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Fukaya A∞-structures associated to

Lefschetz fibrations. II 1/2

Paul Seidel

We consider a version of the relative Fukaya category for anti-
canonical Lefschetz pencils. There are direct connections between
the behaviour of this category and enumerative geometry: some
of these are results announced here, others remain conjectural.
Among the conjectural goals is a formula for the dependence of
the Fukaya category of Calabi-Yau hypersurfaces on the Novikov
(area) parameter.
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1. Introduction

This paper continues a line of thought from [48, 49], whose aim is to relate
various flavours of Fukaya categories which appear in the context of Lefschetz
fibrations. Large parts of that picture remain conjectural. The emphasis
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here is on making it more precise, and exploring its implications. We should
warn the reader that the main result will only be stated without proof.
A significant amount of space is devoted to example computations, which
provide evidence for the general picture.

1.1. Fibrewise compactification

The most general setting we work in is as follows. Take an exact symplectic
Lefschetz fibration, whose base is the complex plane, and whose (smooth)
fibre is a Liouville-type symplectic manifold. To this fibration, we can asso-
ciate its Fukaya A∞-category (the original idea is due to Kontsevich; for a
formal definition, see [43]). Assume now that the fibre admits a compact-
ification, obtained by adding a smooth divisor at infinity. In fact, assume
that this can be done simultaneously for all fibres, giving rise to a fibre-
wise compactification (properification) of the Lefschetz fibration. To this
fibrewise compactification, one can associate a one-parameter formal defor-
mation of the original Fukaya category (a version of the relative Fukaya
category [41, 46]). In fact, one can also allow a choice of “bulk term”, which
leads to a wider class of deformations with the same formal behaviour. This
choice can be thought of as a formally deformed (complexified) symplectic
class; our terminology follows [17], where that idea proved to be important
in geometric applications.

Question 1.1. Can we choose the bulk term so that the formal deformation
induced by fibrewise compactification is trivial?

A priori, nontriviality of the deformation is what one expects, since com-
pactification adds new holomorphic discs, which change the A∞-structure.
Indeed, if we were talking about relative Fukaya categories in the ordinary
sense (for symplectic manifolds, rather than Lefschetz fibrations), the answer
to the question above is negative in all known cases. In the Lefschetz fibra-
tion context, it is easy to cook up simple examples for which the answer is
again negative (Remark 5.3). On the other hand, there are interesting exam-
ples from mirror symmetry [5] in which the deformation is trivial (without
introducing a bulk term; triviality of this deformation has sometimes been
thought of as a general principle within mirror symmetry, but that turns
out to be incorrect).

To see what direction to take from there, it is useful to restrict temporar-
ily to first order infinitesimal deformation theory (whereas usually, we are
interested in deformations to all orders in the formal parameter). The first
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order deformations of any A∞-category are governed by its Hochschild coho-
mology. In the case of Fukaya categories of Lefschetz fibrations, a conjectural
geometric interpretation of Hochschild cohomology was given in [40] (there
is no proof of this in the literature yet, even though proofs of closely related
results have been announced [33, 38], and the question has significant over-
lap with [1]). The main ingredient in this interpretation is the monodromy
at infinity. It therefore makes sense to consider a class of Lefschetz fibrations
which have particularly simple monodromy at infinity, namely those coming
from Lefschetz pencils. To make grading issues as simple as possible, we
restrict attention even more, to anticanonical Lefschetz pencils.

Theorem 1.2. Consider a Lefschetz fibration arising from an anticanonical
Lefschetz pencil. Then there is a preferred class of bulk terms, determined by
Gromov-Witten invariants of the compactified total space, such that the as-
sociated formal deformation of the Fukaya category of the Lefschetz fibration
is trivial.

This will be made precise later (Theorem 4.1 and Corollary 4.2), giv-
ing a positive answer to Question 1.1 for that class of Lefschetz fibrations.
By “determined by Gromov-Witten invariants” we mean the following: fi-
brations obtained from a Lefschetz pencil have natural extensions over the
two-sphere. The enumerative data that appear in Theorem 1.2 are invariants
counting holomorphic spheres which have degree one over the base. More
precisely, those Gromov-Witten invariants determine the coefficients of a
nonlinear ODE (3.1): by solving that ODE (as a formal power series), one
obtains the desired bulk term.

1.2. Natural transformations

As explained in [42, 44, 48], Fukaya categories of Lefschetz fibrations al-
ways come with an additional piece of algebraic structure: a canonical nat-
ural transformation from the Serre functor to the identity functor (one ex-
pects that this is the leading term of a more complicated structure, which
goes by various names, such as: “noncommutative divisor” [49]; and in a
slightly more sophisticated version, “A∞-algebra with boundary” [48] or
“pre-Calabi-Yau algebra” [30]). The conjectures from [42, 44] (partially
proved in [9]) relate this natural transformation to wrapped Floer cohomol-
ogy in the total space of the fibration. On the other hand, the main result
from [48] relates the same natural transformation to Floer cohomology in
the fibre.
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We will now conjecturally extend the previous discussion, by including
this additional datum. In the presence of a fibrewise compactification, one
should not only get a deformation of the Fukaya category, but also a corre-
sponding deformation of its canonical natural transformation. Even in cases
where the deformation of the category is trivial, the natural transformation
can (and in fact is expected to) deform nontrivially.

Conjecture 1.3. Suppose that we are in the situation of Theorem 1.2 (an-
ticanonical Lefschetz pencil, with appropriately chosen bulk term). Then,
the deformation of the canonical natural transformation is determined by
Gromov-Witten invariants of the compactified total space.

The precise formulation (Conjecture 4.7) involves another piece of struc-
ture, discovered in [49]: for an anticanonical Lefschetz pencil, the Fukaya
category has a second distinguished natural transformation from the Serre
functor to the identity. After fibrewise compactification, we get deforma-
tions of both natural transformations. As in Theorem 1.2, the conjecture
then takes on the form of an ODE which the deformations are supposed to
satisfy, and whose coefficients are Gromov-Witten invariants. Actually, this
is a linear (2x2 matrix) ODE, (4.19), which one can think of as a formula
for a connection (acting on the space of natural transformations from the
Serre functor to the identity).

1.3. The Fukaya category of the fibre

The main result of [48] established a relation between the Fukaya category of
a Lefschetz fibration and that of its fibre. By assuming that this carries over
to the deformed version, we arrive at the following conjecture (see Section 4.3
for a more thorough explanation):

Conjecture 1.4. In the situation of Conjecture 1.3, consider the full sub-
category of the relative Fukaya category of the fibre consisting of a basis of
vanishing cycles. Then, that subcategory is defined over a subalgebra of the
algebra of formal power series, which has a single generator. Moreover, that
generator can be explicitly described in terms of Gromov-Witten invariants
of the compactified total space.

One should compare this to the predictions made by homological mirror
symmetry [28]. Suppose that (as is the case for the classical mirror construc-
tions) the mirror family is obtained from an algebraic family of Calabi-Yau
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manifolds, by restricting to a formal disc in the parameter space (centered
at the relevant large complex structure limit point). Roughly speaking, the
power series that appear would then be Taylor series of functions on the
parameter space. In these terms, our construction singles out a particular
choice of formal disc (corresponding to the choice of bulk term) which is
the germ of a rational curve lying in the parameter space. However, note
that Conjecture 1.4 is designed to be independent of mirror symmetry con-
siderations. It is also independent of the usual formalism involving mirror
maps (variations of Hodge structure, Yukawa couplings). Instead, it relies
heavily on the fact that our Calabi-Yau manifolds are fibres of a Lefschetz
pencil. In those respects, our approach differs from the results of [18], which
(under suitable assumptions) characterize mirror maps entirely within the
formalism of Fukaya categories of Calabi-Yau manifolds.

1.4. Structure of the paper

Section 2 reviews the basic ingredients: Lefschetz fibrations, Fukaya cate-
gories, Gromov-Witten invariants, and some homological algebra (additional
details for the algebraic part are provided in Appendix A). The discussion
of Gromov-Witten theory continues in Section 3, whose aim is to showcase
a certain assumption on the Gromov-Witten invariants of sections, and its
implications. That assumption returns in the context of Fukaya categories
in Section 4, which contains the announcement of the main result, together
with an outline of its proof, as well as the formulations of what would con-
jecturally be the next steps. Sections 5–7 discuss example computations.
Even though these have been separated out, they should be viewed as an
integral part of the paper, since (in spite of their limitations) they provide
important support for the general ideas under consideration. We therefore
suggest the following combined reading order: Sections 2.1–2.3, 5, 2.4,3.1,
4.1, 6, 3.2, 2.5, 4.2, 7.1, 4.3, 7.2.

Acknowledgments. Maxim Kontsevich pointed out that my original for-
mulation was in contradiction with expectations from mirror symmetry; and
Mohammed Abouzaid made the crucial suggestion of resolving that by a
suitable choice of bulk term. I learned much of the material in Sections 5.3
and 5.4 from Denis Auroux. Lemma A.14 grew out of a discussion with
Michael Artin, with the assistance of Bjorn Poonen. Remark 7.1 is a variant
of an observation made by Georg Oberdieck.

This work was partially supported by: the Radcliffe Institute for Ad-
vanced Study at Harvard University (through a Fellowship, and by provid-
ing a stimulating working environment); the Simons Foundation (through a
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Simons Investigator award); and the National Science Foundation (through
NSF grants DMS-1005288 and DMS-1500954).

