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Galois covers of N = 2 BPS spectra and

quantum monodromy

Sergio Cecotti and Michele Del Zotto

The BPS spectrum of many 4d N = 2 theories may be seen as the
(categorical) Galois cover of the BPS spectrum of a different 4d
N = 2 model. The Galois group G acts as a physical symmetry of
the covering N = 2 model. The simplest instance is SU(2) SQCD
with Nf = 2 quarks, whose BPS spectrum is a Z2–cover of the BPS
spectrum of pure SYM. More generally, N = 2 SYM with simply–
laced gauge group G admits Zk–covers for all k ∈ N; e.g. the Z2–
cover of SO(8) SYM is SO(8) SYM coupled to two copies of the E6

Minahan–Nemeshanski SCFT. Galois covers simplify considerably
the computation of the BPS spectrum at G–symmetric points, in
both finite and infinite chambers.

When the covering and quotient QFTs admit a geometric engi-
neering, say for class S models, the categorical spectral cover may
be realized as a covering map in the geometry. A particularly nice
instance is when the spectral Galois cover is induced by a modu-
lar cover of principal modular curves, X(NM) → X(M), or, more
generally, by regular Grothendieck’s dessins d’enfants; the BPS
spectra of the corresponding N = 2 QFTs have magic properties.

The Galois covers allow to study effectively the action of the
quantum (half)monodromy K(q) of 4d N = 2 QFTs. We present
several examples and applications of the spectral covering philos-
ophy.
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1. Introduction and outlook

The original elegant proof of the Kontsevich–Soibelman wall crossing for-
mula (WCF) [1] for N = 2 SYM with G = SU(2) — due to Gaiotto, Moore,
and Neitzke (GMN) [2] — was based on the observation that the BPS spec-
trum of N = 2 SQCD with gauge group SU(2) and two flavors is a ‘double
cover’ of the BPS spectrum of pure SYM1, so the WCF for SYM is obtained
by ‘pushing down’ the simpler WCF for SQCD with Nf = 2.

There are several (related) senses in which N = 2 SQCD with Nc =
Nf = 2 is a ‘double cover’ of its Nf = 0 cousin. Geometrically, seeing both

theories as class S[A1] models [3, 4] defined by quadratic differentials φ
(Nf )
2

on the sphere, we have φ
(2)
2 = ξ∗φ(0)

2 where ξ : P1 → P1 is a certain double
cover (a meromorphic function of degree 2). Thus the GMN spectral ‘double
cover’ is induced from the Galois double cover of the field of rational func-
tions C(z) by its algebraic extension C(

√
z). From the point of view of the

2d/4d correspondence [5], the 2d (2,2) model associated to Nf = 2 SQCD
is a double cover, in the sense of tt∗ [6, 7], of the (2,2) theory corresponding
to pure SYM.2 All tt∗ quantities (metric [6], CFIV index [9], and brane am-
plitudes [10]) for Nf = 0 SQCD are the tt∗ push–down of the corresponding
quantities for Nf = 2.

Since the 4d BPS spectrum may be computed geometrically [3, 11–14],

the equality φ
(2)
2 = ξ∗φ(0)

2 implies that, in a sense, the BPS spectrum of
Nf = 2 SQCD ‘doubly covers’ the one of pure SYM, as observed in [2].
On the other hand, the covering property of the corresponding 2d (2,2)
models may be used to construct new 4d N = 2 QFTs (generically without
Lagrangian formulation) as multiple covers of known theories, as was done
in [15, 16].

The purpose of this paper is to make more precise the notion of a N = 2
QFT having a BPS spectrum which is a Galois cover of the BPS spectrum
of another N = 2 theory, introduce some technical tools to work effectively
with such coverings, and discuss some generalization and new applications.

The basic observation is that the map between the BPS spectra of Nf =
2 and Nf = 0 SU(2) SQCD is an elementary instance of a math gadget
known as the Bongartz–Gabriel push–down functor [17, 18]. This functor
is one of the most efficient tools in Representation Theory, and hence a
powerful technique to compute BPS spectra of general 4d N = 2 theories.

1We stress that this holds in all BPS chambers of SU(2) SYM.
2These 2d models are (2,2) Landau–Ginzburg theories with superpotentials

WNf=2(X) = e2X + e−2X and WNf=0(Y ) = eY + e−Y [8].
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The connection is as follows (see section 2 for details): to most 4d N =
2 theories we may associate a bounded C–category C such that its BPS
states are identified with continuous families of stable linear functorsX : C →
modC (the category of finite–dimensional C–spaces); we write mod C for the
(Abelian) category of such functors. The BPS spectrum of a N = 2 model
is a ‘cover’ of the spectrum of another N = 2 model when the category C1
of the first theory is a Galois covering of the category C2 of the second one.

Nf = 2 −→ Nf = 0 revisited. As an illustration of our strategy, in this
introduction we rephrase the GMN computation in the categorical language,
leaving the general story and more advanced applications for the main body
of the paper. To SQCD with Nc = Nf = 2 it is associated the unique C–
category C(2) on four objects Oa, a = 1, 2, 3, 4, and morphism spaces such
that

(1.1) dim C(2)(Oa,Ob) =

⎧⎪⎨⎪⎩
1 if a = b

1 if a even and b odd

0 otherwise.

The category C(2) has a Z2 group of automorphisms acting freely on the
objects Oa, i.e.O1 ↔ O3,O2 ↔ O4; then it makes sense to consider the orbit
category C(0) ≡ C(2)/Z2. One says that the category C(2) is the Galois cover
of the category C(0) with Galois group Z2. In this example the orbit category
C(0) coincides with the linear category for pure SU(2) SYM. Hence Nf = 2
SQCD is the Z2 Galois cover of pure SYM, as originally found by GMN.
The canonical covering functor F : C(2) → C(0) induces two functors between
the functor categories mod C(0), mod C(2): the pull up functor F λ, and the
push down functor Fλ

(1.2) F λ : mod C(0) → mod C(2), Fλ : mod C(2) → mod C(0)

which are each other adjoint. With respect to the Euler form,

(1.3) 〈X,Y 〉C =

∞∑
k=0

(−1)k dimExtkmod C(X,Y ), X, Y ∈ mod C,

we have

(1.4) 〈X,F λ(Y )〉C(2) = 〈Fλ(X), Y 〉C(0) , X ∈ mod C(2), Y ∈ mod C(0).

The W boson of Nf = 2 SQCD is the pull–back of the pure SYM W boson.
Then the adjoint formula (1.4) says that the push forward Fλ preserves the
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magnetic charge of the states. Fλ restricted to the magnetically charged BPS
states is then a two–to–one correspondence; this is the original GMN trick.

The cover C(2) → C(0) has a nice Lie algebraic interpretation. We known
[8, 19–21] that the indecomposables of mod C(2) are in correspondence with

the positive roots of the affine Lie algebra A
(1)
3 which has a Z2 outer auto-

morphism subgroup acting freely on the simple roots. We consider the Z2–

invariant Lie subalgebra (A
(1)
3 ) Z2 ∼= A

(1)
1 . The indecomposables of mod C(0)

are in correspondence with the positive roots of the invariant Lie subalge-

bra A
(1)
1 .

We may endow the category mod C(2) with a stability function (i.e.N = 2
central charge) which is the pull–back of the one for mod C(0). In this case we
may use the functors F λ, Fλ to relate the stability of functors in mod C(2)

and mod C(0), that is, to compare the BPS spectra of the two theories in
corresponding chambers. The fact that the respective W bosons are related
by pull back, implies that Yang–Mills weak (strong) coupling pulls back to
weak (strong) YM coupling.

The Galois cover of BPS spectra leads to relations between the quantum
monodromies [5] of the cover and quotient N = 2 QFTs. In the simple case
of Nf = 2 SQCD covering Nf = 0, this reduces to the functional identity of
quantum operators (here q = e2πiτ is a complex number in the unit disk)

(1.5) M(Nf=2)(q) = M(Nf=0)(q2),

where equality holds under a natural identification of the Hilbert spaces on
which the two operators act.

A general strategy to compute (symmetric) BPS spectra. Going
to the general case, the previous observation leads to a new strategy to com-
pute the BPS spectrum of the covering theory from the one of the (usually
simpler) quotient QFT. This strategy applies to all special points where the
central charge Zcover is the pull back of a central charge for the quotient the-
ory, i.e.Zcover = F λZquot. These special points are precisely the ones which
are invariant under the Galois group3 G: i.e. they are points of enhanced
symmetry for the 4d QFT. The existence of an additional symmetry makes
technically natural [22] to focus on such points (and chambers) in parameter
space, even if they are highly non–generic.

3In the general case, the Galois group may be any group G of automorphisms
of the covering category C which acts freely on the objects (and has finitely many
orbits).
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Non–generic points may be intersection points of walls of marginal sta-
bility. If this is the case, one must be careful with the physical interpretation
of the mathematical results. In the examples, we find the following pattern
which we expect to be rather general. Consider a generic point in parameter
space at distance ε from the given G–invariant point; for small ε, the BPS
spectrum consists of two sectors:

1) the sector of particles one gets from the covering approach at the invari-
ant point, which form complete G–representations and have bounded
G–invariant masses (up to O(ε) corrections) as ε → 0;

2) if the G–invariant point belongs to wall(s) of marginal stability, in
addition we have BPS particles which do not form complete G–
representations, and have masses of order O(1/ε) unbounded as ε → 0.
This sector of the spectrum depends on the particular perturbation
away from the symmetric point (i.e. on which side of the wall(s) we
are), and is also hard to compute.

The ‘hard’ sector 2) is physically irrelevant when we are very close to the
G–invariant point, and the ‘pull back’ spectrum 1) is asymptotically exact
in the limit ε → 0.

A sample of results from the covering technique. There are many
examples of Galois coverings between pairs of 4d N = 2 QFTs; all of them
may be used to compute BPS spectra at points in parameter space where
the Galois group G is realized as a physical symmetry. In this paper we
focus on three large classes of examples. The first two are generalizations of
Nf = 2 → Nf = 0 in different directions.

A) Coverings between class S[A1] models. We consider models de-
fined by quadratic differentials on surfaces with several punctures (regular
and irregular) [4, 8]. We describe the BPS spectrum in detail for class S[A1]
models associated to surfaces of genus zero and one. A large subclass of
them covers SU(2) SQCD or SU(2) N = 2∗. Since the BPS spectra of these
quotient theories have an elegant description in terms of the root system of
Lie algebras, the BPS spectra of the covering theories are also described by
root systems of a class of Lie algebras known as extended affine. One may
also characterize the allowed quantum numbers of the BPS states in terms
of roots of Kac–Moody algebras, see section 6.

B) Coverings of pure SYM by SYM coupled to ‘matter’. N = 2
SYM with simply–laced gauge group G admits, for all k ∈ N, a Zk Galois
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cover by SYM with the same gauge group coupled to two copies of a certain
superconformal ‘matter’ system which depends on G and k (this reduces to
two copies of the quark for G = SU(2) and k = 2). A typical example is the
double cover of pure SYM with gauge group SO(8) by SYM with the same
group coupled to two copies of the Minahan–Nemeshanski theory of type
E6 [23, 24]. Other examples involve in the ‘matter’ systems the Minahan–
Nemeshanski theories of types E7, E8, and other strongly–coupled SCFTs
with or without a Lagrangian formulation.

Despite the apparent complication of the coupled theory, the fact that
— at Zk–symmetric points — it has a description as a Galois cover of pure
SYM, allows to reduce the computations to the simpler ones for the uncou-
pled model. This simplification is particularly dramatic in the action of the
monodromy.

C) Modular covers of N = 2 theories, dessins d’enfants. When the
Galois cover of the geometry (and hence of the linear category) arises from
a modular covering — so that G is a sub–quotient of the modular group
PSL(2,Z) — the covering N = 2 QFTs are of extraordinary complexity:
their gauge groups have a huge number of simple factors. For instance, the
minimal example of §.4.3 has a gauge group of the form

(1.6) Ggauge =

2304∏
i=1

Gi Gi simple,

and thousands of different matter sectors. Nevertheless the magic of the
modular Galois covers allows to describe their BPS spectra (at G–symmetric
points) very easily.

Even more general examples may be constructed using regular Grothen-
dieck’s dessins d’enfants, see section 4 for details.

Organization of the paper. Section 2 is a detailed catalogue of mathe-
matical techniques we shall use in the subsequent sections to compute BPS
spectra. §.2.1 is a review of basic facts mainly intended to establish the no-
tation. §.2.2, §.2.3, and §.2.4 contain both reviews of mathematical tools not
generally known in the physics community, and new materials which are
specific to the algebras which appear in physics. Section 3 contains the first
examples and applications. Section 4 describes the modular paradise and
the relation with Grothendieck theory of the dessins d’enfants. Section 5
discusses the relation between Galois covers in the sense of §.2.4 and the
(quantum) monodromy operator [5]. Section 6 contains some computations
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of BPS spectra for class S[A1] theories with genus one Gaiotto surfaces
and describes their relations with the roots systems of the extended affine
(GIM) Lie algebras. Several appendices contain additional examples, as well
as technicalities and reviews of specific math tools.

2. BPS spectra, GIM Lie algebras, and Galois covers

In this section we collect the technical tools we shall use to study various
N = 2 models in later sections. §§.2.1, 2.2.1, 2.3.1, 2.3.2 and 2.4.1 are reviews
of more or less known facts.

2.1. Review of basic facts

2.1.1. BPS states and representation theory. We quickly review the
framework of [20, 21]. We consider the Coulomb branch of a 4d N = 2 gauge
theory. Its charges take value in a lattice Γ. Dirac quantization endows Γ with
a skew-symmetric pairing 〈·, ·〉D : Γ× Γ → Z. In a chosen Coulomb vacuum,
the central charge of N = 2 susy defines a linear map Z : Γ → C. Z encodes
the stability condition of BPS states. Varying the moduli, the stability con-
dition changes, and the BPS spectra jump discontinuously (wall–crossing).
A BPS chamber is a region in parameter space with constant BPS spec-
trum; BPS spectra in contiguous chambers are related by the KS formula
[1, 2, 25–27]. The N = 2 model has a BPS–quiver if there exist stable BPS
hypermultiplets of charge vectors ei ∈ Γ satisfying two conditions [8, 20]:
Z(ei) ∈ H for some half–space H ⊂ C, and all BPS states have charge vec-
tors of the form ±∑i Z+ ei. Then the integral matrix4 Bij ≡ 〈ei, ej〉D defines
the model’s (BPS–)quiver Q: its nodes are in 1–to–1 correspondence with
the simple charges ei, and we draw Bij oriented arrows from ei to ej . The
BPS–quiver encodes a four–supercharges quiver quantum mechanics (SQM),
with gauge group

∏D
i=1 U(xi) and bifundamental arrows, that captures the

dynamics on the world-line of the BPS particle of charge x =
∑D

i=1 xiei ∈ Γ
[28]; its superpotential W is a linear combination of oriented cycles in Q.
The BPS states with charge x ∈ Γ correspond to the susy vacua of the
quiver SQM given by the cohomology of its vacuum moduli. Standard GIT
arguments allow to trade D–flatness for stability: then a (classical) vacuum
configuration of the SQM describing particles of charge x ∈ Γ is identified

4Bij is the exchange matrix of the quiver. Bij is the net number of arrows from
ei to ej . For generic W all 1 and 2-loops can be integrated out, and we remain with
the 2-acyclic quiver specified by B.
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with an isoclass of stable modulesX of the Jacobian algebra J ≡ CQ/(∂W)
(the path algebra CQ bounded by the bilateral ideal generated by ∂W) with
dimX = x. Rotating H to the upper–half plane, the stability condition de-
fined by the central charge Z : Γ → C becomes

X is stable ⇐⇒ ∀ proper non–zero submodule Y of X:(2.1)

argZ(Y ) < argZ(X).

Isoclasses of stable modules appear in continuous families parametrized by
Kählerian moduli spaces MX . The corresponding BPS N = 2 supermulti-
plets have a Clifford vacuum in a SU(2)spin × SU(2)R representation de-
termined by the Lefshetz/Hodge decompositions of Hp,q(MX) [29], so the
maximal spin occurring is dimCMX/2. Hypermultiplets correspond to rigid
representations with MX a point. A necessary condition for a J –module
X to be stable in some chamber is that X is a brick, namely EndX = C

[21].
The BPS spectral problem is then reduced to the Representation The-

ory (RT) of the Jacobian algebra J . A N = 2 model has different quiver
descriptions: indeed there are many possible choices of the half–plane H.
Different choices produce different, but physically equivalent, algebras J
[19, 20]. The corresponding SQMs are related by 1d Seiberg dualities a.k.a.
quiver mutations [30].

2.1.2. Review of pure SU(2) SYM. We shall need some results in
the Representation Theory of the algebra associated to SU(2) SYM, i.e. the
Kronecker algebra Kr ≡ the path algebra of the Kronecker quiver

(2.2) ◦ A ��

B
�� •

The Abelian category of Kr–modules has a separating decomposition into
three linear categories (the regular category, T , is an Abelian category in
its own right) [31–33] (see also [21])

(2.3) modKr = P
∨

T
∨

Q,

where the notation means that a Kr–module can be (uniquely) written as

(2.4) p⊕ t⊕ q with p ∈ P, t ∈ T , q ∈ Q.
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Separating means that in the rhs of (2.3) morphisms go from left to right,
i.e.

(2.5) Hom(Q, T ) = Hom(Q,P) = Hom(T ,P) = 0.

Objects of P (resp. Q) are called preprojective modules (resp. preinjective
modules). Duality interchanges P and Q. Each object p, q, and t is, in turn,
the direct sum of indecomposable modules in P, Q, and T , respectively.
They are characterized by the Ringel defect [31, 32]

(2.6) m(X) = dimX◦ − dimX• :

a) An indecomposable Kr–module X is preprojective iff m(X) < 0. In
this case the arrows A, B are injective non–iso. Indecomposable pre-
projective modules are rigid and have dimension dimPn = (n− 1, n),
n ∈ N;

b) An indecomposable Kr–module X is preinjective iff m(X) > 0. In this
case the arrows A, B are surjective non–iso. Indecomposable injective
modules are rigid and have dimension dimQn = (n, n− 1), n ∈ N;

c) An indecomposable Kr–module X is regular iff m(X) = 0. Regular in-
decomposable modules appear in families parametrized by P1 and have
dimension dimRn(λ) = (n, n), with n ∈ N and λ ∈ P1. The indecom-

posable Rn(λ) has the form Cn
J(λ,n)

��

Id
�� Cn with J(λ, n) the Jordan

block of size n and eigenvalue λ.

An indecomposable Kr–module X is a brick if either a) m(X) �= 0, or
b) m(X) = 0 and dimX = δ ≡ (1, 1) [31]. We know that being a brick is
a necessary condition for being stable in some chamber. In the Kr case,
all bricks are simultaneously stable under a separating central charge, i.e. a
central charge whose phase is ordered as the rhs of (2.3)

(2.7) argZ(P) < argZ(T ) < argZ(Q).

The physical interpretation of these RT facts is [21]: a) the separating
central charge gives the weakly coupled chamber; b) the Ringel defect is the
magnetic charge; c) the weak–coupling BPS spectrum consists of a single
vector multiplet of zero magnetic charge and electric charge 2, associated to
the P1 family of regular bricks, together with two infinite towers of dyonic
hypermultiplets, Pn of magnetic charge −1 and electric charge 2n, and Qn

of magnetic charge +1 and electric charge 2n+ 2.
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In terms of Z• ≡ Z(e•), Z◦ ≡ Z(e◦), Eqn. (2.7) is just argZ• < argZ◦.
We note that all regular modules R ∈ T have the same phase argZ(R) =
θr ≡ arg(Z◦ + Z•) while

(2.8) argZ(Pn+1) < θr, argZ(Qn+1)
)
> θr.

2.2. Triangular factors of Jacobian algebras

2.2.1. Triangular factors and Tits forms. Let Q be a 2–acyclic quiver
with (non degenerate, reduced) superpotential W. We consider subquivers
Q̃ ⊂ Q which are acyclic and not full; we take Q̃ to be maximal in the sense
that all nodes of Q are nodes of Q̃ and there are no acyclic subquiver Q′

with Q̃ � Q′ � Q. Then, given two nodes i and j, either Q̃ contains all the
arrows of Q between i and j, or does not contain any such arrow. Moreover,
adding to Q̃ any omitted arrow α : i → j will close a cycle. We represent
the pair (Q, Q̃) by a bi–quiver where the arrows of Q̃ are solid and those
of Q \ Q̃ are dashed. The underlying bi–graph is obtained by ignoring the
orientation of the arrows but keeping the distinction dashed/solid.

We write (dash) for the two–sided ideal in the Jacobian algebra J =
CQ/(∂W) generated by the dashed arrows. Let T be the factor5 algebra
J /(dash) of J and π : J → T the canonical quotient. A module of T
is naturally a module of J ; as a representation of the quiver, it is just a
representation in which the dashed arrows happen to vanish.

We give an alternative description of T . Let I be the (bilateral) ideal
of CQ̃

(2.9) I :=
(
∂W
∣∣),

where (·)
∣∣ means that the dashed arrows in Q \ Q̃ are set to zero. Since Q̃

is acyclic, while each dashed arrow α closes a cycle in Q, I is generated by
the relations

(2.10)
{
∂αW

∣∣ = 0,
∣∣∣ α ∈ Q \ Q̃

}
.

The relations ∂αW
∣∣ are not necessarily independent; we choose a minimal

set of generators of I, R, and write bij for the number of elements in R with

5Below we shall refer to T simply as a factor of J .
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source i and target j. Obviously,

(2.11) 0 ≤ bij ≤ aij ≡ #
{
dashed arrows j → i

}
.

One has T = CQ̃/I. We have a functor

(2.12) F : modCQ̃/I → modCQ/(∂W)

whose image are the modules of J ≡ CQ/(∂W) having vanishing arrows in

Q \ Q̃. F preserves indecomposables and isoclasses. The algebra T ≡ CQ̃/I
is triangular.6 Let n be the number of nodes of the quiver Q̃. With respect
to this quiver, we define the three n× n symmetric matrices Aij , Bij , and
Cij as

(2.13)
Aij = Cij + aij + aji, Bij = Cij + bij + bji,

Cij = 2 δij −#
{
arrows i → j

}
−#

{
arrows j → i

}
.

C is the Cartan matrix of Q̃ in the sense of Kac [34–36]; B is the Bren-
ner matrix of the triangular algebra CQ̃/I[37]. The corresponding integral
quadratic forms Zn → Z will be denoted as

(2.14) qA(x) =
1
2 x

tAx, qB(x) =
1
2 x

tBx, qC(x) =
1
2 x

tCx.

qA(·) is the quadratic form of the underlying bi–graph of (Q, Q̃), qB(·) is the
Tits form of the triangular algebra CQ̃/I, and qC(·) is the Tits form of the
hereditary algebra CQ̃. In the examples of interest qA(·) ≡ qB(·); we shall
write the Tits form qA(·) simply as q(·). Two Tits forms that differs by a
linear isometry defined over Z are said to be Z–equivalent.

Counting dimensions, one sees that, if X is an indecomposable module
of T ,

(2.15) dimMX = 1− q(dimX).

In particular q(dimX) ≤ 1, that is, the dimension vector of an decompos-
able T –module is a root of the Tits form q(·). Real roots x, i.e.x ∈ Γ with
q(x) = 1 (and connected support in Q̃), correspond to dimension vectors

6An algebra is triangular if it has the form CQ̃/I with Q̃ acyclic; T was con-
structed to be triangular. Other authors use instead the adjective directed to denote
the same class of algebras. We prefer to avoid this term to prevent confusion with
representation–directed algebras.
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of rigid indecomposables which, if stable, yield hypermultiplets. Imaginary
roots of q(·), q(x) ≤ 0, correspond to higher spin BPS multiplets: the max-
imal spin of a BPS particle of charge vector x ∈ Γ is

(2.16) max spin(x) =
(
1− q(x)

)
/2.

The dimension x of a stable module of a triangular algebra is not merely a
root of q(·) which is just the dimension of an indecomposable X (i.e.EndX
is a local ring). x satisfies the stronger condition of being a Schur root i.e.
the dimension of a brick X (i.e. EndX = C).

2.2.2. Triangular factors and BPS sectors. A BPS particle corre-
sponds to a (family of) stable module of the Jacobian algebra J ≡CQ/(∂W)
of the quiver with superpotential. Any module of a factor J /I is naturally
a module of the original algebra J ; so a module of J /I, if stable, corre-
sponds to a BPS particle. To each factor algebra J /I is thus associated
a sector of the BPS spectrum7. If the Representation Theory of the fac-
tor J /I is elementary, the BPS particles in the corresponding sector are
easily determined. This observation applies, in particular, to BPS sectors
described by triangular factors T of J , which we call triangular sectors.
The states of a triangular sector are controlled by the Tits form of the tri-
angular algebra T . Many previous computations of BPS spectra may be
rephrased in the language of triangular sectors. The simplest instance is
when there is a single triangular factor T whose sector happens to be the
full BPS spectrum; a slightly more general case is when there is a fam-
ily of triangular factors TA such that the union of their sectors is the full
BPS spectrum. When this happens we say that the BPS chamber is tri-
angular. Obviously, all chambers are triangular when the algebra J itself
is triangular, as in ADE Argyres–Douglas systems or SU(2) SQCD with
Nf ≤ 3. Strong coupling finite chambers for N = 2 SYM and SQCD with
simply–laced gauge groups are also examples of triangular chambers [20], as
are the ‘canonical’ finite chambers of (G,G′) models [5], and Arnold models
[38, 39]. A further example of a triangular chamber is the finite chamber
of E6 Minahan–Nemeshanski [40]. In all these cases the BPS spectrum is
controlled by the Tits forms, and is described by the root systems of their
associated Lie algebras as we are going to describe.

