheme U . Then the restriction of PX,ω to W is isomorphic to the
pullback of the sheaf of vanishing cycles PU,f .

1Thank you to Chris Brav for verifying this suspicion.
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Joyce conjectured that there should exist a natural way to assign cycles
in the cohomology of the perverse sheaf PX to Lagrangians in X. He made
the following conjecture.

Conjecture 5.18. Let (X,ω) be an oriented (−1)-symplectic derived stack
and i : L −→ X a proper oriented Lagrangian. Let P(X,ω) be the perverse
sheaf described in Theorem 5.15. Then there is a morphism

μL : FL[vdimL] −→ i!P(X,ω)

of constructible sheaves on L with given local models in the Darboux charts.

In order to give some evidence for this conjecture, we first explain the
construction of the map μ in a simple local model.

Example 5.19. Let U be a smooth variety over C equipped with a regular
function f . Consider the derived critical locus X = Crit(f). It is equipped
with the shifted symplectic structure coming from writing Crit(f) = U ×T ∗U

U given by the pair of Lagrangians df and 0. Let Ψ : W −→ U be a smooth
subvariety such that f ◦Ψ = 0. Consider the total space N∗(W/U) ⊂ T ∗U
of the conormal bundle, the dual of NW/U . Then df ◦Ψ can be thought of
as a section of N∗(W/U) → W . Let M be the derived zero locus of df ◦Ψ.
Notice that vdim(L) = dimW − (dimU − dimW ) = 2 dimW − dimU .

Let us apply Corollary 2.15 taking S = T ∗U , the three Lagrangians X0 =

U
df−→ T ∗U and X2 = U

0−→ T ∗U and X1 = N∗(W/U)
k−→ T ∗U and N1 =

W
(Ψ,df◦Ψ)−−−−−→ U ×df,T ∗U,k N

∗(W/U) and N2 = W
(0,Ψ)−−−→ N∗(W/U)×k,T ∗U,0 U .

These are simply graphs of df ◦Ψ and 0 interpreted as sections of the shifted
cotangent bundle T ∗[−1]W . We conclude that natural morphism ϕ from the
derived zero locus

L = (df ◦Ψ)−1(0)
= W ×df◦Ψ,N∗(W/U),0 W −→ U ×df,T ∗U,0 U = Crit(f) = X

is Lagrangian.
Consider the morphism

j : Crit(f) → f−1(0)
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induced by (j1, j2). Let U0 = f−1(0). We have the diagram

(5.20) X
j

�� U0
�� U

f
�� C

L

ϕ

��

i �� W

Ψ

��

Ψ

++

Given a smooth algebraic variety Z, over C, we let orZ = FZ [2 dimZ] denote
the orientation complex of its underlying topological space . For simplicity
we assume that Crit(f) is contained in f−1(0). In this case the perverse
sheaf PX is the pullback of the sheaf of vanishing cycles

PX = PVf = j∗φf (FU [dimU ])

where j : Crit(f) → f−1(0) = U0 is the inclusion. In the general case we
would sum PVf−c over all the critical values c of f .

We now construct the desired map, for this consider the canonical map
δΨ ∈ Hom(Ψ!orW , orU ). Applying the functor φf and pulling back by j we
obtain a morphism

j∗φf (δΨ) : j
∗φfΨ!orW → j∗φforU .

Noticing that j∗φforU = PX [dimU ] and using Theorem 2.10 of [3] we have
since Ψ is proper that

φfΨ!orW ∼= Ψ!φf◦Ψ(orW ) ∼= Ψ!φ0(orW ) ∼= Ψ!orW .

Hence, we can consider j∗φf (δΨ) as a morphism j∗Ψ!orW → PX [dimU ].
Since the square (5.20) is Cartesian, we have

j∗Ψ!(orW ) ∼= ϕ!i
∗(orW ) = ϕ!(FL[2 dimW ]).

So we get a morphism ϕ!(FL)[2 dimW − dimU ]) → PX or, by adjunction,
a morphism

(5.21) μL : FL[vdimL] → ϕ!PX .

The preceding was a kind of warm-up to the general situation of (−1)-
Lagrangians which we now consider. We will restrict ourselves to the case
of derived schemes, that is both X and L will be derived schemes. In this
situation the paper [14] provides a local description for L.
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Proposition 5.20. Assume we have a Darboux chart (U, f) for the (−1)-
symplectic derived scheme X, that is, X is locally equivalent to Crit(f).
Then [14, Example 3.6] shows that any (−1)-Lagrangian L in Crit(f) is
locally determined by the following data: a submersion Ψ : V → U of smooth
varieties, a (trivial) vector bundle E on V equipped with an algebraic quad-
ratic form q which is non-degenerate on each fiber and a section s of E
such that q ◦ s = f ◦Ψ. The classical truncation of L is locally isomorphic
to s−1(0).

An orientation on L determines a trivialization detE ∼= OV and a mor-
phism

μL : FL[vdimL] → ϕ!PX

Proof. Recall from Example 3.6 in [14] that the cotangent complex of L has
the form

LL = [TV/U → E∨ → T∨V/U ⊕ T∨U ]|L
living in degrees −2,−1, 0. In particular the virtual dimension of L is

vdim(L) = 2 dimV − dimU − rkE.

The cotangent complex of the derived critical locus X of f looks like

[TU → T∨U ]|X

in degrees −1, 0.
These cotangent complexes give us natural isomorphisms det(LL) ∼=

det(T∨U )|L ⊗ det(E)|L and det(LX) ∼= det(T∨U )
⊗2|X . The morphism α :

det(LL)
⊗2 → (detLX)|L determined by the the Lagrangian structure can be

thought of therefore as a morphism det(T∨U )
⊗2|L ⊗ (detE)|⊗2L →det(T∨U )

⊗2|L,
the orientation β is therefore a trivialization of det(E) along L which comes
from restricting the given isomorphism det(E) ∼= OV to L.

Now we construct the morphism μ. As in the example we will assume,
for notational simplicity, that Crit(f) is contained in f−1(0). We have the
following diagram

(5.22) X
i �� f−1(0) �� U

f
�� C

L

ϕ

��

j
�� (q ◦ s)−1(0)

Ψ0

��

�� V

Ψ

��

s �� E

q

��
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Let s0 denote the composition (q ◦ s)−1(0) → V → E. Since L = s−1(0) and
i is a proper closed embedding we get the following chain of isomorphisms

ϕ!FL
∼= i∗i!ϕ!FL

∼= i∗Ψ0!j!FL
∼= i∗Ψ0!s

∗
0F0E

,

(using Lemma 5.13) where F0E
is the pushforward of F from the zero sec-

tion of E to E. Now the well known description of the sheaf of vanishing
cycles of a non-degenerate quadratic function tells us that F0E

∼= φqFE [rkE].
Composing this with the previous chain of isomorphisms we obtain:

(5.23) ϕ!FL[−rkE] ∼= i∗Ψ0!s
∗
0φqFE

Now recall there is a canonical map FE → s∗FV . Applying the functor
i∗Ψ0!s

∗
0φq to this map we get a morphism

(5.24) i∗Ψ0!s
∗
0φqFE → i∗Ψ0!s

∗
0φqs∗FV

∼= i∗Ψ0!s
∗
0s0∗φq◦sFV

∼= i∗Ψ0!φq◦sFV .

Here we have used (5.12) and the fact that s0 is proper.
As in the previous example, there is a canonical morphism δΨ :

Ψ!FV [2 dimV ] ∼= Ψ!orV → orU ∼= FU [2 dimU ]. We will apply the functor φf

to this morphism and then pull back to X via i. Then precomposing this
map with (5.12) we get the map

i∗Ψ0!φq◦sFV = i∗Ψ0!φf◦ΨFV → i∗φfΨ!FV(5.25)

→ i∗φfFU [2 dimU − 2 dimV ],

where the equality follows from the assumption q ◦ s = f ◦Ψ. Finally we
compose (5.23), (5.24) and (5.25) and get

ϕ!FL[−rkE] −→ i∗φfFU [2 dimU − 2 dimV ] = PX [dimU − 2 dimV ],

and the equality follows from the definition of PX . By adjunction, this cor-
responds to a morphism μL : FL[vdimL] → ϕ!PX . �

Remark 5.21. The previous proposition proves Joyce’s conjecture locally
(for derived schemes). The main difficulty in giving a complete proof of the
conjecture is to glue these maps along a cover of L by Darboux charts. Note
that these are general maps in Db

c(X), not necessarily perverse and hence
do not glue like sheaves.

