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Conserved quantities on asymptotically

hyperbolic initial data sets

Po-Ning Chen, Mu-Tao Wang, and Shing-Tung Yau

In this article, we consider the limit of quasi-local conserved quan-
tities [9, 31] at the infinity of an asymptotically hyperbolic initial
data set in general relativity. These give notions of total energy-
momentum, angular momentum, and center of mass. Our assump-
tion on the asymptotics is less stringent than any previous ones to
validate a Bondi-type mass loss formula. The Lorentz group acts
on the asymptotic infinity through the exchange of foliations by
coordinate spheres. For foliations aligning with the total energy-
momentum vector, we prove that the limits of quasi-local center
of mass and angular momentum are finite, and evaluate the limits
in terms of the expansion coefficients of the metric and the second
fundamental form.
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1. Introduction

The notion of energy, linear momentum, angular momentum, center of mass
and their conservation laws are of fundamental importance for any physical
theory. However, there have been great difficulties in understanding these
notions for gravitation since Einstein’s time, as there there is no well-defined
concept of energy density due to the equivalence principle. It is nevertheless
possible to use asymptotic symmetries to define these notions for an iso-
lated system. At spatial infinity, the Arnowitt-Deser-Misner (ADM) energy-
momentum [2] is well-understood. ADM energy-momentum is fundamental
in general relativity and has been proven to be natural and to satisfy the
important positivity property by the work of Schoen-Yau [26] and Witten
[34]. It is also shown that the ADM energy-momentum satisfies important
invariant properties in the work of Bartnik [4] and Chruściel [13]. There
are several existing definitions of total angular momentum and total cen-
ter of mass such as the Arnowitt-Deser-Misner (ADM) angular momentum
[2, 3, 23] and the center of mass proposed by Huisken-Yau, Regge-Teitelboim,
Beig-Ó Murchadha, Christodoulou and Schoen [5, 11, 17, 18, 23]. In [9], the
authors proposed a new definition of quasi-local angular momentum and
center of mass and used their limits to define new total conserved quantities
for asymptotically flat initial data sets. The new definitions are finite for
asymptotically flat initial data of order 1, and satisfy important dynami-
cal formulas for solutions of the Einstein equation. See Theorem 7.4 and
Theorem 9.6 of [9].

When the system is viewed from null infinity, the situation is more com-
plicated. The notion of mass at null infinity is first studied by Bondi [6]
and Trautman [29]. While the ADM energy-momentum at spatial infinity
is conserved for solutions of the Einstein equation, the Bondi energy at null
infinity is decreasing, see [6], [25] and [29]. A similar mass loss formula at
null infinity is derived in [12] by Christodoulou and Klainerman, as a conse-
quence of their proof of global stability of the Minkowski space. Their mass
loss formula plays a key role in the study of nonlinear memory effect in
gravitational radiation [10]. In [24], Rizzi proposed a new definition of total
angular momentum at null infinity by assuming the existence of a special
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foliation. He also studied the change of this total angular momentum by
choosing a particular laspe function.

Schoen and Yau modified their proof for the positivity of ADM energy
to prove the positivity of Bondi mass [27]. Their main strategy is to study a
spacelike hypersurface asymptotic to the null cone at infinity. Both the in-
duced metric and the second fundamental form are asymptotic to the metric
of the hyperbolic 3-space. On such an asymptotically hyperbolic hypersur-
face, they solve Jang’s equation to obtain an asymptotically flat manifold
whose ADM energy is a positive multiple of the Bondi mass of the null cone.

Motivated by the proof of the positivity of Bondi mass and the study
of asymptotically Anti-de-Sitter space, it is natural to find a suitable notion
of mass and other conserved quantities for general asymptotically hyper-
bolic manifolds. In [33], X. Wang proved the positivity of mass for umbilical
and conformally compact asymptotically hyperbolic manifolds satisfying the
dominant energy condition. There are many works along this direction, see
for example [1], [14], [15], [28] and [35]. In [36], Zhang proved a positivity
and rigidity theorem for the mass of asymptotically hyperbolic manifolds
without the umbilical assumption. In the same article, a new definition of
total angular momentum was also proposed.

In this article, we study the total energy, linear momentum, angular mo-
mentum and center of mass at null infinity of asymptotically flat spacetime
using the quasi-local energy of [31] and the quasi-local angular momentum
and center of mass of [9]. The null infinity is modeled on 3-manifolds asymp-
totic to a hyperboloid in the Minkowski spacetime where the induced metric
is isometric to the hyperbolic 3-space and the second fundamental form is
the same as the induced metric. Let H3 denote the hyperbolic 3-space with
metric 1

r2+1dr
2 + r2σ̃abdu

adub where σ̃ab is the standard metric on the unit

2-sphere S2. Specifically, here are the decay conditions:

Definition 1.1. A triple (M, g, k) of a complete 3-manifold M , a Rieman-
nian metric g on M , and a symmetric 2-tensor (the second fundamental
form) k is said to be an asymptotically hyperbolic initial data set if there
exists a compact subset K of M such that M\K is diffeomorphic to a finite
union of ends ∪iH

3\Bi where each Bi is a geodesic ball in H
3. Under the

diffeomorphism, we have

g = grrdr
2 + 2gradrdu

a + gabdu
adub and k = g + p,

where
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grr =
1

r2
− 1

r4
+

g
(−5)
rr

r5
+

g
(−6)
rr

r6
+O(r−7), gra =

g
(−3)
ra

r3
+O(r−4),

gab =r2σ̃ab + g
(0)
ab +

g
(−1)
ab

r
+

g
(−2)
ab

r2
+O(r−3),

and

prr =
p
(−4)
rr

r4
+O(r−5) pra =

p
(−3)
ra

r3
+O(r−4),

pab =p
(0)
ab +

p
(−1)
ab

r
+

p
(−2)
ab

r2
+O(r−3).

Here σ̃ab is the standard round metric on the unit 2-sphere S2. g
(−5)
rr , g

(−6)
rr ,

p
(−4)
rr are considered to be functions on S2 that do not depend on r, g

(−3)
ra ,

p
(−3)
ra are considered to be one-forms on S2 that do not depend on r, and

g
(0)
ab , g

(−1)
ab , g

(−2)
ab , p

(0)
ab , p

(−1)
ab , p

(−2)
ab are considered to be symmetric two-tensors

on S2 that do not depend on r. Furthermore, we assume that p
(0)
ab and g

(0)
ab

are traceless with respect to σ̃ab.

We assume that the triple (M, g, k) satisfies the following dominant en-
ergy condition:

Definition 1.2. (M, g, k) satisfies the dominant energy condition if

μ =
1

2
(R(g) + (trgk)

2 − |k|2g)
Ji =Dj(kij − (trgk)gij)

satisfies

μ ≥ |J|.
Here R(g) is the scalar curvature of the metric g and Dj is the covariant
derivative with respect to the metric g.

Definition 1.3. The mass aspect function m of an asymptotically hyper-
bolic initial data set is defined to be

(1.1) m =
3

2
trS2g

(−1)
ab + trS2p

(−1)
ab + g(−5)rr .

The energy-momentum of an asymptotically hyperbolic initial data set
is defined as follows:
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Definition 1.4. Let (M, g, k) be an asymptotically hyperbolic initial data
set. The energy-momentum of (M, g, k) is the four vector (EAH , P i

AH), i =
1, 2, 3 where

EAH(M, g, k) =
1

8π

∫
S2

mdS2

P i
AH(M, g, k) =

1

8π

∫
S2

X̃imdS2, i = 1, 2, 3

where X̃i, i = 1, 2, 3 are the three standard coordinate functions on S2.

Remark 1.5. There are two types of asymptotically hyperbolic initial data
sets. One is modeled on the hyperbola in the Minkowski spacetime, and thus
g = k (umbilical) is the same as the metric on H

3. The other is modeled on
a static slice of the Anti-de-Sitter spacetime. Most studies only consider a
Riemannian manifold that is asymptotically to a hyperbolic space and it is
implicitly assumed that the second fundamental form is either zero or the
same as the induced metric. However, in studying the mass of an initial data
set, it is important to take into account of the second fundamental form. For
example, there exists an asymptotically umbilical spacelike hypersurface in
the Schwarzschild spacetime with exactly hyperbolic induced metric and an
asymptotically totally geodesic spacelike hypersurface in the Anti-de-Sitter
Schwarzschild spacetime with exactly hyperbolic induced metric. In both
cases, the mass can only be read off from the second fundamental form.

Remark 1.6. In [33], X. Wang defined energy-momentum for asymptot-
ically hyperbolic Riemannian manifolds with gra = 0 and grr =

1
r2+1 . It is

easy to see that his definition agrees with ours in this simplest case.