7The sectors overlap: the sectors of J /I1 and J /I2 both contain the sectors
associated to the common factor J /(I1, I2) of J /I1 and J /I2.
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2.3. Slodowy–GIM Lie algebras. Extended affine Lie algebras

2.3.1. Slodowy GIM Lie algebras. The usual Kac–Moody construc-
tion [41] allows to associate to each graph (without loops) a Lie algebra.
The construction may be generalized to bi–graphs [42, 43]. Let A = {aij}
be n× n matrix defined in §.2.2.1, namely, aij is the symmetric8 integral
n× n matrix, with diagonal components aii = 2 for all i = 1, 2, . . . , n, where
nodes i, j are connected by |aij | undashed (resp. dashed) edges if aij < 0
(resp. aij > 0). To the matrix A we attach the GIM (Generalized Intersec-
tion Matrix) Lie algebra LA [42, 43] generated by elements

(2.17) {ei, fi, hi}i=1,2,...,n

and satisfying the generalized Serre relations

[hi, hj ] = 0, [hi, ej ] = aij ej(2.18)

[hi, fj ] = −aij fj , [ei, fi] = hi(2.19)

if i �= j and aij ≤ 0

{
[ei, fj ] = 0

(ad ei)
1−aij ej = (ad fi)

1−aij fj = 0
(2.20)

if i �= j and aij > 0

{
[ei, ej ] = [fi, fj ] = 0

(ad ei)
1+aij fj = (ad fi)

1+aij ej = 0.
(2.21)

The corresponding bi–graph is called the Dynkin bi–graph of LA. The graph-
ical conventions are the same as in the theory of the quadratic integral (Tits)
forms [37]; the relevant Tits form being q(x) ≡ 1

2x
tAx. A given x ∈ Zn is

a root of LA iff q(x) ≤ 1. A given root x is Schur (for a chosen orientation
of the bi–graph) iff it is the dimension vector of a brick of CQ̃/I. Two Tits
forms which differ by a linear isometry defined over Z are said to be Z–
equivalent: Z–equivalent Tits forms correspond to the same Slodowy–GIM
Lie algebra. In particular, an algebra LA is Kac–Moody if and only if the
Dynkin bi–graph is Z–equivalent to one with no dashed edges.

In this paper we are interested in the GIM Lie algebras specified by
the bi–graph underlying the bi–quiver (Q, Q̃) of a triangular factor of the
Jacobian algebra of a N = 2 model. Not all GIM Lie algebras may arise
from a N = 2 QFT. A (conjectural) necessary condition in order for a GIM
Lie algebra to arise from a QFT is provided by the 2d/4d correspondence

8Our definitions are not the most general ones; they correspond to the symmetric
(as contrasted to symmetrizable) case.
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[5, 8]. A Slodowy GIM Lie algebra LA satisfies this condition iff there is an
unipotent integral matrix S with

(2.22) A = S + St,

such that the following two properties hold:

i.) the quiver QS with incidence matrix B = S − St and the bi–graph GA

associated to the symmetric matrix A have the same underling graph,
and the set of arrows QS which correspond to solid edges of GA form
an acyclic subquiver Q̃S ;

ii.) the spectral radius of the matrix M ≡ −(S−1)tS is 1, and the Jordan
blocks of M have at most size9 2, and no size 2 block corresponds to
the eigenvalue −1.

This condition just says that S is a solution to the Diophantine equations
of the 2d (2, 2) classification program [7] with ĉ < 2. A GIM Lie algebra LA

which satisfies the condition is called 2d/4d admissible. The arguments of
[7] give

Fact 1. If the Tits form q is positive semi–definite then LA is 2d/4d admis-
sible.

Proof. Choose a decomposition of the matrix A satisfying i.). Let10 v ∈
rad q; then

(2.23) 0 = −(S−1)tAv = (M − 1)v

so rad q is invariant under M . M descends to a linear map M on Qn
/
rad q ⊗

Q. The quadratic form q descends to a positive–definite form q onQn
/
rad q ⊗

Q. Now [7]

(2.24) M tAM = StS−1(S + St)(S−1)tS = S + St = A,

so M is an orthogonal transformation with respect to the positive definite
inner product corresponding to the form q. Then M has spectral radius
1 acting on Qn

/
rad q ⊗Q; hence M has spectral radius 1 acting on Qn.

9For complete theories [5], the blocks of size 2 can be associated only to the
eigenvalue +1.

10We recall that the radical of a quadratic form q : Γ → Z is the sublattice rad q ⊂
Γ of elements v ∈ Γ annihilated by the matrix A of q, i.e. such that Av = 0.
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Moreover, M is semisimple, so M may have Jordan blocks only associated
to the eigenvalue +1 and the size of the Jordan blocks is at most 2. �

2.3.2. Extended affine Lie algebras. Slodowy GIM Lie algebras with
semi–definite Tits form q : Zn → Z have special interest. We already saw that
they are automatically 2d/4d admissible. A GIM Lie algebra LA having the
Tits form semi–definite with a radical of rank κ, is called an extended affine
Lie algebra of nullity κ [44, 45].

Consider the quadratic form q induced by q on the lattice Zn/rad q;
it is positive definite. A well–known theorem [32] says that a (connected)
positive–definite form is Z–equivalent to an ADE Tits form. We say that
LA is an extended affine Lie algebra of type gr, if the corresponding induced
form q is equivalent to the Tits form of the finite–dimensional (simply–laced)
Lie algebra gr.

The extended affine Lie algebras of nullity κ and type gr are constructed
recursively from the same type Lie algebras of nullity κ− 1 by ‘affinization’,
that is, as a central extension of their loop algebra. At nullity zero we have

the finite–type Lie algebra gr, and at nullity 1 we have its affinization g
(1)
r ,

which is the usual affine Kac–Moody algebra [41]. At nullity 2 we have the

affinization of the Kac–Moody algebra, g
(1,1)
r ≡ (g

(1)
r )(1), which is a toroidal

Lie algebra [46]. In general

(2.25) g
(

κ times︷ ︸︸ ︷
1,1,...,1)
r ≡

(
g
(

κ−1 times︷ ︸︸ ︷
1,1,...,1)
r

)(1)
.

Equivalently, an extended affine Lie algebra of nullity κ and type gr is a cen-
tral extension of the Lie algebra of maps (S1)κ → gr. The central extension
is not unique [45] and we have a large family of inequivalent Lie algebras.
However, the root system does not depend on the particular central exten-
sion but only on κ and gr, that is, only on the Tits form q. If v ∈ Zn is a
root of an extended affine Lie algebra we say that it is real iff q(v) = 1, and
imaginary iff q(v) = 0. It is clear that the set of real roots is given by {α+ δ}
where α is a root of the finite–type Lie algebra of type gr and δ is an element
of the lattice of imaginary roots rad q. Equivalently, we may choose a gener-
ator δ ∈ rad q and write the roots in the form {α̂+ ρ} where α̂ = α+ nδ is a

root of the affine Lie algebra g
(1)
r and ρ ∈ rad q/Zδ. We shall find convenient

to represent (non–canonically) the root lattice of an extended Lie algebra as

the direct sum of the root lattice of gr (resp. g
(1)
r ), which we shall call the

reduced charge lattice Γred., and the lattice rad q (resp. rad q/Zδ).
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The extended affine Lie algebra of nullity κ and type gr will be written

simply as g
[κ]
r .

2.3.3. Triangular factors of class S[A1] algebras and their Lie al-
gebras. The quiver with superpotential of a theory of class S[A1] is deter-
mined by an ideal triangulation of the corresponding ultraviolet curve [47–
49], ideal arc flips being in correspondence with quiver mutations [47]. To
make the correspondence complete, it is necessary to allow ideal triangula-
tions with self–folded triangles [47] (even if all surfaces admit triangulations
without self–folded triangles).

In this subsection we describe the structure of the Tits form of the
triangular factors of the Jacobian algebras for class S[A1] models (class
S[A1] algebras for short). In view of §.2.3.1, we adopt the Lie theoretical
language.

Let Q be the quiver arising from an ideal triangulation of a surface with
punctures and marked points on the boundaries, and let Q̃ be a maximal
acyclic subquiver of Q. We write n for the number of nodes of Q. Since the
algebras of a S[A1] model are tame [50], for all the associated bi–quivers
(Q, Q̃) their Tits form q : Zn → Z is weakly non–negative. The bi–quivers
(Q, Q̃) such that q is non–negative definite will be called good. It is easy to
check that for all surfaces (admitting an ideal triangulation) good bi–quivers
always exist.

Fact 2. Σ a surface of genus g with p punctures and b boundaries, with
(p+ b) > 0, the i–th boundary carrying 
i ≥ 1 marked points. Σ has Euler
characteristic χ = 2(1− g)− p− b, while the number of arcs in any ideal
triangulation of Σ is n = −3χ+

∑
i 
i. Let Q be a triangulation quiver of Σ,

and q the Tits form of an associated good bi–quiver. Then

1) if Q corresponds to an ideal triangulation of Σ without self–folded
triangles, q is the Tits form of an extended affine Lie algebra which is
either

(2.26) A
[−χ+1]
n+χ−1 or D

[−χ]
n+χ;

2) if Q corresponds to an ideal triangulation with at least one self–folded
triangle, q is the Tits form of an extended affine Lie algebra which is
either

(2.27) A
[−χ]
n+χ or D

[−χ]
n+χ.
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Table 1: The geometric meaning of block Types.

block Type n–gon

0 triangle with two sides on the boundary
I triangle with one side on the boundary
II triangle
III punctured 2–gon with one side on the boundary
IV punctured 2–gon
V doubly punctured 1–gon

The maximal nullity κ vanishes only for g = 0, b = 1, p = 0, correspond-
ing to the An AD models, and g = 0, b = 1, p = 1 which corresponds to the
Dn AD models.

We sketch the proof of the above claims leaving the details to Ap-
pendix A. A quiver Q is a triangulation quiver of some Σ if and only if
it can be decomposed into the following blocks of Types I – V (ref.[47] see
also [8])

(2.28)

◦

��◦
I

◦

��◦ �� ◦

��

II

•

◦

��

�� •
IIIa

•

��◦ •��

IIIb

• �� ◦

��◦

�� ��

•��

IV

• �� ◦ ��

��

•

��

		

•

��

�� •

��

V

which have two kinds of nodes black • and white ◦. All triangulation quiv-
ers are constructed by taking a finite collection of blocks of various types
and gluing them together by identifying pairs of white nodes; gluing nodes
belonging to the same block is forbidden. Some white node may remain un-
paired. For our present purposes, it is convenient to introduce an additional
block, of Type 0, which consists of a single white node ◦; we reinterpret
the unpaired white nodes as being paired with Type 0 blocks, so that in
our conventions all white nodes of the building blocks of Types 0–V should
be identified in pairs. Finally, all opposite pairs of arrows � (between the
same nodes), produced in the gluing process, should be deleted. We recall
the geometric meaning of the block decomposition [47]: each block Type
corresponds to an ideally triangulated, possibly punctured, oriented n–gon
as in Table 1. White nodes correspond to the sides of the n–gon which are
not boundary segments, thus internal ideal arcs along which two distinct
n–gons are glued.
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0∗ : x1 p0(x1) =
1

2
x21

I∗ : x1 �� x2 pI(xi) =
1

2
(x1 − x2)

2

I� : x1 �� x2 pI�(xi) =
1

2
(x1 + x2)

2

II∗ :

x2




x1

��

x3��

pII(xi) ≡
1

2
(x1 − x2 − x3)

2

II� :

x2




x1

��

x3��

pII�(xi) ≡
1

2
(x1 + x2 + x3)

2

II	 :

x2




x1

��

x3��

pII�(xi) ≡
1

2
(x1 + x2 − x3)

2 + 2x1x3

III∗a :

x2

x1

��





x3

pIII(xi) ≡
1

4
(x1 − 2x2)

2 +
1

4
(x1 − 2x3)

2

IV ∗ :

x3




x1

��





x2��

x4

��

pIV ∗(xi) ≡
1

4
(x1 + x2 − 2x3)

2 +
1

4
(x1 + x2 − 2x4)

2

pIV �(xi) ≡
1

4
(x1 − x2 − 2x3)

2 +
1

4
(x1 − x2 − 2x4)

2

pIV �(xi) ≡
1

4
(−x1 + x2 − 2x3)

2 +
1

4
(−x1 + x2 − 2x4)

2

V ∗ :

x1 ��

��

x2

��
x0









x3

��

x4��

��

pV (xi) ≡
1

2

(
x0 − x1 − x2 − x3 − x4)

2+

+
1

2
(x1 − x4)

2 +
1

2
(x2 − x3)

2,

Figure 1: The collection B of bi–blocks of triangulation bi–quivers. Boxed
labels correspond to the black nodes of blocks. The bi–block IV � (IV 	) is
obtained from IV ∗ by inverting dashed ↔ solid all the arrows incident node
x2 (x1). The bi–block of type V has other forms, we reduce to form V ∗ by
flipping dashed ↔ solid all arrows incident to some black node. The bi–block
III∗a has a second form III∗b with the arrows in the opposite direction.
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A given block–decomposition of Q induces a decomposition of all its
associated bi–quivers (Q, Q̃) in a finite collection B of bi–block Types, see
Figure 1. By convention, in the bi–block decomposition the deleted pairs of
opposite arrows � are taken to be one solid and one dashed.

Attaching to the i–th node of Q an integer–valued variable xi, the Tits
form q(x) of (Q, Q̃) is given by the sum over the polynomials Pb(xi) associ-
ated to the several bi–blocks

(2.29) q(x) =
∑
b∈B

∑
bi–blocks

of type b

pb(xi).

With the single exception of pII�(xi), all these polynomials are sums of
squares. Since pII�(xi) is weakly non–negative, q(x) is automatically weakly
non–negative, and it is semi–definite iff no Type II	 bi–block is present. By
flipping dashed ↔ solid all arrows incident to a node of each offending II	

bi–block, we get a good bi–quiver. For the computation of the nullity κ and
type gr of the Tits form q(x), see Appendix A.

2.4. Galois covers of (locally) bounded C–categories

2.4.1. Covering functors. We start by recalling some standard defini-
tions [17, 18, 51–53] (for a nice survey see [54]).

A category A is called C–linear if, for all ordered pairs of objects, X,
Y , the set of morphisms A(X,Y ) has a C–vector–space structure and their
composition law ◦ is bilinear. The category is connected if it is not empty
nor the disjoint union of two non–empty categories. A connected C–category
A is locally bounded if the following three conditions are satisfied:

(a) distinct objects of A are non–isomorphic;

(b) for all object X, A(X,X) is a local algebra;

(c) for all X ∈ A,
∑
Y ∈A

(
dimCA(X,Y ) + dimCA(Y,X)

)
< ∞.

A bounded category is a locally bounded category with finitely many objects.

A (locally) bounded category A may always be written (uniquely) in the
form CQ/I, where Q is a (locally) finite quiver and I an admissible ideal
in its path category [17, 18]. The objects of A are identified with the nodes
of Q. The identity morphism of the i–th object i ∈ A is identified with the
minimal idempotent ei of the algebra CQ/I given by the lazy path at the
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i–th node of Q. One has

(2.30) A(i, j) = ej CQ/I ei.

The bounded category A is then canonically identified with the basic asso-
ciative algebra CQ/I, and we shall use the two languages interchangeably.
Viewing A as a category, however, allows to perform general categorical op-
erations on it, in particular to construct its covering and orbit categories.
In the categorical language, a (finite dimensional) representation X of the
(opposite) quiver bounded by I, which is the same as a right module of the
algebra CQ/I, is seen as a linear functor from the C–category A to the
C–category of finitely–dimensional C–vector–spaces

(2.31) X : A → modC.

Such a functor is called a module of the bounded category A, and the
(Abelian) category of such functors is denoted as modA.

Let A be a locally bounded C–category and G a group of C–linear au-
tomorphisms of A. The group G acts on modA by composition of functors

(2.32) X �−→ Xg ≡ X ◦ g.

This action is an autoequivalence and so:

(a) preserves indecomposable, brick, simple, projective, and injective mod-
ules;

(b) commutes with the Auslander–Reiten translations τ , τ−.

To each X ∈ modA we associate its isotropy subgroup GX ⊂ G

(2.33) GX =
{
g ∈ G

∣∣∣ Xg ∼= X
}
.

Let H ⊆ G be a subgroup; we write modHA for the full subcategory of H–
invariant modules.

An automorphism group G is said to be admissible if it acts freely on the
objects i of A (i.e. on the nodes of its quiver) and has finitely many orbits.
If G is admissible for A, we may consider its orbit category A/G which is a
bounded C–category. The objects of the category B ≡ A/G are the G–orbits
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Gi of objects i ∈ A, while the morphism spaces are

(2.34) B(Gi,Gj) =
⊕
g∈G

A(i, gj).

Then we have a canonical Galois covering functor

(2.35) F : A −→ A/G given on objects by i �−→ Gi.

Since A/G is again a bounded C–category, there is a finite quiver Q (whose
nodes are the G–orbits of nodes of Q) and an admissible ideal I such that
A/G = CQ/I.

The process of going from the category A and the freely acting auto-
morphism group G to the orbit category A/G may be reversed. Indeed, the
definition (2.34) shows that the morphism spaces of A/G are vector spaces
graded by elements g ∈ G, the grading being compatible with compositions.
By definition, this means that A/G is a G–graded C–category. Given a
G–graded C–category B we may construct the smash product C–category,
B#G, whose objects are pairs (a, g), a ∈ B, g ∈ G, and morphism spaces
[54]

(2.36) B#G
(
(a, g), (b, h)

)
= B(a, b)

∣∣∣∣
degree h−1g

component

.

It is easy to see that, if G acts freely on A,

(2.37) (A/G)#G ∼= A.

The theory of Galois covers of C–categories has much the same flavor
as the classical theory of Galois field extensions. A field k (say of zero char-
acteristic) has an universal extension, namely its algebraic closure kal, and
universal Galois group Gal(kal/k). The fundamental theorem of the classical
theory says that there is an inclusion reversing correspondence{

normal subgroups N �Gal(kal/k) of finite index
}
←→

←→
{
finite degree Galois extensions of k

}
.

(2.38)

In the same fashion, a (locally bounded) C–category A admits an universal
Galois cover Ã and an universal covering group Π(A) called the funda-
mental group of the category A. The fundamental group of A is explicitly
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constructed using the walks in the quiver Q of A; we shall not use this con-
struction and refer to [51] for details. All locally bounded C–category A is
automatically Π(A)–graded. Eqn.(2.37) then gives an explicit formula for
its universal cover category

(2.39) Ã = A#Π(A).

The Galois correspondence then becomes{
normal subgroups H �Π(A)

}
←→

{
Galois coverings C → A

}
,(2.40)

where the Galois group of C → A is G ≡ Π(A)/H, and C = A#(Π(A)/H).
An algebra A with Π(A) = (1) has no non–trivial covers; such an algebra,
if connected, is said to be simply–connected.

We are not interested in the Galois cover of C–categories F : A → B
per se, but rather in the functors it induces between the module categories
modA and modB. For simplicity, we assume all categories to be bounded
(so G is a finite group of order |G|) and all modules to be finite–dimensional;
more general statements may be found in the literature [17, 18, 51–54]. A
Galois cover F : A → B ≡ A/G induces two natural functors between the
module categories:

• the pull up functor F λ : modB → modA defined by composition of
functors

(2.41) F λ : X �−→ F λX ≡ X ◦ F ;

• the push down functor Fλ : modA → modB is the map which asso-
ciates to the functor Y : A → modC the functor FλY : B → modC act-
ing as follows

� on objects Gi: Gi �−→ FλY (Gi) =
⊕
g∈G

Y (gi)

(2.42)

� on morphisms Gi
f−→ Gj : Eqn. (2.34) ⇒ f =

∑
g∈G

fg with fg ∈ A(i, gj)

then FλY (f) =
∑
g∈G

Y (fg).

(2.43)
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Properties [54]:

1) the categories modGA and modB are equivalent;

2) for all X ∈ modA and all g ∈ G we have FλX
g ∼= X and F λFλX ∼=⊕

g∈GXg;

3) Fλ and F λ are each other right– and left–adjoints:

A(X,F λY ) ∼= B(FλX,Y ),

A(F λY,X) ∼= B(Y, FλX) ∀ X ∈ modA, Y ∈ modB.

The crucial property for our applications is

Fact 3 [54]. G an admissible group of automorphisms of A. Suppose the A–
module X is indecomposable and GX = (1). Then FλX is indecomposable
and for all modules Y with FλY � FλX there is g ∈ G such that Y � Xg.

2.4.2. Important special cases. A special case, which is relevant for
complete N = 2 theories [8], is when A is a string algebra. The indecom-
posable modules of string algebras have an explicit construction in terms
of strings and bands [55] (see also [21]). For convenience of the reader we
briefly review their construction in Appendix B. If C is a string (band) we
write M(C) (resp.M(C, μ, n) with μ ∈ C and n ∈ N) for the corresponding
module.

Let A be a string algebra with a freely acting automorphism group G,
and let F : A → B ≡ A/G be the associated Galois cover. The first obser-
vation is that B is automatically a string algebra. Then, if M(C) ∈ modA
is a string module, its push down FλM(C) ∈ modB is a string module with
respect to the image string

(2.44) FλM(C) = M(FC),

and hence is automatically indecomposable11 (but the push down of a brick
may be just indecomposable). On the contrary, the push down of a band
is not necessarily a band, since it may be a non–trivial power of a shorter
band. In facts, it is a |GC | power, where GC ≡ GM(C,μ,n) is the isotropy
subgroup of the covering band. Thus, a band module M(C, μ, n) pushes
down to an indecomposable module M(FC, μ, n) if and only if its isotropy
group is trivial, in agreement with Fact 3.

11This may also be seen from Fact 3. Indeed, for all string module M(C), one
has GM(C) = (1).
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The pull back of a string of B is the disconnected union of |G| strings
of A. By Properties 2) this means that the restriction of Fλ to strings is
surjective (i.e.all string modules of B are push down of string modules of A).
In other words, Fλ sets a |G|–to–1 correspondence between string modules
of A and string modules of B.

The pull back of a band is, in general, a disconnected union of bands
which forms one orbit under G. It produces an indecomposable module
M(C ′, μ′, n) ∈ modA precisely when this orbit contains a single element,
that is, GM(C′,μ′,n) ≡ G. In this case

(2.45) F λM(C, μ, n) = M(F−1C, μ|G|, n).

Bricks. A band module is a brick if and only if it has the form M(C, μ, 1).
Then, if GC = (1), the indecomposable module FλM(C, μ, 1) is also a brick.
If M(C) is a string module of A which is not a brick, the string module
FλM(C) ∈ modB cannot be a brick. On the contrary, if M(C) is a brick,
FλM(C) may or may not be a brick. Let C ′ = FC. The module M(C ′) ∈
modB may fail to be a brick only if C ′ contains a substring C ′′ which starts
and ends at the same node, which then is a power of a band B. M(C ′) is a
brick if for all such bands B one of the following two conditions are fulfilled

1)
∑

i∈sources of B

(dimM(C ′))i �=
∑

i∈sinks of B

(dimM(C ′))i,

2) dimM(C ′)
∣∣
suppM(B,μ,1)

≤ dimM(B,μ, 1),
(2.46)

where sinks and sources are counted with their multiplicities in B.

Triangular string algebras. When A (and hence B) happens to be, in
addition, a triangular algebra, the dimension vectors of its indecomposable
modules are roots of the Tits form qA which, in the string case, is positive
semi–definite (string algebras are tame [37, 55]). Band modules correspond
to imaginary roots of qA, while string modules correspond to real roots unless
they are in the projective closure of C–families of band modules in which
case they are imaginary. Hence
(2.47)
qA(dimX) = 0 ⇒ qB(dimFλX) = 0

qA(dimX) = 1 ⇒ qB(dimFλX) =

{
1 FλX rigid: Ext1(X,X) = 0

0 FλX has self–extensions.

2.4.3. Galois covers of dashed categories. By a dashed category we
mean a triple (J ,T , �) where J and T are bounded C–categories such
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that, as algebras, J ≡ CQ/(∂W) is the Jacobian algebra of a 2–acyclic
quiver Q with superpotential W, while T is its factor defined by an admis-
sible dashing of Q, i.e. T ≡ J /(dash). � : J → T is then the canonical
quotient functor.12 Clearly one may also consider dashed categories which
are only locally bounded.

Let G be a group of admissible automorphisms of J which preserves
the ideal (dash), that is, which sends dashed (solid) arrows of Q into dashed
(solid) arrows. Then G is a group of admissible automorphisms of the factor
T , and we have a commutative diagram of functors

(2.48)

J
F ��




��

J /G



��

T
F

�� T /G

The induced functors F
λ
, F λ relate corresponding triangular sectors of

modT and modT /G.

2.4.4. Covers of class S[A1] dashed categories. We specialize to the
case in which J is a Jacobian category of a class S[A1] N = 2 QFT. Modulo
a handful of exceptions,13 we may assume that the corresponding quiver Q
has a unique block decomposition without type V blocks14; and that the
good biquiver (Q, Q̃) associated to the factor T has no type II� bi–block,
cfr. §.2.3.3. Then the Tits form qT of T is written (in a unique way) as a
sum of squares associated to the several bi–blocks, Eqn. (2.29).

Let h be an automorphism of the bi–quiver. h maps a (bi)block decom-
position into a (bi)block decomposition. Since the decomposition is unique,
h maps each bi–block into a bi–block of the same Type, and hence acts by
permutations of same–Type bi–blocks. Suppose a bi–block b is fixed by the

12‘Dashed categories’ are C–categories. Its objects are the nodes of the quiver Q,
and the morphisms are pairs of morphisms of the form (f,�(f)).

13The argument may be extended to cover the exceptional cases. In facts, for the
validity of the argument it suffices that the block decomposition is unique in some
class of decompositions, e.g. the decompositions with minimal or maximal number
of pairs of opposite arrows �, or the ones with minimal/maximal number of blocks
of a given Type, etc.

14All our conclusions remain valid in presence of Type V blocks. However, the
assumption that no such block is present allows to shorten our arguments. The
straightforward extension to the case in which Type V blocks are present is left to
the reader.
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permutation, so that h|b is an automorphism of the bi–block b. Since no
bi–block �= II� has a non trivial automorphism acting freely on its nodes, h
should fix some node of b. We conclude that all freely acting automorphisms
g of the dashed category map bi–blocks into distinct same–Type bi–blocks.
In particular, nodes i and gi belong to distinct bi–blocks for all g ∈ G, g �= 1.

