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Defects in cohomological gauge theory
and Donaldson-Thomas invariants

MICHELE CIRAFICI

Donaldson-Thomas theory on a Calabi-Yau can be described in
terms of a certain six-dimensional cohomological gauge theory. We
introduce a certain class of defects in this gauge theory which gen-
eralize surface defects in four dimensions. These defects are associ-
ated with divisors and are defined by prescribing certain boundary
conditions for the gauge fields. We discuss generalized instanton
moduli spaces when the theory is defined with a defect and propose
a generalization of Donaldson-Thomas invariants. These invariants
arise by studying torsion free coherent sheaves on Calabi-Yau vari-
eties with a certain parabolic structure along a divisor, determined
by the defect. We discuss the case of the affine space as a concrete
example. In this case the moduli space of parabolic sheaves admits
an alternative description in terms of the representation theory of
a certain quiver. The latter can be used to compute the invari-
ants explicitly via equivariant localization. We also briefly discuss
extensions of our work to other higher dimensional field theories.
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1. Introduction

The relationship between quantum field theory and geometry has been long
and fruitful. In the recent years the BPS sector of supersymmetric field
theories has played an increasingly important role and has revealed itself
full of surprises. Often a good idea to study this sector is to consider a
simplified version of quantum field theory which only contains the relevant
information; for example a topological, or better cohomological, gauge the-
ory. Cohomological gauge theories are obtained from supersymmetric gauge
theories via the topological twist procedure. The net effect of the twist is
to localize the gauge theory onto the moduli space of solutions of the BPS
equations, dropping all the perturbative fluctuations. The observables of the
cohomological theory can be expressed in terms of the intersection theory
on this moduli space. Often this space has an intrinsic geometrical charac-
terization and is associated with an interesting mathematical problem. The
cohomological gauge theory becomes a powerful tool to study this problem,
via the computational and conceptual insights offered by quantum field the-
ory. One famous example is Donaldson-Witten theory, which arises from the
topological twist of NV = 2 supersymmetric Yang-Mills, and its relation with
the Donaldson invariants. The latter characterize differential four manifolds
and correspond to certain integrals over the instanton moduli space of the
gauge theory [1]. On the other hand the low energy dynamics of N =2
Yang-Mills is governed by the Seiberg-Witten solution [2], whose equations
provide a simpler and equivalent perspective on four manifolds [3].
Another example is the cohomological gauge theory which arises from
the twist of maximally supersymmetric Yang-Mills in six dimensions. This
theory is expected to capture certain aspects of Donaldson-Thomas theory of
Calabi-Yau manifolds. This has been explicitly shown in the case of ordinary
Donaldson-Thomas invariants on toric Calabi-Yau varieties [4-7]. Indeed in
the case of toric Calabi-Yau varieties one can use the powerful techniques of
equivariant localization to perform explicit computations of the enumerative
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invariants. These techniques allow to reduce the instanton counting prob-
lem of a topological field theory on four or six dimensional toric varieties,
to a combinatorial problem [4-10]. Instanton counting problems have seen
dramatic progress in the recent years with the work of Nekrasov [11, 12].
The basic idea is to localize the instanton measure with respect to the toric
action on the instanton moduli space induced by the toric action on the
physical space where the gauge theory is defined. The localization formula
reduces difficult integrals over the instanton moduli space to a sum over
toric fixed points with determined weights. Usually toric fixed points admit
a combinatorial classification, in terms of Young diagrams and plane parti-
tions, or generalization thereof. See [13-15] for a recent review within the
present context.

The relation between gauge theory and Donaldson-Thomas theory is
powerful enough to survive certain generalizations. In particular one can
still use instanton counting techniques to study noncommutative Donaldson-
Thomas invariants [16], defined on noncommutative crepant resolutions of
Calabi-Yau singularities. In this case the central ingredient is an instanton
quiver which governs the local dynamics of the theory on the instanton
moduli space. The whole formalism of instanton counting can be adapted to
instanton quivers. Instanton quivers seem to be very general structures, with
applications to the theory of motivic Donaldson-Thomas invariants and the
theory of quantum cluster algebras [17, 18].

The geometrical structures associated with topological gauge theories
are enriched by the presence of defects. Defects can be seen as certain phys-
ical modifications of the Feynman integral where for example the relevant
fields are assumed to have a prescribed behavior along the defect. In four
dimensional Yang-Mills theory the most studied cases are the Wilson and 't
Hooft line defects. Surface defect are a higher dimensional generalization of
line defects. Depending on the perspective taken, sometimes defects can be
thoughts of as path integral insertions and are also customarily called line
or surface operators. A certain class of surface defects was throughly stud-
ied by Gukov and Witten in the context of the topological twist of N' =4
super Yang-Mills which describes aspects of the geometric Langlands pro-
gram [19, 20]. These are co-dimension two defects on which the S-duality
of N'=4 super Yang-Mills acts non trivially and are mathematically de-
scribed by parabolic Higgs bundles. These defects also exists in the case
of N =2 super Yang-Mills which is more close to the spirit of this paper,
where they have an interesting wall-crossing behavior and provide a deep
connection with hyperholomorphic geometry and Hitchin systems [21, 22].
Surface defects in topological Yang-Mills were further used in [23, 24] to
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provide physics proofs of several results concerning the geometry of four
manifolds, pointing out tantalizing new connections between invariants of
four manifolds and the theory of embedded surfaces [25, 26]. Surface defects
in four dimensional gauge theories have been studied from the point of view
of instanton counting [27-31] and topological strings [33-35].

The purpose of this paper is to lay the foundations of a theory of divisor
defects in higher dimensional topological gauge theories and hopefully fos-
ter discussion between physicists and mathematicians. Our main playground
will be the six dimensional gauge theory associated with Donaldson-Thomas
theory on a generic Calabi-Yau, but we will also discuss how our arguments
generalize to other topological theories. Geometrically our results suggest the
existence of a generalization of Donaldson-Thomas theory and the associ-
ated enumerative problem. We will study in detail the modifications needed
in the gauge theory to incorporate the defects. These amount roughly to
prescribe certain boundary conditions for the gauge field nearby a defect.
We then study how to incorporate generalized instanton configurations in
the theory coupled to a defect. This can be done in full generality from
the gauge theory perspective by defining an appropriate instanton moduli
space. The new instanton moduli space is essentially the moduli space of so-
lutions of the Donaldson-Uhlenbeck-Yau equations with prescribed bound-
ary conditions along the divisor. In ordinary Donaldson-Thomas theory one
obtains a better behaved moduli space by relaxing the concept of holomor-
phic bundle to torsion free sheaves. Similarly we argue that in our problem
we should consider the moduli space of torsion free sheaves with a parabolic
structure along the divisor. This suggest the existence of a generalization
of Donaldson-Thomas invariants related to the intersection theory of the
moduli space of stable parabolic sheaves on a Calabi-Yau threefold.

After describing the modifications due to the defect in full generality,
we turn to an explicit example and consider the gauge theory on C3 with
a divisor defect. In this case we can use toric localization techniques to
evaluate explicitly the partition function and the new invariants. To do so we
construct explicitly the relevant moduli space of parabolic sheaves. It turns
out that this moduli space can be identified with a fixed locus of the ordinary
moduli space of torsion free sheaves, with respect to a certain discrete action
determined by the defect. We introduce an appropriate instanton quiver to
study this fixed locus and carry out explicitly the localization computation.

Finally we end with a discussion about possible generalization to other
topological field theories, as well as to the more intricate case of defects
coupled to lower dimensional defects.
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This paper is organized as follows. In Section 2 we review few results
on the theory of surface defects in four dimensional supersymmetric gauge
theories, which will be generalized in the rest of the paper. In particular we
emphasize the relation between surface defects and instanton counting. In
Section 3 we review some aspects of Donaldson-Thomas theory and its rela-
tion with cohomological gauge theory. In Section 4 we lay the foundations of
a theory of divisor defects in Donaldson-Thomas theory, from the gauge the-
ory point of view. Firstly we discuss the general structure of a divisor defect
and afterwards we study the necessary modifications to Donaldson-Thomas
theory to include the defect. We do this step by step, by starting with the
gauge theory intuition as a guide and finally conjecture that the relevant
moduli space to study involves torsion free sheaves with a parabolic structure
along a divisor. This suggests the existence of new enumerative invariants
associated with the intersection theory of this moduli space. The discussion
so far is quite abstract and therefore in Section 5 we review the connection
between Donaldson-Thomas theory and instanton counting, introducing the
necessary ingredients to construct an explicit example in Section 6. In this
example we study Donaldson-Thomas theory with a divisor defect on the
affine space and construct explicitly the instanton moduli space. It turns
out that this moduli space can be identified with the fixed locus of the mod-
uli space of torsion free sheaves, with respect to a certain discrete action.
In Section 7 we use explicitly this identification to compute the generating
function of Donaldson-Thomas invariants with a divisor defect, by general-
izing known instanton counting techniques. In Section 8 we briefly discuss
divisor defects in other higher dimensional cohomological field theories. We
conclude by summarizing our findings and with a discussion about possible
generalizations.

2. Surface operators in four dimensional N' = 2 Yang-Mills

In this paper we will be interested in co-dimension two defects. In the con-
text of four dimensional gauge theories, these correspond to surfaces, and
can be defined via a certain modification of the functional integral which
specifies the behavior of all the fields along a two dimensional surface. The
class of defects we are interested in has been introduced in the context of
N = 4 gauge theories by Gukov and Witten [19] as a tool to study certain
aspects of the geometric Langland program and has been subsequently gen-
eralized to N' =2 gauge theories [21]. They are sometimes called surface
operators, and we will use the term “defect” and “operator” interchange-
ably. We will briefly review the A/ = 2 case since it is similar to our problem
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and will motivate some of our conjectures. For simplicity consider topolog-
ical N/ =2 Yang-Mills with a simple gauge group G defined on a certain
four manifold M. We follow the conventions of [19]. The gauge field A is
a connection on a principal G-bundle £ — M, and takes values in the
real algebra of G (and is therefore considered anti-Hermitian). The covari-
ant derivative is d4 = d + A and the field strength Fy = di =dA+4+ AN A.
Consider a (real) co-dimension two surface ¥ embedded in M. Defining a
surface operator amounts in prescribing a certain singular behavior for the
gauge field restricted to the normal bundle to the surface . In this case
we can assume that locally M =3 x K where K is the local fiber of the
normal bundle, parametrized by z = re Y. The gauge field near the surface
operator looks like

(2.1) A=adf+- -,

and in particular, since df = idz/z the connection is singular as z — 0, and
the dots stand for non singular terms. Here the parameter « is what specifies
the type of surface operator and takes values in the Cartan subalgebra t =
LieTq of the Lie algebra g = LieGG, where T is the maximal torus of G.
To be more precise, the correct gauge invariant concept is the monodromy
e ~2™ of the connection A around a circle of constant radius 7 [19]. Therefore
« really takes value in the quotient t/A = T where A is the cocharacter
lattice of G [19]. To compute the curvature at the origin of the singular
connection, one uses that d(adf) = ady, where Jx, is a two form Poincaré

dual to the surface X. Therefore
(22) FA:27ra52_|_...7

and we say that the theory is “ramified”. Note that we are still free to
shift @ by a lattice vector. This corresponds to the fact that because of
the singularity along 3, the G-bundle F is only defined in a complement
of ¥ in M and we are free to pick an extension of F to all of M. Different
extensions correspond to different lifts of a from t/A to t. One extension
is mapped into another by the gauge transformation (r,6) — e’ where
w € tis such that e2™ = 1. Therefore there exists a natural Tg-bundle over
3}, since this gauge transformation acts trivially on Tg. In plain words the
gauge field A restricted to X is a connection on this Tg-bundle.

In the most generic case, the surface ¥ might be non trivially embedded,
corresponding to a non vanishing
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(2.3) EQEZ/ Oy A\ Oy.
M

In this case the parameter a has to satisfy appropriate conditions. For ex-
ample if G = U(1), « is constrained by

Fy
2.4 — =aXxNX e’
(2.4) o aXNX eZ,

and for general G the analog statement holds in its maximal torus Tg.

A convenient way to look at supersymmetric field configurations in the
presence of a surface operator is to pick an extension and consider « as
an element of the Cartan subalgebra t. Therefore the connection A is now
defined over all of M and its field strength F' takes values in t when restricted
to X. One considers the bundle E’ defined over all of M whose field strength
is

(2.5) Fy = Fy — 2mads.

The field strength I is the natural object to consider in the action and in
the equations of motion [19]; this is equivalent to look for solutions F4 of
the BPS equations with the prescribed singularity along the surface operator
Y. Note that when other fields are involved, as is the case for example for
N = 4 Yang-Mills, they should all be subject to an analogous prescription
[19]. The type of surface operator we have been discussing so far is known
as a full surface operator, where the parameter « are generic in the torus
T¢. A more general situation is possible and indeed surface operators were
classified in [19] in terms of pairs («, L) where L is a subgroup of G of Levi
type, or Levi subgroup for short. This is a subgroup of G whose elements
commute with «, and which obviously contains T¢. Indeed T¢ is a minimal
Levi subgroup. A surface operator of type L is defined as a surface operator
where « is invariant under the action of L and in the functional integral we
divide by gauge transformations which take values in L when restricted to
Y. For example, if G = SU(r) a surface operators is full if L = U(1)"~! and
called simple if L = SU(r — 1) x U(1).

An equivalent and sometime more useful description of surface operators
is in terms of parabolic groups. There is a correspondence between subgroups
of G of Levi type and parabolic subgroups of G¢. Given a surface operator
whose singularity is parametrized by o we can define the associated parabolic
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subalgebra p of gc spanned by elements x which obey
(2.6) [a, ] = 1Az, with A > 0.

The corresponding group P C G is called a parabolic subgroup. Roughly
speaking we can think alternatively of the surface operator as a flat con-
nection whose monodromy along ¥ is determined by the data («, L) or
as a stable holomorphic G¢-bundle whose structure group is reduced to a
parabolic subgroup P along Y. The equivalence between these two points of
view was proven in [36]. We will return to this point in the following sections
and discuss its generalization to the higher dimensional case.

As we have already mentioned, topological Yang-Mills provides valuable
information about the geometry of four manifolds. Donaldson invariants are
defined via integrals over the instanton moduli space. It is natural to con-
sider how this picture gets modified when a surface defect is introduced. In
the case of SU(2) the problem has been set up by Kronheimer and Mrowka
in [25, 26] and discussed from the field theory point of view in [23, 24]. The
resulting theory is very rich and provides new tools to study the geometry
of four manifolds, such as new “ramified” Donaldson invariants. These are
defined in terms of the intersection theory of the moduli space of anti-self
dual connections modulo gauge transformations on E’ restricted to M \ X,
the moduli space of ramified instantons. In the language of topological Yang-
Mills, ramified Donaldson invariants arise as topological observables, defined
via integration over the moduli space M’ of gauge inequivalent configura-
tions satisfying

(2.7) (F))" = (Fa —2mads)t = 0.

Ramified anti-self dual connections are labelled topologically by the instan-
ton number k and a set of monopole numbers m! associated with the U(1)
factors of the Levi subgroup L. These enter the problem via a coupling to a
set of two dimensional theta angles 1 via the term Trnm where

™

1
(2.8) Trym = /TrnFA.
21 Jx

Therefore one can construct the moduli space of ramified instantons M;’m
and study its intersection theory. In this paper we will initiate an analogous
program for Donaldson-Thomas theory of Calabi-Yau threefolds.