In [7] and [32], the authors proved that the limit of the Wang-Yau quasi-
local energy of the coordinates spheres recovers the ADM energy momentum
vector at spatial infinity and the Bondi-Sachs energy momentum vector at
null infinity. In setion 3, we prove

Theorem A (Theorem 3.2) Given an asymptotically hyperbolic initial data
set (M, g, k), the limit of the quasi-local energy of Σr with reference em-
bedding Xr into R

3 is a linear function dual to the energy-momentum of
(M, g, k).

In [19], Kwong and Tam evaluated the limit of a quasi-local energy-
momentum defined by Wang and Yau in [30] at the infinity of an asymptot-
ically hyperbolic manifold. The quasi-local energy-momentum of [30] again
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only uses the hyperbolic space as reference and does not include the effect
of the second fundamental form of the initial data.

In Section 4, we prove the following theorem regarding the causality of
the energy-momentum vector of an asymptotically hyperbolic initial data
set.

Theorem B (Theorem 4.2) Suppose (M, g, k) is an asymptotically hyper-
bolic initial data set satisfying the dominant energy condition, then its energy-
momentum 4-vector is future directed non-spacelike. Namely,

EAH ≥
√∑

i

(P i
AH)2.

To show that the energy-momentum 4-vector is non-spacelike, we apply
a Lorentz boost of the Minkowski spacetime to the coordinate spheres, ob-
tain a new foliation, and compute the limit of quasi-local energy with respect
to the new foliation. For any future directed unit timelike vector (a0, ai) in
R
3,1, we show that the limit of the Liu-Yau quasi-local energy of correspond-

ing boost is a0EAH −∑
i a

iP i
AH . The positivity of the Liu-Yau quasi-local

energy [20] implies the energy momentum 4-vector is non-spacelike.
In addition to the positive mass theorem, we derive an energy loss for-

mula for asymptotically hyperbolic initial data sets. Our energy loss formula
is similar to the Bondi mass loss formula derived in [12]. In particular, the

source of the energy loss is p
(0)
ab + g

(0)
ab , which plays the role of the leading

order term of χ̂ in the mass loss formula derived in [12]. Theorem 3.2 enables
us to use the limit of the Liu-Yau mass for the total energy of asymptotically
hyperbolic initial data set and to compute the variation of the Liu-Yau mass
along the Einstein equation. This approach is similar to that of [12], where
the total energy of a null cone is defined to be the limit of the Hawking
mass and the mass loss formula is derived by studying the variation of the
Hawking mass. The energy loss formula we derive is the following:

Theorem C (Theorem 5.1) Let (M, g, k) be an asymptotically hyperbolic
initial data set satisfying the vacuum constraint equation. Let (M, g(t), k(t))
be the solution to the vacuum Einstein equation with g(0) = g and k(0) = k,
and with lapse

√
r2 + 1 and shift vector −re3 where e3 is the unit normal

vector of the coordinate spheres on (M, g(t), k(t)). Let Σr,t be the coordinate
spheres on (M, g(t), k(t)) and

M(t) = lim
r→∞mLY (Σr,t)
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be the limit. Along the vacuum Einstein equation, we have

∂tM(t) = − 1

8π

∫
S2

|p(0)ab + g
(0)
ab |2dS2.

Remark 1.7. The lapse function and shift vector considered here are nat-
ural for asymptotically hyperbolic initial data sets. The Minkowski metric
can be written as

g = −dt2 − 2r√
r2 + 1

drdt+
dr2

r2 + 1
+ r2(dθ2 + sin2 θdφ2).

Each level set of t is a standard hyperboloid. Let Σr be a level set of r on a
hyperboloid, e3 be its unit normal vector in the hyperboloid, and e4 be the
unit normal of the hyperboloid. Thus

e3 =
√

r2 + 1
∂

∂r

e4 =
1√

r2 + 1

∂

∂t
+ r

∂

∂r

and the Killing vector field ∂
∂t can be written as

∂

∂t
=

√
r2 + 1e4 − re3.

Hence, the lapse function is
√
r2 + 1 and the shift vector is −re3.

For spacetimes with matter fields, we prove a similar mass loss formula
with an additional term from the matter field assuming some natural decay
conditions on the null component of the stress-energy density of the matter
field (see Definition 5.2 and Theorem 5.3). In particular, for solutions of
the Einstein-Maxwell equation, our result resembles the mass loss formula
derived in [37] by Zipser.

While the ADM energy and linear momentum are well-understood for
asymptotically flat initial data sets, defining total angular momentum and
center of mass is much more complicated and there were several delicate
issues concerning the finiteness, well-definedness, and physical validity. In
[9], the authors defined new total conserved quantities for asymptotically
flat initial data sets using the limit of quasi-local conserved quantities and
proved the finiteness of the new total angular momentum and center of mass
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for asymptotically flat initial data sets of order 1. In this article, we compute
the limit of quasi-local angular momentum and center of mass at infinity of
asymptotically hyperbolic initial data sets. Unlike the asymptotically flat
case, we show that, for an asymptotically hyperbolic initial data set, the
limit is finite only for the foliation with vanishing linear momentum. As-
suming the energy-momentum vector is timelike for a given foliation, we
show that there exists another foliation with vanishing linear momentum.
For the new foliation, the total center of mass Ci and total angular mo-
mentum J i (See Definition 6.1) can be explicitly computed in terms of the
expansion coefficients of the metric and the second fundamental form.

Theorem D (Theorem 7.3) Given an asymptotically hyperbolic initial data
set (M, g, k), for the foliation with vanishing linear momentum, the total
center of mass Ci and total angular momentum J i of (M, g, k) are

Ci =
1

8π

∫
S2

X̃i(2trS2g
(−2)
ab + g(−6)rr + ∇̃ag(−3)ra + trS2p

(−2)
ab )dS2

J i =
1

8π

∫
S2

X̃iε̃ab∇̃b(g
(−3)
ra + p(−3)ra )dS2.

2. Quasi-local energy-momentum, angular momentum
and center of mass

We recall the definition of quasi-local energy-momentum defined in [31] and
quasi-local angular momentum and center of mass defined in [9]. Let Σ be
a closed embedded spacelike 2-surface in a spacetime with spacelike mean
curvature vector H. The data used in the definition of qausi-local mass is
the triple (σ, |H|, αH) where σ is the induced metric, |H| is the norm of the
mean curvature vector and αH is the connection one form of the normal
bundle with respect to the mean curvature vector

αH(·) =
〈
∇N

(·)
J

|H| ,
H

|H|
〉

where J is the reflection of H through the incoming light cone in the normal
bundle.

Given an isometric embedding X : Σ → R
3,1 and a constant future time-

like unit vector T0 ∈ R
3,1, we consider the projected embedding X̂ into the

orthogonal complement of T0. We denote the mean curvature of the image
by Ĥ.
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In terms of τ = −〈X,T0〉, the quasi-local energy with respect to the pair
(X,T0) is

E(Σ, τ) =
1

8π

∫
Σ̂
ĤdΣ̂

− 1

8π

∫
Σ

[√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

]
dΣ,

where θ = sinh−1
(

−Δτ

|H|
√

1+|∇τ |2
)
and ∇ and Δ are the gradient and Laplace

operator, respectively, with respect to σ. In particular, E(Σ, 0) is the same
as the Liu-Yau quasi-local mass, mLY (Σ).

Assuming the spacetime satisfying the dominant energy condition, the
quasi-local energy defined above is non-negative for any admissible pair of
(X,T0). The quasi-local mass of the surface Σ is defined to be the infimum
of the quasi-local energy with respect to all admissible pairs.

Given an isometric embedding X of Σ into R
3,1, let H0 and αH0

be
the mean curvature vector and connection one form of X(Σ) in R

3,1. We
introduce ρ and a ja as follows:

ρ =

√
|H0|2 + (Δτ)2

1+|∇τ |2 −
√

|H|2 + (Δτ)2

1+|∇τ |2√
1 + |∇τ |2(2.1)

ja = ρ∇aτ −∇a[sinh
−1(

ρΔτ

|H0||H|)]− (αH0
)a + (αH)a.(2.2)

In terms of these, the quasi-local energy is 1
8π

∫
Σ(ρ+ ja∇aτ).

A critical point of the quasi-local energy satisfies the optimal isometric
embedding equation. A pair of an embedding X : Σ ↪→ R

3,1 and an observer
T0 satisfies the optimal isometric embedding equation for (σab, |H|, (αH)a)
if X is an isometric embedding and

(2.3) divσj = 0.