We now formulate a more detailed version of Joyce’s conjecture which
implies the phrasing in Conjecture 5.18 and includes the behavior of the map
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μ under composition of Lagrangian correspondences. In the next section we
will use this conjecture to construct a bicategory which is a linear version
of Sympor.

Conjecture 5.22. Let (X0, ω0) and (X1, ω1) be oriented (−1)-symplectic
derived stacks. Let ϕ = ϕ0 × ϕ1 : M → X−

0 ×X1 be an oriented Lagrangian,
in the sense of Definition 5.3 such that ϕ1 is proper. Then

(a) There is a map of constructible sheaves

μM : ϕ∗0PX0
[v] −→ ϕ!

1PX1

where v = vdim(M) with given local models in Darboux charts. More-
over, if we reverse the orientation of M we change the map by −1.

(b) Consider oriented Lagrangians ϕ : M → X−
0 ×X1 and ψ : N → X−

0 ×
X1 and let ρ : M → N be an oriented Lagrangeomorphism. Then the
morphism

ϕ∗0PX0
[v] ∼= ρ∗ψ∗0PX0

[v]
ρ∗μN−−−→ ρ∗ψ!

1PX1
= ρ!ψ!

1PX1
∼= ϕ!

1PX1

agrees with μM in Db
c(M).

(c) Given oriented Lagrangians ϕ : M → X−
0 ×X1 and ψ : N → X−

1 ×X2

with vM = vdim(M) and vN = vdim(N) equip the Lagrangian N •M
with the orientation constructed in Lemma 5.6. Then the maps

μN•M : (ϕ0 ◦ πM )∗PX0
[vM + vN ] −→ (ψ2 ◦ πN )!PX2

and the following composition,

π∗Mϕ∗0PX0
[vM + vN ]

π∗
MμM [vN ]−−−−−−→ π∗Mϕ!

1PX1
[vN ]

cϕ1,ψ1−−−−→ π!
Nψ∗1PX1

[vN ]
π!
NμN−−−−→ π!

Nψ!
2PX2

agree in Db
c(M ×X1

N). Note that this statement makes sense because
vdim(X1) = 0 and so vdim(M ×X1

N) = vdim(M) + vdim(N).

(d) If ϕ is the diagonal Δ : X → X− ×X then since vdimX = 0 the re-
sulting morphism μX : PX → PX is the identity.
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(e) If we are given Lagrangians ϕ : M → X−
0 ×X1 and ψ : N → Y −0 × Y1

the morphism

PX0×Y0
[vM + vN ] ∼= (PX0

[vM ])� (PY0
[vN ])

μM�μN−−−−−→ PX1
� PY1

∼= PX1×Y1

agrees with the morphism μM×N corresponding to the Lagrangian

φ× ψ : M ×N −→ (X0 × Y0)
− × (X1 × Y1).

where vM = vdimM and vN = vdimN .

Remark 5.23. We observe that the statements of Conjecture 5.18 and
Conjecture 5.22(a) are equivalent using the fact that for a product of oriented
(−1)-symplectic derived stacks we have PX0×X1

∼= PX0
� PX1

when we take
the product orientation on X0 ×X1.

To check this is true first note the isomorphism can be checked locally
as they are perverse sheaves. Examining the Darboux theorem in [6] we can
see that if, using the notation from Theorem 5.15, Xi has local Darboux
data Vi, Ui, fi then for the product X1 ×X2 we can take V = V1 × V2 −→
Crit(f1 � f2)

− ×X1 ×X2, with product morphisms. Then the claim follows
from the Thom-Sebastiani isomorphism (see Theorem 2.1.3 of [3]) for the
perverse sheaf of vanishing cycles of f1 � f2.

6. A linearization of Symp0 and Lag(S)

In this section, we will first construct a bicategory LSymp, whose objects
and 1-morphisms agree with those of Sympor, but it is linear at the level
of 2-morphisms. We will also construct a homomorphism of bicategories
Symporc −→ LSymp. In both cases we will use Conjecture 5.22. In the last
subsection we will see how the same construction gives, for any 1-symplectic
derived stack S, an oriented version Lagor(S) and a linearization LLag(S) of
Lag(S).

6.1. A linearized 2-category of 0-symplectic derived stacks

Here we will define the bicategory LSymp. Before we define the objects and
morphism in this bicategory we make some useful observations. If S is a
0-symplectic derived stack then it has even virtual dimension and if X is a
Lagrangian in S, it follows from the definition of Lagrangian that vdim(X) =
1
2 vdim(S).
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Definition 6.1. The objects of LSymp are the same as the objects of
Sympor, namely 0-symplectic derived stacks (S, ω) together with a line bun-
dle E on S. The 1-morphisms are the same as in Sympor, so we have
LSymp1(S0, S1) := Sympor1 (S0, S1).

If X0 and X1 are 1-morphisms, then by Lemma 5.7, the (−1)-symplectic
derived stackX01 = X0 ×S0×S1

X1 has an induced orientation. Theorem 5.15
then constructs a perverse sheaf PX01

. We define the graded vector space of
2-morphisms as

LSymp2(X0, X1) := H•(X01,PX01
[−n0 − n1]),

where ni =
1
2 vdim(Si).

We now define the different compositions and identities in LSymp.

Definition 6.2. Composition of 1-morphisms in LSymp is defined in the
same way as in Sympor. Similarly, the identity 1-morphisms idX are defined
to be same as the ones in Sympor.

Let Si be objects in LSymp with vdim(Si) = 2ni. Given X0, X1, X2 ∈
LSymp1(S0, S1), Lemma 5.7 implies that the inclusion

ϕ : X012 → (X12 ×X01)
− ×X02

is a (−1)-Lagrangian of virtual dimension −n0 − n1 equipped with an in-
duced orientation. Here we reverse the order of the first two factors to re-
spect the usual convention for compositions in a category. Since ϕ is proper,
Conjecture 5.22(a) combined with Lemma 5.14(a) gives a morphism

(μX012
)∗ : H•(PX12×X01

[−n0 − n1]) → H•(PX02
).

Applying the shift [−n0 − n1] and using the isomorphism PX12×X01
∼= PX12

�
PX01

, explained in Remark 5.23, and the Künneth isomorphism we obtain a
map

(μX012
)∗[−n0 − n1] : H

•(PX12
[−n0 − n1])⊗H•(PX01

[−n0 − n1])

→ H•(PX02
[−n0 − n1]).

We define the vertical composition of 2-morphisms as

a2 � a1 = (−1)(|a2|−n0−n1)(n0+n1)(μX012
)∗[−n0 − n1](a2 ⊗ a1).
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Consider Y0, Y1 ∈ LSymp1(S1, S2) and denote

Zi = Yi ◦Xi ∈ LSymp1(S0, S2).

By Lemma 3.11 there is a natural Lagrangian

Z0 ×S0×S1×S2
Z1 → (Y01 ×X01)

− × Z01.

As explained in the proof of Proposition 2.20 this Lagrangian can be de-
scribed as a triple intersection of oriented 0-Lagrangians and hence
Lemma 5.7 (b) assigns it an orientation. As above, since this Lagrangian
is proper, we obtain a map

(μZ0×S0×S1×S2
Z1
)∗ : H•(PY01×X01

[v]) → H•(PZ01
)

where v = vdim(Z0 ×S0×S1×S2
Z1) = −2n1. If we apply the shift [−n0 − n2]

we obtain a map

(μZ0×S0×S1×S2
Z1
)∗[−n0 − n2] : H

•(PY01
[−n1 − n2])⊗H•(PX01

[−n0 − n1])

→ H•(PZ01
[−n0 − n2]).

We define the horizontal composition of 2-morphisms as

b ∗ a = (−1)(n0+n1)(n1+n2)(μZ0×S0×S1×S2
Z1
)∗[−n0 − n2](b⊗ a)

In order to define the identity 2-morphisms, associators and unitors we
need the following

Lemma 6.3. Let X0, X1 be 1-morphisms. An oriented Lagrangeomorphism
ρ : X0 → X1 determines a 2-morphism

eρ ∈ LSymp2(X0, X1) = H•(PX01
[−n0 − n1]),

sometimes we denote it by eM , with M = Γρ.
If ρ = idX then eρ is an identity for the operation �. Moreover for any

ρ, the 2-morphism eρ is invertible with respect to �.

