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4d N = 2 SCFT and singularity theory

Part II: complete intersection

Bingyi Chen, Dan Xie, Shing-Tung Yau,

Stephen S.-T. Yau, and Huaiqing Zuo

We classify three dimensional isolated weighted homogeneous ra-
tional complete intersection singularities, which define many new
four dimensional N = 2 superconformal field theories. We also de-
termine the mini-versal deformation of these singularities, and
therefore solve the Coulomb branch spectrum and Seiberg-Witten
solution.

1. Introduction

This is the second of a series of papers in which we try to classify four di-
mensional N = 2 superconformal field theories (SCFTs) using classification
of singularity. This program has several interesting features:

• The classification of field theory is reduced to the classification of sin-
gularities, which in many cases are much simpler than the classification
using field theory tools.

• Many highly non-trivial physical questions such as Coulomb branch
spectrum and the Seiberg-Witten solution [SW1, SW2] can be easily
found by studying the mini-versal deformation of the singularity.

In [XY], we conjecture that any three dimensional rational Gorenstein
graded isolated singularity should define a N = 2 SCFT. A complete list of

The work of S.-T. Yau is supported by NSF grant DMS-1159412, NSF grant
PHY- 0937443, and NSF grant DMS-0804454. The work of Stephen S.-T. Yau is
supported by NSFC grant 11531007 and Tsinghua University startup fund. The
work of Huaiqing Zuo is supported by NSFC (grant nos. 11531007, 11401335) and
Tsinghua University Initiative Scientic Research Program. The work of Dan Xie
is supported by Center for Mathematical Sciences and Applications at Harvard
University, and in part by the Fundamental Laws Initiative of the Center for the
Fundamental Laws of Nature, Harvard University.

121



122 B. Chen, et al.

hypersurface singularities was obtained in [YY, YY1], and this immediately
gives us a large number of new four dimensional N = 2 SCFTs.

The natural next step is to classify three dimensional rational weighted
homogeneous isolated complete intersection singularities (ICIS). To our sur-
prise, the space of such singularities is also very rich, and we succeed in
giving a complete classification. Let’s summarize our major findings:

• The number of polynomials defining ICIS is two, i.e. the singularity is
defined as f1 = f2 = 0.

• We find a total of 303 class of singularities, and some of them consist
only finite number of models, but we do get many infinite sequences.

Our classification gives many new interesting 4d N = 2 SCFTs. Some of
these singularities describe the familiar gauge theory, i.e. the singularity
(f1, f2) = (z21 + z22 + z23 + z24 + z2N5 , z21 + 2z22 + 3z23 + 4z24 + 5z2N5 ) describes
the affine D5 quiver gauge theory with SU type gauge group, see Figure 1.
The major purpose of this paper is to describe the classification, and more
detailed study of the corresponding SCFTs will appear in a different publi-
cation.
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Figure 1: 4d N = 2 SCFT described by the singularity (f1, f2) = (z21 +
z22 + z23 + z24 + z2N5 , z21 + 2z22 + 3z23 + 4z24 + 5z2N5 ). Here the gauge group is
SU(2N).

This paper is organized as follows: Section two reviews the connection
between the physics of 4d N = 2 SCFT and the property of ICIS; Section III
reviews some preliminary facts about the general property of singularities;
Section IV proves that the maximal embedding dimension of 3d rational
ICIS is five, and section V classifies the general weighted homogeneous ICIS
and we also compute the Milnor number and the monomial basis of the
mini-versal deformations.
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2. ICIS and 4d N = 2 SCFT

Four dimensional N = 2 SCFT has an important SU(2)R × U(1)R R sym-
metry. These theories have half BPS scalar operators Er,(0,0) which can get
expectation value and parameterize the Coulomb branch, here r is the U(1)R
charge and this operator is a singlet under SU(2)R symmetry. The scaling
dimension of operator Er,(0,0) is Δ = r, and if 1 < r < 2, one can turn on the
relevant deformation

(2.1) δS = λ

∫
d4θEr,(0,0) + c.c.

The scaling dimension of the coupling constant is determined by the re-
lation [λ] + [Er,(0,0)] = 2. The coupling constants do not lift the Coulomb
branch, but will change the infrared physics, so we need to include those
coupling constants besides the expectation values of Er,(0,0) to parameterize
the Coulomb branch. We also have the dimension one mass parameters mi

which can also change the IR physics, which should also be included as the
parameters of Coulomb branch. To solve the Coulomb branch of a N = 2
SCFT, we need to achieve the following two goals:

• Determine the set of rational numbers which include the scaling dimen-
sion of the coupling constants λ, Coulomb branch operators Er,(0,0), and
mass parameters mi.

(2.2) (r1, . . . , 1, . . . , 1, . . . rμ).

Since the scaling dimension of the coupling constant is paired with
that of Coulomb branch operator, this set is symmetric with respect
to identity.

• Once we find out the parameters on the Coulomb branch, we want
to write down a Seiberg-Witten curve which describes the low energy
effective theory on the Coulomb branch

(2.3) F (zi, u) = 0.

Here u includes all the parameters discussed above.

These two questions are central in understanding Coulomb branch of a N =
2 SCFT, and in general are quite hard to answer.
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If our 4d SCFT is engineered using 3-fold singularity, the above two
questions can be found from the miniversal deformation of the singularity1.
The formulae for the hypersurface case has been given in [SV, CNV]. In the
following, we will review the relevant formulas for ICIS case, which is first
derived in [XY].

Consider a three dimensional ICIS defined by two polynomials f =
(f1, f2), wheref is the map f : (C5, 0) → (C2, 0) 2. We require the defin-
ing polynomials to have a manifest C∗ action, which is proportional to the
U(1)R symmetry of the field theory. We normalize the C∗ action so that the
weights of the coordinates (z1, . . . , z5) are (w1, w2, . . . , w5), and the degree
of f1 is one, the degree of f2 is d:

(2.4) f1(λ
wizi) = λf1(zi), f2(λ

wizi) = λdf2(zi).

This singularity has a distinguished (3, 0) form:

(2.5) Ω =
dz1 ∧ dz2 ∧ · · · ∧ dz5

df1 ∧ df2
,

which has charge
∑

wi − 1− d under the C∗ action. To define a sensible 4d
SCFT, we require this charge to be positive, which means that

(2.6)
∑

wi > 1 + d.

