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Proof of the mass-angular momentum

inequality for bi-axisymmetric black holes

with spherical topology

Aghil Alaee, Marcus Khuri, and Hari Kunduri

We show that extreme Myers-Perry initial data realize the unique
absolute minimum of the total mass in a physically relevant (Brill)
class of maximal, asymptotically flat, bi-axisymmetric initial data
for the Einstein equations with fixed angular momenta. As a conse-
quence, we prove the relevant mass-angular momentum inequality
in this setting for 5-dimensional spacetimes. That is, all data in
this class satisfy the inequality m3 ≥ 27π

32 (|J1|+ |J2|)2, where m
and Ji, i = 1, 2 are the total mass and angular momenta of the
spacetime. Moreover, equality holds if and only if the initial data
set is isometric to the canonical slice of an extreme Myers-Perry
black hole.
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1. Introduction

Based on the standard picture of gravitational collapse for 3 + 1 dimensional
asymptotically flat spacetimes [7], heuristic physical arguments [14] lead to
an inequality relating the total (ADM) mass and angular momentum

(1.1) m ≥
√

|J |,

if angular momentum is conserved during the evolution. In order to achieve
such a property for the angular momentum, axisymmetry is typically im-
posed along with other conditions on the matter fields. It turns out that it
is most natural to treat this inequality at the level of initial data (M3, g, k),
where g is a Riemannian metric on the 3-manifold M3, and k represents the
extrinsic curvature of the embedding into spacetime. In this regard, Dain
[13] was the first to rigorously establish (1.1) for a general class of vacuum,
maximal initial data sets. In this result it was assumed that M3 ∼= R

3 \ {0}
admits a global Brill (cylindrical) coordinate system (ρ, z, φ) in which the
metric takes the form

(1.2) g = e2U+2α(dρ2 + dz2) + ρ2e2U (dφ+Aρdρ+Azdz)
2,

for some coefficients U , α, Aρ, and Az satisfying appropriate asymptotics.
This particularly simple form of the metric played an important role in the
proof. Namely with this, the scalar curvature may be integrated by parts
to arrive at a lower bound for the mass, in terms of a (reduced) harmonic
energy functional. The second step of the argument then entails showing
that the energy functional is minimized by an extreme Kerr harmonic map
with the same angular momentum. Later, Chrusciel [8] showed that the
class of initial data that Dain used was quite general. More precisely, he
showed that any simply connected, axisymmetric initial data set with certain
asymptotics, admits global Brill coordinates. Further progress was also made
with regards to the harmonic map part of the problem. In [33], Schoen and
Zhou used the convexity properties of harmonic map energies along geodesic
deformations in order to simplify the proof, achieve weaker hypotheses on
the asymptotics, and to obtain a gap lower bound between the energy of
the given data and that of the minimizer. A charged version of (1.1) has
also been established in [9, 12, 33]. Corresponding rigidity statements have
also been given [13, 26, 33] when these inequalities are saturated, that is
the initial data must be the canonical slice of an extreme Kerr or extreme
Kerr-Newman black hole. Furthermore, an extension of these inequalities to
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the case of multiple black holes has been given in [11, 26], although here the
lower bound for the mass is not known as an explicit quantity.

All of the results mentioned so far involve the maximal assumption,
which yields important positivity properties for the scalar curvature. In the
nonmaximal case, Zhou [35] has treated (1.1) for vacuum initial data with
small Trg k, and Cha and the second author have reduced the general case,
for both the original inequality [6] and its charged version [5] to solving a
canonical system of elliptic equations.

As alluded to above, a closely related topic to the proof of the mass-
angular momentum and mass-angular momentum-charge inequality is the
uniqueness and existence of stationary, axisymmetric black hole solutions to
the vacuum and electrovacuum Einstein equations. This problem is equiva-
lent to showing uniqueness and existence of certain singular harmonic maps
from R

3 into 2-dimensional hyperbolic space H
2 and complex hyperbolic

space H2
C
, respectively. In particular, in the single black hole case, it is known

in this setting [10] that the Kerr(-Newman) family of black hole solutions
exhausts all possibilities. The extreme members of this family then provide
the minimizers for the mass lower bound.

The purpose of the present article is to establish a mass-angular momen-
tum inequality in five dimensions. The investigation of higher dimensional
black hole solutions has attracted a great deal of interest in recent years
[16, 22], chiefly motivated by string theory and the gauge theory-gravity
correspondence. A central result in this area is the proof by Galloway and
Schoen [18, 19] that cross-sections H of the event horizon, and more gener-
ally marginally outer trapped surfaces, must be of positive Yamabe type if
the dominant energy condition is satisfied. This implies that H is diffeomor-
phic to the sphere S3 (or its quotients), S1 × S2, or connected sums thereof.
A second key result due to Hollands, Ishibashi, and Wald [23], and indepen-
dently by Isenberg and Moncrief [30], is a rigidity theorem which states that
in the analytic setting, a stationary, rotating black hole must admit an ad-
ditional U(1) isometry. Explicit vacuum solutions corresponding to H ∼= S3

and H ∼= S1 × S2 are known, these are respectively the Myers-Perry family
of solutions [31] and the ‘black ring’ solution of Emparan and Reall [15] (see
also [32]). More recently, the first example of a black hole with real projec-
tive space topology H ∼= RP

3 has been found as a solution to supergravity
[28]. All these solutions admit U(1)2 isometries.

In order to establish geometric inequalities involving angular momentum
for black holes in 5-dimensions, it is natural to consider initial data admit-
ting a U(1)2 action by isometries. As each such inequality is expected to be
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associated with a model spacetime, which saturates the inequality, it is use-
ful here to recall the basic uniqueness theorem for 5-dimensional stationary
vacuum black hole solutions, in order to determine which solutions may serve
as models. The first important fact to note is that in five dimensions, black
holes are not determined by their mass and charges alone. This is exhibited
dramatically by the existence of the black ring solution which can possess
the same mass and angular momenta as a Myers-Perry black hole, but with a
horizon of different topology. Furthermore, Hollands and Yzadjiev [24] have
shown that after fixing mass and angular momenta, nondegenerate station-
ary vacuum black holes with U(1)2 isometries are uniquely determined by a
set of invariants which characterize the fixed points of the U(1)2 action and
the surfaces on which the timelike Killing field is null; this is referred to as
the ‘orbit space’ data. This data encodes, in particular, the topology of the
horizon and the second homology group of the domain of outer communica-
tions. An analogous result holds for extreme (degenerate) black holes [17].
Interestingly, these results do not address the question of existence of black
hole solutions for a given orbit space. However, they indicate that the unique
solution (if it exists) associated with each orbit space has the potential to
serve as a model black hole for a geometric inequality.

In general, the orbit space is a 2-dimensional manifold with a boundary
consisting of 1-dimensional segments and corners. On such segments and
corners, respectively one and two linear combinations of the Killing fields
generating the U(1)2 isometries have fixed points [1, 2, 24]. In the present
work we will restrict attention to initial data which have the same orbit
space structure as that of the Myers-Perry black holes. Here the orbit space
may be identified with a half plane minus the origin, in which the boundary
consists of two infinitely long rays, each of which serves as the fixed point
set for one of the two rotational Killing fields.

Consider an initial data set (M4, g, k) for the 5-dimensional Einstein
equations. Again this consists of a 4-manifold M4, Riemannian metric g,
and symmetric 2-tensor k representing extrinsic curvature. The energy and
momentum density of the matter fields are given by

(1.3) 16πμ = R+ (Trg k)
2 − |k|2g, 8πJ = divg(k − (Trg k)g),

where R is the scalar curvature of g. It will be assumed throughout that the
data are bi-axially symmetric. This means that the group of isometries of
the Riemannian manifold (M, g) has a subgroup isomorphic to U(1)2 with
no discrete isotropy subgroups, and that all quantities defining the initial
data are invariant under the U(1)2 action. Thus if η(l), l = 1, 2 are the two
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Killing field generators associated with this symmetry, then

(1.4) Lη(l)
g = Lη(l)

k = Lη(l)
μ = Lη(l)

J = 0,

where Lη(l)
denotes Lie differentiation. We will also postulate that M4 has

two ends, with one designated end being asymptotically flat, and the other
being either asymptotically flat or asymptotically cylindrical. Recall that a
domain M4

end ⊂ M4 is an asymptotically flat end if it is diffeomorphic to
R
4 \ Ball, and in the coordinates given by the asymptotic diffeomorphism

the following fall-off conditions hold

(1.5)
gab = δab +O1(r

−1−κ), kab = O(r−2−κ),
μ ∈ L1(M4

end), Ji ∈ L1(M4
end),

for some κ > 0. These asymptotics guarantee that the ADM energy and
linear momentum are well-defined, with the energy given by the following
limit

(1.6) m =
1

16π

∫
S∞

(gab,a − gaa,b)ν
b,

where S∞ indicates the limit as r → ∞ of integrals over coordinate spheres
Sr, with unit outer normal ν. Although the asymptotics (1.5) are not strong
enough to ensure that the linear momentum vanishes, and so the mass does
not coincide with the energy, we will throughout this paper refer to the
quantity (1.6) as the mass in order to reserve the use of the term ‘energy’ in
reference to harmonic maps. We note that the weaker hypothesis gab, pab ∈
L2(M4

end) may be used in place of the explicit asymptotics involving κ, where
p = k − (Trg k)g is the momentum tensor, in order to achieve well-defined
ADM energy-momentum. Moreover, it is likely that the result of this paper
hold under these weaker conditions, but we will not pursue such questions
here. Now consider the ADM angular momenta

(1.7) Jl =
1

8π

∫
S∞

(kab − (Trg k)gab)ν
aηb(l), l = 1, 2.

A priori this may not yield a finite well-defined quantity solely under the
asymptotics (1.5), since the Killing fields grow like r2. However, under the
additional assumption that J(η(l)) ∈ L1(M4

end), l = 1, 2 we have that (1.7) is
finite. This may easily be seen by integrating the following expression over
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M4
end,

(1.8) divg p(η(l)) = (divg p)(η(l)) +
1

2
〈p,Lη(l)

g〉 = 8πJ(η(l)).

Our main result is as follows.

Theorem 1.1. Let (M4, g, k) be a smooth, complete, bi-axially symmetric,
maximal initial data set for the 5-dimensional Einstein equations satisfying
μ ≥ 0 and J(η(l)) = 0, l = 1, 2 and with two ends, one designated asymptot-
ically flat and the other either asymptotically flat or asymptotically cylin-
drical. If M4 is diffeomorphic to R

4 \ {0} and admits a global system of
generalized Brill coordinates then

(1.9) m3 ≥ 27π

32
(|J1|+ |J2|)2 .

Moreover if Ji 
= 0, i = 1, 2, then equality holds if and only if (M4, g, k) is
isometric to the canonical slice of an extreme Myers-Perry spacetime.

This theorem may be considered as a direct generalization of Dain’s
result [13] to higher dimensions, as both assume the existence of a global
Brill coordinate system. It also generalizes the local versions of inequality
(1.9) established in [3, 4], for data which are sufficiently close to extreme
Myers-Perry. Moreover, this result may be interpreted as giving a variational
characterization of the extreme Myers-Perry initial data, as the mass mini-
mizers among all data with fixed angular momentum. Note that the horizon
geometries of 5-dimensional extreme vacuum black holes also arise as min-
imizers in the context of the area-angular momenta inequalities proved in
[21]; such minimizers have been completely classified [27].

