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On the precanonical structure of the

Schrödinger wave functional

Igor V. Kanatchikov

(In loving memory of Nina Efimova)

We show that the Schrödinger wave functional may be obtained as
the product integral of precanonical wave functions on the space
of field and space-time variables. The functional derivative Schrö-
dinger equation underlying the canonical field quantization is de-
rived from the partial derivative covariant analogue of the Schrö-
dinger equation, which appears in the precanonical field quantiza-
tion based on the De Donder-Weyl generalization of the Hamilto-
nian formalism for field theory. The representation of precanonical
quantum operators typically contains an ultraviolet parameter κ

of the dimension of the inverse spatial volume. The transition from
the precanonical description of quantum fields in terms of Clifford-
valued wave functions and partial derivative operators to the stan-
dard functional Schrödinger representation obtained from canon-
ical quantization is accomplished if 1

κ
→ 0 and 1

κ
γ0 is mapped

to the infinitesimal spatial volume element dx. Thus the standard
QFT obtained via canonical quantization corresponds to the quan-
tum theory of fields derived from the precanonical quantization in
the limiting case of an infinitesimal value of the parameter 1

κ
.

1. Introduction

Field theories are commonly considered as systems with an infinite number
of degrees of freedom. This notion originates in the canonical Hamiltonian
treatment of field theory and it is transferred to quantum field theory by
the procedure of canonical quantization. The resulting version of quantum
field theory has evolved into a very successful framework in contemporary
theoretical physics whose applications range from condensed matter physics
to quantum cosmology. In this framework, even the divergences, viewed as
pathologies in the earlier days of QFT, have turned into triumphs for the
concepts of renormalization and effective field theory.

1377



1378 Igor V. Kanatchikov

However, there remain conceptual tensions between quantum theory and
relativity, which we face in the context of discussions of foundational issues,
and particularly in quantum field theory in curved space-times, quantum
gravity, and unification of all interactions, where our current understanding
of QFT is pushed to the limits of its applicability due to the distinguished
role of time in the formalism of quantum theory on the one side and the
generally covariant, geometric and nonlinear nature of general relativity on
the other.

In approaching those issues, we draw attention to the fact that the
progress of QFT has essentially overlooked developments in the calculus of
variations of multiple integral problems, where the extension of the Hamil-
tonian formulation from mechanics to field theoryis known to be far from
unique [1]. Moreover, as opposed to the canonical Hamiltonian formalism,
the approaches to its generalization developed in the setting of the calculus
of variations have no need of a distinguished ”time variable” in the set of
space-time variables (i.e. the independent variables of the variational prob-
lem which defines a field theory). Nor do they necessarily imply the picture
of fields as infinite-dimensional systems evolving in time (which would fail
on non-globally hyperbolic space-times).

Thus, the question arises whether a formulation of quantum field theory
could be built based on these alternative space-time symmetric Hamiltoniza-
tions of field theory, and if the inherent features of the latter, such as manifest
respect for the space-time symmetries and the finite dimensionality of the
corresponding analogue of the configuration space (i.e. the bundle of field
variables over space-time, whose sections are field configurations appearing
in the standard formulations) can help in clarifying fundamental issues of
QFT at the frontiers of current research, e.g. in the context of quantum
gravity.

Furthermore, the existence of the Hamilton-Jacobi formulations of field
theories associated with each of these alternative Hamiltonizations [1–5]
naturally leads to the question whether alternative formulations of quan-
tum field theories exist which would reproduce the corresponding Hamilton-
Jacobi equations in the classical limit, and what would be their physical
significance.

To be more specific, let us recall that in a field theory given by the
first order Lagrangian density L = L(ya, yaμ, x

μ), where ya denote the field
variables of any nature, yaμ are (the first jet space coordinates of) their
first derivatives, and xμ are the space-time variables, the simplest of the
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above mentioned alternative Hamiltonizations is the so-called De Donder-
Weyl (DW) theory (see e.g. [1, 2]). It is based on the following Hamiltonian-
like covariant reformulation of the Euler-Lagrange field equations:

(1.1) ∂μp
μ
a = −∂H

∂ya
, ∂μy

a =
∂H

∂pμa
,

which uses the following covariant Legendre transformation to define new
variables: pμa :=∂L/∂yaμ (polymomenta) and H(ya, pμa , x) :=pμa∂μy

a−L (DW
Hamiltonian function).