We conjecture that this condition is necessary and sufficient to define a
SCFT. Such singularity is called rational singularity, see section III for the
definition. The SW solution is described by the mini-versal deformation of
the singularity:

(2.7) F (λ, zi) = f(zi) +

μ∑
α=1

λαφα,

here φα is the monomial basis of the Jacobi module of f , and μ is the Milnor
number. The coefficient λα is identified with the parameters on Coulomb
branch. The scaling dimension of λα is determined by requiring Ω to have

1If the theory is engineered using M5 branes [Ga, GMN, NX, CDY, Xie, WX],
these questions are solved by spectral curve of Hitchin system. If the theory is
engineered using Kodaira singularity [ALLM1, ALLM2, ALLM3], these questions
can also be solved by studying the deformations of the singularity.

2ICIS defined by two polynomials is enough for our purpose, see section IV.
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dimension one as its integration over the middle homology cycle of Milnor
fibration gives the mass of BPS particle, and we have

φα = [φα, 0] : [λα] =
1−Qα∑
wi − 1− d

,

φα = [0, φα] : [λα] =
d−Qα∑
wi − 1− d

.(2.8)

Here Qα is the C∗ charge of the monomial φα. The spectrum is classified
into following categories:

• Coulomb branch operator Er,(0,0) if [λα] > 1.

• Mass parameters if [λα] = 1.

• Coupling constants for relevant deformations if 0 < [λα] < 1.

• Exact marginal deformations if [λα] = 0. These deformations are re-
lated to the moduli of the singularity.

• Irrelevant deformations if [λα] < 0.

The spectrum is paired and is symmetric with respect to one, which is in
perfect agreement with the field theory expectation.

Example. Consider the singularity f = (f1, f2) = (z21 + z22 + z23 + z24 + z25 ,
z21 + 2z22 + 3z23 + 4z24 + 5z25) = 0. The weights and degrees of two polynomi-
als are (12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ; 1, 1). The Jacobi module Jf has the basis

φ1 = [0, z25 ], φ2 = [0, z24 ], φ3 = [0, z5], φ4 = [0, z4], φ5 = [0, z3],

φ6 = [0, z2], φ7 = [0, z1], φ8 = [0, 1], φ9 = [1, 0].(2.9)

Using the Formula (2.8), we find the scaling dimension of the coefficients λi

in mini-versal deformation:

(2.10) [λ1] = [λ2] = 0, [λ3] = [λ4] = [λ5] = [λ6] = [λ7] = 1, [λ8] = [λ9] = 2;

So this theory has two exact marginal deformations, two Coulomb branch
operators with dimension 2, and five mass parameters. The corresponding
gauge theory is depicted in Figure 1 with N = 1.

In the following sections, we will classify all possible 3 dimensional
weighted homogeneous ICIS, and describe the miniversal deformation. The
Coulomb branch is then solved using Formulas 2.7 and 2.8.
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3. Preliminaries

In this section, we recall some definitions and known results about the Goren-
stein singularity.

Definition 3.1. For a commutative Noetherian local ring R, the depth of
R (the maximum length of a regular sequence in the maximal ideal of R)
is at most the Krull dimension of R. The ring R is called Cohen-Macaulay
if its depth is equal to its dimension. More generally, a commutative ring
is called Cohen-Macaulay if it is Noetherian and all of its localizations at
prime ideals are Cohen-Macaulay. In geometric terms, a scheme is called
Cohen-Macaulay if it is locally Noetherian and its local ring at every point
is Cohen-Macaulay.

Definition 3.2. Let (X,x) be an isolated singularity of dimension n. (X,x)
is said to be normal or Cohen-Macaulay if the local ring OX,x has such a
property.

Let (X,x) be an isolated singularity of dimension n. Then we have the
following propositions.

Proposition 3.1. (Corollary 3.10, [Ha]) (X,x) is called Cohen-Macaulay
iff H1

{x}(OX) = · · · = Hn−1
{x} (OX) = 0. (X,x) is normal iff H1

{x}(OX) = 0.

Proposition 3.2. Let (X,x) be an isolated singularity of dimension n and
π : (X̃, E)→(X,x) be a resolution of (X,x). Then H i(X̃,O)∼=H i∞(X̃,O)∼=
H i+1

{x} (X,O), 1 ≤ i ≤ n− 2.

Proof. Following Laufer [La1], we consider the sheaf cohomology with sup-
port at infinity. The following sequence is exact:

0 → Γ(X̃,O) → Γ∞(X̃,O) → H1
c (X̃,O)

→ H1(X̃,O) → H1
∞(X̃,O) → H2

c (X̃,O) → · · ·

By Serre duality,

H i
c(X̃,O) ∼= Hn−i(X̃,O(K)).

by Grauert-Riemenschneider Vanishing Theorem, we have

Hn−i(X̃,O(K)) = 0, for i ≤ n− 1.
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It follows that

H i(X̃,O) ∼= H i
∞(X̃,O), 1 ≤ i ≤ n− 2.(3.1)

On the other hand, we also have the following exact sequence:

0 → Γ(X,O) → Γ(X − {x},O) → H1
{x}(X,O)

→ H1(X,O) → H1(X − {x},O) → H2
{x}(X̃,O) → · · ·

Since H i(X,O) = 0, i ≥ 1. Thus we have

H i(X − {x},O) ∼= H i+1
{x} (X,O), i ≥ 1.(3.2)

Take a 1-convex exhaustion function φ on X̃ such that φ ≥ 0 on X̃ and
φ(y) = 0 if and only if y ∈ Ei where Ei is the irreducible component of E.
Put X̃r = {y ∈ X̃ : φ(y) ≤ r}. Then by Laufer [La1],

lim−→
r

Hq(X̃ − X̃r,O) ∼= Hq
∞(X̃,O).

On the other hand, by Andreotti and Grauert (Théorème 15 of [An-Gr]),
Hq(X̃ − E,O) is isomorphic toHq(X̃ − X̃r,O) for q ≤ n− 2 andHn−1(X̃ −
E,O) → Hn−1(X̃ − X̃r,O) is injective. Thus we have

H i
∞(X̃,O) ∼= H i(X̃ − E,O) ∼= H i(X − {x},O), 1 ≤ i ≤ n− 2.(3.3)

Combining with (3.1),(3.2) and (3.3) we have

H i(X̃,O) ∼= H i
∞(X̃,O) ∼= H i+1

{x} (X,O), 1 ≤ i ≤ n− 2.

This completes the proof. �

Corollary 3.1. (1) (X,x) is Cohen-Macaulay ⇒ H i(X̃,O) = 0, 1 ≤ i ≤
n− 2.

(2) (X,x) is normal and H i(X̃,O) = 0, 1 ≤ i ≤ n− 2 ⇒ (X,x) is
Cohen-Macaulay.