The assumption of nonvanishing angular momenta is included since oth-
erwise there is no extreme Myers-Perry black hole to serve as a model;
the extreme Myers-Perry solutions with one or more vanishing angular mo-
menta do not contain a black hole. In particular, the inequality when Ji = 0,
i = 1, 2 reduces to the positive mass theorem, and due to the topology of the
initial data the case of equality cannot be achieved. Let us now make a few
remarks concerning the other hypotheses. From the preceding discussion the
motivation for most of the hypotheses should be clear, except perhaps those
associated with the momentum density and Brill coordinates. The assump-
tion J(η(l)) = 0, l = 1, 2 is, as mentioned above, used to obtain well-defined
total angular momenta, but will also be used for the important purpose of
guaranteeing the existence of twist potentials, which encode the relevant
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information concerning angular momentum and help reduce the proof to a
harmonic map problem. The existence of a generalized Brill coordinate sys-
tem ensures that there is a global system of (cylindrical) coordinates such
that the metric takes a simple form analogous to (1.2) in the 3 + 1 dimen-
sional case; a precise description will be given in the next section. Although
this appears to be a restrictive assumption, let us recall that in the 3 + 1
setting, Chrusciel [8] has shown under general conditions that simply con-
nected axisymmetric initial data admit global Brill coordinates. Similarly,
we conjecture that under appropriate asymptotics, a simply connected bi-
axisymmetric initial data set with trivial second homology group admits a
desired set of generalized Brill coordinates.

A natural question to ask is whether the current theorem admits gener-
alizations to dimensions higher than 5. It turns out that this is not possible
if we require the data to be asymptotically flat with a 2-dimensional or-
bit space. To see this, suppose that a spacetime has dimension n with a
U(1)n−3 symmetry. Asymptotic flatness implies that the initial data will
have SO(n− 1) as the compact part of the asymptotic symmetry group,
however this special orthogonal group admits at most (n− 1)/2 mutually
commuting generators. Thus, the only dimensions for which U(1)n−3 ⊂
SO(n− 1) are n = 4, 5.

This paper is organized as follows. In Section 2 we give a detailed descrip-
tion of generalized Brill coordinates. In Section 3 we derive a lower bound
for the mass in terms of a functional that will be related to the harmonic
energy of a map from R

3 → SL(3,R)/SO(3). Section 4 is then dedicated to
proving that the extreme Myers-Perry harmonic map achieves the absolute
minimum of this functional, and at the end of this section we then prove
Theorem 1.1. A discussion of future directions and generalizations of the re-
sults presented here is given in Section 5. Finally an appendix is included to
record, among other things, important properties of the Myers-Perry black
holes.

2. Generalized Brill coordinates

In this section we seek a certain type of cylindrical coordinate system for the
initial data, which are isothermal for the metric induced on the orbit space.
These generalized Brill coordinates are related to the well-known Weyl coor-
dinates familiar from the Ernst reduction of the stationary vacuum Einstein
equations. The primary difference between Brill and Weyl coordinates is that
the former applies to the region inside and outside of a black hole, while the
latter only covers the outer region. However, in the case of extreme black
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holes the two types of coordinates coincide. The following definition was
initially given in [1, 4] in a more general context, whereas here it is refined
for the particular problem at hand.

Definition 2.1. An initial data set (M4, g, k) with a U(1)2 symmetry, and
M4 ∼= R

4 \ {0}, is said to admit a system of generalized Brill coordinates
(ρ, z, φ1, φ2) if globally the metric takes the form

(2.1) g =
e2U+2α

2
√

ρ2 + z2

(
dρ2 + dz2

)
+ e2Uλij

(
dφi +Ai

ldy
l
)(

dφj +Aj
l dy

l
)
,

for some functions U , α, Ai
l, and a symmetric positive definite matrix λ =

(λij) with detλ = ρ2, i, j, l = 1, 2, (y1, y2) = (ρ, z), all independent of (φ1, φ2)
and satisfying the asymptotics (2.4)–(2.11). Moreover, the coordinates should
take values in the following ranges ρ ∈ [0,∞), z ∈ R, and φi ∈ [0, 2π], i =
1, 2.

The similarity of the metric structure (2.1) above with that of tradi-
tional Brill coordinates in 3-dimensions (1.2) is evident, except perhaps
for the presence of

√
ρ2 + z2. This term is included so that like in the 3-

dimensional case, (2.1) reduces to the flat metric when U = α = Ai
l = 0, if

λ = σ := r2 diag(sin2 θ, cos2 θ), where the appropriate polar coordinates are
given by

(2.2) ρ =
1

2
r2 sin(2θ), z =

1

2
r2 cos(2θ), r2 = 2

√
ρ2 + z2,

with r ∈ [0,∞), θ ∈ [0, π/2]. Note that the coordinates (θ, φ1, φ2) are Hopf
coordinates for the 3-sphere, which are naturally associated with the Hopf
fibration. In particular, the flat metric is given in these two coordinate sys-
tems by

δ4 =
dρ2 + dz2

2
√

ρ2 + z2
+ σijdφ

idφj(2.3)

= dr2 + r2dθ2 + r2
(
sin2 θ(dφ1)2 + cos2 θ(dφ2)2

)
.

We also note that without loss of generality the generators of the U(1)2

symmetry may be chosen such that η(l) = ∂φl , l = 1, 2.
Let us now record the appropriate asymptotics in three different regions,

namely at infinity, the origin, and near the axis. The particular decay rates
are motivated in general by the indicated asymptotically flat and asymp-
totically cylindrical geometries, and by the desire for certain coefficients,
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including λij and Ai
l, to not yield a direct contribution to the ADM mass.

In what follows a, b are constants, κ > 0 is as in the previous section, and
σ̃ = σ̃ijdφ

idφj is a Riemannian metric on the torus T 2 depending only on
θ. We begin with the designated asymptotically flat end characterized by
r → ∞, and require

U = O1(r
−1−κ), α = O1(r

−1−κ),
Ai

ρ = ρO1(r
−5−κ), Ai

z = O1(r
−3−κ),

(2.4)

λii =
(
1 + (−1)iar−1−κ +O1(r

−2−κ)
)
σii, λ12 = ρ2O1(r

−5−κ),
|k|g = O(r−2−κ).

(2.5)

Next consider the asymptotics as r → 0, where there are two types to ac-
count for. Namely, in the asymptotically flat case

U = −2 log r +O1(1), α = O1(r
1+κ),

Ai
ρ = ρO1(r

1+κ), Ai
z = O1(r

3+κ),
(2.6)

λii =
(
1 + (−1)ibr1+κ +O1(r

2+κ)
)
σii,

λ12 = ρ2O1(r
− 1

2
+κ), |k|g = O(r2+κ),

(2.7)

and in the asymptotically cylindrical case

U = − log r +O1(1), α = O1(1),

Ai
ρ = ρO1(r

1+κ), Ai
z = O1(r

3+κ),
(2.8)

λij = r2σ̃ij +O1(r
2+κ), |k|g = O(r2+κ).(2.9)

Lastly, let Γ = Γ+ ∪ Γ− denote the two axes Γ± = {ρ = 0,±z > 0}, then the
asymptotics as ρ → 0 are given by

U = O1(1), α = O1(1), Ai
ρ = O1(ρ),

Ai
z = O1(1), |k|g = O(1),

(2.10)

λ11, λ12 = O(ρ2), λ22 = O(1) on Γ+,

λ22, λ12 = O(ρ2), λ11 = O(1) on Γ−.
(2.11)

It should be pointed out that regularity of the geometry along the axis
implies a compatibility condition between α and λ. To see this, let ϑ ∈
(−∞, 2π) be the cone angle deficiency coming from the metric g at the axes
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of rotation, that is

2π

2π − ϑ
= lim

ρ→0

2π · Radius
Circumference

(2.12)

= lim
ρ→0

∫ ρ

0

√
e2U+2α

2
√
ρ2+z2 + e2UλijAi

ρA
j
ρdρ√

e2Uλii

=
eα(0,z)√

2|z| limρ→0

ρ√
λii

where i = 1, 2 corresponds to Γ+,Γ−, respectively. The cone angle deficiency
should vanish ϑ = 0, since (M4, g) is smooth across the axis, and thus

(2.13) α(0, z) =
1

2
log
(|z|∂2

ρλii(0, z)
)
=: α±(z) on Γ±.

To close this section, we confirm here that the asymptotically flat asymp-
totics (2.4), (2.5) and (2.6), (2.7) used to define Brill coordinates are consis-
tent with those given in (1.5). First observe that the fall-off imposed on k
in (2.5) trivially implies that in (1.5). Consider now the cartesian coordinates

(2.14)
x1 = r cos θ cosφ1, x2 = r cos θ sinφ1,

x3 = r sin θ cosφ2, x4 = r sin θ sinφ2.

Upon expressing the metric in these coordinates it follows that

g = e2U+2α(dr2 + r2dθ2) + e2Uλij

(
dφi +Ai

ldy
l
)(

dφj +Aj
l dy

l
)

(2.15)

= δ + (e2U+2α − 1)︸ ︷︷ ︸
O1(r−1−κ)

(dr2 + r2dθ2)︸ ︷︷ ︸
O1(1)

+(e2Uλij − σij)︸ ︷︷ ︸
O1(r−1−κ)

dφidφj︸ ︷︷ ︸
O1(r−2)

+ e2Uλij︸ ︷︷ ︸
O1(1)

Aj
l︸︷︷︸

O1(r−3−κ)

dφidyl︸ ︷︷ ︸
O1(1)

+ e2Uλij︸ ︷︷ ︸
O1(r2)

Ai
ldy

l︸ ︷︷ ︸
O1(r−2−κ)

( dφj︸︷︷︸
O1(r−1)

+ Aj
l dy

l︸ ︷︷ ︸
O1(r−2−κ)

)

= δ +O1(r
−1−κ),

where we have used dρ = O(r) and dz = O(r). Similar computations yield
the same result for the asymptotics (2.6), (2.7).
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3. The mass functional

One of the advantages of Brill data is that it provides a particularly simple
expression for the scalar curvature. Namely, as shown in [4] we have

e2U+2α−2 log rR = −6ΔU − 2Δρ,zα− 6|∇U |2 + det∇λ

2ρ2
(3.1)

− 1

4
e−2α+2 log rλij(A

i
ρ,z −Ai

z,ρ)(A
j
ρ,z −Aj

z,ρ),

where Δ and the norm | · | are with respect to the following flat metric

(3.2) δ3 = r2
(
dr2 + r2dθ2

)
+

r4 sin2(2θ)

4
dφ2 = dρ2 + dz2 + ρ2dφ2

on an auxiliary R
3 in which all quantities are independent of the new variable

φ ∈ [0, 2π], and Δρ,z is with respect to the flat metric δ2 = dρ2 + dz2 on the
orbit space. Moreover, the notation used for the last term on the first line
is shorthand for

(3.3) det∇λ = det

(∇λ11 ∇λ12

∇λ12 ∇λ22

)
= δ3(∇λ11,∇λ22)− |∇λ12|2.