Proof. By the definition of Lagrangeomorphism, its graph Γρ : X0 → X01

is an oriented (−1)-Lagrangian of virtual dimension n0 + n1. This can be
thought of as a Lagrangian correspondence from a point to X01, that is a
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Lagrangian X0 → (•(−1))− ×X01. Since it is proper, we can apply Conjec-
ture 5.22(a) and Lemma 5.14 (a) to this Lagrangian and obtain a map

(μΓρ
)∗ : H•(P•(−1)

[n0 + n1]) → H•(PX01
).

Applying the shift [−n0 − n1] and using the fact that H•(P•(−1)
) ∼= F, we

obtain the map

(μΓρ
)∗[−n0 − n1] : F → H•(PX01

[−n0 − n1]) ∼= LSymp2(X0, X1).

We define eρ = (μΓρ
)∗[−n0 − n1](1) ∈ LSymp2(X0, X1).

Let ρ1 : X0 → X1 and ρ2 : X1 → X2 be Lagrangeomorphisms, recall from
the proof of Proposition 3.8 that ρ2 ◦ ρ1 is also a Lagrangeomorphism. More-
over we have an oriented Lagrangeomorphism Γρ2

� Γρ1
∼= Γρ2◦ρ1

, where �
is the vertical composition in the category Sympor. We claim that

(6.1) eρ2
� eρ1

= eρ2◦ρ1

In order to prove this, we compute

eρ2
� eρ1

= (−1)n0+n1(μX012
)∗[−n0 − n1](6.2)

×
(
(μΓρ2

)∗[−n0 − n1](1)⊗ (μΓρ1
)∗[−n0 − n1](1)

)
= (−1)n0+n1(μX012

)∗[−n0 − n1]

×
(
(μΓρ2

×Γρ1
)∗[−2n0 − 2n1](1)

)
= (−1)n0+n1(μX012•(Γρ2

×Γρ1
))∗[−n0 − n1](1)

= (μΓρ2�Γρ1
)∗[−n0 − n1](1)

= (μΓρ2◦ρ1 )∗[−n0 − n1](1) = eρ2�ρ1
.

Here the first, fourth and last equalities follow from the definitions, the
second from Conjecture 5.22(e) combined with Lemma 5.14(e), the third
equality follows from combining Conjecture 5.22(c) with Lemma 5.14(c) and
finally the fifth equality follows Conjecture 5.22(b) and Lemma 5.14(b).

Now equation (6.1) together with Proposition 3.8 immediately implies
the second half of the statement, namely:

eρ � eidX0
= eρ = eidX1

� eρ

and

eρ � eρ̃ = eidX0
, eρ̃ � eρ = eidX1

where ρ̃ is a homotopy inverse of ρ. �
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The previous lemma allows us to make the following definition

Definition 6.4. Let S0, S1, S2 and S3 be objects in LSymp and consider
Xi ∈ LSymp1(Si−1, Si) for i = 1, 2, 3. The identity 2-morphism of X1 is de-
fined as 1X1

= eidX1
. Let WX3X2X1

be the associator in Sympor, we define
the associator in LSymp, still denoted WX3X2X1

, as eWX3X2X1
.

Next, we define the unitors in LSymp2(IS0
◦X1, X1) and LSymp2(X1 ◦

IS1
, X1) as elX1

and erX1
where lX1

and rX1
are the unitors in Sympor.

By Lemma 6.3 all of these 2-morphisms are 2-isomorphisms as required.

We now have all the data needed to define a bicategory, we will now
check the axioms.

Lemma 6.5. The vertical composition � is associative and the 2-morphisms
1X are identities.

Proof. Consider X0, X1, X2, X3 ∈ LSymp1(S0, S1) and take ai ∈
LSymp1(Xi−1, Xi). We denote n = vdimXi and compute

a3 � (a2 � a1)(6.3)

= (−1)(|a2|+|a3|)n(μX023
)∗[−n]((μΔX23

)∗(a3)⊗ (μX123
)∗[−n](a2 ⊗ a1))

= (−1)|a2|n+n(μX023
)∗[−n]((μΔX23

×X123
)∗[−n](a3 ⊗ a2 ⊗ a1))

= (−1)|a2|n+n
(
μX023•(ΔX23

×X012)

)
∗[−n](a3 ⊗ a2 ⊗ a1))

where the first equality follows from the definitions, together with Con-
jecture 5.22(d) and Lemma 5.14(d); the second one follows from Conjec-
ture 5.22(e) and Lemma 5.14(e) and the fact that (μX123

)∗ has degree n. Fi-
nally the third equality follows from Conjecture 5.22(c) and Lemma 5.14(c).

Similarly,

(a3 � a2)� a1 = (−1)|a2|n(μX013•(X123×ΔX01
)

)
∗[−n](a3 ⊗ a2 ⊗ a1),

hence associativity follows from applying Conjecture 5.22(b) to the La-
grangeomorphism

X023 • (ΔX23
×X012) ∼= (−1)nX013 • (X123 ×ΔX01

)

proven in Corollary 3.10, without considering the orientations, but that is
elementary. The statement about the identity 2-morphisms follows from the
second part of Lemma 6.3. �
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Lemma 6.6. Consider Xi ∈ LSymp1(S0, S1) and Yi ∈ LSymp1(S1, S2) for
i = 0, 1, 2 and denote Zi = Yi ◦Xi. For ai ∈ LSymp2(Xi−1, Xi) and bi ∈
LSymp2(Yi−1, Yi) for i = 1, 2, we have

(b2 ∗ a2)� (b1 ∗ a1) = (−1)|b1||a2|(b2 � b1) ∗ (a2 � a1)

Proof. The proof follows the proof of the same statement for the bicategory
Sympor in Theorem 5.12, using Conjecture 5.22 and Lemma 5.14, instead of
properties C−. We have

(b2 ∗ a2)� (b1 ∗ a1) = (−1)ε1
(
μZ012•(Z1×S012Z2×Z0×S012Z1)

)
∗

× [−n0 − n2](b2 ⊗ a2 ⊗ b1 ⊗ a1)

(b2 � b1) ∗ (a2 � a1) = (−1)ε2
(
μ(Z0×S012

Z2)•(Y012×X012)•Γρ

)
∗

× [−n0 − n2](b2 ⊗ a2 ⊗ b1 ⊗ a1)

where

ε1 = (|b2|+ |a2|+ n0 + n2)(n0 + n2) and

ε2 = (n0 + n1)(n1 + n2) + (|b2|+ n1 + n2)(n1 + n2)

+ (|a2|+ n0 + n1)(n0 + n1) + (|b1|+ n1 + n2)(|a2|+ n1 + n2).

Here we have used the fact that

(μΓρ
)∗(b2 ⊗ b1 ⊗ a2 ⊗ a1) = (−1)(|b1|+n1+n2)(|a2|+n1+n2)b2 ⊗ a2 ⊗ b1 ⊗ a1,

where the sign corresponds to the unshifted degrees in H•(PX12
) and

H•(PY01
).

Note that ε1 + ε2 = |b1||a2| (mod 2), therefore the statement follows from
the existence of the following oriented Lagrangeomorphism

Z012 • (Z1 ×S012
Z2 × Z0 ×S012

Z1) ∼= (Z0 ×S012
Z2) • (Y012 ×X012) • Γρ,

which is analogous to the one constructed in the proof of Theorem 5.12. �

Lemma 6.7. The associator satisfies the pentagon axiom and the unitors
satisfy the triangle axiom.
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Proof. Consider Xi ∈ LSymp1(Si−1, Si) = Sympor(Si−1, Si), for i = 1, . . . , 4,
the pentagon axiom in Sympor states that the following oriented (−1)-
Lagrangians are Lagrangeomorphic

W43(21) �W(43)21
∼= (1X4

∗W321)�W4(32)1 � (W432 ∗ 1X1
)

By definition and Lemma 6.3 , we have

W43(21) �W(43)21 = eW43(21)
� eW(43)21

= eW43(21)�W(43)21
.

Similarly we have

(1X4
∗W321)�W4(32)1 � (W432 ∗ 1X1

)(6.4)

= e1X4
∗W321

� eW4(32)1
� eW432∗1X1

= e(1X4
∗W321)�W4(32)1�(W432∗1X1

),

an therefore the pentagon axiom in LSymp follows from the pentagon axiom
in Sympor combined with Conjecture 5.22(b) and Lemma 5.14(b). By an
analogous argument we can see that the triangle axiom in Sympor implies
the triangle axiom in LSymp. �

The proof of the next lemma is very similar to others in this section so
we omit it.