Definition 3.3. A normal variety X is called Gorenstein if it is Cohen-
Macaulay and the sheaf ωX := O(KX) is locally free.

Definition 3.4. A Gorenstein point x ∈ X of an n-dimensional variety
X is rational (respectively minimally elliptic) if for a resolution f : Y → X
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we have f∗ωY = ωX(respectively f∗ωY = mxωX , where mx is the ideal of x).
(This is equivalent via duality to the cohomological assertion Rn−1f∗OY = 0
(respectively, is a 1-dimensional C-vector space at x).

It is convenient to make intrinsic (and generalize slightly) the notion of
a general hyperplane section through x:

Definition 3.5. Let (OX , x,mx) be the local ring of a point x ∈ X of a
C- scheme, and let V ⊂ mx be a finite-dimensional C-vector space which
maps onto mx/m

2
x (equivalently, by Nakayamas lemma, V generates the

OX,x-ideal mx ); by a general hyperplane section through x is mean the
sub-scheme H ⊂ X0 defined in a suitable neighborhood X0 of x by the ideal
OX,v, where v ∈ V is a sufficiently general element (that is, v is a C-point
of a certain dense Zariski open U ⊂ V ).

Theorem 3.1. ([Mi], Theorem 2.6) If x ∈ X is a rational Gorenstein point
(dim X = n ≥ 3. Then for a general hyperplane section S through x, x ∈ S
is minimally elliptic or rational Gorenstein.

Proof. Suppose that S runs through any linear system of sections x ∈ S ⊂ X
whose equations generate the maximal ideal mx of OX,x. Then a general
element S of this linear system is normal.

Let f : Y → X be any resolution of X which dominates the blow-up of
the maximal ideal mx; by definition of the blow-up, the scheme-theoretic
fiber over x is an effective divisor E such that mxOY = OY (−E). Hence
f∗S = T + E, where T runs through a free linear system on Y . By Bertini’s
theorem, φ = f |T : T → S is a resolution of S. Now we use the adjunction
formula to compare KT and ϕ∗KS .

In the diagram (Figure 1), we have

Y

f
��

⊃ T + E

ϕ

��
X ⊃ S

Figure 2.

KY = f∗KX +Δ, withΔ ≥ 0

and

T = f∗S − E,
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so that

KY + T = f∗(KX + S) + Δ− E

and

KT = (KY + T ) |T= ϕ∗KS + (Δ− E) |T .

This just means that any s ∈ ωs has at worst (Δ− E) |T as pole on T . On
the other hand, since the maximal ideal mS,x ⊂ OS,x is the restriction to
S of the maximal ideal mX,x ⊂ OX , it follows that every element of mS,x

vanishes along E ∩ T . Hence every element of mS,xωS is regular on T , that
is

mxωS ⊂ ϕ∗wT ⊂ ωS .

Thus mxωS = ϕ∗wT implies x ∈ S is minimally elliptic and ωS = ϕ∗wT im-
plies x ∈ S is rational. �

Theorem 3.2. [La2] Let x be a minimally elliptic singularity. Let π : M →
V be a resolution of a Stein neighborhood V of x with x as its only singular
point. Let m be the maximal ideal in OV,x. Let Z be the fundamental cycle
on E = π−1(x).

(1) If Z2 ≤ −2, then O(−Z) = mO on E.

(2) If Z2 = −1, and π is the minimal resolution or the minimal resolu-
tion with non-singular Ei and normal crossings, O(−Z)

/
mO is the

structure sheaf for an embedded point.

(3) If Z2 = −1 or −2, then x is a double point.

(4) If Z2 = −3, then for all integers n ≥ 1, mn ≈ H0
(
E,O(−nZ)

)
and

dimmn/mn+1 = −nZ2.

(5) If −3 ≤ Z2 ≤ −1, then x is a hypersurface singularity.

(6) If Z2 = −4, then x is a complete intersection and in fact a tangential
complete intersection.

(7) If Z2 ≤ −5, then x is not a complete intersection.

3.1. Deformation of singularities

Let (X0, x0) be an isolated singularity with dimension n, a deformation of
(X0, x0) will be simply a realization of (X0, x0) as the fiber of a map-germ
between complex manifolds whose dimensions differ by n. To be precise, it
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consists of holomorphic map-germ f : (X,x) → (S, o) between complex man-
ifold germs with dim(X,x)-dim(S, o) = n and an isomorphism ι : of (X0, x0)
onto the fiber (Xo, x) of f . A morphism from a deformation (ι′, f ′) to an-
other (ι, f) is a pair of map-germs (g̃, g) such that the diagram

(X ′, x′)

f ′

��

g̃−→ (X,x)

f

��
(S′, o′) g−→ (S, o)

is Cartesian and g̃ ◦ ι′ = ι. We say that a deformation (ι, f) of (X0, x0) is ver-
sal if for any deformation (ι′, f ′) of (X0, x0) there exists a morphism (g̃, g)
from (ι′, f ′) to (ι, f). Notice that we do not require this morphism to be
unique in any sense. If, however, the derivative of g in o′, ∂g(o′) : To′(S

′) →
To(S) is unique, then we say that (ι, f) is miniversal.

Proposition 3.3. ([AGLV] (2.10)) Let f : (Cn+k, 0) → (Ck, 0) define an
icis at the origin and has dimension n. A miniversal deformation of f = 0
can be taken in the form

(3.4) F (z, λ) = f(z) + λ1e1(z) + · · ·+ λτeτ (z),

where ei ∈ Ok
n+k are the representative of a basis of the linear space:

(3.5) T 1
f = Ok

n+k/{IOk
fn+k +On+k〈∂f/∂z1, . . . , ∂f/∂zn+k〉}.

Here τ is the Tyurina number and is equal to the Milnor number μ if f
is weighted homogeneous.

4. Homogeneous isolated complete intersection singularity

In this section we shall prove the following conjecture for homogeneous iso-
lated complete intersection singularity (ICIS) in Theorem 4.1 and three di-
mensional isolated complete intersection singularity in Theorem 4.4. We
shall also give a classification of three-dimensional rational homogeneous
isolated complete intersection singularities in Theorems 4.2 and 4.3.

Conjecture. Let p be the dimension of rational isolated complete inter-
section singularity with C∗-action. The the embedding dimension of the
singularity is at most 2p− 1.
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Definition 4.1. Let (V, 0) ⊂ (CN , 0) be the analytic germ of an n-
dimensional complex homogeneous isolated complete intersection singular-
ity. Let π : (M,E) → (V, 0) be a resolution of singularity of dimension n with
exceptional set E = π−1(0). The geometric genus pg of the singularity (V, 0)
is the dimension of Hn−1(M,O) and is independent of the resolution M .