2. Setup and notation

2.1. Lefschetz fibrations and Lefschetz pencils

Consider a symplectic Lefschetz fibration with closed fibres,

(2.1) π̄ : Ē −→ C

(see e.g. [2] for an exposition). Our definition of such a fibration includes
the condition that, at any regular point, the restriction of the symplectic
form ωĒ to the symplectic orthogonal complement of the fibrewise tangent
space should be positive (with respect to the orientation induced from the
base C). We will always assume that c1(Ē) = 0, and in fact, that Ē comes
with a preferred homotopy class of trivializations of its canonical bundle
(a symplectic Calabi-Yau structure). The smooth fibre M̄ (any two smooth
fibres are isomorphic) is a closed symplectic manifold, which also inherits
a symplectic Calabi-Yau structure. We write 2n = dim(Ē) ≥ 4, and assume
that Ē (and hence M̄) is connected.

One particular class of fibrations (2.1) arises as follows. Suppose that one
has a closed symplectic manifold E together with a symplectic Lefschetz
fibration

(2.2) π : E −→ CP 1 = C ∪ {∞}.

We assume that c1(E ) is Poincaré dual to a fibre, and in fact, that E
comes with a preferred homotopy class of isomorphisms between its canon-
ical bundle and the pullback of OCP 1(−1). We also assume that the fibre at
∞ is smooth (and it is then convenient to take M̄ to be that fibre). Setting
Ē = E \ M̄ , and restricting π accordingly, yields a Lefschetz fibration over
C, as in (2.1) (including its symplectic Calabi-Yau structure).

More specifically, we will work with Lefschetz fibrations relative to a
fibrewise ample divisor. Let’s return to the situation (2.1). By a fibrewise
divisor we mean a properly embedded symplectic hypersurface

(2.3) δE ⊂ Ē,

such that: no critical points of π̄ lie on δE; and the symplectic parallel
transport vector fields are tangent to δE, and give rise to a flat connection for
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δE → C. If δM ⊂ M̄ is the part of δE lying in one fibre, then δE ∼= C× δM
by parallel transport. The ampleness assumption says that δE represents
the symplectic form,

(2.4) [ωĒ ] = [δE] ∈ H2(Ē).

(Our convention is that all cohomology groups have complex coefficients,
unless indicated otherwise; also, we will use Poincaré duality freely, without
adopting special notation for it.) By restricting π̄ to E = Ē \ δE, we get an
exact symplectic Lefschetz fibration

(2.5) π : E −→ C,

whose fibre M = M̄ \ δM is a Liouville-type symplectic manifold. We then
say that (2.1) is a fibrewise compactification of (2.5).

There is a counterpart for (2.2), where we assume the existence of a
fibrewise divisor

(2.6) δE| ⊂ E .

There are three conditions on this. As before, parallel transport should be
tangent to δE|, and give rise to a flat connection for δE| → CP 1, hence
to a preferred identification δE| ∼= CP 1 × δM . Next, with respect to this
identification, the normal bundles to δE| ⊂ E and δM ⊂ M̄ must be related
by

(2.7) νδE| ∼= OCP 1(−1)� νδM .

Finally,

(2.8) [ωE ] = [δE|] + λ[M̄ ] ∈ H2(E ) for some λ.

In this setup, we will say that (2.5) and its fibrewise compactification (2.1)
“arise from an anticanonical Lefschetz pencil”. The terminology is explained
by the following construction. Thanks to (2.7), one can blow down δE| ⊂ E
along the CP 1 fibres. The outcome is a symplectic 2n-manifold E , carrying
a Lefschetz pencil [13, 14] of hypersurfaces isomorphic to M̄ , with base lo-
cus δM (those hypersurfaces represent the first Chern class, which is also a
positive multiple of the symplectic class; E is monotone). Conversely, given
a symplectic Lefschetz pencil of anticanonical divisors on a monotone sym-
plectic manifold, one can blow up the base locus of the pencil to obtain (2.2).
Figure 1 summarizes some of the notation.
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δE ∼= C× δM

C ∞
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δE| ∼= CP 1 × δM
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M̄E

CP 1

Figure 1.

2.2. Fukaya categories of Lefschetz fibrations

To any exact symplectic Lefschetz fibration (2.5) one can associate its Fukaya
A∞-category F(π). The Calabi-Yau condition in our framework ensures that
this is Z-graded. We will use complex coefficients for Floer cohomology, so
that F(π) is defined over C. A fibrewise compactification gives rise to a
formal deformation Fq(π̄) of F(π), which is still Z-graded, and defined over
C[[q]]. This is a version of the relative Fukaya category; the formal variable
q counts the intersection number of pseudo-holomorphic maps with δE.

There are twisted versions Fb(π) of F(π), associated to a choice of bulk
term

(2.9) b ∈ H2(E;C∗).

Very roughly speaking, for A ∈ H2(E), b ·A ∈ C∗ is a weight with which
pseudo-holomorphic curves in classA are counted. Similarly, there are twisted
versions Fq,b̄(π̄) of Fq(π̄), this time depending on

(2.10) b̄ ∈ H2(Ē;C[[q]]×).

The choices (2.9) and (2.10) are related as follows: Fq,b̄(π̄) is a formal de-
formation of Fb(π), where b is obtained from b̄ by setting q = 0 and then
restricting to E. Again, the bulk term determines weights, which are now
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given by

(2.11) qδE·A(b̄ ·A).

Reparametrizations of q have a natural interpretation within this framework.
Namely, suppose that we take Fq,b̄(π̄) and apply a parameter change

(2.12) q 	−→ β(q), β(0) = 0, β′(0) 
= 0.

The outcome is isomorphic to Fq,b̄β(π̄), where

(2.13) b̄β(q) = b̄(β(q)) · (β(q)/q)[δE].

The first term in (2.13) is obtained by applying the parameter change to
the multiplicative group C[[q]]× in which b̄ takes its values; the second
term maps A ∈ H2(Ē) to (β(q)/q)δE·A ∈ C[[q]]×. In particular, if H2(Ē)
is one-dimensional (and hence generated by [δE]), then any Fq,b̄(π̄) is just
a reparametrized version of Fq(π̄). It is helpful to think of q (including its
appearance in the bulk term) as the variable in a “symplectic class”

(2.14) [ωĒ,q,b̄] = − log(q)[δE]− log(b̄).

At least formally, (2.11) can then be rewritten in the more familiar form

(2.15) qδE·A(b̄ ·A) = exp
(−∫

A ωĒ,q,b̄

)
.

We will often encounter the derivative of (2.14), namely

(2.16) −∂q[ωĒ,q,b̄] = q−1[δE] + (∂q b̄)/b̄ ∈ H2(Ē)⊗ q−1
C[[q]].

At this point, we want to restrict the generality a little, since that will
simplify some of the expressions later on. For expository reasons, we have
introduced (2.9) before (2.10). However, we will assume throughout the rest
of the paper that (2.9) is trivial, and correspondingly specialize (2.10) to

(2.17) b̄ ∈ H2(Ē; 1 + qC[[q]]) ⊂ H2(Ē;C[[q]]×).

As a consequence, only parameter changes (2.12) with β′(0) = 1 will be
allowed.

Instead of working with the entire Fukaya category, we usually find it
more practical to fix a basis of Lefschetz thimbles {L1, . . . , Lm}, and to
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consider the resulting full A∞-subcategories

A ⊂ F(π),(2.18)

Aq,b̄ ⊂ Fq,b̄(π̄).(2.19)

It is known [43] that the embedding (2.18) induces an equivalence of derived
categories. As a consequence, the restriction map on Hochschild cohomology,

(2.20) HH ∗(F(π),F(π)) −→ HH ∗(A,A),

is an isomorphism. This implies that the deformation Fq,b̄(π̄) is determined
up to isomorphism by Aq,b̄.

2.3. Fukaya categories of fibres

Continuing in the previous setup, our basis of Lefschetz thimbles gives rise
to a collection of vanishing cycles {V1, . . . , Vm} in the fibre M . Let

(2.21) B ⊂ F(M)

be the full A∞-subcategory of the Fukaya category of the fibre formed by
these cycles. Up to quasi-isomorphism, A can be identified with the directed
subcategory of B. If we make that identification on the nose, this means
that

(2.22) homA(Li, Lj) =

⎧⎪⎨
⎪⎩
homB(Vi, Vj) i < j,

C · eLi
(strict identity morphism) i = j,

0 i > j,

with the A∞-structure of A being determined by that of B (and the require-
ment that the eLi

should be strict units). This can be useful for computing
A, since passing to the fibre reduces dimensions by 1. One can also use the
relationship in reverse, and consider A to be a first step towards determin-
ing B.

A similar relationship holds after fibrewise deformation. Consider the
analogue of (2.21) inside the relative Fukaya category of (M̄, δM), twisted
by the restriction of b̄:

(2.23) Bq,b̄|M̄ ⊂ Fq,b̄|M̄ (M̄).
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Lemma 2.1. Bq,b̄|M̄ has zero curvature (the μ0 term vanishes), and Aq,b̄

is quasi-isomorphic to its directed A∞-subcategory.

Strictly speaking, Bq,b̄|M̄ is well-defined only up to isomorphism (of de-
formations of B). The statement says that there are representatives with
vanishing μ0. For n 
= 2, the existence of such a representative is clear from
homological algebra (the objects are spheres, and one can arrange that they
have no endomorphisms of degree 2 on the cochain level; see [16] for the
general formalism). For n = 2, it follows from basic considerations involving
holomorphic discs, as in [51]. Only for such representatives can the directed
A∞-subcategory be defined as in (2.22).