We define the quasi-local angular momentum and center of mass for each
optimal isometric embedding. Let (x0, x1, x2, x3) be the standard coordinate
of R3,1. We recall that K is a rotational Killing field if K is the image of
xi ∂

∂xj − xj ∂
∂xi under a Lorentz transformation. Similarly,K is a boost Killing

field K is the image of x0 ∂
∂xi + xi ∂

∂x0 under a Lorentz transformation.
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Definition 2.1. The quasi-local conserved quantity of Σ with respect to
an optimal isometric embedding (X,T0) and a Killing field K is

E(Σ, X, T0,K) =
(−1)

8π

∫
Σ

[
〈K,T0〉ρ+ j(K�)

]
dΣ,(2.4)

where K� is the tangential part of K to X(Σ).
Suppose T0 = A( ∂

∂x0 ) for a Lorentz transformation A, then the quasi-
local conserved quantities corresponding toA(xi ∂

∂xj − xj ∂
∂xi ), i < j are called

the quasi-local angular momentum integral with respect to T0 and the quasi-
local conserved quantities corresponding to A(xi ∂

∂x0 + x0 ∂
∂xi ), i = 1, 2, 3 are

called the quasi-local center of mass integral with respect to T0.

3. Limit of quasi-local energy of coordinate spheres.

We first prove the following lemma about the geometry of coordinate spheres
in an asymptotically hyperbolic initial data set. Given an asymptotically
hyperbolic initial data set (M, g, k) in a spacetime N , such that g and k are
the induced metric and second fundamental form of M , respectively.

Lemma 3.1. Let Σr be coordinate spheres in an asymptotically hyperbolic
space. Let σ, H be the mean curvature vector of Σr and αH be the induced
metric, mean curvature vector and connection one-form of the normal bundle
in mean curvature gauge of Σr in the spacetime N . We have

σab =r2σ̃ab + g
(0)
ab +

g
(−1)
ab

r
+O(r−2),

|H| =2

r
− m

r2
+O(r−3),

(αH)a =
∂a(m)

2r
+O(r−2),

(3.1)

where m is the mass aspect function defined in Definition 1.3.

Proof. The expansion for σab follows directly from the definition of asymp-
totically hyperbolic initial data set. The inverse metric is

σab =
σ̃ab

r2
− (g(0))ab

r4
− (g(−1))ab

r5
+O(r−6).
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Let e3 be the unit normal vector of Σr in M and e4 be the unit normal
vector of M in N . We compute 〈H, e3〉 and 〈H, e4〉. e3 is given by

e3 =
1√

grr − |V |2σ

(
∂

∂r
+ V a ∂

∂ua

)
where Va = −gra, and the second fundamental form of Σr in the direction
of e3 is

〈
∇ ∂

∂ua
e3,

∂

∂ub

〉
=

√
r2 + 1− g

(−5)
rr

r

〈
∇ ∂

∂ua

∂

∂r
,

∂

∂ub

〉
+O(r−2)(3.2)

=

√
r2 + 1− g

(−5)
rr

r

(
rσ̃ab −

g
(−1)
ab

2r2

)
+O(r−2).

Hence,

−〈H, e3〉 = σab

√
r2 + 1− g

(−5)
rr

r

(
rσ̃ab −

g
(−1)
ab

2r2

)
+O(r−4)

= r

(
1 +

1

2r2
− g

(−5)
rr

2r3

)(
rσ̃ab −

g
(−1)
ab

2r2

)

×
(
σ̃ab

r2
− (g(0))ab

r4
− (g(−1))ab

r5

)
+O(r−4)

= 2 +
1

r2
− g

(−5)
rr + 3

2 trS2g
(−1)
ab

r3
+O(r−4).

For 〈H, e4〉, we have

−〈H, e4〉 = σab(σab + pab)

= 2 +
trS2p

(−1)
ab

r3
+O(r−4).

As a result,

|H|2 = 〈H, e3〉2 − 〈H, e4〉2

=
4

r2
− 4g

(−5)
rr + 4trS2p

(−1)
ab + 6trS2g

(−1)
ab

r3
+O(r−4)

and the expansion for |H| follows.
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Recall from [32], we have

(αH)a = −k(e3, ∂a) +∇aθ

where

sinh(θ) =
−〈H, e4〉

|H| .

By the definition of asymptotically hyperbolic initial data set, we have
k(e3, ∂a) = O(r−2). Using the expansion for 〈H, e4〉 and |H|, we conclude
that

eθ = 2r + (trS2p
(−1)
ab +

3

2
trS2g

(−1)
ab + g(−5)rr ) +O(r−1)

which implies

∇aθ =
∂a(trS2p

(−1)
ab + 3

2 trS2g
(−1)
ab + g

(−5)
rr )

2r
+O(r−2).

�
In [32], it is shown that for an asymptotically flat initial data set, the

limit of the quasi-local energy of coordinate spheres with reference isometric
embedding into R

3 recovers the ADM energy-momentum 4-vector. We prove
a similar result for asymptotically hyperbolic initial data sets. Let Xr be the
isometric embedding of Σr into the totally geodesics R3 in R

3,1.

Theorem 3.2. Given an asymptotically hyperbolic initial data set (M, g, k),
the limit of the quasi-local energy of Σr with reference embedding Xr into
R
3 is a linear function dual to the energy-momentum of (M, g, k).

Proof. Let H0 be the mean curvature of the image of Xr in R
3. From the

expansion of the induced metric and the result in [7], it follows that H0 =
2
r +O(r−3) and thus

lim
r→∞

|H|
H0

= 1.

By Corollary 2.1 of [32], the limit of

lim
r→∞(Σr, Xr, T0)

is a linear function dual to the four vector (e, pi) where

e =
1

8π
lim
r→∞

∫
Σr

(H0 − |H|)dΣr

pi =
1

8π
lim
r→∞

∫
Σr

Xi∇a(αH)adΣr.
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By Equation (3.1),

1

8π

∫
Σr

(H0 − |H|)dΣr

=
1

8π

∫
S2

(
3

2
trS2 g̃

(−1)
ab + trS2p

(−1)
ab + g(−5)rr

)
dS2 +O(r−1)

and

1

8π

∫
Σr

Xi∇a(αH)adΣr

= − 1

8π

∫
S2

X̃i

(
3

2
trS2g

(−1)
ab + trS2p

(−1)
ab + g(−5)rr

)
dS2 +O(r−1).

This finishes the proof of the theorem. �

Remark 3.3. The data (σ, |H|, αH) has the same form of expansion as that
of [7] and section 3 and 4 of [7] can be applied to the asymptotically hyper-
bolic case as well. Assuming the total energy momentum vector (EAH , P i

AH)
is timelike, Let

MAH =

√
E2

AH −
∑
i

(P i
AH)2.

There is a local minimum (X(r), T0(r)) of the quasi-local energy with

X0(r) = (X0)(0) +O(r−1)

Xi(r) = rX̃i +
(Xi)(−1)

r
+O(r−2)

T0(r) = (a0, a1, a2, a3) +
T
(−1)
0

r
+O(r−2).

where (a0, a1, a2, a3) is the unit timelike vector aligned with the total energy-
momentum 4-vector.

MAH(a0, a1, a2, a3) = (EAH , P i
AH).

Moreover,

lim
r→∞E(Σr, X(r), T0(r)) = MAH .



1350 P.-N. Chen, M.-T. Wang, and S.-T. Yau

4. Spacetime positive mass theorem

Theorem 3.2 and the positivity of Liu-Yau quasi-local mass implies EAH ≥
0 if (M, g, k) satisfies the dominant energy condition. We prove that the
energy-momentum vector is non-spacelike by evaluating the limit of quasi-
local energy on boosted coordinate spheres in M .

The hyperbolic space can be isometrically embedded into R
3,1 with met-

ric −dt2 +
∑3

i=1(dx
i)2 as the set

H
3 =

{
(t, xi)

∣∣∣ t2 = 1 +
∑
i

(xi)2, t > 0

}
.

The Lorentz group of R3,1 acts on H
3 by isometry. In particular, we con-

sider the isometries corresponding to boost elements of the Lorentz group.
Let (M, g, k) be an asymptotically hyperbolic initial data set and (r, u1, u2)
be the asymptotically hyperbolic coordinate system at infinity. For each fu-
ture directed unit timelike vector (a0, ai) in R

3,1, we consider the family of
surfaces ΣR, R >> 1 on M defined by

ΣR = {(r, u1, u2) : r = RF̃ (u1, u2)}

where

F̃ =
1

a0 +
∑

i a
iX̃i

and X̃i(u1, u2), i = 1, 2, 3 are the three standard coordinate functions on S2.
They are all −2 eigenfunctions with respect to the standard round metric
σ̃ab on S2. Notice that F̃ 2σ̃ab is isometric to σ̃ab and F̃ satisfies the following
constant Gauss curvature equation

1

F̃ 2
(1− Δ̃ ln F̃ ) = 1

where Δ̃ is the Laplace operator with respect to the metric σ̃ab.

Lemma 4.1. Let ΣR be the above family of surfaces. Let σ and H be the
induced metric and the mean curvature vector of ΣR, respectively. Then,

σab =(F̃ 2R2)σ̃ab + g
(0)
ab +

F̃aF̃b

F̃ 2
+

g
(−1)
ab

F̃R
+O(R−2)

|H| = 2

R
− g

(−5)
rr + trS2p

(−1)
ab + 3

2 trS2g
(−1)
ab

F̃ 3R2
+O(R−3).