We have the following proposition.

Proposition 4.1. [KN] Let (V, 0) = {f1 = · · · = fr = 0} be a homogeneous
isolated complete intersection singularity of multidegree (d1, . . . , dr) and di-
mension n, that is degfi = di, then

pg =
∑

k∈Kn,r

r∏
i=1

(
di

ki + 1

)
,

where Kn,r := {k = (k1, . . . , kr) : ki ≥ 0 for all i, and
∑

i ki = n}.

We prove that the above conjecture is true in homogeneous case.

Theorem 4.1. Let (V, 0) = {f1 = · · · = fr = 0} ⊂ (CN , 0) be a homoge-
neous rational isolated complete intersection singularity of multidegree
(d1, . . . , dr) and dimension n, then r ≤ n− 1 (i.e. N ≤ 2(N − r)− 1).

Proof. Since (V, 0) is a homogeneous isolated rational complete intersection
singularity, so by Proposition 4.1, we have

pg =
∑

k∈Kn,r

r∏
i=1

(
di

ki + 1

)
= 0.

Thus for any k ∈ Kn,r, we have
∏r

i=1

(
di

ki+1

)
= 0. If we assume the con-

trary, r ≥ n, without loss of generality, we consider thel k = (k1, . . . , kr)
with k1 = k2 = · · · = kn = 1, kn+1 = · · · = kr = 0. Then for this choice k =
(1, . . . , 1, 0, . . . , 0), we have

∏r
i=1

(
di

ki+1

) ≥ 1 since di ≥ 2. This contradicts

with
∏r

i=1

(
di

ki+1

)
= 0. Therefore we have r ≤ n− 1. �

We have the following two classification theorems for homogeneous case.

Theorem 4.2. Let (V, 0) = {f1 = · · · = fr = 0} ⊂ (CN , 0) be a three di-
mensional homogeneous rational isolated complete intersection singularity
of multidegree (d1, . . . , dr) which is not a hypersurface singularity, then r =
2, N = 5 and d1 = d2 = 2.
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Proof. If follows from Theorem 4.1 that r ≤ 2. Since (V, 0) is not a hy-
persurface singularity, so r = 2. Let k = (k1, k2) ∈ K3,2, we have (k1, k2) =
(0, 3), (3, 0), (1, 2) or (2, 1). For (k1, k2) = (1, 2), by Proposition 4.1

pg =
∑

k∈K3,2

2∏
i=1

(
di

ki + 1

)
= 0,

we have (
d1
2

)(
d2
3

)
= 0

which implies d2 = 2 since d1 and d2 are at least 2. Similarly, (k1, k2) = (2, 1)
implies d1 = 2. Thus d1 = d2 = 2. �

Theorem 4.3. Let (V, 0) = {f = 0} ⊂ (C4, 0) be a three dimensional ho-
mogeneous rational isolated hypersurface singularity of degree d, then d =
2, 3.

Proof. By Proposition 4.1, we have

pg =

(
d

4

)
= 0,

so we d = 2 or 3. �
We can also prove the conjecture for p = 3.

Lemma 4.1. Let (V, 0) be a n-dimensional isolated singularity in CN . If
2n−N > 0, then (V, 0) cannot have two components of dimension n.

Proof. If V is union of two components V1 and V2, each of which is of dimen-
sion n, then V1 and V2 will intersect with at least dimension 2n−N > 0.
This is a contradiction since V is singular along the intersection. �

Theorem 4.4. Let (V, 0) be a three dimensional rational isolated complete
intersection singularity. Then the embedding dimension of (V, 0) is at most 5.

Proof. Take a generic section (H, 0) of (V, 0). Then by Theorem 3.1, (H, 0) is
either a 2-dimensional rational Gorenstein singularity or minimally elliptic
singularity. It is well-known that 2-dimensional rational Gorenstein singu-
larity must be rational double points. So the embedding dimension of (H, 0)
is 3. On the other hand, by Theorem 3.2 asserts that minimally elliptic com-
plete intersection isolated singularity has embedding dimension at most 4.
So the embedding dimension of (V, 0) is at most 5. �
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An immediate corollary is as follows.

Corollary 4.1. The three dimensional weighted homogeneous rational iso-
lated complete intersection singularity which is not hypersurface singularity
is defined by two weighted homogeneous polynomials in 5 variables.

Lemma 4.2. Both f1 and f2 in Corollary 4.1 are irreducible.

Proof. Assume that f1=f11f12 · · · f1k1
and f2=f21f22 · · · f2k2

,where f1i, 1≤
i ≤ k1 and f2j , 1 ≤ j ≤ k2 are irreducible. V (f1i, f2j) are k1k2 irreducible
components of dimension 3. Since n = 3, N = 5, so 2n−N = 1 > 0. By
Lemma 4.1, we have k1k2 = 1, which implies k1 = k2 = 1, thus both f1 and
f2 are irreducible. �

5. Classification of three dimensional weighted homogeneous
rational isolated complete intersection singularity

In this section, we shall give an complete classification of three-
dimensional rational weighted homogeneous complete intersection singular-
ities. We first recall some definitions and then we prove some properties
which are used in the proof of classification theorem.

Definition 5.1. Let w = (w1, . . . , wn; d) be an (n+ 1)-tuple of positive ra-
tional numbers. A polynomial f(z1, . . . , zn) is said to be a weighted homo-
geneous polynomial with weights w if each monomial αza1

1 za2

2 · · · zan
n of f

satisfies a1w1 + · · ·+ anwn = d. And we say a pair of polynomials (f1, f2)
are weighted homogeneous of type (w1, . . . , wn; d1, d2) if f1 is weighted ho-
mogeneous of type (w1, . . . , wn; d1) and f2 is weighted homogeneous of type
(w1, . . . , wn; d2).

By Corollary 4.1, in order to classify three dimensional weighted homo-
geneous rational isolated complete intersection singularity, we only need to
study weighted homogeneous polynomials in 5 variables.

Theorem 5.1. [Ma] Let X = V (f1, . . . , fk) be an weighted homogeneous
ICIS of type

(w1, . . . , wn; d1, . . . , dk).

Let

A(N) =

{
(a1, . . . , an) ∈ N

n|ai > 0 and

k∑
i=1

aiwi ≤ N

}
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and


(N) = #A(N).

Then we have

pg(X) = 
(d1 + · · ·+ dk)

−
k∑

i=1


(d1 + · · ·+ d̂i + · · ·+ dk) + · · ·+ (−1)k−1
k∑

i=1


(di).

