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Gravity as a four dimensional algebraic

quantum field theory

Gábor Etesi

Based on a family of indefinite unitary representations of the dif-
feomorphism group of an oriented smooth 4-manifold, a manifestly
covariant 4 dimensional and non-perturbative algebraic quantum
field theory formulation of gravity is exhibited. More precisely
among the bounded linear operators acting on these representa-
tion spaces we identify algebraic curvature tensors hence a net of
local quantum observables can be constructed from C∗-algebras
generated by local curvature tensors and vector fields. This alge-
braic quantum field theory is extracted from structures provided
by an oriented smooth 4-manifold only hence possesses a diffeomor-
phism symmetry. In this way classical general relativity exactly in
4 dimensions naturally embeds into a quantum framework.

Several Hilbert space representations of the theory are found.
First a “tautological representation” of the limiting global C∗-
algebra is constructed allowing to associate to any oriented smooth
4-manifold a von Neumann algebra in a canonical fashion. Sec-
ondly, influenced by the Dougan–Mason approach to gravitational
quasilocal energy-momentum, we construct certain representations
what we call “positive mass representations” with unbroken diffeo-
morphism symmetry. Thirdly, we also obtain “classical represen-
taions” with spontaneously broken diffeomorphism symmetry cor-
responding to the classical limit of the theory which turns out to
be general relativity.

Finally we observe that the whole family of “positive mass rep-
resentations” comprise a 2 dimensional conformal field theory in
the sense of G. Segal.

1. Introduction

The outstanding problem of modern theoretical physics is how to unify the
obviously successful and mathematically consistent theory of general rel-
ativity with the obviously successful but yet mathematically problematic
relativistic quantum field theory. It has been generally believed that these
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two fundamental pillars of modern theoretical physics conflict each other not
only in the mathematical tools they use but even at a deep foundational level
[12]: classical concepts of general relativity such as the space-time event, the
light cone or the event horizon of a black hole are too “sharp” objects from
a quantum theoretic viewpoint meanwhile relativistic quantum field theory
is not background independent from the aspect of general relativity. We do
not attempt here to survey the vast physical and even mathematical and
philosophical literature created by the unification problem; we just mention
that nowadays the two leading candidates expected to be capable for a sort
of unification are string theory and loop quantum gravity. But surely there
is still a long way ahead; nevertheless we have the conviction that one day
the language of classical general relativity will sound familiar to quantum
theorists and vice versa i.e., conceptual bridges must exist connecting the
two theories.

In this note an effort has been made to embed classical general relativity
into a quantum framework. This quantum framework is algebraic quantum
field theory formulated by Haag–Kastler and others during the past decades,
cf. [10]. Recently this language also appears to be suitable for formulating
quantum field theory on curved space-time [3, 13] or even quantum gravity
[2].

In more detail we will do something very simple here. Namely using
structures provided by an oriented smooth 4-manifold M only, our over-
all guiding principle will be seeking unitary representations of the corre-
sponding orientation-preserving diffeomorphism group Diff+(M). There is a
unique such representation via pullback on the incomplete space of sections
of ∧2M ⊗R C. However the natural scalar product on this space — namely
the one given by integration of the wedge product of two 2-forms — is indef-
inite hence cannot be used to complete the space of smooth 2-forms into a
Hilbert space. Rather in struggling with the completion problem one comes
up with a family of Hilbert spaces with a common non-degenerate indefinite
Hermitian scalar product on them. The bare Hilbert spaces — i.e., not con-
sidered as Diff+(M)-modules — admit decompositions H +(M)⊕ H −(M)
into maximal definite orthogonal Hilbert subspaces H ±(M) with respect to
the indefinite scalar product. One can use this family of Hilbert spaces to
discover an interesting C∗-algebra by exploring their spaces of bounded lin-
ear operators. It indeed comes as a surprise (at least to the author) that
precisely in 4 dimensions among these operators one can recognize cur-
vature tensors! This is because of the well-known fact that the curvature
tensor Rg of a pseudo-Riemannian 4-manifold (M, g) can be viewed as a
section of End(∧2M ⊗R C) i.e., gives rise to a linear operator acting on
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any H +(M)⊕ H −(M). This permits to construct a net {U �→ A(U)}U�M

whose local C∗-algebras are generated by bundle endomorphisms and Lie
derivatives. These local algebras are generalizations of the CCR algebra.
The construction satisfies the naturally generalized Haag–Kastler axioms
[10, pp. 105–107] leading to an algebraic quantum field theory in which
Poincaré symmetry is replaced with full diffeomorphism symmetry (if the
diffeomorphism group is regarded as the physical symmetry group of general
relativity and not its gauge group). As a result classical general relativity
effortlessly embeds into a quantum framework if one interprets classical cur-
vature tensors as quantum observables. The appearence of the curvature
tensor as a local quantum observable is reasonable even from the physical
viewpoint: in local gravitational physics the metric tensor has no direct phys-
ical meaning only its curvature can cause local physical effects such as tidal
forces. Moreover if one wishes, at least in principle, the metric i.e., the ge-
ometry locally can be reconstructed from its curvature (see e.g. [5, 9, 11, 14]
and the references therein).

We also exhibit several Hilbert space representations of the theory car-
rying unitary representations of the diffeomorphism group. The first one is a
“tautological representation” of the global algebra on itself allowing us to at-
tach to M a von Neumann algebra R(M). The other ones deal with physics.
A meaningful quantum field theory must exhibit stability i.e., “positive mass
representations” of its local observables in the sense of Wigner. In our case
this directly leads to the long-standing problem of gravitational mass [18].
It is quite interesting that the Gelfand–Naimark–Segal construction in the
theory of C∗-algebras and quasilocal energy-momentum constructions [18]
in general relativity naturally meet up here because immersed surfaces in
M provide us with both C∗-algebra representations and Dougan–Mason-like
quasilocal quantities [7]. More precisely our quasilocal energy-momenta and
masses stem from quasilocal translations along immersed surfaces in M with
a choice of a complex structure on them. However the whole construction
is expected to be independent of this choice leading to the by-now classical
observation of Witten [21] that in fact one has to deal with a conformal
field theory on these surfaces. We identify this theory: its spaces of confor-
mal blocks are the Clifford algebras generated by finite energy meromor-
phic sections of certain unitary holomorphic vector bundles on punctured
Riemannian surfaces. Apart from these quantum representations, “classical
representations” corresponding to the classical limit of the theory also exist.
Indeed, unlike in the previous two cases, in these representations the dif-
feomorphism symmetry spontaneously breaks down to a finite dimensional
Lie subgroup provided by the isometry group of an emergent metric g on
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M ; hence a causal structure can be constructed on M as well. Therefore
classical general relativity is recovered again at the representation theoretic
level. The emergent metric distinguishes a canonically split Hilbert space
H +(M)⊕ H −(M) provided by metric (anti)self-duality leading to a split-
ting of the Hilbert space of the corresponding “classical representation”, too.
The natural quantum observable provided by the curvature Rg of the metric
in this representation obeys the splitting if and only if g is a vacuum metric.

However our algebraic quantum field theory itself lacks any causal struc-
ture in general as an unavoidable consequence of its vast diffeomorphism
symmetry.1 The causal future J+(p) ⊂ M of an event p ∈ M in space-time
is by definition the union of all future-inextendible worldlines of particles
departing from p and moving forward in time locally not exceeding the
speed of light. The causal past J−(p) is defined similarly. The collection of
these subsets of space-time generates a special topology on M in the strict
mathematical sense. The Lorentzian metric is a mathematical fusion of the
geometry of M identified with a Riemannian metric and the causal structure
of M identified with this topology. But from this operational description of
causality it is clear that the construction of a causal structure refers to not
only gravity but other entities of physical reality as well which are moreover
quite classical: pointlike particles, electromagnetic waves, time, etc. However
they cannot appear for instance in a vacuum space-time considered in the
strict sense. Very strictly speaking even the interpretation of a space-time
point as a “physical event” fails in an empty space-time. Therefore we are
convinced that causality cannot be a fundamental ingredient of a classical
hence even of a quantum description of pure gravity if it is a diffeomorphism-
invariant quantum field theory. As a technical consequence we will prefer to
use Riemannian metrics in this note (although emphasize that mathemati-
cally all conclusions hold for Lorentzian metrics as well). To summarize: from
our standpoint causality is an emergent statistical phenomenon created by
the highly complex interaction of gravity and matter. Consequently in or-
der to recover it first we should be able to break down the diffeomorphism
symmetry and distinguish pure gravity from matter.

This note is organized as follows. In Section 2 we construct natural in-
definite unitary representations of orientation-preserving diffeomorphisms of
an oriented 4-manifold. Then we extract a unique C∗-algebra out of these
representation spaces. We identify its “classical part” with Einstein mani-
folds. In Section 3 we introduce an algebraic quantum field theory and in

1This is in accordance with recent speculations on Lorentz symmetry violations
for instance in extreme high energy cosmic processes, for a review cf. e.g. [4].
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Theorems 3.1 and 3.2 and 3.3 we construct certain representations of its
algebras of local observables what we call “a tautological representation”,
“positive mass representations” and “classical representations” respectively.
In Section 4 we bunch the positive mass representations together into a
conformal field theory.

Acknowledgement. The author is grateful to M.J. Dupré, I. Ojima, L.B.
Szabados and P. Vrana for the stimulating discussions and to the Alfréd
Rényi Institute of Mathematics for their hospitality. This work was sup-
ported by OTKA grant No. NK81203 (Hungary).