(4.1)
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Proof. The tangent space of ΣR is spanned by ∂
∂ua + ra

∂
∂r , a = 1, 2. It follows

immediately from the definition of asymptotically hyperbolic initial data sets
that

σab = (F̃ 2R2)σ̃ab + g
(0)
ab +

F̃aF̃b

F̃ 2
+

g
(−1)
ab

F̃R
+O(R−2).

As a result, we also have

σab = F̃−2R−2
(
σ̃ab − (g(0))ab

F̃ 2R2
− F̃ aF̃ b

F̃ 4R2
− (g(−1))ab

F̃ 3R3

)
+O(R−6).

Let e3 be the unit normal of ΣR in M and e4 be the unit normal of M in
N . We compute

−〈H, e4〉 = σab(σab + pab + rarbprr + raprb + rbpra)

= 2 +
trS2p

(−1)
ab

F̃ 3R3
+O(R−4).

To compute 〈H, e3〉, we start with

e3 =
1√

grr + V aV bgab − 2V agar

(
∂

∂r
+ V a ∂

∂ua

)

where

Va =
−ra
1 + r2

+O(R−3).

By definition,

−〈H, e3〉 = σab√
grr + V dV egde − 2V dgdr

×
〈
∇ ∂

∂ua +ra
∂

∂r

(
∂

∂r
− rc

1 + r2
∂

∂uc

)
,

∂

∂ub
+ rb

∂

∂r

〉
+O(R−4).

Plugging in r = RF̃ (u1, u2), we deduce

1√
grr + V aV bgab − 2V agar

= RF̃

[
1 +

F̃ 2 − |∇̃F̃ |2
2R2F̃ 4

− g
(−5)
rr

2R3F̃ 3

]
+O(R−3).
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Continuing the calculation,〈
∇ ∂

∂ua +ra
∂

∂r

(
∂

∂r
− rc

1 + r2
∂

∂uc

)
,

∂

∂ub
+ rb

∂

∂r

〉
=

1

2
∂rgab −

〈
∇ ∂

∂ua

rc

1 + r2
∂

∂uc
,

∂

∂ub

〉
+ rarb

1

2
∂r

(
1

1 + r2

)
−
〈
∇ra

∂

∂r

rc

1 + r2
∂

∂uc
,

∂

∂ub

〉
−
〈
∇ ∂

∂ua

rc

1 + r2
∂

∂uc
,+rb

∂

∂r

〉
+O(R−3)

= rσab −
g
(−1)
ab

2r2
+

rarb
r3

+∇a∇b
1

r
+O(R−3)

= RF̃ σ̃ab +
1

R

(
F̃aF̃b

F̃ 3
+∇a∇b

1

F̃

)
− g

(−1)
ab

2R2F̃ 2
+O(R−3).

As a result,

−〈H, e3〉 = 2 +
1

R2

(
1

F̃ 2
− |∇̃F̃ |2

F̃ 4
+

1

F̃
Δ̃

1

F̃

)

− 1

R3

(
g
(−5)
rr

F̃ 3
+

3trS2g
(−1)
ab

2F̃ 3

)
+O(R−4)

= 2 +
1

R2
− 1

R3

(
g
(−5)
rr

F̃ 3
+

3trS2g
(−1)
ab

2F̃ 3

)
+O(R−4).

In the last equality, we used that

1

F̃ 2
− |∇̃F̃ |2

F̃ 4
+

1

F̃
Δ̃

1

F̃
=

1

F̃ 2
(1− Δ̃ ln F̃ ) = 1.

Therefore,

|H|2 = 〈H, e3〉2 − 〈H, e4〉2

=
4

R2
− 4g

(−5)
rr + 4trS2p

(−1)
ab + 6trS2g

(−1)
ab

R3F̃ 3
+O(R−4).

�

We prove the positive mass theorem for asymptotically hyperbolic initial
data set in the following.

Theorem 4.2. Suppose (M, g, k) is an asymptotically hyperbolic initial
data set satisfying the dominant energy condition, then its energy-momentum
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4-vector is future directed non-spacelike. Namely,

EAH ≥
√∑

i

(P i
AH)2.

Proof. For any future directed unit timelike vector (a0, ai) in R
3,1, let F̃ =

1
a0+

∑
i a

iX̃i
and ΣR be the surfaces in M defined by

ΣR = {(r, u1, u2) : r = RF̃ (u1, u2)}

By (4.1), the induced metric σab and mean curvature vector H of ΣR satisfy

σab =(F̃ 2R2)σ̃ab +O(1)

|H| = 2

R
− g

(−5)
rr + trS2p

(−1)
ab + 3

2 trS2g
(−1)
ab

F̃ 3R2
+O(R−3).

(4.2)

Let H0 be the mean curvature of the image of isometric embedding of ΣR

in R
3. Recall that the Liu-Yau mass of the surface ΣR is

mLY (ΣR) =
1

8π

∫
ΣR

(H0 − |H|)dΣR.

We have

H0 =
2

R
+O(R−3).

since (F̃ 2R2)σ̃ab is isometric to R2σ̃ab. As a result,

(4.3)

∫
ΣR

(H0 − |H|)dΣR =

∫
S2

g
(−5)
rr + trS2p

(−1)
ab + 3

2 trS2g
(−1)
ab

F̃
dS2 +O(R−1).

By the positivity of the Liu-Yau mass [20], we have

∫
S2

g
(−5)
rr + trS2p

(−1)
ab + 3

2 trS2g
(−1)
ab

F̃
dS2 ≥ 0.

Moreover, by Theorem 3.2,

1

8π

∫
S2

g
(−5)
rr + trS2p

(−1)
ab + 3

2 trS2g
(−1)
ab

F̃
dS2 = a0EAH −

∑
i

aiP i
AH .
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Hence,

a0EAH −
∑
i

aiP i
AH ≥ 0

for any future directed unit timelike vector (a0, ai) in R
3,1. It follows that

(EAH , P i
AH) is future-directed non-spacelike. �

Corollary 4.3. Assuming the energy-momentum vector (EAH , P i
AH) for a

given foliation is timelike, then there exists a foliation with vanishing linear
momentum.

Proof. From Equation (4.3), it follows that the energy component of the en-
ergy momentum vector transformed equivariantly under boost. As a result,
if the energy-momentum vector (EAH , P i

AH) for a given foliation is timelike,
then we can align the unit vector (a0, ai) with the energy momentum and the
new foliation corresponding to (a0, ai) have vanishing linear momentum. �

5. Energy loss formula for asymptotically hyperbolic
manifolds

Energy loss formula at null infinity for solutions of the vacuum Einstein
equation was first studied in [6] and [29]. In [12], a similar energy loss formula
at null infinity is proved as a consequence of the global nonlinear stability
of the Minkowski space, for any global development of asymptotically flat
vacuum initial data sufficiently close to that of the Minkowski space. The
source of the energy loss is the traceless part of the inward null second
fundamental form of the coordinate spheres. In this section, we study the
mass loss formula for asymptotically hyperbolic initial data sets under the
Einstein equation. By Theorem 3.2, we can evaluate the total energy at
infinity of an asymptotically hyperbolic initial data set with respect to a
given foliation of coordinate spheres using the limit of the Liu-Yau mass.
We first prove the following energy loss formula for a vacuum spacetime.

Theorem 5.1. Let (M, g, k) be an asymptotically hyperbolic initial data set
satisfying the vacuum constraint equation. Let (M, g(t), k(t)) be the solution
to the vacuum Einstein equation with g(0) = g and k(0) = k, and with lapse√
r2 + 1 and shift vector −re3 where e3 is the unit normal vector of the

coordinate spheres. Let Σr,t be the coordinate spheres on (M, g(t), k(t)). Let

M(t) = lim
r→∞mLY (Σr,t),
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then

∂tM(t)|t=0 = − 1

8π

∫
S2

|p(0)ab + g
(0)
ab |2dS2.

Proof. Consider the timelike hypersurface

Ωs = ∪0≤t≤sΣr,t.

Let V be the unit normal vector of Σr,t in Ωs. We have V =
√
r2 + 1e4 − re3

on Σr,t and

(5.1) 〈H,V 〉 = O(r−2)

by the calculation in Lemma 3.1. Let γij and Θij be the metric and second
fundamental form of Ωs and πij = Θij − (trγΘ)γij be the conjugate momen-
tum. Let ν be the outward unit normal of Ωs. Let H(Σr,0) and H(Σr,s) be
the mean curvature vector of Σr,0 and Σr,s, respectively, in the spacetime and
let H0(Σr,0) and H0(Σr,s) be the mean curvature of the image of isometric
embedding of Σr,0 and Σr,s, respectively, into R

3. Integrating by parts,∫
Σr,s

π(V, V )dΣr,s =

∫
Σr,0

π(V, V )dΣr,s +

∫
Ωs

πijVi,j .