The study of the intersection theory of the instanton moduli space in
four dimensional gauge theory is notoriously a difficult problem. In the case
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of toric geometries several technical problems can be overcome by using
localization techniques. The toric setting is a natural preliminary step in
the study of instanton moduli spaces in the presence of a surface operators.
In this case one is interested in the equivariant intersection theory with
respect to the toric action on the moduli space, constructed from the toric
action on the bulk and the natural toric action associated with the Cartan
subalgebra of the gauge group. The simplest four dimensional toric geometry
is the affine space C2. The natural toric action of C? was used in [11, 12],
generalizing previous works [37, 38], to localize the instanton measure onto
its fixed points and reduce the instanton counting problem to the purely
combinatorial problem of counting Young diagrams. For more details we
refer the reader to the recent review [13], whose notation we’ll borrow. When
the theory is coupled to a surface operator the natural object to study is
the generating function of the equivariant integrals

(2.9) Z(er,e0,a; L) =33 eTrmgh 74 1.

m keZ M m

A conjecture to compute this partition function was proposed in [27] using
the results of [39]. This proposal was extensively checked and studied in [28]-
[32]. Consider C?[z1, 23] with toric action z; — e '€z for i =1,2. Given
the relation between surface operators and parabolic bundles, in [27] it was
proposed to identify (a compactification of) the moduli space of instantons
in the presence of a surface defect, with the moduli space of torsion free
sheaves with a certain parabolic structure. Therefore one is led naturally to
study the equivariant intersection theory of the moduli space of parabolic
sheaves. For the case of a full surface operator the relevant moduli space was
studied in [39]. The natural toric action of C? lifts to this moduli space and
all the quantities of interest can be computed via equivariant localization.
More precisely the central object is the moduli space of torsion free sheaves
on a compactification of C? with a certain parabolic structure at the divisor
zo = 0. This moduli space is naturally embedded in the moduli space of
torsion free sheaves, simply forgetting the parabolic structure, and one can
employ the standard instanton counting techniques: fixed points of the toric
action are still isolated, classified by Young diagrams and the form of the
character of the instanton deformation complex at a fixed point is known
explicitly [39]. Indeed a much simpler way to compute the partition function
was used in [31] following the construction of [40]. There exists an explicit
map between torsion free sheaves with a parabolic structure and I'-invariant
torsion free sheaves, with I' an appropriate cyclic group. As a result the
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problem of instanton counting with a surface operator is reduced to studying
the I' fixed locus in the instanton moduli space without surface operators.
This is precisely the approach we will adapt to our case in Sections 6 and 7.

3. Cohomological Yang-Mills and Donaldson-Thomas
invariants

The main focus of this paper will be the six dimensional topological Yang-
Mills theory introduced in [41]-[45]. This theory was afterward discussed in
the context of Donaldson-Thomas theory and topological string theory in
[5, 6, 46]. We will keep the discussion general, albeit later on we will specialize
to the case where the theory is in its Coulomb branch and defined on a toric
manifold. In this case the powerful techniques of equivariant localization will
be used to compute the gauge theory partition function explicitly. We will
follow the review [13].

3.1. Generalities

We start by collecting some definitions and setting up some notation. We
will mostly work on a Calabi-Yau threefold X, that is a complex manifold
with Kéahler form J and with trivial canonical bundle Kx = Ox. We will
denote by t = B 4 iJ the complexified Kéahler form, where B is the back-
ground supergravity two form B-field. Some of our considerations will only
depend on the Kéhler structure and not on the Calabi-Yau condition. We
will furthermore assume that X has an hermitian metric g, which however
will not enter explicitly in our computations. Because of the complex struc-
ture the de Rham differential decomposes as d = 9 + 0. Given a complex
hermitian vector bundle (£, h) with hermitian metric h, a connection A will
be associated with a covariant differential d 4, which splits as dq = 94 + 04.
In local complex coordinates z#, u=1,2,3

_ 0 -
(31) 0,4 = dz“@ + dZHAﬁ.

The corresponding curvature will be denoted by F4 and can be decomposed
as Fiy = Ff’o) + Fjgl’l) + Fzgo,z) where FIE‘M) = 531. An holomorphic vector
bundle is characterized by the equation F£0,2) = 0. The moduli space of
holomorphic bundles on a certain variety plays a prominent role in super-
symmetric theories. One obtains a better behaved moduli space by requiring
the holomorphic bundles to be also u-stable. We say that a holomorphic bun-
dle £ is p-stable if for any sub-bundle £ C £ with rank€’ < rank& we have
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(&) < p(€) where

_ deg&
(32) He) = rank& "

Similarly one can introduce the notion of semi-stability, where the inequal-
ities are not strict. Here the degree of the bundle £ is defined as

(3.3) degSz/cl(E)AtAt.

Stable holomorphic bundles can be equivalently characterized by the
Donaldson-Uhlenbeck-Yau (DUY) equations

F30 =0,
(3.4) FY'AtAt=1tAEAL.

Here [ is proportional to the degree of the gauge bundle. These equations
arise naturally in supersymmeric problems as BPS conditions. The generic
strategy consists in considering only the first equation to characterize BPS
states as holomorphic bundles and mod out by complexified gauge trans-
formations. The full BPS problem is recovered by imposing the pu-stability
condition which is equivalent to the second DUY equation.

3.2. Cohomological Yang-Mills theory in six dimensions

The problem of studying Donaldson-Thomas invariants on X is essentially
a higher dimensional instanton problem. The associated topological gauge
theory is a topological version of six dimensional Yang-Mills. The most eco-
nomical way of thinking about this theory is via dimensional reduction of
super Yang-Mills in ten dimension. After the reduction the six dimensional
fields are a connection A on the G-bundle & — X, and the ad€ valued com-
plex one form Higgs field ® and the forms p% and p(®3). The fermionic
sector is twisted, that is the fermions can be though of as differential forms
thanks to the identification between the spin bundle and the bundle of dif-
ferential forms

(3.5) S(X) ~ Q% (X),

which holds on any Kéhler manifold. Overall the fermionic sector comprises
sixteen degrees of freedom which are organized into a complex scalar 7, one
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forms 110 and %!, two forms x>? and %2 and three forms ¥>° and %3,
The bosonic part of the action is

00) 5= [ T (aae i@+ 0.8+ 70D+l + [FL0)

1 1 A
+2(27r)2/XTI“(FA/\FA/\t—FWFA/\FA/\FA)a

where d4 = d + A is the gauge-covariant derivative, x is the Hodge operator
with respect to the Kéhler metric of X, F4 = dA + A A A is the gauge field
strength. Furthermore A is a coupling constant which in a stringy treat-
ment of Donaldson-Thomas theory should be thought of as the topological
string coupling constant. The gauge theory has a BRST symmetry and hence
localizes onto the moduli space .Z™'(X) of solutions of the “generalized in-
stanton” equations

0,2 AT

FIE} ) = aAp)
FPYUAEAt+ [p,p] =1 EAEAT,

(3.7) ds® = 0.

On a Calabi-Yau we can restrict our attention to minima such that p = 0. In
this case the first two equations on (3.7) reduce precisely to the Donaldson-
Uhlenbeck-Yau equations (3.4) and BPS states correspond to stable holo-
morphic vector bundles. In the following, unless explicitly stated otherwise,
we will only consider bundles £ such that [ = 0. In the string theory picture
this corresponds to the counting of D0-D2-D6 brane bound states without
D4 brane charge. Furthermore to obtain a better behaved moduli space,
we will allow for more general configurations corresponding to torsion free
coherent sheaves, as is customary in instanton counting problems (and re-
viewed for example in [13]); we will however sometimes switch to the more
familiar holomorphic bundle language to aid intuition. The moduli space
of torsion free coherent sheaves .Z™5*(X) stratifies into connected compo-
nents with fixed characteristic classes. We will denote these components by
AP (X) where (chz(€),chy(€)) = (n, —f).

The local geometry of the moduli space is captured by the instanton
deformation complex

(3.8)  0——=000(X,ad€)—C~ QOL(X, ad€) @ QO3(X, ad€) 2002 (X, ad€) —0
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where Q*°*(X,ad€) denotes the bicomplex of complex differential forms tak-
ing values in the adjoint gauge bundle over X, and the maps C' and D 4 rep-
resent a linearized complexified gauge transformation and the linearization
of the first equation in (3.7) respectively. The complex is elliptic; its first
cohomology is the Zariski tangent space to the moduli space %;HS?T(X ) at
a certain point, represented by an holomorphic bundle £ with give’n7 charac-
teristic classes. The second cohomology is the normal or obstruction bundle
n g Which is associated with the kernel of the conjugate operator DL. The
cohomology in degree zero is associated with reducible connections, and will
be henceforth assumed to be vanishing. The gauge theory is topological and
its partition function reduces to a sum over topological sectors of integrals
over the instanton moduli space, with an appropriate measure. This mea-
sure is given by the Euler class of the normal bundle eul(.4;, 5.,). At least
formally one has

(3.9) 7(¢,Q:m) Zq‘fQﬂ [

A0 (X)
The notation is as follows: We consider § as an element of Hy(X,Z) and
expand it in a basis as f =), n;S; withn; € Z and i = 1,...,bo(X). Then
QP = [, QF with Q; = e % and ¢; = fSi t.

These integrals can be defined more precisely by using a more sophis-
ticated formalism, and correspond to the Donaldson-Thomas invariants. In
this paper we will refrain from trying to give them a more mathematically
precise meaning in full generality and continue to use the gauge theory
intuition. Note that in principle the rank r can be taken arbitrary, corre-
sponding to a U(r) gauge theory on the worldvolume of a stack of coincident
D6 branes. However at present we only know how to make computational
progress when X is a toric manifold and the gauge theory is in the Coulomb
branch, where the gauge symmetry is broken down to the maximal torus
U(1)". In this case the integrals representing Donaldson-Thomas invariants
can be defined rigorously and computed explicitly via equivariant localiza-
tion. We will return to this case later on. We stress however that, at least
formally, the gauge theory perspective can be used to study higher rank
invariants.

3.3. Donaldson-Thomas invariants

The rank r =1 case plays a special role in the theory of the topological
string. Physically it corresponds to counting bound states of a single D6
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brane with a gas of D0-D2 branes. Mathematically it corresponds to the
enumerative problem of counting subschemes Y C X with fixed topological
data. From this point of view the relevant moduli space is the Hilbert scheme
of points and curves Hilb,, 3(X) with fixed

(3.10) X(Oy) =n,  [Y]=p¢€ HyX,Z).

Equivalently we can consider the moduli space of ideal sheaves. A ideal sheaf
Ty is a torsion free sheaf with trivial determinant and is associated with a
scheme Y via the short exact sequence

b oy 0,

(3.11) 0 I—>0Ox

which simply means that the ideal sheaf Zy is the kernel of the restric-
tion map Ox — Oy. We will denote by 7, 5(X) the moduli space of ideal
sheaves on X. We define the abelian Donaldson-Thomas invariants as

(3.12) DT, 5(X) = 1,
(o5 ()]

using the virtual fundamental class defined in [47].

In the rank one case there is a certain case which could be regarded as
an “avatar” of our construction, which will be exposed in the next Sections.
Given a divisor D in X one can define relative Donaldson-Thomas invariants
[48] via integration over the moduli space Z,, g(X \ D) of stable ideal sheaves
on X relative to D. Then relative Donaldson-Thomas invariants are defined,
as above, via integration over the virtual fundamental class constructed out
of this moduli space. It is not clear to us if this problem and the study of
Donaldson-Thomas rank one invariants in the presence of a divisor defect
are equivalent.

In this paper we are most interested in the nonabelian problem, where
divisor operators are naturally defined. The above definitions don’t extend
immediately to the nonabelian problem, the main reason being the issue of
stability. Roughly speaking when setting up the Donaldson-Thomas problem
in this language we are only caring about the holomorphic condition in
the DUY equations (3.7) modulo complexified gauge transformations. As a
result in general the moduli space is bigger than it should and the correct
moduli space is recovered by selecting only p-stable sheaves. In the higher
rank case it is not known how to do this systematically, while rank one ideal
sheaves are automatically p-stable. This problem persists when the theory
is defined with a defect. The only explicit computations that we will be
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able to carry out explicitly in the presence of a divisor defect, will be in the
Coulomb branch of the gauge theory, where the relevant configurations are
direct sums of abelian solutions and therefore the stability problem will be
sidestepped. In the more general case a certain stability condition should be
imposed, as we will discuss in the next Section.

4. Divisor defects and Donaldson-Thomas theory

In this section we will define and study divisor defects in Donaldson-Thomas
theory. We will begin by following the gauge theory perspective and define
a divisor defect by specifying a certain behavior for the gauge field along a
divisor. This corresponds to a modification of the quantum path integral,
since now it has to be performed only over those field configurations obey-
ing the prescribed behavior. We then discuss the instanton moduli space
when the theory has a defect. Mathematically this means that we only con-
sider those holomorphic connections obeying the required boundary condi-
tions. We later propose to identify this moduli space as the moduli space
of parabolic bundles (or better parabolic torsion free sheaves) on X with
a certain parabolic structure along the divisor which specifies the divisor
operator. The cohomological gauge theory naturally suggest the existence
of an enumerative problem associated with this moduli space. We will start
to discuss heuristically what kind of enumerative problem we expect from
the point of view of the cohomological gauge theory and using the language
of holomorphic bundles. Finally we will reformulate the problem more pre-
cisely in terms of parabolic sheaves. Since not all the results of this section
are rigorously established, we will conclude by summarizing our conjectures.

4.1. Gauge theory and divisor defects

We will try now to define operators analogous to the surface operators in
N =2 Yang-Mills theory in four dimensions. The two main characteristics
of surface operators are the fact that they determine a monodromy in the
gauge connection by prescribing a singular behavior for the fields along the
defect, and the fact that they are classified by Levi subgroups of the gauge
group. In extending these concepts to Donaldson-Thomas theory we will try
to keep these two characteristics (keeping also in mind that as one moves
up in the number of dimensions it is natural to expect more room for extra
parameters). Some of our arguments are straightforward extensions of the
four dimensional case.
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Consider a G-bundle &€ — X. To generalize a surface defect to the
higher dimensional case we need to consider solutions of the field equa-
tions with a prescribed monodromy. To impose a monodromy on the gauge
connection we need a co-dimension two defect. The natural object which
replaces a surface defect is what we will call a divisor defect. Locally our
space has the form D x C where D is a divisor and C is the local fiber of
the normal bundle. We parametrize the gauge connection restricted to C' as

where we write the local coordinate on C as z = re '? and the dots refer to
less singular terms. In this way the singularity is at the origin of C'. Globally
we will require that at each point of the normal plane to the divisor D the
gauge connection looks like (4.1). The situation is precisely as in the four di-
mensional case and the same line of arguments can be extended to conclude
that the parameter « takes values in the lattice t/A = T¢. The cocharac-
ter lattice is defined as A = 71 (T¢) = Hom(U (1), Tg). Again d(adf) = adp,
where dp is now a two form Poincaré dual to the divisor D, and

(4.2) Fu=2radp+-- .