Let X ∈ modT be an indecomposable, so qT (dimX) = 0, 1. One has

2 qT (dimX) =
∑

orbits of

0,I,II

∑
g∈G

y2gb +
1

2

∑
orbits of

III,IV

⎧⎨⎩∑
g∈G

w2
gb,1 +

∑
g∈G

w2
gb,2

⎫⎬⎭,(2.49)

2 qT /G(dimFλX) =
∑

orbits of

0,I,II

⎛⎝∑
g∈G

ygb

⎞⎠2(2.50)

+
1

2

∑
orbits of

III,IV

⎧⎨⎩
⎛⎝∑

g∈G
wgb,1

⎞⎠2 +
⎛⎝∑

g∈G
wgb,2

⎞⎠2⎫⎬⎭
where yb, (resp. wb,1, wb,2) is the Z–linear combinations of the (dimX)i
appearing in the polynomial Pb of the b–th block (see Eqns. (A.2)–(A.5));
the essential point is that yb, wb,1, wb,w ∈ Z while wb,1 = wb,2 mod 2. If
dimX is an imaginary root, yb = wb,s = 0 for all b, and so dimFλX is also
an imaginary root. If dimX is a real root, we have three possibilities:

i) at one III/IV block b we have either wb,1 = ±2, wb,2 = 0 or wb,1 = 0,
wb,2 = ±2, and at all other blocks yc = wc,1 = wc,2 = 0;

ii) for a type III/IV block b and a 0/I/II block c we have wb,s = ±1 and
yc = ±1, while yd = wd,1 = wd,2 = 0 for d �= b, c;

iii) for a pair of distinct I/II blocks15 b, c we have yb = ±1 and yc = ±1,
all other variables being zero.

In cases i) and ii) dimFλX is automatically a real root of qT /G(·). In
case iii) dimFλX is also a real root, unless there exists a g ∈ G such that
c = gb, while yb and yc have opposite signs. In this last case dimFλX is an
imaginary root. The restriction of X to the two bi–blocks b and gb must

15The case of a pair of distinct Type 0 blocks is excluded since, at a Type 0 block
b, yb ≡ (dimFλX)b ≥ 0. The same argument rules out pairs of Type I� or Type
II� bi–blocks.
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have one of two possible forms: if b is of Type I

X|b ≡ Cm �� Cm+1 X|gb ≡ Ck+1 �� Ck(2.51)

the arrow being mono in the left figure and epi in the right one, or, for Type
II,

X|b ≡
C�

��
C�+m+1

��

Cm��

X|gb ≡
Ck

��

Ck+j

��

Cj+1��

(2.52)

the vertical arrows being epi, and the horizontal arrow mono for the left
figure and epi on the kernel of the vertical arrow for the right one. In both
cases the module

(2.53) FλX
∣∣
orbit

of b

=
⊕
h∈G

X
∣∣
hb

admits a one–parameter deformation which for Type I makes the arrow
to be iso, and for Type II makes the horizontal arrow iso on the kernel
of the vertical arrow. Then in both cases, whenever dimX is a real root
while dimFλX is an imaginary root, we conclude that FλX belongs to the
projective closure of a P1 family of indecomposable modules16. This result
generalizes Eqn. (2.47) to S[A1] dashed categories which are not (nor can
be reduced to) string algebras.

2.4.5. Π(J ) versus π1(Σ). Let Σ be a surface with punctures and
marks on the boundaries, Q the quiver of an ideal triangulation of Σ [47],
and J = CQ/(∂W) the corresponding Jacobian algebra/category17. The
authors of [56] pose the question of the relation between the fundamental
group of the algebra, Π(J ), and the fundamental group of the corresponding
surface π1(Σ). On the nose, there cannot be any simple relation: π1(Σ) is a
topological invariant of the surface Σ, while Π(J ) depends on the particular
ideal triangulation as the following example shows.

16FλX is indecomposable. Indeed, let h ∈ GX . h should fix both bi–blocks b and
gb, but an automorphism fixing a bi–block necessarily fixes a node, while GX acts
freely on the nodes. Hence GX = (1), and the claim follows from Fact 3.

17We shall refer to C–categories arising this way from an ideal triangulation of a
surface with punctures and marks as a class S[A1] category.
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Example. The mutation class of the punctured disk with r marks on the
boundary contains the Dynkin quiver of type Dr as well as the quiver con-
sisting on a single oriented cycle of length r, Cr, with W the cycle itself. The
first Jacobian algebra, J1 ≡ CDr, has a tree quiver, and hence is simply–
connected Π(J1) = 0, while the second one J2 = CCr/(∂W) is well known
to have Π(J2) = Z.

However, we are not really interested in Π(J ). This universal covering
group describes, via the Galois correspondence (2.40), all possible cover-
ings of J . Most of the covering categories A → J described by the uni-
versal correspondence do not correspond to any N = 2 QFT. A bounded
C–category A should satisfy quite stringent conditions in order to corre-
spond to a QFT: to the very least, its quiver Q should be 2–acyclic and its
ideal I should arise from the differential of a non–degenerate superpotential
W (in facts, we know that there are additional, more restrictive, necessary
conditions [5]). Morally speaking, the “universal covering group” we are re-
ally interested in, “ Π(J )QFT ”, is the group whose finite quotients are the
Galois groups of the covers of J by C–categories which do correspond to
N = 2 QFTs. We shall not attempt here to construct rigorously a would
be ‘universal quantum–field–theoretical Galois covering’. However, for the
special case that J is a class S[A1] category, we describe all possible Ga-
lois covers C → J of the class S[A1] category J by connected bounded
C–categories C which do correspond to complete N = 2 QFTs.

Fact 4. Let F :J ′→J be a Galois cover of connected bounded C–categories,
where J ′, J are Jacobian categories of class S[A1] theories. In terms of
Gaiotto UV surfaces Σ′

G, ΣG and quadratic differentials φ′
2, φ2 [4], F is in-

duced by a non–constant holomorphic map ξ : Σ′
G → ΣG whose only branch

points are at the irregular punctures of φ2. One has

(2.54) φ′
2 = ξ∗φ2.

Equivalently, F is induced by an unbranched cover of bordered surfaces
c : Σ′ → Σ [8].

Fact 4 is proven in Appendix C. We recall that the unramified covers
c : Σ′ → Σ are classified by the normal subgroups of π1(Σ

◦), where Σ◦ is Σ
with the regular punctures ignored.

Let the quotient surface Σ have genus g, p punctures, and b boundaries
carrying {
i}bi=1 marks. Let ξ : Σ′

G → ΣG be a covering of degree d which is
ramified only over the irregular punctures corresponding to the boundaries
of Σ [8]. The inverse image of the i–th irregular puncture is a set of si
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ramification points with ramification numbers mj,i ≥ 1 (j = 1, . . . , si, i =
1, . . . , b) satisfying

∑
j mj,i = d. The covering surface Σ′ has then b′ =

∑
i si

boundary components with 
′j,i = mj,i
i marks on them. The topological
invariants of the covering surface Σ′ are

p′ = d p, b′ =
b∑

i=1

si, 
′j,i = mj,i 
i,(2.55)

2g′ − 2 = (2g − 2)d+ (b d− b′),
si∑
j=1

mji = d,(2.56)

n′ ≡ −3χ(Σ′) +
∑
j,i


′j,i = nd.(2.57)

Here n (n′) is the number of ideal arcs in any ideal triangulation of Σ (Σ′).
It follows that, if T is an ideal triangulation of Σ, then T′ ≡ c−1(T) is an
ideal triangulation of Σ′.

By Hurwitz theory [58], the covering group G of c is a subgroup of the
symmetric group Sd, acting transitively on (1, 2, . . . , d), which is generated
by the b+ 2g elements of Sd

(2.58) α1, . . . , αb, β1, . . . , βg, γ1, . . . , γg,

which form a representation of π1(Σ
◦), i.e. satisfy the relation

(2.59) α1 · · ·αbβ1γ1β
−1
1 γ−1

1 · · ·βgγgβ−1
g γ−1

g = 1,

and such that αi belongs to the conjugacy class of Sd specified by the
partition of d

(2.60) m1,i +m2,i + · · ·+msi,i = d.

So G = π1(Σ
◦)/N for some normal subgroup N � π1(Σ

◦). Conversely, any
transitive subgroup G ⊂ Sd satisfying (2.58)–(2.60) corresponds to a cover c.

By construction, G is an automorphism group of the ideal triangulation
T′, hence of the covering Jacobian category J ′. However, it is not necessarily
true that G acts freely on the objects of J ′, i.e. on the arcs of T′, as the
following example shows:

Example 1. Let Σ be the pair of pants (a genus zero surface with three
boundaries). By definition, a covering map ξ : Σ′

G → ΣG ≡ P1, which is
branched only at the three irregular punctures, is given by a Belyi func-
tion ξ [59]. A well known example of degree d rational Belyi function is
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the Chebyshev polynomial of the first kind, Td(z). Identifying the symmet-
ric group Sd with the Weyl group W of SU(d), we have G = 〈σe, σo〉 ⊂ W,
where σe (σo) is the product of the simple reflections at the even (odd) nodes
of the bipartite Dynkin graph Ad−1. Clearly, G ∼= Dd, the dihedral group of
degree d, i.e. the symmetry group of a regular d–gon. Dd does not act freely
on the vertices of the d–gon. Correspondingly, G does not act freely on the
arcs of T′.

However, in this example we have a subgroup G ≡ 〈Cox〉 ⊂ G, i.e. the
cyclic group Zd generated by the Coxeter element Cox ≡ σeσo ∈ W, which
does act freely and transitively on the G–orbits. Then, as C–categories, J =
J ′/G, and it is the subgroup G which is the categorical Galois group (while
G is the Galois group in the usual sense). Hence

Fact 5. The covering of bordered surfaces c corresponds to a Galois G–cover
of class S[A1] categories iff there is a subgroup G ⊆ G ⊆ Sd which acts freely
and transitively. In particular d ≡ |G|.

It is easy to find examples with G = G and Abelian (see section 3). We
present a simple example of non–Abelian covering group G such that G≡G.

Example 2. In the same context as in the previous example, consider the
Belyi rational function of degree 6 given by the expression of the modular
invariant J(τ) in terms of the Legendre Γ(2)–modular function λ(τ)

(2.61) J(λ) =
4

27

(1− λ+ λ2)3

λ2(1− λ)2
.

One has G ≡ PSL(2,Z)/Γ(2) ∼= S3 [61]. Since G acts transitively as a sub-
group of S6, and, since |G| = 6, G also acts freely, i.e. G = G. In physical
terms, in the minimal case (i.e. Σ without punctures and a single mark per
boundary) Eqn. (2.61) yields the Galois S3–cover of SU(2)3 SYM with one
half–trifundamental hypermultiplet by SU(2)13 SYM coupled to one half–
trifundamental in each of the six representations of the form

(2.62)
( even # of 1’s︷ ︸︸ ︷

1, . . . ,1 ,2,2,2,1, . . . ,1
)

and a fundamental quark coupled to each odd–numbered SU(2) SYM system
but the first and the 13–th ones which are each coupled to a D3 AD system.
If Σ contains more punctures and marks, Eqn. (2.61) gives a corresponding
S3–cover of class S[A1] theories.
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2.4.6. A mere computational tool: quiver covers. In §.2.4.5 we dis-
cussed the Galois covers of Jacobian categories of N = 2 QFTs by other
Jacobian categories of N = 2 QFTs which lead to covering maps between
their BPS spectra. However, the covering techniques are useful to compute
BPS spectra independently of the fact that the covering category is Jaco-
bian or associated to a N = 2 theory. From the computational point of view,
what really matters is that the cover has a simple Representation Theory,
not its physical interpretation.

An important special case is when we have a class S[A1] with quiver
Q and another class S[A1] theory with quiver Q′, on which a group G acts
freely, such that Q = Q′/G. The only reason why this is not a cover of S[A1]
categories is that, while the superpotential W ′ on Q′ is G–invariant, its
quotient is not equal to W, and then

(2.63) CQ/(∂W) ≡
(
CQ′/(∂F ∗W)

)/
G �=

(
CQ′/(∂W ′)

)/
G.

From Appendix C, this happens when the corresponding geometric cover of
Gaiotto surfaces, ξ : Σ′

G → ΣG, is branched over some regular puncture of
the quadratic differential φ2.

To compute the BPS spectrum of a class S[A1] model with regular punc-
tures it is convenient to use the trick that we call gentling and review in
Appendix B.3. There the procedure is explained from two different points of
view: the 4d gauge theory one, and the surgery of bordered surfaces Σ [8].
Here we rephrase it in terms of Gaiotto’s quadratic differentials φ2 on the
UV curve ΣG. The trick is to deform each regular double pole of φ2 into a
order three pole with an infinitesimal coefficient
(2.64)

ai

(
dz

z − zi

)2
+ less singular −→

(
ai +

ε

z − zi

)(
dz

z − zi

)2
+ less singular

One then computes the easier BPS spectrum of the C–category associated
with a surface with no regular punctures. In the limit ε → 0 one almost
gets back the original BPS spectrum, except for p vector multiplets which,
geometrically, correspond to minimal WKB geodesics going around each of
the p cubic punctures.

The effect of the gentling procedure is to replace π1(Σ
◦) with π1(Σ)

where now we think of the punctures of Σ as small holes. Although this
would not give us a covering of BPS spectra in the strict sense, it would give
us a computational tool which is practically equivalent to a bona fide cover
since the discrepancy is just a known finite set of BPS states which should be
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disregarded. To distinguish these situations from the genuine Galois covers
of QFTs, we shall call them quiver covers.

2.4.7. Quotients of triangular factors and invariant Lie subalge-
bras. As discussed in §.2.3, to a triangular algebra (or to a dashed cat-
egory) T we may associate a Slodowy GIM Lie algebra LA through its
Cartan matrix A. If G is an admissible group of automorphisms of T , it
induces an automorphism group of the Dynkin bi–graph of LA and hence a
group of outer automorphisms of the Lie algebra LA. To the quotient functor
F : T → T /G there corresponds a Lie algebra embedding

(2.65) F : LG
A → LA, LG

A ≡ LA/G,

where LG
A is the G–invariant Lie subalgebra. The Chevalley–Serre generators

of LG
A

(2.66)
{
eGi, fGi, hGi

}
are labelled by the objects Gi of T /G. Explicitly

(2.67) eGi =
∑
g∈G

egi, fGi =
∑
g∈G

fgi, hGi =
∑
g∈G

hgi.

It is easy to see that the Dynkin bi–graph of LG
A is the underlying bi–graph

of the bi-quiver of T /G, i.e.LG
A ≡ LA/G.

We note that when LA is an extended affine Lie algebra of simply–laced
type, and the quiver Q of the quotient category T /G ≡ CQ/I is 2–acyclic,
LG
A is also an extended affine Lie algebra of simply–laced type.

2.4.8. Pulled back central charge. Suppose we have a Galois cover
F : A → B while on modB we are given a central charge (stability function)
i.e. a group homomorphism18 Z : K0(modB) → C which maps the positive
cone of the Grothendieck group K0(modB) into the upper half–plane. By
the pulled back central charge on modA we mean the group homomorphism
F λZ : K0(modA) → C given by

(2.68) F λZ
(
[X]
)
= Z
(
[FλX]

)
.

18As always K0(A ) stands for the Grothendieck group of the Abelian category
A . Given X ∈ A we write [X] ∈ K0(A ) for its class.
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3. First examples and applications

In this section we collect examples and some simple applications of the
covering techniques, as a warm up for more serious computations in later
sections.

The simplest possible non–free N = 2 systems are the Argyres–Douglas
models. The corresponding Jacobian algebras are representation–finite, and
the N = 2 models all whose Jacobian algebras are representation–finite are
Argyres–Douglas models [8]. We have the following result

Fact [54]. Let F : A → B be a Galois cover of bounded C–linear categories
with Galois group G. Then B is representation–finite if and only if (i) G

acts freely on the isoclasses of indecomposables and (ii) A is representation–
finite. In that case Fλ is surjective.

In other words, if an Argyres–Douglas theory has a (finite) covering N =
2 theory, that theory should also be an Argyres–Douglas model. From §.2.4.5,
we know that the possible complete covers of Argyres–Douglas models (of
type A,D) are controlled by the fundamental group of the corresponding
surface, π1(Σ

◦
AD). Since, Σ

◦
AD is a disk (with marks), these Argyres–Douglas

theories do not have any non–trivial19 QFT covers. (Of course, for type
Dp we have quiver covers in the sense of §.2.4.6; this is a very well known
example of cover of C–categories discussed at length, say, in ref.[53], or [57]
Chapter V).

The next simpler class of theories are the N = 2 gauge theories with
gauge group SU(2). These models do have interesting Galois covers.

3.1. Zk covers in SU(2) SQCD

Let us start with our motivating example Nf = 2 SQCD with Ggauge =
SU(2) as a double cover of pure SYM. The quivers of the two theories are,
respectively, the affine quivers of type Â(2, 2) and Â(1, 1) with alternating

19A trivial cover is one in which the covering theory consists of several non–
interacting copies of the quotient theory. An example of trivial cover is the Galois
cover of Argyres–Douglas theories CD2 → CA1, i.e. two free hypers doubly covering
one free hyper. See Appendix C for a list of such trivial exceptions.
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orientation20

(3.1)

•1

◦1

��

��

◦2

��

��•2
Â(2, 2)

•

◦

�� ��

Â(1, 1)

The quiver on the left has a freely acting Z2 automorphism which inter-
changes the nodes of the same color (black/white). From the figure, it is
clear that its orbit category CÂ(2, 2)/Z2 is the category of the quiver on the
right, CÂ(1, 1). More generally, let p, q be two positive integers, and choose
k | gcd(p, q). We have the Zk Galois cover

(3.2) CÂ(p, q) −→ CÂ(p, q)/Zk ≡ CÂ(p/k, q/k)

(the orientation of the arrows is chosen in the obvious way to be consistent
with the quotient). In this case, the covering N = 2 theory is SU(2) SYM
coupled to two Argyres–Douglas systems of types Dp and Dq, while the quo-
tient theory is SU(2) SYM coupled to two AD systems21 of types Dp/k and
Dq/k [8]. Choosing (p/k, q/k) = (1, 1), (2, 1), and (2, 2) the quotient theory
is, respectively, SU(2) SQCD with Nf = 0, 1, 2 fundamental quarks.

Hence SU(2) SQCD coupled to at most two flavors (or, more generally,
at most two Argyres–Douglas systems) admit Zk Galois covers for all k ∈ N.
These are their only covers by complete N = 2 QFT (in fact, by any N = 2
QFT) since, for all these models, Σ ≡ Σ◦ = C×, and π1(Σ) ≡ π1(Σ

◦) = Z.
For later reference, we describe the covering in terms of the correspond-

ing 2d (2,2) theory [5, 8]. 4d SU(2) SYM coupled to Dp and Dq AD systems
corresponds to the (2,2) Landau–Ginzburg model

(3.3) W (Z) = epZ + e−qZ , with the identification Z ∼ Z + 2πi.

If k | gcd(p, q), the (2,2) model corresponding to the quotient theory SU(2)
SYM with Dp/k and Dq/k AD is the same Landau–Ginzburg model (3.3)

20See [8] for our nomenclature about quivers. Since affine quivers are acyclic, the
superpotential is zero.

21In our conventions [8], D1 is the empty theory, and D2 a doublet of free quarks.
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but with the rescaled field identification

(3.4) Z ∼ Z + 2πi/k,

which gives a cover in the tt∗ sense [6, 7].
In terms of Lie algebras LA, the Zk cover (3.2) becomes the embedding

of affine Kac–Moody algebras

(3.5) A
(1)
p/k+q/k−1 ≡

(
A

(1)
p+q−1

)Zk −→ A
(1)
p+q−1.

Nf = 3 SQCD (or more generally, SU(2) SYM with two fundamental
quarks and a Dp AD) corresponds to the disk D with two punctures and 2
marks (resp. p marks) on the boundary. We have π1(D

◦) = (1), and hence
its C–category has no strict–sense cover by the C–category of a N = 2 QFT.
Of course, since π1(D) = 〈x, y〉, there are plenty of quiver covers in the sense
of §.2.4.6. Likewise, Nf = 4 SQCD has only covers in the quiver sense; they
are useful computational tools.

3.1.1. SU(2) SQCD BPS spectra as Galois covers. We look at the
maps between the BPS spectra of SU(2) SYM coupled to different pairs of
AD systems which are induced by the Zk covering functors F λ, Fλ of §.2.4.1.
The algebras associated to these models, CÂ(p, q), are hereditary (hence
triangular with q(x) a Kac–Moody Tits form), string, and class S[A1], so
all three special techniques of §§. 2.4.2, 2.4.4 apply.

An acyclic affine quiver corresponds to an asymptotically–free SU(2)
gauge theory [8]. The SU(2) magnetic charge m(X) of the BPS particle
described by the module X is equal to the Ringel defect of the module [21],
i.e. to the sum of the dimensions at the source nodes (the white ones) minus
the sum of the dimensions at the sinks (the black nodes), cfr. Eqn. (2.6).

The BPS spectrum of a complete theory contains only hypermultiplets
(corresponding to rigid bricks of the algebra) and vector multiplets (P1 fam-
ilies of bricks with self–extensions). In any chamber, an asymptotically–free
SU(2) gauge theory has at most one BPS vector multiplet, the W boson; in
other words, the associated algebra J has a unique P1–family of non–rigid
bricks Wμ (μ ∈ P1). Being unique, this family is fixed by all automorphisms
of J , i.e. gWμ

∼= Wμ for all g ∈ Zk. From §§. 2.4.2, 2.4.4 it follows that the

W boson modules of the covering theory, W̃μ, are the pull back of the ones
for the quotient theory, Wμ,

(3.6) W̃μk = F λWμ.
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Since Fλ is adjoint to F λ, this implies that the push down functor F λ pre-
serves the magnetic charge of the module

(3.7) m(FλX) = m(X).

Bricks with m(X) �= 0 are rigid and cannot be in the closure of the W
family (since the W boson has zero magnetic charge). By §§. 2.4.2, 2.4.4
this implies that Fλ sets a k–to–1 correspondence between the dyons of the
covering theory and the dyons of the quotient theory. This is our k–fold cover
between dyon towers; the example Nf = 2 → Nf = 0 SQCD corresponds to
k = 2.

It remains to consider the rigid bricks of the covering theory withm(X) =
0 which correspond to the (finitely many) BPS states of the covering matter
system [21]: in SQCD they are just the quark states. Let X ∈ modCÂ(p, q)
be such a brick. By §§. 2.4.2, 2.4.4, FλX ∈ modCÂ(p/k, q/k) is indecompos-
able, but not necessarily a brick nor rigid. If m(X) = 0, FλX is a rigid brick
of the quotient category, if and only if dimFλX < δ ≡ dimWμ (for k = 2
this is equivalent to dimFλX �= δ).

To the push down functor Fλ, restricted to the rigid bricks having van-
ishing magnetic charge, we may give a different interpretation. These bricks
describe the BPS states of the covering matter Dp ⊕Dq Argyres–Douglas

system, and the Galois cover F : CÂ(p, q) → CÂ(p/k, q/k) induces a ‘cover-
ing’ of the respective matter systems

(3.8) Dp ⊕Dq → Dp/k ⊕Dq/k

which is not a strict–sense cover of S[A1] categories (since, as shown at
the beginning of this section, there are none) but merely a quiver cover in
the sense of §.2.4.6. Then the would be push down fλ maps bricks of the
covering matter category into representations of the quotient matter quiver
which may or may not satisfy the Jacobian relations ∂W = 0. Only those
which satisfy the relations are actual BPS states of the quotient matter
sector; they are precisely the ones with dim fλX < δ, in agreement with the
previous result.

Since (cfr. §§. 2.4.2, 2.4.4) Fλ is onto the rigid bricks of the quotient
category, the full BPS spectral correspondence is

(3.9)

covering model quotient model

vector multiplet F λWμ Wμ 1–to–k
dyonic hypers X FλX k–to–1
m = 0 hypers X FλX, if dimFλX < δ k–to–1
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More precisely, if the covering model is equipped with the pull back F λZ
central charge, the stable particles of one column of Table (3.9) map in the
corresponding stable particles of the other column. In the maximal chamber
[19] all states in the table are stable, and the correspondence is fully realized.

For instance, in the Nf = 2 → Nf = 0 cover, no rigid brick X with
m(X) = 0 of the covering theory satisfies the condition dimFλX < δ, and
the BPS spectrum of the quotient theory contains only the W boson and
the dyonic towers. Of course, this is the right result.

3.2. Zk covers of pure SYM with simply–laced gauge groups

The above construction of Zk Galois covers of pure SU(2) SYM may be
extended directly to Zk covers of pure SYM with any simply–laced gauge
groupG. This is basically the idea of [15, 16]. Let us review their construction
in the language of tt∗ covers for the corresponding 2d (2,2) model as in
Eqns. (3.3)–(3.4). The (2,2) model corresponding to SYM with gauge group
G is [15, 70]

(3.10) W (Z,X, Y ) = eZ + e−Z +WG(X,Y ), Z ∼ Z + 2πi,

where the polynomial WG(X,Y ) is the ADE minimal singularity corre-
sponding to the simply–laced Lie group G. The tt∗ Zk–Galois cover is ob-
tained by replacing Z �→ k Z in Eqn. (3.10) while keeping Z ∼ Z + 2πi
[15, 16].