Remark 2.2. In the case where the Lefschetz fibration comes from an
anticanonical Lefschetz pencil, it is known [43, Proposition 19.7] that B

split-generates F(M). The analogous question for (2.23) comes in several
different versions. To take one of them, let

(2.24) C((q)) ⊃ C((q))

be the algebraic closure of C((q)), obtained by adjoining roots q1/d of ar-
bitrary order. There is a version of the Fukaya category of M̄ (no longer
relative to δM) defined over C((q)) [16], and a b̄|M̄ -twisted generalization.
Then, that category is split-generated by its full A∞-subcategory Bq,b̄ ⊗C[[q]]

C((q)). The proof uses the long exact sequence from [36]; see also [51, Corol-
lary 9.6] for the four-dimensional case (both results are stated for trivial b̄,
but should generalize easily).

2.4. Gromov-Witten invariants

For A ∈ H2(E ;Z) and d ≥ 0, consider the Gromov-Witten invariant count-
ing genus 0 curves with d marked points in class A, which is a map

(2.25) 〈· · · 〉A : H∗(E )⊗d −→ C.

The number 〈x1, . . . , xd〉A is nonzero only if the degrees satisfy

(2.26) |x1|+ · · ·+ |xd| = 2n+ 2(d− 3) + 2M̄ ·A.
The contribution of constant maps (A = 0) is

(2.27) 〈x1, . . . , xd〉0 =
{∫

E x1x2x3 d = 3,

0 d 
= 3.
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The “fundamental class axiom” and “divisor axiom” (these go back to [29]
in the algebro-geometric context) say that for A 
= 0,

〈1, x2, . . . , xd〉A = 0,(2.28)

〈x1, . . . , xd〉A = (x1 ·A)〈x2, . . . , xd〉A if |x1| = 2.(2.29)

Since (2.25) counts stable maps representing A, it is zero unless either A = 0
or

∫
A ωE > 0 (this is sometimes called the “effectiveness axiom”). Note that

by deforming the symplectic form, one can make the constant λ in (2.8)
arbitrarily large. Hence,

(2.30) 〈· · · 〉A = 0

{
if M̄ ·A < 0,

or if M̄ ·A = 0, δE| ·A ≤ 0, and A 
= 0.

The final statement we need is more specific to our geometric situation:

(2.31)
If δE| ·A < 0, then 〈· · · 〉A = 0

unless A lies in the image of H2(δE|) → H2(E ).

Similar (actually more general) properties of Gromov-Witten invariants of
blowups were derived in the algebro-geometric context in [6, 19, 25].

When summing over classes A, we use a formal parameter q as before,
and allow a bulk term

(2.32) b ∈ H2(E ; 1 + qC[[q]]) ⊂ H2(E ;C[[q]]×).

Concretely, this means that we set

(2.33) 〈x1, . . . , xd〉q, b =
∑
A

qδE|·A(b ·A) 〈x1, . . . , xd〉A ∈ C((q)).

In analogy with (2.14)–(2.16), one can formally write the weights in (2.33)
as

(2.34) qδE|·A(b ·A) = exp
(−∫

A ωE ,q, b

)
,

where

(2.35) [ωE ,q, b ] = − log(q)[δE|]− log(b )

and hence

(2.36) −∂q[ωE ,q, b ] = q−1[δE|] + (∂q b )/b ∈ H∗(E )⊗ q−1
C[[q]].
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One difference, with respect to (2.15), is that [δE|] is not actually the co-
homology class of the symplectic form, which is why negative powers of q
can occur in (2.33). However, the difference [δE|]− [ωE ] is a multiple of
the first Chern class [M̄ ], by (2.8), and that is enough to ensure the q-adic
convergence of (2.33). As a consequence of the divisor axiom, we have

(2.37) 〈∂q[ωE ,q, b ], x1, . . . , xd〉q, b + ∂q〈x1, . . . , xd〉q, b = 0 for d 
= 2.

The class [M̄ ] also plays a distinguished role, because of (2.26): if I is the
grading operator

(2.38) I(x) = |x|
2 x,

then

〈[M̄ ], x1, . . . , xd〉q, b + (n+ d− 3)〈x1, . . . , xd〉q, b(2.39)

= 〈Ix1, . . . , xd〉q, b + · · ·+ 〈x1, . . . , Ixd〉q, b for d 
= 2.

In both (2.37) and (2.39), d = 2 is excluded because of the contribution of
constant maps (A = 0) to the left hand side. Usually, we will rewrite the
Gromov-Witten invariants (Poincaré dually) as multilinear maps

(2.40) zq, b : H∗(E )((q))⊗d−1 −→ H∗(E )((q)).

We further break them up into graded pieces z
(k)

q, b
, by restricting the sum-

mation to classes A with M̄ ·A = k.
In the simplest case d = 1, we get a class

(2.41) zq, b ∈ H∗(E )((q)).

Because of (2.30), this has only three nontrivial graded components, which
have the following more precise form:

z
(0)

q, b
∈ H4(E )⊗ qC[[q]],(2.42)

z
(1)

q, b
∈ q−1[δE|] +H2(E )[[q]],(2.43)

z
(2)

q, b
∈ H0(E ;C[[q]]).(2.44)

Geometrically, (2.42) counts pseudo-holomorphic curves in the fibres. Again
due to (2.30), only positive powers of q appear in it. Next, (2.43) counts
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“sections”. Due to (2.31), the only classes A that can contribute with nega-
tive powers of q come from H2(δE|) ∼= H2(CP

1)⊕H2(δM). Using (2.7), one
sees that the only such contribution comes from the generator of H2(CP

1),
which geometrically means from “trivial sections”

(2.45) CP 1 × {point} ⊂ CP 1 × δM = δE| ⊂ E .

This explains the form of the leading order term in (2.43). Finally, (2.44)
counts “bisections”, and a similar argument shows that no negative powers
of q appear in it.

The special case d = 3 of (2.40) defines the (small) quantum product,
usually written as

(2.46) x1 ∗ x2 = zq, b (x1, x2).

As a consequence of the general WDVV relation in Gromov-Witten theory,
this is associative. More specifically for our situation, the divisor axiom
implies that

(2.47) [M̄ ] ∗ [M̄ ] = z
(1)

q, b
+ 4z

(2)

q, b
.

There is a relation between the quantum product structure and counting
holomorphic discs (with Lagrangian boundary conditions). Let L ⊂ E be a
closed Lagrangian submanifold, which is exact, graded, and Spin. This is
an object of the Fukaya category of E, which is a full subcategory of F(π).
Suppose that L admits a deformation to a nonzero unobstructed object
of the Fukaya category of Ē relative to δE, twisted by b̄, which is a full
subcategory of Fq,b̄(π̄). Then, by counting holomorphic discs with boundary
on L which go (exactly once) through the fibre at infinity, we get an invariant

(2.48) WL,q, b ∈ H0(homFq,b̄(π̄)(L,L)) = HF 0
Ē,b̄(L,L) = C[[q]].

The constant (q0) term counts Maslov index 2 discs in (E ,L), as in [3].
Conversely, one can view (2.48) as an extension of the idea from [3], which
includes higher Maslov index holomorphic discs in E with tangency condi-
tions to the base locus of the pencil. The (Poincaré dual) class [L] ∈ Hn(E )
satisfies

[M̄ ] ∗ [L] = WL,q, b [L],(2.49)

(∂q[ωE ,q, b ]) ∗ [L] + (∂qWL,q, b ) [L] = 0.(2.50)
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These statements are consequences of the formalism of open-closed string
maps (see [16, Section 3.8], and in particular [16, Equation (3.8.13.2)]). The
second one could be thought of as an analogue of (2.37) for disc-counting.

Remark 2.3. Although that is technically more difficult, it may be possible
to extend (2.48) to more general closed Lagrangian submanifolds in Ē. As
in Remark 2.2, let’s consider the version of the Fukaya category of Ē whose
coefficient field is (2.24). Nontrivial objects of that category should have disc-
counting invariants WL,q, b ∈ C((q)), and (2.49), (2.50) ought to generalize
accordingly (as a consequence, if [L] is nonzero, WL,q, b would have to lie
in C((q)) after all, because it can be expressed in terms of Gromov-Witten
invariants).

2.5. Homological algebra

Take an A∞-algebra A over C. A noncommutative divisor on A [50, Sec-
tion 2c] is given by an A-bimodule P which is invertible (with respect to
tensor product, up to quasi-isomorphism), together with an A∞-algebra
structure on

(2.51) B = A⊕ P[1],

such that: A ⊂ B is an A∞-subalgebra; and if we consider B as an A-
bimodule, then the induced bimodule structure on P[1] = B/A is the pre-
viously given one. The first new piece of information, beyond A and P,
contained in the noncommutative divisor is a bimodule map (which we call
the leading order term of the divisor)

(2.52) θ ∈ H0(hom(A,A)(P,A)).

Here, (A,A) stands for the A∞ (in fact dg) category of A-bimodules. One
can think of (2.52) as the connecting map in the short exact sequence of
A-bimodules

(2.53) 0 → A −→ B −→ P[1] → 0.

More explicitly, the components of a cochain representative of θ are obtained
as follows:

(2.54) A⊗j ⊗ P[1]⊗A⊗i ↪→ B⊗i+j+1 μi+j+1
B−−−−→ B[2− d]

projection−−−−−−→ A[2− d].
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It is useful to introduce a weight grading on B, with respect to which A has
weight 0 and P has weight −1. The entire A∞-structure μ∗

B is nondecreas-
ing with respect to weights. The part that strictly respect weights consists
precisely of the A∞-algebra structure of A, and the bimodule structure of
P. The leading order term is part of the next (weight 1) piece. There is also,
for fixed (A,P), a notion of isomorphism of noncommutative divisors. Two
isomorphic divisors determine isomorphic A∞-algebra structures on B.