From (3.1) one may integrate by parts to obtain a closed form expression
[4] for the mass

m =
1

8

∫
R3

(
e2U+2α−2 log rR+ 6|∇U |2 − det∇λ

2ρ2

)
dx(3.4)

+
1

32

∫
R3

e−2α+2 log rλij(A
i
ρ,z −Ai

z,ρ)(A
j
ρ,z −Aj

z,ρ)dx

+
π

2

∑
ς=±

∫
Γς

αςdz,

where the volume form dx is again with respect to δ3.
The next goal is to relate the right-hand side of (3.4) to a reduced form of

a harmonic energy. In order to accomplish this, the scalar curvature will be
replaced by an expression involving potentials for the angular momentum.
Consider the 1-form

(3.5) P(l) = 2 �
(
p(η(l)) ∧ η(1) ∧ η(2)

)
= 2εabcdp

b
sη

s
(l)η

c
(1)η

d
(2)dx

a

on M4, where εabcd is the volume form for g, � is the Hodge star, and p is
the momentum tensor. A computation, utilizing the momentum constraint
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and the fact that η(l) is a Killing field, then shows that

(3.6) dP(l) = −8πJ(η(l))εabcdη
c
(1)η

d
(2)dx

a ∧ dxb.

Thus, under the the assumptions that J(η(l)) = 0, l = 1, 2 and M4 is simply
connected, twist potentials exist such that

(3.7) dζ l = P(l), l = 1, 2.

It is then clear from (3.5) that ∂zζ
l|Γ = 0, so that ζ l is constant on each axis

Γ±. These constants in turn determine the ADM angular momenta

Jl =
1

8π

∫
S∞

p(η(l), ν)(3.8)

= lim
r→0

1

8π

∫
∂B(r)

k(∂φl , ν)dA

= lim
r→0

1

16π

∫
∂B(1)

k(∂φl , ν)e3U+αr3 sin(2θ)dθdφ1dφ2

= lim
r→0

1

16π

∫
∂B(1)

∂θζ
ldθdφ1dφ2

=
π

4
(ζ l|Γ− − ζ l|Γ+

),

where B(r) is the coordinate ball of radius r centered at the origin. Further-
more, consider the frame

(3.9)
e1 = e−U−α+log r

(
∂ρ −Ai

ρ∂φi

)
, e2 = e−U−α+log r

(
∂z −Ai

z∂φi

)
,

ei+2 = e−U∂φi , i = 1, 2,

with dual co-frame

(3.10)
θ1 = eU+α−log rdρ, θ2 = eU+α−log rdz,

θi+2 = eU
(
dφi +Ai

ldy
l
)
, i = 1, 2,

so that the metric may be written as

(3.11) g = (δ2)lnθ
lθn + λijθ

i+2θj+2,

and

(3.12) k(e1, ei+2) = −e−4U−α+log r

2ρ
∂zζ

i, k(e2, ei+2) =
e−4U−α+log r

2ρ
∂ρζ

i.
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Therefore, in light of the maximal condition Trg k = 0 we have

R = 16πμ+ |k|2g(3.13)

= 16πμ+
e−8U−2α+2 log r

2ρ2
∇ζtλ−1∇ζ

+ k(e1, e1)
2 + 2k(e1, e2)

2 + k(e2, e2)
2 + λijλlnk(ei, el)k(ej , en),

where

∇ζtλ−1∇ζ =
(∇ζ1 ∇ζ2

)(λ11 λ12

λ12 λ22

)(∇ζ1

∇ζ2

)
(3.14)

=
∑

i,j=1,2

λijδ3(∇ζi,∇ζj).

It follows that by combining (3.4) and (3.13)

m = M(U, λ, ζ) +
1

8

∫
R3

(
16πe2U+2α−2 log rμ(3.15)

+
1

4
e−2α+2 log rλij(A

i
ρ,z −Ai

z,ρ)(A
j
ρ,z −Aj

z,ρ)

)
dx

+
1

8

∫
R3

e2U+2α−2 log r
(
k(e1, e1)

2 + 2k(e1, e2)
2 + k(e2, e2)

2

+ λijλlnk(ei, el)k(ej , en)

)
dx,

where

M(U, λ, ζ) =
1

8

∫
R3

(
6|∇U |2 − det∇λ

2ρ2
+

e−6U

2ρ2
∇ζtλ−1∇ζ

)
dx(3.16)

+
π

2

∑
ς=±

∫
Γς

αςdz.

The mass functional M is to be related to a reduced harmonic en-
ergy. However, it is not even immediately apparent from the expression
in (3.16) that this quantity is nonnegative in general. It turns out that this
may be resolved with an appropriate transformation or change of variables
(λ11, λ22, λ12) → (V,W ); note that since detλ = ρ2 there are only two inde-
pendent functions contained in λ. Define the new variables by

(3.17) V =
1

2
log

(
λ11 cos

2 θ

λ22 sin
2 θ

)
, W = sinh−1

(
λ12

ρ

)
,
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and note the inverse transformation is then given by

(3.18)
λ11 =

(√
ρ2 + z2 − z

)
eV coshW,

λ22 =
(√

ρ2 + z2 + z
)
e−V coshW, λ12 = ρ sinhW.

From the third equation in (3.18), and (2.11), we find that W = 0 on Γ.
Using this fact together with the first two equations in (3.18), and recalling
that there are no conical singularities (2.13), shows that

(3.19) V = 2α+ on Γ+, V = −2α− on Γ−.

Consider now the following harmonic functions on (R3 \ Γ, δ3) which are
naturally associated with the above transformation:

(3.20) h1 =
1

2
log ρ, h2 =

1

2
log

(√
ρ2 + z2 − z√
ρ2 + z2 + z

)
.

In particular a computation yields

−det∇λ

ρ2
= |∇V |2 + |∇W |2(3.21)

+ sinh2W |∇ (V + h2)|2 + 2δ3(∇h2,∇V ),

and the last term may be integrated away to the boundary

1

8

∫
R3

δ3(∇h2,∇V )dx = − lim
ε→0

1

8

∫
ρ=ε

V ∂ρh2(3.22)

=
π

4

(∫
Γ−

V dz −
∫
Γ+

V dz

)
= −π

2

∑
ς=±

∫
Γς

αςdz.

Notice that this boundary term cancels the one in (3.16), and so it follows
that

M(U, V,W, ζ1, ζ2)(3.23)

=
1

16

∫
R3

12|∇U |2 + |∇V |2 + |∇W |2 + sinh2W |∇(V + h2)|2dx

+
1

16

∫
R3

e−6h1−6U+h2+V coshW
∣∣∣e−h2−V tanhW∇ζ1 −∇ζ2

∣∣∣2 dx
+

1

16

∫
R3

e−6h1−6U−h2−V

coshW
|∇ζ1|2dx.
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This version of the mass functional is clearly nonnegative, and together
with (3.15) it establishes the positive mass theorem for generalized Brill
initial data. In the next section we will relate this mass functional to a
harmonic energy, and establish the mass-angular momentum inequality.

4. Convexity and the global minimizer

Consider the symmetric space SL(3,R)/SO(3) ∼= R
5 endowed ([20], [25],

[29]) with the nonpositively curved metric

ds2 = 12du2 + cosh2w dv2 + dw2 +
e−(6u+v)

coshw
(dζ1)2(4.1)

+ e−6u+v coshw
(
e−v tanhw dζ1 − dζ2

)2
.

The harmonic energy of a map Ψ̃ = (u, v, w, ζ1, ζ2) : R3 → SL(3,R)/SO(3),
on a domain Ω ⊂ R

3, is then given by

EΩ(Ψ̃) =

∫
Ω
12|∇u|2 + cosh2w|∇v|2 + |∇w|2 + e−6u−v

coshw
|∇ζ1|2dx(4.2)

+

∫
Ω
e−6u+v coshw

∣∣e−v tanhw∇ζ1 −∇ζ2
∣∣2 dx.

If Ω has a trivial intersection with the axes of rotation Γ = {ρ = 0}, and we
write u = U + h1, v = V + h2, and w = W where h1 and h2 are the harmonic
functions defined in (3.20), then with an integration by parts the reduced
energy IΩ of the map Ψ = (U, V,W, ζ1, ζ2) may be expressed in terms the
harmonic energy of Ψ̃ by

(4.3) IΩ(Ψ) = EΩ(Ψ̃)− 12

∫
∂Ω

(h1 + 2U)∂νh1 −
∫
∂Ω

(h2 + 2V )∂νh2,

where ν denotes the unit outer normal to the boundary ∂Ω and

IΩ(Ψ) =

∫
Ω

(
12|∇U |2 + |∇V |2 + |∇W |2 + sinh2W |∇(V + h2)|2(4.4)

+
e−6h1−6U−h2−V

coshW
|∇ζ1|2

)
dx

+

∫
Ω
e−6h1−6U+h2+V coshW

∣∣∣e−h2−V tanhW∇ζ1 −∇ζ2
∣∣∣2 dx.

Observe that I = IR3 = 16M where M is the mass functional (3.23). The
reduced energy I may be considered a regularization of E since the infinite
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terms
∫ |∇h1|2 and

∫
cosh2W |∇h2|2 have been removed. Furthermore, since

the two functionals only differ by boundary terms they have the same critical
points.

Let Ψ̃0 = (u0, v0, w0, ζ
1
0 , ζ

2
0 ) denote the extreme Myers-Perry harmonic

map (see Appendix B), and let Ψ0 = (U0, V0,W0, ζ
1
0 , ζ

2
0 ) be the associated

renormalized map with u0 = U0 + h1, v0 = V0 + h2, and w0 = W0. There-
fore, Ψ0 is a critical point of I. The purpose of this section to show that Ψ0

achieves the global minimum for I.

Theorem 4.1. Suppose that Ψ = (U, V,W, ζ1, ζ2) is smooth and satisfies
the asymptotics (4.12)–(4.23) with ζ1|Γ = ζ10 |Γ and ζ2|Γ = ζ20 |Γ, then there
exists a constant C > 0 such that

(4.5) I(Ψ)− I(Ψ0) ≥ C

(∫
R3

dist6SL(3,R)/SO(3)(Ψ,Ψ0)dx

) 1

3

.

The primary idea behind this result is the fact that the harmonic energy,
of maps with a nonpositively curved target space, is convex along geodesic
deformations. This property was exploited in [33] to achieve a similar result
where the role of extreme Myers-Perry was played by extreme Kerr. In order
to apply this strategy it is necessary to show that the reduced energy inherits
convexity from the harmonic energy, and for this it is helpful to cut-off the
given map data in certain regimes and paste in an extreme Myers-Perry
map. More precisely, let δ, ε > 0 be small parameters and define sets Ωδ,ε =
{δ < r < 2/δ; ρ > ε} and Aδ,ε = B2/δ \ Ωδ,ε, where B2/δ is the ball of radius
2/δ centered at the origin. Suppose that Ψ has already undergone the cut-
and-paste procedure, and thus satisfies

(4.6)
supp(U − U0) ⊂ B2/δ,

supp(V − V0,W −W0, ζ
1 − ζ10 , ζ

2 − ζ20 ) ⊂ Ωδ,ε.