The following observations plays key role in our proof.

Lemma 5.1. Let X = V (f1, f2) be a weighted homogeneous ICIS of type
(w1, . . . , w5; d1, d2). Then X is rational if and only if

w1 + · · ·+ w5 > d1 + d2.

Proof. By Theorem 5.1,we have pg(X) = 
(d1 + d2)− 
(d1)− 
(d2). Thus
X is rational if and only if 
(d1 + d2)− 
(d1)− 
(d2) = 0. It is easy to see
that w1 + · · ·+ w5 > d1 + d2 implies 
(d1 + d2) = 
(d1) = 
(d2) = 0, it fol-
lows that X is rational. If X is rational, and without lose of generality, we
assume that 
(d1) > 0, then A(d1) is not empty. Let amax ∈ A(d1) such that

wamax ≥ wa for any a ∈ A(d1), where wa =
5∑

i=1
wiai for a = (a1, . . . , a5).

Then let B = {amax + b | b ∈ A(d2)} so we have d1 < wc ≤ d1 + d2 for any
c ∈ B and #B = 
(d2). It is easy to seen that there exist i ∈ {1, 2, 3, 4, 5}
such that wi ≤ d2, because if not then f2 = 0. Without lose of general-
ity, we may assume that w1 ≤ d2. Let d = amax + (1, 0, 0, 0, 0), then d1 <
wd ≤ d1 + d2. Notice that d ∈ A(d1 + d2) \ (A(d1) ∪B) and A(d1) ∩B =
∅, thus we have 
(d1 + d2) ≥ 
(d1) + 
(d2) + 1. It follows that pg(X) ≥ 1.
It contradicts with X is rational, so we conclude that 
(d1) = 0. Simi-
larly we can prove that 
(d2) = 0. So pg(X) = 
(d1 + d2) = 0 which implies
w1 + · · ·+ w5 > d1 + d2. �

Lemma 5.2. Let X = V (f1, f2) be a three dimensional weighted homoge-
neous ICIS of type (w1, . . . , w5; d1, d2). Then we have

(1) for any i ∈ {1, 2, 3, 4, 5}, one of the following cases occurs:
(1a) zni appears in f1 for some n,
(1b) zni appears in f2 for some n,
(1c) there exist j, k ∈ {1, 2, 3, 4, 5} \ {i} j �= k such that zni zj appears in

f1 for some n and zmi zk appears in f2 for some m.
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(2) for any l = 1, 2 and any {i, j} ⊂ {1, 2, 3, 4, 5}, one of the following
cases occurs:

(2a) zai z
b
j appears in fl, for some non-negative integers a, b,

(2b) there exists k ∈ {1, 2, 3, 4, 5} \ {i, j} such that zkz
a
i z

b
j appears in fl,

for some non-negative integers a, b.

(3) for any {i, j} ⊂ {1, 2, 3, 4, 5}, one of the following cases occurs:
(3a) zai z

b
j appears in f1 for some non-negative integer a, b,

(3b) zai z
b
j appears in f2 for some non-negative integer a, b,

(3c) there exist {p1, p2}, {s1, s2} ⊂ {1, 2, 3, 4, 5} \ {i, j} and {p1, p2} �=
{s1, s2} such that zp1

za1

i zb1j , zp2
za2

i zb2j appear in f1 for some non-

negative integers a1, a2, b1, b2 and zs1z
c1
i zd1

j , zs2z
c2
i zd2

j appear in f2
for some non-negative integers c1, c2, d1, d2.

(4) for any l = 1, 2 and any {i, j, k} ⊂ {1, 2, 3, 4, 5}, let {p, s} = {1, 2, 3,
4, 5} \ {i, j, k}, then one of the following cases occurs:

(4a) zai z
b
jz

c
k appears in fl, for some non-negative integers a, b, c,

(4b) zpz
a1

i zb1j zc1k and zsz
a2

i zb2j zc2k appear in fl, for some non-negative in-
tegers a1, b1, c1, a2, b2, c2.

(5) for any {i, j, k} ⊂ {1, 2, 3, 4, 5}, there exists l ∈ {1, 2} such that zai z
b
jz

c
k

appears in fl for some non-negative integers a, b, c.

Proof. (1) Without lose of generality, we may assume that i = 1. Assume
on the contrary that neither of (1a), (1b) and (1c) occurs. Then zn1 does not
appear in fl for any l = 1, 2 and integer n, so we have f1 = f2 =

∂f1
∂z1

= ∂f2
∂z1

=
0 when z2 = z3 = z4 = z5 = 0. And for any {j, k} ⊂ {2, 3, 4, 5}, we have za1zj
doesn’t appear in f1 for any non-negative integer a or zb1zk doesn’t appear
in f2 for any non-negative integer b. It follows that ∂f1

∂zj
= 0 or ∂f2

∂zk
= 0 when

z2 = z3 = z4 = z5 = 0. Similarly we have ∂f1
∂zk

= 0 or ∂f2
∂zj

= 0 when z2 = z3 =
z4 = z5 = 0. Thus we have

∂f1
∂zj

∂f2
∂zk

− ∂f1
∂zk

∂f2
∂zj

= 0, ∀ {j, k} ⊂ {2, 3, 4, 5}, z2 = z3 = z4 = z5 = 0,

which implies (∂f1∂z1
, . . . , ∂f1∂z5

) and (∂f2∂z1
, . . . , ∂f2∂z5

) are linear dependent. Thus
V (z2, z3, z4, z5), which has dimension one, is contained in the singular locus
of X. This contradicts with X has an isolated singularity.

(2) We may assume that l = 1 and i, j = 1, 2. Assume on the contrary
that neither of (2a) and (2b) occurs, then za1z

b
2 does not appear in f1, for

any non-negative integers a, b and zkz
a
1z

b
2 does not appear in f1. And for
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any k ∈ {3, 4, 5} and for any non-negative integers a, b, we have f1 = 0 and
(∂f1∂z1

, . . . , ∂f1∂z5
) = 0 when z3 = z4 = z5 = 0. Thus V (f2, z3, z4, z5), which has

dimension at least one, is contained in the singular locus of X. This contra-
dicts with X has an isolated singularity.