While these formulas are formally similar to the analogous formulas for a
surface operator, one should always keep in mind that D is not a surface
but a divisor; this is consistent when going back to four dimensions since in
that case a surface has obviously co-dimension two. We will often think of
« as an element of t. Indeed, as we have already discussed, a can be lifted
from T to t albeit in a non unique fashion. Because of the singularity, the
bundle £ is only naturally defined on X \ D, but can be extended on the
whole of X. Each lift of « is associated to a different extension. While there
is no natural extension of £ as a G-bundle, £ can be naturally extended
to a Tg-bundle over D. This means that the curvature F4 defined over X
is t-valued when restricted to D. Similarly in the functional integral, we
divide by those gauge transformations which are Tg-valued when restricted
to D. The two points of view, working on X \ D or over all of X with an
extension, are complementary and rooted in the field theory description of
line defects; for example when talking about (electric) Wilson lines is natural
to integrate the gauge field over the defect, while (magnetic) 't Hooft line
defects are more naturally defined by excising the line from the bulk space
and specifying boundary conditions for the fields.

This is strictly true for a full divisor operator, but as in the four di-
mensional case we can have more general defects where the maximal torus
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T¢ is replaced by a more general Levi subgroup L C G that contains Tg.
In this case we pick parameters a € t which commute with L (and we say
that « is L-regular). We define a divisor operator of type L by prescribing
a singular behaviour of the type (4.1) along a certain divisor D C X with
the requirement that the parameters a € t are invariant under L and in the
path integral we divide by the group of gauge transformations which are
L-valued when restricted to D. Now the structure group of £ restricted to
D is L and likewise the connection F4 extended to all of X is L-invariant
when restricted to D.

As we have already explained the pair (L,a) determines a parabolic
subgroup of G. The simpler example is when L = T in which case the
associated parabolic group is called a Borel subgroup B and is the group
of upper triangular matrices of appropriate rank. An alternative way of
thinking about parabolic subgroups of a group G is as stabilizers of flags on
C™ (or a generic field). A flag is a sequence of subspaces

(4.3) ocUycUyc---cU,=C".
In this case G acts on the flag as

(4.4) g(Ui,...,Un) = (gUy,...,qU,).

A flag is said to be complete if n = r and dim U; = i. Complete flags are the
flags which are stabilized by Borel subgroups. Indeed the standard complete
flag is obtained by choosing

(4.5) Ui=Ce1 ®Cey @ ---® Cey,

that is the span of the first i elements of the natural basis of C". This
perspective will be helpful in the next sections.

We can associate to a divisor defect a parabolic bundle. This correspon-
dence generalizes the four dimensional result for surface defects. This result
is based on the correspondence constructed in [36] which associates to every
flat G-bundle with prescribed monodromy A = adf + --- around a point
p of a curve C, a stable holomorphic G¢c-bundle whose structure group is
reduced to a parabolic subgroup P at the point p. This correspondence is
one to one. The results of [36] were generalized to higher dimensional va-
rieties in [49], whose argument we will briefly streamline. Since a divisor
has co-dimension two, a divisor defect can still be described by a flat bun-
dle with prescribed monodromy around the defect. A flat connection can
be characterized by giving its holonomies along a basis of non-contractible
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cycles. This is equivalent to giving a representation ( of the fundamental
group 71 (X \ D). The results of [49] show how to associate to a unitary
irreducible representation ¢ a stable parabolic bundle. The idea is to take
a “point-wise” approach and afterwards extend it to a global structure by
gluing patches together. If we pick a point x € D, a neighborhood of z in
the normal bundle N of D in X, restricted to N \ D, will look like a product
of disks, one of which is punctured at the position of the defect. Call this
neighborhood N.. Because of the puncture, m1(N.) = Z and let 7y be its
generator. To construct a parabolic bundle, one firstly considers a represen-
tation ¢’ which is the restriction (obtained via the canonical inclusion) of
¢ to m (VN \ D). In particular set ('(79) = e” and consider the associated
vector bundle E¢.. The eigenvalues of 7 are called parabolic weights. Indeed
for simplicity we will assume that 7 is diagonal and of the form

ail, 0 )

0 al, 0 - 0
(4.6) T = ) . :

0 . am]_rm

The parameters 0 < a; < --- < an, < 1 correspond precisely to the param-
eters a up to a normalization and taking into account their multiplicities.
This matrix gives a parabolic structure by determining a certain flag, the
one stabilized by it. The construction of [49] shows how to trivialize E
and how to extend it over to puncture, to a neighborhood N, of the normal
bundle N of D in X. Furthermore, as x varies in D, the same 7 can be used
to define all the extensions to IV, in such a way that the extensions agree
on the overlaps of two neighborhoods. The resulting bundle E(() is defined
over all of X and has a parabolic structure on D. Since by assumption ( is
irreducible unitary, F(() is stable.

In the following we will conjecture a much stronger result, that the gen-
eralized instanton moduli space in the presence of a defect (that is, solutions
of the Donaldson-Uhlenbeck-Yau equations on the complement X \ D) can
be identified with the moduli space of parabolic bundles (or sheaves) on X.
To our knowledge even the analog result for ordinary instantons in the pres-
ence of surface defects on a generic four manifold and for a generic group
G, has not been established rigorously in full generality.
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4.2. An example

Having established the connection between divisor operators and parabolic
bundles in abstract terms, we can unpack a bit these formulas and discuss
a concrete example. Consider a Levi subgroup of SU(4) of the form

e o 0 O

e o 0 O
(4.7) 00 e 0]’

0 0 0 e

and a parameter o = idiag(2s¢, 2s¢, —3¢, —3¢) with s a real positive number
which we can assume suitably normalized (recall that in our conventions,
in a unitary representation of G' the gauge field is represented by an anti-
hermitian matrix). In the following we adapt an argument of [19] to our
case. The 94 operator can be explicitly written near z = 0 as

1 0 0 O 20 0 O
I E VR R

0 0 01 00 0 =3
This operator can also be written as
(4.9) a = fof L,
where 0 = dé% and

(z2)* 0 0 0
(10) = 8 (Ef))% (zz)o_%/Q 8
0 0 0 (EZ)—sn/z

Now, consider an holomorphic section of the adjoint bundle adE associated
with the principal SU(4) bundle E. Given an ad E' valued function s, the con-
dition that it is also an holomorphic section is that d4s = 0, which implies
also 0 ( f s f) = 05 = 0. This gives a set of partial differential equations
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which are solved by

5

U1 U1 u13(22)2*  u14(272)2%
3 5
(4.11) . U2y U922 ug3(2%)2”  wupu(2%2)2”
. —_— 3 3
U31(z§)_5% U32(Z§)_5% U33 U34(Z§)%
5 3
ug1(22) 727 ugo(22) 727 ugz(2Z)”* Uga

Here u;; are arbitrary holomorphic functions which we assume obey a suit-
able condition to make s traceless. Regularity at z = 0 implies that us;(0) for
i =1,2 and uy;(0) for i = 1,2,3 must vanish. In particular this means that
at the position of the divisor operator § has the form (recall that § = f~sf)

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
(4.12) 0 0O o e
0 0 0 e

and we see explicitly the reduction of the structure group to a parabolic
subgroup at the position of the divisor operator. This is, as we have ex-
plained, the holomorphic analog of the monodromy associated with the flat
connection (4.1). We stress that the resulting parabolic subgroup depends
rather sensitively on the actual values of the elements of «, as is clear from
the form of (4.11).

4.3. Generalized instanton moduli spaces

So far we have discussed divisor defects in general. We will now describe the
generalized instanton moduli space when the gauge theory is defined in the
presence of a defect. This will set up the stage for the study of Donaldson-
Thomas invariants in the presence of a defect. However we will for the time
being continue with the gauge theory language and return to the more ab-
stract problem in the following. From the gauge theory perspective we would
like to study gauge connections on X \ D which have the form (4.1) near D,
and where the non-singular terms correspond to a generalized instanton. To
begin with consider a rank r hermitian vector bundle £ defined over all of
X and with Chern character ch(€). We will firstly consider the case when
the divisor defect is full. If this is the case, the bundle £ decomposes in a
closed tubular neighbor to the divisor D as a sum of line bundles

(4.13) Elp =P L
i=1
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In other words we have an abelian gauge theory on D. This gauge theory
will be characterized by the topological charges associated with the line
bundles £;. We can therefore use the Chern classes ¢1(£;) to parametrize
the reduction of £ on D. As we will see later on, the abelian gauge theory
on D has certain “theta-angles” associated with the integrals of the Chern
classes ¢1(L;). For future convenience we define

mi:/ Chg(ﬁi),
D
(4.14) hi = /D . c1(Lq),

and form the vectors m = (mq,...,m,) and h = (hq,...,h,) which charac-
terize the reduction of £ over D. Note that for a line bundle, the Chern
character chy(L;) is completely specified by ¢i(£;); this will not be true
anymore when we will consider torsion free sheaves. The need to specify the
parameters h might seem strange at first, but will become very natural when
we will study the action of the gauge theory.

Consider now the more general case of a divisor defect characterized by a
pair (L, «). In this case the structure group of the bundle £ when restricted
to D is L. The subgroup L of G will have generically abelian factors and non-
abelian factors. For example, if G has rank r, a next-to-maximal subgroup of
Levi type is always isomorphic to SU(2) x U(1)"~! or a Zs quotient thereof
[19]. Since the structure group is reduced on D the bundle £ will split in a
neighbor of D as

(4.15) elp=Per,
=1

where the notation stresses that the decomposition depends on the Levi
subgroup L and e is the number of factors. For example in the case of a
next-to-maximal Levi subgroup all the factors except one are line bundles.
Now to parametrize the reduction of the structure group along D we can
use the Chern characters ch(Ei(L)) and, for later convenience, we introduce
the topological numbers

e / chy (€M),
D

(4.16) hi = / c1(EM).
DND
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We will use same notation as above, m = (mq,...,me) and h = (hy, ..., he).
The full case is recovered when e = r. Note that the first Chern classes
associated with the traceless subgroups vanish.

To define the generalized instanton moduli space in the presence of a
defect, we can take two points of view, by working on the complement of D
or by working over all of X. We will now describe these two perspectives.
Firstly we define the affine space of connections on the complement of D,
following the arguments of [25, 26]. We pick a reference connection A on
&, such that A°|p respects the decomposition (4.15) over D. Now we define
a connection A on & = Ex\p as

(4.17) Al = AY 4 ade.

The notation (e) will be reserved for quantities (o) defined over X \ D. The
affine space of connections modeled on Q! (X \ D;ad€ ) is defined as

(418) @@ (L: X\ D) = {A =A@ 4 ga e 0! (X \ D; adé)} .

In other words a is a smooth connection valued in the restriction of the
bundle £ to X \ D. Similarly we can define the moduli space

P <o, B
SYAtAt=0

of critical points of the DUY equations in (3.7) in the complement of the
divisor D (recall that we require that the field p vanishes identically). Here
G = Aut(€) is the group of gauge transformations on X \ D.

As emphasized in [19, 23] a more convenient point of view is to lift «
from L to t and deal with bundles defined over all X with a prescribed
reduction along D. In other words we will now consider G-bundles over
X whose structure group is reduced to L along D. More practically this
amounts in dealing with field strengths F 1’4 = Fy — 2wadp and the moduli
problem defined by the equations

(419) A9 (L; X\ D)= Ae &Y (L; X\ D)

(Fp — 21adp) 2 =3, p,
(4.20) (Fa —21adp) BV At AL+ [p,p] =Lt AEAL

where again we are only interested in solutions with p = 0. In this case these
equations become a direct generalization of (2.7). Note that in principle one
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can study them also when p is non vanishing, specifying an appropriate
behavior for p near the defect. In this way one could define a more general
class of divisor defects. Although interesting, we will not pursue this problem
in this paper. We will further assume [ = 0. The correct way to think about
the equations (4.20) is that the source dp is forcing the gauge field strength
to obey the desired boundary condition on D. From this perspective the

proper moduli space is
(Fa —27adp) 02 =0, G
(Fa —2madp) P At AL =0 b

(4.21)

M (L X) = {A € o(X)
where o7 (X) is the affine space of connections modeled on Q%! (X;ad€) and
Gp is now the group of gauge transformations which take value in L along D.
When we want to stress the topological numbers of £ we will use the nota-
tion .7 (L; X|{ch(g§L>)}), where (n, —3,u) = (chs(€), cha(E), e1(E)),

n757u;r

or //11502 wr for brevity.

Note that nothing guarantees that for generic choices of X, D and L,
these moduli spaces are non-empty. Furthermore, we will see later that there
are other moduli spaces which are more natural. We will argue that, precisely
as it is done in ordinary instanton problems, a nicer moduli space can be
obtained by using torsion free sheaves. The moduli spaces (4.19) and (4.21)
will then be replaced by moduli spaces of parabolic sheaves. For the time
being, we will still use the gauge theory language and discuss the gauge

theory action.
4.4. Action and quantum parameters

The cohomological gauge theory associated with the moduli problem (4.20)
has an effective action which involves the new field strength F/y = Fy —
2madp. This action depends explicitly on « and so it would seem that the
theory depends explicitly on the extension of the bundle over D. However
this is not the case, since this dependence can be eliminated via an appropri-
ate shift of the “theta-angles”. We will now show this explicitly. In particular
in the action we will have to deal with integrals over all of X containing the
delta function form ép, Poincaré dual to D. Integrals of this form can be
dealt with easily; if we denote by i: D — X the embedding of D in X,
then for a generic four form w

(4.22) /w/\éD:/ i"w.
X D
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To compute these integrals we will use Chern-Weil theory since it is easier
to keep track of the factors of «, and in particular we will leave the pullback
i* implicit to simplify the notation.