Let Ψ̃t, t ∈ [0, 1], be a geodesic in SL(3,R)/SO(3) which connects Ψ̃1 = Ψ̃
and Ψ̃0. Then Ψt ≡ Ψ0 outside B2/δ and (Vt,Wt, ζ

1
t , ζ

2
t ) ≡ (V0,W0, ζ

1
0 , ζ

2
0 )

in a neighborhood of Aδ,ε, so that in particular Ut = U0 + t(U − U0) and
Vt = V0 on these regions. This linear behavior of Ut and constancy of Vt

(in t) ensures that the boundary terms of (4.3) do not contribute when
implementing convexity of the harmonic energy. From this it follows that

(4.7)
d2

dt2
I(Ψt) ≥ 2

∫
R3

|∇ distSL(3,R)/SO(3)(Ψ,Ψ0)|2dx.
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Furthermore, since Ψ0 is a critical point

(4.8)
d

dt
I(Ψt)|t=0 = 0.

Therefore, the conclusion of Theorem 4.1 is achieved by integrating (4.7)
and using a Sobolev inequality. In what follows we will justify each of these
steps.

In order to proceed we will record the appropriate asymptotic behavior
of Ψ and Ψ0. In the statements below, it is important to keep in mind that
in the relevant coordinate system, the flat metric on R

3 is given by

(4.9) r2
(
dr2 + r2dθ2

)
+

r4 sin2(2θ)

4
dφ2 = dρ2 + dz2 + ρ2dφ2,

with Euclidean volume form

(4.10) dx =
1

2
r5 sin(2θ)dr ∧ dθ ∧ dφ = ρdρ ∧ dz ∧ dφ,

where the transformation between polar and cylindrical coordinates is given
in (2.2). Thus, for example, the norms of vectors when expressed in these
polar coordinates appear to have extra fall-off as compared to the corre-
sponding expressions in traditional polar coordinates. The motivation for
using this nonstandard version of polar coordinates is related to the deriva-
tion of the mass functional (3.16). For later use, we note here that the
second harmonic function of (3.20) takes a simple form when expressed in
polar coordinates

(4.11) h2 =
1

2
log

(√
ρ2 + z2 − z√
ρ2 + z2 + z

)
=

1

2
log

(
1− cos(2θ)

1 + cos(2θ)

)
= log(tan θ).

When stating the asymptotics there are three regimes to analyze, namely
the designated asymptotically flat end (r → ∞), the nondesignated end (r →
0) which is either asymptotically flat or asymptotically cylindrical, and the
limit at the axis (ρ → 0 with δ ≤ r ≤ 2/δ). A motivation for the choice of
asymptotics is to have the weakest conditions which guarantee finite reduced
energy, and include the decay rates of the Myers-Perry harmonic maps (both
extreme and non-extreme); these properties are easily shown to be satisfied
by the asymptotics below. In what follows, κ > 0 is fixed parameter that
may take on arbitrarily small values. Let us consider the asymptotically flat
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end first. We require that as r → ∞ the following decay occurs

U = O(r−1−κ), V = O(r−1−κ), W =
√
ρO(r−2−κ),(4.12)

|∇U | = O(r−3−κ), |∇V | = O(r−3−κ), |∇W | = ρ−
1

2O(r−2−κ),(4.13)

|∇ζ1| = ρ
√
sin θO(r−2−κ), |∇ζ2| = ρ

√
cos θO(r−2−κ).(4.14)

Next consider asymptotics in the nondesignated end, which are broken up
into two cases. As r → 0 we require in the asymptotically flat case that

U = −2 log r +O(1), V = O(1), W =
√
ρO(r−1),(4.15)

|∇U | = O(r−2), |∇V | = O(r−2), |∇W | = ρ−
1

2O(r−1),(4.16)

|∇ζ1| = ρ
√
sin θO(r−8+κ), |∇ζ2| = ρ

√
cos θO(r−8+κ),(4.17)

and in the asymptotically cylindrical case that

U = − log r +O(1), V = O(1), W =
√
ρO(r−1),(4.18)

|∇U | = O(r−2), |∇V | = O(r−2), |∇W | = ρ−
1

2O(r−1),(4.19)

|∇ζ1| = ρ
√
sin θO(r−5+κ), |∇ζ2| = ρ

√
cos θO(r−5+κ).(4.20)

Furthermore, the near axis asymptotics as ρ → 0, δ ≤ r ≤ 2/δ are required
to satisfy

U = O(1), V = O(1), W = O(ρ
1

2 ),(4.21)

|∇U | = O(1), |∇V | = O(1), |∇W | = O(ρ−
1

2 ),(4.22)

|∇ζ1| =
√
sin θO(ρ), |∇ζ2| =

√
cos θO(ρ).(4.23)

We will also have need of precise asymptotics for the extreme Myers-
Perry data Ψ0 which are derived in Appendix B. In the designated asymp-
totically flat end as r → ∞ we have

U0 = O(r−2), V0 = O(r−2), W0 = ρO(r−6),(4.24)

|∇U0| = O(r−4), |∇V0| = O(r−4), |∇W0| = O(r−6),(4.25)

|∇ζ10 | = ρ sin2 θO(r−4), |∇ζ20 | = ρ cos2 θO(r−4).(4.26)

In the nondesignated end as r → 0 the following asymptotics are present

U0 = − log r +O(1), V0 = O(1), W0 = ρO(r−2),(4.27)

|∇U0| = O(r−2), |∇V0| = O(r−2), |∇W0| = O(r−2),(4.28)

|∇ζ10 | = ρ sin2 θO(r−4), |∇ζ20 | = ρ cos2 θO(r−4).(4.29)
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Moreover, the near axis asymptotics as ρ → 0, δ ≤ r ≤ 2/δ are given by

U0 = O(1), V0 = O(1), W0 = O(ρ),(4.30)

|∇U0| = O(1), |∇V0| = O(1), |∇W0| = O(1),(4.31)

|∇ζ10 | = sin2 θO(ρ), |∇ζ20 | = cos2 θO(ρ).(4.32)

The first task needed to carry out the proof of Theorem 4.1 as outlined
above, is to first show that it is possible to approximate I(Ψ) by replacing
Ψ with a map that satisfies (4.6). This may be achieved as in [33] with a
three step cut and paste argument. Define smooth cut-off functions, which
only take values in the interval [0, 1], by

ϕδ =

⎧⎪⎨⎪⎩
1 if r ≤ 1

δ ,

|∇ϕδ| ≤ 2δ2 if 1
δ < r < 2

δ ,

0 if r ≥ 2
δ ,

(4.33)

ϕδ =

⎧⎪⎨⎪⎩
0 if r ≤ δ,

|∇ϕδ| ≤ 2
δ2 if δ < r < 2δ,

1 if r ≥ 2δ,

(4.34)

and

(4.35) φε =

⎧⎪⎨⎪⎩
0 if ρ ≤ ε,
log(ρ/ε)
log(

√
ε/ε)

if ε < ρ <
√
ε,

1 if ρ ≥ √
ε.

Let

(4.36) F δ(Ψ) = Ψ0 + ϕδ(Ψ−Ψ0) =: (U δ, V δ,W δ, ζ
1
δ , ζ

2
δ),

so that F δ(Ψ) = Ψ0 on R
3 \B2/δ.

Lemma 4.2. limδ→0 I(F δ(Ψ)) = I(Ψ).

Proof. Write

(4.37) I(F δ(Ψ)) = Ir≤ 1

δ
(F δ(Ψ)) + I 1

δ
<r< 2

δ
(F δ(Ψ)) + Ir≥ 2

δ
(F δ(Ψ)),

and observe that Ir≤ 1

δ
(F δ(Ψ)) → I(Ψ) by the dominated convergence theo-

rem (DCT). Moreover, since Ψ0 has finite reduced energy Ir≥ 2

δ
(F δ(Ψ)) → 0.



1416 A. Alaee, M. Khuri, and H. Kunduri

Now write

I 1

δ
<r< 2

δ
(F δ(Ψ))(4.38)

=

∫
1

δ
<r< 2

δ

12|∇U δ|2︸ ︷︷ ︸
I1

+

∫
1

δ
<r< 2

δ

|∇V δ|2︸ ︷︷ ︸
I2

+

∫
1

δ
<r< 2

δ

|∇W δ|2︸ ︷︷ ︸
I3

+

∫
1

δ
<r< 2

δ

sinh2W δ|∇(V δ + h2)|2︸ ︷︷ ︸
I4

+

∫
1

δ
<r< 2

δ

cos θ

ρ3 sin θ

e−V δ−6Uδ

coshW δ

|∇ζ
1
δ |2︸ ︷︷ ︸

I5

+

∫
1

δ
<r< 2

δ

sin θ

ρ3 cos θ
eV δ−6Uδ coshW δ|∇ζ

2
δ − e−V δ cot θ tanhW δ∇ζ

1
δ |2︸ ︷︷ ︸

I6

.

We have

I1 ≤ C

∫ π

2

0

∫ 2

δ

1

δ

⎛⎜⎝ |∇U |2︸ ︷︷ ︸
O(r−6−2κ)

+ |∇U0|2︸ ︷︷ ︸
O(r−8)

+(U − U0)
2︸ ︷︷ ︸

O(r−2−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

⎞⎟⎠ r5 sin(2θ)drdθ

(4.39)

→ 0.

Moreover, a similar computation shows that I2 → 0 and I3 → 0.
Next observe that since

(4.40) sinhW δ =
√
ρO(r−2−κ),

we have

I4 ≤
∫ π

2

0

∫ 2

δ

1

δ

ρO(r−4−2κ)

⎛⎜⎝ |∇V |2︸ ︷︷ ︸
O(r−6−2κ)

+ |∇V0|2︸ ︷︷ ︸
O(r−8)

+ |∇h2|2︸ ︷︷ ︸
O(ρ−2)

(4.41)

+ (V − V0)
2︸ ︷︷ ︸

O(r−2−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

⎞⎟⎠ r5 sin(2θ)drdθ → 0.

In order to estimate the 5th integral, note that (4.14) and (4.26) com-
bined with the fact that (ζ1 − ζ10 )|Γ = 0, yields the following estimate for
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r ∈ [1δ ,
2
δ ] and i = 1, 2:

(4.42) |(ζi − ζi0)(ρ, z, φ)| ≤
∫ ρ

0
|∂ρ(ζi − ζi0)(ρ̃, z, φ)|dρ̃ = ρ2O(r−2−κ).

It follows that

I5 ≤ C

∫ π

2

0

∫ 2

δ

1

δ

cos θ

ρ3 sin θ

⎛⎜⎝ |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−4−2κ) sin θ

+ |∇ζ10 |2︸ ︷︷ ︸
ρ2O(r−8) sin4 θ

(4.43)

+ (ζ1 − ζ10 )
2︸ ︷︷ ︸

ρ4O(r−4−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

⎞⎟⎠ r5 sin(2θ)drdθ,

which converges to zero.
Lastly, consider the 6th integral. Use (4.40) and (4.42) to find

I6 ≤ C

∫ π

2

0

∫ 2

δ

1

δ

sin θ

ρ3 cos θ

⎛⎜⎝ |∇ζ2|2︸ ︷︷ ︸
ρ2O(r−4−2κ) cos θ

+ |∇ζ20 |2︸ ︷︷ ︸
ρ2O(r−8) cos4 θ

(4.44)

+ (ζ2 − ζ20 )
2︸ ︷︷ ︸

ρ4O(r−4−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

⎞⎟⎠ r5 sin(2θ)drdθ

+ C

∫ π

2

0

∫ 2

δ

1

δ

r−4−2κ cos θ
ρ2 sin θ

⎛⎜⎝ |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−4−2κ) sin θ

+ |∇ζ10 |2︸ ︷︷ ︸
ρ2O(r−8) sin4 θ

+ (ζ1 − ζ10 )
2︸ ︷︷ ︸

ρ4O(r−4−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

⎞⎟⎠ r5 sin(2θ)drdθ.

