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Trapped surfaces in vacuum arising

dynamically from mild incoming radiation

Xinliang An and Jonathan Luk

In this paper, we study the “minimal requirement” on the incom-
ing radiation that guarantees a trapped surface to form in vacuum.
First, we extend the region of existence in Christodoulou’s theo-
rem on the formation of trapped surfaces and consequently show
that the lower bound required to form a trapped surface can be
relaxed. Second, we demonstrate that trapped surfaces form dy-
namically from a class of initial data which are large merely in a
scaling-critical norm. This result is motivated in part by the scal-
ing in Christodoulou’s formation of trapped surfaces theorem for
the Einstein-scalar field system in spherical symmetry.
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1. Introduction

In this paper, we study the formation of trapped surfaces by the focusing of
“mild” incoming radiation in a (3 + 1)-dimensional spacetime (M, g) satis-
fying the vacuum Einstein equations

(1.1) Ricμν = 0.
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Figure 1: Setup in Theorem 1.2.

A trapped surface is a 2-surface such that both null expansions are negative
on every point on the surface, i.e., the area element of a trapped surface is
infinitesimally decreasing along both families of null generators emanating
from this surface. Trapped surfaces play an important role in the study of
the solutions to (1.1) due to the following celebrated incompleteness theorem
of Penrose [20]:

Theorem 1.1 (Penrose [20]). A spacetime with a non-compact Cauchy
hypersurface satisfying the vacuum Einstein equations (1.1) and containing
a compact trapped surface is future causally geodesically incomplete.

This theorem, however, does not show that trapped surfaces can arise
from regular data without trapped surfaces. Indeed, this latter problem
requires an understanding of the dynamics of the vacuum Einstein equa-
tions (1.1) in some large data regime.

In a monumental work, Christodoulou [6] showed that a trapped surface
can be formed dynamically starting from regular initial data free of trapped
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surfaces. Christodoulou studied1 the characteristic initial value problem with
data posed on a truncated incoming cone H0 and a truncated outgoing cone
H1, which intersect at a 2-sphere S1,0 (see Figure 1). The data on H0 are
prescribed to coincide with a backward light cone in Minkowski space such
that the sphere S1,0 is the standard 2-sphere with radius 1. On the other
hand, the data on H1 are given in a region with a short characteristic length
u ≤ δ and such that the traceless part of the null second fundamental form
χ̂ is large in terms of δ. This special form of initial data was termed a
“short pulse” by Christodoulou. As a consequence of the short pulse ansatz,
Christodoulou was able to consider a hierarchy of large and small quanti-
ties, parametrized by the smallness parameter δ, whose sizes are preserved
by the nonlinear evolution. Therefore, despite being a problem in a large
data regime, a long time existence theorem can be established. Moreover, a
sufficient condition, i.e., that the incoming radiation per unit solid angle is
bounded uniformly below independent of δ, is identified such that a trapped
surface is guaranteed to form in the causal future of the data, within the
domain of existence. We summarize2 Christodoulou’s result3 as follows:

Theorem 1.2 (Christodoulou [6]). Consider the characteristic initial
value problem for (1.1) such that H0 coincides with a backwards light cone4

1Strictly speaking, the original theorem of Christodoulou is stated such that the
initial data is at past null infinity and the radius of the final (trapped) sphere is of
radius ≈ 1. Nevertheless, a simple rescaling implies also a version of the theorem
such that the initial inner sphere is of radius 1 as in the case under consideration.

2We briefly explain the notation necessary to understand the following theorem
but refer the readers to later sections for more details. We foliate the spacetime
by a double null foliation (u, u) and denote the intersections of the u = constant
and u = constant hypersurfaces by Su,u. Topologically, each Su,u is a 2-sphere.
Associated to the double null foliation are the normalized null vectors (e3, e4).
In the statement of the theorem, all integrations are with respect to the natural
volume form associated to the induced metric γ on Su,u. The differential operator
∇ is defined to be the Levi-Civita connection associated to γ and ∇4 is defined
as the projection of the spacetime covariant differentiation in the e4 direction to
TSu,u.

3Again, as mentioned in footnote 1, Christodoulou’s original result allows the
initial data to be posed at past null infinity. Here, we only mention a version in a
finite region.

4Here, and in the remainder of this paper, we normalize the u coordinate on
the backwards light cone as follows. Let C = {(t, x1, x2, x3) : t ≤ 0, t2 = x2

1 + x2
2 +

x2
3} be the backward light cone in Minkowski space emanating from the origin.

Define r =
√
x2
1 + x2

2 + x2
3 and u = 1

2 (−t+ r). Notice in particular that u = 1 on a
standard sphere of radius 1 and u = 0 on the vertex.
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in Minkowski space for 0 ≤ u ≤ 1. For every B > 0 and u∗ ≤ 1, there exists
δ = δ(B, u∗) > 0 sufficiently small such that if the initial χ̂0, prescribed on
H1 for 0 ≤ u ≤ δ, satisfies

(1.2)
∑

i≤5, j≤3

δ
1

2
+j‖∇i∇j

4χ̂0‖L∞
u L2(Su,u) ≤ B,

then the solution to (1.1) remains regular in u∗ ≤ u ≤ 1, 0 ≤ u ≤ δ. More-
over, if the initial data also verify the lower bound

(1.3) inf
ϑ∈S1,0

∫ δ

0
|χ̂0|2(u′, ϑ) du′ ≥ M∗ > 2(1− u∗),

then, after choosing δ to be smaller (depending on B, u∗ and M∗) if neces-
sary, the sphere Su∗,δ is a trapped surface.

Remark 1. In Chapter 2 of [6], Christodoulou also constructed initial data
satisfying both (1.2) and (1.3) simultaneously. Moreover, the initial data can
be arranged to obey the additional bound

inf
ϑ∈S1,0

∫ δ

0
|χ̂0|2(u′, ϑ) du′ < 2

so that for δ sufficiently small, it can be shown that the initial hypersurface
H1 indeed does not contain any trapped surfaces.

In this paper, we extend Theorem 1.2 to show that trapped surfaces
can arise dynamically from the focusing of “milder” incoming radiation.
Our main result is Theorem 1.3 below, which guarantees the formation of
trapped surfaces when χ̂ is much smaller than is required in Theorem 1.2.
We note here that the monumental theorem of Christodoulou-Klainerman
[7] on the stability of Minkowski spacetime states that the maximal Cauchy
development of small initial data must be future causally geodesically com-
plete and hence, by Theorem 1.1, is free of trapped surfaces. Therefore, any
trapped surface formation result necessarily requires the data to be “large”
in a certain sense. Our theorem below in particular allows the data for the
metric to be large only in H

3

2 (as opposed to H1 in Theorem 1.2), which is
a scaling-critical norm5 for the Einstein equations:

5See further discussions after Corollary 1.4.
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Figure 2: Domain of Existence in Theorem 1.3.

Theorem 1.3. Consider the following characteristic initial value problem
for (1.1): The initial incoming hypersurface H0 is required to coincide with
a backwards light cone in Minkowski space with 0 ≤ u ≤ 1. On the initial
outgoing hypersurface H1, the initial χ̂ satisfies

(1.4)
∑
i≤7

‖∇iχ̂0‖L∞
u L2(Su,u) ≤ a

1

2

for 0 ≤ u ≤ δ. There exists a universal large constant b0 such that if b0 ≤
b ≤ a and δa

1

2 b < 1, then the unique solution to (1.1) remains regular in the
region δa

1

2 b ≤ u ≤ 1, 0 ≤ u ≤ δ. Moreover, if the initial data also verify the
lower bound

(1.5) inf
ϑ∈S1,0

∫ δ

0
|χ̂0|2(u′, ϑ) du′ ≥ 4bδa

1

2 ,

then the sphere S
bδa

1
2 ,δ

is a trapped surface.
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The region of existence given by Theorem 1.3 is depicted6 as the union of
the darkly and lightly shaded regions in Figure 2. After choosing a = B2δ−1

and b = b0, we recover (a slightly weaker version7 of) Theorem 1.2 as a spe-
cial case. This is because for fixed b0, B, u∗ and M∗, we obviously have
the inequalities a = B2δ−1 ≥ b0, u∗ ≥ b0Bδ

1

2 and M∗ > 4b0Bδ
1

2 after choos-
ing δ to be sufficiently small. Moreover, notice that even in this restricted
case, Theorem 1.2 only guarantees that the solution remains regular in the
darker shaded region in Figure 2, while Theorem 1.3 proves that the solution
also remains regular in the lightly shaded region. As a consequence, under
the assumption of a similar upper bound (1.2) in Theorem 1.2, the lower
bound (1.3) can be relaxed to

inf
ϑ∈S1,0

∫ δ

0
|χ̂0|2(u′, ϑ) du′ ≥ 4b0Bδ

1

2 .

We summarize this explicitly in the following corollary:

Corollary 1.4. Consider the following characteristic initial value problem
for (1.1): The initial incoming hypersurface H0 is required to coincide with
a backwards light cone in Minkowski space with 0 ≤ u ≤ 1. On the initial
outgoing hypersurface H1, the initial χ̂ satisfies∑

i≤7

δ
1

2 ‖∇iχ̂0‖L∞
u L2(Su,u) ≤ B

for 0 ≤ u ≤ δ. Then there exists a universal large constant b0 such that the
solution to (1.1) remains regular in u∗ ≤ u ≤ 1, 0 ≤ u ≤ δ for u∗ = b0Bδ

1

2 .
Moreover, if the initial data also verify the lower bound

inf
ϑ∈S1,0

∫ δ

0
|χ̂0|2(u′, ϑ) du′ ≥ 4b0Bδ

1

2 ,

then the sphere Su∗,δ is a trapped surface.

6Clearly, the depiction assumes that b < a
1
2 , which is not required in the state-

ment of Theorem 1.3. However, as we will see below, this is the technically more
difficult case and we will frequently restrict our attention to this scenario in the
discussion in the introduction.

7Strictly speaking, the numbers of derivatives required in Theorems 1.2 and 1.3
are not the same. We nonetheless make a comparison of them since after choosing
a = B2δ−1 and b = b0, the data have the same scaling in terms of δ. In fact, in view
of [19], one expects that the condition (1.4) can be improved to requiring only i ≤ 5
with better book-keeping.
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More importantly, a is allowed to be much smaller than δ−1 in Theo-
rem 1.3 and can be a large constant independent of δ. In particular, if we
think of

inf
ϑ∈S1,0

∫ δ

0
|χ̂0|2(u′, ϑ) du′

as a measure of the “size” of the incoming radiation, it can be of the same
order of magnitude as the length scale δ. In terms of L2 based Sobolev
spaces8, there exist data satisfying the assumptions of Theorem 1.3 with
metric that is only large in H

3

2 but can be small in Hs for any s < 3
2 .

Indeed, since we have ∂
∂uγAB = 2χAB for the induced metrics γAB on the 2-

sphere S1,u in the (u, θ1, θ2) coordinate system, and moreover the u-interval
has length δ, there exist data verifying (1.4) and (1.5) in Theorem 1.3 such
that

‖γ‖Hs ∼ a
1

2 δ
3

2
−s.

Taking a = b0 and δ sufficiently small, it is easy to see that such data are
small in the Hs norm whenever s < 3

2 . This is in contrast to the data in

Theorem 1.2 which are large in Hs for all s > 1. The significance of the H
3

2

space is that it is a critical space for the Einstein equations according to
scaling considerations.

One motivation for Theorem 1.3 is that it can be considered as a non-
spherically symmetric counterpart of an analogous theorem by Christodoulou
[2] in the setting of the Einstein-scalar field equations in spherically symme-
try. In that context, the formation of trapped surfaces theorem requires only9

a lower bound as in Theorem 1.3, i.e., one that is much weaker compared
to that in Theorem 1.2. We remark that this sharper version of the theorem
was used crucially in Christodoulou’s resolution of the weak cosmic censor-
ship conjecture, showing that “naked singularities”10 are non-generic11 for
this system in spherical symmetry. We will make a more detailed comparison

8Here, we can understand fractional Sobolev Hs spaces for instance in the given
coordinate system (u, θ1, θ2) (see Section 2.2).

9On the other hand, we note emphatically that the spherically symmetric result
does not require any upper bounds either on H1 or H0, in stark contrast to our main
theorem. See a more detailed discussion in Section 1.2.

10In this context, these are singularities not preceded by a trapped surface.
11Here, genericity is understood in the sense that the non-generic set of initial

data has co-dimension at least two in the BV topology for the derivative of the
scalar field. Moreover, Christodoulou constructed examples of naked singularities
for this system in [4], showing that the non-generic condition is indeed necessary.
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with the spherically symmetric case in Section 1.2, after a discussion of other
known extensions of Christodoulou’s theorem (Theorem 1.2) in Section 1.1

The main analytical difficulty that we face in the present work is that
under the assumptions of Theorem 1.3, a trapped surface can only form near
(in terms of δ) the vertex where certain geometric quantities become large.
We thus have to introduce weighted estimates to carefully track the growth
of various geometric quantities as we approach the vertex. Moreover, in
order to obtain the existence result in the region |u| ≥ δa

1

2 b, these weighted
estimates are coupled with renormalized energy estimates introduced in [18],
[19] and [17]. We will discuss the main ideas of the proof in Section 1.3.

1.1. Known results on the formation of trapped surfaces for the
vacuum Einstein equations

Returning to the problem of dynamical formation of trapped surfaces in
vacuum, various extensions of Theorem 1.2 have been achieved since
Christodoulou’s breakthrough in [6]. Here, we first briefly discuss the works
[14], [13] and [19], in particular since some ideas in our present paper are
drawn from them.

In [14] and [13], Klainerman-Rodnianski extended Theorem 1.2 by allow-
ing the angular derivatives of the initial data to be large in terms of inverse
powers of δ in accordance with the parabolic scaling on null hypersurfaces
for the Einstein equations. This is in contrast to Theorem 1.2 where the an-
gular derivatives of χ̂0 are required to satisfy similar bounds as χ̂0 itself. The
class of admissible initial data in [13] is moreover critical with respect to the
parabolic scaling on null hypersurface. Moreover, by considering a relaxed
hierarchy of large and small quantities, Klainerman-Rodnianski showed that
most of the geometric quantities obey scale-invariant estimates and this ob-
servation allowed them to greatly simplify the proof of [6].

Another extension of Theorem 1.2 was achieved in [19] in which the
assumption on the triviality of data on H0 is replaced by assuming only
some regularity conditions on the initial cone. This result was in fact a
corollary of a more general existence theorem established in [19], which was
motivated by the problem of the interaction of impulsive gravitational waves.
In these spacetimes, the Riemann curvature tensors admit delta singularities
supported on transversely intersecting null hypersurfaces. It turns out that
the estimates used to handle this type of singularities also can be applied
to extend the formation of trapped surfaces theorem. As we will outline in
Section 1.3, these estimates will also play a crucial role in the analysis of
this paper.
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While the above theorems strengthened the existence part of
Christodoulou’s theorem, a more recent work [12] shows that the lower
bound can also be relaxed. In fact, a lower bound is only necessary in the
neighborhood of a single null geodesic on the initial hypersurface H1, i.e.,
the inf in (1.3) can be replaced by an sup:

Theorem 1.5 (Klainerman-Luk-Rodnianski [12]). Assume that the
data for (1.1) satisfy the condition (1.2) in Theorem 1.2. If the initial data
also verify the lower bound

(1.6) sup
ϑ∈S1,0

∫ δ

0
|χ̂0|2(u′, ϑ) du′ ≥ M∗ > 0,

then, after choosing δ smaller if necessary, a compact trapped surface can be
guaranteed to formed to the future of the initial data, within the domain in
which the solution remains regular.

Even with the improvement in [12], however, the lower bound for the
L2 integrals of χ̂0 along null generators is required to be independent of
δ, albeit only in a small set. By contrast, in our present work, we show
that under a similar upper bound as (1.2), the L2 integrals of χ̂0 along null
generators only have to be of size δ

1

2 in order to guarantee the formation
of a trapped surface. Moreover, our result implies that as long as we also
have an even better upper bound, the lower bound can be further relaxed.
The techniques introduced in this work may possibly be combined with [12]
to obtain a trapped surface formation theorem for which the lower bound
can be small in terms of δ and is only required in a small set of angular
directions, although we will not pursue this in the present work.

Regarding other related results, we also point out the treatments of [1],
[21] and [22], as well as the work of Yu [23] on an analogous theorem for the
Einstein-Maxwell system. While all of the aforementioned works posed initial
data on null hypersurfaces, Li-Yu [15] combined Christodoulou’s result with
the Corvino-Schoen gluing method to construct a class of Cauchy data such
that a trapped surface is guaranteed to form in the future. Finally, we refer
the interested readers to the beautiful exposition [8] for more background on
the problem and a further discussion on the original work of Christodoulou.

1.2. The Einstein-scalar field system in spherical symmetry

As mentioned previously, our present work is motivated in part by
Christodoulou’s trapped surface formation theorem for the Einstein-scalar
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field system:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ricμν − 1

2
gμνR = 2Tμν ,

Tμν = ∂μφ∂νφ− 1

2
gμν(g

−1)αβ∂αφ∂βφ,

�gφ = 0

in spherically symmetry. Here, φ is a real valued function on the manifold
M. A special case of the result12 of Christodoulou in [2] can be repharsed
as follows:

Theorem 1.6 (Christodoulou [2]). Consider the following characteristic
initial value problem for the Einstein scalar field system with spherically
symmetric data. The initial hypersurface H0 is a cone such that the sphere
S1,0 has area radius r = 1. The data on H0 are otherwise arbitrary. On the
initial hypersurface H1, after normalizing the outgoing null coordinate u by
the condition ∂ur = 1

2 , we prescribe φ in the region u ∈ [0, δ]. Then there
exists a universal constant C0 such that as long as the data on H1 satisfy∫ δ

0
(∂uφ)

2(u′)du′ ≥ C0δ log(
1

δ
),

a trapped surface must form in the causal domain of the initial data.

In contrast to any of the trapped surface formation theorems without
symmetry assumptions that we have mentioned above, Theorem 1.6 requires
no upper bounds for the initial data, either on H1 or H0. In fact, it is pre-
cisely because the data on H0 are allowed to be singular that Christodoulou
was able to apply it to resolve the weak cosmic censorship conjecture in
[5]. Moreover, not only did Christodoulou show that a trapped surface must
form in [2], he also gave a complete description of the maximal Cauchy devel-
opment of the initial data, proving that the spacetime possesses a complete
null infinity and has a black hole region with a spacelike singularity in its
interior.

The proof of this theorem relies on a special monotonicity formula that
holds for this system of equations in spherical symmetry. It immediately

12The original theorem does not require the sphere defined as the intersection of
the initial hypersurfaces to be of area radius 1. We only state this special case for
easy comparison with Theorem 1.3. The general case can be recovered by a scaling
argument. Moreover, the original result gives a slightly sharper bounds in terms of
the constants involved. We refer the readers to [2] for the original statement.
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breaks down even if we restrict to a small perturbation of a spherically
symmetric background.

Up to the logarithmic factor log(1δ ), Theorem 1.6 is sharp. More precisely,
there exists a positive constant c such that for every δ > 0 sufficiently small,
there are examples of initial data satisfying

(1.7)

∫ δ

0
(∂uφ)

2(u′)du′ ≥ cδ

whose future development does not contain a trapped surface. That this is
the case follows from Christodoulou’s theorem13 on the regularity of space-
times with initial data of small BV norms:

Theorem 1.7 (Christodoulou [3]). Consider characteristic initial value
problem for the Einstein scalar field system with spherically symmetric initial
data given on a cone in u ∈ [0, 2] with ∂ur = 1

2 . Then there exists ε0 > 0 such
that if ∫ δ

0
|∂2

u(rφ)|(u′)du′ ≤ ε0,

then the causal domain of the initial data does not contain any trapped sur-
faces.

Using Theorem 1.7, in order to show that there exist initial data satis-
fying (1.7) which give rise to spacetime without trapped surface, it suffices
to show that for small but fixed ε0 > 0, there exists c sufficiently small such
that for every δ > 0 we can find a function φδ : [0, δ] → R with the properties∫ δ

0
(∂uφδ)

2(u′)du′ ≥ cδ

and ∫ δ

0
|∂2

u(rφδ)|(u′)du′ ≤ ε0.

This can be achieved by considering φδ(u) = ε20δξ(
u
δ ) for a fixed smooth

function ξ compactly supported in [0, 1] of C2 norm ≈ 1 and then taking c
to be sufficiently small.

13The original theorem in [3] also gives quantitative estimates on the development
of the data. We will only need that statement that it is free of trapped surfaces in
order to contrast Theorem 1.6.
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Returning to the discussion of the result in this paper, notice that our
main theorem (Theorem 1.3) can be thought of as a formal analogue of The-
orem 1.6 without symmetry assumptions in terms of scaling. In particular,
if we formally compare the metric in Theorem 1.3 with the scalar field in
Theorem 1.6, we see that the initial data in both theorems are allowed to be
small inHs for every s < 3

2 and are large only inH
3

2 . However, we emphasize
that even though our result applies without any symmetry assumptions, it
also requires much stronger assumptions on the initial data, including the
very restrictive condition that the initial data have to be trivial on H0.

1.3. Main ideas of the proof

1.3.1. General structure. As in [6], [14], our proof is based on estab-
lishing a priori estimates for the vacuum Einstein equations in the double
null foliation gauge. In this gauge, the Einstein equations exhibit a certain
type of null structure, in which large components are coupled with suitably
small components, allowing all the estimates to be closed even in a large
data regime.

More precisely, we foliate the spacetime under consideration by outgoing
and incoming null hypersurfaces Hu and Hu respectively. Associated to this
double null foliation, we define a null frame {e1, e2, e3, e4} such that e3 (resp.
e4) is null and tangent to Hu (resp. Hu), and {e1, e2} forms a frame tangent
to the 2-spheres Su,u, defined to be the intersections of Hu and Hu. We then
define the following Ricci coefficients

χAB = g(DAe4, eB), χ
AB

= g(DAe3, eB),

ηA = −1

2
g(D3eA, e4), η

A
= −1

2
g(D4eA, e3),

ω = −1

4
g(D4e3, e4), ω = −1

4
g(D3e4, e3),

ζA =
1

2
g(DAe4, e3)

(1.8)

and curvature components14

(1.9)

αAB = R(eA, e4, eB, e4), αAB = R(eA, e3, eB, e3),

βA =
1

2
R(eA, e4, e3, e4), β

A
=

1

2
R(eA, e3, e3, e4),

ρ =
1

4
R(e4, e3, e4, e3), σ =

1

4
∗R(e4, e3, e4, e3)

14Here, ∗R is the Hodge dual of R.
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with respect to this null frame, where A,B ∈ {1, 2}.
The general strategy of our proof is to obtain L2 energy estimates for

the curvature components and their derivatives and to derive bounds for
the Ricci coefficients using transport equations and elliptic estimates. These
estimates are highly coupled: Ricci coefficients and their derivatives arise as
error terms in the energy estimates and curvature terms come up as a source
for the transport equations for the Ricci coefficients. A bootstrap argument
is therefore set up in order to obtain all these bounds.

As mentioned earlier, one of the challenges of our problem at hand is
that since the data is small in terms of δ, a trapped surface can only form
near (in terms of δ) the vertex of the cone. On the other hand, various geo-
metric quantities necessarily grow as the vertex is approached. It is therefore
necessary to prove precise estimates on the growth of the geometric quan-
tities. As a result, as we will describe below, all the estimates for the Ricci
coefficients and curvature components are appropriately weighted in u.

These weighted estimates are reminiscent of those used in the setting
where u is large, i.e., in a neighborhood of null infinity. In fact, they form
an important part of the monumental proof of the nonlinear stability of
Minkowski spacetime by Christodoulou-Klainerman [7] (see also the work of
Klainerman-Nicolo [11]), as well as Christodoulou’s result on the formation
of trapped surfaces from past null infinity [6]. We show in the present paper
that these estimates can also be used near the vertex, where u does not
measure decay, but instead measures growth of the geometric quantities.

In the following subsections, we will discuss these weighted estimates in
the context of transport estimates for Ricci coefficients, energy estimates
for the curvature components and also the elliptic estimates for the highest
order derivatives for the Ricci coefficients. We will highlight some difficulties
of the problem and explain the special structure of the Einstein equations
that we use to overcome them.

1.3.2. Weighted estimates for the Ricci coefficients. As mentioned
above, the Ricci coefficients are estimated in function spaces with weights
in u. The Ricci coefficients are controlled using transport equations and the
weights in the bounds are ultimately dictated by the non-integrability of
the null mean curvature trχ of the incoming hypersurfaces along incoming
null generators. More precisely, on the initial Minkowskian hypersurface H0,
we have trχ = − 2

|u| , which is non-integrable in u. Consider for example the
following transport equation for χ̂:

∇3χ̂+
1

2
trχχ̂ = · · ·
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Suppose the right hand side of the equation can be controlled and that trχ

is close to its value on H0, i.e., trχ ≈ − 2
|u| . Then the equation implies that

we have

χ̂ ∼ a
1

2

|u| ,

which → ∞ as u → 0. We therefore have to content with norms for χ̂ which
are weighted in u. Moreover, these terms enter into the equations for all the
other Ricci coefficients and every geometric quantity has to be estimated in
an appropriate weighted space.

We therefore apply the following strategy: Assume as one of the boot-
strap assumptions that the value of trχ remains close to its Minkowskian
value throughout the region of existence. We then prove weighted estimates
for all the Ricci coefficients satisfying the ∇3 equation with weights in u
that are determined by the trχ term. The Ricci coefficients satisfying ∇4

equations will in turn have weighted that are dictated by the source terms.
We now describe the weighted estimates in more detail. Recalling the

definitions for the Ricci coefficients in (1.8), we introduce the following
schematic notation:

ψ ∈ {trχ, χ̂, ω}, ψ ∈
{
trχ+

2

|u| , χ̂, η, η, ω
}
.