The relevant terms from the action are the topological densities, since
the rest of the action is a BRST variation. These can be read from (3.6) and
are

(4.23) /Tng/\Fg/\Fg:/
X X

+ 3(27)? / Tra’Fy
DND
—(27)*Tra*DN DN D,

(4.24) /TrF;,/\F;,At_/TrFA/\FA/\t
X X

TI“FA/\FA/\FA—GTF/ TraF4s A Fa
D

—47r/ TraFAAt+(27r)2Tra2/ t,
D DND

(4.25) /TrFA/\t/\t—/TrFA/\t/\t—27rTroz/t/\t.
X X D
Note that the last term in (4.23), the last term in (4.24) and the last term
in (4.25) are field independent and can be dropped from the functional
integral with no harm. We see that the six dimensional topological action
is naturally coupled to a set of theta-angles. In particular the instanton
action is sensitive to integrals over D N D, explaining why we choose the
parametrization (4.16). Using this parametrization we can write

1 1 .
WZLTTQFAAFA:almz,
1 .
— Tra?Fy = a?h’,
27 Jpap
1 .
. — TorpA N = ;0
(4.26) TraFs AtV LD
27T D

where we have used the fact that in each Levi subfactor, o can be seen as
a diagonal matrix proportional to the identity, and that the Kéahler form ¢
restricts to the Kihler form ¢ of D. The parameters o, arise by expanding
F4 and tP in a basis of 2-cycles. All the extra terms (4.26) will contribute
to the functional integral with terms of the form

b2(D)
iyl i —ot s
(427) q—aim +204fh H QDOaOlz, Wlth QD7a — e—taD.
a=1

,a
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The four dimensional gauge theory on the divisor defect will have its
own quantum parameters. To simplify the discussion let us assume that the
divisor operator is full, that is the structure group G is reduced precisely to
its Cartan Tq. If G has rank r then T¢ is isomorphic to U(1)". For each
rank 1 factor, the gauge theory on D is abelian and given in terms of a line
bundle £ on D. In this case we have the freedom to include the term

(4.28)  exp2ri (n /D cho(L) + 4 /D (L) Nk +o /D N cl(ﬁ)>

in the functional integral. In general we will have additional parameters for
each rank 1 factor; we will regroup them in vectors such as n’ = (n',...,7").
In the more general case of a divisor operator preserving a Levi group L,
we will have parameters n°, 4* and o* associated with each subfactor of L.
Note that the quantum numbers associated with a subfactor can be zero.
Therefore the most general term which we can include in the functional
integral will be

(4.29) exp 27 i (mmi + tPy0l + aihi) ,

where t2 are the Kihler moduli of D. We can use this term to absorb
any shifts in the parameters «; which appear in the equations (4.23-4.25)
via a shift of the four dimensional parameters 7, v and o. Therefore the
full six dimensional instanton action in the presence of a divisor defect,
is independent of «, precisely as in [19]. Indeed this seems to be a general
feature of co-dimension two defects. Recall that the parameters o were lifted
from T to the Cartan subalgebra t, each different lift parametrizing different
extensions of the bundle £ on X \ D over D. Now we see that the ambiguity
present in this lift has disappeared from the instanton action altogether. In
other words the ambiguity is fixed by quantum effects.

Finally we are left with the integrals of the characteristic classes of the
sheaf £ over X. In the following, unless stated otherwise, we will also drop
the remaining term in equation (4.25) as is customary in Donaldson-Thomas
theory (this term can always be reinstated by shifting the Kahler form).

4.5. Parabolic sheaves

In ordinary (generalized) instanton problems the second equation in (4.20)
can be traded for a suitable stability condition, at the price of complexifying
the gauge group. Similarly flat bundles with the prescribed singularity A =
adf + - -+ are in one to one correspondence with stable parabolic bundles
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[49]. Tt is natural to conjecture that this set of ideas holds more generally and
that the generalized instanton problem in the presence of a divisor defect
corresponds to studying stable holomorphic parabolic Ge-bundles with non
trivial characteristic classes, that is bundles such that 5?4 = Ff’o) =0 and
an appropriate reduction of the structure group along D. As we have already
remarked we can trade the description in terms of the Levi subgroup L of G
and the parameter a, with the corresponding parabolic subgroup P of G¢.
In the ordinary case without the divisor operator, one would work with pu-
stable holomorphic bundles. When the defect is present, one needs to define
an appropriate stability condition which preserves the parabolic structure.
Furthermore we already know that the cohomological gauge theory problem
requires us to enlarge the generalized instanton moduli space to include
torsion free sheaves. This leads us naturally to the idea that the appropriate
moduli space to study is the moduli space of stable parabolic torsion free
sheaves. Moduli spaces of this sort have been studied before in the literature
[50], although for our purposes we prefer to label the moduli spaces by the
characteristic classes of the sheaves separately, and not by their Hilbert
polynomial.

While in the context of holomorphic bundles it is natural to talk about
the reduction of the structure group to a parabolic subgroup, when dealing
with sheaves it is more appropriate to think directly of the parabolic struc-
ture in terms of the flag stabilized by the parabolic subgroup P. Therefore
following [49, 50] we define a parabolic structure as follows. Consider £ a
torsion free sheaf on X. For bundles a parabolic structure means that the
structure group is reduced along the divisor. Indeed since we are working
over all of X, over D we have a natural L-bundle specified by the weights
«; equivalently the associated parabolic subgroup P. However, instead of
giving the group P at each point of D, we could simply use the alternative
characterization of the parabolic subgroup P via the flag which is stabilized
by P. Therefore at each point of D we have a flag of vector spaces. This in-
formation glues nicely over all of D since we are, after all, just talking about
the structure group of a bundle. In the more general language of sheaves we
do not have anymore a structure group to talk of, but we can still specify a
flag of subsheaves over D. Therefore we define a parabolic structure on the
sheaf £ over D as a flag G, of subsheaves of £|p =& ® Op

(4.30) 5|D = 91(5) D) 92(8) DD Ql(é’) D gl+1(5) =0.

To this flag we associate also a [-tuple of weigths 0 < a1 < ao < -+ < a; < 1.
In the case of a parabolic bundle, these weights are the eigenvalues of the
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matrix 7 introduced previously. Up to a (conventional) normalization they
coincide with the parameters o (where if two «; are equal they are associated
with a single a;).

We define the parabolic u-weight of the sheaf £ as

-1
@) ) =Y a [ (@GE) - a@uE) Atat
=1

and the parabolic degree of £ as
(4.32) pdeg(€) = deg(€) + ™ (&).

Finally we can say that a parabolic sheaf £ is p-stable (respectively semi-
stable) if for any subsheaf £ of rank rank&” < rank€ one has pu(&E’) < pu(€)
(respectively pu(E’) < pu(€)) where

_ pdeg&

We will denote by 975?2’“;1“()(, DI{ch(G;(€))}) the moduli space of rank
r, p-stable parabolic sheaves £ on X with a parabolic structure along the
divisor D and fixed characteristic classes (chs(&), cha(E),c1(€)) = (n, —f5, u).
We propose that the theory of Donaldson-Thomas invariants in the presence
of a divisor operator is the study of the intersection theory of this moduli
space.

There is an alternative definition of parabolic sheaves which will be more
convenient in the following, where instead of giving a filtration for the re-
striction of the sheaf £ on D, one constructs directly a filtration of sheaves
over X. More precisely, one can define a torsion free parabolic sheaf £ as a
torsion free sheaf with the following parabolic structure over D: a filtration

(4.34) Fo:E=F1(E) DF2E) D - DFI(E) D Fryu1 = E(—-D),

together with a sequence of weights 0 < a; <ag <--- <a; <1. The two
definitions are equivalent and are related by the short exact sequence

(4.35) 0——=F;()——=E—=E|p/G(E)—0.

In particular from this short exact sequence it follows the relation between
the Chern characters of the sheaves G'(€) supported on D and the sheaves
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Fi(€)
(4.36) ch(F;(&)) = ch(E) — ch(&|p) + ch(G'(E)).

The reduction of the gauge field due to the defect is simply parametrized by
the Chern classes of the sheaves F; via the sequence (4.35). It is therefore
natural to consider a moduli space with these characteristic classes fixed. In
other words we are interested in parametrizing the moduli space of parabolic
sheaves with fixed (chs(F;(E)), cha(Fi(E)),c1(Fi(E))) = (ni, —Pi, u;). Note
that F; =& whose characteristic classes are (ch3 (&), cha(E),c1(E) = n, =5, u).
We will denote this moduli space with 3372 ﬁ) wr (X, D{ch(F3(€))}), or

*@r(zaﬂ)ur for simplicity.

Note that these moduli spaces can be empty. Furthermore as in ordinary
Donaldson-Thomas theory, even if they are non-empty, we don’t expect them
to be well behaved. In this paper we will make no attempt to resolve this
issue. We will simply assume that, as in ordinary Donaldson-Thomas theory
one can construct a meaningful intersection theory with more sophisticated
tools. Indeed in the following sections we will see an explicit example where
this is possible, the case of affine C? with a specific divisor operator, where
the relevant moduli space is actually a fixed point set of the moduli space
of ordinary torsion free sheaves on C3.

4.6. Summary

Finally we summarize our conjectures. We have argued that the cohomologi-
cal gauge theory problem in the presence of a divisor operator reduces to the
study of the intersection theory of the moduli space //ZTE @ In particular
the gauge theory provides a natural measure, the Euler class of the normal
bundle eul(,/%sg?u;r), the second cohomology of the instanton deformation
complex (3.8), when restricted to configurations obeying (4.20). As in ordi-
nary Donaldson-Thomas theory we can construct a generating function

(437) 2Ry (q,Qir) = D D g QM et erten)
7/8 um h 0

(cv)
X / - eul( A 5.)-
%n B us r(L;X‘{mvhva})

where we have for convenience parametrized the Chern classes {ch( )} in
terms of the integers appearing in (4.26) and have omitted the dependence
on the theta angles in the partition function Z(DXT7D)(q, Q;r). Note that the
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form of the instanton action require us to work in a topological sector where
the topological numbers (m, b, 0) are fixed. We have kept track of the first
Chern class v introducing a counting parameter v; however this can be
safely ignored since changing u can be always accomplished by tensoring
the sheaves with a line bundle, which does not affect the local structure of
the moduli space.

We do not expect this moduli space to be well behaved in any sense;
we have argued that it should be replaced with the moduli space of stable
parabolic torsion free sheaves on X with a certain parabolic structure along
the divisor D (or in principle finitely many divisors in X). We do not know
how these two moduli spaces are related, hopefully the moduli space (@éar)b wr
can be seen as a compactification of the space //4%)7”# in some appropriate
sense. Regrettably we do not have any argument to support this conclusion.
Therefore we are led to define the problem of Donaldson-Thomas theory
with a divisor defect as the study of the moduli space 33(02 wr- While this
is certainly better, it is not at all clear that this moduli sp7a<7:e7 has a mean-
ingful virtual intersection theory. We assume that it is the case and consider
the associated enumerative problem. In this language Donaldson-Thomas
invariants in the presence of a divisor defect should be captured by integrals

of the form

@3s) o, (X.Dlmboh = [ enl(3,,)
) (X,D|{m,h,0})

Byn,usr

Note that strictly speaking we have defined the numbers {m,h,0} only in
the case of vector bundles via Chern-Weil theory, since it easier to keep
track of the factors of a. However the same definition can be extended to
the case of torsion free sheaves. To this end one just needs to introduce
a reference bundle P(®) over X associated with the connection A = od®.
Then the Chern character ch(€ ® P(®)) gives the natural generalization of
the topological numbers {m, h, 0} in the case where £ is not a bundle.

The discussion so far has been rather abstract. Of course it would be
interesting to make any of these ideas more rigorous. For the time being, to
clarify certain aspects and to show an explicit example, we will study in the
next Sections the case X = C? with a divisor defect. This case, far from being
trivial already in the case without divisor operator, is rather instructive
since we will be able to construct the moduli space rather explicitly and
to compute directly the partition function via the techniques of equivariant
localization with respect to the natural toric action on C3.
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5. Instanton counting and Donaldson-Thomas invariants

So far we have considered the defect problem in full generality on a generic
Calabi-Yau manifold X. Now we would like to turn to an example where
some explicit computations can be made. This generically is a rather diffi-
cult task. As is well known the situation simplifies if the Calabi-Yau is toric
(henceforth non-compact). Cohomological gauge theories on a toric manifold
are reduced via localization to a diagrammatic evaluation, in term of vertices
and propagators, the latter associated with toric invariant curves [4, 5]. The
building block of this construction is the vertex, which corresponds to the
gauge theory partition function on the affine space. This partition function
can be explicitly computed via instanton counting techniques. Therefore, as
a preliminary step towards the evaluation of the full partition function on a
generic toric Calabi-Yau, we would like to compute the cohomological gauge
theory partition function on C? with a defect. To do so we will now briefly
review the general instanton counting formalism for Donaldson-Thomas in-
variants on C3 and in the next Sections discuss the modifications which
occur in the presence of a defect.

The problem of Donaldson-Thomas invariants on a toric Calabi-Yau can
be rephrased as a generalized instanton counting problem. In the case of
C3 this problem can be solved quite explicitly in the Coulomb branch of
the theory. The formalism developed in [6] is based on a generalized ADHM
construction which parametrize ideal sheaves on C3. This is derived by an ex-
plicit homological construction of the moduli space. As a first step one com-
pactifies C3 to P? by adding a divisor at infinity and then tries to parametrize
the moduli space of torsion free sheaves with fixed characteristic classes on
P3 and with a trivialization condition on the divisor at infinity. This is done
in practice by rewriting each sheaf £ via a Fourier-Mukai transform whose
kernel is the diagonal sheaf of P3 x P3. This procedure is rather techni-
cal and the outcome is a certain spectral sequence. Upon imposing some
conditions, including the trivialization on a divisor at infinity, the spectral
sequence degenerates into a four term complex characterized by a series of
matrix equations. These equations give a finite dimensional parametrization
of the instanton moduli space and are called generalized ADHM equations.
Based on these equations one can construct a certain topological quantum
mechanics which can be used to compute the relevant instanton integrals.
This quantum mechanics can be though of as arising from the quantization
of the collective coordinates around each instanton solution.

In this section we will recall the basis of this construction and show how
it can be used to compute instanton integrals. The topological quantum
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mechanics is given in terms of the homological data of the generalized ADHM
construction. The formalism is based on two vector spaces V and W with
dimc V = n and dim¢ W = r. Physically n represent the instanton number
of the gauge field configuration while r is the rank of the gauge theory.
The generalized ADHM formalism can be conveniently described via the
auxiliary quiver diagram

By
I

)

Ve
-
&

(5.1)

Recall that a quiver Q = (Qop, Q1) is an algebraic entity defined by a set of
nodes Qp and by a set of arrows Q1 connecting the nodes. To the arrows one
can associate a set of relations R. The path algebra of the quiver is defined
as the algebra of all possible paths in the quiver modulo the ideal generated
by the relations; the product in the algebra is the concatenation of paths
whenever this makes sense and 0 otherwise. This algebra will be denoted
as A =CQ/(R). A representation of the quiver Q can be constructed by
associating a complex vector space to each node and a linear map between
vector spaces for each arrow, respecting the relations R. Instanton counting is
determined in terms of the representation theory of this quiver with certain
relations, the generalized ADHM equations. These facts were thoroughly
reviewed in [13].
We have introduced the morphisms

(5.2) (B1, B2, B3, ) € Home(V, V) and I € Homc(W, V).

Here ¢ is a finite dimensional analogous of the field p(*% and we will be
mainly interested in representations of the ADHM quiver where ¢ is trivial.
The fields B, and ¢ are in the adjoint representation of U(n) while I is a
U(n) x U(r) bifundamental. Furthermore all fields transform under the lift
of the natural toric action of T? on C?, to the instanton moduli space. Under
the full symmetry group U(n) x U(r) x T3 the transformation rules are

By — e_igugU(n)Bag(D(n)v
pr—e ‘1(51+62+63)9U(n)¢g(z(n)7

(5.3) I gU(n)[g{](T).
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The quiver quantum mechanics on C? is characterized by the bosonic field
equations

3
ot [Ba, Bg] + Zeam [Bl,¢] =0,
v=1
3
Ex: Y [Bas Bl] + [p,l] + 11T =,
a=1

(5.4) & ITp =0,

where ¢ > 0 is a Fayet-Iliopoulos parameter.