3.2.1. Quivers and their automorphisms. In the mutation class of
quivers with superpotentials for the Zk cover of SYM with gauge group G
there are two preferred ‘tensor product’ quivers [71]

(3.11)
triangle tensor product: Â(k, k)�G,

square tensor product: Â(k, k)�G,

where G stands for the Dynkin quiver of the gauge group with an alternating
orientation so that odd numbered nodes are sources and even numbered
ones are sinks. The affine quiver Â(k, k) is also taken in the alternating
orientation. These orientations are chosen for convenience; all orientations
are mutation equivalent, and hence describe the same physics. Both product
quivers have a ‘projection’ p on the second factor, i.e. on the Dynkin quiver
G; the inverse image of a simple root of G, p−1(αi), is a full affine subquiver
Â(k, k). For both forms of the quiver we label the nodes as •a,i, ◦a,i with



1266 S. Cecotti and M. Del Zotto

i ∈ G and a ∈ Zk (the index a being defined mod k). Nodes •a,i (resp. ◦a,i)
are the sinks (sources) of the i–th affine subquiver Â(k, k). The exchange
matrix of the square quiver is

(3.12) B•a,i,•b,j
= B◦a,i,◦b,j

= 0, B◦a,i,•b,j
=
(
δa,b+1 − δab

)
δij + Cij δab

where C is the Cartan matrix ofG. The superpotentialW� of the Â(k, k)�G
quiver is the sum of all its oriented squares. The exchange matrix of the tri-
angle form is [21]

(3.13) B
̂A(k,k)�G = S

̂A ⊗ SG − St
̂A
⊗ St

G

where B
̂A(k, k) (resp.SG) is the ‘Stokes’ matrix22, i.e. the matrix such that

the quiver exchange matrix and the Tits matrix of the triangular alge-
bra CÂ(k, k) (resp.CG) are given by B

̂A = S
̂A − St

̂A
and A

̂A = S
̂A + St

̂A
(resp.BG = SG − St

G and AG = SG + St
G). The superpotential W� of the

Â(k, k)�G quiver is a certain sum over its oriented triangles. N = 2 super–
Yang–Mills with simply laced gauge group G corresponds to the case k = 1
of the above construction [5, 20, 21].

Clearly both forms of the quiver, Â(k, k)�G and Â(k, k)�G, have a
Zk–automorphism group, inherited from the first factor in the tensor prod-
uct, Â(k, k), which acts freely on the objects

(3.14) Zk � s : (•a,i, ◦a,i) �−→ (•a+s,i, ◦a+s,i).

Since this Zk action leaves invariant the superpotentials, W� and W�, these
quiver automorphisms extend to automorphisms of the Jacobian categories

(3.15)
J �

G (k, k) = CÂ(k, k)�G
/
(∂W�),

J �
G (k) = CÂ(k, k)�G

/
(∂W�).

Hence, for all 
 | k we may form Galois covers

F� : J �
G (k, k) −→ J �

G (k, k)
/
Z�

∼= J �
G (k/
, k/
)(3.16)

F� : J �
G (k) −→ J �

G (k)
/
Z�

∼= J �
G (k/
)(3.17)

whose quotient categories have the same ‘tensor product’ form with k re-
placed by k/
, as it is obvious from the geometric description of the cover

22In the math literature [32, 57] S is called the inverse of the Cartan matrix
of the algebra; we avoid that terminology since it is very confusing in the present
context.
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Figure 2: The quiver Â(2, 2)�A2: a cube with oriented squares on the four
lateral faces.

around Eqn. (3.10). Then both the cover and quotient categories correspond
to well defined N = 2 QFTs.

The triangle construction may be further generalized to tensor products
of the form Â(p, q)�G with p �= q. Again, if 
 | gcd(p, q), we have a Galois
covering

(3.18) F� : J �
G (p, q) −→ J �

G (p, q)
/
Z�

∼= J �
G (p/
, q/
).

The square category J �
G (k) may have a larger group of automorphisms

acting freely on the objects. The simplest instance is Â(2, 2)�A2 whose
quiver is shown in Figure 2. The freely acting automorphisms of this category
form the Klein Vierergruppe V4 � Z2 × Z2

(3.19) (•1,i, ◦1,i) ↔ (•2,i, ◦2,i) and (•a,1, ◦a,1) ↔ (•a,2, ◦a,2).

The quotient of J �
A2
(2) with respect to the full V4 group has a non–2–

acyclic quiver. So, while such quotients by enhanced automorphism groups
may be quite useful to actually compute the BPS spectrum at special points
in parameter space which preserve such enhanced symmetry, they do not
describe Galois covers of BPS spectra of N = 2 QFTs.

3.2.2. Covers of pure SYM from Minahan–Nemeshanski SCFT.
As explained in detail in [15, 16], the category J �

G (p, q) corresponds to
N = 2 SYM with group G which gauges the diagonal flavor (sub)group G
of a pair of N = 2 SCFTs of types Dp(G) and Dq(G). In the notations of
[15, 16], D1(G) is the trivial SCFT. When the ‘matter’ sector consists of two
copies of the same SCFT Dp(G), it is more convenient to use the mutation
equivalent square category J �

G (p).
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E6 MN SO(8) E6 MN

N = 2 theory corresponding to the C–category J �
SO(8)(2)

SU(2)) E7 MN SO(10) E7 MN SU(2)

N = 2 theory corresponding to the C–category J �
SO(10)(2)

SU(3)) E8 MN E6 E8 MN SU(3)

N = 2 theory corresponding to the C–category J �
E6
(2)

Figure 3: The N = 2 theories whose BPS spectra double covers that of pure
N = 2 SYM with gauge groups G = SO(8), SO(10), and E6. The circles
stands for N = 2 SYM sectors, the rectangles for Minahan–Nemeshansky
Er SCFTs.

If k | gcd(p, q), the Galois cover

(3.20) F : J �
G (p, q) → J �

G (p/k, q/k)

then corresponds to replacing the ‘matter’ sector Dp(G)⊕Dp(G) with
Dp/k(G)⊕Dq/k(G).

In particular, if p = q = k, we get a Zk–cover of the category correspond-
ing to pure SYM with gauge group G, by the same gauge theory coupled
to two copies of Dk(G). If G = SU(2) and k = 2, this reduces to the GMN
double cover of SU(2) SYM by the same theory coupled to two fundamen-
tal quarks. So the covers (3.20) are direct generalizations of our motivating
example.

A more sophisticated example is obtained by replacing SU(2) SYM by
SO(8) SYM and the two doublets of free quarks, D2(SU(2)), by their SO(8)
counterpart D2(SO(8)), which is [15, 16] the E6 Minahan–Nemeshanski



N = 2 BPS spectra and quantum monodromy 1269

SU(m) SU(2m) SU(3m) · · · · · · · · · SU(N −m) SU(N)

SU(n) SU(2n) SU(3n) · · · · · · · · · SU(N − n)

Figure 4: The SU linear quiver gauge theories which correspond to bounded
C–categories of the J �

SU(N)(p, q) class. m,n are divisors of N , and p =

N/m, q = N/n. Circles denote N = 2 SYM sectors and links bifundamental
hypermultiplets.

SU(mk) SU(2mk) SU(3mk) · · · · · · · · · SU(N −mk) SU(N)

SU(nk) SU(2nk) SU(3nk) · · · · · · · · · SU(N − nk)

Figure 5: The Zk Galois quotient of the quiver gauge theory in Figure 4.

model [23]. Thus the N = 2 theory obtained by gauging the SO(8)diag ⊂
E6 × E6 flavor symmetry of two copies of the E6 Minahan–Nemeshanski
SCFT corresponds to the category J �

SO(8)(2), which is a Z2 Galois cover of

the pure SO(8) SYM category J �
SO(8)(1).

Likewise, for p = q = k = 2 and gauge groups G = SO(10) and G = E6

we get ‘matter’ systems involving the Minahan–Nemeshanski theories with
flavor symmetry, respectively, E7 and E8 [23, 24] together with some further
SYM sectors, see Figure 3. Analogously, the double cover of the SU(3) SYM
C–category, J �

SU(3)(2), corresponds to SYM gauging the diagonal flavor

symmetry of two copies of the Argyres–Douglas system of type D4 [15, 16].

3.2.3. Galois covers between SU and USp/SO linear quiver theo-
ries. The linear quiver N = 2 gauge theories in Figure 4, where m, n, are
divisors of N , have BPS quivers in the mutation class of Â(N/m,N/n)�
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SU(N). The beta–functions of all YM couplings vanish, but for the one cor-
responding to the SU(N) group (the one in the double–line circle) which
is just asymptotically free. Indeed the two ‘matter’ sectors, DN/m(SU(N))
and DN/n(SU(N)), correspond to the two disconnected quiver theories one
obtains by deleting the asymptotically–free double–lined gauge node [16].

In the same fashon, if m,n are divisors of N − 1, the matter systems
D(N−1)/m(SO(2N)),D(N−1)/n(SO(2N)) correspond to USp/SO linear quiv-
ers [72], see [16]. These quivers have different forms, depending on the parity
of the two integers (N − 1)/m and (N − 1)/n, see ref.[16] for details.

If there is an integer k such that mk, nk | N , the C–category
J �

SU(N)(N/m,N/n) associated to the N = 2 theory in Figure 4 has a Zk

Galois quotient which corresponds to a linear quiver model of the same kind,
see Figure 5. The USp/SO linear quivers have similar Zk Galois covers, pro-
vided mk and nk both divide (N − 1).

It is remarkable that pairs of linear quiver gauge theories — as the pair
in Figures 4 and 5 — which look very different, have BPS spectra which (in
Zk symmetric chambers) are simply related via the Zk covering functors Fλ

and F λ.

3.2.4. Galois covers of BPS spectra of SYM. The Galois cover of
C–categories

(3.21) J �
G (p, q) → J �

G (p/k, q/k)

induces covering functors F λ, Fλ which relate the BPS spectra of two N = 2
theories with the same gauge group G but different ‘matter’ content, at Zk

symmetric points in the parameter space of the covering theory.

Finite chambers. Pure SYM with simply–laced gauge group G has a
strongly–coupled finite chamber [20] whose spectrum consists of two hyper-
multiplet dyons per positive root of G. In facts, under the identification of
the lattice of conserved charges for pure SYM with ΓA

(1)
1

⊗ ΓG, where by ΓG

(resp. ΓA
(1)
1
) we mean the root lattice of the Lie algebra G (resp.A

(1)
1 ), the

charge vectors of the stable dyons at strong YM coupling take the form

(3.22) αa ⊗ β ∈ ΓA
(1)
1

⊗ ΓG
αa is a simple root of A

(1)
1

β a positive root of G.

More generally, the strong coupling BPS spectrum of G SYM coupled to
Dp(G) and Dq(G) contains hypermultiplets whose charge vectors make (p+
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q) copies of the positive roots of G

(3.23) αa ⊗ β ∈ ΓA
(1)
p+q−1

⊗ ΓG
αa is a simple root of A

(1)
p+q−1

β a positive root of G.

Let k | gcd(p, q) and consider the Galois group Zk acting on J �(p, q). The
Galois group acts freely on the generators αa ⊗ βi of the lattice ΓA

(1)
p+q−1

⊗ ΓG

so that the push down functor Fλ : modJ �
G (p, q) → modJ �

G (p/k, q/k) send
stable bricks into stable bricks, and gives a k–to–1 correspondence of the
strong coupling spectra of the two theories. This result may be seen as a
direct consequence of Fact 3.

The ‘dual’ weak coupling chamber. The models with a square product
quiver G′�G have a ‘dual’ (in the sense of [5]) weak coupling chamber which
has a very simple BPS spectrum. This remains true even if the Dynkin graph
G′ is affine as in the present class of theories. To get this ‘dual’ chamber for
SYM coupled to Dp(G), Dq(G) AD one has to fine–tune the parameters to
exceptional alignments in the Z–plane; hence the physical relevance of the
resulting spectrum may be questioned. Mathematically, however, it makes
sense, and the BPS spectrum consists of hypers and vector multiplets only
with charge vectors
(3.24)

α⊗ βi ∈ ΓA
(1)
p+q−1

⊗ ΓG
α is

{
a real Schur root of A

(1)
p+q−1 for hypers

imaginary Schur root of A
(1)
p+q−1 for vectors

βi is a simple root of G.

Then BPS spectrum is r(G) copies of the spectrum of SU(2) SYM with
Dp ⊕Dq matter at weak coupling, one copy per simple root of G. The spec-
tral cover given by Fλ works exactly as in §. 3.1.1 copy by copy. Again the
idea that the cover of the BPS spectrum is realized chamber by chamber is
confirmed.

More general chambers. The covering of BPS spectra works smoothly
in all chambers. The details of the spectra of Zk covers of SYM will be
presented elsewhere.
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Figure 6: A piece of a triangulation quiver (with W) for a surface Σ of
genus g = k + 1 with k regular punctures; the pattern repeats for j ∈ Z

and the nodes are periodically identified mod k, �j ∼ �j+k. For all m | k,
it is a unbranched Zm cover of the quiver (with W) of a surface of genus
g′ = k/m+ 1 and k/m punctures obtained by �j ∼ �j+k/m.

3.3. Abelian Galois covers of class S[A1] models

Genus > 1 curves. Suppose we have a Gaiotto UV curve ΣG with genus
g > 1 and p regular punctures such that

(3.25) k | (g − 1), k | p,

which has a freely acting Zk automorphism group which permutes the punc-
tures. The quotient Σ′

G ≡ ΣG/Zk is a Gaiotto surface with (g′ − 1) = (g −
1)/k and p′ = p/k. The cover ΣG → Σ′

G is unbranched (i.e. the correspond-
ing N = 2 gauge theories are coupled only to half–trifundamentals and bi–
fundamentals, but no AD system).

To the geometric cover ΣG → Σ′
G there correspond a Galois cover of

triangulation categories. The Zk symmetric quiver for the minimal number
of punctures (p = k) is represented in Figure 6. To add further punctures
just replace in Figure 6 some � nodes, or some pair of triangles forming a
Kronecker subquiver, by the quiver of a multi–punctured cylinder

(3.26)
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Figure 7: The Zk–symmetric triangulation quiver for the genus zero surface
with two boundaries, each with k marks, and k regular punctures. The
subscript s is periodically identified mod k. The superpotential W is the
sum of the oriented triangles and the oriented squares.

The generalization to irregular punctures may then be obtained by the gen-
tling trick (Appendix B.3).

In conclusion, all g > 1 class S[A1] categories with p ≥ g − 1 regular
punctures have natural Zk Galois covers, for k | gcd(g − 1, p), which may be
used to relate the BPS spectra of different theories (at special points in their
parameter spaces).

Genus one curves. The Galois cover between genus one S[A1] theories
— corresponding to isogenies of elliptic curves — is discussed in section 6,
where we describe their BPS spectra in detail. We refer to that section.

Genus zero curves. In the case of genus zero, according to §.2.4.5, to have
a strict sense Galois cover we need at least two irregular punctures to serve
as branching points of the cover. Then suppose (for simplicity) that we have
precisely two irregular punctures, that is, Σ has two boundary components,
respectively with r1 and r2 marks, and p punctures. The Zk–cover Σ′ has
also two boundary components, with kr1 and kr2 marks, and pk punctures.

As an illustration, the covering quiver with freely acting Zk–symmetry
corresponding to r1 = r2 = p = 1 is represented in Figure 7. In this example,
the covering theory is (in some regime) a generalized linear quiver with gauge
group SU(2)k+1, k bifundamental quarks, and two AD systems of type Dk;
the quotient model is just SU(2)2 SYM coupled to a bifundamental. The
covering BPS spectrum of this model (in a finite chamber) is described
explicitly in §.5.2.2.

4. Non-Abelian G: modular curves, dessins d’enfants

All examples of spectral Galois cover in the previous section had an Abelian
Galois group G. It is natural to look for examples where the Galois group
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G is genuinely non–Abelian. We already described a class of S[A1] models
which are G ≡ S3 covers of N = 2 QFTs, namely the last example in §.2.4.5.
In that case G was realized as a degree 6 representation of the modular group
PSL(2,Z). In this section we consider in more detail the coverings between
Jacobian categories whose Galois group G arises from a finite–dimensional
representation of PSL(2,Z). We stress that the following construction may
be applied to class S[G] theories for all G = ADE. However, to be very
explicit, in this section we limit ourselves to class S[A1] categories. The BPS
spectra of the corresponding class S[A1] theories have magical properties.

4.1. Principal modular curves

The last example of §.2.4.5 was based on the modular cover23

(4.1) P1 ∼= X(2) ≡ H
/
Γ(2)

ξ−−→ H
/
PSL(2,Z) ≡ X(1) ∼= P1.

Here X(N) is the (compactified) modular curve H/Γ(N) where Γ(N) is
the level N principal congruence subgroup of the modular group SL(2,Z)
[60, 61]:

(4.2) Γ(N) =

{(
a b
c d

)
∈ SL(2,Z) :

(
a b
c d

)
=

(
1 0
0 1

)
mod N

}
.

Going through the argument of §.2.4.5, we realize that we may replace Γ(2)
by any congruence subgroup Γ of SL(2,Z) provided it is normal and tor-
sionless. Both conditions hold for the principal congruence subgroups Γ(N)
for all N ≥ 2, and we focus on this class of modular subgroups. The cover

X(N)
ξN−−−→ X(1) has degree [60]

(4.3) d(N) =

{
1
2N

3
∏

p|N (1− 1/p2) if N > 2,

6 if N = 2.

Note that 6 | d(N) and N | d(N) for all N ≥ 2. The genus g(N) of the Rie-
mann surface X(N) is zero for N = 1, 2 while for N > 2

(4.4) g(N) = 1 +
(N − 6) d(N)

12N
,

23Here H = H ∪Q ∪ i∞, with H the upper half plane.
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from which we see that g(N) = 0 iff N ≤ 5 and g(N) = 1 iff N = 6. The

three Hurwitz partitions of X(N)
ξN−−−→ X(1) are

(4.5)
d(N) = N +N +N + · · ·+N, d(N) = 2 + 2 + 2 + · · ·+ 2,

d(N) = 3 + 3 + 3 + · · ·+ 3.

Suppose we have a class S[A1] theory defined by a quadratic differen-
tial φ2 on X(1) ≡ P1 with three irregular poles at τ = i∞, i, and eπi/3 of
respective order 
1 + 2, 
2 + 2 and 
3 + 2, as well as k ordinary double poles
at generic positions. The pulled back quadratic differential ξ∗Nφ2 defines a
Gaiotto theory with UV surface X(N) of genus g(N), d(N) k regular punc-
tures, and

(4.6) b(N) =
5N + 6

6N
d(N)

irregular punctures, i.e. boundary components for the associated bordered
surface Σ. For N > 2, d(N)/N boundary components have N
1 marks,
d(N)/2 of them have 2
2 marks, and d(N)/3 have 3
3 marks. The num-
ber of ideal arcs in the covering triangulation is then

(4.7) n(N) =

(
3 + 3k +

∑
i


i

)
d(N),

as it should. The categorical Galois group is

(4.8) G = PSL(2,Z/NZ).

Of course, |G| = d(N). In some corner of its parameter space, the resulting
N = 2 QFT is a gauge theory with gauge group

(4.9) Ggauge = SU(2)m(N), where m(N) =
23

12
d(N) +

d(N)

2N
+ k d(N),

coupled (in a subtle way) to half–trifundamentals, bi–fundamentals, funda-
mentals, and Argyres–Douglas systems of types D3 and DN .

For instance, if we take the Galois group to be the icosahedral group
A5 ≡ PSL(2,F5), corresponding to N = 5, and no regular punctures, k = 0,
we get a SU(2)126 gauge theory.

A special case is N = 7; the order of the symmetry group of the covering
surface, d(7), saturates the Hurwitz general bound on the order h of the
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automorphism group of a Riemann surface of given genus g

(4.10) h ≤ 84(g − 1).

In this case the Galois group is the Hurwitz group [62]. The minimal theory
with this symmetry has gauge group SU(2)334.

4.2. The modular quivers Q(N) and their flat cousins Q(N)fl

For simplicity, in this subsection we assume k = 0 and 
1 = 
2 = 
3 = 1. The
extension to the general case is, in principle, straightforward.

The fundamental domain of Γ(N) has the form

(4.11) F(N) =
⋃
g∈G

g(F)

where F is the usual fundamental domain of the modular group PSL(2,Z).
The G–invariant ideal triangulations of the covering surface Σ′ are con-
structed by pulling back the ideal triangulations for the pair of pants with
one mark on each boundary. Identifying the pair of pants with the funda-
mental domain F with the cusp and elliptic points removed, a convenient
(in fact, the most symmetric) ideal triangulation of F , is shown in Figure 8;
we denote it as TF . Then a nice G–invariant triangulation T (N) of Σ′ is
obtained by gluing together the images g(TF ) for g ∈ G, cfr. Eqn. (4.11).

From the figure it is obvious how to construct the triangulation quiver
Q(N) for the pulled back triangulation T (N). Draw the underlying ideal
triangulation T (N)fl of the fundamental domain F(N), i.e. the pull back of
the triangulation T fl

F which underlies TF : by this we mean the triangulation
obtained by replacing marked boundaries with ordinary punctures. T (N)fl

is just a convenient G–invariant ideal triangulation of a genus g(N) closed
surface Σ(N)fl with 3 d(N) punctures. Then replace the ideal arcs of T (N)fl

with pairs of arcs (as in the left part of Fig. 8) and orient them in such
a way that the boundaries of all triangles of T (N)fl form oriented cycles.
Call upper (resp. lower) a triangle of T (N)fl if its boundary is counter–
clockwise (resp. clockwise) oriented. The block decomposition of the quiver
Q(N)fl of the underlying ideal triangulation T (N)fl consists of d(N) Type II
blocks associated to upper triangles and d(N) Type II blocks for the lower
triangles. In Q(N)fl an upper (lower) Type II block may be glued only to
lower (upper) Type II blocks, and all their white nodes are glued in pairs
in Q(N)fl (since Σ(N)fl is closed). We get the desired quiver Q(N) from
Q(N)fl by “separation of the glued white nodes in the vertical direction”,
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Figure 8: Left: the Z3–symmetric ideal triangulation TF of a pair of pants
with one mark on each of the three boundaries as uniformized by the fun-
damental domain F of the modular group (schematic). Ideal arcs with the
same number are identified by the action of PSL(2,Z). The arrows point
toward the common vertex of two ideal sides of a triangle whose third side
is a boundary arc. Right: the triangulation quiver Q(1) of the symmetric
ideal triangulation: nodes of Q(1) are numbered as the corresponding arcs
in the triangulation.

that is, at each node of Q(N)fl we undo the gluing, insert a Type I block
going from the white node of the lower Type II block to the white node of
the upper Type II block, and glue back. For instance, if Q(1)fl is the quiver
of the sphere with 3 punctures, obtained by gluing two oppositely oriented
Type II blocks, the separation in the vertical direction produces Q(1) which
is the well–known prism quiver in Figure 8. We say that Q(N)fl is obtained
by flattening Q(N).

In principle, to compute the flattened out quiver Q(N)fl, one has to pull
back the triangulation T fl

F to the fundamental domain of Γ(N) by gluing the
various copies through the decomposition (4.11). In practice, we may avoid
going through that, and get Q(N)fl by elementary symmetry considerations.

To illustrate the procedure, we consider again our original example N =
2. Since the Hurwitz partitions for the cover J = J(λ) of Eqn. (2.61) are
(2, 2, 2), (2, 2, 2), and (3, 3), the underlying triangulation T (2)fl is based on
six punctures of valency 4 and two punctures of valency 6, while T (2)fl

contains 6× 2 = 12 (ordinary) triangles. The underlying graph L(2)fl of the
flattened out quiver Q(2)fl is then given by the edges of a tiling of the sphere
S2 by 12 triangles, 6 squares, and 2 hexagons. Q(2)fl is then obtained by
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Figure 9: The flattened out quiver Q(2)fl for the modular S3–cover of the
pair of pants with one mark per boundary. Upper (lower) triangles are drawn
in red (black).

making all the 20 polygons of L(2)fl into oriented cycles. This determines
uniquely Q(2)fl to be the diamond quiver in Figure 9. In the figure we
have distinguished the arrows belonging to upper/lower Type II blocks by
their color red resp.black. The automorphism group of Q(2)fl is the dihedral
group D12 (which is an automorphism of the full Jacobian category of the
sphere with 8 regular punctures); however only the subgroupD6

∼= S3 ⊂ D12

preserves the coloring of the arrows, and hence is an automorphism of the
vertically separated quiver Q(2) (and category) of the Galois cover. S3 acts
freely on both the nodes and the Type II blocks. Hence we recover the correct
Galois group S3 of the QFT described at the end of §.2.4.5. The quiver Q(2)
is obtained by separating vertically the red and black blocks in Figure 9.

In the general case, the flattened quiver Q(N)fl is obtained by cyclically
orienting the boundaries of a polygonal tiling of a surface Σ(N) of genus
g(N), invariant under its automorphism group PSL(2,Z/NZ), consisting of
the following polygonal tiles:

• 2 d(N) triangles • d(N)

2
4–gons

• d(N)

3
hexagons • d(N)

N
2N–gons.

This tiling has V = 3 d(N) vertices, E = 6 d(N) edges, and F = (17N +
6)d(N)/6N faces. The Euler characteristic of this tiling is

(4.12) V − E + F = (6−N)d(N)/6N ≡ 2− 2 g(N),
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as it should. Since Σ(N) ≡ X(N) is orientable, there exists an orientation
of the edges of the tiling so that all polygonal faces have cyclically oriented
boundaries. The tiling with this orientation is the flattened quiver Q(N)fl.
By vertical separation of upper/lower Type II blocks, one gets the desired
G–invariant quiver Q(N).

4.3. Simple generalizations

Let N , M be coprime integers ≥ 2. The modular cover X(N)
ξN−−−→ X(1)

may be generalized to

(4.13) X(NM)
ξN,M−−−−→ X(M).

ξN,M is a cover of a genus g(M) surface X(M) by a genus g(NM) one
X(NM) with degree

(4.14) d(N,M) ≡ d(NM)

d(M)
=

{
2 d(N) if N,M ≥ 3

d(N) if M = 2 or N = 2,

branched over the d(M)/M cusps with equal Hurwitz partitions

(4.15) d(N,M) = N +N + · · ·+N.

The Galois group of the cover is

(4.16) G = SL(2,Z/NZ).

Assuming the i–th boundary of the base bordered surface Σ(M) have 
i
marks (i = 1, . . . , d(M)/M), and adding to it k regular punctures, we get a
G–cover QFT with gauge group

(4.17) SU(2)m(N,M) where m(N,M) =
NM + 2

4MN
d(NM) + k

d(NM)

d(M)
.