Lemma 6.8. The associator and the unitors are natural, meaning that
given 2-morphisms bi ∈ LSymp2(Xi, Yi), for i = 1, 2, 3, we have

(b3 ∗ (b2 ∗ b1))�WX3X2X1
= WY3Y2Y1

� ((b3 ∗ b2) ∗ b1),

and

b0 � rX0
= rY0

� (b0 ∗ 1IS0
) and b0 � lX0

= lY0
� (1IS1

∗ b0).

Summarizing the results from this subsection we have the following

Theorem 6.9. The definitions and lemmas above define a bicategory LSymp
enriched over graded vector spaces. Moreover it has a symmetric monoidal
structure.

Proof. The only point left to discuss is the symmetric monoidal structure.
At the level of objects and 1-morphisms it is the same as Sympor. In order to
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define the monoidal structure on 2-morphisms we use the following canonical
isomorphisms

LSymp2(X0 × Y0, X1 × Y1)(6.5)
∼= H•(P(X0×Y0)×S0×S1×T0×T1

(X1×Y1)[−nX − nY ])

∼= H•(PX01×Y01
[−nX − nY ])

∼= H•(PX01
[−nX ])⊗H•(PY01

)[−nY ]),

where nX = vdimX0 ×X1 and nY = vdimY0 × Y1. The structure of sym-
metric monoidal structure can then be constructed in a straightforward
way. �

6.2. The linearization functor

In the previous subsection we used Conjecture 5.22 to construct the 2-
category LSymp. In this subsection, again using Conjecture 5.22 we would
like to construct a linearization functor, that is a (symmetric monoidal) ho-
momorphism of bicategories Sympor → LSymp. This is not possible since in
order to apply Conjecture 5.22 we need proper (−1)-Lagrangians. Because
of this we will introduce a slightly modified version of Sympor.

Proposition 6.10. There is a symmetric monoidal bicategory Symporc de-
fined as the subcategory of Sympor with the same objects and 1-morphisms
and 2-morphisms (Symporc )2(X0, X1) are (equivalence classes) of oriented
Lagrangians ψ : M −→ X01, such that ψ is a proper map.

Proof. It easily follows from the definitions that being proper is preserved
by both horizontal and vertical composition in Sympor. All the other data
required in the definition of a symmetric monoidal bicategory (identities, as-
sociators, unitors,. . .) are defined as the graph of some Lagrangeomorphism
which is necessarily proper. �

We can now state the main result of this subsection.

Theorem 6.11. There is a symmetric monoidal homomorphism of bicate-
gories, in the sense of Definition 2.2 of [28],

F : Symporc → LSymp

which is the identity on objects and 1-morphisms.
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Proof. By definition we have that F (Y ◦X) = F (Y ) ◦ (X) and F (IS) =
IF (S) for any object S and 1-morphisms X,Y . Hence we take the 2-
isomorphisms Fg,f and FS , in Definition 4.2, to be the identity.

Now consider a 2-morphism N ∈ (Symporc )2(X0, X1), this is a proper ori-
ented (−1)-Lagrangian N → (•(−1))− ×X01. Applying Conjecture 5.22(a)
and Lemma 5.14(a) to this Lagrangian and shifting we obtain a map

(μN )∗[−n0 − n1] : H
•(P•−1

[vdimN − n0 − n1]) → H•(PX01
[−n0 − n1]).

Since F ∼= H•(P•−1
), we define

F (N) = (μN )∗[−n0 − n1](1) ∈ LSymp(X0, X1).

This well defined since, by Conjecture 5.22 (b) together with Lemma 5.14
(b), if N ′ is Lagrangeomorphic to N then (μN )∗ = (μN ′)∗.

We observe that, by definition we have

F (1X) = 1F (X), F (WX3X2X1
) = WF (X3)F (X2)F (X1),

F (rX) = rF (X) and F (lX) = lF (X).

The only conditions left to check are the following

F (N �M) = F (N)� F (M), F (N ∗M) = F (N) ∗ F (M).

Since both can be proved in the same way, we check only the first one. We
denote ε = vdimN(n0 + n1) and compute

F (N �M)

= (μN�M )∗[−n0 − n1](1)

= (μ(−1)εX012•(M×N))∗[−n0 − n1](1)

= (−1)ε
(
(μX012

)∗ ◦ ((μM×N )∗[−n0 − n1])
)
[−n0 − n1](1)

= (−1)ε(μX012
)∗[−n0 − n1]((μM×N )∗[−2n0 − 2n1](1))

= (−1)ε(μX012
)∗[−n0 − n1]

(
(μN )∗[−n0 − n1](1)⊗ (μM )∗[−n0 − n1](1)

)
= (−1)ε(μX012

)∗[−n0 − n1](F (N)⊗ F (M)) = F (N)� F (M),

where the third equality follows from Conjecture 5.22(c) combined with
Lemma 5.14(c), the fifth equality follows from Conjecture 5.22(e) together
with Lemma 5.14(e) and the other follow from the definitions. Finally, in
the last equality, we used the fact that |F (N)| = n0 + n1 − vdimN . �
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6.3. A linearization of Lag(S)

In this subsection we will see that the constructions in Sections 5 and 6
can be adapted, almost with no change, to linearize the bicategory Lag(S)
whenever S is a 1-symplectic derived stack. The previous constructions will
then be the special case when S is a point.

For the rest of the section fix a 1-symplectic derived stack S. We start by
first introducing Lagor(S), the oriented version of Lag(S). Its objects will be
pairs consisting of a Lagrangian f : X → S in S and a line bundle E on X. A
1-morphism in Lagor(S)1((X0, E0), (X1, E1)) is defined to be a Lagrangian
ϕ : N → X01 in the 0-symplectic derived stack X01 := X0 ×S X1 together
with a (KX0

⊗ E0)
−1 � E1 orientation. One can easily prove the following

Lemma 6.12. For i = 0, 1, 2, consider Lagrangians fi : Xi → S equipped
with line bundles Ei. If ϕ0 : N0 → X01 is a (KX0

⊗ E0)
−1 � E1-oriented La-

grangian and ϕ1 : N1 → X12 is a (KX1
⊗ E1)

−1 � E2-oriented Lagrangian,
then the Lagrangian N0 ×X1

N1 → X02, constructed in Corollary 2.15, has
an induced (KX0

⊗ E0)
−1 � E2 orientation.

The diagonal Lagrangian ΔX0
→ X00 has a natural (KX0

⊗ E0)
−1 � E0

orientation.

This lemma defines the composition of 1-morphisms and also gives the
identity 1-morphisms in Lagor(S).

The rest of the construction of Lagor(S) is the same as Sympor. Note
that as in Lemma 5.7, given N0 and N1 in Lagor(S)1((X0, E0), (X1, E1)),
the (−1)-symplectic derived stack N01 = N0 ×X01

N1 is naturally oriented.
So we define Lagor(S)2(N0, N1) as the set of oriented Lagrangeomorphism
classes of oriented Lagrangians in N01. Now we can proceed as in Section 5.1
and obtain the following theorem which is analogous to Theorem 5.12.

Theorem 6.13. Let S be a 1-symplectic derived stack. There exists a bi-
category Lagor(S) enriched over gr-Inv. The objects are pairs consisting
of a Lagrangian f : X → S and a line bundle E on X. The 1-morphisms
Lagor(S)1((X0, E0), (X1, E1)) are (KX0

⊗ E0)
−1 � E1-oriented Lagrangians

and the 2-morphisms Lagor(S)2(N0, N1) are oriented Lagrangeomorphism
classes of oriented Lagrangians in N0 ×S N1.

Moreover there is a homomorphism Lagor(S) → Lag(S) which forgets the
orientation data.
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Next we linearize Lagor(S) using Conjecture 5.22 and the results in Sec-
tions 5.2, 6.1 and 6.2. Since the details are no different from the case of
LSymp we do not repeat them and simply state the end result.

Theorem 6.14. Let S be a 1-symplectic derived stack. There exists a bi-
category LLag(S) enriched over graded vector spaces, whose objects and 1-
morphisms are the same as Lagor(S). The space of two morphisms
LLag(S)2(N0, N1) is the hypercohomology H•(PN01

[− vdimN0]).
Consider Lagorc (S), the subcategory of Lagor(S) where the 2-morphisms

are (equivalence classes of) proper (−1)-Lagrangians. Then there is a homo-
morphism

Lagorc (S) −→ LLag(S),

which is the identity on objects and 1-morphisms.