Starting from these equations and the “matter content” (5.2), one can
use the standard formalism of topological field theories explained in [37, 38|
to construct a cohomological matrix quantum mechanics model to study the
moduli space of solutions of these equations. Roughly speaking one starts
from the BRST transformations

OB, = g and Qo = [¢7 Ba] — €aBa,
(5.5) Qp=¢ and Q¢ = [p, | — (€1 + €2+ €3)p,
QI =p and Qo= ¢l — Ia,

where ¢ is the generator of U(n) gauge transformations and a=diag(aq, ...,
a,) parametrizes an element of the Cartan subalgebra u(1)®". Finally one
needs to introduce Fermi multiplets corresponding to the anti-ghosts and
the auxiliary fields associated with the equations (5.4) as well as the gauge
multiplet to close the BRST algebra. This procedure is standard and we
refer the reader to the literature; the outcome is that the quiver quantum
mechanics path integral localizes onto the fixed points of the BRST charge.
These were classified in [6] in terms of r-vectors of plane partitions 7 =
(m1,...,m) with |7] =", |m| = k boxes. We think of a plane partition as
an ordinary Young diagram A together with a “box piling function” 7 : A —
Z4 such that m; ; > 7y j+n Where m,n > 0. Each partition 7; corresponds
to a T3-fixed ideal sheaf Z,, supported on a T? invariant zero dimensional
subscheme in C3. Fixed points under the full T3 x U(1)" action have the
form

(5.6) ¢z =1, ® - ®I,.

We take the three torus to be T? = (t; = el€ ty = e t3 = ¢ %) and
we will denote by E; the module generated by ¢; = e . At a torus fixed
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point the vector spaces V and W decompose under the T3 x U(1)" action
as follows

T T
(5.7) Vﬁ—‘ = Z €] Z t?liltgziltg?’il and Wﬁ-’ = Z €l.
=1 (n1,n2,n3)EmM =1

Linearization of &, and &; around each fixed point leads to the following
instanton deformation complex

Home(Vz, Vz ® Q)

@ Home (Vz, Vi © A* Q)
(58) Homc(Vﬁ, Vﬁ-) —7- Hom(C(Wﬁ7 Vfr‘) — @ ’
® Home (Vz, Wz @ A* Q)

Home (Vz, Vi @ A* Q)

which is a local model of the instanton moduli space around a fixed point.
Here Q = C3 is a T® module generated by ¢,' = e ~'%. The equivariant
index of this complex compute the virtual sum EX‘G}QPS o Ex‘c%ﬂm3 where we
are only considering irreducible connections, which corresponds to the as-
sumption that EXtOOPB vanishes. At a fixed point 7 the equivariant index can
be expressed in terms of the characters of the representations at the torus
fixed points

(5.9) ChT3xLK1Y‘( %”uﬂéiﬁh(ﬁﬁ))

= W7—r\'/ ®Vﬁ *Vﬁ_\»/ ®Wﬁ—'+ (1 *tl)(l *tg)(l *tg) V7—T.‘V®Vﬁ—',

where we have used the Calabi-Yau condition to set t1tot3 = 1. The enumer-
ative invariants are defined via virtual localization on the instanton moduli
space

(5.10) DT, (C*) = / 1
[, ()]
> 1

)
vir inst 3
[Exleing: (coyveor €ul (Tﬁ M6 (C )>

where the right hand side takes values in the polynomial ring Q[ey, €2, €3, a1,
..., ay] (see for example [13, 14] for a review within the present context).
The virtual tangent space at a fixed point [Ez] € .75 (C?) is given by

n

(5.11) T M5 (C) = Trdl 5, (C%) © (Mo )z

n n

= EX'E%)]P3 (&z,&z) © EXt?Q]P3 (&z,E#) .
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As explained in [6], the equivariant index (5.9) computes the ratio of the
Euler classes of the obstruction and tangent bundles. It turns out that this
ratio is just a sign and in particular independent on the equivariant param-
eters €; and a;. The contribution of an instanton configuration labelled by
the r-tuple @ = (my,...,7,) is just (—1)"I%l. This allows us to write down
the generating function for the Coulomb branch invariants

- " (A 0m) -
5.12 20N = Y g TR b7 NPy,
(5.12) or (€) ¢ eul (T2 (C3)) ﬂ( ST

™

7|

We should stress that this partition function only captures the theory in
its Coulomb branch. Furthermore the relevant instanton moduli space was
obtained by compactifying C? to P? and imposing a framing condition at
infinity. In the following we will use an equivalent compactification of C? to
P! x P! x P! which corresponds to adding a point at infinity to each one of
the three C spanned by the coordinate z;. Note that on physical grounds it
is clear that changing the compactification divisor at infinity, as long as one
imposes a trivialization condition, does not changes the moduli space.

6. Parabolic sheaves on the affine space and
orbifold sheaves

So far we have kept the discussion of divisor operators fairly general. Now,
after having reviewed the connection between Donaldson-Thomas invari-
ants and generalized instanton counting, we would like to give a more con-
crete example by considering a divisor operator on the affine space C3. This
amounts to consider the moduli space of coherent sheaves on C? with a
certain parabolic structure on a divisor. Furthermore, since we will need to
use the techniques of virtual localization, we will only consider the gauge
theory in its Coulomb branch. This is precisely the situation in four dimen-
sional instanton counting in the presence of a surface operator and we will
presently try to generalize it to the case of C3. The parabolic structure we
choose to impose correspond to a divisor operator located at z3 = 0 and ex-
tended along the two non compact planes parametrized by the coordinates
z1 and zo. We will argue that this problem is equivalent to the enumerative
problem of I' equivariant ideal sheaves on C?, where I' is an appropriate
discrete group action which is determined by the type of divisor operator.
We expect this to be quite a generic result. The reason is that studying
the gauge theory in the complement of the divisor is a similar problem to
blowing down the divisor to produce a singularity. This is literally true in
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the four dimensional case and for certain surface operators [25]. When the
result of the blow-down is an orbifold singularity, it is natural to expect
the orbifold action to select the relevant instanton configurations when the
defect is removed. However it is hard to make this connection concrete in
general and we will limit ourselves to the affine case. Our construction will
be rather explicit.

Our approach is inspired by the analogous construction in four dimen-
sional gauge theories, where (ordinary) instanton counting in the presence of
a surface operator is expressed in terms of parabolic sheaves on C? and then
reformulated in terms of orbifold sheaves [31, 39]. In the four dimensional
case the instanton moduli space is obtained by compactifying C? to P x P!
and the presence of a surface operator is induced by imposing a parabolic
structure on one of the divisors with P! topology. This is equivalent to a
moduli space of torsion free sheaves without any parabolic condition but
invariant with respect to an appropriate orbifold action; in other words the
moduli space of instantons with a surface operator is the I'-fixed component
of the moduli space of instanton without any parabolic structure [40].

6.1. Moduli spaces of parabolic sheaves

In our case we will consider a compactification of C? to P! x P! x P! and
will be interested in coherent sheaves with a certain parabolic structure on
a divisor. Since the original space C? is non-compact the proper objects to
study are sheaves with a framing condition. When we want to distinguish the
three P! we will label them by the projective coordinates as ]P’;i where ¢ =
1,2,3. We will denote by D = ]P’i1 X IP’;2 x 0., the divisor corresponding to
the defect, and by Do = IP’il X ]P’i2 X 004, U Pél X 004, X }P’ig U ooy, X ]P’i,2 X
IP’;3 the divisor at infinity. We will identify the moduli space of generalized
instantons in the presence of a divisor defect as the moduli space of torsion
free sheaves with a framing condition on D, a parabolic structure on D,
and fixed characteristic classes.

Let us be more precise with the definition of our moduli space of parabolic
sheaves Z4, which is based on [39, 40, 51]. For notational convenience, now
we will consider only the case where the divisor operator is associated with
the Levi subgroup T¢ or equivalent a parabolic Borel subgroup B, and com-
ment later on how they can be extended to the more general case. Let us fix
a r-tuple of integers d = (dy, . .., d,—1) which will play the role of instanton
numbers.
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A parabolic sheaf F, is a flag of torsion free sheaves of rank r on P! x
P! x P!

(6.1) fo(—D) C ]:7T+1 Cc---CF_1CFo.

We will furthermore require the following conditions

(1) Framing. The sheaves in the flag are locally free on D, together with
a framing isomorphism

(6.2)  Fy(-D)lp.. Forilpe Folo..

l's SN

0L (-D) ——=WW @ O0p_ @ O (-D) —>-+- —=W" @ Op_

At infinity JFy is isomorphic to the trivial rank r bundle O%". By
choosing a basis we identify this bundle with the vector space W' =
(wi,...,w,). Similarly W® = (wy,...,w;) for i=1,...,r are i-
dimensional vector spaces, and the flag

(6.3) W(l) C W(2) Cc.--C W(T) =W,

is determined by the parabolic structure (that is, it is the one stabilized
by the parabolic subgroup; in the case of a Borel subgroup, which
corresponds to a full divisor operator, this is just the standard complete

flag).

(2) Chern character. The framing condition implies ch; (Fy) = k[D] where
[D] denotes the fundamental class and —r < k < 0 as above. We fur-
thermore require co(F;) =0 and c3(F;) = —d;. In other words the
Chern classes are specified by the degree of the parabolic sheaf d =
(do,...,dr—1) and by the framing condition.

We shall denote this moduli space! by Z4. Later on we will see how this
construction gets modified when the divisor operator is not full.

!Note that technically we are only imposing a quasi-parabolic structure, by spec-
ifying a flag. The reason for this is that in the remainder of this paper we are going
to use equivariant localization in the Coulomb branch. The weights a; enter in the
definition of p-stability. In the Coulomb branch the relevant toric fixed point con-
figurations will be identified with ideal sheaves, and therefore stability will not be
an issue. By partial abuse of language we will still talk of “parabolic” sheaves.
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In plain words we want to study torsion free sheaves with a certain
parabolic structure and fixed Chern character on a compactification of C3.
The framing condition assures that the sheaves are trivial at infinity, which
corresponds to the need to impose boundary conditions on the physical
fields. Note that the sheaves at infinity are twisted and have poles at z3 = 0.
Therefore for —r < k < 0, the local sections of fkloo21 x00., xPL are those lo-
cal sections of ]—'olooﬂxoozzxpig =W® (’)p;s which take value in W&+ at
0,; this gives a connection with the theory of Laumon spaces, which we will
however not pursue in this paper. Different divisor operators will be associ-
ated with different parabolic subgroups and therefore to different parabolic
structures. As the parabolic structure changes, so does the stabilized flag
and therefore the moduli space, as we will see later on. Therefore we have
a rule to associate to any divisor operator on C? a different moduli space
of torsion free sheaves. The computation of observables in the gauge theory
is reduced to the study of the intersection theory of this moduli space. As
in the case without the divisor defect, integration over this moduli space
has to be defined carefully. We will sidestep this problem by arguing that
this moduli space can be thought of as a fixed component of the generalized
instanton moduli space and evaluate the equivariant integrals via virtual
localization.

As an aside remark, the moduli space of parabolic sheaves &4 parame-
trizes sheaves with vanishing cy. Nothing would prevent us to consider a
more complicated moduli space with a non vanishing second Chern class.
For example we could choose ¢ to be the class Poincaré dual to one of the P!
within D. Upon imposing appropriate conditions on the moduli space, such
as compatibility with the parabolic structure on D as well as extra conditions
on the sheaves restricted to D, this would correspond to a surface defect
supported on the divisor defect. Or we could consider a second divisor defect,
with support at say {z2 = 0} which intersect the first one along a surface
defect with support on a P!. Overall by considering defects within defects or
intersecting defects we find a rather rich structure, with additional layers of
complexity. In this paper we shall not pursue this interesting direction and
hope to resume the discussion elsewhere.

6.2. Fixed points
There is a natural action of T% x U(1)" on Z4. Recall that the T3 fixed

points on Hilb™(C?) are classified by plane partitions with n boxes, corre-
sponding to ideals Z, with support on a torus fixed point. Similarly T3 x
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U(1)"-fixed rank r sheaves have the form £z =7, & -+ ® Z,, and are clas-
sified in terms of r-vectors of plane partitions 7@ = (71, ..., 7). A fixed point
in &4 is roughly the same, except for further restrictions imposed by the
parabolic structure and the framing condition. The latter implies that cer-
tain elements in the fixed points decomposition are twisted by the divisor
D. A fixed point in #4 is a parabolic sheaf F, where

(6.4) Fr—r = @ Iﬂ_l(k)wl S5) @ Iﬂ_(k)(—D)wl.

Here {Wl(k)hgk,lgr is a collection of plane partitions obeying certain prop-
erties that we will outline in a moment. The index [ is a Lie algebra index
while & refers to the position within the flag. Compatibility with the flag
structure implies that 7 _ w C T e This implies a corresponding condition

on the plane partitions Wthh we will denote by w(k) D 7rl(k+ ) Tn the previ-

ous sections we have denoted a plane partition by the triple 7 = (m, n, T n)
where (m,n) correspond to a Young diagram u. Equivalently we can use the
notation m = (u, m,) and denote the Young diagram by p = (po > p1 > -+ -),
specifying the number of boxes in each row. Then

(6.5) 7l = (u,m,) D7) = (A, m)
O > (7 L, V(m,n) € p.

m,n —

<~ p; > NVi >0 and 7,

Colloquially, one plane partition lies “inside” the other (and therefore cor-
responds to a bigger ideal). Similarly we define

(6.6) 7l = (u,m,) 279 = (A, m)

< p; > \i+1Vi > 0 and 7r£,’1 > ﬁg?nﬂ Y(m,n) € p.
Compatibility with the flag structure therefore requires that the collection
{ﬂ’l(k)}lgk’lgr obeys the following property

Wil) D 7r§2) DD 7T]§T) D) W]E.l),
(6.7) (T) D 777(« )55 777(«7"_1) D WTT).

The presence of the relations O is due to the twist in the framing condition
and to the inclusion Fo(—D) C F_,41 in the flag. Indeed, recall that D
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is described by {z3 = 0}. A twist by D will therefore relate a monomial
225" 28 with the monomial 2]z5™" 251,
To further clarify, consider a full divisor operator in a U(4) gauge theory.

A fixed point in Py is a flag Fo(—D) C F_3 C F_o C F_1 C Fy where

Fo= Iﬂ§4)w1 & Iﬂ§4)w2 ® Iﬂ§4>w3 ® Zﬂ£4)w47
Foi= I,r§3)w1 e Iﬂé3>w2 o Iﬂgs>w3 & Iﬂf’ (—D)wa,
Fao=LZowol owdl o (—D)ws & I (—D)wa,
(68)  F3="T,wur &L (~Dwy &I (~D)ws & I, (~D)us.

For example, let us look at the wo components. From the flag we see imme-
diately that ﬂé )5 7T§3) > 7r§4). Furthermore, since Fo(—D) C F_3, we must
have that Z ) (=D) C Z_(—D), and therefore 7154) D 7r§1). Finally, looking

again at the flag, we see that Z_«) (=D) C Z_» which implies 7751) o W§2). By
collecting all these results we see that it must be that 7r§2) D) 7T§3) D 7T§4) )

(1) D 77% )| as expected from (6.7).

6.3. Parabolic sheaves as orbifold sheaves

Up to now we have argued that the correct object to study to understand
instanton counting on C? in the presence of a full divisor operator is the
moduli space of parabolic sheaves #4. Now we would like to give an alter-
native description of this moduli space as the fixed component of //Z;Lngt,,( 3)
under a certain discrete orbifold action. Roughly speaking the main idea is
to let a certain discrete group I' act on C? with an appropriate lift to the
moduli space .5t (C?) in such a way that the isotypical decomposition of
the space W is related with the vector spaces in the flag which character-
izes the parabolic structure as in (6.11) below. A similar construction has
appeared in [39, 40, 51] in the case of four dimensional gauge theories and
in [52] in general.