Remark 2.4. One can rescale a given noncommutative divisor by multi-
plying the weight i part with λi, for some nonzero constant λ. This does not
(generally) preserve its isomorphism class as a noncommutative divisor, but
it preserves the isomorphism class of B as an A∞-algebra.

Lemma 2.5 ([49, Lemma 2.8]). Suppose that the following holds:

(2.55) For all i ≥ 1, H∗(hom(A,A)(P
⊗Ai,A)) vanishes if ∗ < 0.

Then the isomorphism class of a noncommutative divisor is entirely deter-
mined by (2.52).

There is also a corresponding theory of formal deformations of noncom-
mutative divisors (where A and P remain fixed). This is given by a deforma-
tion Bq of the A∞-algebra structure on B, which satisfies the same properties
as before (and in particular has vanishing μ0 term). Such a deformation has
a leading order term

(2.56) θq ∈ H0(hom(A,A)(P,A))[[q]].

The counterpart of Lemma 2.5 is:

Lemma 2.6. If (2.55) holds, the isomorphism class of a deformation of
noncommutative divisors is entirely determined by (2.56).

In fact, one can retain some control over the q-series that appear. Given
a C-linear subspace V ⊂ C[[q]], let

(2.57) Si[V ] ⊂ C[[q]]

be its i-th symmetric product as a subspace, which means those formal power
series in q that can be written as homogeneous degree i polynomials in the
elements of V . Similarly, let S[V ] ⊂ C[[q]] be the direct sum of all the (2.57).
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We say that a deformation of noncommutative divisors is “defined over S[V ]”
if, for each i, the weight i part of the A∞-structure of Bq lies in

(2.58)

(∏
d

Hom(B⊗d,B)

)
⊗ Si[V ].

Lemma 2.7. Suppose that (2.55) holds, and that we have a deformation
of noncommutative divisors whose leading order term (2.56) lies in
H0(hom(A,A)(P,A))⊗ V , for some V . Then, within the same isomorphism
class, there is a deformation which is defined over S[V ].

This result and the previous two are simple applications of abstract
deformation theory; we refer to the Appendix for an explanation from that
point of view.

Corollary 2.8. Suppose that (2.55) holds, and that we have a deformation
of noncommutative divisors whose leading order term is of the form

(2.59) θq = t1(q)ρ+ t2(q)σ,

where ρ, σ ∈ H0(hom(A,A)(P,A)), and t1, t2 ∈ C[[q]], with t1(0) 
= 0. Then,
there is an A∞-algebra over a polynomial ring C[t], which becomes quasi-
isomorphic to Bq after the change of variables

(2.60) t(q) = t2(q)/t1(q).

Proof. There is an analogue of Remark 2.4 for deformations of noncommu-
tative divisors: without changing the A∞-algebra structure of Bq, one can
replace (2.59) with ρ+ t(q)σ. Take V ⊂ C[[q]] to be the C-linear subspace
spanned by 1 and t(q). Lemma 2.7 yields a deformation of noncommuta-
tive divisors isomorphic to Bq, and such that only polynomials in t occur as
coefficients in its A∞-structure. �

As a final remark, note that even though we have formulated all of
the notions above for A∞-algebras, they carry over to A∞-categories in an
obvious way.
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3. Counting sections

3.1. The fundamental assumption

Within Gromov-Witten theory, the class (2.36) plays a special role. We want
to consider a situation in which that class (plus a multiple of the first Chern
class) can itself be written as a Gromov-Witten invariant. The resulting
discussion is fairly straightforward, but in it we will encounter some objects
and formulae that will be key to the categorical arguments later on.

Assumption 3.1. There are functions ψ(q) ∈ 1 + qC[[q]] and η(q) ∈ C[[q]],
such that

(3.1) − ∂q[ωE ,q, b ] = q−1[δE|] + (∂q b )/b = ψ(q)z
(1)

q, b
− η(q)[M̄ ].

One way to familiarize oneself with this condition is to analyze the formal
structure of (3.1), thought of as an equation for the triple (b , ψ, η). It admits
a large group of symmetries, generated by transformations

(3.2)

(
bα, ψα, ηα

)
=

(
b · α(q)[M̄ ], α(q)−1ψ(q), η(q)− α(q)−1α′(q)

)
,

α ∈ 1 + qC[[q]],

where α′ is the derivative in q-direction, and

(3.3)

(
bβ , ψβ , ηβ

)
=

(
b (β(q)) (β(q)/q)[δE|], ψ(β(q))β′(q), η(β(q))β′(q)

)
,

β ∈ q + q2C[[q]].

Note that by using (3.2), one can always reduce to the case where ψ = 1.
After that reduction, the remaining symmetry (3.3) has the form

(
bβ , ηβ

)
=

(
b (β(q))(β(q)/q)[δE|]β′(q)[M̄ ],(3.4)

η(β(q))β′(q)− β′(q)−1β′′(q)
)
.

An order-by-order analysis of (3.4) shows that there is always a unique
choice of such a transformation which reduces the situation to η = 0.

Lemma 3.2. The equation (3.1) always has a solution, which moreover is
unique up to the symmetries (3.2) and (3.3).

Proof. In view of the previous discussion, we consider only solutions with
ψ = 1 and η = 0. We also find it easier to replace the multiplicative class b
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with its additive counterpart B = log(b ) ∈ H2(E ; qC[[q]]). This turns (3.1)
into

(3.5) ∂qB =
∑
A

qδE|·AeB·AzA − q−1[δE|].

Here and below, the sum is only over classes A with M̄ ·A = 1. Let’s think
of (3.5) as a sequence of equations for the coefficients B =

∑
j≥1Bjq

j . These
equations have the form

(3.6) jBj =
∑
A

(Bj ·A)zA + (terms depending only on B1, . . . , Bj−1),

where this time, the sum is only over classes A with M̄ ·A = 1 and δE| ·A =
−1. Those classes are precisely the “trivial sections” of (2.45), and hence

(3.7)
∑
A

(Bj ·A) zA = C(Bj),

where

C :H∗(E )
restriction−−−−−−→ H∗(δE|) = H∗(CP 1 × δM)(3.8)

Kunneth projection−−−−−−−−−−−−→ H∗−2(δM)
Kunneth inclusion−−−−−−−−−−−→ H∗−2(CP 1 × δM)

= H∗−2(δE|) pushforward−−−−−−−→ H∗(E ).

Because of (2.7), this endomorphism satisfies C2 = −C, and therefore j − C
is invertible for any j ≥ 1. After rewriting (3.6) as

(3.9) (j − C)Bj = (terms depending only on B1, . . . , Bj−1),

one can solve it recursively in j, and the solution is unique. �
We finish these preliminary considerations by looking at an important

special case, namely (3.1) with trivial bulk term.

Lemma 3.3. Consider diffeomorphisms of E which preserve the deforma-
tion class of the symplectic form, and which map [δE|] to itself; they also
automatically preserve [M̄ ] = c1(E ). Let

(3.10) H∗(E )inv ⊂ H∗(E )

be the subspace on which all such diffeomorphisms act trivially. If that sub-
space is spanned by [δE|] and [M̄ ], there is a solution of (3.1) with b = 1.
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Proof. The solvability of (3.1) for b = 1 is equivalent to the statement that

(3.11) z(1)q ∈ q−1
C[[q]] · [δE|]⊕ C[[q]] · [M̄ ] ⊂ H2(E )⊗ q−1

C[[q]]

(since the bulk term is trivial, we’ve omitted it from the notation). Because

Gromov-Witten invariants are symplectic deformation invariants, z
(1)
q lies

in (3.10). �

Lemma 3.4. Suppose that 2n = dim(E) = 4, and that there is a solution
of (3.1) with b = 1. Then the functions η, ψ appearing in that solution
satisfy

(3.12) η = −(∂qψ)/ψ.

Proof. Start with (3.1) and take the intersection product with [M̄ ]. This
yields

(3.13) q−1ψ(q)−1 =
∑
A

qδE|·A〈〉A,

where 〈〉A is the numerical Gromov-Witten invariant in class A (as before,
M̄ ·A = 1). Similarly, taking the intersection product with [δE|] yields

(3.14) (η(q)− q−1)ψ(q)−1 =
∑
A

(δE| ·A)qδE|·A〈〉A.

Comparing those two gives (η(q)− q−1)ψ(q)−1 = q∂q(q
−1ψ(q)−1), and hence

the desired relation. �

3.2. Quantum eigenvalues

Within the general formalism, the q-derivative of Gromov-Witten invariants
is described by (2.37). When combined with Assumption 3.1, this leads to a
nonlinear ODE for certain Gromov-Witten invariants. Specifically, we want
to consider the operator of quantum multiplication with the first Chern
class:

(3.15)
Qq, b : H∗(E )((q)) −→ H∗(E )((q)),

Qq, b (x) = [M̄ ] ∗ x.
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Lemma 3.5. Under Assumption 3.1, (3.15) satisfies the equation, with I
as in (2.38),

∂qQq, b = (ψ(q)Q2
q, b

− η(q)Qq, b )(I + 1)(3.16)

− I(ψ(q)Q2
q, b

− η(q)Qq, b )− ψ(q)4z
(2)

q, b
.

Proof. To simplify the notation, all subscripts will be omitted. Using (2.37)
and (2.39), write

(∂qQ)(x) = z([M̄ ],−∂q[ω], x) =
∑

k kz
(k)(−∂q[ω], x)(3.17)

= (−∂q[ω]) ∗ (I + 1)x− I(−∂q[ω] ∗ x)
= (ψz(1) − η[M̄ ]) ∗ (I + 1)x− I((ψz(1) − η[M̄ ]) ∗ x)
= ψz(1) ∗ (I + 1)x− ηQ(I + 1)x− ψI(z(1) ∗ x) + ηIQx.