This clearly also converges to zero. �

Consider now small balls centered at the origin. Let

(4.45) Fδ(Ψ) = (U, Vδ,Wδ, ζ
1
δ , ζ

2
δ ),
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where

(Vδ,Wδ, ζ
1
δ , ζ

2
δ ) = (V0,W0, ζ

1
0 , ζ

2
0 )(4.46)

+ ϕδ(V − V0,W −W0, ζ
1 − ζ10 , ζ

2 − ζ20 ),

so that Fδ(Ψ) = Ψ0 on Bδ.

Lemma 4.3. limδ→0 I(Fδ(Ψ)) = I(Ψ). This also holds if Ψ ≡ Ψ0 outside
of B2/δ.

Proof. Write

(4.47) I(Fδ(Ψ)) = Ir≤δ(Fδ(Ψ)) + Iδ<r<2δ(Fδ(Ψ)) + Ir≥2δ(Fδ(Ψ)),

and observe that by the dominated convergence theorem

(4.48) Ir≥2δ(Fδ(Ψ)) = Ir≥2δ(Ψ) → I(Ψ).

Moreover

Ir≤δ(Fδ(Ψ))(4.49)

=

∫
r≤δ

12|∇U |2 + |∇V0|2 + |∇W0|2

+

∫
r≤δ

sinh2W0|∇(V0 + h2)|2 + e−6h1−6U−h2−V0

coshW0
|∇ζ10 |2

+

∫
r≤δ

e−6h1−6U+h2+V0 coshW0

∣∣∣∇ζ20 − e−h2−V0 tanhW0∇ζ10

∣∣∣2 ,
where the first term on the right-hand side converges to zero again by the
DCT. The remaining terms may be estimated by the reduced energy of Ψ0

(and hence also converge to zero), since

(4.50) e−U ≤ Ce−U0

near the origin.
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Now consider

Iδ<r<2δ(Fδ(Ψ))(4.51)

=

∫
δ<r<2δ

12|∇U |2︸ ︷︷ ︸
I1

+

∫
δ<r<2δ

|∇Vδ|2︸ ︷︷ ︸
I2

+

∫
δ<r<2δ

|∇Wδ|2︸ ︷︷ ︸
I3

+

∫
δ<r<2δ

sinh2Wδ|∇(Vδ + h2)|2︸ ︷︷ ︸
I4

+

∫
δ<r<2δ

cos θ

ρ3 sin θ

e−Vδ−6U

coshWδ
|∇ζ1δ |2︸ ︷︷ ︸

I5

+

∫
δ<r<2δ

sin θ

ρ3 cos θ
eVδ−6U coshWδ|∇ζ2δ − e−Vδ cot θ tanhWδ∇ζ1δ |2︸ ︷︷ ︸

I6

.

Notice that

(4.52) I1 = 24π

∫ π

2

0

∫ 2δ

δ
|∇U |2︸ ︷︷ ︸
O(r−4)

r5 sin(2θ)drdθ → 0.

Also

I2 ≤ C

∫ π

2

0

∫ 2δ

δ

⎛⎜⎝|∇V |2︸ ︷︷ ︸
O(r−4)

+ |∇V0|2︸ ︷︷ ︸
O(r−4)

(4.53)

+ (V − V0)
2︸ ︷︷ ︸

O(1)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

⎞⎟⎠ r5 sin(2θ)drdθ → 0,

and

I3 ≤ C

∫ π

2

0

∫ 2δ

δ

⎛⎜⎝ |∇W |2︸ ︷︷ ︸
ρ−1O(r−2)

+ |∇W0|2︸ ︷︷ ︸
ρ2O(r−4)

(4.54)

+ (W −W0)
2︸ ︷︷ ︸

O(1)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

⎞⎟⎠ r5 sin(2θ)drdθ → 0.

Now consider I4. Since

(4.55) sinhW δ =
√
ρO(r−1),
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we have

I4 ≤ C

∫ π

2

0

∫ 2δ

δ
ρr−2

⎛⎜⎝|∇V |2︸ ︷︷ ︸
O(r−4)

+ |∇V0|2︸ ︷︷ ︸
O(r−4)

+ |∇h2|2︸ ︷︷ ︸
O(ρ−2)

(4.56)

+ (V − V0)
2︸ ︷︷ ︸

O(1)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

⎞⎟⎠ r5 sin(2θ)drdθ → 0.

In order to estimate the 5th integral, note that (4.14) and (4.26) com-
bined with the fact that (ζ1 − ζ10 )|Γ = 0, yields the following estimate for
r ∈ [δ, 2δ] and i = 1, 2:

|(ζi − ζi0)(ρ, z, φ)| ≤
∫ ρ

0
|∂ρ(ζi − ζi0)(ρ̃, z, φ)|dρ̃(4.57)

=

{
ρ2O(r−8+κ) in the AF case,

ρ2O(r−5+κ) in the AC case.

It follows that in the asymptotically flat case

I5 ≤ C

∫ π

2

0

∫ 2δ

δ

r12 cos θ

ρ3 sin θ

⎛⎜⎝ |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−16+2κ) sin θ

+ |∇ζ10 |2︸ ︷︷ ︸
ρ2O(r−8) sin4 θ

(4.58)

+ (ζ1 − ζ10 )
2︸ ︷︷ ︸

ρ4O(r−16+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

⎞⎟⎠ r5 sin(2θ)drdθ,

and in the asymptotically cylindrical case

I5 ≤ C

∫ π

2

0

∫ 2δ

δ

r6 cos θ

ρ3 sin θ

⎛⎜⎝ |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−10+2κ) sin θ

+ |∇ζ10 |2︸ ︷︷ ︸
ρ2O(r−8) sin4 θ

(4.59)

+ (ζ1 − ζ10 )
2︸ ︷︷ ︸

ρ4O(r−10+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

⎞⎟⎠ r5 sin(2θ)drdθ.

These both converge to zero.
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Lastly consider the 6th integral. In the asymptotically flat case we have

I6 ≤ C

∫ π

2

0

∫ 2δ

δ

r12 sin θ

ρ3 cos θ

⎛⎜⎝ |∇ζ2|2︸ ︷︷ ︸
ρ2O(r−16+2κ) cos θ

+ |∇ζ20 |2︸ ︷︷ ︸
ρ2O(r−8) cos4 θ

(4.60)

+ (ζ2 − ζ20 )
2︸ ︷︷ ︸

ρ4O(r−16+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

⎞⎟⎠ r5 sin(2θ)drdθ

+ C

∫ π

2

0

∫ 2δ

δ

r10 cos θ

ρ2 sin θ

⎛⎜⎝ |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−16+2κ) sin θ

+ |∇ζ10 |2︸ ︷︷ ︸
ρ2O(r−8) sin4 θ

+ (ζ1 − ζ10 )
2︸ ︷︷ ︸

ρ4O(r−16+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

⎞⎟⎠ r5 sin(2θ)drdθ,

and in the asymptotically cylindrical case we have

I6 ≤ C

∫ π

2

0

∫ 2δ

δ

r6 sin θ

ρ3 cos θ

⎛⎜⎝ |∇ζ2|2︸ ︷︷ ︸
ρ2O(r−10+2κ) cos θ

+ |∇ζ20 |2︸ ︷︷ ︸
ρ2O(r−8) cos4 θ

(4.61)

+ (ζ2 − ζ20 )
2︸ ︷︷ ︸

ρ4O(r−10+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

⎞⎟⎠ r5 sin(2θ)drdθ

+ C

∫ π

2

0

∫ 2δ

δ

r4 cos θ

ρ2 sin θ

⎛⎜⎝ |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−10+2κ) sin θ

+ |∇ζ10 |2︸ ︷︷ ︸
ρ2O(r−8) sin4 θ

+ (ζ1 − ζ10 )
2︸ ︷︷ ︸

ρ4O(r−10+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

⎞⎟⎠ r5 sin(2θ)drdθ.

Again both of these converge to zero. �

Consider now cylindrical regions around the axis Γ and away from the
origin given by

(4.62) Cδ,ε = {ρ ≤ ε} ∩ {δ ≤ r ≤ 2/δ},
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and

(4.63) Wδ,ε = {ε ≤ ρ ≤ √
ε} ∩ {δ ≤ r ≤ 2/δ}.

Let

(4.64) Gε(Ψ) = (U, Vε,Wε, ζ
1
ε , ζ

2
ε )

where

(Vε,Wε, ζ
1
ε , ζ

2
ε ) = (V0,W0, ζ

1
0 , ζ

2
0 )(4.65)

+ φε(V − V0,W −W0, ζ
1 − ζ10 , ζ

2 − ζ20 ),

so that Gε(Ψ) = Ψ0 on ρ ≤ ε.

Lemma 4.4. Fix δ > 0 and suppose that Ψ ≡ Ψ0 on Bδ, then

lim
ε→0

I(Gε(Ψ)) = I(Ψ).

This also holds if Ψ ≡ Ψ0 outside B2/δ.

Proof. Write

(4.66) I(Gε(Ψ)) = ICδ,ε(Gε(Ψ)) + IWδ,ε
(Gε(Ψ)) + IR3\(Cδ,ε∪Wδ,ε)(Gε(Ψ)).

Since Ψ ≡ Ψ0 on Bδ, the DCT and finite energy of Ψ0 imply that

(4.67) IR3\(Cδ,ε∪Wδ,ε)(Gε(Ψ)) → I(Ψ).

Moreover

ICδ,ε(Gε(Ψ))(4.68)

=

∫
Cδ,ε

12|∇U |2 + |∇V0|2 + |∇W0|2

+

∫
Cδ,ε

sinh2W0|∇(V0 + h2)|2 + e−6h1−6U−h2−V0

coshW0
|∇ζ10 |2

+

∫
Cδ,ε

e−6h1−6U+h2+V0 coshW0

∣∣∣∇ζ20 − e−h2−V0 tanhW0∇ζ10

∣∣∣2 ,
where the first term on the right-hand side converges to zero again by the
DCT. The remaining terms may be estimated by the reduced energy of Ψ0
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(and hence also converge to zero), since

(4.69) e−U ≤ Ce−U0 .

Now observe that

IWδ,ε
(Gε(Ψ))(4.70)

=

∫
Wδ,ε

12|∇U |2︸ ︷︷ ︸
I1

+

∫
Wδ,ε

|∇Vε|2︸ ︷︷ ︸
I2

+

∫
Wδ,ε

|∇Wε|2︸ ︷︷ ︸
I3

+

∫
Wδ,ε

sinh2Wε|∇(Vε + h2)|2︸ ︷︷ ︸
I4

+

∫
Wδ,ε

cos θ

ρ3 sin θ

e−Vε−6U

coshWε
|∇ζ1δ |2︸ ︷︷ ︸

I5

+

∫
Wδ,ε

sin θ

ρ3 cos θ
eVε−6U coshWε|∇ζ2ε − e−Vε cot θ tanhWε∇ζ1ε |2︸ ︷︷ ︸

I6

.