Consider the group I' = Z, which acts on the target space coordinates
as

(69) (Z17227Z3) — (Zl,ZQ,WZ3),

where r € Zand w = e . In particular note that D is invariant under this

27il

action. We let this group act also on W = (wy, ..., w,) via y(w;) = e "+ wy.
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As a consequence W decomposes into isotypical components

(6.10) W =P W, ep),
sel

where we sum over all the irreducible representations of I. Since the defect is
full, each factor has dim Wy = 1. It will be useful in the following to use this
decomposition in the framing condition. This is done via the identification

(6.11) W = Pw,.

The framing condition can be now equivalently expressed in terms of the
vector spaces W,, a =0,...,r — 1. Consider now the covering map

.ol 1 1 1 1 1
o:P, xP, xP, — P, xP, xP,_

(6.12) (21,22, 23) — (21,22, 23).

Following [39, 40] this map can be used to construct an isomorphism &4 —
///é‘?gg, (CHT, where by . Ciilg;tr((c?’) we label the connected component of
M (C3) identified by the decomposition d =dy+ -+ +dy—1 of the in-
stanton configuration. This isomorphism associates a parabolic sheaf F, to
a -equivariant sheaf F. Note that we already have an obvious morphism of
Pg into M) (C?) by forgetting the flag.

To be concrete, consider a parabolic sheaf F,. From F, we construct the
following I'-invariant torsion free sheaf on P! x P! x P!

(6.13) F=0"F 1+ 0" F_ p2(=D)+ -+ " Fo(—(r — 1)D),

where the sum is not a direct sum but, as stressed in [39, 51], refers to the
convex hull of those sheaves as subsheaves of o*Fj. For example, for every
open neighbor U, one lists down all the sections for each summand, and then
constructs a globally defined sheaf out of them. In particular F has rank
r. Note that the divisor D is described by {z3 = 0} in local coordinates,
and since the action of o on z3 gives 2%, the inverse image sheaves (which
for every open subset U are given by o* F;(U) = Fi(c(U))) are by definition
I-invariant. The sheaf F is constructed by making an invariant sheaf out
of each subsheaf in the flag and tensoring it with line bundles of the form
O(—kD) which are associated with characters of I’ via the action of I on
their sections. The average over the group characters gives a I'-invariant
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sheaf which contains all the information of the original flag. In a sense these
line bundles play a role analog to the tautological bundles in the McKay
correspondence, as reviewed in [13].

The sheaf F has

\3
|
—

M

Z
=0
(6.14) e3(F)=do+ - +dp1,

and vanishing cg; at infinity, it is locally free and framed
(6.15) Flp.. =Op,_ ®Op (D) &+ & Op_(—(r — 1)D).

Therefore given a parabolic sheaf we can construct a I'-invariant torsion free
sheaf. This is however not quite what we wanted, since F has a non vanishing
first Chern class, and is therefore not in our moduli space .Z5t (C3). This
can be easily solved by tensoring with a line bundle to cancel the unwanted
Chern class (which is of course an isomorphism). A more elegant and direct
way is to modify the definition (6.13) as suggested in [40]

(6.16) F=0"F i1+ 0" F_rpo(—(D—PL xPL xo00,,))
+-+ " Fo(—(r—1)(D - ]P’il X ]P’i2 X 004,))-

The divisor IP’I X IP’l X 00, is cohomologous to D and is used just to cancel
its Chern classes. This ensures [40] that the map is indeed in //;L’lgtr((:?’).
Moreover, since F is [-invariant, the map is really into A% inst (C3) as we
wanted.

On the other hand, given a I'-invariant sheaf F € ,//léngtr (CHY, we can
construct a flag by pasting together the I'-isotypical subsheaves. We obtain

the flag Fo(—D) C F_,41 C -+ C Fo, having defined
_ r
(6.17) Fp = o, (]-" ® (’)X(kD)>

Note that indeed chy (Fx) = k[D]. The line bundle Ox (kD) has a natural orb-
ifold structure. Recall that the divisor D is described by {z3 = 0}. Therefore
sections of Ox (kD) are rational functions of the coordinates with a zero (or
apole) at z3 = 0 of order k. Equivalently taking the I'-invariant part is going
to select the w*-isotypic component of F this is precisely how we recover
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the flag. In summary we have

(6.18) M = | Pa
|d|=n

6.4. More general divisor defects

Finally we will relax the condition that the divisor defect is full and consider
the most general situation. In words this can be simply done by modeling
the defect on a parabolic group, as done in Section 4, and requiring the flag
structure to be the one stabilized by the parabolic group. To simplify the
discussion we will firstly outline a “point-like” version of the argument and
afterwards make our reasoning local in terms of sheaves.

The most general divisor defect is classified by a M-tuple of integers
(roy...,ra—1) such that rg +---+ry—1 = r. The factors r, are the mul-
tiplicities of the elements «; in the reference connection which specifies
the divisor defect; the defect will be called of type {r,}. Consider a col-
lection of vector spaces W, such that dim¢ W, =r, for a=0,..., M — 1.
Define now the vector spaces W = @fz;lo W, with i =1,..., M. In par-
ticular dime W = ZZ_:IO dime¢ W, =rg + -+ +r;—1. Out of these data we
construct the flag

(6.19) wh cw® c...cwh),

This flag correspond to a divisor operator of type {r,}.

Now let us make this construction local, and define the moduli space
9”;{[“} of generalized instantons in the presence of a divisor defect of type
{r4}. This moduli space consists of flags of torsion free sheaves of rank r on
P! x P! x P!

(6.20) Fo(=D) C F_pr41 C -+- C F_1 C Fo,

such that

(1) Framing. The sheaves in the flag are locally free on Dy, together with
a framing isomorphism

(6.21) £y (—D)|p Fontilp - Folp.

! ! b

O%; (-D) — w Op_ @ O%;—To(_p) — e WM g Op..
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where W@ are the (79 4 --- 4 r;_1)-dimensional vector spaces corre-
sponding to the flag

(6.22) wlh cw® c...cwh,

as outlined above. When this is the standard complete flag we recover
the full divisor defect.

(2) Chern character. The framing condition implies chy(Fx) = —(r —
SIMIE L )[D] where [D] denotes the fundamental class. We fur-
thermore require co(F;) =0 and c3(F;) = —d;. In other words the
Chern classes are specified by the degree of the parabolic sheaf d =

(do,...,drr—1) and by the labels {r,} via the framing condition.

The map between &4 and a fixed point subset of ///éf‘g;tr(@?’) generalizes

to @g“} upon choosing an appropriate I' action. Note that the only differ-
ence between the case of a full divisor defect and the general case is in the
Lie algebra structure, and therefore we only need to generalize the action of
I" on the vector spaces W@ . Consider the group I' = Zy; which acts on the
target space coordinates as

(6.23) (21,22, 23) — (21, 22, W23),

where M € Z and w = e i . This group acts also on W and as a consequence
W decomposes into isotypical components

(6.24) W= W.ep,.
acl

Here dim¢ W, = r, and I acts as y(w;) = e %;»#wl for w; any generator of
W,. This action is essentially the same as in the full case, but now the W, are
not necessarily unidimensional but take into account the multiplicities {r,}.
Exactly has we have explained before, the parabolic structure is encoded
in the flag of the vector spaces W) = @2;10 W,. The previous results are
recovered for M = r. The covering map associated with I"

. pl 1 1 1 1 1
o:P, xP,, xP, — P, xP, xP,,

(6.25) (21,22, 23) — (21,22, 23,
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can now be used to construct explicitly the identification

(6.26) A = | 2l
|d|=n

by a %eneralization of the previous arguments. Given a parabolic sheaf Fq €
9’3” we construct the I'-invariant torsion free sheaf

(6.27) ﬁ = J*f_M+1 + U*.F_M+2(—D) + 4 U*]:()(—(M — 1)D)

At infinity F is locally free and framed

(6.28) Flp. = 0% 0% (=D) @ --- @ O™~ (—(M — 1)D),
and has
~ M-1
(6.29) cl(F) == ara[D],
a=0
(6.30) c3<]~:) =do+ - +dy_1,

with vanishing ¢p. Conversely given a I-invariant sheaf F we can construct
a flag from its isotypical decomposition by using (6.17) as explained before.
Note that these maps depend sensitively on the precise action of the orbifold
group I'. We will use and expand upon this identification in the next section
to explain how to compute Donaldson-Thomas type of invariants in the
presence of a divisor defect.

7. Defects and instanton quivers

In the previous Section we have argued that the problem of Donaldson-
Thomas theory in the presence of a divisor operator, in the simple case of
the affine space, can be reduced to counting I'-equivariant instanton config-
urations on C? where I is an appropriate orbifold action determined by the
defect. The task of studying the I'-fixed point set of ///,,i;}g;(c?’) is greatly
simplified by the knowledge of a local model. In particular the orbifold group
and the toric group commute, and one can use virtual localization by consid-
ering the set of all torus fixed points of //l;lngt,, (C?) which are also invariant
under the action of I'. A formalism to deal with these situations was devel-
oped in [17] albeit in a rather different context. This formalism is based on

the introduction of a certain quiver quantum mechanics; we will used it to
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compute the equivariant integrals over the instanton moduli spaces in the
presence of the divisor operator.

We should however stress that the problem we are discussing here is
rather different from [17]. In particular we do not claim that our I'-
equivariant sheaves on C? are in any sense related to sheaves on a resolution
of C3/T in any chamber. Indeed such a claim would be wrong: a necessary
condition in the construction of [17] is that the I' action on C3 has trivial
determinant. Technically this ensures that ADHM algebra is Koszul. This
fact was used repeatedly in [17] to establish the relation between equivariant
sheaves on C3 and BPS states in the noncommutative resolution chamber
of resolved Calabi-Yau singularities. This is not true in our case. However
the fact that this relation does not hold, does not prevent us to consider
the I'-fixed component of the set of T? x U(1)"-fixed sheaves on C3, which
is always a legitimate procedure. We can indeed think of the formalism of
[17] as an abstract tool to compute equivariant integrals associated to a
quiver quantum mechanics, regardless of whether the underlying quiver as
a geometric origin of not.

In our case the orbifold group I' acts on the geometrical coordinates as

(71) (251,22723) ? (217'22)(")'23)7
27 . . .
where w = e m . Similarly we let it act on the Cartan subalgebra generators
of U(r) as
(7.2)
M-1 M—-1
(al,...,ar)—> ALy eee sy Qg Whpg Ty« v vy Whpgdgy s e vy W Ap—ppy gy ey W ar |,
——
To 1 M1

where the pattern is determined by the choice of the divisor operator, since
it breaks the gauge group to the parabolic subgroup determined by the
parameter a. The breaking is parametrized by a set of integers {r,} with

a=0,....M —1andr =79+ ---+ ry_1. We will often use the convenient
notation ay s to collect all the Cartan generators upon which I' acts as wl,
with s = 1,...,r7. Note that we are assuming that the Cartan generators are

(eventually after a gauge transformation) ordered. This choice of action is
directly related to the decomposition (6.11) which enters in the description
of the moduli space of parabolic torsion free sheaves. Indeed this identifica-
tion is manifest if we take dim¢ W, = r, or equivalently W, has generators
e 1% as a U(1)™ module. This is just another way to see explicitly the
identification between parabolic sheaves determined by the flag (6.22) and
orbifold sheaves determined by the action (7.2).
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The orbifold action lifts to the instanton moduli space. To describe this
lift it is convenient to use the ADHM formalism introduced previously and
give directly the orbifold action on the generalized ADHM data. As a con-
sequence we will be able to describe the relevant instanton configurations in
terms of a certain quiver, obtained from the ADHM quiver by decomposing
the maps and the vector spaces according to the orbifold characters [17]. We
decompose the vector spaces V and W as follows

(7.3) V=PV.cp, W=PW.ep,
aef aef

such that dim¢ V, = n, and dim¢c W, = r, and {pa}aef is the set of irre-
ducible representations; we denote the trivial representation by pg. In par-
ticular now the bosonic field content of the matrix quantum mechanics is
made up by equivariant maps

(7.4) (B1, B2, B3, ) € Homp(V, V) and I € Homp(W, V).
More explicitly the only non-vanishing components are

B]‘i2 :Va — V(l7

Bg IVa — Va+1,

a

© IVa — Va+1,

(7.5) I“ W, — V,.
These maps are associated to the following BRST transformations

QBZ = ,Qb:v and Qd}g = [¢7 Bgz] - eaBZw
(7.6) Q' =¢  and QL' =[,¢"] — (a1 + e +e3)9",
oIt = p® and Qo = oI — I*a?,

where in the vector a* we have collected all the Higgs field eigenvalues a;
associated with the irreducible representation p,. Following the standard
formalism of topological field theories, one associates to these maps two
Fermi multiplets containing the anti-ghosts and the auxiliary fields, and an
extra gauge multiplet to close the BRST algebra [17]. Then one proceed
to construct a topological invariant action which localizes onto the critical
points of the BRST operator. These datas can be conveniently summarized
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in the generalized ADHM quiver

(7.7)
Bs™' Bi?t B By Bstt Byttt
— W) W . W
B¢ voe B¢ V. e B¢ Vile B¢ .
> a—1 R U= a > a+1 T
(pu,—Z Soa—l p® ¢a+1

Jo—1 Ie Ja+1

Wa-1 e W, e Wat1 @

In particular to this modified quiver one associates an ideal of relations which
arises from decomposing the original ADHM equations accordingly to the
I'-module structure. Recalling that we are interested in the set of minima
where the field ¢ is set to zero, the relevant equations are

BB; — B3 BY =0,
BBy — B§B{ =0,
BS™ By — BYBS =0,

(Ia+1)T 0% = 0.

(7.8)

These equations generate the ideal of relations in the instanton quiver path
algebra Ar. Their I'-equivariant decomposition cuts out a certain subvariety
Repr(n,r; B) from the framed quiver representation space

(7.9)  Repp(n,r)=Homp(V,Q®V)®&Homp(V, A*Q®V)@Homp (W, V),

The BPS moduli space in the presence of a divisor defect is then formally
defined as the quotient stack

(7.10) Mr(n,r) = [Repp(n,r;B)/ H GL(n,,C)

a€l’

by the gauge group which acts as basis change automorphisms of the I'-
module V. As in [17], we will think of this stack as a moduli space of stable
framed representations, where every object in the category of quiver repre-
sentations with relations is O-semistable.