The DW Hamiltonian equations (1.1) can be compared with the stan-
dard Hamilton equations in the canonical formalism:

(1.2) ∂tp
0
a(x) = − δH

δya(x)
, ∂ty

a(x) =
δH

δp0a(x)
,

where the canonical Hamiltonian functional is introduced:

(1.3) H([y(x), p0(x)]) :=

∫
dx

(
∂ty

a(x)p0a(x)− L
)
,

and a decomposition into the space and time is performed, so that xμ :=
(x, t). Here and in what follows the capital bold letters denote functionals.

When both formulations are regular the equivalence between (1.1)
and (1.2) can be established by noticing that

(1.4) H =

∫
dx

(
H − ∂iy

a(x)pia(x)
)
.

Then it is easy to check that the canonical Hamilton equations can be derived
from the (precanonical) DW Hamiltonian equations (1.1).

Whereas the field quantization based on the canonical Hamiltonization
is well elaborated and underlies QFT as we know it, an approach to quanti-
zation of fields based on the De Donder-Weyl (DW) generalization of Hamil-
tonian mechanics to field theory was put forward only recently [6–8] (c.f. also
discussions of similar ideas by other authors in [10–14]). In the context of
quantization of gravity [15–17] the approach was later given the name of
precanonical quantization.

While the connection between the canonical and DW Hamiltonizations
is sufficiently clear on the classical level (see e.g. [18]), the relation between
the respective quantizations has been rather problematic for a long time (see
[6, 19] for earlier discussions). In the recent paper [20] we found a formula
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connecting the Schrödinger wave functional with the precanonical wave func-
tions in the case of scalar field theory. However, the derivation was based
on an ad hoc Ansatz, so that it remained unclear how general the result is.
In this paper we establish a connection between QFT based on canonical
quantization in the functional Schrödinger representation and a formula-
tion based on precanonical quantization without any a priori assumptions
regarding the form of this relation, except a very general possible relation
between the Schrödinger wave functional and precanonical wave function
(c.f. Eq. (3.6) below).

In Sect. 2 we present a comparative outline of the elements of canoni-
cal and precanonical quantization, which are essential for our purposes. In
Sect. 3 we derive the functional derivative Schrödinger equation for quantum
scalar field theory from the corresponding Dirac-like partial derivative pre-
canonical analogue of the Schrödinger equation. This consideration leads to a
relation between the Schrödinger wave functional known from the canonical
quantization and the Clifford-valued wave function appearing in precanoni-
cal quantization. As an application of our result, we construct the vacuum
state functional of the free scalar field theory from the precanonical ground
state wave functions. A concluding discussion is found in Sect. 4.

2. Canonical and precanonical quantization

Let us present a brief comparative overview of the elements of canonical and
precanonical quantization, which are relevant for the following discussion.

Canonical quantization (in the Schrödinger picture [21]) is known to
lead to the description of quantum fields in terms of the Schrödinger wave
functionalΨ([y(x)], t) on the infinite-dimensional configuration space of field
configurations y(x) at time t. Precanonical quantization [6–8] leads to the
description in terms of Clifford algebra-valued wave functions Ψ(y, x) on
the finite dimensional “covariant configuration space” (in the terminology
of [18]) of field variables y and space-time variables x.

While the Schrödinger wave functionalΨ fulfils the Schrödinger equation

(2.1) i�∂tΨ = ĤΨ,

where Ĥ stands for the functional derivative operator of the canonical Hamil-
tonian, the precanonical wave function Ψ(y, x) satisfies the following covari-
ant generalization of the Schrödinger equation [6–8]

(2.2) i�κγμ∂μΨ = ĤΨ,
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where Ĥ is the partial derivative operator of the De Donder-Weyl Hamilto-
nian function, γμ are Dirac matrices of n-dimensional space-time, and κ is a
“very large” constant of dimension �−(n−1). The latter routinely appears on
dimensional grounds in the expressions of precanonical quantum operators,
which follow from quantization of the Poisson-Gerstenhaber brackets of dif-
ferential forms representing the dynamical variables in field theory. These
brackets were found in our earlier work on the mathematical structure of
the DW Hamiltonian formulation [22–24] (for further generalizations see e.g.
[25–30]). Their geometric prequantization, which can be viewed as an inter-
mediate step toward precanonical quantization, was considered in [31]. It is
on the level of geometric prequantization we can justify the appearance of
Clifford algebra-valued wave functions and operators in precanonical quan-
tization.