We have

I1 ≤ C

∫ 3/δ

δ/2

∫ √ε

ε
|∇U |2︸ ︷︷ ︸
O(1)

ρdρdz → 0,(4.71)

I2 ≤ C

∫ 3/δ

δ/2

∫ √ε

ε

⎛⎜⎝|∇V |2︸ ︷︷ ︸
O(1)

+ |∇V0|2︸ ︷︷ ︸
O(1)

(4.72)

+ (V − V0)
2︸ ︷︷ ︸

O(1)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

⎞⎟⎠ ρdρdz → 0,

and

I3 ≤ C

∫ 3/δ

δ/2

∫ √ε

ε

⎛⎜⎝|∇W |2︸ ︷︷ ︸
O(ρ−1)

+ |∇W0|2︸ ︷︷ ︸
O(1)

(4.73)

+ (W −W0)
2︸ ︷︷ ︸

O(ρ)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

⎞⎟⎠ ρdρdz → 0,
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Now consider I4. Since

(4.74) sinhW ε = O(ρ
1

2 ),

we find that

I4 ≤ C

∫ 3/δ

δ/2

∫ √ε

ε
ρ

⎛⎜⎝|∇V |2︸ ︷︷ ︸
O(1)

+ |∇V0|2︸ ︷︷ ︸
O(1)

+ |∇h2|2︸ ︷︷ ︸
O(ρ−2)

(4.75)

+ (V − V0)
2︸ ︷︷ ︸

O(1)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

⎞⎟⎠ ρdρdz → 0.

In order to estimate the 5th integral, note that the following estimate
holds near the axis and away from the origin and for i = 1, 2:

(4.76) |(ζi − ζi0)(ρ, z, φ)| ≤
∫ ρ

0
|∂ρ(ζi − ζi0)(ρ̃, z, φ)|dρ̃ = O(ρ2).

It follows that

I5 ≤ C

∫ 3/δ

δ/2

∫ √ε

ε

cos θ

ρ3 sin θ

⎛⎜⎝ |∇ζ1|2︸ ︷︷ ︸
O(ρ2) sin θ

+ |∇ζ10 |2︸ ︷︷ ︸
O(ρ2) sin4 θ

(4.77)

+ (ζ1 − ζ10 )
2︸ ︷︷ ︸

O(ρ4)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

⎞⎟⎠ ρdρdz → 0.

Lastly consider the 6th integral. We have

I6 ≤ C

∫ 3/δ

δ/2

∫ √ε

ε

sin θ

ρ3 cos θ

⎛⎜⎝ |∇ζ2|2︸ ︷︷ ︸
O(ρ2) cos θ

+ |∇ζ20 |2︸ ︷︷ ︸
O(ρ2) cos4 θ

(4.78)

+ (ζ2 − ζ20 )
2︸ ︷︷ ︸

O(ρ4)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

⎞⎟⎠ ρdρdz
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+ C

∫ 3/δ

δ/2

∫ √ε

ε

cos θ

ρ2 sin θ

⎛⎜⎝ |∇ζ1|2︸ ︷︷ ︸
O(ρ2) sin θ

+ |∇ζ10 |2︸ ︷︷ ︸
O(ρ2) sin4 θ

+(ζ1 − ζ10 )
2︸ ︷︷ ︸

O(ρ4)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

⎞⎟⎠ ρdρdz,

which converges to zero. �

By composing the three cut and paste operations defined above, we
obtain the desired replacement for Ψ which satisfies (4.6). Namely, let

(4.79) Ψδ,ε = Gε

(
Fδ

(
F δ(Ψ)

))
.

Proposition 4.5. Let ε � δ � 1 and suppose that Ψ satisfies the hypothe-
ses of Theorem 4.1. Then Ψδ,ε satisfies (4.6) and

(4.80) lim
δ→0

lim
ε→0

I(Ψδ,ε) = I(Ψ).

We are now in a position to establish the main result of this section.

Proof of Theorem 4.1. According to 4.5, Ψδ,ε satisfies (4.6). It follows that if
Ψ̃t

δ,ε is the geodesic connecting Ψ̃0 to Ψ̃δ,ε as described at the beginning of

this section, then U t
δ,ε = U0 + t(Uδ,ε − U0) and V t

δ,ε = V0 on Aδ,ε. Now write

(4.81)
d2

dt2
I(Ψt

δ,ε) =
d2

dt2
IΩδ,ε

(Ψt
δ,ε)︸ ︷︷ ︸

I1

+
d2

dt2
IAδ,ε

(Ψt
δ,ε)︸ ︷︷ ︸

I2

,

and observe that

I1 =
d2

dt2
EΩδ,ε

(Ψ̃t
δ,ε)(4.82)

− d2

dt2

∫
∂Ωδ,ε∩∂Aδ,ε

12 [h1 + 2(U0 + t(Uδ,ε − U0))] ∂νh1

− d2

dt2

∫
∂Ωδ,ε∩∂Aδ,ε

(h2 + V0)∂νh2

≥ 2

∫
Ωδ,ε

|∇ distSL(3,R)/SO(3)(Ψδ,ε,Ψ0)|2
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where convexity of the harmonic energy was used in the last step, and

I2 =

∫
Aδ,ε

24|∇(Uδ,ε − U0)|2(4.83)

+

∫
Aδ,ε

36(Uδ,ε − U0)
2 e
−6h1−6U t

δ,ε−h2−V0

coshW0
|∇ζ10 |2

+

∫
Aδ,ε

36(Uδ,ε − U0)
2e−6h1−6U t

δ,ε+h2+V0

× coshW0|e−h2−V0 tanhW0∇ζ10 −∇ζ20 |2

≥ 2

∫
Aδ,ε

|∇ distSL(3,R)/SO(3)(Ψδ,ε,Ψ0)|2

since distSL(3,R)/SO(3)(Ψδ,ε,Ψ0) = 12|Uδ,ε − U0| on Aδ,ε as the geodesic is
parametrized on the interval [0, 1].

It remains to show that passing d2

dt2 into the integral in (4.83) is valid.
For this it is sufficient to show that each term on the right-hand side of the
equality in (4.83) is uniformly integrable. There is no issue with the first term
since Uδ,ε, U0 ∈ H1(R3). Consider now the second and third terms, and write
Aδ,ε = Cδ,ε ∪Bδ. Uniform integrability will follow if (Uδ,ε − U0)

2e−6t(Uδ,ε−U0)

is uniformly bounded, since then these terms may be estimated by the re-
duced energy of Ψ0. This is clearly the case on Cδ,ε, as U and U0 are bounded
on this region. On Bδ, Uδ,ε − U0 ∼ − log r in the asymptotically flat case and
Uδ,ε − U0 ∼ 1 in the an asymptotically cylindrical case. Therefore, the de-
sired conclusion follows if r6t(log r)2 is uniformly bounded, which occurs for
0 < t0 < t ≤ 1. Since t0 > 0 is arbitrary, we conclude that (4.7) holds for
Ψδ,ε when t ∈ (0, 1].

We will now use the Euler-Lagrange equations for Ψ0 (Appendix B) to
verify (4.8) for Ψδ,ε. Choose ε0 < ε, δ0 < δ and write

(4.84)
d

dt
I(Ψt

δ,ε) =
d

dt
IΩδ0,ε0

(Ψt
δ,ε)︸ ︷︷ ︸

I3

+
d

dt
IAδ0,ε0

(Ψt
δ,ε)︸ ︷︷ ︸

I4

.

Observe that the justification for passing d
dt into the integrals, for t ∈ (0, 1],

is similar to the arguments of the previous paragraph. Then integrating by
parts, using the Euler-Lagrange equations together with d

dtΨ
t
δ,ε|t=0 = (Uδ,ε −

U0)∂u, and noting that the relevant boundary integral over ∂Ωδ0,ε0 ∩ ∂Aδ0,ε0
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is equivalent to integrating over ∂Bδ0 ∪ ∂Cδ0,ε0 yields

(4.85) I3 = O(t)−
∫
∂Bδ0

24(Uδ,ε − U0)∂νU0 −
∫
∂Cδ0,ε0

24(Uδ,ε − U0)∂νU0

for small t, where ν is the unit outer normal pointing towards the desig-
nated asymptotically flat end. Next, using that U t

δ,ε = U0 + t(Uδ,ε − U0) and
d
dtV

t
δ,ε =

d
dtW

t
δ,ε =

d
dtζ

1,t
δ,ε = d

dtζ
2,t
δ,ε = 0 on Aδ0,ε0 produces

I4 = O(t) +

∫
Aδ0,ε0

24∇U0 · ∇(Uδ,ε − U0)(4.86)

−
∫
Aδ0,ε0

6(Uδ,ε − U0)
e−6h1−6U t

δ,ε−h2−V0

coshW0
|∇ζ10 |2

−
∫
Aδ0,ε0

6(Uδ,ε − U0)e
−6h1−6U t

δ,ε+h2+V0

× coshW0|e−h2−V0 tanhW0∇ζ10 −∇ζ20 |2.

Since U t
δ,ε = U0 +O(t), we are motivated to integrate by parts in (4.86) and

use the primary Euler-Lagrange equation for U0 to obtain only boundary
terms, which should then cancel with those in I3 as Aδ0,ε0 = Bδ0 ∪ Cδ0,ε0 . In
order to carry this out, it is sufficient to check that

(4.87)

∣∣∣∣∣∣∣
∫
∂Bδ0

(Uδ,ε − U)︸ ︷︷ ︸
O(| log δ0|)

∂νU0︸ ︷︷ ︸
O(δ−2

0 )

∣∣∣∣∣∣∣ ≤ C| log δ0|δ20 → 0 as δ0 → 0,

and

(4.88)

∣∣∣∣∣∣∣
∫
∂Cδ0,ε0

(Uδ,ε − U)︸ ︷︷ ︸
O(1)

∂νU0︸ ︷︷ ︸
O(1)

∣∣∣∣∣∣∣ ≤ Cε0 → 0 as ε0 → 0.

It follows that I3 + I4 = 0 when t = 0, and hence (4.8) holds for Ψδ,ε.
Now integrating (4.7) twice and applying a Sobolev inequality produces

I(Ψδ,ε)− I(Ψ0) ≥ 2

∫
R3

|∇ distSL(3,R)/SO(3)(Ψδ,ε,Ψ0)|2dx(4.89)

≥ C

(∫
R3

dist6SL(3,R)/SO(3)(Ψδ,ε,Ψ0)dx

) 1

3

.
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By Proposition 4.5 limδ→0 limε→0 I(Ψδ,ε) = I(Ψ), and thus in order to com-
plete the proof it suffices to show that the limits may be passed under the
integral on the right-hand side. By the triangle inequality, this will follow if

(4.90) lim
δ→0

lim
ε→0

∫
R3

dist6SL(3,R)/SO(3)(Ψδ,ε,Ψ)dx = 0.