7. Categories of fillings and mapping stacks

One of the main results in [25] states that under certain conditions, the
mapping stack Map(X,S) is a symplectic derived stack if S is also sym-
plectic. The main condition is that the stack X possess a d-orientation,
rather informally this can be thought of as a volume form that allows us to
“integrate functions” on X. Calaque [8] defined a relative version of orien-
tation and proved that the functor Map(−, S) sends relative orientations
to Lagrangians. In this section we will build a bicategory of derived stacks
with relative orientations, in analogous but dual way to how we constructed
Lag. Then we will show that under certain conditions, Map(−, S) can be
promoted to a homomorphism of bicategories. We end by showing that this
functor gives extended topological field theories with values in Sympm.

7.1. Categories of fillings

In this section, contrary to the rest of the paper, we will not assume that
our derived stacks are Artin or locally of finite presentation. Instead we will
require that the derived stacks be O-compact.

A derived stack is X is O-compact according to [25, Definition 2.1]
when for any affine derived scheme Spec(A) we have that OX×Spec(A) is
a compact object of Dqcoh(X × Spec(A)) and for any perfect complex E
on X × Spec(A), the A-dg-module RHom(OX×Spec(A), E) is perfect. For a
derived stack X and an affine derived scheme Spec A, we use XA to denote
X × Spec A.
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Lemma 7.1. Given a diagram

W1
j1←− X

j2−→ W2

of O-compact derived stacks, a homotopy pushout, in the category of derived
stacks, is O-compact.

Proof. Let us denote the homotopy pushout by Y . Then YA is a homotopy
pushout of

(W1)A
j1,A←−− XA

j2,A−−→ (W2)A.

Consider the resulting canonical maps i1,A : (W1)A → YA, i2,A : (W2)A →
YA, and iA : XA → YA. We can write the (stable ∞-) categories of quasi-
coherent sheaves and perfect complexes on YA as a homotopy limit of the
corresponding categories on (W1)A, (W2)A, and XA. This means that given
an object on YA it is determined by objects on (W1)A, (W2)A, andXA related
by the appropriate pullbacks. Since homotopy colimits and finite homotopy
limits commute in the stable context, this correspondence is preserved by
homotopy filtered colimits. In particular, working in the derived categories
of quasi-coherent sheaves, for any E ∈ Dqcoh(YA) the set Hom(OYA

, E) is
the limit of the diagram

Hom(O(W1)A , E|(W1)A)
j∗1,A−−→ Hom(OXA

, E|XA
)

j∗2,A←−− Hom(O(W2)A , E|(W2)A).

Notice that these pullbacks commute with homotopy filtered colimits in the
E variable, that (W1)A, (W2)A, and XA are O-compact and that finite limits
and filtered colimits in the category of sets commute. Putting this all to-
gether, this diagram commutes with homotopy colimits in the E variable and
so OYA

is compact. In a similar way, considering the functor RHom(OYA
,−)

we obtain the exact triangle

RHom(OYA
, E) → RHom(O(W1)A , E|(W1)A)⊕ RHom(O(W2)A , E|(W2)A)

→ RHom(OXA
, E|XA

).

Since the restrictions of E are perfect, and because (W1)A, (W2)A, and
XA are O-compact we can conclude that RHom(O(W1)A , E|(W1)A),
RHom(O(W2)A , E|(W2)A) and RHom(OXA

, E|XA
) are all perfect. This im-

plies that RHom(OYA
, E) is perfect, which completes the proof. �

We now review the definition of orientation following [25]. From now on
we use the notation C(X,E) = RHom(OX , E), for a complex E on X. Let
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η : C(X,OX) → k[−d] be a morphism in the derived category D(k), this
defines, for any perfect complex E on XA, a morphism

(7.1) (− ∩ η)A : C(XA, E) → C(XA, E
∨)∨[−d]

corresponding to the composition

C(XA, E)⊗ C(XA, E
∨) → C(XA, E ⊗ E∨)

→ C(XA,OXA
) ∼= C(X,OX)⊗A → A[−d]

where the first map is the cup product, the second is the trace and the last
is η ⊗ idA.

Definition 7.2. Let X be a O-compact derived stack, an O-orientation of
degree d (usually abbreviated to d-orientation) consists of a morphism [X] :
C(X,OX) → k[−d] such that for any A ∈ cdga≤0k and any perfect complex
E on XA, the morphism

(7.2) (− ∩ [X])A : C(XA, E) → C(XA, E
∨)∨[−d]

is a quasi-isomorphism of A-dg-modules.

From now on, however, we will suppress this notation from our calcula-
tions, and just use the notation

− ∩ [X] : C(X,E) → C(X,E∨)∨[−d]

for the entire family of morphisms in (7.2) for all possible choices of A and E.

Remark 7.3. IfX is equipped with an orientation [X] which is understood,
we sometimes use X to denote (X,−[X]).

We now recall the definitions of boundary structure and relative orien-
tation (which we will call a filling) from [8]. Let X be a d-oriented derived
stack and f : X → W be a morphism of derived stacks. Denote by f∗[X] be
the composition

C(W,OW ) → C(X,OX)
[X]−−→ k[−d],

where the first morphism is pullback. Note that we can rewrite − ∩ f∗[X]
as the composition

(7.3) C(W,E) → C(X, f∗E) → C(X, f∗E∨)∨[−d] → C(W,E∨)∨[−d]
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given by pullback, cap with [X] and finally the shifted dual of pullback.

Definition 7.4. Let (X, [X]) be a O-compact derived stack with a d-
orientation. A boundary structure [8] on a morphism f : X → W is a path
γ from f∗[X] to 0 in the space Map(C(W,OW ), k[−d]).

Suppose we have a morphism f : X → Y of derived stacks and an object
E ∈ Perf(Y ). We define C(f,E) by the exact triangle

C(Y,E) −→ C(X, f∗E) −→ C(f,E) −→ .

Notice that for a pair of morphisms of derived stacks X
f−→Y

g−→Z, C(f,E)
and C(g,E) are related by the following exact triangle

C(g, E) −→ C(g ◦ f,E) −→ C(f, g∗E) −→,

in the derived category D(k).
A boundary structure γ induces the following diagram

(7.4)

C(W,E)

Θγ

��

��
0

��

C(X, f∗E)

−∩[X]
��

C(f,E∨)∨[−d] �� C(X, f∗E∨)∨[−d] �� C(W,E∨)∨[−d]

��

This is because γ determines a homotopy between 0 and the composi-
tion (7.3) which, since the bottom row is exact, determines the lift Θγ .
A boundary structure γ is called non-degenerate if the associated morphism
Θγ is a quasi-isomorphism.

Definition 7.5. Consider aO-compact derived stackX with a d-orientation
[X]. If γ is a non-degenerate boundary structure on f : X → W , we call the
pair (f, γ) a filling of X. Denote the set of fillings for a fixed morphism f
by Fill(f, [X]).

We will see that fillings have many of the same formal properties as
Lagrangians, just dualized. The following is the analogue of Example 2.4
and Proposition 2.6.
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Proposition 7.6. Let X and W be O-compact derived stacks and f : X −→
W a morphism of derived stacks. We have the following:

(a) Consider the empty set as a d-oriented derived stack. A d-filling of
the morphism ∅ −→ X is equivalent to a (d+ 1)-orientation on X.

(b) If (X, [X]) is d-oriented, there is a bijection between Fill(f, [X]) and
Fill(f,−[X]).

(c) Let X1 and X2 be d-oriented derived stacks and suppose we have fillings
f1 : X1 −→ W1 and f2 : X2 −→ W2. Then X1

∐
X2 has an induced

d-orientation and the morphism f1
∐

f2 : X1
∐

X2 −→ W1
∐

W2 is a
filling.