They obey the following slightly schematic null structure equations

∇3ψ +
1

|u|ψ = ψ ψ + ψψ +∇ψ + curvature,(1.10)

∇4ψ = ψ ψ + ψψ +
1

|u|ψ +∇ψ +∇ψ + curvature.(1.11)

At this point, in order to ease the exposition, we will first not discuss the
terms with curvature and derivatives of Ricci coefficients on the right hand
side.15 To derive estimates from the schematic null structure equations, we
first assume that ψ has small u-integral. This implies that the growth rate

of ψ is determined by the non-integrable coefficient 1
|u| .

15Directly integrating these terms will of course lead to a loss of derivative and in
order to tackle these terms, we need to combine with energy estimates and elliptic
estimates which we will describe later.
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Therefore, (1.10) implies that

(1.12) ψ ∼ a
1

2

|u| .

Substituting this bound for ψ into the equation (1.11), we obtain the fol-
lowing estimates:

(1.13) ψ ∼ δa
1

2

|u|2 .

It is easy to see that these estimates are sharp, at least for some of the Ricci
coefficients ψ and ψ . For instance, as described above, the bounds for χ̂ are
dictated by linear theory and indeed can be shown to be sharp. At the same
time, by considering the equation for χ̂

∇4χ̂ = trχχ̂+ · · · ,

where · · · denotes terms that behave better, it is easy to show the estimates
for χ̂ are also optimal.

Observe that since we only work in the region |u| ≥ δa
1

2 b, the weighted
estimates (1.12) and (1.13) above imply in particular that ψ is smaller than

ψ . On the other hand, as u → δa
1

2 b, ψ can be in fact be large with estimates

‖ψ‖L∞ ∼ 1

δa
1
2 b2

. Nevertheless, while ψ may be large in sup norms, its integral

in u is small, as can be seen by the direct computation

δa
1

2

∫ 1

u

du′

|u′|2 � δa
1

2

|u| � 1

b
.

In particular, the assumption above that ψ has small u-integral is valid
and we can justify the heuristic argument above. Indeed, one sees that if

ψ ∼ δa
1
2

|u|2 , then according to the equation (1.10), ψ does satisfy the estimate

ψ ∼ a
1
2

|u| as predicted by the linear theory.

1.3.3. Estimates for higher derivatives of the Ricci coefficients. In
order to close our estimates, we also need to control the higher derivatives
of the Ricci coefficients with appropriate weights. Since the area of the 2-
spheres Su,u scales like |u|2, one expects that for every additional angular
derivative on the Ricci coefficients, the bounds gets worse at least by a factor
of 1

|u| . We will show that in fact such estimates can be proved. In other words,
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we have a commutation principle similar to that in [9]: |u|i∇iψ and |u|i∇iψ
obey estimates similar to those for ψ and ψ . More precisely, we have

|u|i∇iψ ∼ a
1

2

|u| , |u|i∇iψ ∼ δa
1

2

|u|2 ,

for i ≤ 2. Moreover, for i = 3, 4, we also have L2 estimates for ∇iψ and ∇iψ
that are consistent with the above scaling.

The observation that allows us to obtain these estimates is that the
commutator [∇3,∇] takes the form

[∇3,∇] = −1

2
trχ∇+ · · ·

where · · · denotes terms that behave better. Recall now that trχ ≈ − 2
|u|

and therefore the linear part of the commuted equation for ψ takes the form

∇3∇iψ − i+ 1

u
∇iψ = · · ·

Recall moreover that the initial data obey the bound |∇iψ | � a
1

2 . Therefore,
∇iψ verifies the estimate

∇iψ ∼ a
1

2

|u|i+1
,

consistent with the commutation principle.
In order to obtain the appropriate weights for the angular derivatives of

the Ricci coefficient ψ satisfying a ∇4 equation, we notice that their weights
are dictated by the source terms, which include the terms∇iψ whose weights
we have determined. In particular, this shows that ∇iψ also obeys estimates
in accordance with the commutation principle.

1.3.4. Reductive structure and improved estimates. As we can al-
ready see in the above argument, some of the terms are borderline and there
are no extra smallness in the error terms. Nevertheless, similar to [6], [16]
and [19], there is a reductive structure that allow us derive estimates in a
sequence of steps, each of which involves error terms that either come with
sufficient smallness or have already been controlled in the previous step.
More precisely, we first prove the bounds for ∇iψ . All the error terms on
the right hand side behave at least b−

1

2 better than is necessary and we can
obtain the desired bounds for ∇iψ under the bootstrap assumptions. We
then turn to the equation for ∇iψ . There are error terms in this equation
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without additional smallness, but we can use the estimates that we have
just obtained for ∇iψ instead of using the bootstrap assumptions to control
them.

Beyond the estimates described above, we also need to obtain improved
estimates for the components trχ− 2

|u| , trχ+ 2
|u| , ω and16 μ compared to

what is suggested by scaling. They are needed in the elliptic estimates and
the energy estimates since otherwise we would encounter 1

|u| terms that we
need to integrate in u, resulting in logarithmic losses. To explain this further,
we consider the term trχ− 2

|u| . According to the previous discussion, scaling
considerations suggest that

|trχ| � a
1

2

|u| .
However, this will be insufficient to close the estimates and we need to obtain
a bound ∣∣∣∣trχ− 2

|u|
∣∣∣∣ � δa

|u|2 .

Notice that when |u| = δa
1

2 b, this gives∣∣∣∣trχ− 2

|u|
∣∣∣∣ � δa

1

2

b|u|

and is only better than the previous estimate by a constant factor 1
b . Nev-

ertheless, the fact that this is smaller for a large range of u allows us to
integrate in u in some of the error terms to avoid logarithmic divergences.
However, we note that the improved estimates for trχ− 2

|u| , trχ+ 2
|u| , ω and

μ are coupled and the proof of them requires another reductive structure. We
refer the readers to the text for more details on this more refined reductive
structure.

1.3.5. Weighted energy estimates I: Renormalization. In order to
close our estimates, we need to obtain L2 energy estimates for the curvature
components in addition to the bounds for the Ricci coefficients described
above. In particular, we need to prove sufficiently strong estimates for the
curvature terms arising in the transport equations (1.10) and (1.11) for the
Ricci coefficients.

These energy estimates are also weighted in u in order to capture the
growth near the vertex. However, unlike for the Ricci coefficients for which
we can obtain estimates for each component separately, the energy estimates

16μ is defined by μ = −div η +K − 1
|u|2 . See discussions in latter sections.
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for different curvature components have to be derived at the same time.
For instance, when trying to obtain the energy estimates for β (recall the
notation from (1.9)) and its derivative along outgoing null hypersurfaces,
typically we need to prove at the same time the energy estimates for ρ and
σ and their derivatives on incoming null hypersurfaces.

Now, the Codazzi equation on the 2-spheres Su,u reads

div χ̂ =
1

2
∇trχ− 1

2
(η − η) ·

(
χ̂− 1

2
trχ

)
− β.

By the estimates for ψ and ψ and the commutation principle, we hope to
prove a bound consistent with

||u|i+2∇iβ| � a
1

2 .

Recalling that Area(Su,u) ≈ |u|2, we would like to prove the following L2(Hu)
bound for ∇iβ: ∑

i≤4

‖|u|i+1∇iβ‖L2
uL

2(Su,u) � δ
1

2a
1

2 .

Now, if we were to prove estimates for ∇iρ and ∇iσ, in order to obtain the
above L2(Hu) estimates for ∇iβ, we also need to prove at the same time
that

(1.14)
∑
i≤4

‖|u|i+1∇i(ρ, σ)‖L2
uL

2(Su,u) � δ
1

2a
1

2 .

These estimates, however, are inconsistent with those dictated by scaling
considerations and cannot be expected. To see this, notice the equation

curl η = σ +
1

2
χ̂ ∧ χ̂.

By the estimates for χ̂, χ̂, η and the commutation principle, σ obeys the
pointwise bound

|σ| � δa

|u|3 ,

which is only consistent with (1.14) in the region |u| ≥ δa, but cannot be
proved in the full region |u| ≥ δa

1

2 b in the case b < a
1

2 .
Instead, we perform renormalized energy estimates as in [18], [19] and

[17]. We make the observation that the following renormalized curvature
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components:

K − 1

|u|2 = −ρ+
1

2
χ̂ · χ̂− 1

4
trχtrχ− 1

|u|2 , σ̌ = σ +
1

2
χ̂ ∧ χ̂

behave better than the spacetime curvature components ρ and σ. More
precisely, we have ∣∣∣∣(K − 1

|u|2 , σ̌
)∣∣∣∣ � δa

1

2

|u|3
and we can therefore use the (β,K − 1

|u|2 , σ̌) equations

∇3β + trχβ +∇
(
K − 1

|u|2
)
−∗ ∇σ = · · ·

∇4

(
K − 1

|u|2
)
+ div β = · · ·

∇4σ̌ + div ∗β = · · ·
to get the following desired estimates:∑
i≤4

(
‖ui+1∇iβ‖L2

uL
2(Su,u) +

∥∥∥∥ui+1∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2
uL

2(Su,u)

)
� δ

1

2a
1

2 .

In particular, we need to obtain energy estimates directly from the Bianchi
equations as in [10] instead of using the Bel-Robinson tensor (see [6], [7],
[11], [14]).

The reason that we can prove better estimates is that when we compare
the equation for (K − 1

|u|2 , σ̌) to that for (ρ, σ), we see that the most singular

term χ̂α ∼ a
|u|3 drops off. In fact, as noted in [19], by performing renormalized

energy estimates, the estimates for α completely decouple and we do not
need to prove any bounds for α component, which is very large in this
setting. At the same time, we also do not need any information on α, which
allows the proof to be simplified.

1.3.6. Weighted energy estimate II: Additional cancellations. Even
after using the renormalization, we need to exploit additional cancellations in
the error terms in order to close the energy estimates. One of these instances
is that the renormalization introduces an error term in the equation for K
of the form

∇3K + trχK = −1

2
trχdiv η + · · ·

At the highest level of derivatives ∇η has to be retrieved in L2 from the
bounds for K − 1

|u|2 via elliptic estimates. Since trχ ∼ − 2
|u| , it would seem
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that we have an estimate of the type∥∥∥∥u(K − 1

|u|2
)∥∥∥∥2

L2
uL

2(Su,u)

(u)

� Data +

∫ 1

u

1

u′

∥∥∥∥u′(K − 1

|u′|2
)∥∥∥∥2

L2
uL

2(Su′,u)

du′ + · · ·

Since 1
u is non-integrable, Gronwall’s inequality would imply that this term

grows as u → 0 and the bound will be too weak to close the estimates.
Instead, we note that there is a more subtle structure (for more details, we
refer the readers to the proof of Proposition 8.4) and we can rewrite the
equation as

∇3K + trχK +
1

2
trχdiv η(1.15)

= ∇3

(
K − 1

|u|2
)
+

3

2
trχ

(
K − 1

|u|2
)
− 1

2
trχμ+ · · ·

where μ is the mass aspect function given by

μ = −div η +K − 1

|u|2

and · · · denotes terms that are under control. The crucial observation is that
we can prove a better estimate for the derivatives of μ than what scaling
naively suggests. More precisely, for derivatives of η, we expect using the
heuristics in the previous section that

|∇i+1η| � δa
1

2

|u|i+3

(
or ‖∇i+1η‖L2(Su,u) �

δa
1

2

|u|i+2

)
,

while for μ, which is a special combination of derivative of η and curvature,
we have

|∇iμ| � δ2a
5

4 b
1

4

|u|i+4

(
or ‖∇iμ‖L2(Su,u) �

δ2a
5

4 b
1

4

|u|i+3

)
,

as long as i ≥ 1. Notice that in order to close the energy estimates, we only
need to use this improvement for i ≥ 1 and the extra power of u allows us
to close the estimates using Gronwall’s inequality.

There is yet another miraculous structure in the Einstein equations that
allows us to prove the energy estimates with the desired weights in u. The
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linear parts of the equations for K − 1
|u|2 and σ̌ from which we prove energy

estimates in L2
uL

2(Su,u) take the form

∇3

(
K − 1

|u|2
)
+

3

2
trχ

(
K − 1

|u|2
)

= · · · ,

∇3σ̌ +
3

2
trχσ̌ = · · ·

Therefore, the 3
2trχ factors dictate that we control (K − 1

|u|2 , σ̌) at least in
the weighted space ∥∥∥∥u2(K − 1

|u|2 , σ̌
)∥∥∥∥

L2
uL

2(Su,u)

.

On the other hand, the L2
uL

2(Su,u) energy estimates for (K − 1
|u|2 ) and σ̌ are

coupled with the L2
uL

2(Su,u) of β. However, naive scaling considerations may
suggest that β cannot be controlled in the weighted space ‖u2β‖L2

uL
2(Su,u).

One important observation is that there is a cancellation which results in β
being slightly better behaved than expected. More precisely, using the Co-
dazzi equation, we can express β in terms of the following Ricci coefficients:

β = div χ̂− 1

2
∇trχ+

1

2
(η − η) ·

(
χ̂− 1

2
trχ

)
.

As we observed previously, the terms div χ̂, trχη and trχη behave no better

than δa
1
2

|u|3 in L∞. On the other hand, notice that the contributions from div χ̂

and 1
4(η − η)trχ in the Codazzi equation actually cancel! Thus β in fact

behaves better and can be controlled in the desired weighted L2 space. On
a more technical level, in the ∇4β equation, the potentially deadly term
trχ∇χ̂ does not appear! Instead, in this equation, the only quadratic term
that contains trχ is the term trχ∇trχ. As mentioned above, we have improve

estimates for ∇trχ = ∇(trχ− 2
|u|) which are stronger than that for ∇χ̂. This

then allows us to close all the energy estimates.

1.3.7. Elliptic estimates. We now turn to the final technical difficulties
in the proof of the main theorem. Notice that yet another consequence of
using the renormalized energy estimates is that they introduce error terms
with highest order derivatives in the Ricci coefficients. As a result, it is
necessary to control those terms via elliptic estimates. While the procedure
of deriving highest order bounds for the Ricci coefficients from the energy
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estimates via elliptic estimates is by now standard (see [6], [7], [11] and
[14]), many technical difficulties arise when coupled with the scale-invariant
weight estimates. In particular, we also need to obtain improved estimates
for certain components using elliptic estimates.

One of the difficulties is that the estimate we obtain for ∇5η is weaker
than that for ∇5η. These terms would otherwise appear to be “similar”
from the point of view of scaling and indeed obey the same lower order
estimate. On the other hand, for the highest order bound, the derivation
of the L2

uL
2(Su,u) estimate for ∇5η would give rise to a logarithmic loss.

As a result, we give up the L2
uL

2(Su,u) estimate for ∇5η and content with
an estimate in L2

uL
2(Su,u). (Notice that ∇5η obeys both L2

uL
2(Su,u) and

L2
uL

2(Su,u) bounds.) It is a remarkable fact regarding the structure of the
Einstein equations that while the stronger estimate for ∇5η is crucially used
to obtain the bounds for ∇4χ̂ and ∇4trχ, we can close the whole argument
without a similar estimate for ∇5η!

This concludes the discussions of the main ideas and difficulties of the
proof.

1.4. Outline of the paper

We end the introduction by a brief outline of the remainder of the paper.
We will describe the setting of the double null foliation gauge and explain
the notations used in this paper in Section 2. This will allow us to state the
main estimates that we will prove in Section 3. The main a priori estimates
will then be proved in Sections 4–8. We refer the readers to Section 4 for a
more detailed outline of the proof in Sections 5–8. Finally, in Section 9, we
show that a trapped surface indeed forms given the bounds we have derived
in the previous sections.
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Figure 3: Basic Setup

2. Setting, equations and notations

In this section, we will introduce the geometric setup and the double null fo-
liation gauge. We then write the Einstein equations as a system of equations
for the Ricci coefficients and curvature components adapted to this gauge.
After that we introduce the necessary notations and the norms that we will
use.

2.1. Double null foliation

Given a spacetime solution with initial data as in Theorem 1.3, we define
a double null foliation by solving the eikonal equations

(g−1)μν∂μu∂νu = 0, (g−1)μν∂μu∂νu = 0,

for u and u such that u = 1 on H1 and u = 0 on H0. Note that u is increasing
towards the future while u is decreasing towards the future.
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Let

L′μ = −2(g−1)μν∂νu, L′μ = 2(g−1)μν∂νu.

be future directed, null geodesic vector fields and define

2Ω−2 = −g(L′, L′).

Let

e3 = ΩL′, e4 = ΩL′

such that

g(e3, e4) = −2.

These are the frames that we will use to decompose the Ricci coefficients
and curvature components. Define also

L = Ω2L′, L = Ω2L′

to be the equivariant vector fields.
We fix the gauge on the initial hypersurfaces such that

Ω = 1, on H1 and H0.

Let Hu be the level sets of u and Hu be the level sets of u. By the
eikonal equations, Hu and Hu are null hypersurface. The intersections of
the hypersurfaces Hu and Hu are topologically 2-spheres. We will denote
them by Su,u.

2.2. The coordinate system

We define a coordinate system (u, u, θ1, θ2) in the spacetime as follows: On
the standard sphere S1,0, define a coordinate system (θ1, θ2) such that on
each coordinate patch the metric γ is smooth, bounded and positive definite.
We then define the coordinates on the initial hypersurfaces by requiring
θA to be constant along null generators of the initial hypersurface. In the
spacetime, we define u and u to be solutions to the eikonal equations as
described in the previous subsection. Moreover, define θ1, θ2 by

L/ Lθ
A = 0,

where L/ L denote the restriction of the Lie derivative to TSu,u (See [6],
Chapter 1). Relative to the coordinate system (u, u, θ1, θ2), e3 and e4 can
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be expressed as

e3 = Ω−1

(
∂

∂u
+ dA

∂

∂θA

)
, e4 = Ω−1 ∂

∂u
,

for some dA such that dA = 0 on H0 and the metric g takes the form

g = −2Ω2(du⊗ du+ du⊗ du) + γAB(dθ
A − dAdu)⊗ (dθB − dBdu).

2.3. Equations

We decompose the Ricci coefficients and curvature components with respect
to a null frame e3, e4 defined above and an frame e1, e2 tangent to the 2-
spheres Su,u. Using the indices A,B ∈ {1, 2}, we define the Ricci coefficients
relative to the null fame:

χAB = g(DAe4, eB), χ
AB

= g(DAe3, eB),

ηA = −1

2
g(D3eA, e4), η

A
= −1

2
g(D4eA, e3),

ω = −1

4
g(D4e3, e4), ω = −1

4
g(D3e4, e3),

ζA =
1

2
g(DAe4, e3)

(2.1)

where DA = De(A)
; and also the null curvature components,

αAB = R(eA, e4, eB, e4), αAB = R(eA, e3, eB, e3),

βA =
1

2
R(eA, e4, e3, e4), β

A
=

1

2
R(eA, e3, e3, e4),

ρ =
1

4
R(e4, e3, e4, e3), σ =

1

4
∗R(e4, e3, e4, e3).

(2.2)

Here ∗R denotes the Hodge dual of R. Let ∇ be the induced covariant
derivative operator on Su,u and ∇3, ∇4 be the projections to Su,u of the
covariant derivatives D3, D4 (see precise definitions in [11]).

Notice that,

ω = −1

2
∇4(log Ω), ω = −1

2
∇3(log Ω),

ηA = ζA +∇A(log Ω), η
A
= −ζA +∇A(log Ω).

(2.3)
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Define the following contractions of the tensor product φ(1) and φ(2) with

respect to the metric γ. For two symmetric 2-tensors φ
(1)
AB, φ

(2)
AB, define

φ(1) · φ(2) := (γ−1)AC(γ−1)BDφ
(1)
ABφ

(2)
CD,

φ(1) ∧ φ(2) := ε/AB(γ−1)CDφ
(1)
ACφ

(2)
BD,

where ε/ is the volume form associated to the metric γ. For two 1-forms φ
(1)
A ,

φ
(2)
A , define

φ(1) · φ(2) := (γ−1)ABφ
(1)
A φ

(2)
B ,

φ(1) ∧ φ(2) := ε/ABφ
(1)
A φ

(2)
B ,

(φ(1)⊗̂φ(2))AB := φ
(1)
A φ

(2)
B + φ

(1)
B φ

(2)
A − γAB(φ

(1) · φ(2)).

For a symmetric 2-tensor φ
(1)
AB and a 1-form φ

(2)
A , define

(φ(1) · φ(2))A := (γ−1)BCφ
(1)
ABφ

(2)
C .

We also define by ∗ for 1-forms and symmetric 2-tensors respectively as
follows (note that on 1-forms this is the Hodge dual on Su,u):

∗φA :=γACε/
CBφB,

∗φAB :=γBDε/
DCφAC .

For totally symmetric tensors, the div and curl operators are defined by
the formulas

(div φ)A1···Ar
:= ∇BφBA1···Ar

,

(curl φ)A1···Ar
:= ε/BC∇BφCA1···Ar

.

Define the operator ∇⊗̂ on a 1-form φA by

(∇⊗̂φ)AB := ∇AφB +∇BφA − γABdiv φ.

Also, define the trace to be

(trφ)A1···Ar−1
:= (γ−1)BCφBCA1···Ar−1

.
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Let χ̂ and χ̂ be the traceless parts of χ and χ respectively. Then χ and χ
satisfy the following null structure equations:

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ωtrχ,

∇4χ̂+ trχχ̂ = −2ωχ̂− α,

∇3trχ+
1

2
(trχ)2 = −2ωtrχ− |χ̂|2,

∇3χ̂+ trχ χ̂ = −2ωχ̂− α,

∇4trχ+
1

2
trχtrχ = 2ωtrχ+ 2ρ− χ̂ · χ̂+ 2div η + 2|η|2,

∇4χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η,

∇3trχ+
1

2
trχtrχ = 2ωtrχ+ 2ρ− χ̂ · χ̂+ 2div η + 2|η|2,

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η.

(2.4)

The remaining Ricci coefficients satisfy the following null structure equa-
tions:

∇4η = −χ · (η − η)− β,

∇3η = −χ · (η − η) + β,

∇4ω = 2ωω − η · η +
1

2
|η|2 + 1

2
ρ,

∇3ω = 2ωω − η · η +
1

2
|η|2 + 1

2
ρ.

(2.5)

The Ricci coefficients also satisfy the following constraint equations:

div χ̂ =
1

2
∇trχ− 1

2
(η − η) ·

(
χ̂− 1

2
trχ

)
− β,

div χ̂ =
1

2
∇trχ+

1

2
(η − η) ·

(
χ̂− 1

2
trχ

)
+ β,

curl η = −curl η = σ +
1

2
χ̂ ∧ χ̂,

K = −ρ+
1

2
χ̂ · χ̂− 1

4
trχtrχ,

(2.6)
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with K the Gauss curvature of the spheres Su,u. The curvature components
verify the following null Bianchi equations:

∇3α+
1

2
trχα = ∇⊗̂β + 4ωα− 3(χ̂ρ+∗ χ̂σ) + (ζ + 4η)⊗̂β,

∇4β + 2trχβ = div α− 2ωβ + (2ζ + η) · α,
∇3β + trχβ = ∇ρ+ 2ωβ +∗ ∇σ + 2χ̂ · β + 3(ηρ+∗ ησ),

∇4σ +
3

2
trχσ = −div ∗β +

1

2
χ̂ ∧ α− ζ ∧ β − 2η ∧ β,

∇3σ +
3

2
trχσ = −div ∗β − 1

2
χ̂ ∧ α+ ζ ∧ β − 2η ∧ β,

∇4ρ+
3

2
trχρ = div β − 1

2
χ̂ · α+ ζ · β + 2η · β,

∇3ρ+
3

2
trχρ = −div β − 1

2
χ̂ · α+ ζ · β − 2η · β,

∇4β + trχβ = −∇ρ+∗ ∇σ + 2ωβ + 2χ̂ · β − 3(ηρ−∗ ησ),
∇3β + 2trχβ = −div α− 2ωβ − (−2ζ + η) · α,
∇4α+

1

2
trχα = −∇⊗̂β + 4ωα− 3(χ̂ρ−∗ χ̂σ) + (ζ − 4η)⊗̂β.

(2.7)

Defining

σ̌ = σ +
1

2
χ̂ ∧ χ̂,

the Bianchi equations can be expressed in terms of K and σ̌ instead of ρ
and σ are as follows:

∇3β + trχβ = −∇K +∗ ∇σ̌ + 2ωβ + 2χ̂ · β − 3(ηK −∗ ησ̌)

+
1

2
(∇(χ̂ · χ̂) +∗ ∇(χ̂ ∧ χ̂))− 3

4
ηtrχtrχ

+
3

2
(ηχ̂ · χ̂+∗ ηχ̂ ∧ χ̂)− 1

4
(∇trχtrχ+ trχ∇trχ),

∇4σ̌ +
3

2
trχσ̌ = −div ∗β − ζ ∧ β − 2η ∧ β − 1

2
χ̂ ∧ (∇⊗̂η)

− 1

2
χ̂ ∧ (η⊗̂η),

∇4K + trχK = −div β − ζ · β − 2η · β +
1

2
χ̂ · ∇⊗̂η +

1

2
χ̂ · (η⊗̂η)(2.8)

− 1

2
trχdiv η − 1

2
trχ|η|2,
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∇3σ̌ +
3

2
trχσ̌ = −div ∗β + ζ ∧ β − 2η ∧ β +

1

2
χ̂ ∧ (∇⊗̂η)

+
1

2
χ̂ ∧ (η⊗̂η),

∇3K + trχK = div β − ζ · β + 2η · β +
1

2
χ̂ · ∇⊗̂η +

1

2
χ̂ · (η⊗̂η)

− 1

2
trχdiv η − 1

2
trχ|η|2,

∇4β + trχβ = ∇K +∗ ∇σ̌ + 2ωβ + 2χ̂ · β + 3(−ηK +∗ ησ̌)

− 1

2
(∇(χ̂ · χ̂)−∗ ∇(χ̂ ∧ χ̂))

+
1

4
(∇trχtrχ+ trχ∇trχ)

− 3

2
(ηχ̂ · χ̂−∗ ηχ̂ ∧ χ̂) +

3

4
ηtrχtrχ.

In the remainder of the paper, we will use the convention that capital
Latin letters A ∈ {1, 2} are used as indices on the spheres Su,u and while
Greek letters μ ∈ {1, 2, 3, 4} are used as indices in the whole spacetime.