2. The C∗-algebra of an oriented smooth 4-manifold

Let M be a connected orientable smooth 4-manifold, possibly non-closed
(i.e., it can be non-compact and-or with non-empty boundary). Fix an ori-
entation on M . Given only these data at our disposal it is already mean-
ingful to talk about the group of its orientation-preserving diffeomorphisms
Diff+(M). Our overall guiding principle simply will be a search for uni-
tary representations of Diff+(M). A bunch of representations arise in a ge-
ometric way as follows. Consider T (r,s)M ⊗R C, the bundle of complexified
(r, s)-type tensors with the associated vector spaces C∞c (M ;T (r,s)M ⊗R C)
of their compactly supported smooth complexified sections. Then the group
Diff+(M) acts from the left via pushforward on C∞c (M ;T (r,0)M ⊗R C) for
all r ∈ N while from the right via pullback on C∞c (M ;T (0,s)M ⊗R C) for all
s ∈ N. However these representations are typically not unitary because the
underlying vector spaces do not carry extra structures in a natural way.

The only exception is the 2nd exterior power ∧2M ⊂ T (0,2)M of the
cotangent bundle with the corresponding space of sections C∞c (M ;∧2M ⊗R

C) =: Ω2
c(M ;C), the space of complexified smooth 2-forms with compact

support. Indeed, this vector space has a natural non-degenerate Hermite
scalar product 〈 · , · 〉L2(M) : Ω2

c(M ;C)× Ω2
c(M ;C) → C given by integra-

tion on oriented smooth manifolds; more precisely for α, β ∈ Ω2
c(M ;C) put

(1) 〈α, β〉L2(M) :=

∫
M

α ∧ β

(complex conjugate-linear in its first variable). Note however that this scalar
product is indefinite: an unavoidable fact which plays a key role in our
considerations ahead. Consequently this scalar product cannot be used to
complete Ω2

c(M ;C) into a Hilbert space. Instead with respect to (1) there is
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a non-unique direct sum decomposition

Ω2
c(M ;C) = Ω+

c (M ;C)⊕ Ω−c (M ;C)

with the property that they are maximal definite orthogonal subspaces i.e.,
±〈 · , · 〉L2(M)|Ω±

c (M ;C) : Ω±c (M ;C)× Ω±c (M ;C) → C are both positive defi-

nite moreover Ω+
c (M ;C) ⊥L2(M) Ω

−
c (M ;C). Therefore these re-

stricted scalar products can be used to complete Ω±c (M ;C) into separa-
ble Hilbert spaces H ±(M) respectively. That is, starting with an M we
can make Ω2

c(M ;C) complete only in non-canonical ways as follows. The
possible completions form a family and any member of this family con-
sists of a particular direct sum Hilbert space H +(M)⊕ H −(M) (with
its particular non-degenerate positive definite scalar product (α, β)L2(M) :=
〈α+, β+〉L2(M) − 〈α−, β−〉L2(M)) and a common indefinite scalar product

(2) 〈 · , · 〉L2(M) : H +(M)⊕ H −(M)× H +(M)⊕ H −(M) −→ C

induced by (1) such that:

⎧⎪⎨
⎪⎩

H +(M) ⊥L2(M) H −(M),

〈 · , · 〉L2(M)|H ±(M) : H ±(M)× H ±(M)

−→ C are positive or negative definite, respectively.

Moreover any (H +(M)⊕ H −(M), 〈 · , · 〉L2(M)) carries a representation of
Diff+(M) from the right given by the unique continuous extension of the
pullback of 2-forms: ω �→ f∗ω for ω ∈ Ω2

c(M ;C) and f ∈ Diff+(M). It is easy
to check that these operators are unitary with respect to (2) and operators
corresponding to compactly supported diffeomorphisms are also bounded
with respect to the operator norm induced by the particular Hilbert space
norm on H +(M)⊕ H −(M). Note that a priori representations on different
completions are not unitary equivalent.

These representations have the following immediate properties:

Lemma 2.1. Consider the indefinite unitary reprsentation of Diff+(M)
from the right on any particular (H +(M)⊕ H −(M), 〈 · , · 〉L2(M)) con-
structed above.

(i) A vector v∈H +(M)⊕H −(M) satisfies f∗v=v for all f ∈Diff+(M)
if and only if v = 0 (“no vacuum”);
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(ii) The closed subspaces B(M) � Z (M) ⊂ H +(M)⊕ H −(M) gener-
ated by exact or closed 2-forms respectively are invariant under the
action of Diff+(M).

Proof. (i) Assume that there exists an element 0 �= v ∈ H +(M)⊕ H −(M)
stabilized by the whole Diff+(M). Consider a 1-parameter subgroup
{ft}t∈R ∈ Diff+(M) such that f0 = IdM and let X be the vector field on
M generating this subgroup. Differentiating the equation f∗t v = v with re-
spect to t ∈ R at t = 0 we obtain LXv = 0 (in the weak sense) where LX

is the Lie derivative by X. Since an arbitrary compactly supported vector
field generates a 1-parameter subgroup of Diff+(M) we obtain that in fact
v = 0, a contradiction.

(ii) The statement readily follows by naturality of exterior differentiation
i.e., d(f∗ϕ) = f∗dϕ for all f ∈ Diff+(M) and ϕ ∈ Ωk

c (M ;C). �

Remark. 1. We succeeded to construct a family of faithful, reducible, in-
definite unitary representations of the diffeomorphism group out of the struc-
tures provided only by an orientable smooth 4-manifold.2 All of these rep-
resentation spaces are split however such decompositions cannot hold as a
Diff+(M)-module or in other words such decompositions break the diffeo-
morphism symmetry. The relevance of these splittings, as we will see shortly,
is that the classical vacuum Einstein equation can be viewed as saying that
there is a distinguished representation H +(M)⊕ H −(M) on which the
curvature is blockdiagonal i.e., respects the splitting. In general, starting
only with an oriented smooth 4-manifold M without extra structure, there
is no way to associate a canonical non-split Hilbert space to M .

2. From the mathematical viewpoint in many important cases we do
not loose topological information if we replace M with any representation.
Indeed, restricting Ω2

c(M ;C) to closed forms and dividing by the exact
ones we can pass to compactly supported cohomology H2

c (M ;C); then if
M admits a finite good cover Poincaré duality works and gives H2

c (M ;C) ∼=
(H2(M ;C))∗. If we assume that M is compact and simply connected then
the singular cohomology H2(M ;Z) maps injectively into H2(M ;C) hence
finally the scalar product (2) descends to the topological intersection form

qM : H2(M ;Z)×H2(M ;Z) −→ H4(M ;Z) ∼= Z

2In fact our construction so far works in any 4k (k = 1, 2, . . . ) dimensions if the
diffeomorphism group acts on 2k-forms. In 4k + 2 dimensions (1) gives symplectic
forms.
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of the underlying topological 4-manifold. However taking into account that
by assumption M has a smooth structure we can refer to Freedman’s fun-
damental result [8] that qM uniquely determines the topology of M .

Now we proceed further and observe that in spite of this plethora of dif-
feomorphism group representations one can attach a unique C∗-algebra to
an oriented smooth 4-manifold. However this C∗-algebra does not admit
representations on the previous Hilbert spaces.

Lemma 2.2. Let � be the adjoint operation on Ω2
c(M ;C) for the indefinite

scalar product (1). Consider the �-closed space V :=
{
A ∈ End(Ω2

c(M ;C)) |
r(A�A) < +∞}

defined by the spectral radius

r(B) := sup
λ∈C

{|λ| ∣∣B − λ · IdΩ2
c(M ;C) is not invertible

}
.

Then
√
r is a norm and the corresponding completion of V renders (V,�) a

unital C∗-algebra containing Diff+(M). This C∗-algebra will be denoted by
B(M).

Proof. Our strategy to prove the lemma is as follows. Obviously (V,�) is a
∗-algebra. Provided it can be equipped with a norm such that corresponding
completion of V improves (V,�) to a C∗-algebra then knowing the unique-
ness of the C∗-algebra norm this sought norm [[ · ]] on all A ∈ V must look
like [[A]]2 = [[A�A]] = r(A�A). Therefore we want to see that the spectral
radius gives a norm here.

Take any splitting Ω2
c(M ;C) = Ω+

c (M ;C)⊕ Ω−c (M ;C) and the corre-
sponding Hilbert space completion H +(M)⊕ H −(M) ⊃ Ω2

c(M ;C). If P± :
H +(M)⊕ H −(M) → H ±(M) are the orthogonal projections then put
J := P+ − P− moreover let † denote the adjoint on H +(M)⊕ H −(M).
Then J satisfies A� = JA†J and J2 = IdH +(M)⊕H −(M) therefore A† =
JA�J as well. Recall that the operator norm is

(3) ‖B‖ = sup
v �=0

‖Bv‖L2(M)

‖v‖L2(M)

where ‖ · ‖L2(M) comes from the positive definite scalar product ( · , · )L2(M)

on H +(M)⊕ H −(M). Since ‖J‖ = 1 it readily follows from this definition
that ‖JA�JA‖ = ‖A�A‖. The adjoint † and the norm ‖ · ‖ are actually
the ∗-operation and norm on the particular C∗-algebra of bounded linear
operators on the particular Hilbert space H +(M)⊕ H −(M). Therefore
taking into account again the uniqueness of C∗-algebra norm we also have
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equalities ‖A‖2 = ‖A†A‖ = r(A†A). Additionally the spectral radius always
satisfies r(B) = lim

k→+∞
‖Bk‖ 1

k � ‖B‖ which is Gelfand’s formula (cf. e.g. [15,

§XI.149]).
After these preparations we can embark upon the proof. On the one

hand

r(A�A) = r(JA†JA) � ‖JA†JA‖ � ‖A‖2.
On the other hand, for any ε > 0 one can find a positive integer k such that

‖A‖2 − ε = r(A†A)− ε = r(JA�JA)− ε

� ‖(JA�JA)k‖ 1

k = ‖(A�A)k‖ 1

k � r(A�A) + ε

therefore, since ε > 0 was arbitrary,

‖A‖2 � r(A�A).

We conclude that r(A�A) = ‖A‖2 demonstrating that the spectral radius
indeed provides us with a norm on Ω2

c(M ;C). Consequently putting

(4) [[A]] :=
√

r(A�A)

we can complete V with respect to this norm and enrich the ∗-algebra (V,�)
to a C∗-algebra B(M).