Example. The minimal M for which the quotient surface X(M) is not
a sphere is M = 6. The smallest possible coprime integer is N = 5. This
minimal non–spherical example corresponds to a Gaiotto theory defined by
a torus with at least d(6)/6 = 12 irregular punctures (plus, possibly, regular
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ones) covered by a Gaiotto theory on a surface of genus

(4.18) g(30) = 577

having at least

(4.19)
d(30)

30
= 288

irregular punctures. The minimal model in this class has gauge group

(4.20) Ggauge = SU(2)2304,

and thousands of different matter sectors. It is remarkable that we may ex-
plicitly compute the BPS spectra of gauge theories of such enormous com-
plexity !

4.4. Generalization: regular Grothendieck’s dessins d’enfants

The above constructions may be generalized in various ways. As a payoff
we get a more intrinsic geometric interpretation of the ‘separation in the
vertical direction’ method to construct the relevant quivers. As in §.2.4.5
we consider covers of the sphere branched over three points. It is customary
to set the three branch points in P1 at ∞, 0, and 1 (before we set them
at i∞, i, and eπi/3 mod PSL(2,Z)). By definition a covering ξ : ΣG → P1

branched over ∞, 1, 0 is given by a normalized Belyi function ξ [59, 63]. It
is a fundamental theorem of diophantine geometry that a smooth algebraic
curve ΣG is defined over the algebraic closure Qal of Q if and only if there
exists a Belyi function ξ on ΣG [59, 63]. Moreover, in this case there is a
subgroup Γ of some triangle group24 Δ(p, q, r) such that ΣG

∼= H/Γ and
[63, 66]

ξ : H/Γ → H/Δ(p, q, r) ≡ P1(4.21)

Δ(p, q, r) ≡
〈
σ0, σ1, σ∞

∣∣∣ σp
0 = σq

1 = σr
∞ = σ0σ1σ∞ = 1

〉
.(4.22)

Belyi functions are encoded in Grothendieck’s dessins d’enfants [63–65].
We define25 a dessin d’enfant to be a bi–partite graph D on a compact

24We always assume Δ(p, q, r) to be minimal i.e. p, q, r are the least common
multiplexes of all ramifications orders of ξ above 0, 1, ∞, respectively.

25In the literature there are slightly different definitions. We use the one in ref.[65].
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oriented 2–manifold ΣG such that ΣG \D is a disjoint union of simply con-
nected sets. The vertices of D are colored alternatively in black and white.
If ξ : ΣG → P1 is a Belyi function, the corresponding dessin is given by
ξ−1([0, 1]), which is a connected graph.

a) the preimages of 0 and 1 are, respectively, the white and black vertices
of D. The valency of a vertex is equal to the ramification order of ξ at
these points;

b) each component of ΣG \D is a cell containing precisely one pole of ξ.
The cell is bounded by 2m edges, where m is the order of the pole
(ramification index over ∞).

The inverse correspondence dessin → Belyi function is given by the Riemann
existence theorem [67].

A dessin D ⊂ ΣG defines a canonical triangulation Tcan(D) of ΣG whose
edges are ξ−1(]0, 1[) ∪ ξ−1(]1,∞[) ∪ ξ−1(]∞, 0[). One constructs Tcan(D) by
introducing a puncture in the center of each cell of ΣG \D and connecting
it to the vertices of D. Tcan(D) contains two kinds of triangles, upper and
lower, according whether their vertices, ordered in the counter–clockwise
direction, are labelled 0, 1, ∞ (resp. 0,∞, 1); ξ maps upper/lower triangles
into the upper/lower half–plane [68].

Definition. D ⊂ ΣG a dessin of enfant. Its canonical quiver Q(D) is ob-
tained from the triangulation quiver of Tcan(D) by vertical separation of the
upper/lower triangles (cfr. previous subsection). It describes the class S[A1]
theory obtained by pulling back SU(2)3 with half a trifundamental by the
Belyi function ξ associated to D.

Clearly, the modular quiver Q(N) we obtained previously by direct con-
siderations are just the canonical ones for the dessins associated to the
modular covers.

The automorphism group G of the dessin d’enfant D acts as an auto-
morphism of the Jacobian category of the covering class S[A1] theory. As we
saw in example 1 of §.2.4.5, in general G does not act freely on the nodes of
Q(D), i.e. on the edges of D. By definition, G acts transitively on the edges
iff D is a regular dessin [65, 66]; for genus > 1, this happens precisely when
Γ ≡ is normal in Δ(p, q, r) (then it is also torsionless). In this special case
[66], ΣG is a quasi–platonic surface i.e. a surface with many automorphisms
[65, 66] and G = Δ(p, q, r)/N is the group of automorphisms of the regu-
lar dessin, and also a group of automorphisms of the covering surface ΣG,
isomorphic to the monodromy group and the covering group of the normal
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covering Belyi function

(4.23) ξ : ΣG → H/Δ(p, q, r) ≡ P1.

By definition, in the regular case, the integers p, q, and r are divisors of the
degree d of ξ.

Suppose the quotient theory is SU(2)3 SYM coupled to half a trifunda-
mental and three Argyres–Douglas systems of type D�1 , D�2 , and D�3 . Then
its Δ(p, q, r)/N–cover given by a degree d Belyi function ξ, corresponding
to a regular dessin (4.23), is a gauge theory with gauge group

(4.24) SU(2)m, where m =

(
3 +

1

p
+

1

q
+

1

r

)
d

2
,

coupled to d half–trifundamentals together with d/p copies of Dp�1 AD, d/q
copies of Dq�2 AD, and d/r copies of Dr�3 AD.

Remark. The above discussion was focused on the special case of cov-
erings branched over three irregular punctures (the case of two irregular
punctures being Abelian and covered in the previous section). For n > 3
branching irregular punctures one needs to use a multi–color generalization
of the dessins d’infants, see ref.[69].

4.5. Finite chambers of dessin d’enfant cover N = 2 QFTs

The BPS spectra of the N = 2 QFTs defined by modular covers X(N) →
X(1) of §.4.2 may be obtained, at G–invariant points, by pulling back the
BPS spectrum of SU(2)3 SYM coupled to half a tri–fundamental in the
corresponding chamber. The BPS spectrum of the last model is well known
in many chambers, and may be easily determined for all choices of the central
charge Z by the string/band construction (see Appendix B). We begin by
describing the BPS spectrum in a class of finite chambers.

We note that the modular quivers Q(N) decompose in the two comple-
mentary full subquivers Q(N)up and Q(N)down over, respectively, the nodes
of the upper and lower Type II blocks. All arrows in Q(N) which connect
the two complementary subquivers are oriented from Q(N)down to Q(N)up

(4.25) Q(N)down

��
��
��
��
��

Q(N)up
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Both subquivers, Q(N)down and Q(N)up consist of the disconnected union of
d(N) copies of the cyclic form C3 of the A3 quiver (with its superpotential).
Correspondingly the charge lattice Γ of the covering theory may be identified
with

(4.26) Γ ∼=
2 d(N)⊕
s=1

ΓC3
, ΓC3

∼= ΓA3
(the root lattice of A3).

We choose the central charge so that26

(4.27) argZ(ei) < argZ(ej) for all ei ∈ Q(N)down and ej ∈ Q(N)up.

Then a module X is unstable unless suppX ⊂ Q(N)down or suppX ⊂
Q(N)up. In fact, a necessary condition for stability is

(4.28) suppX ⊂
{
a C3 connected component of Q(N)down or Q(N)up

}
.

Thus, with respect to the identification (4.26), the stable modules X have
charge vectors of the form

(4.29)

dimX = 0⊕ 0⊕ · · · ⊕ 0⊕ x⊕ 0⊕ · · · ⊕ 0 ∈
2 d(N)⊕
s=1

ΓC3
,

x ∈ ΓC3
is a charge vector of a stable module

for A3 Argyres–Douglas.

Hence the BPS spectrum in these chambers consists of 2 d(N) copies of
the spectrum of the Argyres–Douglas of type A3. The various copies may
correspond to spectra in different chambers of Argyres–Douglas, but at a G–
symmetric point all upper (lower) copies belong to the same AD chamber.

Of course, this is just the pull back of the usual finite chambers for the
prism quiver Q(1) in the right hand side of Figure 8. The consistency of this
pulled back spectrum sets severe constraints on the structure of the quiver
Q(N), which essentially fix its structure to be the one we described in §.4.2.

Clearly, the same discussion holds, mutatis mutandis, for general dessin
d’enfant covering of the SU(2)3 theory with half a trifundamental, and
in particular for the quasi–platonic coverings. Indeed, all canonical quivers

26Note that this an open condition; our conclusions will apply to open BPS
chambers. The subtleties of G–points being on (the intersection point of several)
walls of marginal stability, do not apply to the present situation.
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Q(D) decompose into two complementary subquivers, Qdown and Qup which
are disconnected unions of Type II blocks, and which are connected by
arrows in the same direction as in (4.25). Hence

Fact. All dessin d’enfant class S[A1] N = 2 model (see Eqn. (4.24) for its
description as a gauge theory) has a chamber whose BPS spectrum consists
of 2 d copies of the A3 Argyres–Douglas spectrum, where d is the degree of
the associated Belyi function ξ.

4.6. Dessins d’enfants models: general BPS chambers

The BPS spectrum of a regular dessin d’enfant N = 2 model with 
1 = 
2 =

3 = 1 may be determined in a rather explicit way in any BPS chamber.
Indeed, the Jacobian algebra J (D) of the canonical quiver of a dessin is
a string algebra, and its indecomposable modules may be constructed in
terms of strings and bands. The special techniques introduced in §§. 2.4.2,
2.4.4 apply to all these theories, leading to a rather explicit description of
their BPS spectra in infinite as well finite chambers, both per se as well as
covers of the well understood SU(2)3 with a half trifundamental theory.

5. Galois covers and the quantum monodromy M(q)

One purpose of BPS spectral covers is to prove/verify the WCF, which is
essentially the same as computing the action of (the classical limit of) the
quantum monodromy M(q) on the quantum torus algebra TQ(q) [5].

We recall the basics of the formalism of ref.[5]. Given a 2–acyclic quiver
Q with exchange matrix B and (reduced, non–degenerate) superpotential
W, the associated quantum torus algebra TQ(q) is defined as follows [5, 73–
75]: to each node i of Q (i.e. to each object of the Jacobian category J ≡
CQ/(∂W)) we associate an invertible quantum operator Yi, and set

(5.1) TQ(q) = C〈 Yi, Y −1
j 〉

/
I(q),

where I(q) is the ideal generated by the commutation relations (here q ≡
e2πiτ ∈ C×)

(5.2) Yi Yj = qBij Yj Yi.
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Replacing the quiver Q by its mutation at the k–th node, μk(Q), induces
a correspondence27 TQ(q) → Tμk(Q)(q) of quantum torus algebras given ex-
plicitly by the Fock–Goncharov mutation operation28 φk [5, 20, 73–75]
(5.3)

φk(Yi) =

⎧⎪⎨⎪⎩
Y −1
k if i = k

Yi if there are no arrows i → k in μk(Q)

q−m2/2 YiY
m
k if there are m ≥ 1 arrows i → k in μk(Q).

One extends the definition of the elements of the torus algebra to all
charge vectors γ ≡∑i niei ∈ Γ by setting Yei = Yi and defining

(5.4) Yγ1+γ2
= q−B(γ1,γ2)/2 Yγ1

Yγ2
, where B(γ1, γ2) ≡ Bij n1,i n2,j .

Then the quantum monodromy M(q) is the ordered product [5]

(5.5) M(q) =

�∏
(γ,s)∈BPS

Ψ(qs Yγ ; q)
(−1)2s

where the product is over all the (Clifford vacua of the) stable BPS multiplets
with charge γ ∈ Γ and spin s; Ψ(y; q) is the following version of the compact
quantum dilogarithm [76]

Ψ(y; q) =

∞∏
j=0

(1− qj+1/2y)−1,(5.6)

with functional equation

Ψ(q±1y; q) = (1− q±1y)±1/2Ψ(y; q),(5.7)

and
�∏

stands for the product ordered in increasing (cyclic) BPS phase
argZ(γ). The refined WCF [5, 25–27] is the statement that the conjugacy

27Note that TQ(q) is, up to unitary equivalence, a central extension of the al-
gebra of quantum operators eixa , e2πiτpa , where xa, pa are canonical operators in
L2(RrankB/2), satisfying [xa, pb] = iδab. Since rankB is a mutation invariant [47],
all algebras TQ′(q), with Q′ in the mutation class of Q, are abstractly the ‘same’
algebra, and hence the correspondence TQ(q) → TQ′(q) makes sense.

28We recall that the Y ’s before and after the modification belong to distinct quan-
tum torus algebras; to avoid cluttering we shall not make the distinction manifest
in the notation, we hope this will not cause confusion.
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class of M(q) is independent of the chamber used to define it. The ordinary
WCF is the classical limit, q → 1, of the statement.

We stress a caveat which one should always keep in mind. The form (5.5)
of the quantum monodromy as a product of quantum dilogarithms holds in
the generic case, that is, under the assumption that all BPS states which
have the same phase are mutually local

(genericity condition): γ1, γ2 ∈ BPS and(5.8)

argZ(γ1) = argZ(γ2) ⇒ 〈γ1, γ2〉D = 0.

Otherwise one should work with the (quantum) KS formula in its more gen-
eral form29 [1]. Although mathematically the stability conditions and the
quantum monodromy make perfect sense at such non–generic points, and
all general theorems (properly formulated) still hold, physically the BPS
spectrum at such points is rather tricky since these points are exactly on
instability walls separating different BPS chambers; the mathematically sta-
ble modules correspond to the BPS states which remain stable on all sides
of the walls. This subtlety is important in our present context since we are
studying N = 2 models at points having G symmetry which are typically
very non–generic. One should be careful in stating the (possibly subtle)
physical interpretation of the straightforward mathematical results.

5.1. A baby example: the covering Nf = 2 → Nf = 0

Consider the quiver Q(2) in the left hand side of Figure (3.1). Its quantum
torus algebra TQ(2)(q) has a very simple structure: the two operators

(5.9) Y•1
Y −1
•2

and Y◦1
Y −1
◦2

commute with everything and hence are just c–numbers in any irreducible
representation. Hence, for some complex numbers t, s

(5.10) Y•2
= t Y•1

, Y◦2
= s Y◦1

.

Since the validity of the WCF is independent of the chosen representation
of the torus algebra, we may take s = t = −1. Then the generators of TQ(2)

are odd with respect to the Galois group Z2 ≡ {1, ι}, which then acts on the

29For non–generic phase configurations, the BPS counting indices Ω(γ) are not
even expected to be integers, cfr.Conjecture 6 in ref.[1].
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quantum torus algebra as

(5.11) ι · Yγ ≡ Yιγ = (−1)|γ| Yγ , where |γ| ≡
∣∣∣∣∣∑

i

niei

∣∣∣∣∣ =∑
i

ni.

If γ is a Schur root of Â(2, 2), that is, the dimension vector of a brick of the
associated algebra, this is equivalent to

(5.12) ι · Yγ ≡ Yιγ = (−1)m(γ) Yγ ,

where m(γ) is the magnetic component of the charge vector γ.
Let Nf = 2 SQCD be endowed with a pull back central charge30 as in

§. 2.4.8, so that argZ(ι · γj) = argZ(γj). Let γj be the charge of a stable
BPS state which is not the W boson; then (cfr. Table (3.9)) ι · γj is the
charge of a distinct BPS particle which is also stable and has the same
phase argZγj

and spin sj . Their two quantum dilogs come together in the
ordered product for M(q)

(5.13) M(q) = · · · Ψ
(
qsj Yγj

; q
)(−1)2sj

Ψ
(
qsj Yι·γj

; q
)(−1)2sj · · ·

If m(γj) �= 0 (which implies sj = 0, cfr.Eqn. (3.9)) the product of two dilogs
simplifies to a single dilog of nome q2

(5.14) M(q) = · · · Ψ(Y2γj
; q2) · · ·

The change of nome, q �→ q2, reflects the fact that the subalgebra of S(q) ⊂
TQ(2)(q) generated by the two elements

(5.15) Y• = Y•1
Y•2

, Y◦ = Y◦1
Y◦2

(and their inverse) is identified with the torus algebra of Nf = 0 SQCD,
TQ(0)(q) up to the redefinition of the nome q �→ q2

(5.16) S(q) = TQ(0)(q2).

Then the factor Ψ(Y2γj
; q2) in Eqn. (5.14) is identified with the element of

TQ(0)(q2) corresponding to the monodromy factor of the (single) hypermul-
tiplet in the quotient theory having charge the push down of γj .

30This is not a loss of generality: the quantum monodromy and hence the func-
tional relation between quantum monodromies of different N = 2 theories are in-
dependent of the chosen central charge.
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It remains to consider the factors in M(q) from the BPS states of the
cover Nf = 2 SQCD with zero magnetic charge. They have all the same31

phase argZ(γ). So they contribute to the monodromy the factor32

Ψ
(
q−1/2Y•1

Y◦1
; q
)
Ψ
(
q−1/2Y•2

Y◦2
; q
)
Ψ
(
q−1/2Y•1

Y◦2
; q
)

(5.17)

×Ψ
(
q−1/2Y•2

Y◦1
; q
)
Ψ
(
q−3/2Y•1

Y◦1
Y•2

Y◦2
; q
)−1

×Ψ
(
q−1/2Y•1

Y◦1
X•2

Y◦2
; q
)−1

= Ψ
(
(q−1/2Y•1

Y◦1
)2; q2

)2
Ψ
(
q−1/2(q−1/2Y•1

Y◦1
)2; q)−1

×Ψ
(
q1/2(q−1/2Y•1

Y◦1
)2; q)−1

where we used Eqn. (5.10); this product belongs to the subalgebra S(q) and
is identified with an element of the quantum torus algebra of the quotient
theory i.e. pure SYM. Explicitly,

Ψ(Y•+◦; q2)2

Ψ(q−1/2Y•+◦; q) Ψ(q1/2Y•+◦; q)
(5.18)

=
∏
n≥0

(1− qnY•+◦) (1− qn+1Y•+◦)
(1− q2n+1Y•+◦)2

=
∏
n≥0

(1− q2nY•+◦)
∏
n≥0

(1− q2n+2Y•+◦)

= Ψ
(
(q2)−1/2Y•+◦; q2

)−1
Ψ
(
(q2)1/2Y•+◦; q2

)−1
,

which is precisely the contribution from a single vector multiplet of charge
δ = e• + e◦, that is, the usual W boson of SU(2) SYM. Thus, in all (pull
back) BPS chambers, the quantum monodromy of the Galois cover Nf = 2
theory is equal — factor by factor — to the quantum monodromy of the
quotient Nf = 0 model up the redefinition q �→ q2. Therefore, the WCF for
the Galois cover implies the WCF for the quotient, and we get the functional
identity

(5.19) M(Nf=0)(q2)
.
= M(Nf=2)(q),

where
.
= means equality of actions in the Z2–invariant subsector of a repre-

sentation of the covering quantum torus algebra satisfying (5.11).

31Indeed, if X is a brick with m(X) = 0 it is either in the W family or FλX is
in the W family.

32The order of the six factors is irrelevant since they commute.



N = 2 BPS spectra and quantum monodromy 1289

5.2. Galois coverings, cluster mutations, and finite BPS chambers

The description of the quantum monodromy M(q) in [5] was based on quan-
tum cluster algebras [73, 74] and the mutation algorithm [19, 20] (for the
mathematical side see [75]).

To compare with the standard conventions33 in cluster algebra theory,
we should interchange the two square roots of q, q1/2 ↔ −q1/2; this amounts
to replacing the quantum dilog Ψ(y; q) with the function E(y) ≡ Ψ(−y; q)
[75]. The (initial) Y –seed of the quantum cluster algebra is identified with
set of generators Yi of the quantum torus algebra TQ(q). A quantum cluster
mutation is the composition of elementary mutations at single nodes of the
quiver Q. The elementary quantum mutation at node k ∈ Q of the Y –seed
acts by

i) an elementary mutation of the 2–acyclic quiver with superpotential
Q → μk(Q) [30];

ii) an operation on the Y –seed Qk : TQ → Tμk(Q) given by the ‘right in-
tertwinner’ [73–75]

(5.20) Qk · Yi = E(Yk)φk(Yi)E(Yk)
−1

where φk is defined in Eqn. (5.3).

Explicitly (here Bij is the exchange matrix of Q)
(5.21)

Qk · Yi =

⎧⎪⎨⎪⎩
Y −1
k if i = k

Yi
∏Bki

s=1(1 + q−1/2+sYk) if Bki ≥ 0 in μk(Q)

q−B2
ik/2 YiY

Bik

k

∏Bik

s=1(1 + q1/2−sYk)
−1 if Bki ≤ 0 in μk(Q).

It follows from the arguments of [5, 19, 20] that if there exists a sequence
k1, k2, . . . , ks such that

(5.22) φk1
φk2

· · ·φks
(Yi) = Y −1

π(i),

for some permutation π of the nodes of Q, then the quantum monodromy
is M(q) = K(q)2, where the half–monodromy operator K(q) is defined34 by

33We adopt Keller’s conventions [75]. The change of sign is required to make the
positivity property of cluster algebras manifest (unfortunately it makes the physics
less transparent).

34More precisely: defined up to the commutant of the quantum torus algebra; see
[81] for more details.
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its adjoint action on TQ(q)

(5.23) Ad
(
K(q)

)
= Π−1Qk1

Qk2
· · · Qks

,

where the operator Π implements the automorphism Yi → Yπ(i). We call a
sequence of mutations with the property (5.22) a green sequence for Q.

Comparing with Eqn. (5.20), we see that M(q) is automatically a finite
product of quantum dilogarithms E(Yγ) [5]. Accordingly to §.5, each such
dilogarithm is associated with a BPS hypermultiplet; then the BPS spectrum
is finite consisting precisely of s hypermultiplets. Conversely, all generic fi-
nite chambers arise this way [19, 20]. The combinatorics of quantum cluster
mutations, which act as products of quantum dilogarithms, describes quan-
tum monodromies which satisfy the (genericity condition) of Eqn. (5.8).
In particular, the quantum mutations in Eqn. (5.23) are automatically or-
dered according to the phase of the central charge of the corresponding BPS
particle.

5.2.1. Mutations of 2–acyclic quivers with freely acting automor-
phisms. Now suppose the 2–acyclic finite quiver with superpotential
(Q,W) has a group G of automorphisms, acting freely on the nodes, such
that the G–orbit category of its Jacobian category is again a bounded Jaco-
bian category of a 2–acyclic quiver. Then, for all i ∈ Q and g ∈ G, Bi gi = 0;
moreover, Q has no subquivers of the form i → j → gi. This means that the
elementary quantum cluster mutations Qi and Qgi commute for all g ∈ G,
and we may unambiguously define

(5.24) μGi =
∏
g∈G

μgi, φGi =
∏
g∈G

φgi, QGi =
∏
g∈G

Qgi,

where all factors are distinct since G acts freely. The mutations μGi trans-
form a quiver which is G–symmetric into a quiver which is G–symmetric;
at the level of the quotient quiver, the mutation μGi induces the elementary
mutation at the node Gi (which we also denote as μGi). The same remark
applies to the associated change of basis φGi.

Suppose the covering N = 2 theory has a finite BPS chamber which con-
tains a G–invariant point at which condition (5.8) holds. At the G–invariant
point, the BPS states form complete G–orbits, while all BPS states in a G–
orbit have the same phase. Since the product (5.22) is automatically phase–
ordered, all factors in the same G–orbit should appear grouped together.
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Then we have

(5.25) φk1
φk2

· · ·φks
= φGi1φGi2 · · ·φGit , t = s/|G|.

But the rhs is canonically interpreted as a green sequence for the quotient
quiver, and hence as the BPS spectrum in a corresponding finite chamber
of the quotient theory having s/|G| hypers.

Hence the generic finite chambers behave well under strict–sense Galois
covers of N = 2 theories. We recall an elementary example of Eqn. (5.25)
which reproduce (for finite chambers) the results of §.3.1.1 and §.3.2.4 in
terms of cluster algebra combinatorics. For k | gcd(p, q), consider the gener-
alized SYM cover with simply–laced gauge group G, i.e.

(5.26) CÂ(p, q)�G −→ CÂ(p/k, q/k)�G

whose green sequences (and hence finite BPS chambers) are given in Ap-
pendix B of ref.[16]. From their explicit form, it is pretty obvious35 that green
functions for covering and quotient models are related as in Eqn. (5.25).

5.2.2. Example: BPS spectra of branched covers of genus zero
S[A1] models. As a new example, we consider the Zk Galois covers of
SU(2)2 SYM coupled to a bifundamental described by the quiver in Fig-
ure 7. We note that all mutations at white nodes ◦ (resp. black nodes •)
commute. We then write φ◦, φ• and φ∗ for the product of all mutations
at nodes denoted by the same symbol in Figure 7; they are products of
mutations of the form φZki. We have

(5.27) φ◦φ•φ∗φ◦(Yi) = Y −1
π(i),

where π is the permutation which fixes the nodes ∗ and interchanges the
black/white pairs •, ◦ which are connected by an arrow belonging to an
oriented triangle.

Eqn. (5.27) gives a finite chamber of the covering theory with 7k hy-
permultiplets which is a k–fold cover of the seven hyper finite chamber of
SU(2)2 with a bifundamental.

35The finite chamber of CÂ(p, q)�G consists of (p+ q) copies of the maximal
chamber spectrum of Argyres–Douglas of type G [16], which is trivially a k–fold
cover of the (p+ q)/k copies in the finite chamber of CÂ(p/k, q/k)�G.
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5.3. Zk coverings of SU(2) SQCD: friezes and SL2–tilings

Of course, we are more interested in infinite chambers. The example of §. 5.1
was particular simple since the quantum monodromies of the covering and
quotient theories could be seen as acting on the same Hilbert space and hence
compared directly. We wish to generalize the relation between the cover and
quotient monodromies to the Zk covering of SU(2) SYM coupled to arbitrary
Argyres–Douglas systems of types Dp/k and Dq/k by SYM coupled to AD
systems of types Dp, and Dq, which corresponds to the cover of C–categories

(5.28) CÂ(p, q) −→ CÂ(p/k, q/k), where k | gcd(p, q).