In order to establish (4.90), observe that the triangle inequality, together
with the fact that the distance between two points in SL(3,R)/SO(3) is not
greater than the length of a coordinate line connecting them, produces

distSL(3,R)/SO(3)(Ψδ,ε,Ψ)(4.91)

≤ distSL(3,R)/SO(3)((Uδ,ε, Vδ,ε,Wδ,ε, ζ
1
δ,ε, ζ

2
δ,ε), (U, Vδ,ε,Wδ,ε, ζ

1
δ,ε, ζ

2
δ,ε))

+ distSL(3,R)/SO(3)((U, Vδ,ε,Wδ,ε, ζ
1
δ,ε, ζ

2
δ,ε), (U, V,Wδ,ε, ζ

1
δ,ε, ζ

2
δ,ε))

+ distSL(3,R)/SO(3)((U, V,Wδ,ε, ζ
1
δ,ε, ζ

2
δ,ε), (U, V,W, ζ1δ,ε, ζ

2
δ,ε))

+ distSL(3,R)/SO(3)((U, V,W, ζ1δ,ε, ζ
2
δ,ε), (U, V,W, ζ1, ζ2δ,ε))

+ distSL(3,R)/SO(3)((U, V,W, ζ1, ζ2δ,ε), (U, V,W, ζ1, ζ2))

≤ C (|U − Uδ,ε|+ |V − Vδ,ε|+ |W −Wδ,ε|)
+ Ce−3U−3h1

(
e−

1
2V−

1
2h2 |ζ1 − ζ1δ,ε|+ e

1
2V+

1
2h2 |ζ2 − ζ2δ,ε|

)
.

Notice that

(4.92)

∫
R3

|U − Uδ,ε|6dx ≤
∫
R3\B1/δ

|U − U0|6︸ ︷︷ ︸
O(r−6+6κ)

dx = O(δ6κ) → 0

as δ → 0. Next we have

∫
R3

|V − Vδ,ε|6dx ≤ C

⎛⎜⎝∫
R3\B1/δ

|V − V0|6︸ ︷︷ ︸
O(r−6−6κ)

(4.93)

+

∫
Cδ,√ε

|V − V0|6︸ ︷︷ ︸
O(1) as ε→0

+

∫
B2δ

|V − V0|6︸ ︷︷ ︸
O(1)

⎞⎟⎠ ,
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which converges to zero if ε → 0 before δ → 0. Similarly

∫
R3

|W −Wδ,ε|6dx ≤ C

⎛⎜⎝∫
R3\B1/δ

|W −W0|6︸ ︷︷ ︸
ρ3O(r−12−6κ)

(4.94)

+

∫
Cδ,√ε

|W −W0|6︸ ︷︷ ︸
O(ρ3) as ε→0

+

∫
B2δ

|W −W0|6︸ ︷︷ ︸
ρ3O(r−6)

⎞⎟⎠ .

The last two terms on the right-hand side of (4.91) may each be treated
in a similar fashion. Let us consider the first of these. Using the formu-
las (3.20) and (4.11) yields∫

R3

e−18U−18h1−3V−3h2 |ζ1 − ζ1δ,ε|6dx(4.95)

≤
∫
R3\B1/δ

+

∫
Cδ,√ε

+

∫
B2δ

e−18U−3V
cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1δ,ε|6.

Furthermore

(4.96)

∫
R3\B1/δ

e−18U−3V︸ ︷︷ ︸
O(1)

cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1δ,ε|6︸ ︷︷ ︸

ρ12O(r−12−6κ) sin3 θ

= O(δ6κ) → 0 as δ → 0,

(4.97)

∫
Cδ,√ε

e−18U−3V︸ ︷︷ ︸
O(1)

cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1δ,ε|6︸ ︷︷ ︸

ρ12 sin3 θ

= O(ε
5

2 ) → 0 as ε → 0,

and in the asymptotically flat and asymptotically cylindrical cases respec-
tively ∫

B2δ

e−18U−3V︸ ︷︷ ︸
O(r36)

cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1δ,ε|6︸ ︷︷ ︸

ρ12O(r−48+6κ) sin3 θ

= O(δ6κ) → 0 as δ → 0,(4.98)

∫
B2δ

e−18U−3V︸ ︷︷ ︸
O(r18)

cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1δ,ε|6︸ ︷︷ ︸

ρ12O(r−30+6κ) sin3 θ

= O(δ6κ) → 0 as δ → 0.(4.99)

It follows that (4.90) holds. �
Proof of Theorem 1.1. By replacing η(l) with −η(l) if necessary, we may
assume without loss of generality that Jl ≥ 0, l = 1, 2, so that Jl = |Jl|. If
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both J1 = J2 = 0, then inequality (1.9) reduces to the positive mass theorem
which holds under the current assumptions on the initial data. If only one
angular momentum vanishes, say J1 = 0 and J2 
= 0, then we may perturb
the initial data slightly to achieve J1 
= 0 and J2 
= 0 while preserving all
other hypotheses of the theorem. The arguments below show that inequal-
ity (1.9) holds for the perturbed data, and hence also for the unperturbed
data by letting the perturbation go to zero.

It remains to consider the case when Jl > 0, l = 1, 2. In this case there
is an extreme Myers-Perry black hole solution that can serve as the model
spacetime, giving rise to the harmonic map Ψ̃0 used in the convexity ar-
guments. The asymptotic assumptions on the initial data (M, g, k) imply
that (U, V,W, ζ1, ζ2) satisfy the asymptotics (4.12)–(4.23), see Appendix A.
Thus Theorem 4.1 applies, and the inequality (1.9) of Theorem 1.1 follows
from (3.15) and (4.5), after noting that

(4.100) M(Ψ0) =

(
27π

32
(J1 + J2)

2

) 1

3

.

Consider now the case of equality in (1.9) when Jl > 0, l = 1, 2. As
alluded to above, only in this case of nonvanishing angular momenta do we
have a proper black hole spacetime arising from the Myers-Perry family. If
only one of the angular momenta vanish, the corresponding extreme Myers-
Perry solution has a naked singularity, and such data do not satisfy the
asymptotic hypotheses of the theorem. If both angular momenta vanish, then
the corresponding extreme Myers-Perry solution is isometric to Euclidean
space minus a point, and such data again do not satisfy the hypotheses.
Continuing with the proof in the case of nonvanishing angular momentum,
observe that equality in (1.9) together with (3.15) and (4.5) implies that

μ = 0, Ai
ρ,z = Ai

z,ρ, i = 1, 2,(4.101)

k(ei, ej) = k(e3, e3) = k(e3, e4) = k(e4, e4) = 0, i, j 
= 3, 4,(4.102)

and

(4.103) M(U, V,W, ζ1, ζ2) = M(U0, V0,W0, ζ
1
0 , ζ

2
0 ).

Furthermore, according to the gap bound (4.5), a map which minimizes the
functional M must coincide with the harmonic map associated with the
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extreme Myers-Perry spacetime, that is

(4.104) (U, V,W, ζ1, ζ2) = (U0, V0,W0, ζ
1
0 , ζ

2
0 ).

Next notice that (3.13), (4.102), and (4.104) yield

R = 16πμ+ |k|2(4.105)

= 16πμ+
e−8U−2α+2 log r

2ρ2
∇ζtλ−1∇ζ

=
e−8U0−2α+2 log r

2ρ2
∇ζt0λ

−1
0 ∇ζ0

= e2(α0−α)R0,

where α0 and R0 are corresponding quantities for the extreme Myers-Perry
solution. On the other hand, using the scalar curvature formula (3.1), to-
gether with (4.101) and (4.104) implies that

e2U+2α−2 log rR = −6ΔU0 − 2Δρ,zα− 6|∇U0|2 + det∇λ0

2ρ2
(4.106)

= e2U0+2α0−2 log rR0 + 2Δρ,z(α0 − α).

It then follows from (4.104) and (4.105) that Δρ,z(α0 − α) = 0. In light of
the condition (2.13) on the axis to avoid conical singularities, we have (α0 −
α)|Γ = 0. Moreover (α0 − α) → 0 as r → ∞. Hence the maximum principle
shows that α = α0.

We are now in a position to show that (M, g) is isometric to the canonical
slice of the extreme Myers-Perry black hole. By (4.101) the 1-forms Ai

ρdρ+
Ai

zdz, i = 1, 2 are closed, and so there exist potentials such that ∂ρf
i = Ai

ρ

and ∂zf
i = Ai

z, i = 1, 2. Then under the change of coordinates φ̃i = φi +
f i(ρ, z), the metric takes the form

(4.107) g =
e2U0+2α0

2
√

ρ2 + z2
(dρ2 + dz2) + e2U0(λ0)ijdφ̃

idφ̃j ,

which yields the desired result g ∼= g0. Lastly (3.12), (4.102), (4.104), and
α = α0 show that the tensor k coincides with the extrinsic curvature of
the canonical extreme Myers-Perry slice. Note that this also shows that the
linear momentum vanishes J = 0. �
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5. Discussion

In this paper we have established the mass-angular momentum inequality for
4-dimensional initial data having horizons of spherical topology, and which
admit a Brill coordinate representation. There are many directions for pos-
sible generalizations. First, we strongly suspect that as in the 3-dimensional
case [8], the existence of Brill coordinates always occurs for data with simple
topology and appropriate asymptotics. Therefore Theorem 1.1 should hold
without the Brill coordinate hypothesis. Second, it is natural to consider
such inequalities for data with multiple horizons. In the 3-dimensional set-
ting such inequalities were obtain [11, 26] in both the charged and uncharged
cases, however the mass lower bound was not given explicitly. In order to
carry this out in the higher dimensional setting, one would first need to con-
struct a harmonic map to serve in the place of the Myers-Perry harmonic
map Ψ̃0. Such an existence result for a harmonic map with ‘multiple hori-
zons’ should be possible through an application of Weinstein’s theory [34].
However, the convexity arguments would be much more difficult to carry
out, as such harmonic maps are not given explicitly.

Perhaps the most challenging and interesting generalization would be
to allow horizons with nontrivial topology. In this situation the orbit space
structure would change. In general, the 2-dimensional orbit space M4/U(1)2

is a simply connected manifold with boundaries and corners [4, 24]. The
boundary Γ = {ρ = 0} is divided into rod intervals Is = {ρ = 0, as ≤ z ≤
as+1}, 1 ≤ s ≤ s̄+ 1 where a1 < a2 < · · · < as̄+1, and on each such rod seg-
ment λ has rank 1 or 2. In particular, on each Is a certain integral linear
combination of the η(l), l = 1, 2 vanishes, that is, there exists a vector nl

sη(l),

with nl
s ∈ Z, which lies in the kernel of λ, namely λijn

j
s = 0. One may then

give each rod a two component label (n1
s, n

2
s), indicating which linear com-

bination vanishes. Horizons carry the label (0, 0), and all other rods have
the property that λ is of rank 1 while at corner points λ is of rank 0. More-
over, asymptotic flatness implies the existence of two semi-infinite intervals
I1 = {−∞ < z < a2} and Is̄ = {as̄ < z < ∞} with the labels (0, 1) and (1, 0)
respectively (after perhaps choosing an appropriate coordinate basis). The
collection of rod intervals Is together with the associated labels is referred to
as the orbit space data. As we have seen in this paper, the orbit space data
for the extreme Myers-Perry solution consists only of the two semi-infinite
rods, and the same is true for a non-extreme Myers-Perry in Brill coordinates
while in Weyl coordinates it has an extra rod with label (0, 0) in between
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that represents the horizon. Consider now the black ring solution. The ex-
treme version has three rods Is, s = 1, 2, 3 with corresponding labels (0, 1),
(1, 0), and (1, 0). The point between I2 and I3 represents a cylindrical end
with cross-section having topology S1 × S2. The non-extreme black ring has
an extra rod between I2 and I3 with label (0, 0) to encode the horizon. When
trying to establish the mass-angular momentum inequality for black holes
with S1 × S2 topology, the main difficulty occurs from the fact that the orbit
space structure for the model (extreme black ring) is not compatible with
the orbit space structure for manifolds with two asymptotically flat ends.
Thus it is not clear if a Brill coordinate description is possible, on which ar-
bitrary initial data may be compared with the model. In particular, it is not
even clear if there is a single Brill coordinate description which is compatible
with both the extreme and non-extreme black ring data. On the other hand,
some positive results have been obtained in the direction of a mass-angular
momentum inequality for nontrivial topologies. Namely, a slight variation of
the the mass functional (3.16) may be derived for very general orbit space
data, and it is known to be nonnegative for special classes of rod structures
which include that of the extreme black ring [2]. Ultimately, however, for
nontrivial topologies it may be more appropriate to use Weyl coordinates
in which the horizon is represented as a rod, instead of Brill coordinates in
which the horizon is represented as a point.