Finally, since diffeomorphisms are unitary i.e., (f∗)�(f∗) = IdΩ2
c(M ;C) for

all f ∈ Diff+(M) we find [[f∗]] = 1 which means that f∗ ∈ V ⊂ B(M) as
stated. �

Remark. From the proof of Lemma 2.2 we can also read off that although
the individual Hilbert space completions H +(M)⊕ H −(M) ⊃ Ω2

c(M ;C)
might be unitary inequivalent, the induced operator norms on the common
intersection of the individual algebras of bounded linear operators are not
only equivalent as norms but even numerically equal. They are commonly
given by (4).

For a relatively compact open subset ∅ � U � M a unital C∗-algebraB(∅) �
B(U) � B(M) is defined as the norm-completion of the �-closed space{

B ∈ End(Ω2
c(M ;C))

∣∣ [[B]] < +∞ ,
[
B|Ω2

c(M\U ;C) , Diff+
U (M)

]
= 0

}
i.e., B(U) consists of operators which commute on the subspace Ω2

c(M \
U ;C) � Ω2

c(M ;C) with the subgroup Diff+
U (M) � Diff+(M) consisting of
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all U -preserving diffeomorphisms. Since an operator commuting with all
diffeomorphisms is proportional to the identity, B(∅) ∼= C · 1.

Consider the assignment {U �→ B(U)}U�M for all relatively compact
open subsets. Taking into account that if A ∈ B(U) then A|Ω2

c(M\U ;C) =
C IdΩ2

c(M\U ;C) and Ω2
c(M \ V ;C) � Ω2

c(M \ U ;C) if U � V the embedding
induces a unit-preserving injective homomorphism eUV : B(U) → B(V ) of
local C∗-algebras. This permits to define B(U) for any open ∅ � U � M
and B(M) as the C∗-algebra direct (inductive) limit of these local alge-
bras. Henceforth this assignment in fact defines a covariant functor from
the category of open subsets of M with inclusion into the category of unital
C∗-alegbras with ∗-homomorphisms. However observe that if we consider
the dual process namely the restriction then elements of these local algebras
do not behave well because they lack the presheaf property in general.

As a consequence of the geometric origin of the global C∗-algebra B(M),
it has an interesting sub-C∗-algebra C(M) if M is compact. Indeed, consider
the sheaf CM over M whose spaces of local sections C (U) over open subsets
are algebras of local smooth bundle (i.e., fiberwise) morphisms

C∞(U ; End(∧2U ⊗R C)) for all open U � M.

In contrast to general elements of B(U), local sections in C (U) behave well
under restriction due to their presheaf property; i.e., given two open sub-
sets U � V the restriction map induces a unit-preserving injective homo-
morphism rVU : C (V ) → C (U) of algebras. Although B(U) and C (U) are
not related in general if M happens to be compact the space C (M) ⊂
End(Ω2

c(M ;C)) of global sections can be completed with respect to (4) to a
unital C∗-algebra C(M) and in this case there is an obvious embedding of
unital C∗-algebras C(M) � B(M).

Examples. The time has come to take a closer look of the various operator
algebras B(M) and C (M) (or C(M) if M is compact) associated to an
oriented smooth 4-manifold M emerging through unitary representations of
its diffeomorphism group. We will see that especially in 4 dimensions these
algebras admit rich physical interpretations as follows.

1. Let (M, g) be a 4-dimensional Riemannian Einstein manifold i.e., as-
sume that g is a Riemannian metric on M with Ricci tensor rg satisfying the
vacuum Einstein equation rg = ΛMg with a cosmological constant ΛM ∈ R.
In this special situation the vast symmetry group of the original theory re-
duces to the stabilizer subgroup Iso+(M, g) � Diff+(M) leaving the geom-
etry (M, g) unaffected. In this realm the Riemannian metric together with
the orientation gives a Hodge operator ∗g : ∧2M → ∧2M with ∗2g = Id∧2M .
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This induces a usual real splitting

(5) ∧2 M = ∧+M ⊕ ∧−M.

It is well-known [17] but from our viewpoint is an interesting coincidence
that in exactly 4 dimensions the full Riemannian curvature tensor can be
regarded as a real linear bundle map Rg : ∧2M → ∧2M which as a bundle
map decomposes i.e., over every point x ∈ M decomposes like

Rg =

(
W+

g + sg
12 Bg

B∗g W−
g + sg

12

)

with respect to the splitting (5). Here the traceless symmetric maps W±
g :

∧±M → ∧±M are the (anti)self-dual parts of the Weyl tensor, the diagonal
sg : ∧2M → ∧2M is the scalar curvature while Bg : ∧+M → ∧−M is the
traceless Ricci tensor together with its metric adjoint B∗g : ∧−M → ∧+M .

Observe that the Einstein equation rg − 1
2sgg = 8πT − ΛMg exactly says

that {
Bg = 8πT0

sg = 4ΛM − 8π trgT

where T0 is the traceless part of the energy-momentum tensor. The vacuum
T = 0 is equivalently characterized by the single condition Bg = 0. Indeed,
in this case always T0 = 0 hence if T �= 0 then matter is present only through
its tracial part (14trgT )g moreover trgT is constant by the differential Bianchi
identity. However by convention such a thing is not called as “matter” but
rather is incorporated into the cosmological constant ΛM . Consequently
looking at the vacuum as being equivalent to the condition Bg = 0, in the
case of vacuum Rg ∈ C∞(M ; End(∧2M)) obeys (5). The pointwise splitting
above in addition yields the canonical decomposition

Ω2
c(M ;C) = Ω+

c (M ;C)⊕ Ω−c (M ;C)

of the space of 2-forms into (anti)self-dual forms which is the same as de-
composing this space into mutually orthogonal maximal definite subspaces
with respect to the scalar product (1). Therefore in the presence of a metric
— which is a way to break the original symmetry group Diff+(M) down to a
smaller one — there is a splitting H +(M)⊕ H −(M) preferred by the cur-
vature Rg. Switching to our notation we conclude that Rg ∈ C (M) satisfies
Rg(H ±(M)) � H ±(M). Moreover by the usual symmetries of the curva-
ture tensor Rg is self-adjoint for (2). For clarity we note that this action
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of for example Rg ∈ C (M) on H +(M)⊕ H −(M) is not a Hilbert space
representation of the ∗-algebra C (M) but rather a representation on the
indefinite space (H +(M)⊕ H −(M), 〈 · , · 〉L2(M)).

Therefore we come up with a natural embedding of classical real Rieman-
nian (or Lorentzian with complexified curvature) vacuum general relativity
into a quantum framework:

C. The real Riemannian curvature tensor of an orientable Riemannian Ein-
stein 4-manifold (M, g) is a global section Rg ∈ C (M) of the sheaf CM .
The curvature Rg also can be regarded as a linear real self-adjoint oper-
ator with respect to the scalar product (2) acting on the canonically split
Hilbert space H +(M)⊕ H −(M) induced by the metric such that Rg obeys
this splitting. The existence of a metric breaks the original symmetry group
Diff+(M) down to the finite dimensional group Iso+(M, g) which acts on
H +(M)⊕ H −(M) also obeying the splitting.

Remark. Before proceeding further we call attention that — taking into
account that under mild technical assumptions both the vacuum [9, 11, 14]
and the non-vacuum [5] Einstein equations admit at least local solutions
with prescribed regularity — this classical picture is expected to continue
to hold at least locally in the following sense if one considers more general
algebraic curvature tensors. Given a connected oriented smooth 4-manifold
M with a point x ∈ M it is known that if a global algebraic curvature tensor
RM ∈ C (M) satisfies some technical conditions in x (formulated for example
in [9, 11, 14]), then there exists at least a local Riemannian Einstein metric
gU on an open subset x ∈ U � M with the property RgU |x = RM |x = Rx

i.e., the two curvature tensors coincide at least in x. Apparently we can
pick a countable collection of distinguished points of this kind such that the
corresponding open subsets comprise an open covering of M hence endowing
M with a “patchwork structure” of local Einstein metrics.

2. Next we take a departure from classical general relativity and explore
the quantum regime. Of course the trouble is how to describe a generic
bounded linear operator Q ∈ B(M) in terms of a geometric linear operator
R ∈ C (M) ∩B(M). Our quantum instinct tells us that a truely quantum
operator should be constructed by somehow smearing geometric operators
over regions in M . This instinct will be justified by the famous Schwartz
kernel theorem applied below.

Fix a geometric operator R ∈ C (M) ∩B(M) and a point x ∈ M . Then
on any 2-form ω ∈ Ω2

c(M ;C) its action can be expressed in a fully local
form (Rω)x = Rxωx. We can generalize this as follows. Pick finitely many
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distinct further points y1, . . . , yn(x) ∈ M where n(x) ∈ N may depend on
x ∈ M . Consider diffeomorphisms fyi

∈ Diff+(M) such that fy0
= IdU hence

fy0
(x) = x moreover fyi

(x) = yi for i = 1, . . . , n(x). An operator Q ∈ B(M)
out of R ∈ C (M) ∩B(M) and fy0

, . . . , fyn(x)
∈ Diff+(M) is constructed such

that on vectors ω ∈ Ω2
c(M ;C) forming a dense subset has the shape

(6) (Qω)x :=

n(x)∑
i=0

f∗yi
(Rω) = Rxωx +

n(x)∑
i=1

f∗yi
(Rω).