To this end, we take advantage of the description of the quantum mon-
odromy M(q) in terms of quantum cluster algebras [5, 73–75, 77], and of
the existence of linear recursions for cluster variables of affine quivers [78]
which, in the present context, may be phrased in the suggestive language of
friezes and SL2–tilings of the plane [79].

Although the results below will be valid for all covers (5.28), to simplify
the presentation we first assume p = q. We consider the quiver Â(p, p) where
sources and sinks alternate; we denote the sources as ◦a and the sinks as
•a and we take the index a ∈ Z with the mod p identifications ◦a+p ∼ ◦a,
•a+p ∼ •a. The labels are chosen as follows
(5.29)

· · · �� •a ◦a+1
�� �� •a+1 ◦a+2

�� �� •a+2 ◦a+3
�� �� •a+3 · · ·��

Mutations at nodes •a (resp. ◦a) commute between themselves. Following
Eqn. (5.24), we write

μ• =
p∏

a=1

μ•a
, μ◦ =

p∏
a=1

μ◦a
, φ• =

p∏
a=1

φ•a
,

φ◦ =
p∏

a=1

φ◦a
, Q• =

p∏
a=1

Q•a
, Q◦ =

p∏
a=1

Q◦a
.

One has μ•(Q) = μ◦(Q) = Qop and μ◦μ•(Q) = Q. Then

(5.30) φ•
(
Y◦a

Y•a

)
=

(
Y◦a

Y −1•a

)
, φ◦φ•

(
Y◦a

Y•a

)
=

(
Y −1◦a

Y −1•a

)
,
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so that the half–monodromy is Ad(K(q)) = Q◦Q•. Then

(5.31)

Q•
(
Y◦a

Y•a

)
=Q

⎛⎝Y◦a

∏
◦a→•b
in Q

(
1 + q1/2Y•b

)

Y −1•a

⎞⎠ ,

Q◦
(
Y◦a

Y•a

)
=μ•(Q)

⎛⎝ Y −1◦a

Y•a

∏
◦b→•a
in Q

(
1 + q1/2Y◦b

)

⎞⎠
We promote each operator Yi to a sequence of operators {Ỹi,n}n∈Z by setting
Ỹ•a,0 ≡ Y•a

, Ỹ◦a,0 ≡ Y•a
and

(5.32)
Ỹ•a,2n+1 = Q•Ỹ•a,2n, Ỹ•a,2n+2 = Q◦Ỹ•a,2n+1,

Ỹ◦a,2n+1 = Q•Ỹ◦a,2n, Ỹ◦a,2n+2 = Q◦Ỹ◦a,2n+1

One has Ỹ•a,2n+1 = Ỹ −1
•a,2n

and Ỹ◦a,2n = Ỹ −1
◦a,2n−1, so half the operators are

redundant, and we simplify the notation by writing

(5.33) Y•a,n ≡ Ỹ•a,2n, Y◦a,n = Ỹ◦a,2n+1.

In terms of the sequence of operators {Y•a,n, Y◦a,n}a,n∈Z the action of the
quantum monodromy is given by shifts of the index n

(5.34) Ad(M(q)m)Yi,n = Yi,n+2m, i = •a, ◦a.

From Eqn. (5.31), the sequence of operators Yi,n satisfies the quantum re-
cursion relation

(5.35) Yi,n Yi,n+1 =
∏
i→j

(
1 + q1/2Yj,n+1

)∏
j→i

(
1 + q1/2Yj,n

)
,

where all arrows are now referred to the original form of the quiver Q. Hence
the action of the quantum monodromy M(q) on the quantum torus algebra
TQ(q) is described by the solutions to the recursion relations (5.35), see
Eqn. (5.34).

Our goal is to show that the action of the monodromy for the quiver
Â(p, p) is a k–fold cover of the action of the monodromy for the quiver
Â(p/k, p/k). This is the same as saying that the solutions to the recursion
relations (5.35) for Â(p, p) are ‘k–fold covers’ of the solutions for Â(p/k, p/k).
(We could be more general, and consider the k–fold cover Â(p, q) of
Â(p/k, qk); we shall comment on such generalization momentarily). To show
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this property of (5.35), we take advantage from the fact that its quantum
solutions are determined, up to the correct prescription for the operator or-
dering, by the corresponding classical solutions, i.e. by their limit as q → 1
[5]. In this limit, the half–monodromy action for Â(p, p), Yi,n → Yi,n+2 is

given by a rational map C2p K(p)−−−→ C2p and likewise for Â(p/k, p/k) by a

rational map C2p/k K(p/k)−−−−→ C2p/k. Consider the diagonal map

(5.36) Δ: C2p/k −→
k factors︷ ︸︸ ︷

C2p/k ⊕ C2p/k ⊕ · · · ⊕ C2p/k ∼= C2p

which embeds C2p/k into the Zk fixed subset of C2p. To prove the covering
property of the quantum monodromy is equivalent to show that the following
diagram of rational maps is commutative

(5.37)

C(p+q)/k

Δ
��

K(p/k,q/k)
�� C(p+q)/k

Δ
��

Cp+q

K(p,q)
�� Cp+q

This is already evident from the form of Eqn. (5.35); indeed the recursion
relation is invariant under translation of the first index

(5.38) i ≡ •a, ◦a −→ •a+�, ◦a+� ≡ i[
]

for all 
 ∈ N. Then, if the initial values {Y•a,0, Y◦a,0} are chosen to be periodic
in a of period 
, the solution {Y•a,n, Y◦a,n}n∈Z is also periodic in a with the

same period. By definition, {Y•a,0, Y◦a,0} for the Â(p, q) case is periodic of

period p+ q, while for Â(p/k, p/k) of period (p+ q)/k. Eqn. (5.37) then
says that, if we make a special choice for the (p+ q) periodic initial datum
of the Â(p, q) model which is actually (p+ q)/k periodic, we get a (p+ q)/k
periodic solution which we may identify with a solution of the recursion
for the Â(p/k, q/k) quiver. This is confirmed by the explicit solution of the
recursion (5.35) that we now describe.

5.3.1. Solutions of the recursion: SL(2,C)–tiling of the plane. It
is convenient to parametrize the Yi,n in terms of new variables Xi,n (in the
cluster algebraic language, we are re–expressing the Y –seed in terms of the
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X–seed [82]) as

(5.39) Yi,n =
∏
i→j

Xj,n

∏
j→i

Xj,n−1.

In terms of the Xi,n the recursion becomes

(5.40) Xi,n+1Xi,n = 1 +
∏
i→j

Xj,n+1

∏
j→i

Xj,n.

Written in this form, the recursion is well known: it is the frieze of the
opposite quiver Qop [78, 79]. Friezes exist for all acyclic quivers; they are
defined by a source sequence [78]. In the example of the alternating Â(p, p)
the source sequence is (•1, . . . , •p, ◦1, . . . , ◦p). Written in terms of friezes, our

formulae hold for all Â(p, q) covers.
For Â(p, q) the solutions to the frieze recursion (5.40) may be written

in terms of SL2–tilings of the two dimensional square lattice Z2 [79]. Let
R be a commutative ring with unit: an SL(2, R)–tiling of the plane is an
assignment of an element r(i, j) ∈ R to each vertex (i, j) ∈ Z2 of the square
lattice such that each plaquette in the lattice, seen as a 2× 2 matrix, belongs
to SL(2, R), that is,∣∣∣∣ r(i, j) r(i+ 1, j)

r(i, j − 1) r(i+ 1, j − 1)

∣∣∣∣(5.41)

≡ r(i, j) r(i+ 1, j − 1)− r(i+ 1, j) r(i, j − 1) = 1.

The rule to express the solutions to the frieze (5.40) for a quiver Â(p, q)
in terms of SL(2,C)–tilings of the plane is as follows [79]. As in Figure (5.29),
we consider the infinite cover Â(p, q)∞ of the acyclic quiver Â(p, q) obtained
by numbering its arrows by an integer mod p+ q, and then forgetting the
identifications i ∼ i+ p+ q of the nodes. Â(p, q)∞ is then an infinite se-
quence, labelled by integers k ∈ Z, of direct → and inverse arrows ← which
repeat in k with period p+ q. We number nodes in Â(p, q)∞ so that the k
node lays between the (k − 1)–th and k–th arrow. We embed Â(p, q)∞ as a
continuous path L along the links of the square plane lattice according to
the rule that a direct arrow corresponds to a horizontal link and an inverse
arrow to a vertical link, see Figure 10 for the example of Â(p, p) with the
alternating orientation. The path L so obtained is called the frontier of the
SL2–tiling. Sources/sinks of Â(p, q)

∞ are mapped to the corners of L.
The initial condition of the recursion relation is specified by assigning to

the vertex k of the frontier L the complex number Xk,0, which repeats with
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(2, 2)
m5 �� (2, 2)

��
m6

(1, 1)
m3 �� (2, 1)

��
m4

(0, 0)
m1 �� (1, 0)

��
m2

(−1,−1)
m−1 �� (0,−1)

��
m0

�

L
�� ��

m−2

�� ��

Figure 10: The frontier L in Z2 corresponding to the quiver Â(p, p) with the
alternating orientation for any p. E.g. to the point � are associated the se-
quences of initial values X(−1,0), X(0,0), X(1,0), X(2,0), X(3,0), X(4,0), X(5,0) and
of matrices m0,m1,m2,m3,m4,m5.

periodicity p+ q in k, i.e.

(5.42) Xk+p+q,0 = Xk,0

To the k–th link of the frontier L we associate the 2× 2 matrix mk which
also repeats with period p+ q, i.e.mk+p+q = mk,
(5.43)

mk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Xk−1,0 1

0 Xk,0

)
the k–th arrow is direct (≡ horizontal link in L)(

Xk,0 0

1 Xk−1,0

)
the k–th arrow is inverse (≡ vertical link in L).
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The SL(2,C)–tiling with boundary condition Xi,0 is then constructed
by assigning to each vertex (i, j) below the frontier36 the complex num-
ber c(i, j) determined as follows. One connects the given point (i, j) (de-
noted by � in Figure 10) to the frontier L by drawing the vertical and hor-
izontal segments; the intersection points determine a finite segment L(i,j)

in the frontier L, hence a finite sequence of points with attached values
Xk0

, Xk0+1, . . . , Xk0+�+1, as well as of links with associated matricesmk0+1,
mk0+2, . . . , mk0+�+1, see Figure 10 for an example. Consider the subse-
quence obtained by forgetting the first and the last matrices, and let M(i, j)
the product of the remaining ones

(5.44) M(i, j) = mk0+1mk0+2 · · ·μk0+�.

Then

(5.45) c(i, j) =
1∏�

s=1Xk0+s,0

(
1 Xk0,0

)
M(i, j)

(
1

Xk0+�+1

)
,

is the unique SL(2,C)–tiling on the plane which reduces to the assigned
values Xk,0 on the frontier L [79]. This is obvious for the alternating case,
and shown to be true in general in ref.[79].

Let (ik, jk) ∈ Z2 be the point on the frontier L which corresponds to the
node k ∈ Â(p, q)∞. Then the explicit solution of the frieze (5.40), and hence
to the (classical) Y –seed recursion (5.35) is [79]

(5.46) Xk,n = c(ik + n, jk − n), n ∈ Z.

The solution is periodic in k, Xk+p+q,n = Xk,n since the boundary condition

was periodic. Again, the statement is obvious for the alternating Â(p, p) and
true in general by ref.[79].

From the SL2–tiling viewpoint, the Galois covering property of the ac-
tion of the monodromy is just the self–similarity of the SL2–tiling under
‘period rescaling’ (p, q) → (p
, q
) which is an immediate consequence of the
identity of infinite quivers

(5.47) Â(p, q)∞ ≡ Â(p
, q
)∞.

Note that from the explicit solution (5.45) it follows that the variables Xk,n

(and hence Yk,n), as a function of n satisfy a linear recursion relation of

36The pattern above the frontier is symmetric, so we may limit ourselves to the
pattern below it [79].
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finite length [79] (see also [78]). Comparing with Eqn. (5.34), we see that
the monodromy acts by linear recursions, a fact whose physical meaning is
discussed in [77].

5.3.2. Extension to general class S[A1] theories. The previous ex-
plicit construction of the (classical limit of the) action of the monodromy
M(q) in terms of friezes may be extended to all class S[A1] theories; the
extension is particularly easy when all punctures on the Gaiotto surface ΣG

are irregular.
Above we have thought of the Euclidean algebra CÂ(p, q) as a hereditary

algebra; but it is also a string algebra and hence all its indecomposable
modules may be described in the string/band language (see Appendix B).
The points of the lattice Z2 below the frontier (cfr. Figure 10) are naturally
identified (modulo periodicity) with the string modules of CÂ(p, q): to each
point (i, j) we associate the string given by the sequence of direct/inverse
arrows in the corresponding segment of frontier L(i,j) (see Figure 10). Thus
we see that the map

(5.48) (string module) �−→ (frieze variable) ≡ X–seed

is given by replacing each direct (resp. inverse) arrow in the string by a
2× 2 matrix mk having the form in the upper line (resp. bottom line) of
Eqn. (5.43), and multiplying by the appropriate factors for the two end
points of the string. That this prescription works in general (in the string
case) is proven in ref.[? ]. From the sequence if X–seeds we get the sequence
of Y –seeds in the standard way [82]; then the classical action of M(q) is
given by a shift of the Y –seed sequence.

In particular, this shows the covering property for the action of the
monodromy of the dessins d’enfants examples of section 4, whose algebras
are string algebras.

5.4. Covers of N = 2 gauge theories with gauge group G

The above analysis may be extended to the Zk coverings of G gauge theories

(5.49) CÂ(p, q)�G → CÂ(p/k, q/k)�G

discussed in §.3.2. The monodromy of pure SYM also acts by linear recur-
sions (called Q–systems [83, 84]), and the situation looks rather similar to
the one discussed above as a consequence of asymptotic freedom of the as-
sociated N = 2 QFTs [77]. For simplicity, we consider the case p = q and
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use the square form of the quiver Â(p, p)�G. Again, as in §.5.3 we replace
the alternating affine quiver Â(p, p) by its infinite cover Â(p, p)∞, so that
we work with the infinite cover product quiver Â(p, p)∞�G. By standard
manipulations [5, 71], similar to the ones in §.5.3, we reduce the action of
the quantum monodromy in the classical limit to the recursion relation of
the (A∞, G) Y –system

Yk,a,n−1Yk,a,n+1 =
(1 + Yk−1,a,n)(1 + Yk+1,a,n)∏

b∈G(1 + Y −1
k,b,n)

Aab

, k ∈ Z, a ∈ G, n ∈ Z,

(5.50)

where the matrix Aab is related to the Cartan matrix of the (simply–laced)
group G by

(5.51) Cab = 2 δab −Aab.

In this notation the monodromy acts by a shift in n

(5.52) Yk,a,n
M−−−→ Yk,a,n+2h(G)

where h(G) is the Coxeter number of G.
One reduces the Y –system for the infinite cover Â(p, p)∞�G to the Q–

system for the finite quiver Â(p, p)�G just by taking the initial values of
the recursion37, Yk,a,0 and Yk,a,1, to be periodic in k of period 2p. Again, the
identity (5.47) (with p = q) guarantees the covering property for the action
of the monodromies in the Zk covering of G gauge theories (5.49) (i.e. the
analogue of the diagram (5.37) is commutative).

6. BPS spectra of genus one class S[A1] theories

In this section we illustrate the Galois cover of BPS spectra in the context of
the class S[A1] theories [3, 4] defined by a meromorphic quadratic differential
φ2 over a genus one curve E. The techniques of section 2 will allow to describe
the BPS spectra both explicitly and elegantly.

We start by considering the theory T1, p defined by a quadratic differen-
tial with p ≥ 1 second order poles (regular punctures). In some corner of its
parameter space, T1, p is the quiver gauge theory in Figure 11 with gauge
groups SU(2) on the nodes and bifundamental quarks on the links.

37In the physical problem only half the data {Yk,a,0, Yk,a,1} are independent.
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21

22 23 24 · · · 2p

Figure 11: The (gauge) quiver representations of the T1, p theory. Each circle
represents a SU(2) N = 2 SYM sector, while each link stands for a bifun-
damental quark hypermultiplet.

Let d | p. We claim that (at special points in parameter space) the N = 2
theory T1, p is a Galois Zd–cover of the T1, p/d theory. In particular, taking
d = p, T1, p is a Zp–cover of T1, 1, which is N = 2∗ SYM with gauge group
SU(2). Thus we may construct the T1, p BPS spectrum (at Zp symmetric
points) by pulling back the known spectrum of N = 2∗ which has a simple
Lie theoretic description.

The Zp–cover may be described in terms of Gaiotto geometries: the ellip-
tic curves Ep, Ep/d associated, respectively, to T1, p and T1, p/d are isogenous,

(6.1) Ep
φ−−→ Ep/d, deg φ = d.

φ, being an isogeny, is a (holomorphic) covering map and an Abelian group
homomorphism; its kernel is a Zd subgroup of Ep, which is the Galois group
of the cover. The curve Ep/d has p/d regular punctures at z1, · · · , zp/d (which
we assume to be in general position), and their pre–images in Ep form a set of
p regular punctures invariant under the covering group Zd. The T1, p theory
at a Zd symmetric point is specified by a quadratic differential of the form

(6.2) φ2(Ep) = φ∗φ2(Ep/d)

for some quadratic differential φ2(Ep/d) on Ep/d having second order poles
at the zi. For instance, in the special case d = p, the quadratic differential
which specifies the T1, p theory takes the form φ∗(λ℘(z, τ) dz2 + μdz2) for
some constants λ, μ.

In the d = p case we may see the Gaiotto geometry as a pair (Ep, C)
where Ep is an elliptic curve and C ⊂ Ep is a Zp subgroup. As it is well
known [60], the isomorphism classes of such pairs, called enhanced elliptic
curves for Γ0(p), are parametrized by the upper half plane H modulo the
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congruence modular subgroup Γ0(p)

τ ∼ aτ + b

cτ + d
, τ ∈ H,(6.3)

where (
a b
c d

)
∈ Γ0(p) ≡

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣∣ c = 0 mod p

}
.(6.4)

A given point τ in the modular curve Y0(p) ≡ H/Γ0(p) corresponds to the
(isomorphism class) of the Zp invariant Gaiotto geometry given by a complex
torus of periods (1, τ) with regular punctures at the p points zk = k/p (k =
0, 1, . . . , p− 1). The cyclic covering map φ in Eqn. (6.1) then is simply the
map between the tori of periods (1, τ) and (1, pτ) given by multiplication
by the integer p, z �→ p z.

6.1. Categorical covers and duality frames

Let us consider the particular quiver Qp in the mutation class of the T1, p

model
(6.5)

◦a−1

����

◦a

Ba

��

Aa

��

◦a+k

����

∗a−2·········

""

∗a−1

##
ξa

$$

∗a

ηa

��

·········∗a+k−1

��

∗a+k

%%

·········

•1

%% &&

•a
ξ∗a

''

η∗a

��

•a+k

""��

where the index a in the node labels takes value in Z with periodic identifi-
cation mod p

(6.6) ∗a+p ∼ ∗a, ◦a+p ∼ ◦a, •a+p ∼ •a.

In the usual Lagrangian regime, where T1, p is the weakly coupled gauge
theory in Figure 11, we identify each Kronecker subquiver ◦a ⇒ •a of Qp

with a vertex of the gauge quiver, and the node ∗a with the flavor symmetry
associated to the a–th bifundamental link. This is not the situation we wish
to study: in this paper we are mainly interested in other ‘strongly coupled’
regimes of the T1, p model which have a nicer Galois cover interpretation.38

38Of course, the ordinary weak coupling may also be seen as a Galois cover of
T1, 1.
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The quiver Qp has a Zp automorphism group, acting freely on the nodes,
given by

(6.7) Zp � k : (◦a, •a, ∗a) �−→ (◦a+k, •a+k, ∗a+k).

Without loss of generality39 we may choose the free superpotential param-
eters λa ∈ C× associated to the punctures (see [19, 48]) to be all equal,
λa = λ �= 0; then the superpotential

(6.8) Wp =
∑
a∈Zp

(
ξ∗aAaξa + η∗aBaηa + λ η∗aAaηa ξ

∗
a+1Ba+1ξa+1

)
is also Zp–invariant, and the group Zp acts by automorphisms of the
(bounded) Jacobian category Jp ≡ CQp/(∂Wp). This group acts freely on
the objects of Jp. If d | p, the category Jp is a Galois cover of the category
Jp/d with Galois group Zd � Zp/Zp/d. In particular, Jp is a Zp–cover of the
category J1 corresponding to SU(2) N = 2∗ whose (unique) quiver is the
Markov quiver Q1

(6.9)

◦

����

∗

�� ��

•

�� ��

endowed with the superpotential W1. The three nodes ◦, •, ∗ of Q1 corre-
spond, respectively, to the three orbits of Zp on the nodes of Qp i.e. {◦a},
{•a}, and {∗a}.

A stability function on Q1 is specified by three points in the upper half–
plane, Z◦, Z•, and Z∗. The pulled back central charge on Qp is then

(6.10) Z◦a
= Z◦, Z•a

= Z•, Z∗a
= Z∗ for all a = 1, 2, . . . , p.

Of course, this central charge is very non–generic; the corresponding BPS
spectrum is much simpler than the one in generic BPS chambers. The choice
(6.10) is nevertheless technically natural [22], since it corresponds to an
enhancement of symmetry by Zp.

For the N = 2∗ theory all BPS chambers are essentially equivalent, up
to the action of the Z3 automorphism of the category J1 and the SL(2,Z)

39The BPS spectrum is independent of the λa as long as they are not zero.
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S–duality group. However these equivalent regimes pull back to physically
inequivalent chambers for the T1,p theory, so the covering trick allows us to
explore several distinct physical situations by a single computation.

A SL(2,Z)–frame for N = 2∗ is specified by the vector multiplet which
plays the role of weakly coupled W boson, or, equivalently, by declaring
which P1 family of bricks of modJ1 is associated to the W boson. The
most common choice (the ‘minimal’ W ) is the family of regular bricks with
support on one of the three Kronecker subquivers of the Markoff quiver Q1.
However this is not the most canonical choice [21]; we shall work with the
‘canonical’ choice of W i.e. the family of modules W (μ : λ)

(6.11) W (μ : λ) :

C

(01)

��

(10)

��

C
0

��

0

��

C2

(μ 0)

��

(0 λ)

�� , (μ : λ) ∈ P1.

In terms of the central charge, the stability of W (μ : λ) requires

(6.12) argZ∗ < argZ• < argZ◦.

In this S–duality frame the magnetic charge of a module X is

(6.13) m(X) = dimX◦ − dimX∗.

In the ‘minimal’ W frame, the Zp–cover produces the weakly coupled
Lagrangian regime of the T1, p theory: we have p light40, mutually local,
W bosons associated to the p Kronecker subquivers of Qp, and the only
other states which are local relatively to all W bosons are p bifundamental
hypermultiplets. All other BPS particles are magnetically charged.

On the contrary, the Zp–cover of the ‘canonical’ W frame leads to a
strongly coupled version of T1, p with a single light (i.e. weakly coupled) W
boson which is magnetically charged with respect to all the original La-
grangian SU(2) groups. The stable W boson is the pull back of the one for

40By a light state in the covering theory we mean a particle whose mass is
bounded as the coupling constant g2YM of the quotient N = 2∗ theory goes to zero
(with respect to the chosen S–duality frame).
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N = 2∗ 41. The charge vector of the unique light W is

(6.14)
∑
a∈Zp

(
e◦a

+ 2 e•a
+ e∗a

)
,

and the magnetic charge with respect to the associated weakly coupled
SU(2) gauge group

(6.15) m(X) =
∑
a∈Zp

(
dimX◦a

− dimX∗a

)
.

The BPS spectrum contains only finitely many hypermultiplets which are
local with respect to this W boson; in fact the stable BPS states with zero
cover magnetic charge are in one–to–one correspondence with the BPS states
of two copies of the Argyres–Douglas system of typeD2p (the correspondence
does not preserve the charge vectors and the Dirac pairing, so the theory
does not look, in this frame, SU(2) SYM coupled to two D2p AD systems).

Geometrically, the pair (Ep, C) which corresponds to this ‘strongly cou-
pled’ regime is given, modulo the congruence modular group Γ0(p), by a
τ ∈ Y0(p) in a neighborhood of the cusp at infinity, τ = i∞. The usual weak
coupling is the cusp at the origin τ = 0.

For N = 2∗ with the central charge (6.12), all stable modules have van-
ishing arrows ∗ → ◦, i.e. are modules of the triangular factor J tr

1 of J1 spec-
ified by the bi–quiver

(6.16)

◦

����

∗

�� ��

•

�� ��

Thus we have a triangular chamber, and the BPS spectrum is controlled by
its Tits form. In particular, the spectrum may be described in Lie theoretic
terms: the charge vectors of BPS particles are roots of the toroidal Lie

algebra A
(1,1)
1 .

The pull back of this triangular chamber for N = 2∗ produces a trian-
gular chamber for T1, p. Note that acting with a Z3 automorphism of the

41This property fails for the ‘minimal’ W frame. The point is that the isotropy
subgroup of the cover light W ’s in the ‘minimal’ frame, GWmin

, is trivial, whereas
for the canonical case GWcan

≡ G.
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category J1 and then pulling back to Jp, we get non–isomorphic triangular
factor of Jp (however their Tits forms are Z–equivalent).

We claim that by pulling back the description of the N = 2∗ spectrum

in terms of the root system A
(1,1)
1 , we get a description of the BPS spectrum

of T1, p (in our chamber) in terms of root systems of extended affine Lie
algebras. To show the claim, we begin by checking the triangularity of the
Zp–symmetric chamber of T1, p.

6.2. Triangularity of the Zp–symmetric BPS spectra

The first observation is that we may replace the Jacobian algebra Jp of the
superpotential in Eqn. (6.8) with the Jacobian algebra42 J g

p obtained by
forgetting the order six terms in Wp. This is an instance of the gentling
trick of Appendix B.3: each node ∗a corresponds to a flavor SU(2) which is
gaugeable. We may weakly gauge all the SU(2)p flavor symmetry by coupling
p spectator SU(2) SYM sectors and compute the BPS spectrum of the fully
gauged theory. In the limit of vanishing spectator gauge coupling, gspec →
0, the BPS spectrum consists of heavy states carrying spectator magnetic
charge, which decouple at gspec = 0, and states of zero spectator magnetic
charge which survive the decoupling limit. The surviving states consist of
the BPS spectra of the several decoupled sectors, i.e. the original model with
SU(2)p flavor symmetry plus the p spectator W bosons.