(3) We may assume that i, j = 1, 2. Assume on the contrary that neither
of (3a), (3b) and (3c) occurs, then one of the following two cases occurs:

subcase (a) za1z
b
2 does not appear in fq for any q = 1, 2 and any non-

negative integer a, b, and there exist l ∈ {1, 2}, s, p ∈ {3, 4, 5}(s �= p) such
that both zsz

a1

1 zb12 and zpz
a2

1 zb22 do not appear in fl for any non-negative
integer a1, a2, b1, b2.

subcase (b) za1z
b
2 does not appear in fq for any q = 1, 2 and any non-

negative integer a, b, and there exists k ∈ {3, 4, 5} such that zkz
a
1z

b
2 does not

appear in fq for any q = 1, 2 and any non-negative integer a, b.
If subcase (a) occurs, without lose of generality, we may assume that

l = 1 and s, p = 3, 4, then f1 = f2 =
∂f1
∂z1

= · · · = ∂f1
∂z4

= 0 when z3 = z4 =

z5 = 0. Thus V (z3, z4, z5,
∂f1
∂z5

), which has dimension at least one, is con-
tained in the singular locus of X. This contradicts with X has an isolated
singularity.

If subcase (b) occurs, without lose of generality, we may assume k = 3.
Then when z3 = z4 = z5 = 0, we have f1 = f2 = 0, (∂f1∂z1

, . . . , ∂f1∂z5
) = (0, 0, 0,

∂f1
∂z4

, ∂f1∂z5
) and (∂f2∂z1

, . . . , ∂f2∂z5
) = (0, 0, 0, ∂f2∂z4

, ∂f2∂z5
). Thus V (z3, z4, z5,

∂f1
∂z4

∂f2
∂z5

−
∂f2
∂z4

∂f1
∂z5

), which has dimension at least one, is contained in the singular locus
of X. This contradicts with X has an isolated singularity.

(4) We may assume that i, j, k = 1, 2, 3 and l = 1. Assume on the contrary
that neither of (4a) and (4b) occurs, thus za1z

b
2z

c
3 does not appear in f1 for

any non-negative integers a, b, c and there exists p ∈ {4, 5} such that zpz
a
1z

b
2z

c
3

does not appear in f1 for any non-negative integers a, b, c. Without lose of
generality, we may assume that p = 4. Then f1 =

∂f1
∂z1

= · · · = ∂f1
∂z4

= 0 when

z4 = z5 = 0. Thus V (z4, z5, f2,
∂f1
∂z5

), which has dimension at least one, is con-
tained in the singular locus of X. This contradicts with X has an isolated
singularity.

(5) We may assume that i, j, k = 1, 2, 3. Assume on the contrary that za1z
b
2z

c
3

does not appear in fl for any l = 1, 2 and any non-negative integers a, b, c.
Then when z4 = z5 = 0 we have f1 = f2 = 0 and (∂f1∂z1

, . . . , ∂f1∂z5
) = (0, 0, 0,

∂f1
∂z4

, ∂f1∂z5
) and (∂f2∂z1

, . . . , ∂f2∂z5
) = (0, 0, 0, ∂f2∂z4

, ∂f2∂z5
). Thus V (z4, z5,

∂f1
∂z4

∂f2
∂z5

−
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∂f2
∂z4

∂f1
∂z5

), which has dimension at least two, is contained in the singular locus
of X. This contradicts with X has an isolated singularity. �

We define N(a) = {ka | k is non-negative integer}, N(a, b) = {ka+ sb |
k, s are non-negative integers} andN(a, b, c) = {ka+ sb+ tc | k, s, t are non-
negative integers}.

Corollary 5.1. Let X = V (f1, f2) be a weighted homogeneous ICIS of type
(w1, . . . , w5; d1, d2), then we have:

(1) for any i ∈ {1, 2, 3, 4, 5}, we have d1 ∈ N(wi) or d2 ∈ N(wi) or there
exist j, k ∈ {1, 2, 3, 4, 5} \ {i}, j �= k such that d1 − wj ∈ N(wi) and
d2 − wk ∈ N(wi).

(2) for any {i, j} ⊂ {1, 2, 3, 4, 5} and any l ∈ {1, 2}, we have dl ∈ N(wi, wj)
or there exists k ∈ {1, 2, 3, 4, 5} \ {i, j} such that dl − wk ∈ N(wi, wj).

(3) for any {i, j} ⊂ {1, 2, 3, 4, 5}, if d1, d2 /∈ N(wi, wj), then there exist
{p1, p2}, {s1, s2} ⊂ {1, 2, 3, 4, 5} \ {i, j} and {p1, p2} �= {s1, s2} such
that d1 − wp1

, d1 − wp2
∈N(wi, wj) and d2 − ws1, d2 − ws2 ∈N(wi, wj).

(4) for any {i, j, k} ⊂ {1, 2, 3, 4, 5} and any l ∈ {1, 2}, let {p, s} = {1, 2, 3,
4, 5} \ {i, j, k}, if dl /∈ N(wi, wj , wk), then we have dl − wp, dl − ws ∈
N(wi, wj , wk).

(5) for any {i, j, k} ⊂ {1, 2, 3, 4, 5}, we have d1 ∈ N(wi, wj , wk) or d2 ∈
N(wi, wj , wk).

Theorem 5.2. Let X = V (f1, f2) be a weighted homogeneous ICIS of type
(w1, . . . , w5; 1, d), with d ≥ 1. Then (f1, f2) has the same weight type as one
of the following weight homogeneous singularities in the list up to permuta-
tion of coordinates. (there are total 303 classes in the list, we only list part
of these classes in order to save place. The complete list can be found at
https://arxiv.org/abs/1604.07843)

Remark 5.1. We also list the Milnor number μ and the vector basis of the
miniversal deformation of the singularities in the list. In order to save space,
we only list the set of maximum elements (i.e. mini) of the vector basis of the
corresponding singularity. That is, {[a, 0] | a ∈ m, ∃ [b, 0] ∈ mini s.t. b ≥
a} ∪ {[0, a] | a ∈ m, ∃ [0, b] ∈ mini s.t. b ≥ a} form a basis of miniversal
deformation where m = ideal (z1, . . . , z5). A monomial za1

1 za2

2 za3

3 za4

4 za5

5 ≤
zb11 zb22 zb33 zb44 zb55 if and only if ai ≤ bi for i = 1, . . . , 5. For example, if mini =
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{[z31 , 0], [z1z22 , 0], [0, z3z4]}, then

{[0, 1], [1, 0],[z1, 0], [z21 , 0], [z31 , 0],
[z2, 0], [z

2
2 , 0], [z1z2, 0], [z1z

2
2 , 0], [0, z3], [0, z4], [0, z3z4]}

form a vector basis of miniversal deformation.