Note that this linear operator is not local in the sense that its effect on ωx

depends not only on Rx and ωx but on the value of R and ω in further distant
points y1, . . . , yn(x) ∈ M as well. The question arises how to generalize this
construction for countable or even uncountable infinite sums. For all points
y ∈ M pick up unique diffeomorphisms fy ∈ Diff+(M) such that fy(x) = y
and fx = IdM . Then for all ω ∈ Ω2

c(M ;C) the assignment y �→ f∗y (Rω) gives
a function from M into ∧2

xM ⊗R C. Suppose we can integrate it against a
complex measure μx on M what we write as

∫
y∈M f∗y (Rω)dμx(y). Such a

measure can be constructed from a double 2-form K i.e., a section of the
bundle (∧2M ⊗R C)× (∧2M ⊗R C) over M ×M regarding it as a “kernel
function”. In other words for all x ∈ M and a 2-form ω we put∫

y∈M
f∗y (Rω)dμx(y) :=

∫
y∈M

Kx,y ∧ (Rω)y ∈ ∧2
xM ⊗R C.

Consequently the appropriate way to generalize the discrete formula (6) is
to set

(Qω)x :=

∫
y∈M

Kx,y ∧ (Rω)y.

Of course in order this integral to make sense we have to specialize the precise
class of these “kernel functions”. We shall not do it here but note that the
more singular the kernel is, the more general is the resulting bounded linear
operator. The general situation is controlled by the Schwartz kernel theorem:
non-tempered distributional double 2-forms K∈D ′(M×M ; (∧2M⊗RC)×
(∧2M ⊗R C)) give rise to bounded linear operators Q via 〈α,Qβ〉L2(M) =
(K,α⊗ (Rβ))M×M where this latter bracket is the pairing between dual
spaces (cf. e.g. [19, Vol. I §4.6]) and all bounded linear operators arise this
way with suitable kernels.

Q. Over a connected oriented smooth 4-manifold M a generic element Q ∈
B(M) always can be constructed from a geometric one R ∈ C (M) ∩B(M)
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by a smearing procedure provided by the Schwartz kernel theorem. In this
general situation no pointwisely given geometric object has a meaning be-
cause the original symmetry group Diff+(M) is unbroken. This is in accord
with the physical expectations.

We have completed the exploration of the elements of C (M) and B(M).

3. Gravity as an algebraic quantum field theory

Before proceeding further let us summarize the situation we have reached in
Section 2. To a smooth oriented 4-manifold M one can attach a sheaf CM

whose global sections C (M) contains algebraic curvature tensors. C (M)
often can be completed to a C∗-algebra C(M). Classical solutions of the
vacuum Einstein equations i.e., classical real Riemannian (or Lorentzian
with complexified curvature) Einstein manifolds (M, g) can be character-
ized by the fact that their curvature operators obey the canonical splitting
Ω+
c (M ;C)⊕ Ω−c (M ;C) ⊂ H +(M)⊕ H −(M) and this completion equipped

with an indefinite scalar product carries a representation of C (M) or even
C(M) and a unitary one of Diff+(M). Therefore one is tempted to look at
curvature operators as local quantum observables in a quantum field theory
possessing a huge symmetry group coming from diffeomorphisms. We make
these observations more formal by constructing something which resembles
an algebraic quantum field theory in the sense of [10]. For this aim we need
a “net” or a “co-presheaf” of local algebras on M i.e., a functorial assign-
ment O �→ A(O) attaching C∗-algebras A(O) to open subsets ∅ � O � M
such that the basic axioms of this theory having still meaning in our more
general context should be satisfied.

Recall that the space of local smooth complexified (0, 4)-type algebraic
curvature tensors over M is C∞(M ; (S2 ∧2 M ∩Ker b)⊗R C) where b :
C∞(M ; (∧1M)⊗4) → C∞(M ; (∧1M)⊗4) is the usual algebraic Bianchi map.
Making use of a metric i.e., pseudo-Euclidean structures on the fibers, the
corresponding (2, 2)-type algebraic curvature tensors fulfill a subspace of
C∞(M ; End(∧2M ⊗R C)). However now we lack any preferred metric hence
only the whole endomorphism space is at our disposal. Consider there-
fore End(Ω2

c(M ;C)), the adjoint operation � with respect to (1) and the
norm (4) given by the spectral radius. Take compactly supported com-
plex bundle morphisms R ∈ C∞c (M ; End(∧2M ⊗R C)) and real vector fields
X ∈ C∞c (M ;TM) with the associated Lie derivative LX . Then eR as well
as eLX have finite norm (4). Fix a relatively compact open subset ∅ �
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U � M and let A(U) be the unital C∗-algebra generated by the opera-
tors eR, eLX which commute on Ω2

c(M \ U ;C) ⊂ Ω2
c(M ;C) with the sub-

group Diff+
U (M) ⊂ Diff+(M) consisting of U -preserving diffeomorphisms.

I.e., A(U) arises as the norm-closure for (4) of the �-closed subspace〈
eR, eLX

∣∣ [eR|Ω2
c(M\U ;C) , Diff+

U (M)
]
= 0 ,

[
eLX |Ω2

c(M\U ;C) , Diff+
U (M)

]
= 0

〉
.

By construction C · 1 ∼= A(∅) � A(U) � A(V ) if ∅ � U � V therefore, as
usual, the global algebra A(M) is constructed (if M is non-compact) as
the C∗-algebra direct (inductive) limit of these local algebras.

Definition 3.1. The algebra A(U) is called the local generalized CCR al-
gebra of local quantum observables while A(M) is the global generalized
CCR algebra of M .

Remark. 1. This definition of local quantum observables stems from the
physical intuition that on remote localized states local operations should
commute with localization-preseving symmetries.

2. A(U) contains a usual CCR algebra at least when U � M is a co-
ordinate ball. Pick self-adjoint local endomorphisms R and local vector
fields X with LX being self-adjoint. Since X is real then eLX is a diffeo-
morphism which is unitary hence LX is self-adjoint. Consider the maximal
subspace of those self-adjoint elements which either commute: [R1, R2] = 0,
[LX1

, LX2
] = 0, [R,LX ] = 0 or are canonically conjugate to each other i.e.,

[R,LX ] = c · 1 with c ∈ C. Then the sub-C∗-algebra in A(U) generated by
the corresponding unitary operators eR, eLX form a usual CCR algebra; R
and LX play the role of the position operator Q and its canonically conju-
gate momentum operator P, respectively. This standard CCR algebra within
A(U) describes the “free graviton part” while the rest of A(U) the “self-
interacting part” of this theory. This justifies in some extent why we expect
to construct something like a “quantum theory”.

Putting things together then let us consider the algebraic quantum field
theory defined by the assignment

U �−→ A(U), U � M is relatively compact open.

Moreover A(M) is taken to be the C∗-algebra direct (inductive) limit of the
A(U)’s as usual. Note that the formulation of this theory rests only on the
smooth structure onM hence does not refer to any metric onM for instance.
A Hilbert space H +(M)⊕ H −(M) carries an action of all A(U)’s from the
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left and a unitary representation with respect to 〈 · , · 〉L2(M) of Diff+(M)
from the right. Elements of the algebra A(U) are the local quantum observ-
ables and those of the group Diff+(M) are the symmetry transformations.
The states are continuous normalized positive linear functionals on A(M)
and the expectation value of B ∈ A(M) in the state Φ is Φ(B) ∈ C.

Now we introduce the concept of a “quantum gravitational field” in the
standard way.

Definition 3.2. Let M be a connected oriented smooth 4-manifold. Take a
local generalized CCR algebra A(U) generated by eR’s and eLX ’s as above.
For a differentiable 1-parameter subgroup {At}t∈R ⊂ A(U) with A0 = 1 ∈
A(U) a local observable of the infinitesimal form

Q :=
dAt

dt

∣∣∣∣
t=0

∈ T1A(U)

is a called a local quantum gravitational field on U � M .
Take any split Hilbert space H +(M)⊕ H −(M) containing maximal

definite orthogonal subspaces (note that this breaks the diffeomorphism
symmetry). The off-blockdiagonal part of Q is the material content of the
local quantum gravitational field relative to the splitting. In particular Q is
called a local quantum vacuum gravitational field relative to the splitting if
its material content relative to the splitting vanishes i.e., Q(H ±(M) ∩D) �
H ±(M) at least on a dense subset D � H +(M)⊕ H −(M).

Now we turn to the representation theory of the global algebra A(M). As
usual this global CCR algebra of observables admits an abundance of non-
equivalent representations therefore an important task is to single out those
which possess some — either mathematical or physical — significance.

Firstly we construct what will be referred to as the tautological repre-
sentation having probably a mathematical relevance only.

Theorem 3.1. M itself gives rise to a faithful and irreducible so-called
tautological representation πM of A(M) on a Hilbert space HM . It also
carries a unitary representation UM of the group Diff+(M). A vector v ∈
HM satisfies UM (v) = v if and only if v = 0 (“no vacuum”).

As a consequence to M always a von Neumann algebra R(M) :=
(πM (A(M)))′′ can be attached canonically.

Proof. Referring back to Lemma 2.2 we improve A(M) itself to a Hilbert
space HM on which A(M) acts from the left. Recall that A(M) has a norm
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given by the spectral radius (4). We want to demonstrate that this norm
[[ · ]] actually comes from a positive definite non-degenerate Hermite scalar
product ( · , · )M . This will also yield that the Hilbert space completion HM

of A(M) will actually coincide with A(M) i.e., HM will arise simply by
putting this scalar product onto A(M).

Define a map from A(M)R × A(M)R into R by differentiating T �→ [[T ]]2

at the unit 1 ∈ A(M) as follows:

A(M)R × A(M)R � (A,B) �−→ 1

4
(D[[ · ]]2)1(A�B +B�A) ∈ R.

Properties of the norm ensure us that this derivative exists and the map
is symmetric and R-bilinear. Take any particular Hilbert space H +(M)⊕
H −(M) from the proof of Lemma 2.2. Recall the equality [[A]] = ‖A‖ for
all A ∈ A(M) where ‖ · ‖ is the usual operator norm on this Hilbert space
satisfying (3). Then

1

2
D

(‖( · )v‖2L2(M)

‖v‖2L2(M)

)
1

(A�A) =
Re(A�Av , v)L2(M)

‖v‖2L2(M)

=
Re(JAv , AJv)L2(M)

‖v‖2L2(M)

hence these derivatives also exist and taking their supremum with respect
to v ∈ H +(M)⊕ H −(M) gives ‖A‖2. Consequently

1

2
(D[[ · ]]2)1(A�A) =

1

2
D

(
sup
v �=0

‖( · )v‖2L2(M)

‖v‖2L2(M)

)
1

(A�A)

= sup
v �=0

1

2
D

(‖( · )v‖2L2(M)

‖v‖2L2(M)

)
1

(A�A) = ‖A‖2.