By the definition of the conjugate momentum,

π(V, V )|Σr,0
= 〈H(Σr,0), ν〉

π(V, V )|Σr,s
= 〈H(Σr,s), ν〉.

From (5.1), we have

|H(Σr,0)| = 〈H(Σr,0), ν〉+O(r−3)
|H(Σr,s)| = 〈H(Σr,s), ν〉+O(r−3)

and thus∫
Σr,s

|H(Σr,s)|dΣr,s =

∫
Σr,0

|H(Σr,0)|dΣr,0 +

∫
Ωs

πijVi,j +O(r−1).

From (5.1), the area A(r, s) of Σr,s satisfies

A(r, s) = A(r, 0) +O(1).
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From Lemma 2.1 of [16], we have∫
Σr,s

H0(Σr,s)dΣr,s = 4πr +
A(r, s)

r
+O(r−1).

We conclude that∫
Σr,s

H0(Σr,s)dΣr,s =

∫
Σr,0

H0(Σr,0)dΣr,0 +O(r−1).

It follows that

mLY (Σr,s) = mLY (Σr,0) +
1

8π

∫
Ωs

πijVi,j +O(r−1)

and

∂tmLY (Σr,t)|t=0 =
1

8π

∫
Σr,0

πijVi,jdΣr,0 +O(r−1)

=
1

8π

∫
Σr,0

πabVa,bdΣr,0 +O(r−1).

Let h
(3)
ab and h

(4)
ab be the second fundamental form of Σr in the direction of

e3 and e4. Furthermore, let ĥ
(3)
ab and ĥ

(4)
ab be their traceless part.

πabVa,b = πab(
√

r2 + 1h
(4)
ab − rh

(3)
ab )

since π is symmetric and the symmetrization of Va,b is the second fundamen-
tal form of Σr in the direction of

√
r2 + 1e4 − re3. Equation (5.1) implies

that

σab(
√

r2 + 1h
(4)
ab − rh

(3)
ab ) = O(r−2).

From the definition of conjugate momentum,

πab(
√

r2 + 1h
(4)
ab − rh

(3)
ab )

= [
√

r2 + 1(h(3))ab − r(h(4))ab − (trγΘ)gab](
√

r2 + 1h
(4)
ab − rh

(3)
ab ) +O(r−3)

= (
√

r2 + 1(ĥ(3))ab − r(ĥ(4))ab)(
√

r2 + 1h
(4)
ab − rh

(3)
ab ) +O(r−3)

= (
√

r2 + 1(ĥ(3))ab − r(ĥ(4))ab)(
√

r2 + 1ĥ
(4)
ab − rĥ

(3)
ab ) +O(r−3).

From Equation (3.2), we have

h
(3)
ab =

√
r2 + 1− g

(−5)
rr

r
rσ̃ab +O(r−1).
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By Definition 1.1, we have

σab = r2σ̃ab + g
(0)
ab +O(r−1)

h
(4)
ab = σab + p

(0)
ab +O(r−1)

where trS2p
(0)
ab = trS2g

(0)
ab = 0. It follows that

ĥ
(3)
ab = −g

(0)
ab +O(r−1)

ĥ
(4)
ab = p

(0)
ab +O(r−1).

As a result, we have

(
√

r2 + 1(ĥ(3))ab − r(ĥ(4))ab)(
√

r2 + 1ĥ
(4)
ab − rĥ

(3)
ab )

=
−|p(0)ab + g

(0)
ab |2

r2
+O(r−3)

and

∂tmLY (Σr,t)|t=0 = − 1

8π

∫
S2

|p(0)ab + g
(0)
ab |2

r2
dS2 +O(r−1).

The theorem follows from taking the limit as r approaches infinity. �

In the remaining part of this section, we generalize the above mass loss
formula to spacetime with matter fields. Instead of considering specific mat-
ter fields, we require the matter fields to satisfies only the dominant energy
condition and the following decay condition for the stress-energy density Tμν

Definition 5.2. Let (M, g, k) be an asymptotically hyperbolic initial data
set in a spacetimeN with some matter field. Let e3 and e4 be the unit normal
of Σr in M and the unit normal of M in N . We say that the stress-energy
density Tμν satisfies the null decay condition if

T (e3 + e4, e3 + e4) = O(r−3),
T (e3 − e4, e3 − e4) = O(r−4).

The null decay condition is natural for the global development of an
asymptotically flat initial data set. For example, see [37] for the asymptotics
at null infinity for solutions of Einstein-Maxwell equation. In particular, the
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null decomposition of the the stress-energy density satisfies

T (L,L) = O(r−5),
T (L,L) = O(r−2),

and the leading term of T (L,L) has an additional contribution to the mass
loss formula [37]. By considering the standard hyperbolic space embedded
in the Minkowski space (see Remark 1.7), it is natural to identify L with
e3+e4

r and L with r(e3 + e4) and assume the null condition in Definition 5.2.
The dominant energy condition implies that both T (e3 + e4, e3 + e4) and

T (e3 − e4, e3 − e4) are non-negative. Let

(5.2) T (e3 − e4, e3 − e4) =
F 2

r4
+O(r−5).

We have

Theorem 5.3. Let (M, g, k) be an asymptotically hyperbolic initial data
set satisfying the dominant energy condition equation. Let (M, g(t), k(t)) be
the solution to the Einstein equation with g(0) = g and k(0) = k with lapse√
r2 + 1 and shift vector −re3 where e3 is the unit normal vector of the

coordinate spheres. Let Σr,t be the coordinate spheres on (M, g(t), k(t)). Let

M(t) = lim
r→∞mLY (Σr,t).

Suppose the stress energy density satisfies both the null condition and the
dominant energy condition. Then

∂tM(t)|t=0 = − 1

8π

∫
S2

(|p(0)ab + g
(0)
ab |2 + F 2)dS2

where F is given by (5.2).

Proof. The proof is similar to that of the previous theorem. Due to the
non-zero stress energy density, we have∫

Σr,s

π(V, V )dΣr,s =

∫
Σr,0

π(V, V )dΣr,s +

∫
Ωs

πijVi,j +

∫
Ωs

∇iπijVj

=

∫
Σr,0

π(V, V )dΣr,s +

∫
Ωs

πijVi,j +

∫
Ωs

T (V, ν)
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where ν is the unit normal of the timelike hypersurface Ωs. As a result,

∂tmLY (Σr,t)|t=0 =
1

8π

∫
Σr,0

(πabVa,b + T (V, ν))dΣr,0 +O(r−1)

The first term can be treated as before. For the second term,

T (V, ν) = T
(√

1 + r2e4 − re3,
√

1 + r2e3 − re4

)
=

1

4

[
− (

√
1 + r2 + r)2T (e4 − e3, e4 − e3)

+ (
√

1 + r2 − r)2T (e4 + e3, e4 + e3)
]

= −F 2

r2
+O(r−3).

�

6. Finiteness of total angular momentum and center
of mass

Let (σ, |H|, αH) be the induced metric, norm of mean curvature vector and
connection one-form in mean curvature gauge on the coordinate spheres Σr.
The data admits the same expansion as data of the coordinate spheres at
the infinity of an asymptotically flat initial data set of order 1 studied in [9].
Thus, we solve the optimal embedding equation and define the total angular
momentum and center of mass of (M, g, k) as the limit of quasi-local angular
momentum and center of mass on the coordinate spheres in the same manner
as in Section 6 of [9].

Denote the expansion of the data (σ, |H|, αH) on the coordinate spheres
by

σ = r2σ̃ab +O(r−1)

|H| = 2

r
+

h(−2)

r2
+

h(−3)

r3
+O(r−4)

(αH)a =
(α

(−1)
H )a
r

+
(α

(−2)
H )a
r2

+O(r−3).

(6.1)

From [8] and [9] for the solution of the optimal embedding equation, we
have the following expansion for the solution (X(r), T0(r)) of the optimal
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embedding equation

X(r)0 = (X0)(0) +O(r−1)

X(r)i = rX̃i + (Xi)(0) +
(Xi)(−1)

r
+O(r−2)

T0(r) = (a0, a1, a2, a3) +
T
(−1)
0

r
+O(r−2).

(6.2)

We have corresponding expansions for the data of the image of the isometric
embedding

|H0| = 2

r
+

h
(−2)
0

r2
+

h
(−3)
0

r3
+O(r−4)

(αH0
)a =

(α
(−1)
H0

)a

r
+

(α
(−2)
H0

)a

r2
+O(r−3),

(6.3)

and the expansion for ρ as defined in Equation (2.1)

ρ =
ρ(−2)

r2
+

ρ(−3)

r3
+O(r−4).