More specifically, let us consider the theory of interacting scalar fields,
which is given by

(2.3) L =
1

2
∂μy

a∂μya − V (y),

where the potential term V (y) also includes the mass terms like 1
2m

2y2

(henceforth we set � = 1 and use the metric signature +− · · · −).
In this case the operator of the canonical conjugate momentum of ya(x):

p0a(x) :=
∂L

∂∂tya(x)
,

in the Schrödinger y(x)-representation is given by

(2.4) p̂0a(x) = −i
δ

δya(x)
.

This representation follows from quantization of the equal-time Poisson
bracket

(2.5) {p0a(x), yb(x′)} = δbaδ(x− x′).

In precanonical quantization, the representation of the operators of poly-
momenta:

(2.6) p̂μa = −iκγμ
∂

∂ya
,
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follows from quantization of the Heisenberg subalgebra of the above men-
tioned Poisson-Gerstenhaber algebra of forms (c.f. [6–9]):

{[pμaωμ, y
b ]} = δba,

{[pμaωμ, y
bων ]} = δbaων ,(2.7)

{[pμa , ybων ]} = δbaδ
μ
ν ,

where ωμ := ∂μ ω are the contractions of the volume n-form on the space-
time ω := dx0 ∧ dx1 ∧ · · · ∧ dxn−1 with the basis vectors ∂μ of its tangent
space. This quantization also implies the existence of a map q from the co-
exterior forms on the classical level1 to the Clifford algebra elements (Dirac
matrices) on the quantum level:

(2.8) ωμ
q�−→ 1

κ
γμ,

which is similar to the “Chevalley map” [32], or “quantization map” [33],
known in the theory of Clifford algebras. The constant κ appears here on
dimensional grounds. From the association of ω0, which represents the in-
finitesimal spatial volume element dx, with γ0, which is dimensionless, it is
evident that 1

κ
corresponds to a “very small” volume and has the meaning

of a physically infinitesimal or elementary volume.
Furthermore, while the canonical Hamiltonian operator of the quantum

scalar field theory:

(2.9) Ĥ =

∫
dx

{
−1

2

δ2

δy(x)2
+

1

2
(∇y(x))2 + V (y(x))

}
,

is formulated in terms of functional derivative operators, the DW Hamilto-
nian operator in this case (see [6–8]):

(2.10) Ĥ = −1

2
κ
2∂yy + V (y)

is expressed in terms of the partial derivative operators with respect to the
field variables.

The question naturally arises, how those two descriptions, which seem
to be so different both physically and mathematically, can be related: how
the Schrödinger wave functional is related to the Clifford algebra-valued

1We have explained in our earlier papers [23] that the natural multiplication of
forms here is given by the co-exterior product: α • β := ∗−1(∗α ∧ ∗β), where ∗ is
the Hodge duality operator.
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precanonical wave function and how the functional derivative canonical
Schrödinger equation (2.1) is related to the precanonical Schrödinger equa-
tion (2.2).

3. Schrödinger wave functional from precanonical
wave function

To make the above mentioned relation less mysterious, let us first recall
our earlier observation [19] that the functional derivative Hamilton-Jacobi
equation of the canonical Hamiltonian formalism:

(3.1) ∂tS+H

(
ya(x), p0a(x) =

δS

δy(x)
, t

)
= 0,

can be derived from the partial differential Hamilton-Jacobi equation of
precanonical De Donder-Weyl theory [1, 2]:

(3.2) ∂μS
μ +H

(
ya, pμa =

∂Sμ

∂ya
, xμ

)
= 0,

if the canonical HJ functional S([y(x), t]) is constructed in terms of the
DW-HJ functions Sμ(y, x) as follows:

(3.3) S =

∫
Σ
Sμωμ.

Here Σ: (y=y(x), t=const) is the subspace in the covariant configuration
space, which represents the field configuration y(x) at the moment of time t.

This result of [19] demonstrates that the transition from an object of
DW (precanonical) theory, such us Sμ(y, x), to an object of canonical the-
ory, such as S([y(x), t]), involves a restriction of the former to the subspace
Σ and subsequent integration over it. In this way the functionals of field
configurations are constructed from the functions on the covariant finite-
dimensional configuration space, and the functional derivative equations of
the canonical formalism are derived from their precanonical partial deriva-
tive counterparts.