This shows that 1
2(D[[ · ]]2)1(A�A) = ‖A‖2 � 0 and equality holds if and

only if A = 0. Therefore (A,B) �→ 1
4(D[[ · ]]2)1(A�B +B�A) is a real non-

degenerate scalar product on A(M)R with induced norm [[ · ]]. The norm
satisfies [[A]] = [[iA]] over A(M) as well therefore putting

(A , B)M :=
1

2

(
[[A+B]]2 − [[A]]2 − [[B]]2

)
+

i

2

(
[[iA+B]]2 − [[iA]]2 − [[B]]2

)
gives rise to a non-degenerate Hermitian scalar product on A(M). In other
words A(M) as a complete normed space has the further structure of a
Hilbert space HM and A(M) acts on it(self) from the left yielding a faithful
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irreducible representation πM i.e., πM (A)B := AB for all A ∈ A(M), B ∈
HM = A(M).

Since by construction Diff+(M) ⊂ A(M) we also obtain a unitary repre-
sentation UM (f) := πM (f∗) and via part (ii) of Lemma 2.1 obviously v = 0
is the only invariant vector under UM as stated. �
Secondly, in a quantum field theory the algebra of quantum observables must
possess positive mass and energy representations. Let us therefore construct
some representations πΣ,ω of our global algebra A(M) what we will call
positive mass representations. When doing this we touch upon the problem
of gravitational mass and energy which is probably the most painful part of
current general relativity [18].

Theorem 3.2. Take an oriented closed surface Σ. Let (Σ, p1, . . . , pn) de-
note a generic smooth immersion i : Σ � M where the points p1, . . . , pn ∈ Σ
are the preimages of the double points of this immersion. Moreover take any
closed ω ∈ Ω2

c(M ;C). Assume that

(i) 1
2πi

∫
Σ ω = 1;

(ii) ω is non-degenerate along Σ and for all complex structures C = C(Σ)
on Σ there exist positive definite unitary holomorphic vector bundle
structures on the vector bundle E := TM ⊗R C|C over C ⊂ M com-
patible with ω such that dimCH0(C;O(E)) = 4.

Then (Σ, p1, . . . , pn, ω) gives rise to a so-called positive mass representation
πΣ,ω of A(M) on a Hilbert space HΣ,ω as follows:

(i) HΣ,ω also carries a unitary representation UΣ,ω of the group Diff+(M).
A vector v ∈ HΣ,ω satisfies UΣ,ω(f)v = v for all f ∈ Diff+(M) if and
only if v = 0 (“no vacuum”);

(ii) On a dense subset of states 0 �= [A] ∈ HΣ,ω a complex 4-vector PC,ω,A ∈
H0(C;O(E)) can be defined together with its length mC,ω,A :=
‖PC,ω,A‖L2(C) � 0 with respect to a natural Hermitian scalar prod-
uct ( · , · )L2(C) on C∞(C;E). It has the porperty that if [1] ∈ HΣ,ω

is a state corresponding to vanishing algebraic curvature R = 0 then
PC,ω,1 = 0 hence mC,ω,1 = 0.

Proof. (i) A continuous functional ΦΣ,ω : A(M) → C is defined by extending
continuously the map

A �−→ ΦΣ,ω(A) :=
1

2πi

∫
Σ

Aω ∈ C
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from End(Ω2
c(M ;C)) ∩ A(M). By assumption (i) ΦΣ,ω(1

�1) = 1 hence
ΦΣ,ω(A

�A) > 0 if ‖A− 1‖ < ε. Since any B ∈ A(M) can be written as
B = cA with c ∈ C we see that ΦΣ,ω(B

�B) = |c|2ΦΣ,ω(A
�A) � 0 conse-

quently ΦΣ,ω is continuous, normalized and positive. Therefore the GNS
construction applies and yields a corresponding representation of the C∗-
algebra A(M). Recall that this goes as follows. One has the induced left-
multiplicative Gelfand ideal IΣ,ω := {A ∈ A(M) | ΦΣ,ω(A

�A) = 0} ⊂ A(M).
The functional provides us with a well-defined positive definite scalar prod-
uct ([A], [B])Σ,ω := ΦΣ,ω(A

�B) on A(M)/IΣ,ω with A ∈ [A], B ∈ [B] where
[A] := A+ IΣ,ω, etc. Making use of this scalar product one completes
A(M)/IΣ,ω to a Hilbert space HΣ,ω and then lets A(M) act from the left by
the continuous extension of πΣ,ω(A)[B] := [AB] from A(M)/IΣ,ω to HΣ,ω.
Since the whole construction is acted upon equivariantly by Diff+(M) (i.e.,
all the M , A(M) and HΣ,ω carry induced actions of the diffeomorphism
group) two representations πΣ,ω and πf(Σ),f∗ω are considered to be identi-
cal and the whole set of these representations will be denoted by πΣ,ω with
Hilbert space HΣ,ω. In fact two representations πΣ1,ω1

and πΣ2,ω2
are uni-

tary equivalent if and only if there is a positive real number a ∈ R+ such
that ΦΣ2,ω2

= aΦΣ1,ω1
hence in particular if exists an element f ∈ Diff+(M)

satisfying Σ2 = f(Σ1) and ω2 = f∗ω1; consequently our identification is con-
sistent from a representation-theoretic viewpoint as well.

In usual Poincaré-invariant quantum field theory the Hilbert space car-
ries a unitary representation of the space-time symmetry group. Here the
“space-time symmetry transformations” are all the diffeomorphisms hence
in our algebraic quantum field theory the corresponding infinitesimal trans-
formations are the Lie derivatives with respect to vector fields. We con-
struct a unitary representation UΣ,ω of Diff+(M) on HΣ,ω from the left as
follows. An element f ∈ Diff+(M) arises as limits of products of diffeomor-
phisms whose infinitesimal generators are compactly supported real vector
fields X ∈ C∞c (M ;TM). Recalling the construction of A(M) we see that if
one looks at the pullback f∗ induced by f ∈ Diff+(M) as a linear opera-
tor on Ω2

c(M ;C) then f∗ ∈ A(M) and it is a unitary element. Therefore put
UΣ,ω(f) := πΣ,ω(f

∗) for f ∈ Diff+(M). This representation is indeed unitary
because

(UΣ,ω(f)[A], UΣ,ω(f)[B])Σ,ω

= ([f∗A], [f∗B])Σ,ω

= ΦΣ,ω((f
∗A)�(f∗B))

= ΦΣ,ω(A
�B) = ([A], [B])Σ,ω.
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The representation UΣ,ω : Diff+(M) → U(HΣ,ω) has a complexified infinites-
imal version

uΣ,ω : C∞c (M ;TM ⊗R C) ∼= Lie(Diff+(M))⊗R C

−→ u(HΣ,ω)⊗R C ∼= End(HΣ,ω)

whose matrix elements on the dense subspace

D := (A(M) ∩ End(Ω2
c(M ;C)))/IΣ,ω ⊂ HΣ,ω

look like

([A], uΣ,ω(X)[B])Σ,ω = lim
t→0

ΦΣ,ω

(
A� etXB −B

t

)
=

1

2πi

∫
Σ

A�LXBω.

For real vector fields we have a more geometric description: if {ft}t∈R ⊂
Diff+(M) is a 1-parameter subgroup forX∈C∞c (M ;TM) then uΣ,ω(X)[A]∈
HΣ,ω satisfies

lim
t→0

∥∥∥∥uΣ,ω(X)[A]−
[
f∗t A−A

t

]∥∥∥∥
Σ,ω

= 0

consequently the uΣ,ω(X)’s are indeed the complexified infinitesimal gen-
erators of Diff+(M) in the representation UΣ,ω. It follows from part (i) of
Lemma 2.1 that the only invariant vector under Diff+(M) is 0 ∈ HΣ,ω.

(ii) In usual Poincaré-invariant quantum field theory a 4 dimensional
commuting set of infinitesimal space-time symmetries are regarded as in-
finitesimal translations; the corresponding operators are interpreted as
energy-momentum operators acting on the Hilbert space of the theory. How-
ever in general one cannot find a distinguished 4 dimensional commuting
subspace which could be called as “infinitesimal translations”. To overcome
this difficulty we will follow Dougan and Mason [7] (or [18, Chapter 8]) to
find a distinguished subspace of vector fields by holomorphy.