Because of the associativity of the quantum product and (2.47), we have

(3.18) z(1) ∗ x = Q2(x)− 4z(2)x.

Plugging that into (3.17) yields the desired result. �
Let Θ be the fundamental solution of the linear differential equation

(3.19) (∂q + Γ)Θ = 0, Γ =

(
0 ψ(q)

ψ(q)4z
(2)

q, b
η(q)

)
.

By definition, Θ ∈ GL2(C[[q]]) is a matrix with constant term equal to the
identity. At next order,

(3.20) Θ = Id − qΓ(0) +O(q2) =

(
1 −q
0 1− qη(0)

)
+O(q2).

We want to think of Θ (or rather its image in PGL2) as a formal fam-
ily of conformal transformations of the projective line. The next statement
shows that these transformations track the q-dependence of the eigenvalues
of (3.15).

Lemma 3.6. Suppose that Assumption 3.1 holds. Then the eigenvalues
of (3.15) are of the form, for [r : s] ∈ CP 1,

(3.21) λ =
Θ21r +Θ22s

Θ11r +Θ12s
=

{
s
r +O(q) r 
= 0,

−1
q + η(0) +O(q) r = 0.
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Proof. As before, we work in abbreviated notation. For any (r, s) ∈ C2 \
{(0, 0)}, consider the matrix

(3.22) R = (Θ11r +Θ12s)Q− (Θ21r +Θ22s).

By definition,

(3.23) det(R) = (Θ11r +Θ12s)
rankH∗(E ) det(Q− λ),

with λ as in (3.21). We know that Θ11r +Θ12s = r − sq +O(q2) is always
nonzero. For generic choice of (r, s), λ will not be one of the finitely many
eigenvalues of Q. Let’s temporarily assume that (r, s) has been chosen in
this way, so that det(R) 
= 0.

From Lemma 3.5, it follows that

(3.24) ∂qR = R(ψQ− η)(I + 1)− I(ψQ− η)R+ λψ(I R−RI)

Therefore,

det(R)−1 ∂q det(R) = tr(R−1∂qR)(3.25)

= tr((ψQ− η)(I + 1)− I(ψQ− η))

= tr(ψQ− η) = ψ tr(Q)− η rankH∗(E ).

Let’s rewrite this as an equality of homogeneous polynomials in the variables
r, s:

(3.26) ∂q det(R) = det(R)(ψ tr(Q)− η rankH∗(E )) ∈ C((q))[r, s].

The equation det(R) = 0 defines a 0-dimensional subscheme of the projective
line over the algebraically closed field C((q)) from (2.24). Property (3.26)
shows that this subscheme is invariant under differentiation in q-direction,
hence is necessarily obtained from a subscheme of CP 1 by extending con-
stants to C((q)). But by definition, the subscheme is obtained by pulling
back the eigenvalues of Q by the projective transformation (3.21). �

Through (2.49), Lemma 3.6 has implications for the disc-counting in-
variant (2.48), at least in the case where [L] ∈ Hn(E ) is nontrivial. There
is in fact a parallel argument which applies directly to (2.48), without any
assumptions on the homology class of L. We will not attempt to fully work it
out here, but we want to give an outline. The first step is an analogue of the
divisor axiom, which says that ∂qWL,q, b counts holomorphic discs with one
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point going through a cycle representing −∂q[ωE ,q, b ]. Using Assumption 3.1,
one turns this into the (nonlinear scalar first order) ODE

(3.27) ∂qWL,q, b = ψ(q)W 2
L,q, b

− η(q)WL,q, b − ψ(q)4z
(2)

q, b
.

By a computation similar to that in Lemma 3.6, the solutions of this equation
in C[[q]] are

(3.28) WL,q, b =
Θ21 +Θ22s

Θ11 +Θ12s
= s+O(q), s ∈ C.

4. Deformations of the Fukaya category

4.1. The main result

Still in the same geometric situation, let’s return to the Fukaya category A

and its deformation Aq,b̄. The main theorem announced in this paper is:

Theorem 4.1. Suppose that b̄ is the restriction of some b satisfying As-
sumption 3.1. Then Aq,b̄ is a trivial deformation.

Corollary 4.2. There is a distinguished class of bulk terms b̄, all related
to each other by reparametrizations (2.13), such that Aq,b̄ is a trivial defor-
mation.

The Corollary follows from Theorem 4.1 and Lemma 3.2: changes of b
as in (3.2) does not affect b̄, and those from (3.3) give precisely (2.13). Note
that we are not claiming a converse (we are not claiming that this is the
only choice of b̄ for which Aq,b̄ is trivial).

Let’s give an outline of the proof of Theorem 4.1. At first, we will work
more generally with Lefschetz fibrations which have fibrewise compactifica-
tions (2.1). As a general feature of deformation theory, Aq,b̄ comes with a
canonical cohomology class, the Kaledin class (see [26, 32] or Appendix A)

(4.1) [∂qμ
∗
Aq,b̄

] ∈ HH 2(Aq,b̄,Aq,b̄).

What’s relevant for us is the following statement, which gives a linear crite-
rion for an a priori nonlinear problem (triviality of A∞-deformations):

Lemma 4.3 (Kaledin, Lunts [32, Propositions 4.5 and 7.3(b)]). Aq,b̄

is a trivial A∞-deformation if and only if (4.1) vanishes.
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The next step is to replace the algebraic class (4.1) with a geometric
one. Write

(4.2) H∗(Ē)q = q−1H∗(Ē, E)⊕H∗(Ē)[[q]].

This is a graded C[[q]]-module, where multiplication by q maps the first
factor to the second one (by the standard map from relative to absolute
cohomology). In particular, we have a distinguished class

(4.3) q−1[δE] ∈ q−1H2(Ē, E) ⊂ H2(Ē)q.

We need (4.2) for a suitable version of the closed-open string map, which
has the form

(4.4) COq,b̄ : H
∗(Ē)q −→ HH ∗(Aq,b̄,Aq,b̄).

In analogy with other kinds of relative Fukaya categories [53], one has:

Lemma 4.4. The Kaledin class can be expressed as follows:

(4.5) [∂qμ
∗
Aq,b̄

] = COq,b̄(−[∂qωĒ,q,b̄]).

Before continuing, it is useful to review a bit more background material.
The map (4.4) is an analogue of the standard open-closed string map

(4.6) CO : H∗(E) −→ HH ∗(A,A).

As already pointed out in [40, Section 6], one does not expect this to be an
isomorphism. More recently, this issue has received considerable attention
[1, 49]. For us, the crucial aspect is that there is a commutative diagram

(4.7) H∗(E) ��

CO
��

HF ∗(φ)

��
HH ∗(A,A)

∼= �� H∗(hom(A,A)(A,P)).

Here, φ is a specific automorphism of E (rotation at infinity), and HF ∗(φ)
its fixed point Floer cohomology. On the open string side, the automorphism
induces an autoequivalence of F(π), and P is the A-bimodule associated to
that autoequivalence. The top horizontal map in (4.7) is a kind of contin-
uation map, and the same geometric mechanism gives rise to a bimodule
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homomorphism A → P, which turns out to be a quasi-isomorphism. The
bottom horizontal map in (4.7) is induced by that homomorphism, hence is
an isomorphism. As a consequence, any class in H∗(E) which gets mapped
to zero in HF ∗(φ) must lie in the kernel of CO . Let’s suppose that our Lef-
schetz fibration comes from an anticanonical Lefschetz pencil. Then, the top
horizontal map in (4.7) fits into a long exact sequence

(4.8) · · · → H∗−2
cpt (M) −→ H∗(E) −→ HF ∗(φ) → · · ·

The conclusion is that any class in H∗(E) which comes from H∗−2
cpt (M) lies

in the kernel of the open-closed string map. Of course, in degree 2 this is a
rather pointless observation, since H0

cpt(M) = 0.
We now consider what happens under fibrewise compactification. There

is an extension of φ to an automorphism φ̄ of Ē. One can associate to it
a relative version of fixed point Floer cohomology, denoted by HF ∗

q,b̄
(φ̄), as

well as a bimodule Pq,b̄ over Aq,b̄. The appropriate version of (4.7) looks as
follows:

(4.9) H∗(Ē)q ��

COq,b̄

��

HF ∗
q,b̄
(φ̄)

��
HH ∗(Aq,b̄,Aq,b̄)

∼= �� H∗(hom(Aq,b̄,Aq,b̄)(Aq,b̄,Pq,b̄)).

If the image of −[∂qωĒ,q,b̄] in HF ∗
q,b̄
(φ̄) is zero, then the deformation Aq,b̄

must be trivial, because of Lemmas 4.3 and 4.4. At this point, we re-
introduce the assumption that the Lefschetz fibration comes from an an-
ticanonical Lefschetz pencil, and also require that b̄ is the restriction of
some (2.32). The counterpart of (4.8) says that the top horizontal arrow
from (4.9) fits into a long exact sequence of graded C[[q]]-modules

(4.10) · · · → H∗−2(M̄)[[q]] −→ H∗(Ē)q −→ HF ∗
q,b̄(φ̄) → · · ·

Let’s introduce an analogue of (4.2),

(4.11) H∗(E )q = q−1H∗(E ,E|)⊕H∗(E )[[q]].

By (2.43), z
(1)

q, b
admits a natural lift to H2(E )q, for which we use the same

notation.