A similar relationship exists also between the forms representing dynam-
ical variables and their Poisson-Gerstenhaber brackets in the DW Hamilto-
nian formulation and the “observables” represented by functionals and their
Poisson brackets in the canonical formalism [22, 34].
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Having obtained this result on the classical level, we can also expect a
similar relation between the wave functional and precanonical wave func-
tion on the quantum level, because both the Schrödinger wave functional
Ψ and the precanonical wave function Ψ are related to the exponentials of,
respectively, the HJ functional and DW-HJ functions, viz.,

(3.4) Ψ ∼ eiS and Ψ ∼ e
i

κ

Sμγμ

(see [8], where the second expression is used to argue that in the classical
limit the DW-HJ equation follows from the precanonical Schrödinger equa-
tion). Using the fact that S is the spatial integral of DW-HJ functions, we
can anticipate that Ψ is related to the product integral [36] of precanonical
wave functions restricted to the subspace Σ:

Ψ([y(x)]) ∼ eiS = ei
∫
Σ
Sμωμ =

∏
x∈Σ

eiS
μ(y=y(x),x,t)ωμ(3.5)

∼
∏
x∈Σ

Ψ(y = y(x),x, t)| 1

κ

γμ→ωμ
,

where the last step implies the inverse of the “quantization map” in Eq. (2.8).
The consideration below will make this idea more precise.

Now, let us assume that the Schrödinger wave functional Ψ can be ex-
pressed in terms of the precanonical wave function Ψ(y, x) restricted to the
subspace Σ: Ψ(y, x)|Σ := ΨΣ(y(x),x, t), i.e.

(3.6) Ψ([y(x)], t) = Ψ([ΨΣ(y(x),x, t)], [y
a(x)]).

Then the time evolution of the Schrödinger wave functional is determined
by the time evolution of precanonical wave function. By applying the chain
rule to the composite functional (3.6) we obtain:

(3.7) i∂tΨ =

∫
dx Tr

{
δΨ

δΨT
Σ(y

a(x),x, t)
i∂tΨΣ(y

a(x),x, t)

}
.

Note that the additional dependence of Ψ from ya(x), which is not incorpo-
rated in Ψ|Σ, is supposed to take into account the fact that the amplitudes
Ψ|Σ in space-like separated points in general are not independent — one of
the manifestations of quantum nonlocality.

The equation of time evolution of ΨΣ(x) is given by the space-time
decomposed precanonical Schrödinger equation, Eq. (2.2), restricted to Σ,
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viz.,

(3.8) i∂tΨΣ(x) = −iαi d

dxi
ΨΣ(x) + iαi∂iy(x)∂yΨΣ(x) +

1

κ
β(ĤΨ)Σ(x),

where

(3.9)
d

dxi
:= ∂i + ∂iy(x)∂y + ∂ijy(x)∂yj

+ · · ·

is the total derivative along the subspace Σ, β :=γ0, β2=1, and αi :=βγi.
Here we have also introduced the shorthand notation ΨΣ(x) :=ΨΣ(y(x),x, t)
to be used henceforth.

Hence, the time evolution of the wave functional of the quantum scalar
field is given by:

i∂tΨ =

∫
dx Tr

{
δΨ

δΨT
Σ(x, t)

[
−iαi d

dxi
ΨΣ(x) + iαi∂iy(x)∂yΨΣ(x)(3.10)

− 1

2
κβ∂yyΨΣ(x) +

1

κ
βV (y(x))ΨΣ(x)

]}
.

Eq. (3.10) is obtained by inserting the explicit expression of the DW Hamil-
tonian operator of the nonlinear scalar field given by Eq. (2.10) into Eq. (3.8).

From Eq. (3.6) we obtain the expressions for the first and the second
total functional derivatives of Ψ with respect to y(x), viz.,

δΨ

δy(x)
= Tr

{
δΨ

δΨT
Σ(x, t)

∂yΨΣ(x)

}
+

δ̄Ψ

δ̄y(x)
,(3.11)

δ2Ψ

δy(x)2
= Tr

{
δΨ

δΨT
Σ(x, t)

δ(0)∂yyΨΣ(x)

}
(3.12)

+ Tr Tr

{
δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)
∂yΨΣ(x)⊗ ∂yΨΣ(x)

}
+ 2 Tr

{
δδ̄Ψ

δΨT
Σ(x) δ̄y(x)

∂yΨΣ(x)

}
+

δ̄2Ψ

δ̄y(x)2
.