Proof. In order to prove (a), notice that a boundary structure on i : ∅ → X
is just a loop γ at 0 in Map(C(X,OX), k[−d]). This is the same as a point
in Map(C(X,OX), k[−(d+ 1)]). The associated morphism

− ∩ [X] : C(X,E) → C(X,E∨)∨[−(d+ 1)]

is equivalent to

C(X,E)
Θγ−→ C(i, E∨)∨[−d] ∼= C(X,E∨)[−1]∨[−d] ∼= C(X,E∨)∨[−(d+ 1)]

and so each is non-degenerate if and only if the other is. Points (b) and (c)
are obvious. �

The following is an analogue of Proposition 2.8

Proposition 7.7. Suppose that X0 and X1 are d-oriented derived stacks
and we are given a filling f = (f0, f1) : X0

∐
X1 → W . For a morphism of

derived stacks g : X0 → U , consider the associated morphism bf (g) : X1 →
U
∐

X0
W . Then there is a map

Bf : Fill(g, [X0]) → Fill(bf (g), [X1]).

Proof. First note that Lemma 7.1 guarantees that U
∐

X0
W is O-compact.

Let us denote by γ the boundary structure for the map f , that is a path from
−f0∗[X0] + f1∗[X1] to 0 in the mapping space Map((C(W,OW ), k[−d]), or
equivalently, a path γ from f1∗[X1] to f0∗[X0]. Let δ be a filling of g, that is
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a path from g∗[X0] to 0. Consider the homotopy commutative diagram

(7.5) U
∐

X0
W

U

iU
,,

W

iW
--

X0
∐

X1

f

��

X0

f0

**

g

..

j0

//

X1

j1

00

f1

..

The fact that the square on the left is homotopy commutative determines a
path c from iW∗f0∗[X0] to iU∗g∗[X0]. Consider the concatenation

Bf (δ) = (iW∗γ) • c • (iU∗δ).

It is a path from (iW f1)∗[X1] to 0. Since iW f1 = bf (g) we have produced a
boundary structure on bf (g). We will now prove that it is non-degenerate if
δ is non-degenerate. Let T = U

∐
X1

W . Given F ∈ Perf(U
∐

X1
W ) we have

an exact triangle

F → iU∗i∗UF ⊕ iW∗i∗WF → (iW ◦ f0)∗(iW ◦ f0)∗F → .

applying this to E and E∨ and taking derived global sections over T we get
a commutative diagram

(7.6) C(T,E)

��

�� C(U, i∗UE)⊕ C(W, i∗WE) ��

(Θδ,Θγ)

��

C(X1, f
∗
0 i
∗
WE)

(−)∩[X1]

��

C(iW ◦ f1, E∨)∨[−d] �� C(g, i∗UE
∨)∨[−d]⊕ C(f, i∗WE∨)∨[−d] �� C(X1, f

∗
0 i
∗
WE∨)∨[−d]

Consider

X1
j1−→ X0

∐
X1

∼= X0

∐
X0

(X0

∐
X1)

(g,f)−−−→ U
∐
X0

W,

because (g, f) ◦ j2 ∼= i2 ◦ f1 we get an exact triangle

C(j2, (g, f)
∗E∨)∨ −→ C(i2 ◦ f1, E∨)∨ −→ C((g, f), E∨)∨ −→ .



Perversely categorified Lagrangian correspondences 369

We also have

C(X1, j
∗
1F )⊕ C(X2, j

∗
2F )

= C
(
X1

∐
X2, F

)
−→ C(X2, j

∗
2F ) −→ C(j2, F ) −→,

and therefore, C(j2, F ) ∼= C(X1, j
∗
1F )[+1]. And so we conclude

(7.7) C(X1, j
∗
1F )∨[−1] ∼= C(j2, F )∨

and

(7.8) C((g, f), E∨) ∼= C(g, i∗UE
∨)⊕ C(f, i∗WE∨).

Putting these together we obtain the exact triangle

C(X0, f
∗
0 i
∗
WE∨)∨[−1] −→ C(iW ◦ f0, E∨)∨

−→ C(g, i∗UE
∨)∨ ⊕ C(f, i∗WE∨)∨ −→ .

Shifting and rotating it we have the exact triangle

C(iW ◦ f2, E∨)∨[−d] −→ C(g, i∗UE
∨)∨[−d]⊕ C(f, i∗WE∨)∨[−d]

−→ C(X1, f
∗
0 i
∗
WE∨)∨[−d] −→ .

Therefore, the bottom row in (7.6) is an exact triangle. The top row is
an exact triangle as well. Therefore the left vertical arrow in (7.6) is an
equivalence in the homotopy category. This agrees with the morphism ΘBf (δ)

which is induced by the path Bf (δ) by the mechanism explained in (7.4). �

The following lemma is the analogue of Proposition 2.7 and Corol-
lary 2.10.

Lemma 7.8. Suppose that X is a d-oriented derived stack. The natural
morphism ∇ : X

∐
X → X has a canonical filling. Moreover, given fillings

f1 : X → W1 and f2 : X → W2 of X then the (homotopy) pushout W1
∐

X W2

has an induced (d+ 1)-orientation.

Proof. The pushforward of [X] to X is of course −[X] and so we can use
that to find a path to zero from the pushforward of [X

∐
X] to X. It induces

a morphism C(X,E) → C(∇, E∨)∨[−d] which we want to show is a quasi-

isomorphism. If we consider the inclusion of the first factor X
j→ X

∐
X,
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then ∇ ◦ j is the identity and the exact triangle

C(X,E∨) → C
(
X

∐
X,∇∗E∨

)
→ C(X,E∨)

shows that C(∇, E∨) ∼= C(X,E∨) and in fact C(X,E) → C(∇, E∨)∨[−d] ac-
tually agrees with the original morphism (−)∩[X] : C(X,E)→C(X,E∨)∨[d]
itself so it is a quasi-isomorphism.

The second statement is an immediate corollary of the first and Proposi-
tion 7.7. Indeed by Proposition 7.6 (3) we have a filling X

∐
X → W1

∐
W2.

By the first statement, we have the filling ∇ : (X
∐

X)
∐ ∅ → X. By apply-

ing Proposition 7.7 we see that ∅ → (W1
∐

W2)
∐

X
∐

X X is a d-filling and
so Proposition 7.6 (1) corresponds to a (d+ 1)-orientation on

(W1

∐
W2)

∐
X

∐
X

X ∼= W1

∐
X

W2.

�

The following proposition is an analogue of Theorem 2.14.

Proposition 7.9. Let X be a d-oriented derived stack. Suppose that we are
given three fillings X → Wi for i = 0, 1, 2. The natural morphism

φ :

(
W0

∐
X

W1

)∐(
W1

∐
X

W2

)∐(
W2

∐
X

W0

)
→ W0

∐
X

W1

∐
X

W2

has a canonical filling.

Proof. The derived stack W0
∐

X W1
∐

X W2 is O-compact by Lemma 7.1.
The construction of the natural boundary structure is analogous to the con-
struction of the isotropic structure in Theorem 2.14 and Proposition 3.9 and
so is omitted. We will prove that this boundary structure is non-degenerate.

Denote by Wij = Wi
∐

X Wj the (d+ 1)-oriented derived stacks con-
structed in Lemma 7.8. Let T = W0

∐
X W1

∐
X W2 and denote by fij :

Wij → T the induced maps. Notice that T ∼= W01
∐

W1
W12. Consider E ∈

Perf(T ), there is an exact triangle

C(T,E) −→ C(W01, f
∗
01E)⊕ C(W12, f

∗
12E) −→ C(W1, f

∗
1E) −→ .

Denote by q the composition

W20
i−→ W01

∐
W12

∐
W02

φ−→ T.
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This gives an exact triangle

C(i, φ∗E)∨ −→ C(q, E)∨ −→ C(φ,E)∨ −→ .

Notice also that C(i, φ∗E) ∼= C(W01
∐

W12, φ
∗E)[1] and we have a co-

Cartesian square

(7.9) X

f1
��

�� W20

q

��

W1 π
�� T

and therefore C(q, E)∼=C(f1, π
∗T ) for all E∈Perf(T ). Combining the above

we get an exact triangle

C(W01, f
∗
01E)∨[−1]⊕ C(W12, f

∗
12E)∨[−1] −→ C(f1, E)∨ −→ C(φ,E)∨ −→

and by shifting and rotating, an exact triangle

C(φ,E)∨[−d− 1] −→ C(W01, f
∗
01E)∨[−d− 1]⊕ C(W12, f

∗
12E)∨[−d− 1]

−→ C(f1, E)∨[−d].