Lemma 4.5. The restriction of z
(1)

q, b
to H2(Ē)q equals the image of 1 ∈

H0(M̄)[[q]] under the first map in (4.10).
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Hence, the image of ψ(q) ∈ H0(M̄)[[q]] is ψ(q)z
(1)

q, b
. If one can achieve

that this equals q−1[δE] + ∂q b̄/b̄, then it follows that the latter class maps
to zero in HF ∗

q,b̄
(φ̄). This explains Theorem 4.1.

Remark 4.6. Suppose that

(4.12) H2(E) = 0, H1
cpt(M) = 0.

A more concrete form of the conjecture from [40] says that the map

(4.13) HF ∗(φ) −→ HH ∗(A,A)

obtained from (4.7) is an isomorphism. Suppose that this is true. Then (4.12)
would imply that HH 2(A,A) = 0, by (4.8). In that case, A would not have
any nontrivial deformations at all. This fits in with our considerations as fol-
lows. The topological conditions (4.12) imply thatH2(E ) is two-dimensional,
and it is then necessarily spanned by [M̄ ] and [δE|]. Assumption 3.1 is then
trivially satisfied, for any b .

4.2. The main conjecture

Our next step will be to discuss (conjecturally) how additional structures
present in Fukaya categories of Lefschetz fibrations behave under fibrewise
compactification. In [47, Section 6], it was shown how to construct a canon-
ical bimodule map

(4.14) ρ ∈ H0(hom(A,A)(A
∨[−n],A)).

Recall that the dual diagonal bimodule A∨ gives rise (via tensor product)
to the Serre functor on the category of right (perfect) A-modules. Hence,
(4.14) induces a natural transformation from the Serre functor (shifted up
by n) to the identity functor. Given a fibrewise compactification, together
with (2.17), one gets a corresponding deformation of (4.14) to an element

(4.15) ρq,b̄ ∈ H0(hom(Aq,b̄,Aq,b̄)(A
∨
q,b̄[−n],Aq,b̄)).

The next ingredient is more delicate. For Lefschetz fibrations coming
from anticanonical Lefschetz pencils, [49] provides a different construction
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of a map of the same kind, which we will here denote by

(4.16) σ ∈ H0(hom(A,A)(A
∨[−n],A)).

The construction in [49] is rather ad hoc, but since our use of (4.16) is in any
case speculative, we will allow ourselves to overlook its shortcomings. We
conjecture that there is a canonical deformation of (4.16) which is formally
parallel to (4.15),

(4.17) σq, b ∈ H0(hom(Aq,b̄,Aq,b̄)(A
∨
q,b̄[−n],Aq,b̄)).

Suppose now that the bulk term is chosen as in Theorem 4.1, and hence
that Aq,b̄ is the trivial deformation. After fixing a trivialization of that de-
formation, we get an isomorphism

(4.18) H∗(hom(Aq,b̄,Aq,b̄)(A
∨
q,b̄,Aq,b̄))

∼= H∗(hom(A,A)(A
∨,A))[[q]].

Hence, both ρq,b̄ and σq, b can be considered as (formal) functions of q, taking

values in H0(hom(A,A)(A
∨[−n],A)). In particular, it now makes sense to

differentiate them in q-direction.

Conjecture 4.7. Suppose that b̄ is the restriction of some b satisfying
Assumption 4.1. Then, there is a choice of trivialization of the deformation
Aq,b̄, such that, with respect to the associated isomorphism (4.18), we have

(4.19) (∂q + Γ)

(
ρq,b̄
σq, b

)
= 0, for the same Γ as in (3.19).

A usesful formal consistency check of (4.19) is that it is compatible with

the symmetries of (3.1). A change of b as in (3.2) multiplies z
(2)

q, b
with α2,

and therefore transforms Γ to

(4.20) Γα =

(
0 α(q)−1ψ(q)

α(q) 4ψ(q) z
(2)

q, b
η(q)− α(q)−1α′(q)

)
.

The solutions of the corresponding equation (4.19) are the given ρq,b̄ (which
indeed should not change, since b̄ remains the same) together with

(4.21) σq, b α
(q) = α(q)σq, b .

Similarly, if we apply (3.3), the corresponding transformation of Γ is

(4.22) Γβ = β′(q) Γq, b (β(q))).
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The solutions of (4.19) would then be obtained from the original ones by
the same change of variables q 	→ β(q).

Remark 4.8. One of the more speculative aspects of Conjecture 4.7 is that
it involves an object whose existence is itself conjectural, namely σq, b . How-
ever, note that one can remove σq, b from the formalism, by rewriting (4.19)
as a second order linear ODE for ρq,b̄ alone:

(4.23) ∂2
qρq,b̄ +

(
η − ∂qψ

ψ

)
∂qρq,b̄ − ψ24z

(2)

q, b
ρq,b̄ = 0.

In particular, if one knows the value of ρq,b̄ and its first derivative at q = 0,
the entire ρq,b̄ can be reconstructed from that using Gromov-Witten invari-
ants of E .

Part of the motivation for Conjecture 3.6 comes from the connection
with holomorphic disc counts. Take L as in (2.48), considered as an object
of Fq,b̄(π̄). Since the restriction map

H∗(hom(Fq,b̄(π̄),Fq,b̄(π̄))(Fq,b̄(π̄)
∨,Fq,b̄(π̄)))(4.24)

−→ H∗(hom(Aq,b̄,Aq,b̄)(A
∨
q,b̄,Aq,b̄))

is an isomorphism, the natural transformations (4.15) and (4.17) extend
uniquely to Fq,b̄(π̄). Moreover, the tensor product with the bimodule
Fq,b̄(π̄)

∨[−n] is the Serre functor for our category, which preserves closed
Lagrangian submanifolds. Hence, we get elements

(4.25) ρL,q,b̄, σL,q, b ∈ H0(homFq,b̄(π̄)(L,L))
∼= C[[q]].

One expects that

(4.26) WL,q, b =
σL,q, b
ρL,q,b̄

.

This provides a link between Conjecture 4.7 and the previously observed
behaviour of (2.48) (see Lemma 3.6 and (3.28)). Concretely, if ρ is a nonzero
solution of (4.23), and σ = −(∂qρ)/ψ, then W = −σ/ρ satisfies (3.27).

4.3. The Fukaya category of the fibre

Consider the category B from (2.21). The main result from [48] says that
this has the structure of a noncommutative divisor on A, where the rel-
evant bimodule is P = A∨[−n], and more importantly, the leading order
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term (2.52) can be identified with (4.14). We would like to extend this idea
to the fibrewise compactification, as follows:

Conjecture 4.9. Suppose that the deformation Aq,b̄ is trivial. Then the cat-
egory Bq,b̄|M from (2.23) has the structure of a deformation of noncommu-
tative divisors on A, whose leading order term (2.56) is the image of (4.15)
under (4.18).

In general, the leading order term doesn’t determine a noncommuta-
tive divisor. However, for Lefschetz fibrations arising from anticanonical
Lefschetz pencils, it is reasonable to assume that this will be always the
case, as explained in [49, Remark 7.23]. Assuming that this is true, and
that Conjectures 4.7 and 4.9 hold, it follows that the map ρq,b̄ computed
through (4.23) completely determines Bq,b̄|M̄ . In particular, we can then ap-
ply Corollary 2.8 with t1 = Θ11 and t2 = Θ12. This explains Conjecture 1.4,
where the generator is in fact t = Θ12/Θ11.

Remark 4.10. It is helpful to interpret this situation in terms of mirror
symmetry. Suppose that A is derived equivalent to the category of coherent
sheaves on a smooth variety X. The mirrors of (ρ, σ) are sections (r, s) of
K−1

X . Suppose that this pencil gives a well-defined map

(4.27) X −→ CP 1.

Then, the mirror of Bq,b̄ would be obtained by looking at the vanishing locus
of Θ11r +Θ12s, which means that it is the fibre over the formal disc in CP 1

parametrized by −Θ11/Θ12.

5. Elementary examples

5.1. A non-example

Let’s begin with an extremely simple “made up” example. This does not
come from a Lefschetz pencil, hence our main results don’t apply to it, but it
illustrates the general idea of fibrewise compactification, and the associated
deformation of the Fukaya category.

Consider an exact Lefschetz fibration whose fibre M is a two-punctured
torus, and which has a basis of vanishing cycles (V1, V2) drawn in Figure 2
(this describes the Lefschetz fibration uniquely, up to deformation). We use
the symplectic Calabi-Yau structure given by the standard trivialization of
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the canonical bundle of the torus. Using (2.22), one gets

(5.1) homA(Li, Lj) =

⎧⎪⎨
⎪⎩
C · eLi

i = j,

CF ∗(V1, V2) = C · x⊕ C · y (i, j) = (1, 2),

0 (i, j) = (2, 1).

The degrees are |x| = 0, |y| = 1. All A∞-operations μd
A vanish. Let’s consider

the obvious fibrewise compactification, obtained by filling in the punctures,
and use Lemma 2.1 to determine Aq (the same approach will be used in all
the computations in this section). In this case, Aq is the trivial deformation:
we have two holomorphic bigons, whose contributions to the differential
μ1
Aq

(x) are ±qy, hence cancel.

Remark 5.1. The partial compactification Ē contains a Lagrangian sphere,
which gives rise to a spherical object in Fq(π̄). Algebraically, this can be writ-
ten as the cone of a morphism L1 → L2, hence lies in the derived category
D(Aq). Because the deformation is trivial, the same object appears already
in D(A) ∼= D(F(π)), in spite of the fact that there are no Lagrangian spheres
in E (since H2(E) = 0).