Here and in what follows δ̄ denotes the partial functional derivative with re-
spect to y(x), and δ(0) is the result of functional differentiation of a function
with respect to itself at the same spatial point.

Our first observation is that the potential energy term in the canonical
functional derivative Schrödinger equation for the scalar field, see Eqs. (2.1)
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and (2.9), should be obtained from the potential energy term in the pre-
canonical equation, Eq. (3.10), i.e.,

(3.13)

∫
dx Tr

{
δΨ

δΨT
Σ(x)

1

κ
βV (y(x))ΨΣ(x))

}
�→

∫
dx V (y(x)) Ψ.

It can be accomplished if

(3.14) Tr

{
δΨ

δΨT
Σ(x)

1

κ
βΨΣ(x)

}
�→ Ψ

in any point x. The precise meaning of the operation �→ will be established
below.

The second observation is obtained by functionally differentiating both
sides of Eq. (3.14) with respect to ΨT

Σ(x):

(3.15) Tr

{
δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)

1

κ
βΨΣ(x)

}
+

δΨ

δΨT
Σ(x)

1

κ
βδ(0) �→ δΨ

δΨT
Σ(x)

,

where δ(0) = δΨΣ(x)/δΨ
T
Σ(x). We conclude, that the second term in (3.12),

which has no counterparts in the familiar functional Schrödinger equation,
vanishes, provided

(3.16)
1

κ
βδ(0) �→ 1.

Similarly, our third observation is that the term κβ∂yyΨΣ in (3.10)
reproduces the first term in Eq. (3.12) and therefore, in the functional
Schrödinger equation with Ĥ given by Eq.(2.9), if

(3.17) βκ �→ δ(0).

We see that this condition is consistent with Eq. (3.16) in the sense that
(3.16) is fulfilled provided (3.17) is also satisfied.

Now, if we recall the origin of Dirac matrices in precanonical quanti-
zation as the quantum representations of differential forms, we can readily
recognize the conditions (3.16) and (3.17) as the inverse quantization map
q in Eq. (2.8) in the limit of the infinitesimal elementary volume 1

κ
→ 0, i.e.
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Eq. (3.17) is understood as follows:

(3.18) βκ
q−1

�−→ δ(0).

Note, that one may think of the mapping in Eq. (3.18) as the “Wick rotation”
in the hyperbolic complex plane (1, β) combined with the limit κ → ∞.

Fourth, if Eq. (3.10) is supposed to lead to a description in terms of
the wave functional Ψ alone, then the third term in (3.12), which is pro-
portional to ∂yΨΣ(x), should cancel the second term in (3.10), which is
also proportional to ∂yΨΣ(x). This requirement leads to a condition which
further restricts the dependence of Ψ on ΨΣ(x) and y(x), viz.,

(3.19)
δΨ

δΨT
Σ(x)

iβγi∂iy(x) �→ − δδ̄Ψ

δΨT
Σ(x)δ̄y(x)

.

By introducing the notation

(3.20) Φ(x) :=
δΨ

δΨT
Σ(x)

,

and taking into account that ∂iδ(0) = 0, the solution of Eq. (3.19) can be
found in the form

(3.21) Φ(x) = Ξ([ΨΣ]; x̆)e
−iy(x)γi∂iy(x)/κ,

where Ξ([ΨΣ]; x̆) denotes a functional of ΨΣ(x
′) at x′ 
= x and the expo-

nential function of the hypercomplex argument is understood as an eigen-
function of the Dirac operator γi∂i with the condition e0 = 1 (see e.g. [35]).
Consequently,

(3.22)
δΦ(x)

δΨT
Σ(x)

= 0

or equivalently,

(3.23)
δ2Ψ

δΨΣ(x)⊗ δΨΣ(x)
= 0.

We note that the latter equality is consistent with Eqs. (3.15) and (3.16).
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Now, Eqs. (3.20) and (3.21) lead to the following solution:

(3.24) Ψ = Tr

{
Ξ([ΨΣ]; x̆) e

−iy(x)γi∂iy(x)/κ 1

κ
βΨΣ(x)

}
|βκ

q−1�−→δ(0)

,

which is valid for any x and in combination with the inverse quantization
map (3.18). It is easy to check that Eq. (3.24) is consistent with Eq. (3.14).