In conclusion, we get a diagram with exact triangles as rows

C(T,E)

Θγ012

��

�� C(W01, f
∗
01E)⊕ C(W12, f

∗
12E) ��

((−)∩[W01],(−)∩[W12])
��

C(W1, f
∗
1E) ��

Θγ1

��

C(φ,E∨)∨[−d− 1] �� C(W01, f
∗
01E

∨)∨[−d− 1]⊕ C(W12, f
∗
12E

∨)∨[−d− 1] �� C(f1, E
∨)∨[−d] ��

Because the middle and final vertical arrow are quasi-isomorphisms, the first
is as well. �

Definition 7.10. Let X be a d-oriented derived stack and let i0 : X → W0

and i1 : X → W1 be fillings of X. A filleomorphism between W0 and W1

is a triple consisting of an equivalence of derived stacks g : W0 → W1, a
homotopy between g ◦ i0 and i1 and a filling of the induced morphism

g
∐
X

idW1
: W0

∐
X

W1 −→ W1.

Using Proposition 7.6, Proposition 7.7 and Proposition 7.9 we can redo
the entirety of sections 2, 3, 4 of this article in this “dual” picture where
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symplectic structures are replaced with O-orientations, Lagrangians are re-
placed by fillings, Lagrangeomorphisms are replaced by filleomorphisms and
all the morphisms go in the opposite direction. For example composition of
1-morphisms and vertical composition of 2-morphisms are defined using the
morphisms

Fill

(
W1

∐
X

W2

)
×Fill

(
W2

∐
X

W3

)
→ Fill

(
W1

∐
X

W3

)
,

constructed by combining Proposition7.6 and Proposition 7.9, as in Corol-
lary 2.15.

We spare the reader the details and summarize the result in the following:

Theorem 7.11. Let (X, [X]) be a d-oriented stack. There exists a bicat-
egory Fill(X, [X]) whose objects are fillings (f : X → W,γ), 1-morphisms
between two fillings (f1 : X → W1, γ1) and (f2 : X → W2, γ2) are the fill-
ings of W1

∐
X W2, equipped with the orientation defined in Lemma 7.8.

The 2-morphisms between two such fillings (W1
∐

X W2 → Q1, τ1) and
(W1

∐
X W2 → Q2, τ2) are fillings of Q1

∐
(W1

∐
X W2)

Q2 up to filleomorphism.

Definition 7.12. In the special case of the (d− 1)-oriented derived stack
X = ∅, this theorem constructs a bicategory Fill(∅)d−1, which we denote by
Ord, whose objects are d-oriented derived stacks. Analogous to the symplec-
tic case, it has a symmetric monoidal structure.

Theorem 7.13. The bicategory Ord is a symmetric monoidal bicategory.
The monoidal structure

Ord × Ord → Ord,

at the level of objects, sends ((X1, [X1]), (X2, [X2])) to (X1
∐

X2, [X1
∐

X2])
and has the empty set ∅ as the unit.

Proof. We define the monoidal structure on morphisms by the coproduct
of fillings, as defined in Proposition 7.6(c). Together with some natural iso-
morphisms which we do not write down, this defines a symmetric monoidal
bicategory. �

7.2. From fillings to Lagrangians

Let X be a d-oriented derived stack and S be a n-symplectic derived stack.
Consider a subcategory of Fill(X, [X]), such that the restriction of the func-
tor Map(−, S) has image in the category of derived Artin stacks. We will
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see that the functor Map(−, S) defines a homomorphism of bicategories to
Lag(Map(X,S)). The material here is a modest elaboration on the ideas
in [8]. We start by reviewing how an orientation determines an “integral”.
Recall from [25] that for if X is O-compact, then for any derived stack Z
there is a natural map

DR(X × Z) −→ C(X,OX)⊗DR(Z).

If we are given a morphism η : C(X,OX) −→ k[−d], we can compose it with
the previous map and get a map

DR(X × Z) −→ DR(Z)[−d],

which, in particular, induces a map∫
η
: A2,cl(X × Z, n) −→ A2,cl(Z, n− d).

We collect a few useful properties of this construction.

Lemma 7.14. The assignment η �→
∫
η(−), determines a continuous map

Map(C(X,OX), k[−d]) −→ Map(A2,cl(X × Z, n),A2,cl(Z, n− d)).

Let f : X → Y and g : Z0 → Z1 be morphisms of O-compact derived
stacks. Given [X] : C(X,OX) → k[−d], the following holds:∫

f∗[X]
(−) =

∫
[X]

(f × id)∗(−) and g∗
(∫

[X]
(−)

)
=

∫
[X]

(id× g)∗(−).

Theorem 7.15 ([25], Theorem 2.6). Let (X, [X]) be a d-oriented derived
stack, (S, ω) be a n-symplectic derived stack and assume that Map(X,S)
is a derived Artin stack. Denote by ev : X ×Map(X,S) → S the evalu-
ation map. Then

∫
[X] ev

∗ω is an (n− d)-shifted symplectic structure on

Map(X,S)

Theorem 7.16 ([8], Theorem 2.11). Let f : X −→ W be a filling and
assume that Map(W,S) and Map(X,S) are derived Artin stacks. The in-
duced morphism Map(f, S) : Map(W,S) → Map(X,S) has an induced La-
grangian structure.
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Proof. We will explain how a boundary structure in f determines an isotropic
structure on Map(f, S) and refer the reader to [8] for a proof that this as-
signment preserves non-degeneracy.

For simplicity of notation, we denote MS(X) = Map(X,S) and
MS(W ) = Map(W,S) and MS(f) for the morphism Map(W,S) →
Map(X,S) the morphism induced by f : X → W . A boundary structure
on f : X → W consists of a path from f∗[X] to 0. By the first part of
Lemma 7.14, this induces a path from

∫
f∗[X] π

∗ω to 0. Again using
Lemma 7.14 we have

MS(f)
∗
∫
[X]

π∗ω =

∫
[X]

(id×MS(f))
∗π∗ω =

∫
f∗[X]

π∗ω

so we have a path from MS(f)
∗ ∫

[X] π
∗ω to 0, in other words an isotropic

structure on MS(f). �
This proof points the way to some helpful notation. If f : X → W has a

boundary structure, that is a path γf from 0 to f∗[X] then we defineMS(γf )
to be the corresponding path in the space of closed 2-forms on Map(W,S)
from MS(f)

∗ ∫
[X] π

∗ω to 0.

Proposition 7.17. Let X0, X1 be d-oriented derived stacks, let f=(f0, f1) :
X0

∐
X1 → W and g : X0 → U be fillings and consider the filling bf (g) :

X1 → U
∐

X0
W , constructed in Proposition 7.7. Assuming that the following

mapping stacks are Artin, then an equivalence (determined by the universal
property)

Map

(
U
∐
X0

W,S

)
∼= Map(U, S)×Map(X0,S) Map(W,S)

can be upgraded to a Lagrangeomorphism of Lagrangians in Map(X1, S).
Here the Lagrangian structure on the right side is constructed by applying
Proposition 2.8 and the Lagrangian structure on the left hand side comes
from applying Theorem 7.16 to bf (g).

Proof. Let γ be the path from f0∗[X0] to f1∗[X1]. It gives rise to a path
from MS(f1)

∗ ∫
[X1]

π∗1ω to MS(f0)
∗ ∫

[X0]
π∗0ω in the space of closed 2-forms

on Map(W,S). Similarly, we have MS(γg), a path from MS(g)
∗ ∫

[X0]
π∗gω

to 0 in the space of closed 2-forms on Map(U, S). The canonical path
connecting the pullbacks of MS(f0)

∗ ∫
[X0]

π∗0ω and MS(g)
∗ ∫

[X0]
π∗gω in the

space of forms on the right hand side is induced using from the canonical
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path from the two different pushforwards of [X0] to the space
Map(C(U

∐
X0

W ), k[−d]). ThereforeMS((iW∗γ) • c • (iU∗γg)) is homotopy
equivalent to the path made by connecting the pullbacks of
MS(iW )∗(MS(γ)) and MS(iU )

∗(MS(γg)). We can now complete the proof
by appealing to Corollary 3.5. �

By taking X1 to be a point, we obtain the following corollary, which can
be found in [8]

Corollary 7.18. Given two fillings X → W1 and X → W2, the equivalence
of derived stacks

Map

(
W1

∐
X

W2, S

)
→ Map(W1, S)×Map(X,S) Map(W2, S)

is a symplectomorphism, assuming these are derived Artin stacks.

We now have all the ingredients necessary to show that Map(−, S) de-
fines a homomorphism from Fill(X) to Lag(Map(X,S)), modulo the ques-
tion of the required mapping stacks being derived Artin stacks. We fix this
problem by restricting the domain of the homomorphism.