2.4. Schematic notation

We introduce a schematic notation as follow: Let φ denote an arbitrary
tensorfield. For the Ricci coefficients, we use the notation

(2.9) ψ ∈ {χ̂, trχ, ω}, ψ ∈
{
η, η, χ̂, trχ+

2

u
, ω

}
.

The set of all Ricci coefficients can therefore be represented by either ψ, ψ
or trχ.

We will simply write ψψ (or ψψ , ψβ, etc.) to denote arbitrary contrac-
tions with respect to the metric γ. ∇ will be used to denote an arbitrary
angular covariant derivative. We will only use the schematic notation when
the precise nature of the contraction is not important to the argument. More-
over, under this schematic notation, all constant factors will be neglect.

When writing an equation, we use the following convention. On the left
hand side of the equations, all of the terms are written with exact coeffi-
cients, while on the right hand side of the equations, terms are only written
schematically. In particular, as mentioned above, we will neglect constant
factors.
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Another convention we introduce is that brackets are used to denote
terms with any one of the components in the brackets. For example, ψ(ψ, ψ )
is used to denote either ψψ or ψψ .

Finally, ∇iψ j will be used to denote angular derivatives of products of
ψ . More precisely, ∇iψ j denotes the sum of all terms which are products of
j factors, where each factor is ∇ikψ and that the sum of all ik’s is i, i.e.,

∇iψ j =
∑

i1+i2+···+ij=i

∇i1ψ∇i2ψ · · · ∇ijψ︸ ︷︷ ︸
j factors

.

2.5. Integration

Given a function φ, the integration on Su,u, i.e.,
∫
Su,u

φ, is defined with re-

spect to the volume form induced by γ. The spacetime integration is defined
with respect to the volume form induced by the spacetime metric g. Since
there are no canonical volume forms on Hu and Hu, we define integration
by ∫

Hu

φ := 2

∫ u

0

(∫
Su,u′

Ωφ

)
du′

and ∫
Hu

φ := 2

∫ 1

u

(∫
Su′,u

Ωφ

)
du′.

Likewise, the norms Lp(Su,u), L
p(Hu) and Lp(Hu) are defined using the

volume forms above.
We will also use mixed norms defined by

‖φ‖Lp
uL

q
uLr(S) =

(∫ u

0

(∫ 1

u
‖φ‖qLr(Su′,u′ )du

′
) p

q

du′
) 1

p

,

‖φ‖Lp
uL

q
uLr(S) =

(∫ 1

u

(∫ u

0
‖∇iφ‖qLr(Su′,u′ )du

′
) p

q

du′
) 1

p

.

with appropriate modifications if p = ∞ or q = ∞. Notice that it is implicit
that the Lp norms are taken over the spacetime region given in coordinates
by {(u′, u′, θ1, θ2) : u ≤ u′ ≤ 1, 0 ≤ u′ ≤ u}. In particular, the size of these
norms can depend on u and u.
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With the above definition, ‖φ‖L2
uL

2(Su,u) and ‖φ‖L2(Hu)
(similarly for

‖φ‖L2
uL

2(Su,u) and ‖φ‖L2(Hu)) differ by a factor of Ω. Nevertheless, in view of
Proposition 5.1 below, these norms are equivalent up to a factor of 2.

2.6. Norms

We now define the norms that we will work with. First we define the norms
for the curvature components:

R =
∑
i≤4

(
sup
u

(
1

δ
1

2a
1

2

‖ui+1∇iβ‖L2(Hu)

)

+ sup
u

(
1

δ
1

2a
1

2

∥∥∥∥ui+1∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2(Hu)

))

+
∑

1≤i≤4

(
sup
u

(
1

δ
3

2a
3

4

∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2(Hu)

)

+ sup
u

(
1

δ
3

2a
3

4

‖ui+2∇iβ‖L2(Hu)

))

+ sup
u

(
1

δ
3

2a
3

4

∥∥∥∥u2(K − 1

|u|2
)∥∥∥∥

L2(Hu)

)
.

We then define the norms for the Ricci coefficients. We begin with those for
the highest order derivatives:

Õ5,2 = sup
u

(
1

δ
1

2a
1

2

‖u5∇5(χ̂, trχ, ω)‖L2(Hu)

)
+ sup

u

(
1

δ
1

2a
1

2

‖u5∇5η‖L2(Hu)

)
+ sup

u

(
1

δ
3

2a
3

4

‖u6∇5(η, η)‖L2(Hu)

)
+ sup

u,u

( |u| 12
δa

1

2

‖u5∇5(trχ, χ̂, ω)‖L2(Hu)

)
.

For i ≤ 4, we define the following L2 norms:

Oi,2 = sup
u,u

(
1

a
1

2

‖ui∇i(χ̂, ω, trχ)‖L2(Su,u)

+
|u|
δa

1

2

∥∥∥∥ui∇i

(
η, η,∇ log Ω, χ̂, trχ+

2

u
, ω

)∥∥∥∥
L2(Su,u)

)
,
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and for i ≤ 2, we define the following L∞ norms:

Oi,∞ = sup
u,u

(
1

a
1

2

|u|‖ui∇i(χ̂, ω, trχ)‖L∞(Su,u)

+
|u|2
δa

1

2

∥∥∥∥ui∇i

(
η, η, χ̂, trχ+

2

u
, ω

)∥∥∥∥
L∞(Su,u)

)
.

As a shorthand, we will also denote

O =
∑
i≤2

Oi,∞ +
∑
i≤4

Oi,2.

3. Quantitative statement of main theorem

We now state the a priori estimates that we will prove in this paper. The
existence result in Theorem 1.3 follows from the a priori estimates using
standard arguments (see, for example, [6]). We will omit the details.

Theorem 3.1. Consider the following characteristic initial value problem
for the Einstein vacuum equations. The initial incoming hypersurface H0

is required to coincide with a backwards light cone in Minkowski space with
0 ≤ u ≤ 1. On the initial outgoing hypersurface H1, the data are smooth and
the initial shear satisfies∑

i≤7

‖∇iχ̂0‖L∞
u L2(Su,u) ≤ a

1

2

for 0 ≤ u ≤ δ.
Then there exists a universal large constant b0 such that if b0 ≤ b ≤ a

and δa
1

2 b < 1, the unique solution to the Einstein vacuum equations obeys
the following estimates in the region δa

1

2 b ≤ u ≤ 1, 0 ≤ u ≤ δ:

O, Õ5,2,R � 1,

where the implicit constant is universal and independent of a, b and δ.

Remark 2. Following [6], one can solve the constraint ODEs and obtain
bounds for the initial data on H1 from that of the initial shear. In particular,
under the assumption of Theorem 3.1, we have the following initial bounds
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for the Ricci coefficients∑
i≤5

(
1

a
1

2

‖∇i(χ̂, ω, trχ)‖L2(S1,u) +
1

δa
1

2

‖∇i(η, η, χ̂, trχ+ 2, ω)‖L2(S1,u)

)
� 1,

and the following initial bounds for the curvature components∑
i≤4

(
1

a
1

2

‖∇iβ‖L∞
u L2(S1,u) +

1

δa
1

2

‖∇i(K − 1, σ̌, β)‖L∞
u L2(S1,u)

)
� 1.

Once the existence theorem is established, the actual formation of
trapped surfaces follows from a simple ODE argument as in [6]:

Theorem 3.2. If, moreover, the data on H1 obey

(3.1)

∫ δ

0
|χ̂0|2(u′)du′ ≥ 4bδa

1

2

along outgoing characteristics in every direction ϑ, then the 2-sphere defined
by S

bδa
1
2 ,δ

:= {(u, u, θ1, θ2) : u = bδa
1

2 , u = δ} is a trapped surface.

Theorems 3.1 and 3.2 together imply Theorem 1.3. The proof of Theo-
rem 3.1 will take up most of the remainder of the paper in Sections 4–8. We
will then turn to the proof of Theorem 3.2 in the final section.

4. Bootstrap assumptions and the outline of the proof of
Theorem 3.1

We now introduce the bootstrap assumptions that we use to prove The-
orem 3.1. We make the following bootstrap assumptions on the first four
derivatives of the Ricci coefficients:

(4.1)
∑
i≤4

1

δa
1

2

‖ui+1∇iψ‖L2(Su,u) +
∑
i≤2

1

δa
1

2

‖ui+2∇iψ‖L∞(Su,u) ≤ b
1

4

and

(4.2)
∑
i≤4

1

a
1

2

‖ui∇iψ‖L2(Su,u) +
∑
i≤2

1

a
1

2

‖ui+1∇iψ‖L∞(Su,u) ≤ b
1

4 .

We will also make the bootstrap assumptions on Õ5,2 and R:

(4.3) Õ5,2 +R ≤ b
1

4 .
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Finally, we make a bootstrap assumption on K and its derivatives, which
will be useful for elliptic estimates:

(4.4)
∑
i≤3

∥∥∥∥ui+1∇i

(
K − 1

|u|2
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

≤ 1.

In the following sections, we will show that given the bootstrap assump-
tions (4.1)–(4.4), the bounds in fact hold with a better constant. More pre-
cisely, we will show

∑
i≤4

1

δa
1

2

‖ui+1∇iψ‖L2(Su,u) +
∑
i≤2

1

δa
1

2

‖ui+2∇iψ‖L∞(Su,u) � 1,(4.5)

∑
i≤4

1

a
1

2

‖ui∇iψ‖L2(Su,u) +
∑
i≤2

1

a
1

2

‖ui+1∇iψ‖L∞(Su,u) ≤ 1,(4.6)

Õ5,2 +R � 1(4.7)

and

(4.8)
∑
i≤3

∥∥∥∥ui+1∇i

(
K − 1

|u|2
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

� 1

b
3

4

.

Here, and in the rest of the paper, we use the convention that
A � B denotes the inequality A ≤ CB for some universal constant
C that is independent of δ, a and b. The bounds that we derive will
therefore improve over the bootstrap assumptions (4.1), (4.2), (4.3) and (4.4)
after choosing b0 to be sufficiently large.

We now give a brief outline of the proof of Theorem 3.1 in Sections 5–8.

• In Section 5, we prove some preliminary estimates. These include the
bounds for the metric components γ and Ω. A particular consequence
of these bounds is a Sobolev embedding theorem on the 2-spheres
Su,u. We also derive propositions from which we can obtain bounds
from general transport equations and elliptic systems.

• In Section 6, we use transport equations for the Ricci coefficients to
obtain∑

i≤4

1

δa
1

2

‖ui+1∇iψ‖L2(Su,u) +
∑
i≤2

1

δa
1

2

‖ui+2∇iψ‖L∞(Su,u) � 1 + Õ5,2 +R
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and∑
i≤4

1

a
1

2

‖ui∇iψ‖L2(Su,u) +
∑
i≤2

1

a
1

2

‖ui+1∇iψ‖L∞(Su,u) ≤ 1.

In other words, we obtain estimates that would imply (4.5) and (4.6)
once (4.7) is also proved. In the same section, we also prove some
more refined estimates for some of the Ricci coefficients. Moreover, we
obtain the bound (4.8).

• In Section 7, we use elliptic estimates to show that

Õ5,2 � 1 +R.

• In Section 8, we use energy estimates to prove that

R � 1.

Combining this with the bounds above, we will have thus obtained
(4.5)–(4.8) as desired.

5. The preliminary estimates

5.1. Estimates for metric components

We first show that we can control Ω under the bootstrap assumptions:

Proposition 5.1. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

‖Ω−1 − 1‖L∞(Su,u) �
δa

1

2 b
1

4

|u| .

Proof. Consider the equation

(5.1) ω = −1

2
∇4 log Ω =

1

2
Ω∇4Ω

−1 =
1

2

∂

∂u
Ω−1.

Fix u. Notice that both ω and Ω are scalars and therefore the L∞ norm is
independent of the metric. We can integrate equation (5.1) using the fact
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that Ω−1 = 1 on H0 to obtain

‖Ω−1 − 1‖L∞(Su,u) �
∫ u

0
‖ω‖L∞(Su,u′ )du

′ � δa
1

2 b
1

4

|u| ,

where we have used the bootstrap assumption (4.2). �

We then show that we can control γ under the bootstrap assumptions.
This follows from an argument similar to that in [6].

Proposition 5.2. We continue to work under the assumptions of Theo-
rem 3.1 and the bootstrap assumptions (4.1), (4.2), (4.3) and (4.4). Fix a
point (u, ϑ) on the initial hypersurface H0. Along the outgoing characteris-
tic emanating from (u, ϑ), define Λ(u) and λ(u) to be the larger and smaller
eigenvalue of γ−1(u, u = 0, ϑ)γ(u, u, ϑ). Then

|Λ(u)− 1|+ |λ(u)− 1| � δa
1

2 b
1

4

|u|

for every u ∈ [0, δ]. As a consequence, we also have

|ξ(u)− 1| � δa
1

2 b
1

4

|u|

for every u ∈ [0, δ], where

ξ(u) =
dvolγu

dvolγ0

.

Proof. The first variation formula states that

L/ Lγ = 2Ωχ,

which translates to

(5.2)
∂

∂u
γAB = 2ΩχAB

in coordinates. From this we derive that

∂

∂u
log ξ = Ωtrχ.
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Since by definition ξ(0) = 1, we have

(5.3) |ξ(u)− 1| � δa
1

2 b
1

4

|u| ,

using the bound for trχ in the bootstrap assumption (4.2) and the estimate
for Ω from Proposition 5.1.

Define ν(u) = Λ(u)
ξ(u) =

√
Λ(u)
λ(u) . Following the derivation of (5.93) in [6], we

can use (5.2) to derive the estimate

ν(u) ≤ 1 +

∫ u

0
|(Ωχ̂)(u′)|γν(u′)du′.

This implies via Gronwall’s inequality that

(5.4) |ν(u)− 1| � δa
1

2 b
1

4

|u| .

The desired conclusion follows from (5.3) and (5.4). �

A direct consequence of the previous proposition is an estimate on the
surface area of the two sphere Su,u.

Proposition 5.3. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

sup
u,u

|Area(Su,u)− Area(Su,0)| � δa
1

2 b
1

4

|u| .

5.2. Estimates for transport equations

In latter sections of the paper, we will derive the estimates for the Ricci coef-
ficients and the null curvature components from the null structure equations
and the null Bianchi equations respectively. These will be viewed as trans-
port equations and we will need a way to obtain estimates from the covariant
null transport equations. For the transport equation in the e4 direction, we
will need the smallness of ‖trχ‖L∞

u L1
uL

∞(Su,u), which is a consequence of our

bootstrap assumption (4.2). More precisely, we have
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Proposition 5.4. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

‖φ‖L2(Su,u) � ‖φ‖L2(Su,u′ ) +

∫ u

u′
‖∇4φ‖L2(Su,u′′ )du

′′

for an Su,u tangent tensor φ of arbitrary rank.

Proof. We first note that the following identity holds for any scalar f :

d

du

∫
Su,u

f =

∫
Su,u

(
df

du
+Ωtrχf

)
=

∫
Su,u

Ω (e4(f) + trχf) .

Hence, taking f = |φ|2γ , we have

‖φ‖2L2(Su,u)
= ‖φ‖2L2(Su,u′ ) +

∫ u

u′

∫
Su,u′′

2Ω

(
< φ,∇4φ >γ +

1

2
trχ|φ|2γ

)
du′′.

(5.5)

The proposition can be concluded using the Cauchy-Schwarz inequality on
the sphere and the L∞ bounds for Ω and trχ which are provided by Propo-
sition 5.1 and the bootstrap assumption (4.2) respectively. �

On the other hand, in order to use the ∇3 equation, we need to incorporate
the weights in the norms. These weights depend on the coefficients in front
of the linear term with a trχ factor. The main observation is that under

the bootstrap assumption (4.1), trχ can be viewed essentially as − 2
|u| . More

precisely, we have

Proposition 5.5. We continue to work under the assumptions of Theo-
rem 3.1 and the bootstrap assumptions (4.1), (4.2), (4.3) and (4.4). Let φ
and F be Su,u-tangent tensor fields of rank k satisfying the following trans-
port equation:

∇3φA1···Ak
+ λ0trχφA1···Ak

= FA1···Ak
,

Denoting λ1 = 2(λ0 − 1
2), we have

|u|λ1‖φ‖L2(Su,u) � ‖φ‖L2(S1,u) +

∫ 1

u
|u′|λ1‖F‖L2(Su′,u)du

′,

where the implicit constant is allowed to depend on λ0.
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Proof. To begin, we have the following identity for any scalar function f :

− d

du

∫
Su,u

f =

∫
Su,u

(
− df

du
+Ωtrχf

)
=

∫
Su,u

Ω
(
e3(f) + trχf

)
.

Using this identity, we obtain

− d

du
(

∫
Su,u

|u|2λ1 |φ|2)(5.6)

=

∫
Su,u

Ω

(
2λ1|u|2λ1−1(e3u)|φ|2 + 2|u|2λ1 < φ,∇3φ > +trχ|u|2λ1 |φ|2

)
=

∫
Su,u

Ω

(
2|u|2λ1 < φ,∇3φ+ λ0trχφ >

)
+

∫
Su,u

(
|u|2λ1Ω

(
2λ1(e3u)

|u| + (1− 2λ0)trχ

)
|φ|2

)
.

Observe that17 we have

2λ1(e3u)

|u| + (1− 2λ0)trχ

= −2λ1 − 4λ0 + 2

|u| − 2λ1(Ω
−1 − 1)

|u| + (1− 2λ0)

(
trχ+

2

|u|
)

� δa
1

2 b
1

4

|u|2

using Proposition 5.1 and the bootstrap assumption (4.1), since we have
chosen the parameters to satisfy 2λ1 − 4λ0 + 2 = 0.

Therefore,

∣∣∣∣∣− d

du

(∫
Su,u

|u|2λ1 |φ|2
)∣∣∣∣∣ �

∫
Su,u

(
2|u|2λ1 |φ||F |+ |u|2λ1−2δa

1

2 b
1

4 |φ|2
)
.

17Note that in the following formula we need the exact cancellation and thus we
do not use the schematic notation for this equation.
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Using Cauchy-Schwarz for the first term and applying Gronwall’s inequality
for the second term, we obtain

|u|λ1‖φ‖L2(Su,u)

� eδa
1
2 b

1
4 ‖u−2‖L1

u

(
‖φ‖L2(S1,u) +

∫ 1

u
|u′|λ1‖F‖L2(Su′,u)du

′
)

� ‖φ‖L2(S1,u) +

∫ 1

u
|u′|λ1‖F‖L2(Su′,u)du

′.

since δa
1

2 b
1

4 ‖u−2‖L1
u
� δa

1
2 b

1
4

|u| � 1

b
3
4
. �

5.3. Sobolev embedding

Using the estimates for the metric γ given in Proposition 5.2, we can follow
[6] to obtain a bound on the isoperimetric constant

I(S) = sup
U

∂U∈C1

min{Area(U),Area(U c)}
(Perimeter(∂U))2

,

where S is one of the 2-spheres Su,u adapted to the double null foliation.
This will then allow us to obtain the necessary Sobolev embedding theorems.
We first have the following estimate:

Proposition 5.6. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), the isoperimetric constant obeys
the bound

I(Su,u) ≤ 1

π

for 0 ≤ u ≤ δ and δa
1

2 b ≤ u ≤ 1.

Proof. Fix u. For a domain Uu ⊂ Su,u, define U0 ⊂ Su,0 to be the image of
Uu under the diffeomorphism generated by the equivariant vector field L.
Using the notations introduced in Proposition 5.2 and its proof, we have

Perimeter(∂Uu)

Perimeter(∂U0)
≥
√

inf
Su,0

λ(u)

and
Area(Uu)

Area(U0)
≤ sup

Su,0

ξ(u),
Area(U c

u)

Area(U c
0)

≤ sup
Su,0

ξ(u).
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Now, the conclusion follows from the fact that I(Su,0) =
1
2π and the bounds

in Proposition 5.2. �

We will only need an L2 − L∞ Sobolev embedding in this paper. In order
to derive it, we will use the following two propositions, quoted directly from
[6]. The first is an L2 − Lp embedding theorem:

Proposition 5.7 ([6], Lemma 5.1). For any Riemannian 2-manifold
(S, γ), we have the estimate

(Area(S))−
1

p ‖φ‖Lp(S) ≤ Cp

√
max{I(S), 1}

× (‖∇φ‖L2(S) + (Area(S))−
1

2 ‖φ‖L2(S))

for 2 < p < ∞ and for any tensor φ.

The second is an Lp − L∞ embedding:

Proposition 5.8 ([6], Lemma 5.2). For any Riemannian 2-manifold
(S, γ), we have the estimate

‖φ‖L∞(S) ≤ Cp

√
max{I(S), 1}

× (Area(S))
1

2
− 1

p (‖∇φ‖Lp(S) + (Area(S))−
1

2 ‖φ‖Lp(S))

for p > 2 and for any tensor φ.

Recall from Proposition 5.3 that Area(Su,u) ∼ |u|2. We can now combine
Propositions 5.6, 5.7 and 5.8 to obtain

Proposition 5.9. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

‖φ‖L∞(Su,u) �
∑
i≤2

‖ui−1∇iφ‖L2(Su,u).(5.7)

5.4. Commutation formula

In this section, we derive general commutation formulae. We have the fol-
lowing formula from [11]:
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Proposition 5.10. The commutator [∇4,∇] acting on an (0, r) S-tensor
is given by

[∇4,∇B]φA1···Ar
= [D4, DB]φA1···Ar

+ (∇B log Ω)∇4φA1···Ar

− (γ−1)CDχBD∇CφA1···Ar

−
r∑

i=1

(γ−1)CDχBDηAi
φA1···ÂiC···Ar

+

r∑
i=1

(γ−1)CDχAiBηDφA1···ÂiC···Ar
.

Proposition 5.11. The commutator [∇3,∇] acting on an (0, r) S-tensor
is given by

[∇3,∇B]φA1···Ar
= [D3, DB]φA1···Ar

+ (∇B log Ω)∇3φA1···Ar

− (γ−1)CDχ
BD

∇CφA1···Ar

−
r∑

i=1

(γ−1)CDχ
BD

ηAi
φA1···ÂiC···Ar

+

r∑
i=1

(γ−1)CDχ
AiB

ηDφA1···ÂiC···Ar
.

By induction, we get the following schematic formula for repeated com-
mutations (see [18]):

Proposition 5.12. Suppose ∇4φ = F0. Let ∇4∇iφ = Fi. Then

Fi =
∑

i1+i2+i3=i

∇i1(η + η)i2∇i3F0

+
∑

i1+i2+i3+i4=i

∇i1(η + η)i2∇i3χ∇i4φ

+
∑

i1+i2+i3+i4=i−1

∇i1(η + η)i2∇i3β∇i4φ.

where by ∇i1(η + η)i2 we mean the sum of all terms which is a product of i2
factors, each factor being ∇j(η + η) for some j and that the sum of all j’s is



44 X. An and J. Luk

i1, i.e., ∇i1(η + η)i2 =
∑

j1+···+ji2=i1

∇j1(η + η) · · · ∇ji2 (η + η). Similarly, sup-

pose ∇3φ = G0. Let ∇3∇iφ = Gi. Then

Gi − i

2
trχ∇iφ =

∑
i1+i2+i3=i

∇i1(η + η)i2∇i3G0

+
∑

i1+i2+i3+i4=i

∇i1(η + η)i2∇i3

(
χ̂, trχ+

2

u

)
∇i4φ

+
∑

i1+i2+i3+i4=i−1

∇i1(η + η)i2∇i3β∇i4φ.

The following further simplified version is useful in the latter sections:

Proposition 5.13. Suppose ∇4φ = F0. Let ∇4∇iφ = Fi. Then

Fi =
∑

i1+i2+i3=i

∇i1ψ i2∇i3F0 +
∑

i1+i2+i3+i4=i

∇i1ψ i2∇i3ψ∇i4φ.

Similarly, suppose ∇3φ = G0. Let ∇3∇iφ = Gi. Then

Gi − i

2
trχ∇iφ =

∑
i1+i2+i3=i

∇i1ψ i2∇i3G0 +
∑

i1+i2+i3=i

∇i1ψ i2∇i3φ

+
∑

i1+i2+i3=i,i3≤i−1

trχ∇i1ψ i2∇i3φ.

Proof. We first replace β and β using the schematic Codazzi equations:

β = ∇ψ + ψψ,

β = ∇ψ + ψ (trχ+ ψ ).

We then replace trχ and χ̂ by ψ , as well as substitute η, η, χ̂ and trχ+ 2
u

with ψ . �

5.5. General elliptic estimates for Hodge systems

In this subsection, we prove elliptic estimates for general Hodge systems. To
this end, we recall the definition of the divergence and curl of a symmetric
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covariant tensor of an arbitrary rank:

(div φ)A1···Ar
= ∇BφBA1···Ar

,

(curl φ)A1···Ar
= ε/BC∇BφCA1···Ar

,

where ε/ is the volume form associated to the metric γ. Recall also that the
trace is defined to be

(tr φ)A1···Ar−1
= (γ−1)BCφBCA1···Ar−1

.

The following is the main L2(Su,u) elliptic estimate that we will use:

Proposition 5.14. We continue to work under the assumptions of The-
orem 3.1 and the bootstrap assumptions (4.1), (4.2), (4.3) and (4.4). Let
φ be a totally symmetric r + 1 covariant tensorfield on a 2-sphere (S2, γ)
satisfying

div φ = f, curl φ = g, trφ = h.

Then, for 1 ≤ i ≤ 4, we have

‖ui∇iφ‖L2(Su,u) �
i−1∑
j=0

(‖uj+1∇j(f, g)‖L2(Su,u)

+ ‖uj∇jh‖L2(Su,u) + ‖uj∇jφ‖L2(Su,u)

)
.

Proof. Recall the following identity from Chapter 7 in [6] that for φ, f , g
and h as above

(5.8)

∫
Su,u

(
|∇φ|2 + (r + 1)K|φ|2

)
=

∫
Su,u

(
|f |2 + |g|2 +K|h|2

)
.