Appendix A. Asymptotics

Here we compute the asymptotics of the harmonic map data (U, V,W, ζ1, ζ2)
which are implied by the asymptotics of the generalized Brill data in (2.4)–
(2.11), and observe that they are stronger than those (4.12)–(4.23) which
are needed to carry out the convexity arguments of Section 4. The asymp-
totics of U are given directly, and those of V and W may be derived from
the equations (3.17). Thus, it remains to compute the asymptotics for the
potentials ζ1 and ζ2. Observe that (3.12) yields

|∇ζi| = (|∂ρζi|2 + |∂zζi|2
) 1

2(A.1)

≤ Cr−1ρe4U+α (|k(e1, ei+2)|+ |k(e2, ei+2)|) .

Furthermore, asymptotics for k(el, ei+2), l = 1, 2 may be obtained from the
asymptotics of |k|g and λ through the inequality

(A.2) 2
∑
l=1,2

λijk(el, ei+2)k(el, ej+2) ≤ |k|2g.



1434 A. Alaee, M. Khuri, and H. Kunduri

In conclusion, Brill asymptotics imply the following asymptotics for the
harmonic map data. In the designated asymptotically flat end as r → ∞

U = O(r−1−κ), V = O(r−1−κ), W = ρO(r−5−κ),(A.3)

|∇U | = O(r−3−κ), |∇V | = O(r−3−κ), |∇W | = O(r−5−κ),(A.4)

|∇ζ1| = ρ sin θO(r−2−κ), |∇ζ2| = ρ cos θO(r−2−κ).(A.5)

As r → 0 in the asymptotically flat case

U = −2 log r +O(1), V = O(r1+κ), W = ρO(r−1+κ),(A.6)

|∇U | = O(r−2), |∇V | = O(r−1+κ), |∇W | = O(r−1+κ),(A.7)

|∇ζ1| = ρ sin θO(r−6+κ), |∇ζ2| = ρ cos θO(r−6+κ),(A.8)

and in the asymptotically cylindrical case

U = − log r +O(1), V = O(r1+κ), W = ρO(r−2),(A.9)

|∇U | = O(r−2), |∇V | = O(r−1+κ), |∇W | = O(r−2),(A.10)

|∇ζ1| = ρ sin θO(r−2+κ), |∇ζ2| = ρ cos θO(r−2+κ).(A.11)

Lastly, as ρ → 0 with δ ≤ r ≤ 2/δ we have

U = O(1), V = O(1), W = O(ρ
1

2 ),(A.12)

|∇U | = O(1), |∇V | = O(1), |∇W | = O(ρ−
1

2 ),(A.13)

|∇ζ1| = sin θO(ρ), |∇ζ2| = cos θO(ρ).(A.14)

Appendix B. The extreme Myers-Perry harmonic map

The Myers-Perry black holes [31] are solutions to the vacuum Einstein equa-
tions in all dimensions greater than four, and have horizons of spherical
topology. They are considered to be the natural generalization to higher di-
mensions of the 4-dimensional Kerr black holes. In coordinates analogous to
those of Boyer-Lindquist used for the Kerr solution, the Myers-Perry metric
takes the form

− dt2 +
m

Σ

(
dt+ a sin2 θdφ1 + b cos2 θdφ2

)2
+

r̃2Σ

Δ
dr̃2(B.1)

+ Σdθ2 +
(
r̃2 + a2

)
sin2 θ(dφ1)2 +

(
r̃2 + b2

)
cos2 θ(dφ2)2,
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where

Σ = r̃2 + b2 sin2 θ + a2 cos2 θ, Δ =
(
r̃2 + a2

) (
r̃2 + b2

)−mr̃2.(B.2)

This family of solutions is parameterized by (m, a, b) which give rise to the
mass and angular momenta through the formulae

m =
3

8
πm, J1 =

2

3
ma, J2 =

2

3
mb;(B.3)

the black hole is referred to as extreme if m = (a+ b)2. Note that this space-
time has the orthogonally transitive isometry group R× U(1)2, where R

gives the time translation symmetry and U(1)2 is the rotational symmetry
generated by ∂φ1 and ∂φ2 . Here (r̃, θ) parameterize the 2-dimensional sur-
faces orthogonal to the orbits of the isometry group. The horizons of this
black hole are located at the roots of Δ, namely

(B.4) r̃± = ±

√√√√m− a2 − b2 +

√
(m− a2 − b2)2 − 4a2b2

2
,

and the singularities of this metric for nonvanishing a and b with |a| 
= |b|
are located at the roots of Σ. We will restrict attention to the exterior region
r̃ > r̃+, with the other variables having ranges 0 < θ < π/2 and 0 < φ1, φ2 <
2π.

Consider now the metric on a constant time slice. In the exterior region,
this may be put into Brill form by defining a new radial coordinate r:

r̃2 = r2 +
1

2

(
m− a2 − b2

)
(B.5)

+
m
(
m− 2a2 − 2b2

)
+ (a2 − b2)2

16r2
, m 
= (a+ b)2,

r̃2 = r2 + ab, m = (a+ b)2.(B.6)

Observe that the new coordinate is defined on the interval (0,∞), and a
critical point for the right-hand side of (B.5) occurs at the horizon, so that
two isometric copies of the outer region are encoded on this interval. The
coordinates (r, θ, φ1, φ2) then give a (polar) Brill coordinate system, where
the spatial metric takes the form

g =
Σ

r2
dr2 +Σdθ2 + Λijdφ

idφj ,(B.7)
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with

(B.8)
Λ11 =

a2m

Σ
sin4 θ + (r̃2 + a2) sin2 θ, Λ12 =

abm

Σ
sin2 θ cos2 θ,

Λ22 =
b2m

Σ
cos4 θ + (r̃2 + b2) cos2 θ.

Cylindrical Brill coordinates may be obtained via the usual transformation
ρ = 1

2r
2 sin(2θ), z = 1

2r
2 cos(2θ), so that the metric is given by

(B.9) g =
e2U+2α

2
√

ρ2 + z2
(dρ2 + dz2) + e2Uλijdφ

idφj ,

where

(B.10) e2U =

√
detΛ

ρ
, e2α =

ρΣ

r2
√
detΛ

, λij =
ρ√
detΛ

Λij .

From this we may compute the harmonic map data (U, V,W ) with the help
of (3.17). Moreover, the twist potentials are given in the non-extreme case
by

ζ1 =

[C2
1 + 256r4Σ(a2 − b2) cos2 θ

] (C1 − 16r2
(
a2 − b2

))
ma

163r6Σ(a2 − b2)2
(B.11)

− C2
1 − 32r4C2

256r4(a2 − b2)2
ma,

ζ2 =−
[C1 (C1−32r2

(
a2 − b2

))
+256r4(a2−b2)(Σ cos2 θ + (a2−b2))

] C1mb

4096r6Σ(a2−b2)2

+
C2
1 − 16r2C1

(
a2 − b2

)
+ 32r4C3

256r4(a2 − b2)2
mb,

where

C1 = 16r4 + 8(m+ a2 − b2)r2 +
(
m− (a− b)2

)(
m− (a+ b)2

)
,(B.12)

C2 = 3(a2 − b2)2 +m
(
3m− 6b2 + 2a2

)
,

C3 = (a2 − b2)2 +m
(
2a2 + 2b2 − 3m

)
,

(B.13)
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and in the extreme case by

ζ10 =
a(a2 − b2)(r2 + ab+ b2) cos2 θ − r2a(2a2 + 2ab+ r2)

(a− b)2

+
a(r2 + ab+ a2)2(r2 + ab+ b2)

Σ(a− b)2
,

ζ20 =
br2((a+ b)2 + r2)− b(a2 − b2)(r2 + ab+ a2) cos2 θ

(a− b)2

− b(r2 + ab+ a2)(r2 + ab+ b2)2

Σ(a− b)2
.

(B.14)

The asymptotics of the non-extreme Myers-Perry data are then as follows.
In the designated asymptotically flat end as r → ∞ we have

U = O(r−2), V = O(r−2), W = ρO(r−6),(B.15)

|∇U | = O(r−4), |∇V | = O(r−4), |∇W | = O(r−6),(B.16)

|∇ζ1| = ρ sin2 θO(r−4), |∇ζ2| = ρ cos2 θO(r−4).(B.17)

In the nondesignated (asymptotically flat) end as r → 0 it holds that

U = −2 log r +O(1), V = O(r2), W = ρO(r2),(B.18)

|∇U | = O(r−2), |∇V | = O(1), |∇W | = O(r2),(B.19)

|∇ζ1| = ρ sin2 θO(r−4), |∇ζ2| = ρ cos2 θO(r−4).(B.20)

Furthermore, the near axis asymptotics as ρ → 0, δ ≤ r ≤ 2/δ are given by

U = O(1), V = O(1), W = O(ρ),(B.21)

|∇U | = O(1), |∇V | = O(1), |∇W | = O(1),(B.22)

|∇ζ1| = sin2 θO(ρ), |∇ζ2| = cos2 θO(ρ).(B.23)

Asymptotics in the extreme case may be computed similarly, and are recorded
in (4.24)–(4.32).

Lastly we note that the extreme Myers-Perry harmonic map Ψ̃0 = (u0, v0,
w0, ζ

1
0 , ζ

2
0 ) : R

3 \ Γ → SL(3,R)/SO(3) satisfies the Euler-Lagrange equations
arising from the energy (4.2), namely
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4Δu+
e−6u−v

coshw
|∇ζ1|2 + e−6u+v coshw

∣∣e−v tanhw∇ζ1 −∇ζ2
∣∣2 = 0,

4 div
(
cosh2w∇v

)
+

e−6u−v

coshw
|∇ζ1|2 − e−6u+v coshw

∣∣∇ζ2
∣∣2 = 0,

2Δw − sinh 2w|∇v|2 − e−6u−v sinhw
∣∣∇ζ1
∣∣2

+2e−6u coshwδ3(∇ζ1,∇ζ2)− e−6u+v sinhw
∣∣∇ζ2
∣∣2 = 0,

div
(
e−6u−v coshw∇ζ1 − e−6u sinhw∇ζ2

)
= 0,

div
(
e−6u sinhw∇ζ1 − e−6u+v coshw∇ζ2

)
= 0.

(B.24)
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