At the level of the quiver with superpotential the spectator gauging of
the a–th flavor SU(2) modifies the quiver (6.5) at the node ∗a by splitting

it into two nodes connected by an arrow �a
Ka−−−→ ∗a

(6.17)
◦a

Ba

��

Aa

��

◦a+1

Ba+1

��

Aa+1

��

∗a

ηa

��
ξa+1

$$

•a
η∗a

��

•a+1

ξ∗a+1

''

spectactor gauging−−−−−−−−−−−−−→

◦a

Ba

��

Aa

��

◦a+1

Ba+1

��

Aa+1

��

�a

ηa





Ka �� ∗a

ξa+1

$$

•a
η∗a

��

•a+1

ξ∗a+1

''

while the new superpotential is given by Eqn. (6.8) with the order six terms
omitted. The BPS states of the fully gauged theory which have bounded
masses as gspec → 0 correspond to the stable modules of the Jacobian algebra
of the modified quiver such that all new arrows Ka are isomorphisms. Being

42The algebra J g
p is not finite dimensional. However the relevant modules are in

facts modules of a finite–dimensional string algebra [21], as the argument in the
text shows.
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an isomorphism, Ka identifies nodes �a and ∗a, so that the relevant modules
may be seen as stable J g

p –modules, i.e. modules of the original quiver with
the purely cubic superpotential. This light sector of the fully gauged theory
should contain the BPS spectrum of the original model plus p spectator W
bosons.

In J g
p the relations take a very simple form

(6.18) Aaξa = ξaξ
∗
a = ξ∗aAa = Baηa = ηaη

∗
a = η∗aBa = 0 ∀ a.

Let X be a stable module of J g
p which is not a spectator W . We write

X|Kra for the Kr–module obtained by restriction to the a–th Kronecker sub-
quiver. By Eqn. (2.3) we have

(6.19) X|Kra = pa ⊕ ta ⊕ qa.

We claim that

(6.20) η∗a
∣∣
qa

= ξ∗a
∣∣
qa

= 0, and dually Im ηa, Im ξa ⊂ ta ⊕ qa.

This is a consequence of the relations (6.18) and the fact that, restricted to qa
(resp.pa) the arrows Aa, Ba are surjective (resp. injective). From Eqn. (6.20)
it follows that each qa (resp. pa) is a submodule (resp. quotient) of X. Since
X is stable

(6.21) argZ(qa) < argZ(X) < argZ(pa),

which is impossible in view of (6.12) unless, for each a, either qa or pa
vanishes. The pulled back central charge (6.12) corresponds to a special Zp

symmetric point such that

(6.22) argZ(pa) < argZ(qb) for all a, b.

Then, if pa �= 0 (resp. qa �= 0) for one a then qb = 0 (resp. pb �= 0) for all
b ∈ Zp. In the next subsection we shall relax the condition (6.22) which is
too strong from a physical perspective.

From §.2.1.2 we have ta = ⊕sRns
(λs). Comparing the relations (6.18)

with the structure of Rns
(λs), we conclude that if ta contains a direct sum-

mand Rns
(λs) with λs �= 0,∞ then X belongs to the P1 family of a mag-

netically charged vector multiplet with support on the a–th Kronecker sub-
quiver43 Kra. For all other stable modules λs is equal to 0 or ∞. Since X

43In the weak coupling Lagrangian regime, a state with these quantum numbers
would be interpreted as the W boson of the a–th gauge group.
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is a brick, there are no direct summands Rns
(0), Rns

(∞) with ns > 1. In-
deed, let π and (·)| be the projection and restriction to the direct summand
Rn≥2(∞). Taking into account the relations (6.18), in presence of such a
summand we have the situation
(6.23)

Cn≥2

Id

��

Aa 
=0

��

∗a−1

πξa
&&

∗a

0

''

Cn≥2
ξ∗a|

##

0

$$
with Aaξa = ξ∗aAa = 0, and Aa nilpotent,

which shows that multiplication by Aa at the nodes of the a–th Kronecker
subquiver and by 0 elsewhere is a non–zero nilpotent endomorphism. Then
ta is the direct sum of copies of R1(0) and R1(∞). In view of (6.18), for each
R1(∞) summand we have a situation as in (6.23) with n = 1 and Aa = 0
(for R1(0) the situation is symmetric with ξa ↔ ηa, ξ

∗
a ↔ η∗a). We distinguish

three possibilities

a) Rq
1(∞) : ξ∗a| = 0, b) Rp

1(∞) : πξa = 0, c) Rr
1(∞) : πξa, ξ

∗
a| �= 0.(6.24)

In Appendix D we show that no stable representation (which is not a specta-
tor W ) contains summands of the form c). Rq

1(∞), Rq
1(0) are subrepresenta-

tions of X while Rp
1(∞), Rp

1(0) are quotients. Arguing as in Eqn. (6.21), we
get a contradiction if X contains (even at different Kroneckers) summands
of both kinds, Rq

1 and Rp
1; we also get a contraction if we have non–trivial

summands of the form Rq
1 and pa or Rp

1 and qa. Hence, for all a ∈ Zp, X|Kra
is either: 1) a direct sum of a preinjective module qa and regular modules
of the form Rq

1(∞), Rq
1(0), or 2) a direct sum of a preprojective module pa

and regular modules of the form Rp
1(∞), Rp

1(0).
Consider first the possibility 1). Suppose that X∗a

�= 0 for some a. X
has a quotient Y with support on ∗a; since argZ∗ ≤ argZ(M) for all inde-
composable modules M , with equality iff M is the simple with support on
∗a, we deduce that X, being stable, is such a simple module. On the other
hand, if X∗a

= 0 for all a, X, being indecomposable, has support on a single
Kronecker subquiver. In both cases the arrows ξa, ηa vanish for all a.

In the possibility 2) the arrows ξa, ηa vanish by definition. Then, with our
present choices, we get a triangular chamber with respect to the triangular
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factor algebra defined by the bi–quiver
(6.25)

◦1

����

◦2

B2

��

A2

��

◦p

����

∗p

��

∗1

��
ξ2

��

∗2

η2

��

· · · ∗p−1

$$

∗p

��

•1

�� ��

•2
ξ∗2

��

η∗2

��

•p

��''

The covering BPS spectrum is then controlled by the Tits form of the above
triangular algebra which happens to be the Tits form of an extended affine
Lie algebra of nullity p+ 1. We describe these Lie theoretical aspects in
the Subsection 6.4. Before going to that, we have to discuss the physical
significance of the above computation.

6.3. Physical interpretation: perturbing away from the Zp–point

Although the above analysis of the Zp–symmetric point is mathematically
robust, its physical significance may be questioned on the grounds that, at
such a point, there are stable modules with the same BPS phase, argZ(X),
which are not mutually local. For the present class of models, this is an
automatic consequence of Zp–symmetry, which implies special alignments
of the BPS phases in the Z–plane.

To get the physically sound interpretation of the mathematical result,
we have to slightly perturb this alignment in the Z–plane to a situation in
which any two stable representations, X1, X2 with argZ(X1) = argZ(X2)
are mutually local, i.e. 〈dimX1,dimX2〉D = 0. Of course, there are many
possible directions in which we may perturb, which correspond to different
BPS spectra, because the Zp points lay at the intersection of several walls
of marginal stability.

The perturbations which lead to BPS spectra which are simple to de-
scribe are the ones which keep the chamber triangular (in the broader sense).
We start from these perturbations, which are rather special. First of all, we
require the phases to satisfy the order

(6.26) argZ∗a
< argZ•b

< argZ◦c
, for all a, b, c.

In addition to this phase–order condition, to ensure that no Rr
1 summand

appears, we need a few special alignments in Z–plane (cfr. Appendix D)
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(6.27) arg(Z◦a−1
+ Z•a−1

+ Z∗a
) = arg(Z◦a

+ Z•a
+ Z∗a

), a = 1, 2 . . . , p.

Calling ε the overall size of the perturbation, we remain free to choose the
complex numbers Z∗a

= Z∗ +O(ε), Z•a
= Z• +O(ε), and real numbers ta =

1 +O(ε) (a = 2, 3, . . . , p), such that

Z◦a
= ta Z◦a−1

+ (ta Z•a−1
− Z•a

) + (ta − 1)Z∗a
(6.28)

for a ≥ 2, while Z◦1
= Z◦.

In this perturbed chamber, the relation (6.22) does not hold in general; it
may be violated for those pairs a, b such that

(6.29) arg(Z◦a
+ Z•a

) > arg(Z◦b
+ Z•b

),

and in this case only if the dimensions of both summands pa and qb are
parametrically large of order O(1/ε). At any rate, it remains true (by con-
struction) that we have no Rr

1 summands, and hence, for all a, X|Kra is
either: i) a direct sum of pa and copies of Rp

1, or ii) a direct sum of qa and
copies of Rq

1. We attach a sign εa(X) = ±1 to the a–th Kronecker subquiver
to distinguish the two possibilities: for case i) we set εa(X) = +1, while for
case ii) we set εa(X) = −1. Then if ε(X)a = +1 (resp. εa(X) = −1) X|Kra
is a quotient (resp. submodule) of X, and the arrows ξa, ηa (resp. ξ∗a, η∗a)
vanish. So all (non–spectator) stable brick X is triangular with respect to a
X–dependent triangular factor T [εa(X)] of J whose Tits form q(x; {εa(X)})
is Z–equivalent to the Tits form q(x) of the bi–quiver (6.25)

(6.30) q(x◦a
, x•a

, x∗a
; {εa}) = q(εa x◦a

, εa x•a
, x∗a

).

However, stable non–spectator modules X having εa(X) = −1 for some a,
i.e. which are not modules of the original triangular factor (6.25), have
charges, hence masses, parametrically large of order O(1/ε). Note that these
very heavy states do not form full Zp–multiplets as do states with masses
which remain bounded as ε → 0. On the other hand, after the perturbation,
the stable states with the same BPS phase are mutually local; indeed, choos-
ing the Zi to be Q–linearly independent, the only alignments are those in
Eqn. (6.30) which correspond to mutually local BPS states.

In conclusion, in this class of perturbed chambers, BPS spectrum is still
controlled by the Tits form q(x), and hence described by the root system of
an extended affine Lie algebra, and it consists of two distinct sectors:
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1) states with masses O(1) which form Zp–multiplets (with O(ε) mass
splittings inside the Zp–multiplets). They have εa(X) ≡ +1 for all a;

2) parametrically heavy states, m = O(1/ε) which do not form complete
Zp–multiplets. In this case some (but not all) signs {εa(X)}pa=1 must
be equal −1.

The BPS spectrum at the Zp–point computed in §.6.2 corresponds to the
sector 1) of particles whose mass remains bounded as we switch off the
perturbation. For ε ∼ 0, the physics of the perturbed chamber is the same
as the one obtained by taking our covering computation at the Zp–symmetric
point at its face level (up to O(ε) corrections); that computation is exact
asymptotically as ε → 0. This clarifies the precise physical meaning of the
spectrum computed at the Zp–symmetric point.

If we consider a more general perturbation of order ε, where the equali-
ties (6.27) hold only up to O(ε) corrections, it is not longer true that we get a
triangular chamber, and hence the full spectrum cannot be simply described
in terms of root systems of Lie algebras. Nevertheless, it is easy to see that
it remains true that the BPS spectrum decomposes in two sectors: a trian-
gular sector with masses of order O(1) as ε → 0, which form representations
of Zp and coincides with our ‘mathematical’ spectrum at the Zp–point, and
a second sector, whose detailed structure is rather involved, but which con-
tains only particles with parametrically large masses O(1/ε) which do not
form Zp representations. Besides being the result of the analysis of module
stability, this picture is physically very natural, and it is expected to hold
quite in general.

The situation is analogue44 to weak coupling in N = 2 gauge theories;
also there as ε ≡ g2YM → 0 the spectrum decomposes in two parts: states with
bounded masses which form complete representations of the gauge group
(which is interpreted as a flavor symmetry in the limit) and a complicated
dyonic sector whose masses are of order O(1/ε).

The physical conclusion, is that we may trust the BPS spectrum com-
puted at a Zp–point by pulling back the spectrum of the quotient theory. In
any nearby BPS chamber the physical spectrum is given by the pull back
one plus essentially decoupled super–heavy states. The decoupling of the
heavy junk is exact asymptotically as ε → 0.

44In fact this is more than just an analogy.
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6.4. Relation with extended affine and Kac–Moody Lie algebras

Let us look at the Tits form q of the triangular algebra associated to the
bi–quiver (6.25). From §.2.3.3, q is the integral quadratic form on Γ � Z3p

(6.31) q(x◦a
, x•a

, x∗a
) =

1

2

p∑
a=1

((
x•a

−x◦a
−x∗a

)2
+
(
x•a

−x◦a
−x∗a−1

)2)
.

Being a sum of squares, the Tits forms is manifestly positive semi–
definite. By §.2.3.2, a positive semi–definite Tits form is uniquely identified,
up to Z–equivalence, by its type gr and nullity κ. The form in Eqn. (6.31) has
type A2p−1 and nullity κ = p+ 1. To see this, note that there is an element of
rad q associated to each Kronecker, i.e. x◦a

= x•a
= 1 and zero elsewhere, so,

working mod rank q, we may set x◦a
= 0 for all a. q reduces to the Tits form

of the Kac–Moody algebra whose Dynkin graph is obtained by deleting all ◦a
nodes in the quivers: (6.25) reduces to the affine Dynkin graph A

(1)
2p−1. Being

affine this Lie algebra has Tits form of nullity 1 (and type A2p−1). Hence the
nullity of the Tits form q is one more the number of Kronecker subquivers;
rad q is generated by the dimension vectors δa = e◦a

+ e•a
of the p W bosons

of the usual weak coupling plus the dimension vector
∑

a(e∗a
+ 2e•a

+ e◦a
)

of the W boson which is light in our pulled–back triangular regime.
This result is most conveniently stated in terms of Lie algebras. The

Tits form in Eqns. (6.31) is identified with the Tits forms of the extended

affine Lie algebra A
[p+1]
2p−1 . x ∈ Zκ+r is a root iff q(x) ≤ 1 and its support is

connected. A root x is real iff q(x) = 1, and imaginary iff q(x) = 0. The
imaginary roots form the sublattice rad q. From the recursive construction,
Eqn. (2.25), it is clear that the real roots have the form α+ δ where α is a
root of the Lie algebra gr and δ is an element of the lattice of imaginary roots
rad q. Equivalently, we may separate the generator δ ∈ rad q associated to the
light W , δ =

∑
a(e∗a

+ 2e•a
+ e◦a

), and write the roots in the form α̂n + ρ

where α̂n = α+ nδ is a root of the affine Lie algebra g
(1)
r and ρ ∈ rad q/Zδ.

6.4.1. The GIM Lie algebra of the g = 1 S[A1] models. We write

explicitly the Chevalley generators of the extended affine Lie algebra A
[p+1]
2p−1

associated to the triangular factor (6.25). We write αi for the simple roots of
A2p−1, αθ ≡

∑
i αi for its maximal root, and {Ei, Fi, Hi}2p−1

i=1 for its Cheval-
ley generators. The Chevalley generators of Lp are
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(6.32)

e◦a
= E2a−1, f◦a

= F2a−1, h◦a
= H2a−1 a = 1, 2, . . . , p

e∗a
= E2a, f∗a

= F2a, h∗a
= H2a, a = 1, 2, · · · , p− 1

e∗p
= Fθ t0, f∗p

= Eθ t
−1
0 , h∗p

= −Hθ + central

e•a
= F2a−1 ta, f•a

= E2a−1 t
−1
a , h•a

= −H2a−1 + central a = 1, 2, . . . , p,

where t0, t1, . . . , tp are coordinates on the torus (C∗)p+1. One checks that
all the Serre–Slodowy relations (2.18)–(2.21) following from the Dynkin bi-
graph (6.25) are satisfied.

6.4.2. Dyonic towers, Kac–Moody algebras, and Schur roots. From
the discussion around Eqn. (2.16) and the above analysis it follows that the
stable Jp-modules X are controlled by the Tits form q. Hence, at weak
coupling, the charge vectors dimX of the BPS particles satisfies

(6.33) q
(
dimX◦a

, dim•a
, dimX∗a

)
=

{
1 for hypermultiplets

0 vector multiplets,

and there are no higher spin BPS states since q is semi–definite. In view
of §.6.4, the quantum numbers of the hypermultiplets (resp. vector multi-
plets) are real roots (resp. imaginary roots) of the extended affine Lie alge-

bra A
[d+1]
2d−1 . More precisely, the charge vectors should be Schur roots for the

appropriate orientation of the bi–quiver.
Let δa = e•a

+ e◦a
. δa ∈ rad q, so Γel ≡

⊕
a Zδa is a sublattice of rad q;

in the Lagrangian regime, Γel would be identified with the lattice of the
gauge electric charge. The Tits form q on Γ induces a quadratic form q on

the quotient Γ/Γel which is the Tits form of the Kac–Moody algebra A
(1)
2p−1

whose Dynkin graph is obtained deleting the ◦a nodes.
Let x ∈ Γ the charge vector of a BPS particle. Forgetting its Lagrangian

electric charge, amounts to considering the residue class x ∈ Γ/Γel. The re-
duced charge vector x of a stable BPS particle (in our pulled back chamber)

is necessarily a Schur45 root of A
(1)
2p−1, real roots being hypermultiplets and

imaginary ones vector multiplets. Considering the reduced charge vector x,
instead of x, amounts to forgetting the information about the (Lagrangian)
electric charge of the state, while keeping the information about its (La-
grangian) magnetic and flavor charges, (ma, fi). This reduced information is

45The notion of Schur root depends on the orientation of the Dynkin graph of
A

(1)
2p−1. Here the orientation is the one of the Dynkin quiver obtained from the

original quiver by collapsing the Kronecker subquivers to a single node •a and
deleting the dashed arrows.
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encoded in the Schur roots of A
(1)
2p−1. The condition of the roos being Schur

gives restrictions that we now discuss.

The reduced charge vector is a Schur root of A
(1)
2p−1. Let αi, i = 0, 1, . . . ,

2p− 1 be the simple roots of the Kac–Moody algebra A
(1)
2p−1. The element

of the affine root lattice

γ(ma, fa) :=

p−1∑
a=0

((
dimX•a

− dimX◦a

)
α2a + dimX∗a

α2a+1

)
(6.34)

≡
p−1∑
a=0

(
−ma α2a + fa α2a+1

)
,

is a positive root of the Kac–Moody algebra A
(1)
2p−1. In (6.34) we use the

nomenclature for the different charges which is standard at the ordinary
weakly coupled Lagrangian point, i.e.ma is the a’th Lagrangian magnetic
charge and fa is the Lagrangian a–th quark flavor charge. More precisely,
γ(ma, fa) is a Schur root for the orientation of the Â(p, p) quiver in which
the 2a–th node is a source. The Ringel defect [21] of this affine quiver is

(6.35) μ(ma, fa) = −
∑
a

(
fa +ma

)
,

and the list of the Schur roots is [31]:

i) the minimal imaginary root δ =
∑

i αi which corresponds to a dyonic
vector–multiplet;

ii) the real positive roots with μ(ma, fa) �= 0;

iii) the real positive roots with μ(ma, fa) = 0 and |ma| ≤ 1, fa ≤ 1 for
all a.

The above are necessary conditions for a reduced charge vector γ(ma, fa)
to correspond to quantum numbers of stable BPS dyons. For each γ(ma, fa)
satisfying these conditions, we need to determine the sets {ea} of Lagrangian
electric charges such that (ea,ma, fa) are the quantum numbers of a stable
BPS state. A convenient way of working is to reduce to the stability problem
for a representation of the effective Â(p, p) with the orientation specified by
the εa(X)’s and an effective central charge Zeff({ea}) which depends on the
electric charges {ea}. A representation of Â(p, p){εa} with dimension vector

(|ma|, fa) which is stable for Zeff({ea}) corresponds to a (ea, |ma|, fa) BPS
state.
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6.5. Irregular punctures

The analysis may be easily extended to class S[A1] theories with p irregular
punctures corresponding to poles of degree s+ 1 of the quadratic differential
φ2 where s > 1 [8]. In one ‘weakly coupled’ corner of its parameter space,
this model is SU(2)2p N = 2 SYM coupled to p half tri–fundamentals and
p copies of the Argyres–Douglas systems of type Ds+1 [8]. Here we discuss
a different regime which has a nice Galois cover interpretation.

The Zp–symmetric form of the quiver, Qp,s, is obtained from Qp by

replacing each node ∗a with a As subquiver ∗a,1
Ka,1−−−→ ∗a,2

Ka,2−−−→ · · · Ka,s−2−−−−→
∗a,s−1

Ka,s−1−−−−→ ∗a,s, i.e.

(6.36)

· · · ◦a+1

Ba+1

��

Aa+1

��

◦a+2

����

∗a,1

''

Ka,1
�� · · · Ka,s−1

�� ∗a,s

ξa+1

&&

∗a+1,1

ηa+1

%%

�� · · · �� ∗a+1,s

""

· · ·

''

· · ·

$$

•a+1

η∗a+1

""

ξ∗a+1

##

•a+2

$$%%

where again the index a ∈ Z is periodically identified a ∼ a+ p. Qp,s is en-
dowed with the superpotential

(6.37) Wp,s =
∑
p∈Zp

(
Aaξaξ

∗
a +Baηaη

∗
a

)
.

Clearly we have a free action on the nodes of the Zp automorphism group
of the Q1,s quiver

(6.38) Zp�k : (◦a, •a, ∗a,j) �−→ (◦a+k, •a+k, ∗a+k,j) a∈Zp, j = 1, 2, . . . , s,

which induces a Zp automorphism of the Jacobian category Jp,s =
CQp,s/(∂Wp,s). The orbit category Jp,s/Zp is the Jacobian category
CQ1,s/(∂W1,s), where Q1,s is the quiver

(6.39)

∗3 · · · · · ·

((

∗2

))

◦

����

∗s−1

**∗1

++
""

∗s

��

•

�� ��
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By comparing with the previous s = 1 case, we see that in the regime

(6.40) argZ∗i
< argZ• < argZ◦,

the arrows with target ◦ vanish. Hence we have a triangular chamber with

Tits form the one of the toroidal Lie algebra A
(1,1)
s .

The Zp cover of this chamber is also triangular. Its BPS spectrum is

controlled by the Tits form of the extended affine Lie algebra A
[p+1]
p(s+1)−1 in

agreement with Fact 2 of §. 2.3.3.
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Appendix A. Nullity κ and type gr of class S[A1]
triangular factors

Here we prove Fact 2. Let Q be a triangulation quiver of a surface Σ having
genus g, p punctures, b boundaries (with p+ b > 0), and 
i ≥ 1 marks on
the i–th boundary. The number of nodes of Q is

(A.1) n ≡ 6(g − 1) + 3(p+ b) +
∑
i


i = −3χ+
∑
i


i,

where χ is the Euler characteristic of Σ. We write nb for the number of
blocks of Type b in the decomposition of the quiver Q. We consider a good
biquiver obtained by dashing some arrows of Q as described in §.2.3.3.

From Figure 1, a good bi–quiver block decomposition defines a group
homomorphism

β : Zn → L ≡ Zn0+nI+nII ⊕ L
(nIII+nIV )
2 ⊕ Z3nV(A.2)

β : xi �→ (ya, wm,1, wm,2, zs,1, zs,2, zs,3),(A.3)

where L2 is the rank 2 lattice L2 = {(w1, w2) ∈ Z2 | w1 = w2 mod 2}, such
that the Tits form q(xi) of the bi–quiver is the pull–back

(A.4) qA = β∗q
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of the Q–quadratic form on the lattice L

(A.5) q =
1

2

∑
a
y2a +

1

4

∑
m

(
w2
m,1 + w2

m,2

)
+

1

2

∑
s,a

z2s,a.

Lemma. One has

(A.6) rankL = χ+ n

Proof. The number of nodes in Q, n, is half the total number of white nodes
in the several blocks plus the number of black ones

n ≡ −3χ+
∑

i

i =

1

2
(n0 + 2nI + 3nII + nIII + 2nIV + nV )(A.7)

+ (2nIII + 2nIV + 4nV ),

while

(A.8)
∑

i

i = 2n0 + nI + nIII ,

since (cfr. Table 1) a Type 0 block corresponds to a triangle with two sides
on the boundary, a Type I block to a triangle with one side on the boundary,
and Type III to a punctured di–gon with one side on the boundary, while
the other block Types correspond to internal ‘puzzle pieces’ in the ideal
triangulation [47]. Then

n+ χ = n− 1

3

(
n−

∑
i

i

)
(A.9)

= (n0 + nI + nII) + 2(nIII + nIV ) + 3nV ≡ rankL.

Since the Q–quadratic form q is positive definite, the index of nullity of
the extended affine Lie algebra having Tits form q(xi) is

(A.10) κ = n− rankQ β ≡ −χ+ dimQ cokerβ,

and κ = −χ iff β is surjective (over Q). Let β be the (n+ χ)× n matrix giv-
ing the Q–linear map extending (A.2). One has dimQ cokerβ = dimQ kerβ t.
From Figure 1 it is clear that, for a connected bi–quiver, kerβ t cannot be
non zero whenever in the block decomposition of Q there are black nodes,
that is, blocks of Types III, IV , V . �
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The case nIII =nIV =nV =0. In this case a non–zero zero–eigenvector
of βt, (y1, . . . , yn+χ) should satisfy |ya| = |yb| for all a, b. Hence cokerβ is at
most one–dimensional and κ at most−χ+ 1. Suppose then that κ = −χ+ 1.
By flipping the sign of some ya, if necessary, we reduce to the situation that

q =
1

2

∑
a
y2a(A.11)

imβ =
{
(ya) ∈ Qn+χ

∣∣ y1 + y2 + · · ·+ yn+χ = 0
}
,(A.12)

and from the classification of the non–negative forms we know that for −χ ≥
0 the form q|imβ should be isometric to the Tits form of an affine Lie algebra
of type either A or D, while for χ = 1 to the Tits form of a finite–type Lie
algebra of type A or D. In both cases this condition is satisfied by the type
A algebra with isometries

− χ ≥ 0 yi = xi − xi+1, xi+n+χ ≡ xi(A.13)

− χ = −1 xi = yi − yi+1, i = 1, . . . , n,(A.14)

but not byD type. We conclude that κ = −χ+ 1 implies A type. Conversely,
κ = −χ implies D–type.