Notice that ‖K‖L∞
u L∞

u L∞(Su,u) � 1
|u|2 by the bootstrap assumption (4.4) and

the Sobolev embedding theorem (Proposition 5.9). This implies the conclu-
sion for i = 1 after multiplying (5.8) by u2. For i > 1, we recall again from
[6] that the symmetrized angular derivative of φ defined by

(∇φ)sBA1···Ar+1
:=

1

r + 2

(
∇BφA1···Ar

+

r+1∑
i=1

∇Ai
φA1···<Ai>B···Ar+1

)
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satisfies the div-curl system

div (∇φ)s = (∇f)s − 1

r + 2
(∗∇g)s + (r + 1)Kφ− 2K

r + 1
(γ ⊗s h)

curl (∇φ)s =
r + 1

r + 2
(∇g)s + (r + 1)K(∗φ)s

tr (∇φ)s =
2

r + 2
f +

r

r + 2
(∇h)s,

where

(γ ⊗s h)A1···Ar+1
:= γAiAj

∑
i<j=1,··· ,r+1

hA1···<Ai>···<Aj>···Ar+1

and

(∗φ)sA1···Ar+1
:=

1

r + 1

r+1∑
i=1

ε/Ai

BφA1···<Ai>B···Ar
.

Using (5.8), we therefore obtain that for i = 2, we have

‖∇2φ‖2L2(Su,u)
� ‖∇f‖2L2(Su,u)

+ ‖∇g‖2L2(Su,u)

+ ‖K(|∇φ|2 + |f |2 + |∇h|2)‖L1(Su,u)

+ ‖Kφ‖2L2(Su,u)
+ ‖Kh‖2L2(Su,u)

.

Using again ‖K‖L∞
u L∞

u L∞(Su,u) � 1
|u|2 , we have

‖∇2φ‖2L2(Su,u)
� ‖∇(f, g)‖2L2(Su,u)

+
1

|u|2 (‖∇(φ, h)‖2L2(Su,u)
+ ‖f‖2L2(Su,u)

)

+
1

|u|4 ‖(φ, h)‖
2
L2(Su,u)

,

which implies, after multiplying by |u|4, that

‖u2∇2φ‖2L2(Su,u)
� ‖u2∇(f, g)‖2L2(Su,u)

+ ‖u∇(φ, h)‖2L2(Su,u)

+ ‖uf‖2L2(Su,u)
+ ‖(φ, h)‖2L2(Su,u)

�
∑
j≤1

(‖uj+1∇j(f, g)‖2L2(Su,u)
+ ‖uj∇j(φ, g)‖L2(Su,u)).
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Iterating the procedure and applying (5.8), we thus obtain that for i ≤ 4,

‖∇iφ‖2L2(Su,u)
� ‖∇i−1(f, g)‖2L2(Su,u)

+ ‖K(|∇i−1(φ, h)|2 + |∇i−2(f, g)|2)‖L1(Su,u)

+

∥∥∥∥K( ∑
i1+i2=i−3

∇i1K∇i2(φ, h)

)2∥∥∥∥
L1(Su,u)

+

∥∥∥∥K( ∑
i1+i2=i−4

∇i1K∇i2f

)2∥∥∥∥
L1(Su,u)

+
∑

i1+i2=i−2

‖∇i1K∇i2(φ, h)‖2L2(Su,u)

+
∑

i1+i2=i−3

‖∇i1K∇i2(f, g)‖2L2(Su,u)

+
∑

i1+i2=i−4

‖K∇i1K∇i2(φ, h)‖2L2(Su,u)

where we have used the convention that
∑

i≤−1 = 0. By the bootstrap as-
sumption (4.4) and Sobolev embedding (Proposition 5.9), we have∑

i≤2

‖ui∇iK‖L∞(Su,u) � 1.

Therefore, for i ≤ 4, we have

‖ui∇iφ‖2L2(Su,u)
�

∑
j≤i−1

‖uj+1∇j(f, g)‖2L2(Su,u)
+ ‖uj∇j(φ, h)‖2L2(Su,u)

.

�

For the special case that φ a symmetric traceless 2-tensor, we only need
to know its divergence:

Proposition 5.15. Suppose φ is a symmetric traceless 2-tensor satisfying

div φ = f.

Then, under the assumptions of Theorem 3.1 and the bootstrap assumptions
(4.1), (4.2), (4.3) and (4.4), for 1 ≤ i ≤ 4, we have

‖ui∇iφ‖L2(Su,u) �
i−1∑
j=0

(‖uj+1∇jf‖L2(Su,u) + ‖uj∇jφ‖L2(Su,u)).
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Proof. In view of Proposition 5.14, this Proposition follows from

curl φ =∗ f.

This is a straightforward computation using the fact that φ is both symmet-
ric and traceless. �

6. L2(Su,u) estimates for Ricci coefficients

In this section, we prove estimates for the Ricci coefficients and their first
four angular derivatives in L2(S).

Before we proceed to prove estimates for the Ricci coefficients, we first
make a preliminary observation regarding the bounds for ψ and its deriva-
tives and products. These follow directly from the bootstrap assumption (4.1).

Proposition 6.1. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L2(Su,u) �
∑
i1≤4

‖ui1+1∇i1ψ‖L2(Su,u)

and ∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞(Su,u) �
∑
i1≤2

‖ui1+2∇i1ψ‖L∞(Su,u).

In particular, by (4.1), we have∑
i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L2(Su,u) +
∑

i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞(Su,u)

� δa
1

2 b
1

4 .

Proof. For the L2(Su,u) estimates, we have∑
i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L2(Su,u)

�
(∑

i1≤4

‖ui1+1∇i1ψ‖L2(Su,u)

)(∑
i2≤4

∑
i3≤2

‖ui3+1∇i3ψ‖i2L∞(Su,u)

)
�
∑
i1≤4

‖ui1+1∇i1ψ‖L2(Su,u),
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since by (4.1) and Sobolev embedding, we have

∑
i3≤2

‖ui3+1∇i3ψ‖L∞(Su,u) �
δa

1

2 b
1

4

|u| � 1

b
3

4

.

Similarly, we have∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞(Su,u)

�
(∑

i1≤2

‖ui1+2∇i1ψ‖L∞(Su,u)

)(∑
i2≤2

∑
i3≤2

‖ui3+1∇i3ψ‖i2L∞(Su,u)

)
�
∑
i1≤2

‖ui1+2∇i1ψ‖L∞(Su,u).

�
We now proceed to the estimates for the Ricci coefficients and their

derivatives. We will first bound the terms we denote as ψ , first with χ̂
(Proposition 6.2), then trχ (Proposition 6.3) and ω (Proposition 6.4). We
will then turn to the estimates for ψ in Proposition 6.6. We begin with χ̂:

Proposition 6.2. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have∑

i≤4

‖ui∇iχ̂‖L2(Su,u) � a
1

2 .

Proof. We use the null structure equation

∇3χ̂+
1

2
trχχ̂ = ∇η + ψψ + ψψ.

Commuting this equation with i angular derivatives, we have

∇3∇iχ̂+
i+ 1

2
trχ∇iχ̂

= ∇i+1η +
∑

i1+i2=i

∇i1ψ i2+2 +
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3ψ

+
∑

i1+i2+i3=i−1

1

u
∇i1ψ i2+1∇i3ψ.

We apply Proposition 5.5 with λ0 =
i+1
2 , which shows that the quantity

‖ui∇iχ̂‖L∞
u L∞

u L2(Su,u) can be controlled by the sum of its initial value and
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the ‖ui · ‖L∞
u L1

uL
2(Su,u) norm of the right hand side. We now estimate each of

the terms on the right hand side of the equation for i ≤ 4. We first control
the linear term in η for i ≤ 3:

∑
i≤3

‖ui∇i+1η‖L1
uL

2(Su,u) ≤
∑
i≤3

∥∥∥∥ 1

|u|2
∥∥∥∥
L1

u

‖ui+2∇i+1ψ‖L∞
u L2(Su,u)

� δa
1

2 b
1

4

|u| .

using the bootstrap assumption (4.1).
For the highest order derivative, i.e., when i = 4, we have

‖u4∇5η‖L1
uL

2(Su,u) ≤
∥∥∥∥ 1

|u|
∥∥∥∥
L2

u

‖u5∇5η‖L2
uL

2(Su,u)

� δ
1

2a
1

2

|u| 12
Õ5,2 �

δ
1

2a
1

2 b
1

4

|u| 12
.

We then control the second and third terms together. Here, we use the
estimates derived in Proposition 6.1.

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i

ui∇i1ψ i2+1∇i3(ψ, ψ )

∥∥∥∥∥
L1

uL
2(Su,u)

(6.1)

�
∑

i1+i2≤4

‖ui1+i2−1∇i1ψ i2+1‖L1
uL

2(Su,u)

×
∑
i3≤2

‖ui3+1∇i3(ψ, ψ )‖L∞
u L∞(Su,u)

+
∑

i1+i2≤2

‖ui1+i2−1∇i1ψ i2+1‖L1
uL

∞(Su,u)

×
∑
i3≤4

‖ui3+1∇i3(ψ, ψ )‖L∞
u L2(Su,u)

� δa
1

2 b
1

4

|u|

(
a

1

2 b
1

4 +
δa

1

2 b
1

4

|u|

)

� δab
1

2

|u| .
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Finally, we control the last term by

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i−1

ui−1∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L1

uL
2(Su,u)

(6.2)

�
∑

i1+i2≤3

‖ui1+i2−1∇i1ψ i2+1‖L1
uL

2(Su,u)

∑
i3≤1

‖ui3+1∇i3ψ‖L∞
u L∞(Su,u)

+
∑

i1+i2≤1

‖ui1+i2−1∇i1ψ i2+1‖L1
uL

∞(Su,u)

∑
i3≤3

‖ui3+1∇i3ψ‖L∞
u L2(Su,u)

� δa
1

2 b
1

4

|u|

(
a

1

2 b
1

4 +
δa

1

2 b
1

4

|u|

)

� δab
1

2

|u| .

We now apply the condition |u| ≥ δa
1

2 b. For b sufficiently large and a ≥ b, it
is easy to see that all the terms above are of size

� δ
1

2a
3

4

|u| 12
� a

1

2

b
1

2

� a
1

2 .

Recalling that initially we have∑
i≤4

‖∇iχ̂0‖L∞
u L2(S0,u) ≤ a

1

2

and using the above estimates, we get∑
i≤4

‖ui∇iχ̂‖L∞
u L2(Su,u) � a

1

2 .

�

We next prove the estimates for trχ and its derivatives. It will be useful to
show not only that ∇itrχ obey the required estimates for ∇iψ but also to
obtain a slightly more refined bound as follows:

Proposition 6.3. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

∑
i≤4

∥∥∥∥ui+1∇i

(
trχ− 2

|u|
)∥∥∥∥

L2(Su,u)

� δa.



52 X. An and J. Luk

Proof. Using the null structure equation, we have

∇4

(
trχ− 2

|u|
)

= χ̂χ̂+ ωtrχ+ trχtrχ.

Notice that we have put in the term − 2
|u| in the equation for ∇4trχ. The

∇4 derivative of this term is 0. We put in this additional term because the
initial value for trχ− 2

|u| onH0 is 0. Commuting this equation with i angular
derivatives, we have

∇4∇i

(
trχ− 2

|u|
)

=
∑

i1+i2+i3+i4=i

∇i1ψ i2∇i3χ̂∇i4χ̂

+
∑

i1+i2+i3+i4=i

∇i1ψ i2∇i3ψ∇i4trχ

+
∑

i1+i2+i3=i

1

|u|∇
i1ψ i2∇i3ψ.

We now use Proposition 5.4 to bound ‖ui+1∇i(trχ− 2
|u|)‖L∞

u L∞
u L2(Su,u) by

controlling the right hand side in the ‖ui+1 · ‖L∞
u L1

uL
2(Su,u) norm.

We first bound each of the three terms in the case where i2 = 0. We first
consider the contribution from

∑
i1+i2+i3+i4=i∇i1ψ i2∇i3χ̂∇i4χ̂ where i2 = 0

(and as a consequence i1 = 0). In this term, we will see estimates that are
“borderline”, but we will use the fact that the bound derived for ∇iχ̂ in
Proposition 6.2 is independent of the bootstrap assumption (4.1) and does
not suffer a loss of b

1

4 . More precisely, we have the bound

∑
i≤4

∥∥∥∥∥ ∑
i3+i4=i

ui+1∇i3χ̂∇i4χ̂

∥∥∥∥∥
L1

uL
2(Su,u)

� δ
∑
i3≤2

‖ui3+1∇i3χ̂‖L∞
u L∞

u L∞(Su,u)

∑
i4≤4

‖ui4∇i4χ̂‖L∞
u L∞

u L2(Su,u)

� δa.

We now consider the contribution from
∑

i1+i2+i3+i4=i∇i1ψ i2∇i3ψ∇i4trχ
with i2 = 0.
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∑
i≤4

∥∥∥∥∥ ∑
i3+i4=i

ui+1∇i3ψ∇i4trχ

∥∥∥∥∥
L1

uL
2(Su,u)

� δ
∑
i3≤2

‖ui3∇i3ψ‖L∞
u L∞

u L∞(Su,u)

∑
i4≤4

‖ui4+1∇i4trχ‖L∞
u L∞

u L2(Su,u)

+ δ
∑
i3≤4

‖ui3+1∇i3ψ‖L∞
u L∞

u L2(Su,u)

∑
i4≤4

‖ui4∇i4trχ‖L∞
u L∞

u L∞(Su,u)

� δa
1

2 b
1

4

|u|
∑
i≤4

∥∥∥∥ui+1∇i

(
trχ− 2

|u|
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

+ δa
1

2 b
1

4 ,

where we have used the bootstrap assumption (4.2) together with Sobolev
embedding in Proposition 5.9.

The contribution of the third term, i.e.,
∑

i1+i2+i3=i
1
|u|∇i1ψ i2∇i3ψ ,

where i2 = 0 can be controlled by∑
i≤4

‖ui∇iψ‖L1
uL

2(Su,u) � δ
∑
i≤4

‖ui∇iψ‖L∞
u L∞

u L2(Su,u) � δa
1

2 b
1

4 ,

using the bootstrap assumption (4.2).
We now move to the terms where i2 ≥ 1. It turns out that the ψ fac-

tors provide extra smallness and we can use the bootstrap assumption (4.2)
together with Proposition 6.1 to deal with the first two terms18 to get

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3+i4=i−1

ui+1∇i1ψ i2+1∇i3ψ∇i4ψ

∥∥∥∥∥
L1

uL
2(Su,u)

� δ

|u|
∑

i1+i2≤3
i1≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞

u L∞(Su,u)

×
∑
i4≤3

‖ui4∇i4ψ‖L∞
u L∞

u L2(Su,u)

+
δ

|u|‖u
4∇3ψ‖L∞

u L∞
u L2(Su,u)‖uψ‖L∞

u L∞
u L∞(Su,u)‖uψ‖L∞

u L∞
u L∞(Su,u)

� δ2a
3

2 b
3

4

|u| .

18Notice that we have relabeled i2 to simplify the notation. We have also used
the schematic notation to write χ̂ and trχ as ψ .
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The third term can be handled in a similar way in the case i2 ≥ 1 using
Proposition 6.1 and the bootstrap assumption (4.2)

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i−1

ui∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L1

uL
2(Su,u)

� δ

|u|
∑

i1+i2≤3
i1≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

∑
i3≤3

‖ui3∇i3ψ‖L∞
u L∞

u L2(Su,u)

+
δ

|u|‖u
4∇3ψ‖L∞

u L∞
u L2(Su,u)‖uψ‖L∞

u L∞
u L∞(Su,u)

� δ2ab
1

2

|u| .

Recall that the initial data for trχ− 2
|u| is vanishing. Therefore, by

Proposition 5.4 and using the condition |u| ≥ δa
1

2 b, we have

∑
i≤4

∥∥∥∥ui+1∇i

(
trχ− 2

|u|
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

� δa+
1

b
3

4

∑
i≤4

∥∥∥∥ui+1∇i

(
trχ− 2

|u|
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

.

For b sufficiently large, we can subtract the last term from both sides to get

∑
i≤4

∥∥∥∥ui+1∇i

(
trχ− 2

|u|
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

� δa.

�

We next prove the desired estimates for ω and its derivatives. We will
show that it obeys a slightly better estimate than a general component ψ .
Moreover, the bound improves if we take at least one angular derivative.

Proposition 6.4. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

∑
i≤4

‖ui∇iω‖L2(Su,u) � 1 +
δ

1

2a
3

4

|u| 12
.
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If i �= 0, we get the improved bound

∑
1≤i≤4

‖ui∇iω‖L2(Su,u) �
δ

1

2a
3

4

|u| 12
.

Proof. We use the following schematic null structure equation for ω:

∇3ω = K + ψψ + ψψ + trχtrχ.

Commuting it with angular derivative for i times, we have

∇3∇iω +
i

2
trχ∇iω

=
∑

i1+i2+i3≤i

∇i1ψ i2∇i3K +
∑

i1+i2=i

∇i1ψ i2+2 +
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3ψ

+
∑

i1+i2+i3=i−1

1

u
∇i1ψ i2+1∇i3ψ +

1

u
∇itrχ.

We apply Proposition 5.5 with λ0 =
i
2 . In particular, since the initial

data for ω vanishes, we can estimate ‖ui−1∇iω‖L∞
u L∞

u L2(Su,u) by the ‖ui−1 ·
‖L∞

u L1
uL

2(Su,u) norm of the right hand side. To estimate each of the terms in

the equation, we note that all terms except for the K term and the 1
u∇itrχ

term have been controlled in the proof of Proposition 6.2 and 6.3. More
precisely, by (6.1) and (6.2), we have

∑
i≤4

‖ui−1Fi‖L∞
u L1

uL
2(Su,u) �

∑
i≤4

1

|u|‖u
iFi‖L∞

u L1
uL

2(Su,u) �
δ

1

2a
1

2 b
1

4

|u| 32
� δ

1

2a
3

4

|u| 32
,

where Fi is defined to be

Fi =
∑

i1+i2=i

∇i1ψ i2+2 +
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3ψ

+
∑

i1+i2+i3=i−1

1

u
∇i1ψ i2+1∇i3ψ.

There are two remaining terms: the term with K and the term 1
u∇itrχ. We

first estimate the term containing the Gauss curvature K. We split up the
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term into

K �
(
K − 1

|u|2
)
+

1

|u|2 .

For the term with (K − 1
|u|2 ), if i2 = 0, we have

∑
i≤4

∥∥∥∥ui−1∇i

(
K − 1

|u|2
)∥∥∥∥

L1
uL

2(Su,u)

�
∑
i≤4

∥∥∥∥ui+1∇i

(
K − 1

|u|2
)∥∥∥∥

L2
uL

2(Su,u)

‖u−2‖L2
u

� δ
1

2a
1

2 b
1

4

|u| 32
� δ

1

2a
3

4

|u| 32
,

where in the second inequality, we have used the bootstrap assumption (4.3).
For i2 ≥ 1, we get19 the better estimate∑

i≤4

∥∥∥∥ ∑
i1+i2+i3=i−1

ui−1∇i1ψ i2+1∇i3

(
K − 1

|u|2
)∥∥∥∥

L1
uL

2(Su,u)

�
∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L2(Su,u)

×
∑
i3≤2

∥∥∥∥ui3+2∇i3

(
K − 1

|u|2
)∥∥∥∥

L2
uL

∞(Su,u)

‖u−3‖L2
u

+
∑

i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞(Su,u)

×
∑
i3≤4

∥∥∥∥ui3+1∇i3

(
K − 1

|u|2
)∥∥∥∥

L2
uL

2(Su,u)

‖u−3‖L2
u

�
∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L2(Su,u)

×
∑
i3≤4

∥∥∥∥ui3+1∇i3

(
K − 1

|u|2
)∥∥∥∥

L2
uL

2(Su,u)

‖u−3‖L2
u

� δa
1

2 b
1

4

|u| 52
· δ 1

2a
1

2R � δ
1

2a
1

2

|u| 32
,

where in the second inequality, we have used the Sobolev embedding in
Proposition 5.9; in the third inequality, we have applied Proposition 6.1

19Notice that we have relabeled i2
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and in the last estimate, we have used the bootstrap assumption (4.3) and
|u| ≥ δa

1

2 b.
We then move to the contribution arising from 1

|u|2 . Notice that for this
term, the only possibility for having i2 = 0 is when i = 0. In this case, the
term can be controlled by∥∥∥∥u−1 1

|u|2
∥∥∥∥
L1

uL
2(Su,u)

� 1

|u| .(6.3)

For i2 ≥ 1, we have

∑
i≤4

∥∥∥∥∥ ∑
i1+i2=i−1

ui−1∇i1ψ i2+1 1

|u|2
∥∥∥∥∥
L1

uL
2(Su,u)

�
∑

i1+i2≤3

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L2(Su,u)‖u−3‖L1

u

� δa
1

2 b
1

4

|u|2 � δa
3

4

|u|2 ,

where in the second inequality, we have used the bootstrap assumption (4.1).
Combining all the above estimates, we have

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i−1

ui−1∇i1ψ i2+1∇i3

(
K − 1

|u|2
)∥∥∥∥∥

L1
uL

2(Su,u)

(6.4)

� 1

|u| +
δ

1

2a
3

4

|u| 32
.

Notice moreover that the appearance of the term 1
|u| is only due to the

contribution of (6.3) and is only present when i = 0. We now estimate the
remaining term by:

∑
i≤4

‖ui−2∇itrχ‖L1
uL

2(Su,u) �
δa

|u|2 +
1

|u| �
δ

1

2a
3

4

|u| 32
+

1

|u| ,(6.5)

using the bound for ∇itrχ in Proposition 6.3. Moreover, for i ≥ 1, since
∇itrχ = ∇i(trχ− 2

|u|), we have the improved bound

∑
1≤i≤4

‖ui−2∇itrχ‖L1
uL

2(Su,u) �
δ

1

2a
3

4

|u| 32
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using Proposition 6.3.
Collecting the above estimates, we have

∑
i≤4

‖ui−1∇iω‖L2(Su,u) �
1

|u| +
δ

1

2a
3

4

|u| 32
.

Multiplying by |u|, we get

∑
i≤4

‖ui∇iω‖L2(Su,u) � 1 +
δ

1

2a
3

4

|u| 12
.

Moreover, if i �= 0, the worst terms in (6.4) and (6.5) contributing to the
bound 1 are absent. Therefore, we have

∑
1≤i≤4

‖ui∇iω‖L2(Su,u) �
δ

1

2a
3

4

|u| 12
.

�

We summarize the estimates that we have already proved for ψ and its
derivatives:

Proposition 6.5. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have∑

i≤4

1

a
1

2

‖ui∇iψ‖L2(Su,u) � 1.

We now estimate the L2(Su,u) norms of the first four derivatives of the
remaining Ricci coefficients, i.e., the Ricci coefficients that we call ψ :

Proposition 6.6. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have∑

i≤4

1

δa
1

2

‖ui+1∇iψ‖L2(Su,u) � 1 + Õ5,2 +R.

We also have the more precise bound∑
i≤4

1

δa
1

2

‖ui+1∇iψ‖L2(Su,u) � 1 +
1

δ
1

2a
1

2

‖u5∇5ω‖L∞
u L2

uL
2(Su,u) +R,
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i.e., the only dependence on Õ5,2 is through the term

1

δ
1

2a
1

2

‖u5∇5ω‖L∞
u L2

uL
2(Su,u).

Proof. In order to unify the exposition, we will not consider the equation
∇3η, but will instead use the equation ∇4∇ log Ω. Since η = −η + 2∇ log Ω,
the desired estimate for η can be recovered from the bounds for η and
∇ log Ω.

For ψ ∈ {η,∇ log Ω, trχ+ 2
u , χ̂, ω}, we have the schematic transport

equation

∇4ψ = β +∇ω +K +∇η + ψψ + ψψ +
1

u
ψ.

Notice moreover that by the assumption of Minkowskian data on the initial
incoming cone, all of these quantities ψ are initially 0.

Commuting the above equation with angular derivatives, we get

∇4∇iψ = ∇iβ +∇i+1(ω, η) +
∑

i1+i2+i3=i

∇i1ψ i2∇i3K

+
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3(ψ, ψ ) +
∑

i1+i2+i3=i

1

u
∇i1ψ i2∇i3ψ.

By Proposition 5.4 and the triviality of ψ on H0, in order to estimate the
quantity ‖ui∇iψ‖L∞

u L2(Su,u), it suffices to bound the ‖ui · ‖L1
uL

2(Su,u) norm
of the right hand side. We now estimate each of the terms in the equation.
We first control the β term

(6.6)
∑
i≤4

‖ui∇iβ‖L1
uL

2(Su,u) ≤
δ

1

2

|u|
∑
i≤4

‖ui+1∇iβ‖L2
uL

2(Su,u) �
δa

1

2

|u| R.