Consider E := TM ⊗R C|Σ satisfying rkCE = 4 and degE = 0. The 2-
form ω can also be used to construct a Hermitian metric on it. Indeed, a Her-
mitian form on M is defined by g(X,Y ) := 1

2

(
ω(X, iY )− ω(iX,Y )

)
for all

X,Y ∈ C∞(M ;TM ⊗R C). By assumptions (ii) in the theorem its restriction
makes E into a smooth positive definite unitary vector bundle (E, g) over Σ.
Take a connection ∇E : C∞(Σ;E) → C∞(Σ;E ⊗C ∧1Σ) satisfying ∇Eg = 0
which means that it is compatible with the unitary structure. Picking any
complex structure on Σ we can identify it with a compact Riemann surface
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C = C(Σ). The (0, 1)-part ∂E of the connection endows (E, g) with the struc-
ture of a unitary holomorphic vector bundle over C. Its finite dimensional
subspace of holomorphic sections is denoted byH0(C;O(E)). The Riemann–
Roch–Hirzebruch theorem gives dimCH0(C;O(E)) � 4(1− genus(C)) but
by assumptions (ii) in the theorem this vector space is supposed to be pre-
cisely 4 dimensional. It also follows that the Hermitian L2 scalar product
(X,Y )L2(C) :=

1
2πi

∫
C g(X,Y )ω on C∞(C;E) is positive definite. A simple

choice for E can be the holomorphically trivial bundle C × C4.
We already have seen that the expectation value of any vector field X

on M is well defined for a dense subset of vectors 0 �= v ∈ D ⊂ HΣ,ω and

looks like (v , uΣ,ω(X)v)Σ,ω

‖v‖2Σ,ω
∈ C. However

([A], uΣ,ω(X)[A])Σ,ω =
1

2πi

∫
Σ

A�LXAω

by construction, therefore

([A] , uΣ,ω(X)[A])Σ,ω

‖[A]‖2Σ,ω

=

∫
Σ

A�LXAω∫
Σ

A�Aω

which is complex linear in X ∈ C∞c (M ;TM ⊗R C). Let Nε(C) ⊂ M be a
small tubular neighbourhood of C ⊂ M ; we can suppose that it is a B2

ε -
bundle over C hence put N0(C) := C. Take a linear functional on
C∞(Nε(C);TNε(C)⊗R C) by setting

Pε,C,ω,A(X|Nε(C)) :=

∫
C

A�LXAω∫
C

A�Aω

and then on C∞(C;E) by

(7) PC,ω,A(X|C) := lim
ε→0

Pε,C,ω,A(X|Nε(C)).

A vector field X ∈ C∞c (M ;TM ⊗R C) is called a quasilocal infinitesimal
translation along Σ if X|C ∈ H0(C;O(E)) ⊂ C∞(C;E)) and (7) gives rise
to a well-defined dual vector PC,ω,A ∈ (H0(C;O(E)))∗. This PC,ω,A is called
the quasilocal energy-momentum 4-vector along Σ of the state [A] ∈ HΣ,ω.
By the aid of the scalar product ( · , · )L2(C) we identify (H0(C;O(E)))∗

with H0(C;O(E)) therefore we can suppose that PC,ω,A ∈ H0(C;O(E)) by
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putting (PC,ω,A, X|C)L2(C) := PC,ω,A(X|C). By assumptions (ii) of the the-
orem PC,ω,A is indeed a complex 4-vector. Its length looks like

‖PC,ω,A‖2L2(C) =
1

2πi

∫
C

g (PC,ω,A , PC,ω,A)ω

=
1

2πi

∫
C

PC,ω,A ∧ ∗gPC,ω,A =
1

2πi

∫
C

|PC,ω,A|2gω

and we call the number mC,ω,A := ‖PC,ω,A‖L2(C) � 0 the mass of the the
state [A] ∈ HΣ,ω.

Finally, the “semiclassical gravitational vacuum” defined by R = 0 along
M is represented by the state [e0] ∈ HΣ,ω. However e0 = 1 ∈ A(M) hence
[e0] = [1]. Consequently with some ε > 0 for any quasilocal infinitesimal
translation X along Σ we find

Pε,C,ω,1(X|Nε(C)) =
1

2πi

∫
C

LXω =
1

2πi

∫
C

(ιXdω + d(ιXω)) = 0

because both C and ω are closed by assumption. Therefore taking ε → 0
the expression (7) yields PC,ω,1 = 0 that is, this state has zero quasilocal
energy-momentum hence mass as expected. �

Remark. 1. The formula (7) for the quasilocal energy-momentum formally
remains meaningful for quantum gravitational fields introduced in Defini-
tion 3.2. Hence the corresponding quantities PC,ω,Q and mC,ω,Q are inter-
preted as the quasilolcal energy-momentum 4-vector and the mass of a quan-
tum gravitational field Q. Among local quantum gravitational fields one can
recognize classical curvature tensors hence we obtain quasilocal quantities
for classical general relativity, too.

2. Notice that the topological condition for the existence of a represen-
tation πΣ,ω is that both i : Σ � M and ω ∈ Ω2

c(M ;C) must represent non-
trivial classes inH2(M ;Z) andH2(M ;C) respectively such that 〈[Σ], [ω]〉M =
1
2πi

∫
Σ ω �= 0. Hence in particular R4 or S4 does not possess positive mass

representations! However even if [Σ1] = [Σ2] ∈ H2(M ;Z) and [ω1] = [ω2] ∈
H2(M ;C) the resulting representations πΣ1,ω1

and πΣ2,ω2
are not unitarily

equivalent in general.

Thirdly, apart from the tautological and positive mass quantum representa-
tions with unbroken symmetry Diff+(M) there exist other ones what we call
classical representations because in these representations the original vast
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symmetry group is spontaneously broken to a finite dimensional subgroup
Iso+(M, g) ⊂ Diff+(M) of an emergent metric g on M .

Theorem 3.3. Take a perhaps non-compactly supported ω ∈ Ω2(M ;C) such
that ω is non-degenerate along the whole M moreover satisfies

∫
M ω ∧ ω = 1.

Then ω gives rise to a so-called classical representation πω of A(M) on
a Hilbert space Hω as follows:

(i) Hω also carries a unitary representation Uω of the group 1 �
Iso+(M, g) � Diff+(M) consisting of the isometries of the unitary met-
ric g on the complexified tangent bundle given by

g(X,Y ) :=
1

2

(
ω(X, iY )− ω(iX,Y )

)
for all X,Y ∈ C∞(M ;TM ⊗R C).

Moreover the state Ω := [1] ∈ Hω corresponding to vanishing algebraic
curvature R = 0 satisfies Uω(f)Ω = Ω for all f ∈ Iso+(M, g);

(ii) The distinguished splitting H +(M)⊕ H −(M) via (anti)self-duality
with respect to g induces a splitting Hω = H +

ω ⊕ H −
ω into orthogonal

subspaces obeyed by Iso+(M, g). The distinguished quantum gravita-
tional field Q := Rg in the sense of Definition 3.2 provided by the cur-
vature of the metric g acts on Hω. Moreover πω(Rg) obeys the splitting
of Hω if and only if Rg does the same on H +(M)⊕ H −(M) i.e., Rg

is a vacuum quantum gravitational field or in other words g is a com-
plexified Einstein metric on M . In particular if the metric g is flat
then Rg = 0 also gives the invariant state Ω = [1] ∈ Hω .

Proof. (i) This time take another natural normalized linear functional Ψω :
A(M) → C by continuously extending a functional whose shape on elements
A ∈ End(Ω2

c(M ;C)) ∩ A(M) looks like

A �−→ Ψω(A) :=

∫
M

ω ∧ (Aω) = 〈ω , Aω〉L2(M)

provided by (1). Exactly as in the proof of Theorem 3.2 we can exploit
the continuity of the functional to conclude from Ψω(1

�1) = 1 that Ψω is a
positive functional on A(M).

Therefore applying again the GNS construction we come up with a
reprsentation πω on a Hilbert space Hω. The metric also provides us with
its isometry group 1 � Iso+(M, g) ⊂ Diff+(M). We construct a unitary rep-
resentation Uω of Iso+(M, g) on Hω as follows. First of all for any f ∈
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Iso+(M, g) we find f∗A(M)(f−1)∗ � A(M). We define a representation on
Hω by Uω(f)[A] := [f∗A(f−1)∗]. Moreover diffeomorphisms are unitary:
(f∗)� = (f−1)∗ and in particular an isometry has the property ω = f∗ω
consequently

(Uω(f)[A], Uω(f)[B])ω

=

∫
M

ω ∧ ((f∗A(f−1)∗)�(f∗B(f−1)∗ω)) =
∫
M

ω ∧ (f∗A�B(f−1)∗ω)

=

∫
M

f∗ω ∧ (f∗A�Bω) =

∫
M

f∗(ω ∧ (A�Bω)) =

∫
M

ω ∧ (A�Bω)

= ([A], [B])ω

ensuring us that this representation is indeed unitary. Ω := [1] ∈ Hω corre-
sponding to the “semiclassical gravitational vacuum” R = 0 is a (not neces-
sarily unique) invariant vector.

(ii) Since A(M) ⊂ End(H +(M)⊕ H −(M)) we get a decomposition of
A(M) as

A(M) ∩ (
End(H +(M))⊕ End(H −(M))

⊕Hom(H +(M),H −(M))⊕Hom(H −(M),H +(M))
)
.

Write an element B ∈ End(Ω2
c(M ;C)) ∩ A(M) in the corresponding form

as B =

(
a b
c d

)
. It is easy to check that ω hence ω is (anti)self-dual with

respect to g and the orientation on M (on a complex manifold with its
natural orientation ω is always self-dual, cf. [6, Lemma 2.1.57]). Suppose now
that ∗gω = ω. Then we obtain Bω = aω + cω with aω ∈ H +(M) as well as
cω ∈ H −(M). Consequently exploiting the orthogonality of H +(M) and
H −(M) we can expand Ψω(B

�B) and find

Ψω

((
a�a+ c�c a�b+ c�d
b�a+ d�c b�b+ d�d

))
= Ψω

((
a�a+ c�c 0

0 0

))

yielding that A(M) ∩ (Hom(H −(M),H +(M))⊕ End(H −(M)) � Iω
where, as before, Iω ⊂ A(M) is the Gelfand ideal of Ψω. Consequently Hω —
being the completion of A(M)/Iω with respect to the scalar product ( · , · )ω
— splits like H +

ω ⊕ H −
ω by completing (A(M) ∩ End(H +(M)))/Iω and

(A(M) ∩Hom(H +(M),H −(M)))/Iω respectively. The two summands are
orthogonal subspaces and the decomposition obviously satisfies Uω(H ±

ω ) �
H ±

ω . The case of ∗gω = −ω is similar.
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If Q := Rg is the curvature of g regarded as a quantum gravitational field
as in Definition 3.2 and g is vacuum i.e., Einstein then we already know that
Rg(H ±(M)) � H ±(M). Moreover Rg ∈ T1A(M) acts on Hω from the left
by passing to the infinitesimal action of A(M) on Hω what we continue to

denote by πω. It then follows from

(
p 0
0 q

)(
a 0
c 0

)
=

(
pa 0
qc 0

)
that for an

Einstein metric πω(Rg) also satisfies πω(Rg)(H ±
ω ) � H ±

ω . The particular
case of the flat metric with Rg = 0 gives the invariant state Ω = [1] ∈ Hω

as well. �

Remark. The usual axioms of algebraic quantum field theory (cf. e.g. [10,
pp. 58–60 or pp. 105–107]) typically make no sense in this very general
setting. But for clarity we check them one-by-one in order to see in what
extent our algebraic quantum field theory is more general than the usual
ones.3

[10, Axiom A on p. 106] can be translated to saying that the Hilbert
space of a representation of the global generalized CCR algebra A(M) also
carries a unitary representation of the (spontaneously broken) space-time
symmetry group of the theory which has been taken to be the whole dif-
feomorphism group here. We found three types of representations; here we
discuss two of them.