We define our Donaldson-Thomas invariants in the presence of a divisor
operator as the equivariant volumes of these instanton moduli spaces, com-
puted via virtual localization. In doing so we are making explicit use of the
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fact that the relevant moduli space is a I'-fixed component of the moduli
space of torsion free sheaves, whose toric fixed points are isolated and given
by ideal sheaves. Therefore all the relevant machinery of virtual localization
can be applied directly to the case at hand. Of course the problem of giving
a rigorous definition of these invariants on a generic variety is still quite
open; for the time being we will limit ourselves to the case of C3. Note that
it is conceivable that the approach we are following generalizes to any toric
Calabi-Yau, since one can imagine to carry on the construction of Section 6
on toric invariant patches and find appropriate gluing rules to construct
sheaves on a generic toric variety with a defect. We plan to return to this
problem (and its lower dimensional version on a toric surface) as well as to
the task of giving rigorous definitions on any Calabi-Yau, in the future. On
C? we have

(7.11) DT,,, (C*ler, €2, €3, a1) I/ 1,
[xﬂr(nv"‘)]ﬁr

where the right hand side takes values in the polynomial ring Q[ey, €2, €3, a1,
..., ay] as in Section 5. We do not impose the condition €; + €3 + €3 = 0, and
therefore the orbifold group I' is a discrete subgroup of the toric group and
we can simply restrict our attention to toric fixed points which are simulta-
neously I'-fixed. In particular the invariants are only equivariant and depend
explicitly on the parameters of the toric action, as was expected from the four
dimensional case. They are essentially noncommutative Donaldson-Thomas
type of invariants associated with the quiver moduli space .#r(n,r). Note
however that, contrary to the standard noncommutative Donaldson-Thomas
invariants of [16], they depend explicitly on the vector 7. From this perspec-
tive they are more similar to the invariants NC,(n, ) studied in [17, 18], with
the important difference that the r dependence is genuine and cannot be
encoded in a multiplicative factor. Physically this is clear; the » dependence
in the NC,(n, r) invariants label a gauge theory superselection sector, char-
acterized by different boundary conditions for the gauge field at infinity, but
the dynamics in each sector is essentially the same. Here different vectors
r label physically inequivalent defects, characterized by different parabolic
subgroups.

A local model of the virtual tangent space T[g} Ar(n,r) at a fixed point
&= labelled by 7, is given by the instanton deformation complex

Homrp(Vz, Vz ® Q)

@ Homr (Vz, Vi © A2 Q)
(712)  Homp(Vi, Vi) —%>  Homp(Ws Vi) — —> o .
® Homr (Vz, Wz @ \* Q)

HOHIF(Vﬁ7 V;r ® /\5 Q)
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Here the map 7 follows from the linearization of the equations (7.8) while
the map o is an infinitesimal gauge transformation. We have introduced
the orbifold regular representation QQ = pg ® po @ p1- The Euler class of the
virtual tangent space can be computed via the equivariant index of this
complex. Neglecting the I'-action, the two vector spaces V and W can be
decomposed at a fixed point T = (my,...,m.) of the U(1)" x T3 action on
the instanton moduli space, as [6]

T T
(7.13) Vﬁ-’ = Z €] Z t?liltgziltggil and Wﬁ-‘ = Z €r,
=1 =1

(n1,n2,n3)€m

where ¢; = e '% with q; the Higgs field vacuum expectation values for | =
1,...,7r. The orbifold group I' acts on each of the module generators in
the above decomposition with a weight which is determined by the po-
sition of the box in the plane partition, as labeled by the three integers
(n1,n2,n3) € m. As a consequence each box will be associated to a charac-
ter of the orbifold group. In other words I'-fixed torus invariant points are
labeled by vectors of colored plane partitions, the coloring being associated
with distinct characters of the orbifold group.

This decomposition is however inconvenient for certain purposes and
it is sometime better to use a different one which disentangles spacetime
variables from the Cartan generators. Fixed points of the toric action are
r-tuples of plane partitions, each one associated with a generator of the
Cartan subalgebra of U(r). Since I' acts as (7.2) on the Cartan parame-
ters, the action on the plane partition is “offset”. This is clear from the
decomposition (7.13). To keep track of this offset we will introduce a “de-
fect function” d: {1,...,r} — I’ which to a sector labelled by I =1,...,r
and corresponding to a module E7 ¢ for any s, associates the weight of the
corresponding representation of I'. In other words d(l) = I if the module E;

is spanned by ay s for s =1,...,r;. Then
T
(7.14) Vz: =P (i@ pjy) ® (Pa®p))
I=1 ger
T
= @ @ (Bi® Pa) ® Pav+d(l)-
=1 aef

Here P, is a module which corresponds to the I'-module decomposition
of the sum H(Oz, ) = 2 (nmams)Em 1 Hh2 15~ Recall that each fixed
point is characterized by a vector of partitions 7. Each entry in this vector
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can be decomposed according to the I'-action, taking further into account
the transformation properties of the Higgs field vacuum expectation values
e;. In our decomposition (7.14) we have factorized this contribution explic-
itly so that now dimc P, , is the number of boxes in the plane partition at
position [ of the fixed point vector @ = (my,...,m,) which transform in the
representation p,’, a number which we will call |7 ,|. Similarly one can write

(7.15) Wz =P E @ py-
=1

Given this formalism we can now compute the character at a fixed point

(7.16) chys ey (TE" A (0, 7))
VYo Wz (1—t1)(1—t2)(1—t3)
titots t1tats

I
= (W%@Vﬁ— Vﬁv®vﬁ> :

Let us consider each term separately. First of all

r
Wlﬂ(W?@V%FZEBEBEH®B@®EX®Qﬁmm®mwo
LI ael
=PPE@P.2E/(a+dl)=ad(l') mod M).
LU qel

Here we have used the fact that the invariant part of a tensor product
between representations is a Kronecker delta

(7.18) (o) @) =6(a=b mod M),

where we write the constraint explicitly to make the formulas more readable.
Similarly

VY @ Wz\"
titats

(7.19) —(
1 T

=— EY® P, @ Epd(a+d(l)=d(l")+1 mod M).

tthtgl@leeafl b ® Erd (a+ (1) = a(l) )

We have used the fact that the weights ¢, are regarded as I'-modules; in
particular t3 — p1 corresponds to the action of I' on z3 by multiplication
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with w. The remaining terms are

(7.20) — (=Y (1=t v e ve)t
=-(1-t) (-1
x| DD E e E @ P,
LU o el
x 6 (a+d(l)=b+d(l') mod M),

(7.21) (-1 Q-5 evs)
=(1-6" Q-1

.
D@ rerenan,

l7l/ (l,bef
x6(a+d(l)=b+1+d(') mod M).

As explained in Section 5 we can now use virtual localization to compute
the equivariant volumes of the instanton moduli spaces, or in the language
of the quiver quantum mechanics the ratio of the fluctuation determinants
around each instanton solution. The invariants are given by

(722) DTE,T‘ (C3|€17 627 637 al) = / 1
[Ar(nr) v

_ ) !

(Ex )€t (mryrex 07 CUTs (1) <T[v£i,~f]‘///F(n"")>

As we have already stressed, the invariants depend explicitly on the variables
parametrizing the Cartan subalgebra of T3 x U(1)", that is we are dealing
with an equivariant version of Donaldson-Thomas theory. Sometimes it is
convenient to write

(7.23) DTZL)’T ((C3’61, €9, €3, CL[) = Z DT? ((C3|61, €2, €3, al) ,

|7 |=n

when we want to keep track of the orbifold characters in the combinatorial
problem. Each invariant can now be computed explicitly, although the final
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expression is rather cumbersome. We write it here for completeness:

(7.24)

DTZ?) (Cg‘él, €2, €3, al)

H (—ial—i-ia;—ielnl—i@ng—163n3)
T (ny,n2,n3)Em;
o H d(l)—d(l')+n3—1=0 mod M
Ll H (ial—iaE—I—iel(n1—1)+162(n2—1)+i63(n3—1))

(ny,ng,n3)em;
d(l)—d(l")+n3=0 mod M
H —latiag+ia(ni—ni)+ies(ny—ns)+ies(nz—ns)
—ia+iaj+ier(nfj—ni—1)+iea(nh—no)+ies(nf—ns)
(nl 7”27”3)E7Tl7(nl17n/27ng)67rl/
—d(l)+d(l")—ns+nt=0 mod M
« H —ia+iajt+ie(n)—ni—1)+ie(nhb—no—1)+ies(ny—ns)
—lg+iaj+ie(n)—ni)+iea(nh—no—1)+iez(ny—ns)

X

(ny,ng,nzg)emn,(nf,nf ,né)ewi
—d(l)+4(l")—ns+nt=0 mod M
% H —iaq+iaj+ie(nj—ni—1)+iex(nh—no)+iez(ny—nz—1)
—iai+iaj+ier(n]j—ny)+iez(nb—no)+ies(nf—nsz—1)

(n1,n2,ng)ewl,(n’lmém,é)ew{
—d(l)+d(l’)—nz+nt—1=0 mod M
H —ia+iaj+iei(nj—ny)+iez(nh—no—1)+ies(ny—nsz—1)
—iaqt+iaj+ie(nj—ni—1)+iex(nf—no—1)+ies(nj—ns—1)"

X

(n1,mg,n3)€my,(n],nf np)en]

—d(l)+d(l")—ns+nt—1=0 mod M

This formula can be expanded by summing explicitly on a vector of
partitions 7. Since the results are not very illuminating we do not include
them here.

Finally we can collect all our results and write down, at least formally,
the generating function of Donaldson-Thomas invariants in the presence of
a divisor defect D

(7.25) Z23 py(gler, ea,e3,a1) =Y DTZ (CPley, ea,e3,a1) [ | goi=s Mol
a ael

™
= DTL, (C¥ler, e, €3, a1) q",
n

where we have introduced the formal parameters g, to keep track of the
instanton numbers associated to each character of the orbifold group, and ¢
for the overall instanton number. We stress that this partition function can
be computed explicitly term by term in the variables ¢, or q.
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8. Defects in higher dimensional theories

It is natural to expect that some of our results hold for other cohomological
field theories and in other dimensions as well. These theories have been much
studied in the past [41-46]. One starts with a manifold My of real dimension
N which is endowed with a certain structure. The most interesting case is
when this structure is associated with a reduction of the holonomy. Generi-
cally to this problem one can associate the generalized instanton equations

1
(8.1) AR = ST Fpg,

where A is a constant parameter while T#"P7 is a certain antisymmetric ten-
sor. Here the indices run from p = 1,..., N and the tensor T#"P? is respon-
sible for reducing the holonomy from SO(N) to a subgroup. For example if
the holonomy is reduced to Spin(7) the tensor can be chosen to be

(8.2) THpe = (Topveoc,

Here 4#¥P9 is the totally antisymmetric product of v matrices for the SO(8)
spinor representation, while ( is the covariantly constant spinor correspond-
ing to the singlet in the decomposition of the chiral spinor representation of
SO(8) induced by the reduced holonomy. This choice leads to an interest-
ing theory with one topological BRST charge based on a certain octonionic
generalization of the instanton equations [41].

In this section we will consider briefly only a specific example of an-
other cohomological theory: the eight dimensional theory obtained when
the holonomy is reduced to SU(4) by choosing as tensor 7' the holomorphic
(4,0) form Q. This theory is essentially a eight dimensional version of the
theory we have been studying so far and was throughly analyzed in [41].
Given () one can define the operator x on Mg as

(8.3) 51 QOP(Mg) — QU47P(My),

via the pairing
(8.4) (o, B) :/ QN a A xp.
Ms

We denote with Q(f (Ms) the eigenspaces of * and let Py be the projection.
Consider an holomorphic bundle £€. Then we call a connection d4 with
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Fg’2 = 531 holomorphic anti-self-dual if P+Fg’2 = 0. Given an holomorphic
anti-self-dual connection the complex of adjoint valued differential forms

(8.5) 0—=000(Mg, ad€)-22 = Q01 (M, ad€) 22002 (Mg, ad€)—0,

is elliptic?. The cohomological theory is obtained by gauge fixing the topo-
logical invariant

(8.6) Sy = / QAT (FY? A FY?).
Ms

The theory can be studied with standard cohomological techniques [41], and
it localizes onto the moduli space of holomorphic anti-self-dual connections
in the topological sector with Sg fixed. These configurations correspond to
generalized instanton solutions. As usual we denote by //[éﬁf,tr(Mg) the mod-
uli space of instanton solutions modulo complexified gauge transformations
and fixed Chern characters ch;. The intersection theory of this moduli space,
albeit yet to be rigorously defined, is expected to give a higher dimensional
generalization of Donaldson theory [41].

We now consider the theory defined with a divisor defect on a divisor
Dg. The formalism developed in Section 4 can be applied almost verbatim.
The defect has co-dimension two and we require gauge connections to have a
prescribed monodromy « around the position of the defect, associated with
a Levi subgroup L of G. Equivalently one can deal with G-bundles over all
of Mg, whose structure group is reduced to L along Dg. Once the theory
is modified by the inclusion of the defect, one can introduce instantons and
study the moduli problem associated with the combination F4 — 2madp,.
Therefore we are led to the moduli space

(8.7)  #"(L; Ms)
- {A € QOD (Mg; ad€) | Py (Fu — 2madp,) 02 = 0, stable} / Gp,.

parametrizing holomorphic anti-self-dual connections whose structure group
is reduced to L along Dg, modulo gauge transformations which take values
in L on Dg, and an appropriate stability condition. This moduli space is
filtered in topological sectors by fixing the Chern characters ch;(£). Equiv-
alently we can switch to the language of parabolic sheaves and study the

2The reason why (3.8) has a Q%3 in the complex is that this is dual to a scalar
which descends from a component of the gauge field in Q%! via dimensional reduc-
tion.
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moduli spaces Z°(Msg; Dg) of stable torsion free sheaves with a parabolic
structure over Dg. In principle one would like to study the intersection the-
ory of these moduli spaces and define enumerative invariants. Unfortunately
already the instanton moduli space .//léﬂf_tr(Mg) is poorly understood and
technical difficulties quite challenging. Stiﬂ, we believe that the geometrical
problem associated with the moduli space 2% (Mjg; Dg) is rather interesting

and deserves further study.

9. Discussion
9.1. Divisor defects

The purpose of this paper is to lay down the foundations of a theory of
divisor defects for generic cohomological quantum field theories in higher
dimensions. We have discussed in detail one particular case corresponding
to Donaldson-Thomas theory of Calabi-Yau threefolds. In plain words we
conjecture the existence of a generalization of the Donaldson-Thomas enu-
merative problem where one replaces the moduli space of stable sheaves
with the moduli space of stable sheaves with a certain parabolic structure
on a divisor. Regrettably the present work has a somewhat programmatic
flavor, as the only explicit (equivariant) computation we could do is in the
affine case, and for a very special divisor operator. In this case we can use
an alternative description of the moduli space of parabolic sheaves as the
fixed point set of the generalized instanton moduli space, with respect to
a certain orbifold action determined by the defect. Having established this
identification, all the powerful technology of virtual localization can be used
to compute explicitly the invariants. In particular one gets as a byproduct
rather precise definitions, since all the integrals can be defined via virtual
localization and one can use the results already established in the case with-
out the defect. The problem on a generic compact Calabi-Yau seems on the
other hand quite intractable. To our knowledge there are very few results in
the literature on parabolic sheaves on Calabi-Yau varieties. It would be very
interesting to understand if the general discussion outlined in this paper can
be given a rigorous treatment.