We now turn to the term ∇i+1ω. For i ≤ 3, we apply the estimates in Propo-
sition 6.5, while for i = 4, we use Õ5,2 to get∑

i≤4

‖ui∇i+1ω‖L1
uL

2(Su,u)(6.7)

� δ

|u|
∑
i≤3

‖ui+1∇i+1ψ‖L∞
u L2(Su,u) +

δ
1

2

|u|‖u
5∇5ω‖L2

uL
2(Su,u)

� δa
1

2

|u| (1 + Õ5,2).
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For the ∇i+1η term, we have

∑
i≤4

‖ui∇i+1η‖L1
uL

2(Su,u)(6.8)

� δ

|u|2
∑
i≤3

‖ui+2∇i+1ψ‖L∞
u L2(Su,u) +

δ
1

2

|u|2 ‖u
6∇5η‖L2

uL
2(Su,u)

� δ2a
1

2 b
1

4

|u|2 +
δ2a

3

4 b
1

4

|u|2 � δ2a
3

4 b
1

4

|u|2 ,

where we have used the bootstrap assumptions (4.1) and (4.3).
We control the term containing the Gauss curvature K as follows:

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i

ui∇i1ψ i2∇i3K

∥∥∥∥∥
L1

uL
2(Su,u)

(6.9)

� δ
1

2

|u|2
∑
i≤4

∥∥∥∥ui+2∇i

(
K − 1

|u|2
)∥∥∥∥

L2
uL

2(Su,u)

+ δ‖u−2‖L2(Su,u)

+
δ

1

2

|u|3
∑

i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞(Su,u)

×
∑
i3≤4

∥∥∥∥ui3+2∇i3

(
K − 1

|u|2
)∥∥∥∥

L2
uL

2(Su,u)

+
δ

1

2

|u|3
∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L2(Su,u)

×
(∑

i3≤2

∥∥∥∥ui3+1∇i3

(
K − 1

|u|2
)∥∥∥∥

L2
uL

∞(Su,u)

+ δ
1

2 |u|
)

� δ2a
3

4 b
1

4

|u|2 +
δ

|u| +
δ3a

5

4 b
1

2

|u|3 +
δ2a

1

2 b
1

4

|u|2

� δ2a
3

4 b
1

4

|u|2 +
δ

|u| ,

where in the second inequality we have used the bootstrap assumptions
(4.1) and (4.3), and in the final inequality we have used |u| ≥ δa

1

2 b and
b ≤ a. Moreover, notice that the contribution for δ

|u| comes from only from

the term i = 0. For i ≥ 1, since ∇iK = ∇i(K − 1
|u|2 ), we have the improved
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bound

∑
1≤i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i

ui∇i1ψ i2∇i3K

∥∥∥∥∥
L1

uL
2(Su,u)

� δ2a
3

4 b
1

4

|u|2 .(6.10)

The fourth term can be bounded as follows:

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i

ui∇i1ψ i2+1∇i3(ψ, ψ )

∥∥∥∥∥
L1

uL
2(Su,u)

(6.11)

� δ

|u|2
∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L2(Su,u)

×
∑
i3≤2

‖ui3+1∇i3(ψ, ψ )‖L∞
u L∞(Su,u)

+
δ

|u|2
∑

i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞(Su,u)

×
∑
i3≤4

‖ui3∇i3(ψ, ψ )‖L∞
u L2(Su,u)

� δ2ab
1

4

|u|2 +
δ3ab

1

2

|u|3 � δ2ab
1

4

|u|2 ,

where in the last line we have used Proposition 6.5 to control ψ and used
Proposition 6.1 to control the product of ψ , as well as using Sobolev em-
bedding in Proposition 5.9. We then control the final term as follows:

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i

ui−1∇i1ψ i2∇i3ψ

∥∥∥∥∥
L1

uL
2(Su,u)

(6.12)

� δ

|u|
∑
i≤4

‖ui∇iψ‖L∞
u L2(Su,u)

+
δ

|u|2
∑

i1+i2≤3

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L2(Su,u)

∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞(Su,u)

+
δ

|u|2
∑

i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞(Su,u)

∑
i3≤4

‖ui3∇i3ψ‖L∞
u L2(Su,u)

� δa
1

2

|u| +
δ2ab

1

4

|u|2 ,
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where as before we have used Proposition 6.5 to control ψ and used Propo-
sition 6.1 to estimate the product of ψ , as well as using Sobolev embedding
in Proposition 5.9.

Therefore, applying Proposition 5.4, using the estimates above and using
|u| ≥ δa

1

2 b, we get

∑
i≤4

‖ui∇iψ‖L∞
u L2(Su,u) �

δa
1

2

|u| (1 + Õ5,2 +R).

Moreover, notice that the term Õ5,2 only comes from controlling∇5ω in (6.7).
Therefore, we have the improved estimate

∑
i≤4

‖ui∇iψ‖L2(Su,u) �
δa

1

2

|u|
(
1 +

1

δ
1

2a
1

2

‖u5∇5ω‖L∞
u L2

uL
2(Su,u) +R

)
.

�
From the proof of Proposition 6.6, we also get the following additional

bound for ∇i(trχ+ 2
|u|) for i ≥ 1:

Proposition 6.7. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

∑
1≤i≤4

∥∥∥∥ui∇i

(
trχ+

2

|u|
)∥∥∥∥

L2(Su,u)

� δ
3

2a
3

4

|u| 32
.

Proof. Notice that trχ+ 2
|u| satisfies the equation

∇4

(
trχ+

2

|u|
)

= K +∇η + ψψ + ψψ +
1

u
(trχ, ω).

This equation can be derived from the usual equation for ∇4trχ and not-
ing that ∇4u = 0. In particular, compared to the equation for a general
component ψ , we do not have the terms β, ∇ω and 1

u χ̂.
Commuting the above equation with angular derivatives, we get

∇4∇i

(
trχ+

2

|u|
)

= ∇i+1η +
∑

i1+i2+i3=i

∇i1ψ i2∇i3K

+
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3(ψ, ψ )

+
∑

i1+i2+i3=i

1

u
∇i1ψ i2∇i3(trχ, ω).
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We now revisit the proof of Proposition 6.6. Notice that except for the terms
in (6.6), (6.7), (6.9) and (6.12), the error terms in the proof of Proposition 6.6

satisfy the better bound δ2ab
1
4

|u|2 . Since there are no ∇iβ and ∇i+1ω terms in

the equation for ∇i(trχ+ 2
|u|), the contributions of δa

1
2

|u| (1 + Õ3,2 +R) from

(6.6) and (6.7) are absent. Moreover, since we have i ≥ 1, the term δ
|u| from

(6.9) is also absent (and we have the bound (6.10) instead). We now revisit
the estimate in (6.12), using the fact that we only have trχ and ω and that
χ̂ is absent:

∑
1≤i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i

ui−1∇i1ψ i2∇i3(trχ, ω)

∥∥∥∥∥
L1

uL
2(Su,u)

� δ

|u|
∑

1≤i≤4

‖ui∇i(trχ, ω)‖L∞
u L2(Su,u)

+
δ

|u|2
∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L2(Su,u)

×
∑
i3≤2

‖ui3+1∇i3(trχ, ω)‖L∞
u L∞(Su,u)

+
δ

|u|2
∑

i1+i2≤2

‖ui1+i2∇i1+2ψ i2+1‖L∞
u L∞(Su,u)

×
∑
i3≤4

‖ui3∇i3(trχ, ω)‖L∞
u L2(Su,u)

� δ2a

|u|2 +
δ

3

2a
3

4

|u| 32
+

δ2ab
1

4

|u|2 � δ
3

2a
3

4

|u| 32
,

where in addition to using Proposition 6.1, we have used the improved
bounds for ∇itrχ and ∇iω derived in Propositions 6.3 and 6.4 respectively.
Combining this with (6.8), (6.10) and (6.11), we obtain the desired conclu-
sion. �
Besides ∇i(trχ+ 2

|u|), we also need an improved bound for ∇i log Ω for 1 ≤
i ≤ 4:

Proposition 6.8. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

∑
1≤i≤4

‖ui−1∇i log Ω‖L∞
u L∞

u L2(Su,u) �
δ

3

2a
3

4

|u| 32
.
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Proof. Recall that

∇4∇i log Ω = ∇iω +
∑

i1+i2+i3=i−1

∇i1ψ i2+1∇i3ψ.

We would like to control ∇i log Ω in the norm ‖ui−1∇i log Ω‖L∞
u L∞

u L2(Su,u).
By Proposition 5.4, we thus have to estimate the right hand side in the norm
‖ui−1 · ‖L∞

u L1
uL

2(Su,u). The first term can be bounded with the estimate for

∇iω for 1 ≤ i ≤ 4 in Proposition 6.4. We also need to take advantage of the
improved bound that we achieve for i �= 0. More precisely, we have

∑
1≤i≤4

‖ui−1∇iω‖L∞
u L1

uL
2(Su,u) �

δ
3

2a
3

4

|u| 32
.

The second term can be controlled with the aid of (6.11):

∑
1≤i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i−1

ui−1∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L∞

u L1
uL

2(Su,u)

=
∑
i≤3

∥∥∥∥∥ ∑
i1+i2+i3=i

ui∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L∞

u L1
uL

2(Su,u)

� δ2a
3

4 b
1

4

|u|2 � δ
3

2a
3

4

|u| 32

since |u| ≥ δa
1

2 b. �
We also note that the∇4 equation forK − 1

|u|2 contains exactly the same

type of terms as the ∇4 equation for ∇ψ . Therefore, ∇i(K − 1
|u|2 ) obeys the

same estimates as ∇i+1ψ for i ≤ 3. More precisely, we have

Proposition 6.9. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have∑

i≤3

∥∥∥∥ui+2∇i

(
K − 1

|u|2
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

� δa
1

2 (1 + Õ5,2 +R).

In particular, ∑
i≤3

∥∥∥∥ui+1∇i

(
K − 1

|u|2
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

� 1

b
3

4

.
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Proof. As mentioned above, by repeating the proof of Proposition 6.6, we
obtain the bound∑

i≤3

1

δa
1

2

∥∥∥∥ui+2∇i

(
K − 1

|u|2
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

� 1 + Õ5,2 +R.

Multiplying by δa
1
2

|u| , we obtain

∑
i≤3

∥∥∥∥ui+1∇i

(
K − 1

|u|2
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

� δa
1

2 b
1

4

|u| � 1

b
3

4

.

�

7. Elliptic estimates for the fifth derivatives of the Ricci
coefficients

We now estimate the fifth angular derivatives of the Ricci coefficients. As in
[7], [11], [6] and [14], this is achieved by a combination of transport estimates
and elliptic estimates. This is because curvature enters as source terms in the
transport equations for the Ricci coefficients. As a result, with the bounds for
four derivatives of the curvature components, we can only obtain estimates
for the four derivatives of the Ricci coefficients. The standard approach is
therefore to control some chosen linear combination of some derivatives of
the Ricci coefficients and curvature components via transport estimates. We
then recover the bounds for the remaining highest derivatives of the Ricci
coefficients by L2 elliptic estimates on Su,u.

We now begin with the estimates for trχ and χ̂:

Proposition 7.1. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

‖u6∇5trχ‖L2
uL

2(Su,u) � δ
3

2ab
1

4

and

‖u5∇5χ̂‖L2
uL

2(Su,u) � δ
1

2a
1

2 (1 +R).

Proof. Consider the following equation:

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ωtrχ
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Commuting with angular derivatives for i times, we get

∇4∇5trχ =
∑

i1+i2+i3+i4=5

∇i1ψ i2∇i3ψ∇i4ψ.

We will apply Proposition 5.4 to estimate ‖u6∇5trχ‖L∞
u L∞

u L2(Su,u) by the

‖u6 · ‖L∞
u L1

uL
2(Su,u) norm of the right hand side. We separately estimate the

terms with 5 derivatives on ψ and the remaining terms.∥∥∥∥∥u6 ∑
i1+i2+i3+i4=5

∇i1ψ i2∇i3ψ∇i4ψ

∥∥∥∥∥
L∞

u L1
uL

2(Su,u)

� δ
1

2 ‖uψ‖L∞
u L∞(Su,u)‖u5∇5ψ‖L∞

u L2
uL

2(Su,u)

+ δ
∑
i1≤2

‖ui+1∇iψ‖L∞
u L∞

u L∞(Su,u)

∑
i2≤4

‖ui∇iψ‖L∞
u L∞

u L2(Su,u)

+ δ
∑

i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞(Su,u)

∑
i4≤4

‖ui4∇i4ψ‖L∞
u L∞

u L2(Su,u)

+ δ
∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞

u L∞(Su,u)

∑
i4≤2

‖∇i4+1ψ‖L∞
u L∞

u L∞(Su,u)

� δab
1

4 ,

where we have used Proposition 6.1 to control the product of ψ and Propo-
sition 6.5 to bound ψ .

Recall that ∇5trχ = 0 initially on H0. Therefore, we have

‖|u|6∇5trχ‖L∞
u L2(Su,u) � δab

1

4 .

Taking L2 in u, we get

(7.1) ‖|u|6∇5trχ‖L2
uL

2(Su,u) � δ
3

2ab
1

4 .

Recalling the schematic form of the Codazzi equation

div χ̂− 1

2
∇trχ+ β = ψψ,
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we can apply the elliptic estimates in Proposition 5.15 to obtain

‖u5∇5χ̂‖L2(Su,u) �
∑
i≤5

‖ui∇itrχ‖L2(Su,u) +
∑
i≤4

‖ui+1∇iβ‖L2(Su,u)

+
∑
i≤4

∑
i1+i2=i

‖ui+1∇i1ψ∇i2ψ‖L2(Su,u)

+
∑
i≤4

‖ui∇iχ̂‖L2(Su,u).

Taking L2 in u, using the control of ψ from Proposition 6.5, the bound for
ψ in (4.1), as well as the bound (7.1) for ∇5trχ that we have just achieved
above, we obtain

‖u5∇5χ̂‖L2
uL

2(Su,u)

�
∑
i≤5

‖ui∇itrχ‖L2
uL

2(Su,u) +
∑
i≤4

‖ui+1∇iβ‖L2
uL

2(Su,u)

+
∑
i≤4

∑
i1+i2=i

‖ui+1∇i1ψ∇i2ψ‖L2
uL

2(Su,u) +
∑
i≤4

‖ui∇iχ̂‖L2
uL

2(Su,u)

� δ
3

2ab
1

4

|u| + δ
1

2a
1

2 + δ
1

2a
1

2R

� δ
1

2a
1

2 (1 +R),

since |u| ≥ δa
1

2 b. �
We now turn to the estimates for the highest derivative of ω. ∇5ω obeys the
same bounds as ∇5χ̂. However, the proof will proceed in a slightly different
manner as we need to control a transport equation in the ∇3 direction.

Proposition 7.2. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

‖u5∇5ω‖L∞
u L2

uL
2(Su,u) � δ

1

2a
1

2 (1 +R).

Proof. Define ω† to be the solution to

∇3ω
† =

1

2
σ̌,

with zero initial data on H1 and let

κ := ∇ω +∗ ∇ω† − 1

2
β.
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It is easy to see using Proposition 5.5 and the bootstrap assumptions (4.1)
and (4.3) that we have

∑
i≤4

‖ui∇iω†‖L∞
u L∞

u L2(Su,u) � 1 +
δ

1

2a
3

4

|u| 12
� a

1

2 .

The proof of this estimate is similar to that for ω in Proposition 6.4. Hence
for ω† and its first four derivatives, ω† obeys the same estimates as ψ as
given in Proposition 6.5. Therefore, in the remainder of the proof of this
proposition, we will include ω† as one of the ψ terms and use the notation
ψ ∈ {trχ, χ̂, ω, ω†}.

With this modified notation, κ obeys the following transport equation

∇3κ+
1

2
trχκ =

∑
i1+i2+i3=1

ψ i1∇i2

(
trχ+

2

|u| , χ̂, ω
)
∇i3ψ

+
∑

i1+i2=1

ψ i1+1∇i2(η, η) +
1

|u|ψψ +
1

|u|β + ψK.

Commuting with angular derivatives for 4 times, and applying the schematic
Codazzi equation for β:

β =
∑

i1+i2=1

ψ i1∇i2ψ,

we have

∇3∇4κ+
5

2
trχ∇4κ =

∑
i1+i2+i3+i4=5

∇i1ψ i2∇i3

(
trχ+

2

|u| , χ̂, ω
)
∇i4ψ

+
∑

i1+i2+i3=5

∇i1ψ i2+1∇i3(η, η)

+
1

|u|∇
4β +

1

|u|
∑

i1+i2+i3=4

∇i1ψ i2+1∇i3ψ

+
∑

i1+i2+i3+i4=4

∇i1ψ i2∇i3ψ∇i4K.

We estimate ∇4κ using Proposition 5.5. Since we will only need to estimate
∇4κ after integrated in u, we will directly control it in the

‖u4∇4κ‖L2
uL

∞
u L2(Su,u)
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norm. Applying Proposition 5.5 with λ0 =
5
2 , it suffices to estimate the initial

data and the ‖u4 · ‖L2
uL

1
uL

2(Su,u) norm of the right hand side. We now estimate
each of the terms in the equation.

For the term
∑

i1+i2+i3+i4=5∇i1ψ i2∇i3(trχ+ 2
|u| , χ̂, ω)∇i4ψ , we estimate

separately the contributions with the highest order derivatives. These in-
clude the case where there are 5 derivatives on (trχ+ 2

|u| , χ̂, ω) and the case
where there are 5 derivatives on ψ . In the first case, we have

‖u4∇5

(
trχ+

2

|u| , χ̂, ω
)
ψ‖L2

uL
1
uL

2(Su,u)

� δ
1

2 ‖uψ‖L∞
u L∞

u L∞(Su,u)‖u−2‖L2
u
‖u5∇5

×
(
trχ+

2

|u| , χ̂, ω
)
‖L∞

u L2
uL

2(Su,u)

� δ
1

2 · a 1

2 · 1

|u| 32
· δa

1

4 b
1

4

|u| 12
� δ

3

2ab
1

4

|u|2 ,

where we have used the estimate in Proposition 6.5 and the bootstrap as-
sumption (4.3).

In the second case, we have

∥∥∥∥u4(trχ+
2

|u| , χ̂, ω
)
∇5ψ

∥∥∥∥
L2

uL
1
uL

2(Su,u)

� ‖u2ψ‖L∞
u L∞

u L∞(Su,u)‖u−3‖L1
u

× (‖u5∇5(trχ, χ̂, ω)‖L∞
u L2

uL
2(Su,u) + ‖u5∇5ω†‖L∞

u L2
uL

2(Su,u))

� δa
1

2 b
1

4 · δ 1

2a
1

2 b
1

4

|u|2
(
1 +

1

δ
1

2a
1

2

‖u5∇5ω†‖L∞
u L2

uL
2(Su,u)

)
� δ

3

2ab
1

2

|u|2
(
1 +

1

δ
1

2a
1

2

‖u5∇5ω†‖L∞
u L2

uL
2(Su,u)

)
,

where we have used the bootstrap assumptions (4.1) and (4.3).
For the lower order term where each factor has at most 4 derivatives, we

have
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∑
i1+i2+i3=5

i1,i3≤4

‖u4∇i1ψ i2+1∇i3ψ‖L2
uL

1
uL

2(Su,u)(7.2)

� δ
1

2

∑
i1+i2≤5
i1≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3∇i3ψ‖L∞
u L∞

u L2(Su,u)‖u−3‖L1
u

+ δ
1

2

∑
i1+i2≤5
i1≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞

u L∞(Su,u)‖u−3‖L1
u

� δ
3

2ab
1

4

|u|2 ,

where we have used Propositions 6.1 and 6.5.
We now move to the term

∑
i1+i2+i3=5∇i1ψ i2+1∇i3(η, η). As for the

previous term, we will first control the contribution where one of the Ricci
coefficients has 5 derivatives. More precisely, we have

‖u4ψ∇5(η, η)‖L2
uL

1
uL

2(Su,u)

� ‖u2ψ‖L∞
u L∞

u L∞(Su,u)‖u−4‖L1
u
‖u6∇5(η, η)‖L∞

u L2
uL

2(Su,u)

� δa
1

2 b
1

4 · δ 3

2a
3

4 b
1

4

|u|3 � δ
5

2a
5

4 b
1

2

|u|3 ,

using the bootstrap assumptions (4.1) and (4.3).
For the lower order term, since ∇iψ satisfies all the estimates that ∇iψ

for i ≤ 4, we can follow the proof of (7.2) to get

∑
i1+i2+i3=5

i1,i3≤4

‖u4∇i1ψ i2+1∇i3ψ‖L2
uL

1
uL

2(Su,u) �
δ

3

2ab
1

4

|u|2 .

We now move to the third term, which is the term containing β:

‖u3∇4β‖L2
uL

1
uL

2(Su,u) � ‖u−2‖L1
u
‖u5∇4β‖L∞

u L2
uL

2(Su,u) �
δ

1

2a
1

2

|u| R.
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For the fourth term, we have the estimate:∑
i1+i2+i3=4

‖u3∇i1ψ i2+1∇i3ψ‖L2
uL

1
uL

2(Su,u)

� δ
1

2

∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3∇i3ψ‖L∞
u L∞

u L2(Su,u)‖u−3‖L1
u

+ δ
1

2

∑
i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞

u L∞(Su,u)‖u−3‖L1
u

� δ
3

2ab
1

4

|u|2 ,

using the bounds in Propositions 6.1 and 6.5.
Finally, for the fifth term, i.e., the term containing K, we have∑
i1+i2+i3=4

‖u4∇i1ψ i2+1∇i3K‖L2
uL

1
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3+2∇i3

(
K − 1

|u|2
)
‖L∞

u L2
uL

2(Su,u)‖u−4‖L1
u

+
∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
⎛⎝∑

i3≤2

‖ui3+3∇i3

(
K − 1

|u|2
)
‖L∞

u L2
uL

∞(Su,u)‖u−4‖L1
u
+ δ

1

2 ‖u−3‖L1
u

⎞⎠
� δa

1

2 b
1

4

(
δ

3

2a
3

4 b
1

4

|u|3 +
δ

1

2

|u|2
)

� δ
3

2a
3

4

|u|2 ,

using Proposition 6.1 and the bootstrap assumption (4.3).
Combining the above estimates and using the bootstrap assumption

(4.3), we have

‖u4∇4κ‖L2
uL

∞
u L2(Su,u) �

δ
1

2a
1

2

|u| (1 +R) +
δ

1

2a
1

2

b
1

2 |u|
1

δ
1

2a
1

2

‖u5∇5ω†‖L∞
u L2

uL
2(Su,u),
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which implies

‖u5∇4κ‖L2
uL

∞
u L2(Su,u) � δ

1

2a
1

2

(
1 +R+

1

δ
1

2a
1

2 b
1

2

‖u5∇5ω†‖L∞
u L2

uL
2(Su,u)

)
.

By the following div -curl system:

div ∇ω = div κ+
1

2
div β,

curl ∇ω = 0,

curl ∇ω† = curl κ+
1

2
curl β,

div ∇ω† = 0.

and the elliptic estimates from Proposition 5.14, we have

‖u5∇5(ω, ω†)‖L2(Su,u)

�
∑
j≤4

(‖uj+1∇jκ‖L2(Su,u) + ‖uj+1∇jβ‖L2(Su,u) + ‖uj∇j(ω, ω†)‖L2(Su,u))

� ‖u5∇4κ‖L2(Su,u) +
∑
j≤4

(‖uj+1∇jβ‖L2(Su,u) + ‖uj∇j(ω, ω†)‖L2(Su,u)).

This implies, after taking L2 in u,

‖u5∇5(ω, ω†)‖L2
uL

2(Su,u) � δ
1

2a
1

2

(
1 +R+

1

δ
1

2a
1

2 b
1

2

‖u5∇5ω†‖L∞
u L2

uL
2(Su,u)

)
.

For b sufficiently large, we can absorb the last term to the left hand side to
get

‖u5∇5(ω, ω†)‖L2
uL

2(Su,u) � δ
1

2a
1

2 (1 +R).
�

In the following proposition, we prove the highest order derivative estimates
for η. We need in particular an improved bound for ∇iμ compared to ∇i+1η
for 1 ≤ i ≤ 4.

Proposition 7.3. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

‖u6∇5η‖L∞
u L2

uL
2(Su,u) � δ

3

2a
3

4 (1 +R)

and
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‖u5∇5η‖L∞
u L2

uL
2(Su,u) � δ

1

2a
1

2 (1 +R).

For 1 ≤ i ≤ 4, the derivatives of the mass aspect function ∇iμ obey the fol-
lowing improved estimates:

∑
1≤i≤4

‖ui+3∇iμ‖L∞
u L∞

u L2(Su,u) � δ2a
5

4 b
1

4 .

Proof. Define μ by

μ = −div η +K − 1

|u|2 .

Thus η obeys the following elliptic system

div η = −μ+K − 1

|u|2 , curl η = σ̌

and μ satisfies the equation

∇4μ = ψ∇(η, η) + ψψ ψ + ψ∇(trχ, χ̂) + trχK.

Commuting with angular derivatives for i times with 1 ≤ i ≤ 4, we get

∇4∇iμ = ψ∇i+1(η, η) + ψ∇i+1(trχ, χ̂) +
∑

i1+i2+i3=i+1
i1,i3≤i

∇i1ψ i2+1∇i3ψ

+
∑

i1+i2+i3+i4=i

∇i1ψ i2∇i3trχ∇i4K.

Notice that∇iμ vanishes initially onH0. By Proposition 5.4, in order to esti-
mate ‖ui+2∇iμ‖L∞

u L∞
u L2(Su,u), it suffices to estimate the ‖ui+2 · ‖L∞

u L1
uL

2(Su,u)

norm of the right hand side. We now estimate each of the terms in the equa-
tion.
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For the term containing highest derivative of η, we have

∑
i≤4

‖ui+2ψ∇i+1(η, η)‖L1
uL

2(Su,u)

� δ
1

2

|u|‖uψ‖L∞
u L∞(Su,u)

×
⎛⎝δ

1

2

∑
i≤3

‖ui+2∇i+1(η, η)‖L∞
u L2(Su,u) + ‖u6∇5(η, η)‖L2

uL
2(Su,u)

⎞⎠
� δ

1

2

|u|a
1

2 δ
3

2a
3

4 b
1

4

� δ2a
5

4 b
1

4

|u| ,

where we have used the bounds in Proposition 6.5 and the bootstrap as-
sumption (4.3).

For the other term with the highest order derivative, i.e., the term con-
taining the highest derivative of (trχ, χ̂), we get

∑
i≤4

‖ui+2ψ∇i+1(trχ, χ̂)‖L1
uL

2(Su,u)

� δ
1

2

|u|‖u
2ψ‖L∞

u L∞(Su,u)

×
⎛⎝∑

i≤3

‖ui+1∇i+1(trχ, χ̂)‖L2
uL

2(Su,u) + ‖u5∇5(trχ, χ̂)‖L2
uL

2(Su,u)

⎞⎠
� δ

1

2

|u|δa
1

2 b
1

4 · δ 1

2a
1

2 b
1

4

� δ2ab
1

2

|u|

where we have used the bootstrap assumptions (4.1), (4.2) and (4.3).
We now estimate the lower order terms in the Ricci coefficients. Using

Proposition 6.1 together with the bootstrap assumption (4.2), we obtain



Trapped surfaces arising from mild incoming radiation 75

∑
i≤4

∥∥∥∥∥ui+2
∑

i1+i2+i3=i+1
i1,i3≤i

∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L1

uL
2(Su,u)

� δ

|u|
∑

i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞(Su,u)

∑
i3≤4

‖ui3∇i3ψ‖L∞
u L2(Su,u)

+
δ

|u|
∑

i1+i2≤5
i1≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L2(Su,u)

∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞(Su,u)

� δ

|u|δa
1

2 b
1

4 · a 1

2 � δ2ab
1

4

|u| .