Let’s consider the effect of introducing a bulk term (2.17). We can write
it as

(5.2) b̄ = (β0)
A0(β1)

A1 ,

where A0, A1 are the (Poincaré duals of the) two sections of π̄ corresponding
to the punctures in the fibre M ; and β0, β1 are elements of 1 + qC[[q]]. The
effect on our previous computation is that holomorphic polygons in M̄ that
pass over the punctures with multiplicities (m0,m1) should be counted with
an additional weight βm0

0 βm1

1 . This means that

(5.3) μ1
Aq,b̄

(x) = q(β0 − β1)y.

For β0 = β1, the deformation is trivial (and indeed, the general property
(2.13) tells us that Fq,b̄(π̄) must be a reparametrization of Fq(π̄)). For β0 
=
β1, the deformation is nontrivial (at some order in q, which depends on
β1/β0).

Remark 5.2. If β0 
= β1, the Lagrangian sphere from Remark 5.1 is no
longer an object of Fq,b̄(π̄), since the integral of b̄ over it is nonzero.
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1
x

Figure 2.

Remark 5.3. Suppose that we modify the geometric setup, by putting
another puncture close to one of the two existing ones. This affects the way
in which holomorphic bigons are counted, resulting in

(5.4) μ1
Aq

(x) = (q − q2)y,

which is clearly a nontrivial deformation (even at first order in q). In this
situation, there is no longer a Lagrangian sphere in Ē, since the symplectic
form will have nonzero integral over the relevant homology class. Moreover,
Aq,b̄ will remain a nontrivial deformation for any choice of b̄, since that
changes the weights with which holomorphic bigons are counted only by
invertible elements of C[[q]]. Thus, Question 1.1 has a negative answer in
this case.

5.2. The mirror of CP 2

Our next example is the toric mirror of the projective plane:

(5.5)
E = C

∗ × C
∗,

π(x1, x2) = x1 + x2 +
1

x1x2
.

We’ll use the basis of vanishing cycles from [40, Section 3b], shown in Fig-
ure 3. This is the example we had in mind in Section 1.1, for which it was
shown in [5, Section 6.2] that the deformation Aq is trivial. Within mirror
symmetry, this reflects the fact that the fibrewise compactification is again
a mirror of CP 2, but with respect to a non-toric anticanonical divisor [3]
(we will return to this viewpoint later).
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1

3

2

Figure 3.

Let’s start with the exact fibration (except for signs, this computation
goes back to [40]). Since there are three vanishing cycles, and all the mor-
phisms between them are concentrated in degree 0, the only nontrivial part
of the A∞-structure is the product

(5.6) μ2
A : CF ∗(V2, V3)⊗ CF ∗(V1, V2) −→ CF ∗(V1, V3).

The intersections Vi ∩ Vj (i 
= j) each consist of three points, so (5.6) has
27 coefficients. All but 6 of these coefficients vanish, and the remaining
ones are ±1 (corresponding to the six “small” triangles in Figure 3). To get
the signs right, it is important to remember that all vanishing cycles must
be equipped with local systems having holonomy −1, or equivalently, with
nontrivial Spin structures (the reasons are explained in [43]). Let’s think
of these local systems (or Spin structures) as being trivial away from one
marked point on each Vk; the specific choice of points we use is shown in
Figure 3. The effect is that a triangle is counted with (−1)s if its boundary
crosses the marked points s times. With respect to bases {xk}, {yk}, {zk}
of the spaces in (5.6) given by intersection points, one then has

(5.7)

μ2
A(y2, x1) = z3, μ2

A(y1, x2) = −z3, μ2
A(y3, x2) = z1,

μ2
A(y2, x3) = −z1, μ2

A(y1, x3) = z2, μ2
A(y3, x1) = −z2,

μ2
A(y1, x1) = 0, μ2

A(y2, x2) = 0, μ3
A(y3, x3) = 0.

As explained in [5], the corresponding products μ2
Aq

are obtained from those
in (5.7) by multiplying with

(5.8) γ(q) =

∞∑
j=0

(−1)jq3j(3j+1)/2 − (−1)jq(3j+2)(3j+3)/2 = 1− q3 − q6 + · · ·

Since the relations between these products remain the same, the deformation
is trivial (in fact, it can be trivialized by multiplying all zk with γ). Remark-
ably, the fact that μ2

Aq
(yk, xk) vanishes does not come from the absence of
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holomorphic triangles, but rather from an infinite number of cancellations
between their contributions, at all orders in q.

Remark 5.4. There is a way of explaining the triviality of Aq a priori,
without doing any specific computations, by looking at the deformation
theory of the derived (A∞ or dg) categories

(5.9) DbF(π) ∼= DbCoh(CP 2).

Recall that the total space of our Lefschetz fibration is E = (C∗)2. This
contains an exact Lagrangian torus T ⊂ E, which becomes an object of F(π).
Let T ⊂ F(π) be the full A∞-subcategory consisting of only that object (T
is formal, hence an exterior algebra in 2 variables). Any holomorphic disc
in Ē with boundary on T must have Maslov index 0, since the relative first
Chern class vanishes. For dimension reasons, there are (generically) no such
discs, hence Fq(π̄) restricts to the trivial deformation of T.

The mirror of T is the structure sheaf P of a point in the open torus
orbit of CP 2. Let P ⊂ DbCoh(CP 2) be the full subcategory consisting only
of that structure sheaf. By the Hochschild-Kostant-Rosenberg theorem, one
can identify the restriction map on Hochschild cohomology,

(5.10) HH 2(CP 2) −→ HH 2(P,P),

with the map that takes a bi-vector field (a section of the second exterior
power of the tangent bundle) to its Taylor expansion near P . This map
is clearly injective. From the derived equivalence (5.9) one sees that the
corresponding restriction map

(5.11) HH 2(F(π),F(π)) −→ HH 2(T,T)

is also injective. A formal deformation of F(π) which is nontrivial at some
order qd determines a nonzero class in HH 2(F(π),F(π)), hence (by the in-
jectivity of (5.11), and some general considerations concerning deformations
of T) restricts to a nontrivial deformation of T. Because of our previous ob-
servation concerning Fq(π̄), that deformation must then be trivial.

The same argument applies to the mirrors of the other smooth toric
Fano surfaces [4, 5, 57]. In higher dimensions, it is still true that smooth toric
Fano varieties are rigid [7], hence all their deformations are noncommutative
ones. In principle, there are methods for proving analogues of our statement
concerning Maslov index 0 holomorphic discs [15]. However, the geometry
of the natural (toric) fibrewise compactification is much more complicated.
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It is also instructive to consider deformations with bulk term. Let’s as-
sume that b̄ comes from a class in

(5.12) H2(Ē, M̄ ; 1 + qC[[q]]) ∼= (1 + qC3[[q]])3

(here, M̄ is placed “at infinity”). An explicit choice of isomorphism (5.12) is
given by integrating a cohomology class over the Lefschetz thimbles, which
yields a triple (β1, β2, β3) of elements of 1 + qC[[q]]. In the same terms, the
boundary operator H1(M̄) → H2(Ē, M̄) is given by integrating one-forms
on M̄ over vanishing cycles, hence its image is spanned by (1, 2, 1) and
(2, 1,−1). This means that b̄ ∈ H2(Ē; 1 + qC[[q]]) is determined by

(5.13) β2/(β1β3) ∈ 1 + qC[[q]].

When carrying out the computation of Aq,b̄ as the directed subcategory
of Bq,b̄|M̄ , the vanishing cycle Vk should be equipped with a local system
having holonomy −βk, rather than the original −1 (as before, we think of
the local system as being trivial away from the marked points). This leads
to the following deformation of (5.7):

(5.14)

μ2
Aq,b̄

(y2, x1) = z3 +O(q2), μ2
Aq,b̄

(y1, x2) = −β−1
3 z3 +O(q2),

μ2
Aq,b̄

(y3, x2) = z1 +O(q2), μ2
Aq,b̄

(y2, x3) = −β−1
1 z1 +O(q2),

μ2
Aq,b̄

(y1, x3) = z2 +O(q2), μ2
Aq,b̄

(y3, x1) = −β2z2 +O(q2),

μ2
Aq,b̄

(y1, x1) = O(q2), μ2
Aq,b̄

(y2, x2) = O(q2),

μ3
Aq,b̄

(y3, x3) = O(q2).

Consider solutions of the Maurer-Cartan equation

(5.15) μ2
Aq,b̄

(η1y1 + η2y3 + η3y3, ξ1x1 + ξ2x2 + ξ3x3) = 0,

with coefficients ηk, ξk which are functions of q, and which have nonzero
constant terms. From (5.14), one gets

(5.16) η2

η1
= β−1

3
ξ2
ξ1

+O(q2), η3

η2
= β−1

1
ξ3
ξ2

+O(q2), η1

η3
= β2

ξ1
ξ3

+O(q2).

If b̄ is nontrivial to first order, which means that (5.13) does not lie in
1 +O(q2), the equations (5.16) are not solvable. Since solutions of Maurer-
Cartan equations transfer across isomorphisms, it then follows that Aq,b̄ is
nontrivial.
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Figure 4.

5.3. The anticanonical pencil on the cubic surface

The previous example is still not a Lefschetz pencil, but one can enlarge
it to one, by adding 9 more vanishing cycles: more precisely, three copies
of each of the three disjoint curves shown in Figure 4 (the ordering within
that group of 9 is irrelevant). The resulting basis of 12 vanishing cycles is
what one gets from the anticanonical Lefschetz pencil on a cubic surface
(the projective plane blown up at 6 general points).