Appendix B. Quick review of strings and bands

B.1. Indecomposable modules of string algebras

A finite–dimensional algebra A is called a string algebra [55] iff it has the
form CQ/I where:

S1: each node of the quiver Q is the starting point of at most two arrows;

S2: each node of the quiver Q is the ending point of at most two arrows;

S3: for each arrow α in Q there is at most one arrow β with αβ �∈ I;

S4: for each arrow α in Q there is at most one arrow β with βα �∈ I;

S5: the ideal I is generated by zero–relations.

Every string algebra is, in particular, special biserial and tame. Physi-
cally, tame means that the BPS spectrum consists only of hypermultiplets
and vector–multiplets, higher spin states been forbidden. A string algebra
has two kinds of indecomposable representations [55]:

1) string representations, which without free parameters;
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2) band representations which come in one–parameter families.

By a string C we mean a walk (generalized path) in the quiver Q where
we are allowed to pass from one node to another one either following an
arrow connecting them or going backwards such an arrow. We write a string
as a sequence of nodes connected by direct or inverse arrows, i.e. in the form

(B.1) C : i0
φα1←−− i1

φα2−−→ i2
φα3−−→ · · · · · · in−1

φα�←−− i�,

where the nodes in the sequence are labelled as {i0, i1, i2, · · · , i�} and the
direct/inverse arrows as {φα1

, φα2
, · · · , φα�

}. A string is not allowed to con-
tain:

C1: adiacent direct/inverse arrow pairs, as · · · i φa−→ j
φa←− i · · · or · · · i φa←−

j
φa−→ i · · · ;

C2: adiacent pairs of (direct or inverse) arrows whose composition van-
ishes by the relations ∂W = 0.

A string C is identified with its inverse C−1 (i.e. the string obtained by
reading C starting from the right instead than from the left). Given a string
C of length 
+ 1, the corresponding string module M(C) is obtained in the
following way. For each vertex v of Q let

(B.2) Iv = {a | the a–th node in the string C is v} ⊂ {0, 1, 2, · · · , 
}.

As M(C)v we take the vector space of dimension #Iv with base vectors za,
a ∈ Iv. We define

(B.3)

{
φαa

(za) = za+1 φαa
is direct

φαa
(za+1) = za φαa

is inverse

Finally, for all arrows γ and vectors za such that γ(za) is not of the form
in (B.3), we set γ(za) = 0.

A band is a cyclic sequence C of nodes of Q and direct/inverse arrows,
again forbidding sequences as in C1 and C2 above. Moreover, C is required
to be such that all powers Cn are well–defined (cyclic) strings, but C itself
is not the power of a string of smaller length. C is identified up to cyclic
rearrangement and overall inversion. Given such a band C of length 
, we
define a family M(C, λ, n) of indecomposable band modules labelled by an
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integer n ≥ 1 and a point λ ∈ C∗. Explicitly, we set

M(C, λ, n)v =
⊕
a∈Iv

Za, (a = 1, 2, . . . , 
),

where the Za’s are copies of Cn, and

(B.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φαa

∣∣∣
Za

: Za
1−→ Za+1 φαa

direct a �= 


φαa

∣∣∣
Za+1

: Za+1
1−→ Za φαa

inverse a �= 


φα�

∣∣∣
Z�

: Z�
J(λ)−−−→ Z1 φα�

direct

φα�

∣∣∣
Z1

: Z1
J(λ)−1

−−−−→ Z� φα�
inverse

where J(λ) is the n× n Jordan block of eigenvalue λ �= 0. All other linear
maps which are not defined in (B.4) are set to zero.

If A is a string algebra, the above string and band modules give a com-
plete list of indecomposable (and pairwise non–isomorphic) A –modules [55].
Note also that a brick has necessarily n = 1 since J(λ) ∈ EndM(C, λ, n) is
non trivial for n ≥ 2.

B.2. The Assem–Brus̈tle–Charbonneau–Plamondon theorem

A gentle algebra is a string algebra where the ideal I may be generated by
zero–relations of lenght two (i.e. involving just two arrows). All Jacobian
algebras of class S[A1] theories with only irregular punctures are gentle:

Theorem [56]. Let (Q,W) be a quiver with superpotential corresponding
to a Gaiotto A1–theory with only irregular punctures and at least one such
puncture. Then the Jacobian algebra A ≡ CQ/(∂W) is gentle.

Thus for such an ‘irregular’ Gaiotto theory the BPS states are stable
modules of a gentle algebra which may be explicitly constructed in terms of
strings/bands. A string module corresponds to an open WKB trajectory [3]
on the Gaiotto surface of the corresponding class S[A1] theory, see [49, 56]
for the explicit construction of the string module out of the WKB geodesic
and viceversa. Likewise, a familyM(C, λ, 1) of representations a closed WKB
geodesic associated to a primitive46 homotopy class of closed WKB gedesics

46By primitive homotopy class we mean a class which is not a non–trivial integral
multiple of an integral class. Note also that the identification C ↔ C−1 corresponds
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on Σ. Hence the theorem of ref.[56] just says that the WKB analysis of the
BPS spectra is exact in the present context.

B.3. Gentling class S[A1] algebras

The Assem–Brus̈tle–Charbonneau–Plamondon theorem may sound a little
odd to a physicist, since WKB is exact for all class S[A1] theory whether or
not the Gaiotto surface ΣG has regular punctures. Therefore, for all class
S[A1] category, it should be possible to construct all relevant modules in
terms of strings/bands.

We consider a general S[A1] theory based on a ultraviolet curve Σ of
genus g with p regular punctures (double poles of the quadratic differential
φ2) and a number b of irregular punctures (poles of order ci ≥ 3) with p+
b > 0. For p �= 0 the algebra is not gentle. However, to study the stable
representations of the corresponding algebras CQ/(∂W) we can effectively
replace the algebra by a gentle one. We proceed as follows. Each puncture
carries a flavor SU(2) group, so that our theory has a flavor symmetry
SU(2)p. We couple p ‘spectator’ copies of SU(2) SYM, each copy weakly
gauging the flavor SU(2) of one puncture. In the limit of very small spectator
YM coupling, gspect → 0, we get a BPS spectrum consisting of the BPS
spectrum of the original theory, together with p spectator W bosons, as well
as particles having O(1/g2spect) masses which are magnetically charged under
the spectator gauge groups.

On the other hand, the weakly gauged model corresponds to the S[A1]
theory based on the same surface Σ with the p ordinary punctures replaced
by cubic irregular ones. The weakly coupled model, having no more regu-
lar punctures, corresponds to a gentle algebra. We may compute the BPS
spectrum of the gauged model using the simple Representation Theory of
this gentle algebra and then recover the BPS spectrum of the original theory
by taking gspec → 0, that is, by projecting out states of non–zero spectator
magnetic charge as well as the spectator W bosons. We shall refer to this
procedure as gentling.

The original vs. the gentled algebra. We wish to describe more in
detail the effect of gentling on the Jacobian algebra CQ/(∂W). To fully
specify the Jacobian algebra, we fix one quiver Q in the mutation class of
the original theory, corresponding to a particular ideal triangulation of its
Gaiotto surface Σ. From the point of view of Σ, the gentling procedure may

to the fact that the WKB geodesics have no orientation due to the Z2–monodromy
of the differential

√
φ2.
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Figure B1: Gauging the SU(2) symmetry associated to a puncture p replaces
one arc a of the triangulation with a pair of arcs a1, a2 with the same starting
point (c) forming a triangle with the boundary (grey).

be seen as a local operation at each of the p punctures47: we cut a small
disk near the puncture in such a way that the puncture becomes a marked
point on the disk boundary (Figure B1). One can always choose a given
ideal triangulation of the surface so obtained that matches the previous one
up to the doubling one of the ideal arcs originating from the puncture, a, in
two copies, a1, a2, which form the two sides of a triangle whose third side is
the disk boundary (see Figure B1). At the level of the quiver, this replaces
the node corresponding to the ideal arc a with two nodes associated to the
two copies of that arc, a1, a2, forming a Type I block a1

α−−→ a2 [47].
The procedure being local at each puncture, the global geometry of Σ

is irrelevant, and to analyze the effect of gentling on the Representation
Theory of the corresponding BPS quiver, we may replace the surface Σ with
a small disk around the given puncture p0. Let r be the number of segments
of ideal arcs incident in p0; locally in the small disk around p0 the geometry
is the same as in the ‘radial’ ideal triangulation of the punctured disk with
r marked points on its boundary whose quiver is the cyclic orientation of

the affine Dynkin graph A
(1)
r−1, which belongs to the mutation class of the

Dr AD model. Thus all gentling operation is modeled on the gauging of the
SU(2) flavor symmetry of a D–type AD model in a region of its parameter
space covered by the cyclic form of its quiver. Gentling just replaces48 the

47For simplicity, here we assume the puncture is not the internal vertex of a self–
folded triangle [47]. This is not a restriction: all surfaces have ideal triangulations
without self–folded triangles.

48The discussion in the text is valid under the assumption that the arc a does
not start and end in the same puncture p0. When it does, the segment a1

α−−→ a2
appears twice in the covering affine quiver which is then of the form Â(r, 2).
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cyclic orientation of A
(1)
r−1 by the acyclic affine quiver Â(r, 1)

(B.5)

•

��

a��

• •

��

•

,,

•

��

• �� •

��

gentling−−−−−−−→

•

��

a1�� α �� a2

• •

��

•

,,

•

��

• �� •

��

We stress that this does not necessarily mean that the original quiver had a

cyclic A
(1)
r−1 subquiver which is replaced with a Â(r, 1) subquiver by gentling;

indeed two segments incident in p may correspond to the two ends of the
same arc, and some nodes and arrows in Eqn. (B.5) should be identified
in pair. The above description is valid for a suitable cover of the quiver.
Indeed, the representation corresponding to the spectator W boson for the
gentling of the puncture p0 is precisely the band module of the gentled
algebra given by the RHS of Figure (B.5). In what follows, by a slight abuse
of notationWspec denotes either the spectatorW boson, or the corresponding
representation of the gentled algebra, or the corresponding band, according
to the context.

Properties of the representations. If X is a representation of the gen-
tled quiver, the spectator magnetic charge of the corresponding particle is
[21]

(B.6) m(X)spec ≡
1

2
〈dimX, dimWspec〉D = dimXa1

− dimXa2
.

Let X be an indecomposable representation of the gentled algebra and X|p
be its restriction to the Â(rp, 1) cover subquiver associated to the gentled
p puncture (cfr. (B.5)). One has X|p = ⊕sYs where Ys are indecomposables

of the Euclidean algebra CÂ(rp, 1). The following statement is a standard
property of the light category [21]

Lemma. Suppose X has zero spectator magnetic charge, m(X)spec =
dimXa1

− dimXa2
= 0 and that it is stable for parametrically small spec-

tator coupling g2spec. Then m(Ys)spec ≡ dim(Ys)a1
− dim(Ys)a2

= 0, for all s.
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From the properties of the light category [21] we also know that, for
a representation X of zero spectator magnetic charge which is stable as
g2spec → 0, the extra arrow α is either an isomorphism or dimX is n times
the charge vector of Wspec (equal to the image under the cover map of the

minimal imaginary root of Â(r, 1)). In the second case, only n = 1 gives a
brick, which belongs to the family of the spectator W . For all other such
bricks X of the gentled algebra, α is an isomorphism, and X is canonically
identified with a representation of the original quiver.

Appendix C. Proof of Fact 4

In this appendix we prove Fact 4.

C.1. The associated topological cover

Assume we have a Galois cover C → J where C and J are the C–categories
of two class S[A1] QFTs. Then C = CQ′/(∂W ′) for a connected triangula-
tion quiver Q′ and corresponding superpotential W ′. Let us first look at the
conditions for Q′ to cover the quiver Q of J ; later we shall check under
which conditions the covering map Q′ → Q is a covering map of the full
Jacobian categories.

For simplicity, we assume that Q′ has a unique block decomposition.49

The blocks of given Type b then form orbits under G. We form a collection
C of blocks by taking one chosen representative for each orbit. Let {◦b,i} be
the set of white nodes of the representative block b ∈ C. Node ◦b,i is glued in
Q′ to node ◦gc,j for some c ∈ C and g ∈ G. Suppose b = c; since b �= gc, one
has g �= 1. Consider the subquiver of Q′

b,g ⊂ Q′ obtained by gluing the two
same–Type blocks b and gb at the node ◦b,i ≡ ◦gb,j . Restricted to Q′

b,g, g is
an automorphism acting freely on nodes. By inspection of the 10 possible
gluings of two same–Type blocks, such an automorphism exists only in four
cases:

i) both nodes of two Type I blocks are glued together with arrows in
opposite directions to give a pair of opposite arrows which correspond
to two disconnected nodes. This is the quiver of the Argyres–Douglas
theory of type D2;

49Again, this is not a substantial limitation since the remark in footnote 13
applies.
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ii) all nodes of two Type II blocks are glued together with opposite ori-
entations to form the (non 2–acyclic [19, 20]) quiver of the T2 theory;

iii) all nodes of two Type II blocks are glued together with the same
orientation to form the Markov quiver of the SU(2) N = 2∗ theory;

iv) all white nodes of two Type IV blocks are glued with opposite orienta-
tions to form the (Z2)

3–symmetric form of the quiver of SU(2) SQCD
with Nf = 4.

In these 4 cases, all white nodes have being already paired up so, since Q′

is connected, Q′ ≡ Q′
b,g. We conclude that, for all quivers Q′ (admitting a

unique decomposition) which are not in the list i)– iv), we have b �= c, that
is, two blocks in the decomposition of Q′ which share a white node belong
to distinct G–orbits.

Let Q′ with a freely acting automorphism group G, which has a unique
decomposition and is not in the above list of four. The quiver Q = Q′/G is
then constructed as follows. We have the collection C of chosen representative
of G orbits of blocks, which we identity with the collection of blocks for
Q′/G. Two blocks b, c ∈ C are glued together by identifying the white nodes
◦b,i ∼ ◦c,j iff there is a g ∈ G (necessarily unique) such that ◦b,i and ◦gc,j
are identified in Q′. By the previous argument, the white nodes which get
identified belong to distinct blocks, and hence form an admissible block
decomposition of theQ′/G quiver, which is then an ideal triangulation quiver
of some surface Σquot endowed with a preferred block decomposition C.

Given a block decomposition C of a triangulation quiver Q, we construct
a surface with punctures and marks on the boundaries ΣC. This is done
simply by taking for each block in C the corresponding n–gon from Table 1
and gluing them together by identifying in pairs their sides according to the
rule given by their correspondence with glued pairs of white nodes of the
blocks in C.

Hence starting with a surface Σ′ and one of its triangulation quivers
Q′ (which is not one of the exceptions above) having a freely acting auto-
morphism group G, by the procedure above we uniquely construct a surface
(with punctures and marks) ΣC. Moreover, the procedure gives us a covering
map

(C.1) γ : Σ′ → ΣC,

given in the following way. For each block Type b ∈ B let Sb be the n–gon
in Table 1. We write Sb(b) for the n–gon associated to the block b in the
decomposition of Q′. From each chosen block representative b ∈ C and g ∈ G
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we have a homeomorphism

(C.2) γb,g : Sb(gb) → Sb(b),

which sends the segments of the boundary (and the arcs of the internal
triangulation) into corresponding segments (and arcs). The family of maps
{γb,g | b ∈ C, g ∈ G} glue into a continuous map

(C.3) γ : Σ′ → ΣC,

which is a covering map which may be branched only at the base points of
the ideal triangulation (i.e. punctures and marks) which are not the inner
puncture of a self–folded triangle. This is the map to be constructed.

A covering map of (punctured and marked) surfaces γ : Σ′ → Σ, branched
only at punctures, defines a quotient map between the corresponding quivers.
For instance, the Zpq–symmetric quiver of the punctured disk with pq marks
on the boundary, which is an oriented pq cycle, is a Zp–cover (branched over
the puncture) of the punctured disk with q marks. However, this covering of
quivers do not extend to a cover of Jacobian categories, since the superpo-
tential on the quotient quiver is not the quotient superpotential. This is the
general case; the term in the superpotential [48] associated to a puncture
(not inside a self–folded triangle) has degree equal to the number s of ideal
arcs incident in the puncture; under a cover branched on this puncture with
local branch number m, this number reduced from s to s/m, and agreement
is possible only if m = 1 i.e. there is no branching.

The conclusion is: (with the mentioned exceptions) the non–trivial Ga-
lois covers, F : C → J between class S[A1] categories C , J are in one–
to–one to unbranched covers between the corresponding bordered surfaces
f : Σ(C ) → Σ(J ) where the punctures (resp. marks) on Σ(C ) are taken to
be the pre–images of the punctures (marks) on Σ(J ).

Gaiotto viewpoint. We replace the bordered surfaces Σ(C ), Σ(J ) by
the corresponding Gaiotto curves obtained by replacing the i–th bound-
ary component with 
i ≥ 1 marks with an irregular puncture at which the
quadratic differential has a higher pole of the form

(C.4) φ2

∣∣∣
z∼zi

∼ const. (z − zi)
−�i

(
d(z − zi)

z − zi

)2
.
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Locally around a branch point of order m, the cover looks like z − zi =
wm + · · · , so

(C.5) w∗φ2 = const.′ w−m�i

(
dw

w

)2
,

which correctly corresponds to a boundary component with a number of
marks which is the original one, 
i times the local degree of the covering
map, m.

C.2. Exceptional cases

There are two sources of exceptions:

A) the list of four special Σ′ i)–iv). The quotient quivers of iii) and iv)
are not 2–acyclic (this does not mean they are not useful covers).
The quiver of ii) is not 2–acyclic from the start. It remains i): the
D2 Argyres–Douglas model (a doublet of free hypermultiplet) double
covers the A1 Argyres–Douglas model (i.e. a free hyper). Of course,
the statement that the BPS spectrum of two copies of the free hyper
makes two copies of the BPS spectrum of one free hyper, it by no
means a surprise.

B) The quiver Q′ has more than one block decomposition. Suppose we
have a Galois cover of triangulation quivers Q′ → Q′/G. Fix a par-
ticular block decomposition of the quotient quiver; the pull back of
the this block decomposition is a particular block decomposition of Q′

with the property that G acts by permutation of same–Type blocks.
This is enough to make the previous argument work. It is possible
that Q′/G is the triangulation quiver of several topologically distinct
surfaces; fixing a block decomposition implicitly chooses a topological
surface in this set, and we describe the surface cover as a cover of this
particular surface; thus, in this case, we may describe in many ways
as covering of surfaces the same covering of class S[A1] categories.

Appendix D. g = 1: no Rr
1 summands at

Zp–symmetric points

Here we show that no Rr
1 appears in a module of the Jacobian algebra J g

p

which is stable in our pulled back chamber and is not a spectator W .
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D.1. Strings and bands

The model with the flavor symmetry fully gauged has a gentle Jacobian
algebra, whose indecomposable modules may be constructed using strings
and bands (see [21] for a review). Hence the relevant modules of J g

p may
be described in the same language. We write Q for the (two–side) ideal in
J g
p ≡ CQp/(∂Wcubic) which is the image of the arrow ideal of CQp. We say

that a J g
p –module M has order n ∈ N iff

(D.1) Q
n ·M �= 0, Q

n+1 ·M = 0.

Lemma. Let X ∈ modJ g
p be a brick which is not a spectator W . Then its

order is at most 5. Then X is canonically identified with a brick of the string

algebra J g
p /Q

6
.

Proof. For a = 1, 2, . . . , p consider the families Λ(a) = {λ(a)
◦b

, λ
(a)
•b

, λ
(a)
∗b

}pb=1 of
linear maps defined by

(D.2)

λ
(a)
◦a

= ηaξ
∗
a+1Ba+1ξa+1η

∗
aAa, λ

(a)
◦a+1

= ξa+1η
∗
aAaηaξ

∗
a+1Ba+1, λ

(a)
◦b

= 0 for b �= a, a+ 1

λ
(a)
•a

= Aaηaξ
∗
a+1Ba+1ξa+1η

∗
a, λ

(a)
•a+1

= Ba+1ξa+1η
∗
aAaηaξ

∗
a+1, λ

(a)
•b

= 0 for b �= a, a+ 1

λ
(a)
∗a

= η∗aAaηaξ
∗
a+1Ba+1ξa+1 + ξ∗a+1Ba+1ξa+1η

∗
aAaηa, λ

(a)
∗b

= 0 for b �= a;

one checks that Λ(a) ∈ EndmodJ g
p
X. So, if X is a modJ g

p –brick, (Λ(a))i =

λ(a) ∈ C for all a and all nodes i in the support ofX. We liftX to a modJ fg
p –

module by reinserting the isomorphisms Kb at all nodes ∗b ∈ suppX. Since
modJ fg

p is gentle the brick X may be explicitly constructed as the string
module of a string C or as a band module of the form M(C, 1, λ). To pro-
duce a non zero (Λ(a))i the string/band module should contain a substring
given, up to cyclic reordering, by the sequence of arrows (direct or inverse)
Ca making the band of the a–th spectator boson. Essentially by defini-
tion, the resulting (Λ(a))i = λ(a) ∈ C× if and only it is the band module
M(Ca, 1, λ

(a)), which corresponds to the a–th spectator W boson. All other
bricks of modJ fg

p , such that Ka are isomorphisms, must have (Λ(a))i = 0 for
all a, which implies that the corresponding strings/bands do not contain any
of the Ca as a substring. Identifying such bricks of modJ fg

p with bricks of
modJ g

p , we conclude that all products of six arrows appearing in Eqn. (D.2)

(including the ones in λ
(a)
�a

) vanish. By diagram chasing one checks that these

six arrows products generate the ideal Q
6
. The last statement follows from

the fact that J g
p failed to be a string algebra [55] only because it was not

finitely dimensional. �
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D.2. No Rr
1

We draw only the relevant piece of the quiver:

◦a−1

��

Aa−1

��

◦a

Ba

����

∗a−2

ξa−1

&&

∗a−1

ξa
$$

ηa−1

##

∗a

��

•a−1

η∗a−1

&&

ξ∗a−1

##

•a
ξ∗a

'' ��
(D.3)

We write R
(a)
1 for a R1 summand of the restriction of X to the a–th Kro-

necker subquiver Kra. If C is the string (band) corresponding to X, each

R
(a)
1 is represented by a maximal50 segment of C in Kra consisting of a sin-

gle arrow (direct or inverse). We focus on the case in which this arrow is
the second arrow of the a–th Kronecker, Ba, the other case being related by

an automorphism of the quiver. In the Rr
1 case R

(a)
1 appears in C inside the

substring · · · ξ∗a←− Ba←−− ξa←− · · · . Note that if
ξa←− is the last arrow in the string,

or if it is followed by
ηa−1−−−→, we have a destabilizing quotient with support

at the node ∗a−1. Hence C should contain the substring

(D.4) · · · ξ∗a←− Ba←−− ξa←− η∗a−1←−−− · · · .

Consider the part of the string which precedes
ξ∗a←−. We have three possi-

bilities:
ξ∗a←− is the first arrow of the string; or it is preceded by · · · η∗a−1−−−→; or

it is preceded by · · · ηa−1←−−−. In the last case,
ηa−1←−−− cannot be the first arrow,

nor cannot be preceded by
ξa−1−−−→, since in both cases we have a destabilizing

submodule with support at ◦a−1. Thus in the third case we must have

(D.5) · · · Aa−1←−−− ηa−1←−−− ξ∗a←− Ba←−− ξa←− η∗a−1←−−− · · ·

But any string/band moduleX which contains this substring hasQ
6 ·X �= 0,

and hence cannot be a non–spectator brick. We remain with the first two

50Here and below maximality is meant with respect to inclusion in the a–th
Kronecker Kra−1, i.e. any strictly larger segment of C contains arrows different

from
Aa←−− and

Ba−−→.
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cases, where we have a subrepresentation Y of X

(D.6) · · ·

Y subrepr.︷ ︸︸ ︷
ξ∗a←− Ba←−− ξa←− η∗a−1←−−− · · ·

with central charge Z◦ + Z• + Z∗.
The arrow

η∗a−1←−−− is followed by a maximal string segment in Kra−1 which

corresponds to either a R
(a−1),r
1 , or a R

(a−1),p
1 , or a P

(a)
n direct summand

of X|a−1. In the first case Q
6 ·X �= 0 and hence X is not a non–spectator

brick. In the second and third cases we have, respectively, the substrings

· · ·

Y subrepr.︷ ︸︸ ︷
ξ∗a←− Ba←−− ξa←−

V quotient︷ ︸︸ ︷
η∗a−1←−−− Aa−1←−−−(D.7)

· · ·

Y subrepr.︷ ︸︸ ︷
ξ∗a←− Ba←−− ξa←−

Un quotient︷ ︸︸ ︷
η∗a−1←−−−

( Aa−1←−−− Ba−1−−−→
)n · · · n = 0, 1, 2, . . .(D.8)

which contain, respectively, a quotient of X of the form V or, respectively,
Un whose central charges are

(D.9) Z(V ) = Z◦ + Z• + Z∗, Z(Un) = nZ◦ + (n+ 1)Z• + Z∗.

Since Z(Y ) = Z(V ) a module of the first form is never stable, while the
stability of a module of the second form requires (in particular)

argZ(Un) ≡ arg
(
nZ◦ + (n+ 1)Z• + Z∗

)
(D.10)

> arg(Z◦ + Z• + Z∗) ≡ Z(Y )

i.e.

(D.11) arg
(
n(Z◦ + Z•) + Z•

)
> arg(Z◦ + Z•), n ≥ 0

which is impossible since argZ• < argZ◦.
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