Definition 7.19. Let S be a derived Artin stack. Fix a subcategory C
of the category of O-compact derived stacks, closed under pushouts, and
containing the initial object ∅ such that for any X in C, the mapping stack
Map(X,S) is a derived Artin stack.

Let (X, [X]) be a d-oriented derived stack, such that X is an object of
C. We define the bicategory FillC(X) as the subcategory of Fill(X), where all
the fillings are objects and morphisms in C. Note this defines a subcategory
since C is closed under pushouts. Let OrdC = FillC(∅d). As with Or, this is a
symmetric monoidal bicategory.

We are aware of two examples of categories C which fulfill the conditions
of Definition 7.19. It would be interesting to identify other examples.

Example 7.20. Let S be an arbitrary derived Artin stack. We can take C
to be the category of “constant stacks”, that is to say, stacks whose value
on any cdga is the same topological space (which has the homotopy type of
a finite CW complex) and whose value on any morphism is the identity.
The homotopy pushout of a diagram of such constant stacks is just the con-
stant stack with value the homotopy pushout of the corresponding topological
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spaces. Moreover, as explained in [25], for any such stack X, Map(X,S)
is a derived Artin stack. We discuss this example in more detail in Subsec-
tion 7.3.

Example 7.21. Assume that S is a smooth quasi-projective variety, or a
classifying stack BG. Take C to be the category whose objects are finite homo-
topy colimits (in the category of derived stacks) of diagrams of smooth proper
Deligne-Mumford stacks with morphisms closed immersions. As explained in
[25], if X is a smooth proper Deligne-Mumford stack then Map(X,S) is a
derived Artin stack. Therefore for any object Y in C, then Map(Y, S) is a
derived Artin stack since it is a finite homotopy limit of derived Artin stacks.

Theorem 7.22. Let S be an n-symplectic derived stack and C a category
as in Definition 7.19. If (X, [X]) is a d-oriented derived stack belonging to
C then there is a homomorphism of bicategories

MS : FillC(X) −→ Lag(Map(X,S))

where Map(X,S) is equipped with (n− d)-shifted symplectic structure∫
[X] π

∗ωS discussed above.

Proof. The definition of this homomorphism on objects was explained in the
proof of Lemma 7.16 . Recall that the 1-morphisms and 2-morphisms in the
category FillC(X) are given by fillings, and similarly the 1-morphisms and 2-
morphisms in the category Lag(Map(X,S)) are given by Lagrangians. The
definition of this homomorphism on 1-morphisms and 2-morphisms looks the
same as the definition on objects, it is again given by taking the mapping
stack into S and using the Lagrangian structure we have explained. The
main thing to check is the compatibility of this assignment with the compo-
sition of 1-morphisms and with the composition of 2-morphisms. This works
because compositions in FillC(X) are given by pushouts and compositions
in Lag(Map(X,S)) are given by fiber products. Therefore, checking that
this is a homomorphism boils down to a repeated use of Proposition 7.17
and Corollary 7.18, for which it is shown that the relevant structures on the
pushouts correspond to the correct structures on fiber products. �

As a special case of this, taking X = ∅ we have the following

Corollary 7.23. Let S be a n-symplectic derived stack and C be a category
satisfying the conditions of Definition 7.19. There is a homomorphism of
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symmetric monoidal bicategories

MS : OrdC −→ Sympn−d

which at the level of object sends a d-oriented derived stack X to the (n− d)-
symplectic derived Artin stack Map(X,S).

The claim that this respects the monoidal structure is an easy conse-
quence of the fact that Map(−, S) sends coproducts to products.

7.3. Extended topological field theories

We now sketch the existence of (symmetric monoidal) homomorphism of bi-
categories from the oriented cobordism category of d-dimensional manifolds
to the category OrdC discussed in 7.19 where C is the category of constant
stacks from Example 7.20. First we explain what we mean by the oriented
cobordism bicategory Cobord following the constructions in [28]. Our index-
ing is shifted from that in [28], what we are describing here is the oriented
version of what in his notation is Cobd+2

Definition 7.24. The objects in Cobord are pairs (M,μ) whereM is a closed
d-dimensional manifold and μ is an orientation on M . The 1-morphisms in
Cobord between two objects (M0, μ0) and (M1, μ1) are triples (N, ν, f) where
N is a compact (d+ 1)-dimensional manifold with boundary, ν is an orien-
tation on N and f is an isomorphism of oriented manifolds f : (∂N, ν|N ) →
(M0,−μ0)

∐
(M1, μ1). The 2-morphisms between triples (N0, ν0, f0) and

(N1, ν1, f1) are equivalence classes of quadruples (P, ρ, a, b) where P is a
compact (d+ 2)-dimensional manifold (with corners) with orientation ρ and
boundary components (∂0P, ρ|∂0P ) and (∂1P, ρ|∂1P ),

a : (∂0P, ρ|∂0P ) → (N0,−ν0)
∐

(N1, ν1)

is an orientation preserving diffeomorphism and

b : (∂1P, ρ|∂1P ) → (M0 × I,−μ0)
∐

(M1 × I, μ1)

is an orientation preserving diffeomorphism such that

b ◦ a−1|∂N0
: ∂N0 → (M0 × {0})

∐
(M1 × {0})

and

b ◦ a−1|∂N1
: ∂N1 → (M0 × {1})

∐
(M1 × {1})
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agree with f0 and f1. Two such quadruples (P0, ρ0, a0, b0) and (P1, ρ1, a1, b1)
are equivalent if there is an orientation preserving diffeomorphism (P0, ρ0) →
(P1, ρ1) which takes a−10 (N0) to a−11 (N0) and a−10 (N1) to a−11 (N1), b

−1
0 (M0 ×

I) to b−11 (M0 × I) and b−10 (M1 × I) to b−11 (M1 × I).

This is a symmetric monoidal bicategory where the monoidal structure
is given by disjoint union (along with the induced orientation). We end this
section by explaining that the Betti stack construction gives a symmetric
monoidal homomorphism

Cobord −→ OrdC

where C is the category of constant stacks discussed in Example 7.20. The
interest in such a homomorphism is that given an n-symplectic derived Artin
stack S, we can postcompose such a homomorphism with the homomorphism
MS described in Corollary 7.23 to get a symmetric monoidal homomorphism

ZS : Cobord −→ Sympn−d

given by ZS(−) = MS((−)B).

Proposition 7.25. Let C be the category of constant stacks discussed in
Example 7.20. Then the Betti stack construction gives a symmetric monoidal
homomorphism of bicategories

Cobord −→ OrdC.

Proof. To each compact oriented manifold with corners (T, σ) we assign
to the (constant) Betti stack TB (which is O-compact). In the case that
S has no boundary, it has a O-orientation [TB] = σB. We will sometimes
use the notation (T, σ)B = (TB, σB). The functor (−)B preserves finite ho-
motopy pushouts and homotopy equivalences. If (M0, μ0) and (M1, μ1) are
closed oriented manifolds such that M0

∐
M1, is the boundary of a manifold

with boundary (N, η), then the inclusion M0
∐

M1 → N induces a filling
(M0,−μ0)B

∐
(M1, μ1)B → (N, η)B of (M0,−μ0)B

∐
(M1, μ1)B, which is a

1-morphism in Ord from (M0, μ0)B to (M1, μ1)B. Given two such oriented
manifolds with boundary (N0, η0, f0) and (N1, η1, f1) a cobordism (P, ρ, a, b)
between them (a 2-morphism in Cobord ) is homotopy equivalent to an ori-
ented topological space whose boundary is the pushout N0

∐
(M0

∐
M1)

N1.
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Applying the Betti stack construction, one gets a filling of

(N0, η0)B
∐

(M0,−μ0)
∐
(M1,−μ1)

(N1, η1)B.

Any equivalence of cobordisms, gives an orientation preserving homeomor-
phism of the two topological spaces whose boundary is the pushout above
and therefore induces an filleomorphism (see Definition 7.10) of the two
corresponding fillings. �

References

[1] M. Alexandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky, The
geometry of the master equation and topological quantum field theory,
Int. J. Modern Phys. A12 (1997), no. 7, 1405–1429.

[2] O. Ben-Bassat, Multiple derived Lagrangian intersections, Contempo-
rary Mathematics Volume 643, AMS, 2015.

[3] C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendrői, Symmetries
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