We constructed HΣ,ω carrying a positive mass representation πΣ,ω of
A(M) as well as a unitary representation UΣ,ω of the unbroken group
Diff+(M). However HΣ,ω does not possess a Diff+(M)-invariant state i.e.,
“vacuum” does not exist here. Nevertheless the Dougan–Mason quasilocal
translations of i : Σ � M give rise to quasilocal energy-momentum 4-vectors
PC,ω,A in a manner that the state corresponding to the classical gravitational
vacuum has vanishing energy-momentum as one expects. This is interesting
because the concepts of mass and energy are quite problematic in classical
general relativity as well as that of the vacuum in general quantum field
theories. But recall that this construction — which mixes ideas of quasilocal
constructions in classical general relativity [7, 18] and standard GNS repre-
sentation theory of C∗-algebras — contains a technical ambiguity namely a

3We quote from Haag [10, p. 60]: “On the other hand the word �axiom� sug-
gests something fixed, unchangeable. This is certainly not intended here. Indeed,
some of the assumptions are rather technical and should be replaced by some more
natural ones as deeper insight is gained. We are concerned with a developing area
of physics which is far from closed and should keep an open mind for modifications
of assumptions, additional structural principles as well as information singling out
a specific theory within the general frame.”
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choice of a complex structure on an immersed surface in M . However one
expects the whole machinery to be independent of this choice. We treat this
problem in Section 4.

We also constructed Hω carrying a classical representation πω of A(M)
together with a unitary representation Uω of the spontaneously broken group
Iso+(M, g) ⊂ Diff+(M) provided by an emergent metric g on M . This rep-
resentation gives back the classical picture. It also possesses a (probably
not unique) invariant state Ω ∈ Hω but this time we lack the concept of
energy-momentum hence we cannot call this state as the “vacuum”.

[10, Axioms B and C on p. 107] dealing with the additivity of local
algebras and their hermiticity by construction hold here.

[10, Axiom D on p. 107] can be translated to saying that since the
diffeomorphism group is the symmetry group of the theory, it acts on the
net of local algebras like

(8) f∗A(U)(f−1)∗ = A(f(U))

for all f ∈ Diff+(M) i.e., symmetry transformations map the local algebra
of a region to that one of the transformed region. This continues to be valid
here.

[10, Axiom E on p. 107] holds in a trivial way as an unavoidable
consequence of the vast diffeomorphism invariance. It is easy to see that
[A(U),A(V )] = 0 if and only if U ∩ V = ∅. Indeed, demanding (8) to be
valid we can see that regardless what A(U) actually is, it must commute
with diffeomorphisms being the identity on U ; consequently if A ∈ A(U) ⊂
B(M) then A|Ω2

c(M\U ;C) ∈ Z(B(M \ U)) = C IdΩ2
c(M\U ;C). But Ω2

c(V ;C) ⊂
Ω2
c(M \ U ;C) if U ∩ V = ∅ hence the assertion follows. Therefore there is no

causality hence no dynamics present here. Hence the reason we prefer to use
Riemannian metrics over Lorentzian ones throughout the paper (although
emphasize again that all conclusions hold for Lorentzian metrics as well).
We can also physically say that this theory represents a very elementary
level of physical reality where even no causality exists yet. Causality should
emerge through breaking of the diffeomorphism symmetry. This symmetry
breaking has been carried out in the case of the classical representations.

[10, Axiom F on p. 107] This completeness requirement claims for the
validity of Schur’s lemma i.e., in a representation the only bounded operator
which commutes with all quantum observables should be a multiple of the
identity operator. This holds if the representation of A(M) in question is
irreducible.



Gravity as an algebraic quantum field theory 1075

[10, Axiom G on p. 107] about “primitive causality” has no meaning in
this general setting.

4. Positive mass representations and conformal field theory

Theorem 3.2 allows us to make a link with conformal field theory. We ob-
tained representations πΣ,ω of the algebra of global observables A(M) con-
structed by standard means from a smooth immersion (Σ, p1, . . . , pn) of a
surface Σ into M and a regular element ω ∈ Ω2

c(M ;C). If a complex struc-
ture C = C(Σ) is put onto the surface as well then the quasilocal energy-
momentum PC,ω,A ∈ H0(C;O(E)) and mass mC,ω,A ∈ R+ ∪ {0} of a non-
zero state [A] ∈ HΣ,ω can be defined enriching πΣ,ω further to a positive
mass representation. However on physical grounds we expect the whole con-
struction to be independent of these technicalities i.e., any choice of these
complex structures have to result in the same construction. Following Wit-
ten [21] this means that a conformal field theory lurks behind the curtain.
We can indeed find this theory which however turns out to be a very simple
topological conformal field theory in the sense that its Hilbert space is finite
dimensional and the correlation functions are insensitive for the insertion of
marked points i.e., how the immersion looks like.

In constructing this topological conformal field theory we will follow
G. Segal [16]. That is first construct a “modular functor extended with an
Abelian category possessing a symmetric object” (cf. [1, Definition 5.1.12])
in particular and [1, Chapters 5 and 6] in general). In other words we have
to construct an assignment

(9) τ : (Σ, p1, . . . , pn) �−→ τ(Σ, p1, . . . , pn)

which somehow associates to surfaces with marked points finite dimensional
complex vector spaces satisfying certain axioms. Consider a positive mass
representation πΣ,ω of A(M) constructed out of (Σ, p1, . . . , pn, ω) as in The-
orem 3.2. Recall that the marked points pi ∈ Σ correspond the multiple
points of the immersion i : Σ � M (the case (Σ, ∅, ω) is an embedding).
Then to a positive mass representation of A(M) a holomorphic vector bun-
dle E of spaces of conformal blocks τ(Σ, p1, . . . , pn) over the coarse moduli
space Mg,n of complex structures on (Σ, p1, . . . , pn) will be assigned in man-
ner that if 0 �= [A] ∈ HΣ,ω is a state then its quasilocal energy-momentum
4-vector PC,ω,A gives rise to a section PΣ,ω,A of E . This section will be more-
over (projectively) flat with respect to the natural (projectively) flat con-
nection ∇ on E (the Knizhnik–Zamolodchikov connection). In other words
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the quasilocal energy-momentum 4-vector gives rise to a conformal block in
this conformal field theory.

We begin with the following simple observation (an elementary version
of Uhlenbeck’s singularity removal theorem [20]).

Lemma 4.1. Take any compact Riemann surface C = C(Σ) with distinct
marked points p1, . . . , pn ∈ C and a holomorphic unitary vector bundle F ′

over C \ {p1, . . . , pn}. Let s′ ∈ H0(C \ {p1, . . . , pn};O(F ′)) be a meromor-
phic section with the property ‖s′‖L2

loc(C) < +∞ i.e., having locally finite
energy over C.

If s′ is singular in pi ∈ C then one can find a local gauge transformation
about this point such that the gauge transformed section extends holomorphi-
cally across it i.e., pointlike singularities of locally finite energy meromorphic
sections over C are removable. More precisely there exists a unique unitary
holomorphic vector bundle F over C satisfying F |C\{p1,...,pn} ∼= F ′ so that for
any locally finite energy section s′ ∈ H0(C \ {p1, . . . , pn};O(F ′)) there exists
a section s ∈ H0(C;O(F )) with the property s|C\{p1,...,pn} is gauge equivalent
to s′.

Proof. First we prove the existence of the unique extendibility of the uni-
tary bundle (F ′, h′). Consider a local holomorphic coordinate system (Ui, z)
on C such that z(Ui) = D(0) ⊂ C some open disc about the origin and Ui

contains only one marked point pi ∈ Ui satisfying z(pi) = 0. Cutting out
the open neighbourhood Ui ⊂ C of pi we obtain a manifold-with-boundary
C \ Ui and ∂(C \ Ui) ∼= S1. Consider the restriction (F ′, h′)|∂(C\Ui) regarded
as a smooth U(k)-bundle over S1. Taking a smooth local trivialization the
corresponding smooth local transition function of (F ′, h′)|∂(C\Ui) gives rise to
a monodromy map μi : S

1 → U(k) where k = rk F ′. However π0(U(k)) ∼= 1
hence this monodromy map together with its derivatives along S1 extends
over pi as the identity consequently (F ′, h′)|Ui\{pi} can be extended over
this point as a smooth unitary vector bundle (Fi, hi)|Ui

. Consider a smooth
trivialization Fi|Ui

∼= Ui × Ck and write in this smooth gauge the restric-
tion of the partial connection defining the holomorphic structure on F ′ as
∂F ′ |Ui\{pi} = ∂ + α′Ui\{pi}. Then the Hermitian scalar product on Fi satisfies

∂Fi
(hi|Ui\{pi}) = ∂(hi|Ui\{pi}) + α′Ui\{pi}(hi|Ui\{pi}) = 0

and hi|Ui\{pi} extends smoothly over pi as hi|Ui
. Therefore αUi

:=

−(∂hi|Ui
)(hi|Ui

)−1 on Ui defines a smooth extension of α′Ui\{pi} over pi in

a manner that ∂Fi
|Ui

:= ∂ + αUi
is the restriction of a compatible partial
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connection ∂Fi
yielding a compatible holomorphic structure on (Fi, hi). Per-

forming this procedure around every marked points we obtain a unique
unitary holomorphic vector bundle i.e., (F, h, ∂F ) with ∂Fh = 0.