9.2. Defects within defects and k-categories

We have repeatedly mentioned the possibility of including other defects sup-
ported on the divisor operator. Recall that defects can be thought of as local
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modifications of the theory, for example by prescribing appropriate bound-
ary conditions on the fields nearby the defect. As a consequence the space
of BPS states of the original theory HBPS is modified to a new Hilbert
space ’Hg PS which includes the effects of the defect. The defect itself can be
described via an effective field theory, and this effective field theory can sup-
port defects on its own. For example, if a theory supports a domain wall, it is
effectively governed by two quantum field theories, say theory A and theory
B, interacting only via the domain wall. The original space of states HBF
will be further modified, say to ’Hgf SB. Theories A and B can themselves
support defects, and so on, leading to an intricate but extremely rich picture.
From our point of view, each further layer of defects corresponds to a differ-
ent enumerative problem; naively a collection of defects within defects {D;}
should be described by an appropriate moduli space of sheaves with some
particular “structure” (parabolic sheaves in the examples we have consid-
ered so far) which plays the role of the Hilbert space ’HB[f 2. The enumerative
problem then corresponds to the intersection theory of this moduli space,
or in the most simple situation, to its Witten indices. In this paper we have
refrained from considering this more general situation, and hope to return to
it later on. For the time being is however instructive to mention a different
point of view, according to which k-dimensional defects form a k-category
in an Extended QFT [54]. In this language an n-dimensional field theory is,
roughly speaking, a certain functor F,, from the category of n-manifold with
corners and some additional structure (in many applications in field theory
one does not consider simply the category of topological manifolds, but is
interested in manifolds with complex, kdhler, symplectic, etc... structures)
to some n-category. For example when acting on an n-dimensional mani-
fold M,,, the functor reproduces the partition function Z(M,,) of the field
theory. Similarly F, (M,,_1) = H, is the Hilbert space of states. When con-
sidering defects of dimension k, one obtains a k-category Def”. If the defect
is supported on a k dimensional submanifold Dj, one considers a tubular
neighbor of Dy, which locally looks like R¥ x S?=*=1 x R, . The k-category
of defects Def” is formally obtained in the limit where the radius r of the
sphere goes to zero as lim,_ Fn(Sﬁ_k_l). From our perspective the parti-
tion function Z(M,,) corresponds to the generating function of “volumes”
of the moduli space of stable torsion free sheaves. In particular when Mg
is a toric Calabi-Yau, this partition function was studied in detail in the
Coulomb branch in [6, 17]. The categorification of this partition function is
a generating function of the motivic classes of the moduli spaces (studied
in [18] in terms of quiver representation theory) corresponding to the space
of states. In our example the 4-category of divisor defects on a Calabi-Yau
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should correspond to the enumerative problem of torsion free sheaves with a
parabolic structure along the divisor. The inclusion of further defects would
imply the addition of extra conditions on this moduli space. On the other
hand in the Extended QFT framework, (k — m)-dimensional defects sup-
ported on Dy, are labelled by m-morphisms of Def¥. It would be fascinating
to expand on this connection further, in particular to understand how the
operation of adding extra structure to the moduli space of sheaves can be
rephrased in the k-category framework.

9.3. Generalizations

The set of ideas discussed in this papers present several interesting further
directions of investigation. The most immediate open problem is to study
divisor defects in other topological field theories. We have briefly sketched
how this could be done in an eight dimensional generalization of Donaldson-
Thomas theory. Yet several other possibilities exists, by studying topological
field theories defined on manifolds with certain structures. For example on
could consider the eight dimensional theory defined in [41] on manifolds of
Spin(7) holonomy, or holomorphic Chern-Simons on a Calabi-Yau. Inter-
estingly, several of these higher dimensional theories can be seen in certain
limits as descriptions of topological M-theory [46]. This connection is rather
intriguing and deserves further investigations.

On a different direction, we have considered explicitly only the case of
the affine space. It is conceivable that our results generalize to arbitrary toric
manifolds, via gluing rules such as those developed in [4]. Note however that
the same problem is still open in the case of four dimensional gauge theories
with surface defects. The techniques discussed in this paper in the case of
Donaldson-Thomas theory, also apply to four dimensional gauge theories.
In particular one can construct partition functions of N =2 Yang-Mills
theories on toric four manifolds with surface operators defined over compact
divisors, by defining appropriate gluing rules. Work is in progress along this
direction.

Finally, and perhaps more ambitiously, one would like to study the wall-
crossing behavior of the Donaldson-Thomas invariants in the presence of a
defect. On a generic toric threefold we already expect an intricate chamber
structure, and possibly some of the techniques of [17, 18] can be applied.
In particular it is conceivable that after a number of wall-crossings, our
invariants could be related to the ones studied in [53]. We hope to report
soon on these and other problems.



1002 Michele Cirafici

Acknowledgments

The author was supported in part by the Fundacao para a Ciéncia e Tec-
nologia (FCT/Portugal) via the Ciéncia2008 program and via the grant
PTDC/MAT/119689/2010, and by the Center for Mathematical Analysis,
Geometry and Dynamical Systems, a unit of the LARSyS laboratory.

References

[1] E. Witten, Topological quantum field theory, Commun. Math. Phys. 117

(1988), 353.

[2] N. Seiberg and E. Witten, FElectric-magnetic duality, monopole con-

densation, and confinement in N=2 supersymmetric Yang-Mills the-
ory, Nucl. Phys. B 426 (1994), 19 [Erratum-ibid. B 430 (1994), 485].
arXiv:hep-th/9407087.

E. Witten, Monopoles and four manifolds, Math. Res. Lett. 1 (1994),
769. arXiv:hep-th/9411102.

D. Maulik, N. A. Nekrasov, A. Okounkov, and R. Pandharipande,
Gromov-Witten theory and Donaldson-Thomas theory I, Compos.
Math. 142 (2006), 1263. arXiv:math/0312059 [math.AG].

A. Igbal, N. Nekrasov, A. Okounkov, and C. Vafa, Quantum foam and
topological strings, JHEP 0804 (2008), 011. arXiv:hep-th/0312022.

M. Cirafici, A. Sinkovics, and R. J. Szabo, Cohomological gauge theory,
quiver matrix models and Donaldson-Thomas theory, Nucl. Phys. B809
(2009), 452-518. arXiv:0803.4188 [hep-th].

M. Cirafici, A. Sinkovics, and R. J. Szabo, Instantons and Donaldson-
Thomas Invariants, Fortsch. Phys. 56 (2008), 849. arXiv:0804.1087
[hep-th].

N. A. Nekrasov, Localizing gauge theories, in: 14th International
Congress on Mathematical Physics, ed. J.-C. Zambrini (World Scien-
tific, 2005), p. 644.

E. Gasparim and C.-C. M. Liu, The Nekrasov conjecture for toric
surfaces, Commun. Math. Phys. 293 (2010), 661. arXiv:0808.0884
[math.AG].

M. Cirafici, A.-K. Kashani-Poor, and R. J. Szabo, Crystal melting
on toric surfaces, J. Geom. Phys. 61 (2011), 2199. arXiv:0912.0737
[hep-th].



Defects in cohomological gauge theory 1003

[11] N. A. Nekrasov, Seiberg- Witten prepotential from instanton counting,
Adv. Theor. Math. Phys. 7 (2004), 831. arXiv:hep-th/0206161.

[12] N. A. Nekrasov and A. Okounkov, Seiberg- Witten theory and random
partitions, Progr. Math. 244 (2006), 525. arXiv:hep-th/0306238.

[13] M. Cirafici and R. J. Szabo, Curve counting, instantons and McKay
correspondences, arXiv:1209.1486 [hep-th].

[14] R. J. Szabo, Instantons, topological strings and enumerative geometry,
Adv. Math. Phys. 2010 (2010), 107857. arXiv:0912.1509 [hep-th].

[15] R. J. Szabo, Crystals, instantons and quantum toric geometry, Acta
Phys. Polon. Supp. 4 (2011), 461. arXiv:1102.3861 [hep-th].

[16] B. Szendréi, Noncommutative Donaldson-Thomas theory and the coni-
fold, Geom. Topol. 12 (2008), 1171. arXiv:0705.3419 [math.AG].

[17] M. Cirafici, A. Sinkovics, and R. J. Szabo, Instantons, quivers and
noncommutative Donaldson-Thomas theory, Nucl. Phys. B853 (2011),
508-605. arXiv:1012.2725 [hep-th].

[18] M. Cirafici, A. Sinkovics, and R. J. Szabo, Instanton counting and wall-
crossing for orbifold quivers, arXiv:1108.3922 [hep-th].

[19] S. Gukov and E. Witten, Gauge theory, ramification, and the geometric
Langlands program, arXiv:hep-th/0612073.

[20] S. Gukov and E. Witten, Rigid surface operators, Adv. Theor. Math.
Phys. 14 (2010). arXiv:0804.1561 [hep-th].

[21] D. Gaiotto, Surface operators in N =2 /d gauge theories, JHEP 1211
(2012), 090. arXiv:0911.1316 [hep-th].

[22] D. Gaiotto, G. W. Moore, and A. Neitzke, Wall-crossing in coupled
2d-4d systems, arXiv:1103.2598 [hep-th].

[23] M.-C. Tan, Integration over the u-plane in Donaldson theory with sur-
face operators, JHEP 1105 (2011), 007. arXiv:0912.4261 [hep-th].

[24] M.-C. Tan, Supersymmetric surface operators, four-manifold theory and
invariants in various dimensions, Adv. Theor. Math. Phys. 15 (2011),
071. arXiv:1006.3313 [hep-th].

[25] P. B. Kronheumer and T. S. Mrowka, Gauge theory for embedded sur-
faces: I, Topology 32 (1993).



1004 Michele Cirafici

[26]

[27]

[31]

[32]

[34]

[35]

P. B. Kronheumer and T. S. Mrowka, Gauge theory for embedded sur-
faces: II, Topology 34 (1995), 37-97.

L. F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from
4d gauge theories, Lett. Math. Phys. 94 (2010), 87. arXiv:1005.4469
[hep-th].

N. Wyllard, Instanton partition functions in N =2 SU(N ) gauge theo-
ries with a general surface operator, and their W-algebra duals, JHEP
1102 (2011), 114. arXiv:1012.1355 [hep-th].

N. Wyllard, W-algebras and surface operators in N = 2 gauge theories,
J. Phys. A 44 (2011), 155401. arXiv:1011.0289 [hep-th].

C. Kozcaz, S. Pasquetti, F. Passerini, and N. Wyllard, Affine sli(N)
conformal blocks from N = 2 SU(N ) gauge theories, JHEP 1101 (2011),
045. arXiv:1008.1412 [hep-th].

H. Kanno and Y. Tachikawa, Instanton counting with a surface operator
and the chain-saw quiver, JHEP 1106 (2011), 119. arXiv:1105.0357
[hep-th].

M.-C. Tan, M-theoretic derivations of 4d-2d dualities: from a geometric
Langlands duality for surfaces, to the AGT correspondence, to integrable
systems, arXiv:1301.1977 [hep-th].

C. Kozcaz, S. Pasquetti, and N. Wyllard, A and B model approaches
to surface operators and Toda theories, JHEP 1008 (2010), 042.
arXiv:1004.2025 [hep-th].

T. Dimofte, S. Gukov, and L. Hollands, Vortex counting and Lagrangian
3-manifolds, Lett. Math. Phys. 98 (2011), 225. arXiv:1006.0977
[hep-th].

H. Awata, H. Fuji, H. Kanno, M. Manabe, and Y. Yamada, Localization
with a surface operator, irreqular conformal blocks and open topological
string, arXiv:1008.0574 [hep-th].

V. B. Mehta,C. S. Shesadri Moduli of vector bundles on curves with
parabolic structures, Math. Ann. 248 (1980), 205-39.

G. W. Moore, N. Nekrasov, and S. Shatashvili, D particle bound states
and generalized instantons, Commun. Math. Phys. 209 (2000), 77-95.
arXiv:hep-th/9803265.



[38]

[39]

[40]

[41]

[44]

[45]

[48]

[49]

Defects in cohomological gauge theory 1005

G. W. Moore, N. Nekrasov, and S. Shatashvili, Integrating over Higgs
branches, Commun. Math. Phys. 209 (2000), 97-121. arXiv:hep-th/
9712241.

B. Feigin, M. Finkelberg, A. Negut, and L. Rybnikov, Yangians and
cohomology rings of Laumon spaves, Selecta Mathematica 17 (2008),
1-35. arXiv:0812.4656v4 [math.AG].

M. Finkelberg and L .Rybnikov, Quantization of drinfeld Zas-
tava in type A, Journal of European Mathematical Society (2013).
arXiv:1009.0676v2 [math.AG].

L. Baulieu, H. Kanno, and I. M. Singer, Special quantum field theories
in eight-dimensions and other dimensions, Commun. Math. Phys. 194
(1998), 149-175. arXiv:hep-th/9704167.

C. Hofman and J. -S. Park, Cohomological Yang-Mills theories on
Kabhler 3 folds, Nucl. Phys. B 600 (2001), 133. arXiv:hep-th/0010103.

B. S. Acharya, M. O’Loughlin, B. J. Spence, Higher dimensional analogs
of Donaldson- Witten theory, Nucl. Phys. B503 (1997) 657-674. arXiv:
hep-th/9705138.

M. Blau and G. Thompson, Euclidean SYM theories by time reduction
and special holonomy manifolds, Phys. Lett. B415 (1997) 242-252.
arXiv:hep-th/9706225.

L. Baulieu, A. Losev, and N. Nekrasov, Chern-Simons and twisted su-
persymmetry in various dimensions, Nucl. Phys. B522 (1998), 82-104.
arXiv:hep-th/9707174.

R. Dijkgraaf, S. Gukov, A. Neitzke, and C. Vafa, Topological M-theory
as unification of form theories of gravity, Adv. Theor. Math. Phys. 9
(2005), 603-665. arXiv:hep-th/0411073.

R. P. Thomas, A holomorphic Casson invariant for Calabi- Yau 3-folds
and bundles on K3 fibrations, J. Diff. Geom. 54, 367-438. arXiv:
math.AG/9806111.

D. Maulik, N. A. Nekrasov, A. Okounkov, and R. Pandharipande,
Gromov-Witten theory and Donaldson-Thomas theory II, Compos.
Math. 142 (2006), 1286. arXiv:math/0406092 [math.AG].

U. Bhosle, Parabolic sheaves on higher dimensional varieties, Math.
Ann. 293 (1992), 177-192.



1006 Michele Cirafici

[50] M. Murayama and K. Yokogawa, Moduli of parabolic stable sheaves,
Math. Ann. 293 (1992), 77-99.

[51] A. Negut, Affine Laumon spaces and the Calogero-Moser integrable sys-
tem, arXiv:1112.1756 [math.AG].

[52] 1. Biswas, Parabolic bundles as orbifold bundles, Duke Math. Jour. 89
(1997), 305-325.

[53] Y. Toda, Multiple cover formula of generalized DT invariants I:
parabolic stable pairs, arXiv:1108.4992 [math.AG].

[54] A. Kapustin, Topological field theory, higher categories, and their ap-
plications, arXiv:1004.2307 [math.QA].

CAMGSD, DEPARTAMENTO DE MATEMATICA, INSTITUTO SUPERIOR TECNICO
Av. Rovisco Pais, 1049-001 LisBOA, PORTUGAL
E-mail address: cirafici@math.ist.utl.pt




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Same as "Press Quality" except that Compatibility is set to Acrobat 8.0 \(PDF 1.7\))
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