The fifth observation is that the last term in (3.12), evaluated on the
solution (3.24), yields:

(3.25)
δ̄2Ψ

δ̄y(x)2
�→ (∇y(x))2Ψ.

Hence, it correctly reproduces the 1
2(∇y(x))2 term in the functional Schrö-

dinger equation (2.1) with Ĥ given by Eq. (2.9). This calculation thus indi-
cates that those are the twisting phase factors e−iy(x)γi∂iy(x)/κ in front of the
precanonical wave functions in (3.24) which account for the non-ultralocality
(in Klauder’s terminology [37]) of relativistic scalar field theory.

Our sixth observation concerns the first term in the right hand side of
Eq. (3.10), which contains the total derivative. Namely, by integration by
parts it takes the form

(3.26)

∫
dx Tr

{(
i
d

dxi
Φ(x)

)
γiΨΣ(x)

}
.

Then, by taking the total derivative d
dxi of the explicit expression of Φ in

Eq. (3.21):

d

dxi
Φ(x) = − i

κ
Ξ([ΨΣ]; x̆)e

−iy(x)γi∂iy(x)/κ(γk∂ky(x)∂iy(x)(3.27)

+ y(x)γk∂iky(x)),

and using the expression of Ψ in Eq. (3.24), we transform Eq. (3.26) to the
following form:

(3.28) − iΨ

∫
dx (γk∂ky(x)∂iy(x) + y(x)γk∂iky(x))γ

i,

which obviously vanishes upon integration by parts. Hence, the first (total
derivative) term in the right hand side of (3.10) does not contribute to the
functional derivative equation describing the time evolution of Ψ.
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Finally, the functional Ξ([ΨΣ(x)]) in (3.24) is specified by combining
all the above observations together and noticing that the formula Eq. (3.24)
is valid for any x. It can be accomplished only if the functional Ψ has the
structure of the continuous product of identical terms at all points x, viz.,

(3.29) Ψ = Tr

{∏
x

e−iy(x)γ
i∂iy(x)/κΨΣ(y(x),x, t)

}
|βκ

q−1�−→δ(0)

.

Thus we have obtained the expression of the Schrödinger wave functional
in terms of precanonical wave functions. The equality in the above expres-
sion implies the inverse of the Clifford algebraic quantization map q and the
limit of the infinitesimal elementary volume element 1

κ
→ 0. Moreover, the

preceding consideration also derives term by term the functional Schrödinger
equation for the wave functional Ψ from the precanonical Schrödinger equa-
tion for the wave function Ψ restricted to the subspace Σ.

As we have already mentioned in the previous paper [20], the inverse
quantization map in the limit of infinitesimal 1

κ
means that

(3.30)
1

κ
β

q−1�−→ dx.

Therefore the expression of the wave functional in Eq. (3.29) can be written
in the form of the multidimensional product integral (c.f. [36]):

(3.31) Ψ = Tr

{∏
x

e−iy(x)α
i∂iy(x)dxΨΣ(y(x),x, t)| 1

κ
β �→dx

}
,

which may be more practical to use than Eq. (3.29).

Further, let us recall that ΨΣ obeys Eq. (3.8). According to Eqs. (3.26)–
(3.28) the total derivative term does not contribute to the functional deriva-
tive equation for Ψ. In the case of scalar field theory, Eq. (3.8) without the
total derivative term can be cast in the form

i∂tΨΣ =
1

2κ
β
(
iκ∂y + γi∂iy(x)

)2
ΨΣ(3.32)

+
1

κ
β

(
V (y(x) +

1

2
(∇y(x))2

)
ΨΣ =: βEΨΣ.

The structure of the operator E in the right hand side of Eq. (3.32):

(3.33) E =
1

2κ

(
iκ∂y + γi∂iy(x)

)2
+

1

κ

(
V (y(x) +

1

2
(∇y(x))2

)
,
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resembles the structure of the magnetic Schrödinger operator in y-space
with the “matrix magnetic potential” γi∂iy(x) and the “electric potential”
V (y(x)) + 1

2(∇y(x))2.
The “magnetic” term in Eq. (3.33) is pure gauge (in y-space), so that

it does not change the eigenvalues of E in comparison with Ĥ. Its influence
reduces to the multiplication of the eigenstates of Ĥ by the hypercomplex
phase factor eiγ

iy(x)∂iy(x)/κ. Note that Eq. (3.32) is valid in the fibers of field
variables and their first jets over each point x, with x-s here just labeling
the fiber in which Eq. (3.32) is written.