The metric expansion implies that h
(−2)
0 = 0, (Xi)(0) = 0, and ρ(−2) = −h(−2)

a0 .
The leading order term of the optimal embedding equation (see for ex-

ample equation (7.4) of [9]) implies that (X0)(0) solves the following equation

1

2
Δ̃(Δ̃ + 2)(X0)(0)(6.4)

= divS2α
(−1)
H −

3∑
i=1

ai

[
Δ̃

(
ρ(−2)X̃i

2

)
+ divS2ρ(−2)(∇̃X̃i)

]

= −1

2
Δ̃h(−2) +

3∑
i=1

ai

a0

[
divS2(h(−2)∇̃X̃i) + Δ̃

(
h(−2)X̃i

2

)]
.

This is solvable if and only if (a0, ai) is the future directed unit timelike
vector in the direction of the total energy momentum.

The total center of mass and angular momentum of (M, g, k) is defined
as follows.
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Definition 6.1. Suppose T0(r) = A(r)( ∂
∂x0 ) for a family of Lorentz trans-

formation A(r). Define

(6.5) Ci = lim
r→∞E

(
Σr, X(r), T0(r), A(r)

(
xi

∂

∂x0
+ x0

∂

∂xi

))
to be the total center of mass integral and

(6.6) Ji = lim
r→∞ εijkE

(
Σr, X(r), T0(r), A(r)

(
xj

∂

∂xk
− xk

∂

∂xj

))
to be the total angular momentum, where Σr are the coordinate spheres
and (X(r), T0(r)) is the unique family of optimal isometric embeddings of
Σr such that X(r) converges to a round sphere of radius r in R

3 when
r → ∞.

In [9], the authors studied the limit of quasi-local conserved quantities
at the infinity of asymptotically flat initial data sets of order 1 and proved
the following theorem concerning finiteness of total conserved quantities:

Proposition 6.2 (Proposition7.1, [9]). The total center of mass and
total angular momentum are finite if∫

S2

X̃iρ(−2)dS2 = 0 and

∫
S2

X̃i
(
ε̃ab∇̃b(α

(−1)
H )a

)
dS2 = 0.(6.7)

Proposition 7.1 of [9] can be applied to the limit of quasi-local con-
served quantities at infinity of asymptotically hyperbolic initial data since
(σ, |H|, αH) has expansions of the same forms.

In addition, the authors proved in [9] that Equation (6.7) follows from the
vacuum constraint equation for asymptotically flat initial data sets of order
1. We prove in this section that, for coordinate spheres in asymptotically
hyperbolic initial data sets, Equation (6.7) does not follow from the vacuum
constraint equation. Instead, it holds only for the foliation with vanishing
linear momentum.

Proposition 6.3. Let Σr be a family of coordinate spheres in an asymp-
totically hyperbolic initial data sets. Then∫

S2

X̃iρ(−2)dS2 = 0 and

∫
S2

X̃i
(
ε̃ab∇̃b(α

(−1)
H )a

)
dS2 = 0(6.8)

holds if and only if the linear momentum vanishes.
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Proof. Recall from Lemma 3.1, we have

h(−2) = −m and (α
(−1)
H )a =

1

2
∂am,(6.9)

where m is the mass aspect function. By the expansion of the induced metric
on Σr in Lemma 3.1,

h
(−2)
0 = 0.

It follows immediately that∫
S2

X̃i
(
ε̃ab∇̃b(α

(−1)
H )a

)
dS2 = 0

holds and ∫
S2

X̃iρ(−2)dS2 =
P i
AH

EAH
.

�

Corollary 6.4. For an asymptotically hyperbolic initial data set with time-
like energy-momentum vector, the total angular momentum and center of
mass associated with any foliation with vanishing linear momentum are fi-
nite.

Proof. The corollary follows from combining Corollary 4.3, Proposition 6.2,
and Proposition 6.3. �

7. Evaluating total center of mass and angular momentum

Let (M, g, k) be an asymptotically hyperbolic initial data set. Suppose a
foliation Σr has vanishing linear momentum, we evaluate its total center of
mass and angular momentum. We first evaluate the total center of mass and
angular momentum in terms of the expansion of (σ, |H|, αH) and (|H0|, αH0

).
Then we express them in terms of the expansion for g and k.

Let (X(r), T0(r)) be the solution of the optimal embedding equation on
Σr. The solution takes a simpler form since the linear momentum vanishes.
In particular, we have

X0(r) = (X0)(0) +O(r−1)

Xi(r) = rX̃i +
(Xi)(−1)

r
+O(r−2)

T0(r) = (1, 0, 0, 0) +
T
(−1)
0

r
+O(r−2)

(7.1)
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where (X0)(0) satisfies the equation

(7.2)
1

2
Δ̃(Δ̃ + 2)(X0)(0) = −1

2
Δ̃h(−2).

Let T
(−1)
0 = (0, b1, b2, b3). The time function τ = −X(r) · T0(r) has the fol-

lowing expansion

(7.3) τ = (X0)(0) −
∑
i

biX̃i +O(r−1).

Proposition 7.1. The total center of mass and angular momentum of an
asymptotically hyperbolic initial data set are

Ci =
1

8π

∫
S2

X̃i(h
(−3)
0 − h(−3)) dS2

J i =
−1

8π

∫
S2

X̃iεab∇̃b(α
(−2)
H )adS

2.

(7.4)

Proof. Since τ = O(1),

(7.5) ρ = |H0| − |H|+O(r−4).

Recall that,

ja = ρ∇aτ −∇a

[
sinh−1

(
ρΔτ

|H0||H|
)]

− (αH0
)a + (αH)a

and

j(−1)a = −(αH0
)(−1)a + (αH)(−1)a(7.6)

=
1

2

[
−∇̃a(Δ̃ + 2)(X0)(0) − ∇̃h(−2)

]
= 0,

by the optimal isometric embedding equation. The Killing vector field as-
sociated with the center of mass is K0i = A(r)(xi ∂

∂x0 + x0 ∂
∂xi ) with A(r) =

Id+O(r−1). This implies that (K�
0i)a = O(r). We also have

〈K0i, T0(r)〉 = −rX̃i +O(r−1).
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It follows that

E

(
Σr, X(r), T0(r), A(r)

(
xi

∂

∂x0
+ x0

∂

∂xi

))
(7.7)

=
−1

8π

∫
Σr

[
〈K0i, T0(r)〉ρ+ (K�

0i)aj
a
]
dΣr

=
1

8π

∫
S2

(h
(−3)
0 − h(−3))X̃idS2 +O(r−1).

For the angular momentum, the corresponding Killing vector field is Kij =
A(r)(xi ∂

∂xj − xj ∂
∂xi ). We have 〈Kij , T0(r)〉 = 0. Hence

E

(
Σr, X(r), T0(r), A(r)

(
xi

∂

∂xj
− xj

∂

∂xi

))
(7.8)

=
(−1)

8π

∫
Σr

K�
ij ·

(√
(1 + |∇τ |2)|H0|2 + (Δτ)2∇τ

(1 + |∇τ |2)

−∇
[
sinh−1

(
Δτ

|H0|
√

1 + |∇τ |2

)]
− αH0

)
dΣr

+
1

8π

∫
Σr

K�
ij ·

(√
(1 + |∇τ |2)|H|2 + (Δτ)2∇τ

(1 + |∇τ |2)

−∇
[
sinh−1

(
Δτ

|H|√1 + |∇τ |2

)]
− αH

)
dΣr.

We prove that the first integral is O(r−1) by applying the conservation law
to the image of the isometric embedding X(r) of Σr, similar to the proof
of Equation (8.1) in [9]. Let Cr be the timelike cylinder in R

3,1 obtained by
translating X(r)(Σr) along T0(r). Let Σ̂r be the projection of X(r)(Σr) onto
the orthogonal complement of T0(r) and Ωr be the portion of Cr between
X(r)(Σr) and Σ̂r. Let γij and Θij be the metric and second fundamental
form of Cr and πij = Θij − trγΘγij be the conjugate momentum. Let ν be
the outward unit normal of Cr. From the expansion of X(r), it is easy to see
that

〈Kij , ν〉 = O(r−1).

Let

KC = Kij − 〈Kij , ν〉ν
be the tangential part of Kij to Cr and consider the vector field

Z = π(KC , ·).
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We claim that divCZ = O(r−3). Indeed, the conjugate momentum is diver-
gence free since R3,1 is flat . We also have Kij is Killing in R

3,1. As a result,
we have

divCZ = πijΘij〈K, ν〉 = O(r−3).

Applying the divergence theorem to Z, we derive∫
Σr

π(KC , n) =
∫
Σ̂r

π(KC , n̂) +
∫
Ωr

divCZ

where n and n̂ are the unit normal of X(r)(Σr) and Σ̂r in Cr.
By definition,

∫
Σr

π(KC , n) is the reference term in the angular momen-

tum. Moreover, since Σ̂r lies in a totally geodesics slice in R
3,1 we have∫

Σ̂r

π(KC , n̂) = 0.