Finally, we control the term containing the Gauss curvature K. For this
term, we need to make use of the fact i ≥ 1 and apply the improved esti-
mate for ∇itrχ from Proposition 6.3. Using Hölder’s inequality and Sobolev
embedding in Proposition 5.9, we have

∑
1≤i≤4

∥∥∥∥∥ui+2
∑

i1+i2+i3+i4=i

∇i1ψ i2∇i3trχ∇i4K

∥∥∥∥∥
L1

uL
2(Su,u)

� δ
1

2

|u|2
∑

i1+i2≤2

‖ui1+i2+1∇i1ψ i2‖L∞
u L∞(Su,u)

∑
i3≤2

‖ui3+1∇i3trχ‖L∞
u L∞(Su,u)

×
∑
i4≤4

∥∥∥∥ui4+2∇i4

(
K − 1

|u|2
)∥∥∥∥

L2
uL

2(Su,u)

+
δ

1

2

|u|2
∑

i1+i2≤2

‖ui1+i2+1∇i1ψ i2‖L∞
u L∞(Su,u)

∑
i3≤4

‖ui3∇i3trχ‖L∞
u L2(Su,u)

×
(∑

i4≤2

∥∥∥∥ui4+3∇i4

(
K − 1

|u|2
)∥∥∥∥

L2
uL

∞(Su,u)

+ ‖u‖L2
uL

∞(Su,u)

)

+
δ

1

2

|u|2
∑

i1+i2≤4

‖ui1+i2∇i1ψ i2‖L∞
u L2(Su,u)

∑
i3≤2

‖ui3+1∇i3trχ‖L∞
u L∞(Su,u)

×
(∑

i4≤2

∥∥∥∥ui4+3∇i4

(
K − 1

|u|2
)∥∥∥∥

L2
uL

∞(Su,u)

+ ‖u‖L2
uL

∞(Su,u)

)

� δ
1

2

|u|2 (|u|+ δa
1

2 b
1

4 )
δa

|u|(δ
3

2a
3

4 b
1

4 + δ
1

2 |u|)

� δ3a
7

4 b
1

4

|u|2 +
δ2a

|u| +
δ4a

9

4 b
1

2

|u|3 +
δ3a

3

2 b
1

4

|u|2 � δ2a
5

4

|u|
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using Propositions 6.1 and 6.3 and the bootstrap assumption (4.3).
Combining all the estimates above and using |u| ≥ δa

1

2 b, we have

∑
1≤i≤4

‖ui+2∇iμ‖L∞
u L2(Su,u) �

δ2a
5

4 b
1

4

|u| .(7.3)

By the div-curl system

div η = −μ+K − 1

|u|2 , curl η = σ̌

and elliptic estimates from Proposition 5.14, we have

‖u6∇5η‖L2(Su,u)

�
∑
i≤4

(
‖ui+2∇iμ‖L2(Su,u)

+

∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2(Su,u)

+ ‖ui+1∇iη‖L2(Su,u)

)

� ‖u6∇4μ‖L2(Su,u) +
∑
i≤4

∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2(Su,u)

+ δa
1

2 b
1

4 ,

where we have used the bootstrap assumption (4.1). Hence, using (7.3) and
taking L2 in u and u respectively, we obtain

‖u6∇5η‖L∞
u L2

uL
2(Su,u) �

δ
3

2a
3

4

b
1

2

+ δ
3

2a
1

2 b
1

4 + δ
3

2a
3

4R � δ
3

2a
3

4 (1 +R)

and

‖u5∇5η‖L∞
u L2

uL
2(Su,u) � ‖u−1‖L2

u

(
δa

3

4

b
1

2

+ δa
1

2 b
1

4

)
+ δ

1

2a
1

2R � δ
1

2a
1

2 (1 +R),

since |u| ≥ δa
1

2 b. This concludes the proof of the proposition. �
We then turn to the estimates for ∇5η. Unlike that for ∇5η, we only achieve
an estimate that is integrated in the u direction but we lose the bound that
is integrated in the u direction.

Proposition 7.4. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

‖u6∇5η‖L∞
u L2

uL
2(Su,u) � δ

3

2a
3

4 (1 +R).
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Proof. Let μ be defined by

μ = −div η +K − 1

|u|2 .

Thus, we have the Hodge system for η:

div η = −μ+K − 1

|u|2 , curl η = −σ̌.

Moreover, μ obeys the following equation:

∇3μ+ trχμ = ψ∇(η, η) + ψ ψ ψ + ψ∇(χ̂, trχ) + trχdiv η + trχK +
1

|u|3 .

Commuting with angular derivatives for 4 times, we get

∇3∇4μ+ 3trχ∇4μ

= ψ∇5(η, η, trχ, χ̂) +
1

|u|∇
5η

+
1

|u|
∑

i1+i2+i3=4

∇i1ψ i2+1∇i3ψ +
1

|u|
∑

i1+i2+i3=4

∇i1ψ i2∇i3K

+
∑

i1+i2+i3=4

∇i1ψ i2+2∇i3ψ +
∑

i1+i2+i3=4

∇i1ψ i2+1∇i3K.

We apply Proposition 5.5 with λ0 = 3 which shows that for every fixed
u, ‖u5∇4μ‖L∞

u L2(Su,u) can be estimated by the ‖u5 · ‖L1
uL

2(Su,u) norm of the

right hand side. Since we will only need to control ∇iμ after taking L2 norm
in u, we will directly control ‖u5 · ‖L2

uL
1
uL

2(Su,u) of the right hand side. We now
estimate each of the terms in the equation. First, we start with terms with
5 angular derivatives on the Ricci coefficients. We have two contributions
from ∇5η, one multiplied by 1

|u| and one multiplied by ψ . In the former case,
we have, by Proposition 7.3,

‖u4∇5η‖L2
uL

1
uL

2(Su,u)

� ‖u−2‖L1
u
‖u6∇5η‖L∞

u L2
uL

2(Su,u)

� δ
3

2a
3

4

|u| (1 +R).

Notice that in this bound, we do not gain an extra smaller factor compared to
the desired estimate. It is therefore important that we have already obtained
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the sharp estimates in Proposition 7.3 and do not have to resort to the
bootstrap assumption (4.3).

The other contribution from ∇5η can be estimated together with that
from ∇5η. For these terms, we have

‖u5ψ∇5(η, η)‖L2
uL

1
uL

2(Su,u)

� ‖u−3‖L1
u
‖u2ψ‖L∞

u L∞
u L∞(Su,u)‖u6∇5(η, η)‖L∞

u L2
uL

2(Su,u)

� δ
5

2a
5

4 b
1

2

|u|2 ,

where we have used the bootstrap assumptions (4.1) and (4.3) in the last
inequality.

For the contributions from ∇5(trχ, χ̂), we have

‖u5ψ∇5(trχ, χ̂)‖L2
uL

1
uL

2(Su,u)

� δ
1

2 ‖u−2‖L2
u
‖u2ψ‖L∞

u L∞
u L∞(Su,u)‖u5∇5(trχ, χ̂)‖L∞

u L2
uL

2(Su,u)

� δ
1

2 · δa
1

2 b
1

4

|u| 32
· δa

1

2 b
1

4

|u| 12
� δ

5

2ab
1

2

|u|2 ,

where we have used the bootstrap assumptions (4.1) and (4.3).
We then move to the lower order terms. First, we have∥∥∥∥∥u5 1

|u|
∑

i1+i2+i3=4

∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L2

uL
1
uL

2(Su,u)

� δ
1

2 ‖u−3‖L1
u

∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3+1∇i3ψ‖L∞
u L∞

u L2(Su,u)

+ δ
1

2 ‖u−3‖L1
u

∑
i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
∑
i3≤2

‖ui3+2∇i3ψ‖L∞
u L∞

u L∞(Su,u)

� δ
5

2ab
1

2

|u|2 ,

where we have used Proposition 6.1 and the bootstrap assumption (4.1).
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Then, for the term with K, using Sobolev embedding in Proposition 5.9,
we have ∥∥∥∥∥u5 1

|u|
∑

i1+i2+i3=4

∇i1ψ i2∇i3K

∥∥∥∥∥
L2

uL
1
uL

2(Su,u)

� ‖u−2‖L1
u

∥∥∥∥u6∇4

(
K − 1

|u|2
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

+ δ
1

2 ‖u−2‖L2
u

∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

∥∥∥∥ui3+1∇i3

(
K − 1

|u|2
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

+ δ
1

2

∑
i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
⎛⎝‖u−2‖L2

u

∑
i3≤2

‖ui3+2∇i3K‖L∞
u L2

uL
∞(Su,u) + ‖u−2‖L1

u

⎞⎠
� δ

3

2a
3
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|u| R+
δ2ab

1

2

|u| 32
+

δ
3

2a
1

2 b
1

4

|u| � δ
3

2a
3

4

|u| R+
δ

3

2a
3

4

|u| ,

where we have used Proposition 6.1.
The remaining two terms are actually better behaved than the two terms

that we have just estimates since ψ obeys better bounds that 1
|u| . More

precisely, we have∥∥∥∥∥ ∑
i1+i2+i3=4

u5∇i1ψ i2+2∇i3ψ

∥∥∥∥∥
L2

uL
1
uL

2(Su,u)

� δ
1

2 ‖u−4‖L1
u

∑
i1+i2≤2

‖ui1+i2+4∇i1ψ i2+2‖L∞
u L∞

u L∞(Su,u)
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‖ui3+1∇i3ψ‖L∞
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u L2(Su,u)

+ δ
1
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u

∑
i1+i2≤4

‖ui1+i2+3∇i1ψ i2+2‖L∞
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u L2(Su,u)

×
∑
i3≤4

‖ui3+2∇i3ψ‖L∞
u L∞

u L∞(Su,u)

� δ
1

2 · δ2ab 1

2 · δa 1

2 b
1

4

|u|3 � δ
7

2a
3

2 b
3

4

|u|3
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using Proposition 6.1 and the bootstrap assumption (4.1).
Finally, the last term can be bounded by

∥∥∥∥∥u5 ∑
i1+i2+i3=4

∇i1ψ i2+1∇i3K

∥∥∥∥∥
L2

uL
1
uL

2(Su,u)

� δ
1

2 ‖u−2‖L2
u

∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3+1∇i3

(
K − 1

|u|2
)
‖L∞

u L2
uL

2(Su,u)

+ δ
1

2

∑
i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
⎛⎝‖u−2‖L2

u

∑
i3≤2

∥∥∥∥ui3+2∇i3

(
K − 1

|u|2
)∥∥∥∥

L∞
u L2

uL
∞(Su,u)

+ ‖u−2‖L1
u
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� δ2ab
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2

|u| 32
+

δ
3

2a
1

2 b
1

4

|u| � δ
3

2a
3

4

|u| ,

where we have used Proposition 6.1 and the bootstrap assumption (4.3).
Therefore, combining the above estimates, we get

‖u5∇4μ‖L2
uL

∞
u L2(Su,u) �

δ
3

2a
3

4

|u| (1 +R)

using |u| ≥ δa
1

2 b and b ≤ a. This implies, after multiplying by u, that

‖u6∇4μ‖L∞
u L2

uL
2(Su,u) � δ

3

2a
3

4 (1 +R).

Therefore, using the div-curl system

div η = −μ+K − 1

|u|2 , curl η = −σ̌
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and applying elliptic estimates from Proposition 5.14, we have

‖u6∇5η‖L2(Su,u)

�
∑
i≤4

(
‖ui+2∇iμ‖L2(Su,u) +
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(
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L2(Su,u)
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∥∥∥∥ui+2∇i
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|u|2 , σ̌
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L2(Su,u)

+ δa
1

2 b
1

4 ,

where we have used the bootstrap assumption (4.1) in the last step. This
implies, after taking L2

u norm, that

‖u6∇5η‖L∞
u L2

uL
2(Su,u) � δ

3

2a
3

4 (1 +R).

�

We now prove the highest order bounds for ω:

Proposition 7.5. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

‖u5∇5ω‖L∞
u L2

uL
2(Su,u) �

δa
1

2

|u| 12
(1 +R).

Proof. Recall that in the proof of Proposition 7.2 we have defined an aux-
iliary function ω† in order to apply elliptic estimates to obtain the highest
order estimate for ω. Here, we similarly define an auxiliary function ω† by

∇4ω
† =

1

2
σ̌

with zero initial data on H0. We then define κ by

κ := −∇ω +∗ ∇ω† − 1

2
β.
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Before we proceed, observe that the proof of Proposition 6.6 implies that

∑
i≤4

‖ui+1∇iω†‖L∞
u L∞

u L2(Su,u)(7.4)

� δa
1

2

(
1 +

1

δ
1

2a
1

2

‖u5∇5ω‖L∞
u L2

uL
2(Su,u) +R

)
.

(In fact, the stronger bound with δa
1

2 on the right hand side holds. We will
not need this refinement.) In view of this bound, we will allow ψ to also

denote ω† in the remainder of the proof of this proposition. With this new
convention, it is easy to check that κ obeys the equation

∇4κ =
∑

i1+i2+i3=1

∇i1ψ i2+1∇i3ψ +
∑

i1+i2+i3=1

ψ i1∇i2

(
trχ+

2

|u| , χ̂, ω
)
∇i2ψ

+ ψ

(
K − 1

|u|2 , σ̌
)
+

1

|u|2ψ +
1

|u|∇trχ+
1

|u|ψψ.

Commuting with angular derivatives for i times, we get

∇4∇4κ = (ψ, ψ )∇5(trχ, χ̂, ω) + ψ∇5(η, η) + ψ∇5ψ +
1

|u|∇
5trχ

+
∑

i1+i2+i3=5
i1,i3≤4

∇i1ψ i2+1∇i3(ψ, ψ )

+
∑

i1+i2+i3=4

∇i1ψ i2+1∇i3

(
K − 1

|u|2 , σ̌
)

+
∑

i1+i2=4

1

|u|2∇
i1ψ i2+1 +

∑
i1+i2+i3=4

1

|u|∇
i1ψ i2+1∇i3ψ.

Using Proposition 5.4 and the fact that ∇5κ = 0 on H0, we can estimate
‖u5∇4κ‖L∞

u L2
uL

2(S) by controlling the ‖u5 · ‖L2
uL

1
uL

2(S) norm of the right hand
side. We now estimate each of the terms in the equation.

We first estimate the term with highest order derivatives of the Ricci
coefficients, i.e., the terms

(ψ, ψ )∇5(trχ, χ̂, ω), ψ∇5(η, η), ψ∇5ψ,
1

|u|∇
5trχ.
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For the contributions from (ψ, ψ )∇5(trχ, χ̂, ω), we have

‖u5(ψ, ψ )∇5(trχ, χ̂, ω)‖L2
uL

1
uL

2(Su,u)

� ‖u5∇5(trχ, χ̂, ω)‖L∞
u L2

uL
2(Su,u)‖(ψ, ψ )‖L1

uL
∞
u L∞(Su,u)

� δa
1

2 b
1

4

|u| 12
δa

1

2 b
1

4

|u| � δ2ab
1

2

|u| 32
,

where we have used bootstrap assumptions (4.1), (4.2) and (4.3).
For the contributions from ψ∇5(η, η), we have

‖u5ψ∇5(η, η)‖L2
uL

1
uL

2(Su,u)

� ‖u6∇5(η, η)‖L∞
u L2

uL
2(Su,u)‖u2ψ‖L2

uL
∞
u L∞(Su,u)‖u−3‖L2

u

� δ
3

2a
3

4 b
1

4
δ

3

2a
1

2 b
1

4

|u| 52
� δ3a

5

4 b
1

2

|u| 52
,

where we have used the bootstrap assumptions (4.1) and (4.3).
We then control the term u5ψ∇5ψ , for which we have

‖u5ψ∇5ψ‖L2
uL

1
uL

2(Su,u)

� ‖u5∇5ψ‖L∞
u L2

uL
2(Su,u)‖ψ‖L2

uL
2
uL

∞(Su,u)

� δ
1

2a
1

2 b
1

4
δ

3

2a
1

2 b
1

4

|u| 32
� δ2ab

1

2

|u| 32
.

Here, we have used the bootstrap assumptions (4.1) and (4.3).
To estimate the remaining highest order term u4ψ∇5trχ, we use the

bound from Proposition 7.1 which is stronger than that in the bootstrap
assumptions. More precisely, we have

‖u4∇5trχ‖L2
uL

1
uL

2(Su,u)

� ‖u5∇5trχ‖L∞
u L2

uL
2(Su,u)

∥∥∥∥ 1

|u|
∥∥∥∥
L2

uL
2
uL

∞(Su,u)

� δ
3

2ab
1

4

|u|
δ

1

2

|u| 12
� δ2ab

1

4

|u| 32

where we have used Proposition 7.1.
After estimating the highest order Ricci coefficient term, we now control

the curvature terms, i.e., the terms with (K − 1
|u|2 , σ̌). For these terms, we
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have the estimate

∥∥∥∥∥u5 ∑
i1+i2+i3=4

∇i1ψ i2+1∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥∥

L2
uL

1
uL

2(Su,u)

�
∑
i3≤4

∥∥∥∥ui3+1∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

×
∑

i1+i2≤2

‖ui1+i2∇i1ψ i2+1‖L∞
u L1

uL
∞(Su,u)

+
∑
i3≤1

∥∥∥∥ui3+3∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
∞(Su,u)

×
∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L2

uL
2(Su,u)‖u−3‖L2

u

� δ
1

2a
1

2 b
1

4
δ2a

1

2

|u|2 b
1

4 + δ
3

2a
3

4 b
1

4
δ

3

2a
1

2 b
1

4

|u| 52

� δ
5

2ab
1

2

|u|2 +
δ3a

5

4 b
1

2

|u| 52
� δ

5

2ab
1

2

|u|2 ,

where we have used the Sobolev embedding in Proposition 5.9 to control
the curvature terms in L∞(Su,u) by the curvature norm R. In the above, we
have also used Proposition 6.1 to bound the product of derivatives of ψ and
used bootstrap assumption (4.3) to estimate R.

We then move to the lower order terms, i.e., the terms containing only
Ricci coefficients and such that there are at most 4 angular covariant deriva-
tives on ψ and ψ . These are the terms

∑
i1+i2+i3=5,

i1,i3≤4

∇i1ψ i2+1∇i3(ψ, ψ ),
∑

i1+i2=4

1

|u|2∇
i1ψ i2+1

and

∑
i1+i2+i3=4

1

|u|∇
i1ψ i2+1∇i3ψ.
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We estimate these terms according to the order above. First, we have∥∥∥∥∥ ∑
i1+i2+i3=5,

i1,i3≤4

u5∇i1ψ i2+1∇i3(ψ, ψ )

∥∥∥∥∥
L2

uL
1
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2∇i1ψ i2+1‖L2
uL

∞
u L∞(Su,u)

×
∑
i3≤4

‖ui3∇i3(ψ, ψ )‖L∞
u L1

uL
2(Su,u)

+
∑

i1+i2≤4

‖ui1+i2−1∇i1ψ i2+1‖L2
uL

∞
u L2(Su,u)

×
∑
i3≤2

‖ui3+1∇i3(ψ, ψ )‖L∞
u L1

uL
∞(Su,u)

� δ2ab
1

4

|u| 32
using Proposition 6.1 and 6.5, the bootstrap assumptions (4.1) and (4.3)
and the condition |u| ≥ δa

1

2 b. The second term can be controlled as follows:∥∥∥∥∥ ∑
i1+i2=4

u3∇i1ψ i2+1

∥∥∥∥∥
L2

uL
1
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2−1∇i1ψ i2‖L2
uL

∞
u L∞(Su,u)

∑
i3≤4

‖ui3∇i3ψ‖L∞
u L1

uL
2(Su,u)

� δ2a
1

2 b
1

4

|u| 32
using Proposition 6.1 and the bootstrap assumption (4.1). Finally, we bound
the remaining term by∥∥∥∥∥ ∑

i1+i2+i3=4

u4∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L2

uL
1
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2∇i1ψ i2+1‖L2
uL

∞
u L∞(Su,u)

∑
i3≤4

‖ui3∇i3ψ‖L∞
u L1

uL
2(Su,u)

+
∑

i1+i2≤4

‖ui1+i2−1∇i1ψ i2+1‖L2
uL

∞
u L2(Su,u)

∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L1

uL
∞(Su,u)

� δ2ab
1

4

|u| 32
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using Proposition 6.1 and 6.5.
Therefore, combining the above estimates, we get

(7.5) ‖u5∇4κ‖L∞
u L2

uL
2(Su,u) �

δa
1

2

|u| 12
.

By the following div-curl system:

div ∇ω = −div κ− 1

2
div β,

curl ∇ω = 0,

curl ∇ω† = curl κ+
1

2
curl β,

div ∇ω† = 0.

and Proposition 5.14, we have

‖u5∇5(ω, ω†)‖L2(Su,u)

�
∑
i≤4

(
‖ui+1∇iκ‖L2(Su,u) + ‖ui+1∇iβ‖L2(Su,u) + ‖ui∇i(ω, ω†)‖L2(Su,u)

)
� ‖u5∇4κ‖L2(Su,u) +

∑
i≤4

(
‖ui+1∇iβ‖L2(Su,u) + ‖ui∇i(ω, ω†)‖L2(Su,u)

)
This implies, after taking L2 norm in u that

‖u5∇5(ω, ω†)‖L2
uL

2(Su,u)

� δa
1

2

|u| 12
+

δ
3

2a
3

4 b
1

4

|u| +
δa

1

2

|u| 12
(1 +R)

� δa
1

2

|u| 12
(1 +R).

after substituting in the bound (7.5) and using bootstrap assumption (4.3)
together with (7.4), and also Propositions 6.6 and 7.2. �
Finally, we prove the highest order estimates for the remaining Ricci coeffi-
cients, trχ and χ̂:

Proposition 7.6. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

‖u5∇5(trχ, χ̂)‖L∞
u L2

uL
2(Su,u) �

δa
1

2

|u| 12
(1 +R).
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Proof. Consider the following equation for trχ:

∇3trχ+
1

2
(trχ)2 = −2ωtrχ− |χ̂|2.

Commuting the equation with angular derivatives for 5 times, we get

∇3∇5trχ+ 3trχ∇5trχ

= ψ∇5(trχ, χ̂, ω) +
1

|u|∇
5ω +

∑
i1+i2+i3=5

i1,i3≤4

∇i1ψ i2+1∇i3ψ

+
∑

i1+i2+i3=4

1

|u|∇
i1ψ i2+1∇i3ψ +

∑
i1+i2=4

1

|u|2∇
i1ψ i2+1.

We apply Proposition 5.5 with λ0 = 3. This allows us to estimate the
quantity ‖u5∇5trχ‖L∞

u L∞
u L2(Su,u) by bounding the ‖u5 · ‖L∞

u L1
uL

2(Su,u) norm
of the right hand side of the equation above. We now estimate each of the
terms in the equation. The first term can be controlled by

‖u5ψ∇5(trχ, χ̂, ω)‖L∞
u L1

uL
2(Su,u)

� ‖u−2‖L2
u
‖u2ψ‖L∞

u L∞
u L∞(Su,u)‖u5∇5(trχ, χ̂, ω)‖L∞

u L2
uL

2(Su,u)

� δ2ab
1

2

|u|2 ,

where we have used the bootstrap assumption (4.1) and (4.3). For the second
term, we use Proposition 7.5 to get

‖u4∇5ω‖L∞
u L1

uL
2(Su,u) �‖u−1‖L2

u

δa
1

2

|u| 12
(1 +R) � δa

1

2

|u| (1 +R).

We now turn to the lower order terms in the Ricci coefficients. For the third
term, we have ∥∥∥∥∥u5 ∑

i1+i2+i3=5
i1,i3≤4

∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L∞

u L1
uL

2(Su,u)

� ‖u−3‖L1
u

∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3+1∇iψ‖L∞
u L∞

u L2(Su,u)

� δ2ab
1

2

|u|2 ,
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where we have used Proposition 6.1 and the bootstrap assumption (4.1).
For the fourth term, we have the estimate∥∥∥∥∥u5 ∑

i1+i2+i3=4

1

|u|∇
i1ψ i2+1∇i3ψ

∥∥∥∥∥
L∞

u L1
uL

2(Su,u)

� ‖u−3‖L1
u

∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤3

‖ui3+1∇iψ‖L∞
u L∞

u L2(Su,u)

� δ2ab
1

2

|u|2 ,

where we have used Proposition 6.1 the bootstrap assumption (4.1).
Finally, the last term can be controlled by∥∥∥∥∥u5 ∑

i1+i2=4

1

|u|2∇
i1ψ i2+1

∥∥∥∥∥
L∞

u L1
uL

2(Su,u)

� ‖u−2‖L1
u

∑
i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

� δa
1

2

|u|
(
1 +

1

δ
1

2a
1

2

‖u5∇5ω‖L∞
u L2

uL
2(Su,u) +R

)
� δa

1

2

|u| (1 +R),

using Propositions 6.1, 6.6 and 7.2. Notice that we do not have extra small-
ness in the above estimate and it is important that we applied the sharp
estimates in Propositions 6.6 and 7.2 instead of using the bootstrap as-
sumptions.