The addition 1
2(∇y(x))2 to the “electric potential” term in Eq. (3.33)

modifies the mass term in the potential term of the DW Hamiltonian opera-
tor. Namely, by substituting it into Eq. (3.7) and integrating by parts using
the property (3.14), we conclude that under the restriction to Σ the mass
term 1

2m
2y2 in V (y) is replaced by

(3.34)
1

2
y(x)(m2 −∇2)y(x).

Correspondingly, the parameter m in the expressions of precanonical wave
functions is formally replaced by

√
m2 −∇2, when they are restricted to Σ.

For example, in the case of free massive scalar field theory the ground
state of the DW Hamiltonian operator, Ĥ = −1

2κ
2∂yy +

1
2m

2y2, is given, up

to the normalization factor, by Ψ0 ∼ e−
m

2κ
y2

, and its eigenvalue is 1
2mκ [6–

8]. Then the eigenstates of βĤ corresponding to the positive eigenvalues are
given by ∼(1 + β)e−

m

2κ
y2

. Therefore, the corresponding ground state wave
function restricted to Σ: Ψ0Σ, will take the form

(3.35) Ψ0Σ ∼ eiy(x)γ
i∂iy(x)/κ(1 + β)e−

1

2κ
y(x)

√
m2−∇2 y(x).

By substituting the last expression into (3.31) we see that the “magnetic”
phase factors in Eq. (3.35) and Eq. (3.29) will cancel each other, so that
finally we obtain

(3.36) Ψ ∼ Tr
∏
x

(1 + β)e−
1

2
βy(x)

√
m2−∇2y(x)dx ∼ e−

1

2

∫
y(x)

√
m2−∇2 y(x)dx,

where the identity β(1 + β) = (1 + β) satisfied by β-matrix is used (c.f. our
earlier treatment in [19]).

The right hand side of Eq. (3.36) reproduces the vacuum state solution
of the functional derivative Schrödinger equation for the free scalar field
(see e.g. [21]). Usually it corresponds to the picture of the vacuum as the
continuum of harmonic oscillators with the zero-point energy 1

2

√
m2 + k2
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at every point of k-space. Here the vacuum state of free quantum scalar
field is obtained as the product of the ground state wave functions of the
DW Hamiltonian operator (which in this case corresponds to the harmonic
oscillator in y-space) over all points x of space.

4. Conclusion

Precanonical quantization, which is based on the space-time symmetric gen-
eralization of the Hamiltonian formalism to field theory (the De Donder-
Weyl theory), leads to the description of quantum fields in terms of Clifford-
valued wave functions on the bundle of field variables over space-time. These
wave functions obey a Dirac-like generalization of the Schrödinger equation
with the mass term replaced by the DW Hamiltonian operator. The formu-
lation introduces a small parameter 1

κ
of the dimension of spatial volume,

which appears on dimensional grounds in the representation of precanoni-
cal quantum operators and has the meaning of the minimal resolution of a
spatial volume.

A proper understanding of the connection between precanonical quanti-
zation and the standard methods of quantization in field theory is important
for the physical interpretation of the results of precanonical quantization.
In this paper, we discuss how the results of canonical quantization in the
functional Schrödinger representation are related to the precanonical quan-
tization and improve the arguments of the previous discussions in [19, 20].

Summarizing the considerations in Sect. 3 and those in the preceding
paper [20], we have proven that

Proposition. If Ψ(y, x) is a precanonical wave function obeying the pre-
canonical covariant analogue of the Schrödinger equation (2.2), and
ΨΣ(y(x),x, t) is its restriction to the subspace Σ representing a field config-
uration y(x) at time t, then in the limiting case βκ �→ δ(0) or equivalently,
1
κ
β �→ dx, there exists a composite functional Ψ of ΨΣ and y(x), whose

time evolution is governed by the standard functional derivative Schrödinger
equation obtained from the canonical quantization. The time evolution of Ψ
is completely determined by the time evolution of ΨΣ(y(x),x, t) determined
by the precanonical Schrödinger equation restricted to Σ. The expression of
the Schrödinger wave functional Ψ in terms of precanonical wave functions
Ψ is given by the product integral formula, Eq. (3.31), which is the neces-
sary and sufficient condition for the functional Ψ to satisfy the canonical
Schrödinger equation if Ψ satisfies the precanonical Schrödinger equation.
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This result leads to the conclusion that the canonical QFT in the func-
tional Schrödinger representation is the limiting case of the theory obtained
from precanonical quantization corresponding to βκ �→ δ(0) or β/κ �→ dx,
i.e. to an infinitesimal value of 1

κ
.