(1)

{
z21 + z22 + z23 + z24 + zn5 = 0

z21 + 2z22 + 3z23 + 4z24 + 5zn5 = 0
n ≥ 2
(w1, w2, w3, w4, w5; 1, d) = (12 ,

1
2 ,

1
2 ,

1
2 ,

1
n ; 1, 1)

μ = −7 + 8n

mini = {[z−2+2n
5 , 0], [z24z

−2+n
5 , 0], [z3z

−2+n
5 , 0], [z2z

−2+n
5 , 0],

[z1z
−2+n
5 , 0], [0, z−2+n

5 ]}

(2)

{
z21 + z22 + z23 + z34 + z35 = 0

z21 + 2z22 + 3z23 + 4z34 + 5z35 = 0

(w1, w2, w3, w4, w5; 1, d) = (12 ,
1
2 ,

1
2 ,

1
3 ,

1
3 ; 1, 1)

μ = 32

mini = {[z4z45 , 0], [z44z5, 0], [z3z4z5, 0], [z2z4z5, 0], [z1z4z5, 0], [0, z4z5]}

(3)

{
z21 + z22 + z23 + z34 + z45 = 0

z21 + 2z22 + 3z23 + 4z34 + 5z45 = 0

(w1, w2, w3, w4, w5; 1, d) = (12 ,
1
2 ,

1
2 ,

1
3 ,

1
4 ; 1, 1)

μ = 47

mini = {[z4z65 , 0], [z44z25 , 0], [z3z4z25 , 0], [z2z4z25 , 0], [z1z4z25 , 0], [0, z4z25 ]}

(4)

{
z21 + z22 + z23 + z34 + z55 = 0

z21 + 2z22 + 3z23 + 4z34 + 5z55 = 0

(w1, w2, w3, w4, w5; 1, d) = (12 ,
1
2 ,

1
2 ,

1
3 ,

1
5 ; 1, 1)

μ = 62

mini = {[z4z85 , 0], [z44z35 , 0], [z3z4z35 , 0], [z2z4z35 , 0], [z1z4z35 , 0], [0, z4z35 ]}
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(5)

{
z1z3 + z22 + z24 = 0

z21 + z43 + z35 + z22z3 = 0

(w1, w2, w3, w4, w5; 1, d) = (23 ,
1
2 ,

1
3 ,

1
2 ,

4
9 ; 1,

4
3)

μ = 45

mini = {[z25 , 0], [z23z5, 0], [0, z23z24z5], [0, z33z4z5], [0, z2z4z5],
[0, z63z5], [0, z2z

3
3z5]}

...

(55)

{
z1z2 + z23 + z24 + z25 = 0

z1z3 + 2z52 + z2z
2
4 = 0

(w1, w2, w3, w4, w5; 1, d) = (34 ,
1
4 ,

1
2 ,

1
2 ,

1
2 ; 1,

5
4)

μ = 31

mini = {[z3, 0], [0, z32z25 ], [0, z4z5], [0, z42z5], [0, z24 ], [0, z42z4], [0, z32z3], [0, z82 ]}

...

(59)

{
z1z2 + z23 + z24 + zn5 = 0

z1z5 + 2z23 + z24 + 3zn2 = 0
n ≥ 3
(w1, w2, w3, w4, w5; 1, d) = (−1+n

n , 1
n ,

1
2 ,

1
2 ,

1
n ; 1, 1)

μ = −3 + 4n+ n2

mini = {[z−2+2n
5 , 0], [z4z

−2+n
5 , 0], [z3z

−2+n
5 , 0], [0, z−2+2n

5 ],

[0, z−2+n
2 z−1+n

5 ], [0, z−1+n
2 ]}

(60)

{
z1z2 + z23 + z24 + zn5 = 0

z1z5 + 3z1+2n
2 + 2z2z

2
3 + z2z

2
4 = 0

n ≥ 3
(w1, w2, w3, w4, w5; 1, d) = (−1+2n

2n , 1
2n ,

1
2 ,

1
2 ,

1
n ; 1,

1+2n
2n )

μ = 5 + 9n+ 2n2

mini = {[z−1+n
5 , 0], [0, z2z

n
5 ], [0, z

−1+2n
2 z−1+n

5 ], [0, z−3+4n
2 z5],

[0, z24 ], [0, z3z4], [0, z
2n
2 z4], [0, z

2n
2 z3], [0, z

4n
2 ]}

...
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(303)

{
z1z2 + z3z4 = 0

z1z5 + z2z
2
3 + z2z

5
4 + z35 + z512 = 0

(w1, w2, w3, w4, w5; 1, d) = (3435 ,
1
35 ,

5
7 ,

2
7 ,

17
35 ; 1,

51
35)

μ = 463

mini = {[z25 , 0], [0, z502 z25 ], [0, z
5
4 ], [0, z

50
2 z44 ], [0, z

2
3 ], [0, z

50
2 z3], [0, z

99
2 ]}

Proof. It is easy to check that each singularities defined by pairs of polynomi-
als in the list above are three dimensional isolated rational complete intersec-
tion singularities. By Lemma 5.2 (1), we know that for any i ∈ {1, 2, 3, 4, 5},
one of the following cases occurs:

(1a) zni

i appears in f1 for some ni,

(1b) zni

i appears in f2 for some ni,

(1c) there exist ji, ki ∈ {1, 2, 3, 4, 5} \ {i} and ji �= ki such that zni

i zji ap-
pears in f1 for some ni and zmi

i zki
appears in f2 for some mi.

For each i ∈ {1, 2, 3, 4, 5}, if one of (1a), (1b) and (1c) occurs, then there
are 35 = 243 cases. If (1a) or (1b) occurs, one monomial which appear in f1
and f2 can be determined. And if (1c) occurs, then two monomials which
appear in f1 and f2 can be determined. Now we consider the following two
cases:

(I) There exists i ∈ {1, 2, 3, 4, 5} such that (1c) occurs. Therefore more than
6 monomials in f1 and f2 are determined. Thus we get more than 6 equa-
tions of w1, . . . , w5, d (for instance, if we have zn1

1 z2 appears in f2, then
we have n1w1 + w2 = d). So (w1, . . . , w5, d) is uniquely determined by solv-
ing these 6 linear equations. And we have checked that each weight type
(w1, . . . , w5; 1, d) obtained by this way, which satisfies the rational condition
w1 + · · ·+ w5 > 1 + d and the conditions listed in Corollary 5.1, is the same
as one of the weight types of the singularities in the list up to permutation
of coordinates.