Collecting all the above terms, we have

‖u5∇5trχ‖L∞
u L∞

u L2(Su,u) �
δa

1

2

|u| (1 +R),

which implies

(7.6) ‖u5∇5trχ‖L∞
u L2

uL
2(Su,u) � δa

1

2 (1 +R)‖u−1‖L2
u
� δa

1

2

|u| 12
(1 +R).
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In order to obtain the estimates for the fifth angular derivatives of χ̂, we
use the Codazzi equation

div χ̂ = β +
1

2
∇trχ− 1

2
(η − η) ·

(
χ̂− 1

2
trχ

)
and Proposition 5.15 to derive elliptic estimates for ∇5χ̂:

‖u5∇5χ̂‖L2(Su,u)

�
∑
i≤4

(‖ui+1∇i+1trχ‖L2(Su,u) + ‖ui+1∇iβ‖L2(Su,u))

+
∑
i≤4

∑
i1+i2=i

‖ui+1∇i1ψ∇i2ψ‖L2(Su,u) +
∑
i≤4

‖ui∇iχ̂‖L2(Su,u)

�
∑
i≤4

(‖ui+1∇i+1trχ‖L2(Su,u) + ‖ui+1∇iβ‖L2(Su,u) + ‖ui∇iχ̂‖L2(Su,u))

+
1

|u|2
∑
i1≤2

‖ui1+2∇i1ψ‖L∞(Su,u)

∑
i2≤4

‖ui2+1∇i2ψ‖L2(Su,u)

�
∑
i≤4

(‖ui+1∇i+1trχ‖L2(Su,u) + ‖ui+1∇iβ‖L2(Su,u))

+
δa

1

2

|u| (1 +R) +
δ2ab

1

2

|u|2 ,

where we have used the bootstrap assumption (4.1) together with Proposi-
tions 6.1, 6.6 and 7.2 in the last step. Taking L2 norm in u and using (7.6),
we obtain

‖u5∇5χ̂‖L∞
u L2

uL
2(Su,u)

�
∑
i≤4

(‖ui+1∇i+1trχ‖L∞
u L2

uL
2(Su,u)+‖ui+1∇iβ‖L∞

u L2
uL

2(Su,u))+
δa

1

2

|u| 12
+
δ2ab

1

2

|u| 32

� δa
1

2

|u| 12
(1 +R)

using (7.6) and the definition for the R norm. �

We conclude this section by the following proposition, summarizing all
the estimates for the Õ5,2 norm derived in this section:
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Proposition 7.7. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

Õ5,2 � 1 +R.

8. Estimates for curvature

In this section, we derive and prove the energy estimates for the renormalized
curvature components and their first four angular derivatives. We will show
that R � 1. Together with the estimates in the previous sections, we will
therefore improve all of the bootstrap assumptions (4.1), (4.2), (4.3) and
(4.4) and obtain Theorem 3.1.

To derive the energy estimates, we will need the following integration by
parts formula, which can be proved by direct computations:

Proposition 8.1. Suppose φ1 and φ2 are r tensorfields, then∫
Du,u

φ1∇4φ2 +

∫
Du,u

φ2∇4φ1

=

∫
Hu(1,u)

φ1φ2 −
∫
H0(1,u)

φ1φ2 +

∫
Du,u

(2ω − trχ)φ1φ2.

Here, we have used the convention that Hu(1, u) = {(u′, u, θ1, θ2) : u ≤ u′ ≤
1}.

Proposition 8.2. Suppose we have an r tensorfield (1)φ and an r − 1 ten-
sorfield (2)φ.∫

Du,u

(1)φA1A2···Ar∇Ar

(2)φA1···Ar−1
+

∫
Du,u

∇Ar (1)φA1A2···Ar

(2)φA1···Ar−1

= −
∫
Du,u

(η + η)(1)φ(2)φ.

To derive the energy estimates from the ∇3 equations, we also need the
following analogue of Proposition 8.1 in the ∇3 direction. Moreover, we need
to obtain an analogue which incorporates the weights in u. More precisely,
we have
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Proposition 8.3. Suppose φ is an r tensorfield and let λ1 = 2(λ0 − 1
2).

Then

2

∫
Du,u

|u|2λ1φ(∇3 + λ0trχ)φ

=

∫
Hu(0,u)

|u|2λ1 |φ|2 −
∫
H0(0,u)

|u|2λ1 |φ|2 +
∫
Du,u

|u|2λ1f |φ|2,

where f obeys the estimate

|f | � δa
1

2 b
1

4

|u|2 .

Similar to Proposition 8.1, we have used the convention that Hu(0, u) =
{(u, u′, θ1, θ2) : 0 ≤ u′ ≤ u}.

Proof. Slightly modifying (5.6), we have

− d

du

(∫
Su,u

|u|2λ1Ω|φ|2
)

=

∫
Su,u

Ω2
(
2|u|2λ1 < φ,∇3φ+ λ0trχφ >

)
+

∫
Su,u

Ω2

(
|u|2λ1

(
2λ1(e3u)

|u| + (1− 2λ0)trχ− 2ω

)
|φ|2

)
.

The proposition follows after integrating with respect to du du, applying the
fundamental theorem of calculus in u and noting that

2λ1(e3u)

|u| + (1− 2λ0)trχ− 2ω � δa
1

2 b
1

4

|u|2 ,

using Propositions 5.1 and the bootstrap assumption 4.1. �

We now derive energy estimates for ∇i(K − 1
|u|2 , σ̌) in L2

uL
2(Su,u) and

for ∇iβ in L2
uL

2(Su,u). Notice that by the definition of our norms, we also

need to obtain bounds for K − 1
|u|2 in the case i = 0. We will leave this case

to later (see Proposition 8.6). We now prove estimates for ∇i(K − 1
|u|2 , σ̌)

in L2
uL

2(Su,u) and for ∇iβ in L2
uL

2(Su,u) in the case i ≥ 1.
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Proposition 8.4. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

∑
1≤i≤4

(∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

+ ‖ui+2∇iβ‖L∞
u L2

uL
2(Su,u)

)
� δ

3

2a
3

4 .

Proof. We begin with the following schematic Bianchi equations for σ̌, K −
1

|u|2 and β:

∇3σ̌ + div ∗β +
3

2
trχσ̌ =

∑
i1+i2=1

ψ i1+1∇i2ψ,

and

∇3

(
K − 1

|u|2
)
+ div β +

3

2
trχ

(
K − 1

|u|2
)

(8.1)

=
∑

i1+i2=1

ψ i1+1∇i2ψ +
1

|u|μ+
1

|u|2
(
trχ+

2

u

)
+

1

|u|3 (Ω
−1 − 1),

and

∇4β −∇K −∗ ∇σ̌ = ψ (K, σ̌) +
∑

i1+i2+i3=1

ψ i1∇i2

(
trχ+

2

|u| , χ̂, ω
)
∇i3ψ

+
∑

i1+i2=1

1

|u|ψ
i1∇i2trχ.

Notice that in the above, we have used a special cancellation to obtain (8.1).
More precisely, we start with

∇3K + div β + trχK +
1

2
trχdiv η =

∑
i1+i2=1

ψ i1+1∇i2ψ.

Now, note20 that

∇3

(
K − 1

|u|2
)

= ∇3K − 2Ω−1

|u|3 .

20In the three displayed equations below, since we need to capture the cancella-
tion, we will not use the schematic notation but track the exact coefficients in each
of the terms.
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On the other hand, we have

1

2
trχdiv η =

1

2
trχ

(
K − 1

|u|2
)
− 1

2
trχμ.

Therefore,

∇3K + trχK +
1

2
trχdiv η

= ∇3

(
K − 1

|u|2
)
+

3

2
trχ

(
K − 1

|u|2
)
− 1

2
trχμ

+ trχ
1

|u|2 +
2Ω−1

|u|3

= ∇3

(
K − 1

|u|2
)
+

3

2
trχ

(
K − 1

|u|2
)
− 1

2
trχμ

+

(
trχ+

2

|u|
)

1

|u|2 − 2(1− Ω−1)

|u|3 ,

from which (8.1) follows. Commuting the equations with ∇ for i times, we
have

(8.2) ∇3∇iσ̌ + div ∗∇iβ +
3 + i

2
trχ∇iσ̌ = F1,i,

where F1,i is given by

F1,i =
∑

i1+i2+i3=i+1

∇i1ψ i2+1∇i3ψ +
1

|u|
∑

i1+i2+i3=i−1

∇i1ψ i2+1∇i3 σ̌

and the equation

(8.3) ∇3∇i

(
K − 1

|u|2
)
− div ∇iβ +

3 + i

2
trχ∇i

(
K − 1

|u|2
)

= F2,i,
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where F2,i is defined as

F2,i =
∑

i1+i2+i3=i+1

∇i1ψ i2+1∇i3ψ +
1

|u|∇
iμ

+
1

|u|
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3ψ

+
1

|u|2
∑

i1+i2+i3=i

∇i1ψ i2∇i3

(
trχ+

2

|u|
)

+
1

|u|3
∑

i1+i2+i3=i

∇i1ψ i2∇i3(1− Ω−1)

+
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3

(
K − 1

|u|2
)

+
∑

i1+i2+i3=i−1

1

|u|∇
i1ψ i2+1∇i3

(
K − 1

|u|2
)

and also the equation

(8.4) ∇4∇iβ − div ∇i

(
K − 1

|u|2
)
−∗ ∇∇iσ̌ = F3,i,

with F3,i given by

F3,i =
∑

i1+i2+i3+i4=i+1

∇i1ψ i2∇i3

(
trχ+

2

|u| , χ̂, ω
)
∇i4ψ

+
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3(K, σ̌)

+
1

|u|
∑

i1+i2+i3=i+1

∇i1ψ i2∇i3trχ.

Using the equations (8.2), (8.3) and (8.4), we can derive the energy
estimates. More precisely, using Proposition 8.1 and the equation (8.4), we
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have

1

2

∫
Hu(1,u)

(
ui+2∇iβ

)2

(8.5)

=
1

2

∫
H0(1,u)

(
ui+2∇iβ

)2

+

∫
Du,u

< ui+2∇iβ, ui+2∇4∇iβ >γ

−
∫
Du,u

(
ω − 1

2
trχ

)(
ui+2∇iβ

)2
=

1

2

∫
H0(1,u)

(
ui+2∇iβ

)2

+

∫
Du,u

< ui+2∇iβ, ui+2F3,i >γ

+

∫
Du,u

〈
ui+2∇iβ, ui+2

(
∇∇i

(
K − 1

|u|2
)
+ ∗∇∇iσ̌

)〉
γ

.

Here, we have abused notation to drop the term

−
∫
Du,u

(
ω − 1

2
trχ

)(
ui+2∇iβ

)2
since it has the same schematic form as one of the terms represented by∫

Du,u

< ui+2∇iβ, ui+2F3,i >γ .

Now, applying Proposition 8.3 and equation (8.2), we obtain

1

2

∫
Hu(0,u)

(
ui+2∇iσ̌

)2
(8.6)

=
1

2

∫
H1(0,u)

(
ui+2∇iσ̌

)2
+

∫
Du,u

〈
ui+2∇iσ̌, ui+2

(
∇3 +

3 + i

2
trχ

)
∇iσ̌

〉
γ

− 1

2

∫
Du,u

f

(
ui+2∇iσ̌

)2

=
1

2

∫
H1(0,u)

(
ui+2∇iσ̌

)2

+

∫
Du,u

< ui+2∇iσ̌, ui+2F1,i >γ

−
∫
Du,u

< ui+2∇iσ̌, ui+2(div ∗∇iβ) >γ −1

2

∫
Du,u

f

(
ui+2∇iσ̌

)2

.
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Similarly, using Proposition 8.3 and the equation (8.3), we get

1

2

∫
Hu(0,u)

(
ui+2∇i

(
K − 1

|u|2
))2

(8.7)

=
1

2

∫
H1(0,u)

(
ui+2∇i(K − 1)

)2
+

∫
Du,u

〈
ui+2∇i

(
K − 1

|u|2
)
, ui+2F2,i

〉
γ

+

∫
Du,u

〈
ui+2∇i

(
K − 1

|u|2
)
, ui+2(div ∇iβ)

〉
γ

− 1

2

∫
Du,u

f

(
ui+2∇i

(
K − 1

|u|2
))2

.

Now, we can integrate by parts on the spheres Su,u using Proposition 8.2
to show that the sum of the terms with highest order angular derivatives
in (8.5), (8.6) and (8.7) cancel up to a lower order error term:

∫
Du,u

〈
ui+2∇iβ, ui+2

(
∇∇i

(
K − 1

|u|2
)
+ ∗∇∇iσ̌

)〉
γ

(8.8)

−
∫
Du,u

< ui+2∇iσ̌, ui+2(div ∗∇iβ) >γ

+

∫
Du,u

〈
ui+2∇i

(
K − 1

|u|2
)
, ui+2(div ∇iβ)

〉
γ

�
∥∥∥∥u2i+4∇i

(
K − 1

|u|2 , σ̌
)
ψ∇iβ

∥∥∥∥
L1

uL
1
uL

1(Su,u)

� δ
3

2a
1

2 b
1

4

|u| 32

∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

‖ui+2∇iβ‖L∞
u L2

uL
2(Su,u),

where in the last line we have used the bootstrap assumption (4.1). There-
fore, adding the identities (8.5), (8.6), (8.7), using (8.8) and the bound for
f in Proposition 8.3, we obtain
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∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥2

L2
uL

2(Su,u)

+ ‖ui+2∇iβ‖2L2
uL

2(Su,u)
(8.9)

�
∥∥∥∥∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥2

L2
uL

2(S0,u)

+ ‖u2i+4∇iσ̌F1,i‖2L1
uL

1
uL

1(Su,u)

+

∥∥∥∥u2i+4∇i

(
K − 1

|u|2
)
F2,i

∥∥∥∥
L1

uL
1
uL

1(Su,u)

+ ‖u2i+4∇iβF3,i‖L1
uL

1
uL

1(Su,u)

+

∥∥∥∥∥u2i+4 δa
1

2 b
1

4

|u|2 ∇i

(
K − 1

|u|2 , σ̌
)
∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥∥

L1
uL

1
uL

1(Su,u)

+
δ

3

2a
1

2 b
1

4

|u| 32

∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

× ‖ui+2∇iβ‖L∞
u L2

uL
2(Su,u)

For the second, third and fourth terms, we can apply Cauchy-Schwarz in
either the H or the H hypersurface so that the terms

∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2
uL

2(Su,u)

and ‖ui+2∇iβ‖L2
uL

2(Su,u) can be absorbed to the left and we only need to
bound the weighted norms of F1,i, F2,i and F3,i. For the fifth term, noticing
that ∥∥∥∥∥δa

1

2 b
1

4

|u|2
∥∥∥∥∥
L1

u

� 1

b
3

4

,

we see that it can be controlled by Gronwall’s inequality. For the final term,
since ∥∥∥∥∥δ

3

2a
1

2 b
1

4

|u| 32

∥∥∥∥∥
L∞

u

� 1

b
5

4

,
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the term can be absorbed to the left hand side after using Schwarz’s inequal-
ity. Therefore, (8.9) implies that

∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2
uL

2(Su,u)

+ ‖ui+2∇iβ‖L2
uL

2(Su,u)

�
∥∥∥∥∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2
uL

2(S0,u)

+ ‖ui+2F1,i‖L1
uL

2
uL

2(Su,u)

+ ‖ui+2F2,i‖L1
uL

2
uL

2(Su,u) +
∑
i≤4

‖ui+2F3,i‖L1
uL

2
uL

2(Su,u).

Summing over 1 ≤ i ≤ 4 and using the fact that

∥∥∥∥∇i(K − 1

|u|2 , σ̌)
∥∥∥∥
L2

uL
2(S0,u)

� δ
1

2a
1

2 ,

we obtain

∑
1≤i≤4

(∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2
uL

2(Su,u)

+ ‖ui+2∇iβ‖L2
uL

2(Su,u)

)
(8.10)

� δ
1

2a
1

2 +
∑

1≤i≤4

(‖ui+2F1,i‖L1
uL

2
uL

2(Su,u) + ‖ui+2F2,i‖L1
uL

2
uL

2(Su,u))

+
∑

1≤i≤4

‖ui+2F3,i‖L1
uL

2
uL

2(Su,u).

We will estimate the right hand side of (8.10) term by term.21 We first
estimate the term F1,i. For the first term in F1,i, we can assume without
loss of generality that i1 ≤ i3. We bound separately the contributions where
there are at most 4 derivatives falling on any of the Ricci coefficients, where
5 derivatives fall on (trχ, χ̂, ω) and where 5 derivatives fall on (η, η). More

21We now remark on a convention that we will use in this proof. While it is
important that we only have 1 ≤ i ≤ 4 in the sum in some of the error terms to
take advantage of the improved estimates, we will simply write i ≤ 4 in the terms
where this restriction is not necessary.
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precisely, we have

∑
i≤4

∥∥∥∥∥ui+2
∑

i1+i2+i3=i+1

∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

(8.11)

�
∑

i1+i2≤5
i1≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
(
δ

1

2

∑
i3≤4

‖ui3+1∇i3ψ‖L∞
u L∞

u L2(Su,u)‖u−2‖L1
u

+ δ
1

2 ‖u5∇5(trχ, χ̂, ω)‖L∞
u L2

uL
2(Su,u)‖u−1‖L2

u

+ ‖u6∇5(η, η)‖L∞
u L2

uL
2(Su,u)‖u−2‖L1

u

)

� δa
1

2 b
1

4

(
δ

3

2a
1

2 b
1

4

|u| +
δ

3

2a
3

4

|u|

)
� δ

5

2a
5

4 b
1

4

|u| ,

where we have used the bootstrap assumptions (4.1) and (4.3).
For the remaining contributions in F1,i, we will prove the slightly more

general bound where we allow (K − 1
|u|2 , σ̌) in place of σ̌. Using Sobolev

embedding in Proposition 5.9, we have

∑
i≤4

∥∥∥∥∥ui+2
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥∥

L1
uL

2
uL

2(Su,u)

(8.12)

�
∑

i1+i2≤4
i1≤2

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
∑
i3≤4

∥∥∥∥ui3+2∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

‖u−2‖L1
u

� δa
1

2 b
1

4 δ
3

2a
3

4 b
1

4
1

|u| �
δ

5

2a
5

4 b
1

2

|u| .

where we have used Proposition 6.1 and the bootstrap assumption (4.3).
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The final term in F1,i can be controlled in a similar fashion as (8.12):

∑
i≤4

∥∥∥∥∥ui+1
∑

i1+i2+i3=i−1

∇i1ψ i2+1∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥∥

L1
uL

2
uL

2(Su,u)

(8.13)

�
∑

i1+i2≤3
i1≤2

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
∑
i3≤3

∥∥∥∥ui3+2∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

‖u−2‖L1
u

� δa
1

2 b
1

4 δ
3

2a
3

4 b
1

4
1

|u| �
δ

5

2a
5

4 b
1

2

|u| .

We now move to the estimates for F2,i. Notice that the first, sixth and
seventh terms are already estimated above in (8.11), (8.12) and (8.13). For
the second term, we need to use the improved estimates for ∇iμ derived in
Proposition 7.3. In particular, we need to use the fact that i ≥ 1.∑

1≤i≤4

‖ui+1∇iμ‖L1
uL

2
uL

2(Su,u)

� δ
1

2

∑
1≤i≤4

‖ui+3∇iμ‖L∞
u L∞

u L2(Su,u)‖u−2‖L1
u

� δ
5

2a
5

4 b
1

4

|u| .

For the third term in F2,i, we have∑
i≤4

‖ui+1
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3ψ‖L1
uL

2
uL

2(Su,u)

� δ
1

2

∑
i1+i2≤4
i1≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3+1∇i3ψ‖L∞
u L∞

u L2(Su,u)‖u−2‖L1
u

� δ
5

2ab
1

2

|u|
where we have used Proposition 6.1 and the bootstrap assumption (4.1).

For the fourth term in F2,i, we need to use i ≥ 1 and apply the improve-
ment in the bounds for ∇i(trχ+ 2

|u|) from Proposition 6.7. More precisely,
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we have

∑
1≤i≤4

∥∥∥∥∥ui ∑
i1+i2+i3=i

∇i1ψ i2∇i3

(
trχ+

2

|u|
)∥∥∥∥∥

L1
uL

2
uL

2(Su,u)

� δ
1

2

∑
1≤i≤4

∥∥∥∥ui+ 3

2∇i

(
trχ+

2

|u|
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

‖u− 3

2 ‖L1
u

+ δ
1

2

∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3+1∇i3ψ‖L∞
u L∞

u L2(Su,u)‖u−2‖L1
u

� δ2a
3

4

|u| 12
+

δ
5

2ab
1

2

|u| ,

where in addition to using Proposition 6.1, we have used Proposition 6.7 for
the first term and the bootstrap assumptions (4.1) for the second term.

For the fifth term in F2,i, we also need to use i ≥ 1 and apply the improve-
ment in the bounds for ∇i(1− Ω−1) from Proposition 6.8. More precisely,
we have

∑
1≤i≤4

∥∥∥∥∥ui−1
∑

i1+i2+i3=i

∇i1ψ i2∇i3(1− Ω−1)

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

� δ
1

2

∑
1≤i≤4

‖ui+ 1

2∇i log Ω‖L∞
u L∞

u L2(Su,u)‖u−
3

2 ‖L1
u

+ δ
1

2

∑
i1+i2≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤3

‖ui3+1∇i3ψ‖L∞
u L∞

u L2(Su,u)‖u−2‖L1
u

+ δ
1

2

∑
i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

× ‖u(1− Ω−1)‖L∞
u L∞

u L∞(Su,u)‖u−2‖L1
u

� δ2a
3

4

|u| 12
+

δ
5

2ab
1

2

|u| .

Here, we have used Propositions 5.1, 6.1 and 6.8.
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We now estimate the contributions from F3,i. For the first term, we have

∑
i≤4

∥∥∥∥∥ui+2
∑

i1+i2+i3+i4=i+1

∇i1ψ i2∇i3

(
trχ+

2

|u| , χ̂, ω
)
∇i4ψ

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

� δ
∑

i1+i2≤5
i1≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3∇i3ψ‖L∞
u L∞

u L2(Su,u)‖u−1‖L2
u

+ δ
1

2 ‖u2ψ‖L∞
u L∞

u L∞(Su,u)‖u5∇5ψ‖L∞
u L2

uL
2(Su,u)‖u−1‖L2

u

+ δ
∑

i1+i2≤5
i1≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞

u L∞(Su,u)‖u−1‖L2
u

+ δ

∥∥∥∥u5∇5

(
trχ+

2

|u| , χ̂, ω
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

‖uψ‖L∞
u L∞

u L∞(Su,u)

� δ2ab
1

4

|u| 12
,

where we have used Proposition 6.1, the bootstrap assumption (4.3), as well
as the bound for ∇iψ derived in Proposition 6.5.

For the second term, we use Sobolev embedding (Theorem 5.9) to get

∑
i≤4

∥∥∥∥∥ui+2
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3(K, σ̌)

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

� δ
1

2

∑
i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
∑
i3≤4

∥∥∥∥ui3+2∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

‖u−2‖L2
u

+ δ
∑

i1+i2≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)‖u−1‖L2
u

� δ3a
5

4 b
1

2

|u| 32
+

δ2a
1

2 b
1

4

|u| 12
,

where we have used Proposition 6.1 and the bootstrap assumption (4.3).
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For the third term of Fi,3, we need to use the improved bounds for
∇itrχ for i ≥ 1 given by Propositions 6.3 and 7.1. More precisely, we have
the estimate

∑
i≤4

∥∥∥∥∥ui+1
∑

i1+i2+i3=i+1

∇i1ψ i2∇i3trχ

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

�

⎛⎝δ
1

2 ‖u6∇5trχ‖L∞
u L2

uL
2(Su,u) + δ

∑
i≤4

‖ui+1∇itrχ‖L∞
u L∞

u L2(Su,u)

⎞⎠ ‖u−1‖L2
u

+ δ
∑

i1+i2≤5
i1≤2

‖ui1+i2+2∇i1ψ i2+1‖L∞
u L∞

u L∞(Su,u)

×
∑
i3≤4

‖ui3∇i3ψ‖L∞
u L∞

u L2(Su,u)‖u−1‖L2
u

+ δ
∑

i1+i2≤5
i1≤4

‖ui1+i2+1∇i1ψ i2+1‖L∞
u L∞

u L2(Su,u)

×
∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞

u L∞(Su,u)‖u−1‖L2
u

� δ2ab
1

4

|u| 12
,

where we have used Propositions 6.3, 6.5 and 7.1, as well as applied Propo-
sition 6.1 to control the product of ψ .

Returning to (8.10), collecting all the above estimates and using the
condition |u| ≥ δa

1

2 b, we get

∑
i≤4

(∥∥∥∥ui+2∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L2
uL

2(Su,u)

+ ‖ui+2∇iβ‖L2
uL

2(Su,u)

)
� δ

3

2a
3

4 .

�

We now turn to the remaining energy estimates, i.e., we derive the bounds
for ‖ui+1∇iβ‖L∞

u L2
uL

2(Su,u) and ‖ui+1∇i(K − 1
|u|2 , σ̌)‖L∞

u L2
uL

2(Su,u) for i ≤ 4:

Proposition 8.5. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have

∑
i≤4

(
‖ui+1∇iβ‖L∞

u L2
uL

2(Su,u)+

∥∥∥∥ui+1∇i

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

)
� δ

1

2a
1

2 .
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Proof. As in the proof of Proposition 8.4, we derive the energy estimates
from the Bianchi equations. We consider the three schematic Bianchi equa-
tions below. First, the equation for ∇3β:

∇3β −∇
(
K − 1

|u|2
)
−∗ ∇σ̌ + trχβ(8.14)

= ψ (K, σ̌) +
∑

i1+i2=1

ψ i1+1∇i2ψ + ψ∇(trχ, χ̂) +
1

|u|ψψ +
1

|u|∇trχ.

We also have the equation for ∇4σ̌

(8.15) ∇4σ̌ + div ∗β = ψσ̌ + ψ∇η +
∑

i1+i2=1

ψ i1+1∇i2ψ

and the equation for ∇4(K − 1
|u|2 )

∇4

(
K − 1

|u|2
)
+ div β = ψ

(
K − 1

|u|2 , σ̌
)
+ ψ∇η(8.16)

+
∑

i1+i2=1

ψ i1+1∇i2ψ +
1

|u|2ψ.