It is interesting to note that the introduction of the ultraviolet scale κ

in precanonical quantization does not modify the relativistic space-time at
small distances. It rather defines the scale of “very small” distances for the
specific field theory under consideration. It is tempting, however, to interpret
κ as the universal fundamental ultraviolet scale similar to the Planck scale,
where the idea of the space-time continuum is supposed to break down due
to quantum gravity effects. In this case, precanonical quantization might be
able to provide new insights into the Planck scale physics.

Note in conclusion that the manifest respect for space-time symmetry
within the precanonical quantization approach together with the nonper-
turbative nature of the construction of interacting quantum field theories,
potentially make it a suitable framework for the exploration of quantum
gravity and quantum gauge theories (c.f. [38, 39] for the recent discussions).
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(eds.), (World Sci., Singapore, 2008) 615–625, arXiv:0807.3127.



Schrödinger wave functional 1395

[28] M. Richter, Lie infinity algebra of Hamiltonian forms in n-plectic ge-
ometry, arXiv:1212.4596

[29] J. M. Casas, T. Datuashvili, and M. Ladra, Left-right noncommutative
Poisson algebras, Cent. Eur. J. Math. 12 (2014), 57–78.

[30] D. Vey, Multisymplectic geometry and the notion of observables, AIP
Conf. Proc. 1446 (2012), 211–230;
D. Vey, Multisymplectic Maxwell theory, arXiv:1303.2192.

[31] I. V. Kanatchikov, Covariant geometric prequantization of fields, in:
Proc. Ninth Marcel Grossmann Meeting on General Relativity, Rome
(Italy) July 2000 (World Scientific, Singapore, 2002) vol. 2, 1395–1397,
arXiv:gr-qc/0012038;
I. V. Kanatchikov, Geometric (pre)quantization in the polysymplec-
tic approach to field theory, in: Differential geometry and its applica-
tions (Opava, 2001), Vol. 3, Silesian Univ. Opava, 309–321, arXiv:
hep-th/0112263.

[32] C. Chevalley, The Algebraic Theory of Spinors and Clifford Algebras,
Springer-Verlag, Berlin, (1997).

[33] E. Meinrenken, Clifford Algebras and Lie Theory, Springer-Verlag,
Berlin, (2013).
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Gauthier-Villars, Paris (1938);
A. Slav́ık, Product integration, its history and applications, Mat-
fyzpress, Prague, (2007), http://www.karlin.mff.cuni.cz/~slavik/
product/product_integration.pdf

[37] J. R. Klauder, Beyond Conventional Quantization, Cambridge Univer-
sity Press, Cambridge, (1999).



1396 Igor V. Kanatchikov

[38] I. V. Kanatchikov, Precanonical quantization of Yang-Mills fields and
the functional Schrödinger representation, Rep. Math. Phys. 53 (2004),
181–193, arXiv:hep-th/0301001.

[39] I. V. Kanatchikov, On precanonical quantization of gravity in spin
connection variables, AIP Conf. Proc. 1514 (2012), 73–76, arXiv:
1212.6963;
I. V. Kanatchikov, De Donder-Weyl Hamiltonian formulation and pre-
canonical quantization of vielbein gravity, J. Phys.: Conf. Ser. 442
(2013), 012041, arXiv:1302.2610;
I. V. Kanatchikov, On Precanonical quantization of gravity, Nonlin.
Phys. Complex Sys. 17 (2014), 372–376, arXiv:1407.3101;
I. V. Kanatchikov, On the “spin-connection foam” picture of quantum
gravity from precanonical quantization, to appear in Proc. 14th Marcel
Grossmann Meeting MG14 (2017), arXiv:1512.09137;
I. V. Kanatchikov, Ehrenfest theorem in precanonical quantization of
fields and gravity, to appear in Proc. 14th Marcel Grossmann Meeting
MG14 (2017), arXiv:1602.01083.

National Quantum Information Centre in Gdańsk (KCIK)
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