More explicitly, for example, we treat the case that zn1

1 , . . . , zn4

4 , zn5

5 z4
appear in f1 and zm5

5 z3 appears in f2. Then we can get w1 =
1
n1
, . . . , w4 =

1
n4
, w5 =

n4−1
n4n5

, d = m5(n4−1)
n4n5

+ 1
n3

by solving the 6 corresponding linear equa-
tions. Without lose of generality, we may assume that w1 ≥ w2. Since we
have w1 + · · ·+ w5 > 1 + d and d ≥ 1, so we conclude that (n1, . . . , n5,m5)
can only be one of the following cases:

(1) (2, 2, u, v, 1, 1), 2 ≤ u ≤ v
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(2) (2, 3, u, v, 1, 1), 2 ≤ u ≤ v ≤ 5

(3) (2, 4, u, v, 1, 1), 2 ≤ u ≤ v ≤ 3

(4) (2, 5, u, v, 1, 1), 2 ≤ u ≤ v ≤ 3

(5) (2, u, 2, 2, 1, 1), u ≥ 6

(6) (3, u, 2, 2, 1, 1), 3 ≤ u ≤ 5

(7) (2, 2, 2, 2, u, u), u ≥ 2

(8) (2, 2, 2, u, 2, 1), u ≥ 2

(9) (2, 3, 2, 2, 2, 2).

Then we only consider the infinite cases (1), (5) and (7). The other finite
cases can be checked easily.

For infinite case (1), we have

w1 = w2 =
1

2
, w3 =

1

u
, w4 =

1

v
, w5 = 1− 1

v
, d = 1− 1

v
+

1

u
, 2 ≤ u ≤ v.

By Corollary 5.1 (2), we have d ∈ N(w1, w2) or there exists k ∈ {3, 4, 5} such
that d− wk ∈ N(w1, w2), it follows that one of following cases occurs:

(i) d ∈ N(12 ,
1
2)

(ii) d− 1
u ∈ N(12 ,

1
2)

(iii) d− 1
v ∈ N(12 ,

1
2)

(iv) d+ 1
v − 1 ∈ N(12 ,

1
2).

If (i) d ∈ N(12 ,
1
2) occurs, since v ≥ u ≥ 2, so we have 1 ≤ d = 1− 1

v +
1
u < 3

2 , thus d = 1 and u = v.
If (ii) d− 1

u ∈ N(12 ,
1
2) occurs, since v ≥ 2, we have 1

2 ≤ d− 1
u = 1− 1

v <
1, thus 1− 1

v = 1
2 . Hence we have v = 2. Since 2 ≤ u ≤ v, so we have u = 2.

If (iv) d+ 1
v − 1 ∈ N(12 ,

1
2) occurs, i.e. 1

u = d+ 1
v − 1 ∈ N(12 ,

1
2). Since

0 < 1
u ≤ 1

2 , we have 1
u = 1

2 . Therefore we have u = 2.
If (iii) d− 1

v ∈ N(12 ,
1
2) occurs, since 2 ≤ u ≤ v, we have 0 < d− 1

v = 1−
2
v + 1

u < 3
2 . Thus we have d− 1

v = 1− 2
v + 1

u = 1
2 or 1. If d− 1

v = 1
2 , notice

that d ≥ 1 and 2 ≤ u ≤ v, thus we have v = u = 2. If d− 1
v = 1− 2

v + 1
u = 1,

we have 2u = v.
In conclusion, we have 2 ≤ u = v or 2 = u ≤ v or 4 ≤ 2u = v. So (w1, . . . ,

w5; 1, d) is same as one of the following cases:
case (1) 2 ≤ u = v ⇒ (w1, . . . , w5; 1, d) = (12 ,

1
2 ,

1
n ,

1
n ,

n−1
n ; 1, 1), n ≥ 2
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case (2) 2 = u ≤ v ⇒ (w1, . . . , w5; 1, d) = (12 ,
1
2 ,

1
2 ,

1
n ,

1
2 ; 1, 1), n ≥ 2

case (3) 2u = v ⇒ (w1, . . . , w5; 1, d) = (12 ,
1
2 ,

1
n ,

1
2n ,

2n−1
2n ; 1, 2n+1

2n ), n ≥ 2.
And we can see that case (1); case (2) and case (3) corresponds to the

1st (n = 2), 59th; 1st; and 55th, 60th singularities in the list respectively.
For infinite case (5), we have

w1 = w3 = w4 = w5 =
1

2
, w2 =

1

u
, d = 1.

For infinite case (7), we have

w1 = w2 = w3 = w4 =
1

2
, w5 =

1

2u
, d = 1.

it is easy to seen that (w1, . . . , w5; 1, d) of infinite cases (5) and (7) is included
in the weight types of the 1st singularities in the list up to permutation of
coordinates.

(II) For each i ∈ {1, 2, 3, 4, 5}, (1a) or (1b) occurs. Then there are only 5
monomials in f1 and f2 can be determined. In order to determine (w1, . . . ,
w5; d), we need at least one more monomial included in f1 and f2. Since 5
monomials in f1 and f2 are known, so it is easy to seen that one of following
will occurs:

(a) there exists {i1, i2} ⊂ {1, 2, 3, 4, 5} such that (1a) occurs when i = i1, i2

(b) there exists {j1, j2} ⊂ {1, 2, 3, 4, 5} such that (1b) occurs when i =
j1, j2.

If (a) occurs, then by Lemma 5.2 (2), we have zai1z
b
i2

appears in f2 for
some non-negative integer a, b or there exist k ∈ {1, 2, 3, 4, 5} \ {i1, i2} such
that zkz

a
i1
zbi2 appears in f2 for some non-negative integer a, b. Thus we have

6 monomials in f1 and f2 are determined now.
If (b) occurs, then by Lemma 5.2 (2), we have zaj1z

b
j2

appears in f1 for
some non-negative integer a, b or there exist k ∈ {1, 2, 3, 4, 5} \ {j1, j2} such
that zkz

a
j1
zbj2 appears in f1 for some non-negative integer a, b. Thus there

are 6 monomials in f1 and f2 are determined now.
More explicitly, let us consider the example that zn1

1 , zn2

2 , zn3

3 appear in
f1, and zn4

4 , zn5

5 appear in f2. Then by Lemma 5.2 (2) we have za4z
b
5 appears

in f1 for some non-negative integers a, b or there exist k ∈ {1, 2, 3} such that
zkz

a
4z

b
5 appears in f1 for some non-negative integer a, b. Thus there are 6

monomials in f1 and f2 are determined. It follows that (w1, . . . , w5; d) is de-
termined as above. And we have checked that each weight type (w1, . . . , w5;
1, d) gotten by this way, which satisfies the rational condition w1 + · · ·+
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w5 > 1 + d and the conditions listed in Corollary 5.1, is the same as one of
the weight types of the singularities in the above list up to permutation of
coordinates. �
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