We commute the above equations with ∇i. From (8.14), we obtain

(8.17) ∇3∇iβ −∇∇i

(
K − 1

|u|2
)
−∗ ∇∇iσ̌ +

2 + i

2
trχ∇iβ = G1,i

where G1,i is given by

G1,i = ψ∇5ψ +
1

|u|∇
5trχ+ ψ∇5(χ̂, trχ)

+
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3

(
K − 1

|u|2 , σ̌
)
+

∑
i1+i2+i3=i+1

i1,i3≤i

∇i1ψ i2+1∇i3ψ

+
1

|u|
∑

i1+i2+i3=i

∇i1ψ i2+1∇i3ψ +
1

|u|2
∑

i1+i2=i

∇i1ψ i2+1.

Using (8.15), we get

(8.18) ∇4∇iσ̌ + div ∗∇iβ = G2,i,
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where

G2,i = ψ∇5ψ + ψ∇5η +
∑

i1+i2+i3+i4=i

∇i1ψ i2∇i3ψ∇i4 σ̌

+
∑

i1+i2+i3=i+1
i1,i3≤i

∇i1ψ i2+1∇i3ψ.

Also, by (8.16), we have

(8.19) ∇4∇i

(
K − 1

|u|2
)
+ div ∇iβ = G3,i,

where

G3,i = ψ∇5ψ +
∑

i1+i2+i3+i4=i

∇i1ψ i2∇i3ψ∇i4

(
K − 1

|u|2 , σ̌
)

+
∑

i1+i2+i3=i+1
i1,i3≤i

∇i1ψ i2+1∇i3ψ +
1

|u|2
∑

i1+i2=i

∇i1ψ i2+1.

As in the proof of Proposition 88, we use equations (8.17), (8.18),(8.19)
and apply Propositions 8.1, 8.2 and 8.3 to obtain

∑
i≤4

(
‖ui+1∇iβ‖2L2

uL
2(Su,u)

+ ‖ui+1∇i

(
K − 1

|u|2
)
‖2L2(H)(8.20)

+ ‖ui+1∇iσ̌‖2L2
uL

2(Su,u)

)
�
∑
i≤4

‖ui+1∇iβ‖2L2
uL

2(S0,u)

+
∑
i≤4

(
‖ui+1G1,i‖L1

uL
2
uL

2(Su,u) + ‖ui+1G2,i‖L1
uL

2
uL

2(Su,u)

)
+
∑
i≤4

‖ui+1G3,i‖L1
uL

2
uL

2(Su,u).

Notice that the weight ui+1 is dictated by term 2+i
2 trχ∇iβ in (8.17). The

proof of (8.20) is otherwise analogous to that of (8.10) in Proposition 88
and is omitted.

We now estimate each of the terms on the right hand side (8.20). We
begin with the term G1,i. Among the terms in G1,i, we first bound the



106 X. An and J. Luk

contributions where 5 derivatives fall on one of the Ricci coefficients. More
precisely, these are the terms

(8.21) ψ∇5ψ,
1

|u|∇
5trχ, ψ∇5(χ̂, trχ).

For the first term in (8.21), we have the estimate

‖u5ψ∇5ψ‖L1
uL

2
uL

2(Su,u)

� ‖u5∇5ψ‖L∞
u L2

uL
2(Su,u)‖ψ‖L1

uL
∞
u L∞(Su,u)

� δ
1

2a
1

2
δa

1

2

|u| b
1

2 � δ
3

2ab
1

2

|u| ,

where we have used bootstrap assumptions (4.1) and (4.3). The second term
of (8.21) can be controlled by

‖u4∇5trχ‖L1
uL

2
uL

2(Su,u)

� ‖u6∇5trχ‖L∞
u L2

uL
2(Su,u)‖

1

|u|2 ‖L1
u

� δ
3

2ab
1

4

|u| .

Here, we have used the bound for ∇5trχ in Proposition 7.1. Notice that
it is important that Proposition 7.1 gives a better bound for ∇5trχ than
other ∇5ψ components. Then, turning to the third term in (8.21), we use
Proposition 6.5 and the bootstrap assumption (4.3) to obtain the following
estimate:

‖u5ψ∇5(χ̂, trχ)‖L1
uL

2
uL

2(Su,u)

� ‖u5∇5(χ̂, trχ)‖L∞
u L2

uL
2(Su,u)‖ψ‖L2

uL
2
uL

∞(Su,u)

� δa
1

2

|u| 12
b

1

4
δ

1

2a
1

2

|u| 12
� δ

3

2ab
1

4

|u| .

After bounding all the highest derivative Ricci coefficient terms, we now
move to the term containing (K − 1

|u|2 , σ̌). Using Sobolev embedding in
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Proposition 5.9 together with Proposition 6.1 and the bootstrap assump-
tion (4.3), we have

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i

ui+1∇i1ψ i2+1∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥∥

L1
uL

2
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2∇i1ψ i2+1‖L2
uL

2
uL

∞(Su,u)

×
∑
i3≤4

∥∥∥∥ui3+1∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

+
∑

i1+i2≤4

‖ui1+i2−1∇i1ψ i2+1‖L2
uL

2
uL

2(Su,u)

×
∑
i3≤2

∥∥∥∥ui3+2∇i3

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
∞(Su,u)

� δ
1

2a
1

2 b
1

4
δa

1

2

|u|2 |u|
1

2 δ
1

2 b
1

4 � δ2ab
1

2

|u| 32
.

We then control the Ricci coefficient terms where there are at most 4 deriva-
tives. For each i ≤ 4, there are three terms to be bounded, namely∑

i1+i2+i3=i+1
i1,i3≤i

∇i1ψ i2+1∇i3ψ,

∑
i1+i2+i3=i

1

|u|∇
i1ψ i2+1∇i3ψ,

∑
i1+i2=i

1

|u|2∇
i1ψ i2+1.

(8.22)

The first terms in (8.22) can be estimated as follows

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i+1

i1,i3≤i

ui+1∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2∇i1ψ i2+1‖L1
uL

∞
u L∞(Su,u)

∑
i3≤4

‖ui3∇i3ψ‖L∞
u L2

uL
2(Su,u)

+
∑

i1+i2≤4

‖ui1+i2−1∇i1ψ i2+1‖L1
uL

∞
u L2(Su,u)

∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L2

uL
∞(Su,u)

� δa
1

2 b
1

4

|u| δ
1

2a
1

2 � δ
3

2ab
1

4

|u| ,
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where we have used Propositions 6.1 and 6.5 and the bootstrap assump-
tion (4.1).

The second term in (8.22) can be controlled in a very similar fashion:

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i

ui∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2∇i1ψ i2+1‖L1
uL

∞
u L∞(Su,u)

∑
i3≤4

‖ui3∇i3ψ‖L∞
u L2

uL
2(Su,u)

+
∑

i1+i2≤4

‖ui1+i2−1∇i1ψ i2+1‖L1
uL

∞
u L2(Su,u)

∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L2

uL
∞(Su,u)

� δa
1

2 b
1

4

|u| δ
1

2a
1

2 � δ
3

2ab
1

4

|u| ,

where we have again used Proposition 6.1 and 6.5 and the bootstrap as-
sumption (4.1).

We now turn to the last term of (8.22), for which we have the following
bound:

∑
i≤4

∥∥∥∥∥ ∑
i1+i2=i

ui−1∇i1ψ i2+1

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2−1∇i1ψ i2‖L2
uL

∞
u L∞(Su,u)

∑
i3≤4

‖ui3∇i3ψ‖L2
uL

2
uL

2(Su,u)

� δ
3

2a
1

2 b
1

4

|u| ,

after using Proposition 6.1 and bootstrap assumption (4.1).
This concludes the estimates for G1,i We now move to the estimates for

G2,i and G3,i. It is easy to observe that all the terms of G2,i are in fact
contained in the expression for G3,i. Hence, it suffices to control the terms
in G3,i. As in the estimates for G1,i, we first bound the contributions where
there are 5 derivatives on one of the Ricci coefficients. There are two terms
of this type, namely,

ψ∇5ψ, ψ∇5η.
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For the first term, we have

‖u5ψ∇5ψ‖L1
uL

2
uL

2(Su,u)

� ‖u5∇5ψ‖L∞
u L2

uL
2(Su,u)‖ψ‖L2

uL
2
uL

∞(Su,u)

� δ
1

2a
1

2 b
1

4
δ

3

2a
1

2 b
1

4

|u| 32
� δ2ab

1

2

|u| 32
,

where we have used the bootstrap assumptions (4.1) and (4.3). The sec-
ond term can be controlled after using Proposition 6.5 and the bootstrap
assumption (4.3):

‖u5ψ∇5η‖L1
uL

2
uL

2(Su,u)

� ‖u6∇5η‖L∞
u L2

uL
2(Su,u)

∥∥∥∥ 1

|u|ψ
∥∥∥∥
L2

uL
2
uL

∞(Su,u)

� δ
3

2a
3

4 b
1

4
δ

1

2a
1

2

|u| 32
� δ2a

5

4 b
1

4

|u| 32
.

We now move to the curvature term containing (K − 1
|u|2 , σ̌). We have

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3+i4=i

ui+1∇i1ψ i2∇i3ψ∇i4

(
K − 1

|u|2 , σ̌
)∥∥∥∥∥

L1
uL

2
uL

2(Su,u)

� δ
∑

i1+i2≤2

‖ui1+i2−1∇i1ψ i2‖L∞
u L∞

u L∞(Su,u)

∑
i3≤2

‖∇i3+1ψ‖L∞
u L∞

u L∞(Su,u)

×
∑
i4≤4

∥∥∥∥ui4+1∇i4

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
2(Su,u)

+ δ
∑

i1+i2≤2

‖ui1+i2−1∇i1ψ i2‖L∞
u L∞

u L∞(Su,u)

∑
i3≤4

‖∇i3ψ‖L∞
u L∞

u L2(Su,u)

×
∑
i4≤2

∥∥∥∥ui4+2∇i4

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
∞(Su,u)

+ δ
∑

i1+i2≤4

‖ui1+i2−2∇i1ψ i2‖L∞
u L∞

u L2(Su,u)

∑
i3≤2

‖∇i3+1ψ‖L∞
u L∞

u L2(Su,u)

×
∑
i4≤2

∥∥∥∥ui4+2∇i4

(
K − 1

|u|2 , σ̌
)∥∥∥∥

L∞
u L2

uL
∞(Su,u)

� δ

|u|a
1

2 · δ 1

2a
1

2 b
1

4 � δ
3

2ab
1

4

|u| ,
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where we have used Sobolev embedding in Proposition 5.9 and also Proposi-
tions 6.1 and 6.5 and the bootstrap assumptions (4.1) and (4.3). We finally
turn to the remaining two terms, i.e., the Ricci coefficient terms with at
most 4 derivatives. These are the terms∑

i1+i2+i3=i+1
i1,i3≤i

∇i1ψ i2+1∇i3ψ,
∑

i1+i2+i3=i

1

|u|2∇
i1ψ i2∇i3ψ

for i ≤ 4. For the first term, we have

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i+1

i1,i3≤i

ui+1∇i1ψ i2+1∇i3ψ

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2∇i1ψ i2+1‖L1
uL

2
uL

∞(Su,u)

∑
i3≤4

‖ui3∇i3ψ‖L∞
u L∞

u L2(Su,u)

+
∑

i1+i2≤4

‖ui1+i2−1∇i1ψ i2+1‖L1
uL

2
uL

2(Su,u)

∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞

u L∞(Su,u)

� δ
3

2a
1

2 b
1

4

|u| 32
δ

1

2a
1

2 � δ2ab
1

4

|u| 32
,

where we have used Propositions 6.1 and 6.5 and the bootstrap assump-
tion (4.1). Finally, using again Propositions 6.1 and 6.5 and the bootstrap
assumption (4.1), we obtain

∑
i≤4

∥∥∥∥∥ ∑
i1+i2+i3=i

ui−1∇i1ψ i2∇i3ψ

∥∥∥∥∥
L1

uL
2
uL

2(Su,u)

�
∑

i1+i2≤2

‖ui1+i2−1∇i1ψ i2‖L1
uL

2
uL

∞(Su,u)

∑
i3≤4

‖ui3∇i3ψ‖L∞
u L∞

u L2(Su,u)

+
∑

i1+i2≤4

‖ui1+i2−2∇i1ψ i2‖L1
uL

2
uL

2(Su,u)

∑
i3≤2

‖ui3+1∇i3ψ‖L∞
u L∞

u L∞(Su,u)

� δ
3

2a
1

2 b
1

4

|u| 32
δ

1

2a
1

2 � δ2ab
1

4

|u| 32
.

We have thus estimated all of the error terms. Notice that since |u| ≥ δa
1

2 b,
all the error terms can be controlled by

� δ
1

2a
1

2 .

Returning to (8.20), we therefore conclude the proof of the proposition. �
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With Propositions 8.4 and 8.5, the only remaining energy estimate is
that for K − 1

|u|2 in the case i = 0. To obtain the desired bounds, we will
simply integrate the estimates we obtained in Proposition 6.9 to get the
following proposition:

Proposition 8.6. Under the assumptions of Theorem 3.1 and the bootstrap
assumptions (4.1), (4.2), (4.3) and (4.4), we have∥∥∥∥u2(K − 1

|u|2
)∥∥∥∥

L∞
u L2

uL
2(S)

� δ
3

2a
3

4 .

Proof. This follows immediately from Proposition 6.9:∥∥∥∥u2(K − 1

|u|2
)∥∥∥∥

L∞
u L2

uL
2(S)

� δ
1

2 · δa 1

2 (1 + Õ5,2 +R)

and the bootstrap assumption (4.3). �

Combining Propositions 8.4, 8.5 and 8.6, we have thus obtained

(8.23) R � 1.

Substituting the bound (8.23) into Proposition 7.7, we have

(8.24) Õ5,2 � 1.

(8.23) and (8.24) together improve over the bootstrap assumption (4.3) for b
sufficiently large. Now, using (8.23) and (8.24) together with Propositions 6.5
and 6.6 and the Sobolev embedding in Proposition 5.9, we obtain∑

i≤4

1

δa
1

2

‖ui+1∇iψ‖L2(Su,u) +
∑
i≤2

1

δa
1

2

‖ui+2∇iψ‖L∞(Su,u) � 1

and ∑
i≤4

1

a
1

2

‖ui∇iψ‖L2(Su,u) +
∑
i≤2

1

a
1

2

‖ui+1∇iψ‖L∞(Su,u) � 1,

which improve over (4.1) and (4.2) respectively, after choosing b to be suffi-
ciently large. Finally, recall from Proposition 6.9 that we have∑

i≤3

∥∥∥∥ui+1∇i

(
K − 1

|u|2
)∥∥∥∥

L∞
u L∞

u L2(Su,u)

� 1

b
3

4

,
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which improves over (4.4) for b sufficiently large. We have thus recovered all
the bootstrap assumptions and showed that the bound

O, Õ5,2,R � 1

holds.
This concludes the proof of Theorem 3.1.

9. Formation of trapped surfaces

In the section, we will prove Theorem 3.2, thus concluding the proof of
Theorem 1.3. The proof will make use of the bounds in Theorem 3.1 and
follows from an ODE argument as in [6]. We first need to obtain some refined
estimates compared to that in the proof Theorem 3.1.

First, using the bound for ω proved in Proposition 6.4 instead of applying
the bootstrap assumption, we can revisit the proof of Proposition 5.1 to
obtain the following improved estimate for Ω:

Proposition 9.1. Under the assumptions of Theorem 3.1, we have

‖Ω−1 − 1‖L∞(Su,u) �
δa

1

2

|u| .

Proof. Using (5.1), we have

‖Ω−1 − 1‖L∞(Su,u) �
∫ u

0
‖ω‖L∞(Su,u′ )du

′ � δa
1

2

|u| ,

where in the last step we have used the estimate for ω derived in Theo-
rem 3.1. �

We then also need the following improved estimate for trχ. More precisely,
we show that while the bound in Proposition 6.3 is in general sharp, the
main contribution comes from the |χ̂|2γ term. This will allow us to obtain
an upper bound for |trχ(u, u, θ1, θ2)| depending on the integral of |χ̂|2γ along
the characteristic in the (θ1, θ2) direction. This improvement in the bound
for trχ will in turn enable us to prove a lower bound for the integral of |χ̂|2γ
in the proof of Theorem 3.2.
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Proposition 9.2. Under the assumptions of Theorem 3.1, we have

|trχ(u, u, θ1, θ2)| � 1

|u| +
∫ δ

0
|χ̂|2γ(u, u′, θ1, θ2)du′

for every (θ1, θ2).

Proof. Fix (θ1, θ2). Recall that

∇4trχ+ |χ̂|2 = ψ trχ.

Integrating this equation and recalling that initially trχ = 2
|u| , we obtain

|trχ(u, u, θ1, θ2)| � 1

|u| +
δa

1

2

|u| sup
u′≤u

|trχ(u, u′, θ1, θ2)|

+

∫ δ

0
|χ̂|2γ(u, u′, θ1, θ2)du′.

Since δa
1
2

|u| ≤ 1
b , we can choose b to be sufficiently large to obtain

|trχ(u, u, θ1, θ2)| � 1

|u| +
∫ δ

0
|χ̂|2γ(u, u′, θ1, θ2)du′. �

With these estimates, we are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. In order to show that S
δa

1
2 b,δ

is a trapped surface, we

need to prove that trχ < 0 and trχ < 0 everywhere on S
δa

1
2 b,δ

. The fact that

trχ < 0 follows directly from the estimates we have proved. More precisely,
recall from Theorem 3.1 that we have the following bound for trχ in the

region δa
1

2 b ≤ |u| ≤ 1: ∥∥∥∥trχ+
2

|u|
∥∥∥∥
L∞(Su,u)

� δa
1

2

|u|2 .

In particular,

(9.1) trχ < 0

everywhere on the sphere S
bδa

1
2 ,δ

.
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It now remains to show that trχ < 0 pointwise on S
bδa

1
2 ,δ

. Fix a point p =

(θ1, θ2) ∈ S1,0. We will show that trχ(u = δa
1

2 b, u = δ, θ1, θ2) < 0. To achieve

this, we make the following bootstrap assumption for every u ∈ [δa
1

2 b, 1]:

(9.2)

∫ δ

0
u2|χ̂|2γ(u, u, θ1, θ2)du ≤ 2

∫ δ

0
|χ̂|2γ(1, u, θ1, θ2)du.

Our strategy is as follows. The bootstrap assumption (9.2) will allow us to
have an upper bound for |trχ|. This will in turn give us both upper and

lower bounds for the integral
∫ δ
0 u2|χ̂|2γ(u, u′, θ1, θ2)du′. In particular, we can

close the bootstrap assumption (9.2). We will then use the lower bound
for |χ̂|2γ(u = δa

1

2 b, u, θ1, θ2) to get an upper bound for trχ(u = δa
1

2 b, u =

δ, θ1, θ2), which in particular guarantees that trχ(u = δa
1

2 b, u = δ, θ1, θ2) <
0.

We now turn to the details. First, as an immediate consequence of the
bootstrap assumption (9.2) and Proposition 9.2, we have

(9.3) |trχ(u, u, θ1, θ2)| � 1

|u| +
1

|u|2
∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′.

Now consider the null structure equation

∇3χ̂+
1

2
trχχ̂ = ∇⊗̂η + 2ωχ̂− 1

2
trχχ̂+ η⊗̂η.

Contracting this equation with χ̂, we have

1

2
∇3|χ̂|2γ +

1

2
trχ|χ̂|2γ − 2ω|χ̂|2γ = χ̂

(
∇⊗̂η − 1

2
trχχ̂+ η⊗̂η

)
.

In the coordinate system introduced in Section 2.2, we have

− 1

2Ω

(
∂

∂u
+ dA

∂

∂θA

)
|χ̂|2γ −

1

Ω|u| |χ̂|
2
γ +

1

2

(
trχ+

2

Ω|u|
)
|χ̂|2γ − 2ω|χ̂|2γ

= χ̂

(
∇⊗̂η − 1

2
trχχ̂+ η⊗̂η

)
.
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Using ω = −1
2∇3(log Ω), we can rewrite this as

u−2 ∂

∂u
(u2Ω−2|χ̂|2γ) =

∂

∂u
(Ω−2|χ̂|2γ) +

2

Ω2|u| |χ̂|
2
γ(9.4)

= −2Ω−1χ̂

(
∇⊗̂η − 1

2
trχχ̂+ η⊗̂η

)
+Ω−1

(
trχ+

2

Ω|u|
)
|χ̂|2γ + dA

∂

∂θA
(Ω−2|χ̂|2).

We now obtain pointwise bounds for the terms on the right hand side. After
bounding Ω−1 in L∞ using Proposition 5.1, the first term can be re-written
schematically as ∑

i1+i2=1

ψψ i1∇i2ψ + ψψ trχ.

Using the bounds in Theorem 3.1 together with (9.3), we have

∥∥∥∥∥ ∑
i1+i2=1

ψψ i1∇i2ψ

∥∥∥∥∥
L∞(Su,u)

+ ‖ψψ trχ‖L∞(Su,u)(9.5)

� δa

|u|4 +
δa

|u|5
∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′.

For the second term on the right hand side of (9.4), note that

∥∥∥∥trχ+
2

Ω|u|
∥∥∥∥
L∞(Su,u)

=

∥∥∥∥trχ+
2

|u|
∥∥∥∥
L∞(Su,u)

+

∥∥∥∥ 2

|u|(Ω
−1 − 1)

∥∥∥∥
L∞(Su,u)

� δa
1

2

|u|2 ,

where we have used the bounds proved in Theorem 3.1 together with Propo-
sition 9.1. Therefore, for every u ∈ [0, δa

1

2 b], u ∈ [0, δ], we have

(9.6)

∣∣∣∣Ω−1

(
trχ+

2

Ω|u|
)∣∣∣∣ χ̂|2γ |(u, u, θ1, θ2) � δa

1

2

|u|2 |χ̂|
2
γ(u, u, θ

1, θ2).
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For the third term on the right hand side of (9.4), we have

∥∥∥∥dA ∂

∂θA
(Ω−2|χ̂|2)

∥∥∥∥
L∞(Su,u)

(9.7)

� ‖d‖L∞(Su,u)‖∇χ̂‖L∞(Su,u)‖ψ‖L∞(Su,u)+‖d‖L∞(Su,u)‖ψψψ‖L∞(Su,u)

� a

|u|3 ‖d‖L∞(Su,u).

To obtain the estimate for d, we use the fact that

[L,L] =
∂dA

∂u

∂

∂θA

which implies

∂dA

∂u
= −4Ω2ζA.

Integrating this in the u direction and applying the bounds in Theorem 3.1
thus give

‖d‖L∞(Su,u) �
δ2a

1

2

|u|2 .

Combining this with (9.7), we thus have

(9.8)

∥∥∥∥dA ∂

∂θA
(Ω−2|χ̂|2)

∥∥∥∥
L∞(Su,u)

� δ2a
3

2

|u|5 .

Multiplying (9.4) by u2, integrating in u and using the bounds (9.5), (9.6)
and (9.8), we thus have

∣∣u2|χ̂|2γ(u, u, θ1, θ2)− |χ̂|2γ(1, u, θ1, θ2)
∣∣

≤ Ca
1

2

b
+

Cδa

|u|2
∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′

+ Cδa
1

2

∫ 1

u
|χ̂|2γ(u′, u, θ1, θ2)du′,



Trapped surfaces arising from mild incoming radiation 117

for some universal constant C. Integrating in u from 0 to δ, we obtain∣∣∣∣∫ δ

0
u2|χ̂|2γ(u, u′, θ1, θ2)du′ −

∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′

∣∣∣∣
≤ Cδa

1

2

b
+

Cδ2a

|u|2
∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′

+ Cδa
1

2

∫ δ

0

∫ 1

u
|χ̂|2γ(u′, u′, θ1, θ2)du′du′

≤ Cδa
1

2

b
+

C

b

∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′

+ Cδa
1

2

(∫ 1

u

1

|u′|2du
′
)(

sup
u′

∫ δ

0
(u′)2|χ̂|2γ(u′, u, θ1, θ2)du′

)
≤ Cδa

1

2

b
+

C

b

∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′ +

2Cδa
1

2

|u|
∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′

≤ Cδa
1

2

b
+

3C

b

∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′,

where we have used the bootstrap assumption (9.2). After choosing b suffi-
ciently large so that C

b ≤ 1
15 , this yields the upper bound∫ δ

0
u2|χ̂|2γ(u, u′, θ1, θ2)du′ ≤

6

5

∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′ +

2Cδa
1

2

b
.

and the lower bound∫ δ

0
u2|χ̂|2γ(u, u′, θ1, θ2)du′ ≥

4

5

∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′ −

2Cδa
1

2

b
.

Recalling that the assumption (3.1) implies∫ δ

0
|χ̂0|2(1, u′, θ1, θ2)du′ ≥ 4bδa

1

2 ,

we can thus choose b to be sufficiently large to guarantee that

(9.9)

∫ δ

0
u2|χ̂|2γ(u, u′, θ1, θ2)du′ ≤

3

2

∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′.

and ∫ δ

0
u2|χ̂|2γ(u, u′, θ1, θ2)du′ >

3

4

∫ δ

0
|χ̂|2γ(1, u′, θ1, θ2)du′ ≥ 3bδa

1

2 .(9.10)
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In particular, (9.9) improves over the bootstrap assumption (9.2). Therefore,
(9.10) holds. We now use (9.10) to obtain the desired upper bound for trχ.
To this end, we combine the transport equation for trχ

∇4trχ+
1

2
(trχ)2 = −|χ̂|2 − 2ωtrχ

and ω = −1
2∇4(log Ω) to get

∇4(Ω
−1trχ) = −Ω−1

2
(trχ)2 − Ω−1|χ̂|2.

Using the fact e4 = Ω−1 ∂
∂u , we integrate this equation to obtain

Ω−1trχ(bδa
1

2 , δ, θ1, θ2)(9.11)

≤ Ω−1trχ(bδa
1

2 , 0, θ1, θ2)−
∫ δ

0
|χ̂|2(bδa 1

2 , u′, θ1, θ2)du′

≤ 2

bδa
1

2

− 3

bδa
1

2

< 0.

Here, we have used the lower bound (9.10) for the integral of |χ̂|2γ .
Therefore, by (9.1) and (9.11), S

bδa
1
2 ,δ

is a trapped surface. �
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