Now we come to the extendibility of sections. Compatibility provides us
that in a local holomorphic trivialization F |U ∼= U × Ck the coefficients of
h|U are holomorphic functions. Performing a GL(k,C)-valued holomorphic
gauge transformation if necessary we can pass to a local holomorphic trivi-
alization in which h|U has the standard form. Take any holomorphic section
of F or equivalently, a meromorphic section of F with singularities in the
marked points i.e., pick any

s′ ∈ H0(C \ {p1, . . . , pn};O(F ′)) ∼= H0(C \ {p1, . . . , pn};O(F ))

with local shape s′|U (z) = s′1(z)f1 + · · ·+ s′k(z)fk in this local trivializa-
tion. Since s′|U is holomorphic outside 0 ∈ C each components s′j : U → C
admit Laurent expansions

s′j(z) =
+∞∑

m=−Nj

ajmzm, ajm ∈ C.

Moreover the local L2-norm of the section in this special gauge looks like

‖s′‖2L2(U) =
1

2πi

∫
U

(
|s′1(z)|2 + · · ·+ |s′k(z)|2

)
ω|U

=

∫
U

(
|s′1(z)|2 + · · ·+ |s′k(z)|2

)
ϕU (z, z)dz ∧ dz

where ϕU is a smooth nowhere vanishing function on U . Assume that the
section has locally finite energy. On substituting the above expansions into
this integral the finiteness then dictates to conclude that N j = 0 for all
j = 1, . . . , k and i = 1, . . . , n hence in fact s′ is holomorphic over the whole
C as desired. �
Now we turn to the construction of the relevant modular functor. Sup-
pose that Σ � M is a compact surface without boundary. Choose any com-
plex structure C = C(Σ) on it and n distinct marked points p1, . . . , pn ∈ C
given by multiple-points of the immersion. Let E′ := TM ⊗R C|C\{p1,...,pn}
be a holomorphic unitary bundle over the punctured surface. Or rather
more generally, if C = �iCi is an abstract compact non-punctured Riemann
surface as in Theorem 3.2 with connected components Ci then let E be
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a holomorphic unitary bundle over C with rkC(E|Ci
) = 4, deg(E|Ci

) = 0
and dimCH0(C;O(E)) = 4. Then in terms of the restricted bundle E′ :=
E|C\{p1,...,pn} our choice is as follows:
(10)

τ(Σ, p1, . . . , pn) :=

⎧⎪⎨
⎪⎩
Cliff

(
H0 (C \ {p1, . . . , pn};O(E′)) ∩ L2

loc(C;E)
)

if (Σ, p1, . . . , pn) �= ∅;
C if (Σ, p1, . . . , pn) = ∅

that is, this vector space is the underlying vector space of the complex
Clifford algebra of the scalar product space

(
H0(C \ {p1, . . . , pn};O(E′)) ∩ L2

loc(C;E) , ( · , · )L2(C)

) ∼= C4
Hermite

consisting of vector fields on M which, upon restriction to C, are holomor-
phic except in the marked points and have locally finite energy.

Lemma 4.2. Let (Σ, p1, . . . , pn) be a smooth surface with marked points
and take a complex structure C = C(Σ) rendering it a Riemann surface with
marked points (C, p1, . . . , pn). Also take the holomorphic unitary bundle E′

over C \ {p1, . . . , pn} as before. Attach to every marked point pi ∈ C the
single label

ν := {a holomorphic section of E′ has a finite energy singularity in pi∈C}.

Then the assignment (9) with the choice (10) is a modular functor which is
not normalized in the sense that τ(S2, ∅) = Cliff(H0(CP 1;O(E′))) instead
of τ(S2, ∅) = C.

Moreover the vector spaces τ(Σ, p1, . . . , pn) fit together into a trivial
holomorphic vector bundle E over the coarse moduli space Mg,n of genus
g Riemann surfaces with n marked points carrying a flat connection ∇ (the
Knizhnik–Zamolodchikov connection). The vector PC,ω,A ∈ H0(C;O(E)) is
the value at C ∈ Mg,n of a section PΣ,ω,A of this bundle over Mg,n satisfying
∇PΣ,ω,A = 0.

Proof. We check the three relevant axioms of [1, Definition 5.1.2]. First of
all Lemma 4.1 yields that if (Σ, p1, . . . , pn) �= ∅ then

τ(Σ, p1 . . . , pn) ∼= Cliff(H0(C;O(E)))
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consequently the vector spaces are finite dimensional. It also readily follows
from (10) that

τ((Σ1, p1, . . . , pn) � (Σ2, q1, . . . , qm)) ∼= τ(Σ1, p1, . . . , pn)⊗C τ(Σ2, q1, . . . , qm)

as vector spaces, in agreement with [1, part (iii) of Definition 5.1.2]. The
second axiom to check is [1, part (iv) of Definition 5.1.2] which is the glueing
axiom. Let γ ⊂ (Σ, p1, . . . , pn) be a closed curve without self-intersections.
Cut (Σ, p1, . . . , pn) along γ. The resulting surface has naturally the structure
of a not necessarily connected punctured surface (Σ̃, p1, . . . , pn, q1, q2) where
the two new marked points q1, q2 come from the circle γ. Putting Ẽ :=
E|C\({p1,...,pn}∪γ) into (10) by the aid of Lemma 4.1 we obtain that locally

finite energy meromorphic sections on (C̃, p1, . . . , pn, q1, q2) correspond to
those on (C, p1, . . . , pn) consequently, taking into account that there is only
a single label ν with its meaning,

τ(Σ̃, p1, . . . , pn, q1, q2) ∼= τ(Σ, p1, . . . , pn)

hence the glueing axiom holds in a trivial way here.
The third axiom to check is the functorial behaviour under diffeomor-

phisms [1, part (ii) of Definition 5.1.2]. In turn this is equivalent to check-
ing the existence of a Knizhnik–Zamolodchikov connection. Let Mg,n be the
coarse moduli space of connected non-singular Riemann surfaces of genus
g and n marked points. We take a complex vector bundle E over Mg,n

whose fibers over (C, p1, . . . , pn) ∈ Mg,n are the individual spaces of confor-
mal blocks τ(Σ, p1, . . . , pn) constructed from the holomorphic bundle E′ over
C \ {p1, . . . , pn} or equivalently E over C. Recall that M is acted upon by
its diffeomorphism group. Hence the subgroup Diff+

Σ(M) ⊂ Diff+(M) con-
sisting of Σ-preserving diffeomorphisms acts on the real smooth punctured
surface such that it deforms its complex structure i.e., (Σ, p1, . . . , pn) and
(f(Σ), f(p1), . . . , f(pn)) correspond in general to different points in Mg,n.
This subgroup also acts on C∞(C;E) by pullback. Consequently it trans-
forms the subspaces

τ(Σ, p1, . . . , pn) ∼= Cliff(H0(C;O(E))) ⊂ Cliff(C∞(Σ;E))

giving rise to linear isomorphisms

τ(Σ, p1, . . . , pn) ∼= τ(f(Σ), f(p1), . . . , f(pn)) for all f ∈ Diff+
Σ(M).

These linear isomorphisms can be interpreted as parallel translations along E
by a flat connection ∇ called the Knizhnik–Zamolodchikov connection. Note
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that since the representation of Σ-preserving diffeomorphisms on C∞(Σ;E)
is not only projective but in fact a true representation, the resulting connec-
tion is not only projectively but truely flat on E . In particular the bundle
E as a complex vector bundle is trivial over Mg,n but is equipped with
a holomorphic structure. Via Lemma 4.1 the holomorhic section PC,ω,A ∈
H0(C;O(E)) can be regarded as a meromorphic one i.e., PC,ω,A ∈ H0(C \
{p1, . . . , pn};O(E′)). Define a section PΣ,ω,A of E on Mg,n by putting
PΣ,ω,A(C) := PC,ω,A. It follows from the invariance of the definition (7) of
the quasilocal energy-momentum 4-vector

PC,ω,A ∈ H0(C;O(E)) ⊂ Cliff
(
H0(C;O(E))

)
∼= Cliff

(
H0

(
C \ {p1, . . . , pn};O(E′)

)∩L2
loc(C;E)

)
=τ(Σ, p1, . . . , pn)

under diffeomorphisms that as the complex structure varies PΣ,ω,A of E
satisfies ∇PΣ,ω,A = 0 i.e., is parallel for the Knizhnik–Zamolodchikov con-
nection.

We conclude that the assignment (9) with (10) is a C-extended modular
functor as in [1, Definition 5.1.2] i.e., a weakly conformal field theory á la
G. Segal [16]. �

After having constructed the modular functor, we find the vector space on
which it acts hence exhibit the conformal field theory given by (9) and
(10). This step is very simple: the space (Σ, p1, . . . , pn) identified with an
oriented smooth cobordism between the disconnected compact oriented 1-
manifolds S1

p1
� · · · � S1

pk
and S1

pk+1
� · · · � S1

pn
. To the oriented 1-manifold

S1
p1

� · · · � S1
pk

� (S1
pk+1

)∗ � · · · � (S1
pn
)∗, regardless what it actually is, we as-

sociate the finite dimensional complex vector space S ⊗C S∗ where S is the
unique irreducible complex Clifford-module of τ(Σ, p1, . . . , pn). The result-
ing conformal field theory is a topological one because its state space is finite
dimensional and its correlation functions are insensitive for the insertion of
marked points (due to Lemma 4.1).
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