Finally, since divCZ = (r−3), we have
∫
Ωr

divCZ = O(r−1). It follows that

the first integral in (7.8) is of the order O(r−1) as desired.
We proceed to study the second integral in (7.8). We have

(K�
ij )a = r2(X̃i∇̃aX̃

j − X̃j∇̃aX̃
i) +O(1)

and

1

8π

∫
Σr

K�
ij ·

(√
(1 + |∇τ |2)|H|2 + (Δτ)2∇τ

(1 + |∇τ |2)

−∇
[
sinh−1

(
Δτ

|H|√1 + |∇τ |2

)]
− αH

)
dΣr

=
1

8π

∫
S2

(X̃i∇̃aX̃j − X̃j∇̃aX̃i)

×
(
h(−2)∇̃a

(
X

(0)
0 −

∑
i

biX̃i

)
− 1

2
∇̃a(Δ̃X

(0)
0 )− (α

(−2)
H )a

)
dS2

+O(r−1).

Notice that

(7.9) X̃i∇̃aX̃j − X̃j∇̃aX̃i = ε̃abεijk∇̃bX̃
k
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is divergence free and thus∫
S2

(X̃i∇̃aX̃j − X̃j∇̃aX̃i)∇̃a(Δ̃X
(0)
0 )dS2 = 0.

We also claim that

(7.10)

∫
S2

(X̃i∇̃aX̃j − X̃j∇̃aX̃i)

[
h(−2)∇̃a

(
X

(0)
0 −

∑
k

bkX̃k

)]
dS2 = 0.

Recall from (7.2) that Δ̃(Δ̃ + 2)(X0)(0) = −Δ̃h(−2), or (Δ̃ + 2)(X0)(0) and
−h(−2) differ by a constant.

In view of (7.9), (7.10) is implied by∫
S2

ε̃ab∇̃bX̃
l∇̃a

(
X

(0)
0 −

∑
k

bkX̃k

)
(Δ̃ + 2)X

(0)
0 dS2 = 0

for l = 1, 2, 3.
Define the differential operator Ll by Ll(f) = ε̃ab∇̃bX̃

l∇̃af for any C1

function on S2. It suffices to show that∫
S2

Ll

(
X

(0)
0 −

∑
k

bkX̃k

)
(Δ̃ + 2)X

(0)
0 dS2 = 0.

Ll corresponds to a rotational Killing field on S2 and it is easy to check
that the following properties hold for Ll:

Ll(fg) = Ll(f)g + fLl(g), [Δ̃, Ll]f = 0, and

∫
S2

Ll(f)dS2 = 0,

for any C1 functions f , g on S2.
Integrating by parts and applying the above relations, we derive∫

S2

Ll

(
X

(0)
0 −

∑
k

bkX̃k

)
(Δ̃ + 2)X

(0)
0 dS2

=

∫
S2

Ll

(
(Δ̃ + 2)

(
X

(0)
0 −

∑
k

bkX̃k

))
X

(0)
0 dS2

=

∫
S2

Ll((Δ̃ + 2)(X
(0)
0 ))X

(0)
0 dS2

=

∫
S2

Ll(Δ̃X
(0)
0 )X

(0)
0 dS2.
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On the other hand,∫
S2

Ll(Δ̃X
(0)
0 )X

(0)
0 dS2 =

∫
S2

Δ̃(Ll(X
(0)
0 ))X

(0)
0 dS2

=

∫
S2

(Ll(X
(0)
0 ))Δ̃X

(0)
0 dS2.

Therefore,∫
S2

Ll(Δ̃X
(0)
0 )X

(0)
0 dS2

=
1

2

∫
S2

Ll(Δ̃X
(0)
0 )X

(0)
0 dS2 +

1

2

∫
S2

(Ll(X
(0)
0 ))Δ̃X

(0)
0 dS2

=
1

2

∫
S2

Ll(X
(0)
0 Δ̃X

(0)
0 ) = 0.

This finishes the proof of the proposition. �
We need one more lemma before we evaluate the limit in terms of the data
(M, g, k).

Lemma 7.2.∫
S2

X̃i(h
(−3)
0 − h(−3))dS2 = −

∫
S2

X̃i

[
h(−3) +

(h(−2))2

4

]
dS2.

Proof. It suffices to prove∫
S2

X̃i

[
h
(−3)
0 +

(h(−2))2

4

]
dS2 = 0.

Recall that

|H0|2 =
∑
i

(ΔXi)2 − (ΔX0)2

where

ΔX0 =
Δ̃X

(0)
0

r2
+O(r−3)

ΔXi = rΔX̃i +
Δ̃(Xi)(−1)

r3
+O(r−4)

(7.11)

Furthermore, let Γc
ab be the Christoffel symbols of the metric σab. We have

Γc
ab = Γ̃c

ab +
(Γ(−2))cab

r2
+O(r−3).
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This gives the following expansion for ΔX̃i

ΔX̃i =
−2X̃i

r2
+

σ̃abg
(0)
ab X̃

i + σ̃ab(Γ(−2))cabX̃
i
c

r4
+O(r−5)

=
−2X̃i

r2
+

σ̃ab(Γ(−2))cabX̃
i
c

r4
+O(r−5).

As a result, we have

h
(−3)
0 = −

∑
k

X̃kΔ̃(Xk)(−1) − 1

4
(Δ̃X

(0)
0 )2.

Recall that (Xi)(−1) is the solution of the linearized isometric embedding
equation

3∑
i=1

∇̃aX̃
i∇̃b(X

i)(−1) + ∇̃bX̃
i∇̃a(X

i)(−1)(7.12)

= ∇̃a(X
0)(0)∇̃b(X

0)(0) + g
(0)
ab .

Let Tab = ∇̃a(X
0)(0)∇̃b(X

0)(0) + g
(0)
ab . We use the ansatz in Nirenberg’s pa-

per [22] for solving the isometric embedding of surface with positive Gauss
curvature into R

3. Write

∇̃a(X
j)(−1) = PaX̃

j +

(
Tab

2
+ Fεab

)
σ̃bcX̃j

c

where Pa is a vector field, F is a function, and εab is the area form on S2. Pa

and F as considered to be the new unknowns that satisfy the compatibility
condition. We have

∇̃d∇̃aX
(−1) = (∇̃dPa)X̃ + PaX̃d(7.13)

+

(
∇̃dTab

2
+ ∇̃dFεab

)
σ̃bcX̃c −

(
Tad

2
+ Fεad

)
X̃.

Taking the trace of Equation (7.13) and multiplying by −X̃,

∑
k

−X̃kΔ̃(Xk)(−1) = −∇̃aPa +
1

2
σ̃abTab = −∇̃aPa +

1

2
|∇̃(X0)(0)|2.
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Multiplying by X̃i and integrating, we obtain

−
∫

X̃i
∑
k

X̃kΔ̃(Xk)(−1)dS2 =
1

2

∫
X̃i|∇̃(X0)(0)|2(7.14)

−
∫

X̃i∇̃aPadS
2.

We use the compatibility condition, εad∇̃d∇̃aX
(−1) = 0 and (7.13), to obtain

equations for Pa and F :

εad
(
∇̃dPa − Tad

2
− Fεad

)
= 0,

εad
(
Paσ̃cd +

1

2
∇̃dTac + ∇̃dFεac

)
= 0.

Pa can be solved from the second equation in terms of F and Tab. The
equation can be written as

(7.15) εacPbσ̃
ab +

1

2
εad∇̃dTac + ∇̃cF = 0.

Multiplying the equation by εce, we have

P e =
1

2
εceεad∇̃dTac + εce∇̃cF.

Taking the divergence and integrating against X̃i,∫
S2

X̃i∇̃ePedS
2 =

∫
S2

X̃i∇̃e

(
1

2
εceεad∇̃dTac + εce∇̃cF

)
dS2

=
1

2

∫
S2

∇̃e∇̃dX̃
iεceεadTacdS

2

= −1

2

∫
S2

X̃iσ̃deε
ceεadTacdS

2

= −1

2

∫
S2

X̃iσ̃abTabdS
2.

As a result, we have

−
∫
S2

X̃i
∑
k

X̃kΔ̃(Xk)(−1) =
∫
S2

X̃i|∇̃(X0)(0)|2
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and ∫
S2

X̃i

(
h
(−3)
0 +

(h(−2))2

4

)
dS2(7.16)

=

∫
S2

X̃i

(
|∇̃(X0)(0)|2 − 1

4
(Δ̃X

(0)
0 )2 +

(h(−2))2

4

)
dS2

=

∫
S2

X̃i

(
|∇̃(X0)(0)|2 − 1

4
(Δ̃(X0)(0))2 +

[(Δ̃ + 2)(X0)(0)]2

4

)
dS2

=

∫
S2

X̃i
(
|∇̃(X0)(0)|2 + ((X0)(0))2 +X

(0)
0 Δ̃(X0)(0)

)
dS2

=

∫
S2

X̃i

(
((X0)(0))2 +

Δ̃

2
((X0)(0))2

)
dS2 = 0.

�

We are now ready to express the total angular momentum and center of
mass in terms of the expansion of the metric g and second fundamental
form k. The calculation is straight-forward and is similar to Lemma 3.1. We
simply need to expand one more order.

Theorem 7.3. Given an asymptotically hyperbolic initial data set (M, g, k),
for the foliation with vanishing linear momentum, the center of mass Ci and
angular momentum Ji of (M, g, k) are

Ci =
1

8π

∫
S2

X̃i
(
2trS2g

(−2)
ab + g(−6)rr + ∇̃ag(−3)ra + trS2p

(−2)
ab

)
dS2

J i =
1

8π

∫
S2

X̃iε̃ab∇̃b(g
(−3)
ra + p(−3)ra )dS2.

(7.17)

Proof. We start with the angular momentum. Recall that

J i =
−1

8π

∫
S2

X̃iεab∇̃b(α
(−2)
H )adS

2.

where

(αH)a = −k(e3, ∂a) +∇aθ

k(e3, ∂a) =
g
(−3)
ra + p

(−3)
ra

r2
+O(r−3).
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Hence,

J i =
1

8π

∫
S2

X̃iε̃ab
[
∇̃b(g

(−3)
ra + p(−3)ra ) + ∇̃b∇̃aθ

]
dS2.

=
1

8π

∫
S2

X̃iε̃ab∇̃b(g
(−3)
ra + p(−3)ra )dS2.

For the center of mass, we start with 〈H, e4〉.

−〈H, e4〉 = σab(gab + pab)

= 2 +
trS2p

(−1)
ab

r3
+

trS2p
(−2)
ab

r4
+O(r−5).

On the other hand, we compute

e3 =
1√

grr − |V |2σ

(
∂

∂r
+ V a ∂

∂ua

)

where Va = −gra. The second fundamental form of Σr in the direction of e3
is

〈
∇ ∂

∂ua
e3,

∂

∂ub

〉
=

√
r2 + 1− g

(−5)
rr

r
− g

(−6)
rr

r2

×
〈
∇ ∂

∂ua

∂

∂r
+ V c ∂

∂uc
,

∂

∂ub

〉
+O(r−3)

=

√
r2 + 1− g

(−5)
rr

r
− g

(−6)
rr

r2

×
[
rσ̃ab −

g
(−1)
ab

2r2
− (g

(−2)
ab + ∇̃ag

(−3)
br )

r3

]
+O(r−3).

Hence,

−〈H, e3〉 = σab

√
r2 + 1− g

(−5)
rr

r
− g

(−6)
rr

r2

×
[
rσ̃ab −

g
(−1)
ab

2r2
− (g

(−2)
ab + ∇̃ag

(−3)
br )

r3

]
+O(r−5)
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= r

(
1 +

1

2r2
− g

(−5)
rr

2r3
− g

(−6)
rr + 1

4

2r3

)(
rσ̃ab −

g
(−1)
ab

2r2
− g

(−2)
ab + ∇̃ag

(−3)
br

r3

)

×
(
σ̃ab

r2
− (g(−1))ab

r5
− (g(−2))ab

r6

)
+O(r−5)

= 2 +
1

r2
− g

(−5)
rr + 3

2 trS2g
(−1)
ab

r3

− g
(−6)
rr + 1

4 + 2trS2g
(−1)
ab + ∇̃ag

(−3)
ar

r4
+O(r−5).

We have

|H|2 = 〈H, e3〉2 − 〈H, e4〉2

=
4

r2
+

4h(−2)

r3

− 4(g
(−6)
rr + 2trS2g

(−1)
ab + ∇̃ag

(−3)
ar + trS2p

(−2)
ab )

r4
+O(r−5).

Recall

|H| = 2

r
+

h(−2)

r2
+

h(−3)

r3
+O(r−4).

Matching the coefficients,

h(−3) +
(h(−2))2

4
= −(g(−6)rr + 2trS2g

(−1)
ab + ∇̃ag(−3)ar + trS2p

(−2)
ab ).

The formula for the center of mass follows from Lemma 7.2. �
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of hyperboloidal initial data sets, Adv. Theor. Math. Phys. 8 (2004),
no. 1, 83–139.

[16] X.-Q. Fan, Y. Shi, and L.-F. Tam, Large-sphere and small-sphere limits
of the Brown-York mass, Comm. Anal. Geom. 17 (2009), no. 1, 37–72.



1374 P.-N. Chen, M.-T. Wang, and S.-T. Yau

[17] L.-H. Huang, On the center of mass of isolated systems with general
asymptotics, Classical Quantum Gravity 26 (2009), no. 1, 015012, 25pp.

[18] G. Huisken and S.-T. Yau, Definition of center of mass for isolated
physical systems and unique foliations by stable spheres with constant
mean curvature, Invent. Math. 124 (1996), no. 1-3, 281–311.

[19] K.-K. Kwong and L.-F. Tam, Limit of quasilocal mass integrals in
asymptotically hyperbolic manifolds, Proc. Amer. Math. Soc. 141
(2013), no. 1, 313–324.

[20] C.-C. M. Liu and S.-T. Yau, Positivity of quasi-local mass. II, J. Amer.
Math. Soc. 19 (2006), no. 1, 181–204.

[21] M. Min-Oo, Scalar curvature rigidity of asymptotically hyperbolic spin
manifolds, Math. Ann. 285 (1989), no. 4, 527–539.

[22] L. Nirenberg, The Weyl and Minkowski problems in differential geome-
try in the large, Comm. Pure Appl. Math. 6 (1953), 337–394.

[23] T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian
formulation of general relativity, Ann. Physics 88 (1974), 286–318.

[24] A. Rizzi, Angular momentum in general relativity: a new definition,
Phys. Rev. Lett. 81 (1998), no. 6, 1150–1153.

[25] R. K. Sachs, Gravitational waves in general relativity. VIII. Waves in
asymptotically flat space-time, Proc. Roy. Soc. Ser. A 270 (1962), 103–
126.

[26] R. Schoen and S.-T. Yau, Proof of the positive mass theorem. II, Comm.
Math. Phys. 79 (1981), no. 2, 231–260.

[27] R. Schoen and S.-T. Yau, Proof that the Bondi mass is positive, Phys.
Rev. Lett. 48 (1982), no. 6, 369–371.

[28] A. Sakovich, A study of asymptotically hyperbolic manifolds in mathe-
matical relativity, Ph.D. Thesis, (2012), KTH, Stockholm, Sweden.

[29] A. Trautman, Radiation and boundary conditions in the theory of grav-
itation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958),
407–412.

[30] M.-T. Wang and S.-T. Yau, A generalization of Liu-Yau’s quasi-local
mass, Comm. Anal. Geom. 15 (2007), no. 2, 249–282.



Conserved quantities 1375

[31] M.-T. Wang and S.-T. Yau, Isometric embeddings into the Minkowski
space and new quasi-local mass, Comm. Math. Phys. 288 (2009), no. 3,
919–942.

[32] M.-T. Wang and S.-T. Yau, Limit of quasilocal mass at spatial infinity,
Comm. Math. Phys. 296 (2010), no. 1, 271–283.

[33] X. Wang, The mass of asymptotically hyperbolic manifolds, J. Differen-
tial Geom. 57 (2001), no. 2, 273–299.

[34] E. Witten, A new proof of the positive energy theorem, Comm. Math.
Phys. 80 (1981), no. 3, 381–402.

[35] X. Zhang, Strongly asymptotically hyperbolic Spin manifolds, Math. Res.
Lett. 7 (2000), no. 5-6, 719–727.

[36] X. Zhang, A definition of total energy-momenta and the positive mass
theorem on asymptotically hyperbolic 3-manifolds. I, Comm. Math.
Phys. 249 (2004), no. 3, 529–548.

[37] N. Zipser, Part II: Solutions of the Einstein-Maxwell equations, in: Ex-
tensions of the stability theorem of the Minkowski space in general
relativity, 297–491, AMS/IP Stud. Adv. Math. 45, Amer. Math. Soc.,
Providence, RI.

Department of Mathematics, University of California, Riverside

900 University Avenue, Riverside, California 92521, USA

E-mail address: poningc@ucr.edu

Department of Mathematics, Columbia University

2990 Broadway, New York, New York 10027, USA

E-mail address: mtwang@math.columbia.edu

Department of Mathematics, Harvard University

One Oxford Street, Cambridge, Massachusetts 02138, USA

E-mail address: yau@math.harvard.edu