It turns out that the deformation Aq is still trivial (which of course is
strictly stronger than our previous observation). Instead of addressing this
by direct computation, we will give a mirror symmetry explanation, which
is not quite rigorous (it is a degenerate version of arguments from [4]).

For a complex number q, 0 < |q| < 1, consider the following elliptic curve
Yq together with a degree 3 divisor Zq:

Yq = C/(Z⊕ log(q)
2πi Z),(5.17)

Zq = {0, 1/3, 2/3} = (13Z)/Z ⊂ Yq.(5.18)

The associated line bundle OYq
(Zq) gives rise to an embedding

(5.19) Yq ↪→ P(H0(Yq,OYq
(Zq))

∨) ∼= CP 2.

Blow up the image of Zq under that embedding, and lift the embedding to the
blowup. Then, carry out the same process two more times. The outcome is a
rational elliptic surface Xq, into which Yq is embedded with selfintersection
0. The derived category of Xq carries a full exceptional collection of 12
objects [8], whose restriction to Yq is mirror to our basis of vanishing cycles
on the (compact) torus with symplectic area − log(q). In particular, if we
temporarily pretend that q can be treated as a complex number on the
symplectic geometry side, Fq(π̄) would be derived equivalent to the category
of coherent sheaves on Xq.
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numbers are selfintersections,

1

09

−1

−1

−1

= selfintersection −2

Figure 5.

The key observation is that X = Xq is actually independent of q. By
definition of (5.19), the image of Zq consists of three collinear points in CP 2

(the left side of Figure 5 shows the image of Yq, and the line through the
image of Zq; the right side shows what happens after repeatedly blowing
up). Specifically for our choice (5.18), we have linear equivalences

(5.20) Zq ∼ 3 · {0} ∼ 3 · {1/3} ∼ 3 · {2/3}.

This means that for each point of Zq, there is a section of OYq
(Zq) which

vanishes to third order at that point. If we use those sections as a basis of
our linear system, the image of Yq under (5.19) will intersect the coordinate
lines at the points of Zq, and each time with intersection multiplicity 3. As
a consequence, the repeated blowups used to form Xq are carried out on the
proper transforms of the coordinate lines, hence are the same for all q.

Remark 5.5. To make this argument into a rigorous proof of the triviality
of Aq, one would need to modify it in two ways. First, q needs to be treated
as a formal variable, rather than as a complex number. Second, one has
to extend it to q = 0, where the elliptic curve degenerates to the union of
coordinate lines (the corresponding version of homological mirror symmetry
is well-known [31, 54]).

Remark 5.6. As one sees from Figure 5, X contains an Ẽ6 configuration
of (−2)-spheres. The mirror is a configuration of 8 Lagrangian spheres in
the affine cubic surface, which is a basis of vanishing cycles for the T3,3,3

singularity [27, Section 4.2]. X also contains another Ã2 configuration, dis-
joint from the previous one, namely the proper transforms of the coordinate
lines (if there are mirror spheres to those, they need to lie in Ē, which would
give rise to a phenomenon similar to that in Remark 5.1). The existence of
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Figure 6.

those two singular elliptic fibres characterizes X uniquely. It is an extremal
elliptic surface [37], X = X431 in the notation from [35, p. 77].

5.4. The anticanonical pencil on CP 2

Figure 6 shows a basis of vanishing cycles for the anticanonical (degree 3)
pencil on CP 2, where M is the nine-punctured torus. The cycles are labeled
as Vk,t for k ∈ {1, 2, 3, 4} and t ∈ {1

2 ,
3
2 ,

5
2}, and should be ordered nonde-

creasingly in k (within each group with fixed k, the ordering is irrelevant).
The remark about filling in Figure 6, and the shaded triangles, should be
ignored for now.

In this case, the deformation Aq is once more trivial. One could give a
mirror symmetry argument along the lines of the previous one (the mirror
is the extremal elliptic surface X9111). However, we will instead proceed by
direct computation, which is easier this time since no two vanishing cycles
are isotopic.

Remark 5.7. There is a formal relationship between this example and
that in Section 5.3. Returning to Figure 3, note that the three curves drawn
there span an index 3 subgroup of H1(M̄) = Z2. Hence, there is a unique
Z/3-cover of M̄ which is trivial when restricted to each curve. That cover is
nontrivial on the curves from Figure 4. On that cover, the 9 preimages of the
curves from Figure 3, together with the preimage of each of the 3 curves in
Figure 4 (without repetition), form the collection shown in Figure 6 (the lack
of immediate visual resemblance comes from drawing the torus differently).
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On the level of A∞-structures Aq, this means that the one currently under
consideration is obtained from the previous one by taking the semidirect
product with respect to an action of Z/3 (hence, triviality of the deformation
in one case can in fact be derived from that in the other one). Dually, the
mirror X9111 carries a Z/3-action whose resolved quotient is the previously
considered X431.

3

2

1

4

Figure 7.

Consider first the simpler situation from Figure 7: a collection of four
curves {Vk} on a once-punctured torus. Each curve should be equipped with
a line bundle whose holonomy is ζk, where

(5.21) ζ3k = −1.

This time, we want to think of it as the trivial line bundle with a constant
connection given by a choice of logarithm uk = log(ζk)/2πi ∈ 1

6 + 1
3Z (and

use that logarithm to determine roots of ζk, which will appear in the for-
mulae below). Let’s denote the resulting objects by Vk,ζk . When counting
holomorphic polygons, the effect is that a side of a triangle which covers a
fraction φ of the curve Vk,ζk will contribute a holonomy term e2πiukφ.

Prerequisites 5.8. Two of the Jacobi theta-functions are

(5.22)

θ2(u, q) =
∑

d∈Z+1
2

e2πiudqd
2

= (eπiu + e−πiu)q1/4 +O(q9/4),

θ3(u, q) =
∑
d∈Z

e2πiudqd
2

= 1 +O(q).

We will need the obvious periodicity properties

(5.23)
θ2(u+ 1, q) = −θ2(u, q),

θ3(u+ 1, q) = θ3(u, q)
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as well as Watson’s identity (see e.g. [34, p. 130–131])

θ3(u+ v, q)θ2(u− v, q) + θ2(u+ v, q)θ3(u− v, q)(5.24)

= θ2(u, q
1/2)θ2(v, q

1/2).

Finally, note the following special value:

θ2(u, q
1/2) = (eπiu + e−πiu)q1/8γ(q)(5.25)

if u ∈ 1
6 + 1

3Z, with γ as in (5.8).

In Figure 7, let’s consider the Floer-theoretic products

CF ∗(V2,ζ2 , V3,ζ3)⊗ CF ∗(V1,ζ1 , V2,ζ2)
∼= C −→ CF ∗(V1,ζ1 , V3,ζ3)

∼= C,(5.26)

CF ∗(V3,ζ3 , V4,ζ4)⊗ CF ∗(V1,ζ1 , V3,ζ3)
∼= C −→ CF ∗(V1,ζ1 , V4,ζ4)

∼= C,(5.27)

CF ∗(V2,ζ2 , V4,ζ4)⊗ CF ∗(V1,ζ1 , V2,ζ2)
∼= C

2 −→ CF ∗(V1,ζ1 , V4,ζ4)
∼= C,(5.28)

CF ∗(V3,ζ3 , V4,ζ4)⊗ CF ∗(V2,ζ2 , V3,ζ3)
∼= C −→ CF ∗(V2,ζ2 , V4,ζ4)

∼= C
2(5.29)

and their q-deformations. These can be determined combinatorially by
triangle-counting. In the natural basis given by the intersection points, the
outcome is given by, respectively,

q−1/8θ2(u1 − u2 + u3, q
1/2) = (ζ

1/2
1 ζ

−1/2
2 ζ

1/2
3 + ζ

−1/2
1 ζ

1/2
2 ζ

−1/2
3 )γ(q)(5.30)

q−1/8θ2(u1 − u3 + u4, q
1/2) = (ζ

1/2
1 ζ

−1/2
3 ζ

1/2
4 + ζ

−1/2
1 ζ

1/2
3 ζ

−1/2
4 )γ(q),(5.31) (

θ3(2u1 − u2 + u4, q), q
−1/4θ2(2u1 − u2 + u4, q)

)
,(5.32) (

q−1/4θ2(u2 − 2u3 + u4, q)
θ3(u2 − 2u3 + u4, q)

)
(5.33)

(we have used (5.25) in the first two equations). Again using (5.25), together
with (5.23) and (5.24), we note that

(5.34)

θ3(2u1 − u2 + u4, q)θ2(u2 + u4, q)

− θ2(2u1 − u2 + u4, q)θ3(u2 + u4, q)

= θ2(u1 + u4 +
1
2 , q

1/2)θ2(u1 − u2 +
1
2 , q

1/2)

= −(ζ
1/2
1 ζ

1/2
4 − ζ

−1/2
1 ζ

−1/2
4 )(ζ

1/2
1 ζ

−1/2
2 − ζ

−1/2
1 ζ

1/2
2 )q1/4γ(q)2,

θ3(2u1 − u2 + u4, q)θ2(u4 − u2, q)

+ θ2(2u1 − u2 + u4, q)θ3(u4 − u2), q)

= θ2(u1 − u2 + u4, q
1/2)θ2(u1, q

1/2)

(ζ
1/2
1 ζ

−1/2
2 ζ

1/2
4 + ζ

−1/2
1 ζ

1/2
2 ζ

−1/2
4 )(ζ

1/2
1 + ζ

−1/2
1 )q1/4γ(q)2.
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Let’s work with respect to the following modified generators of the Floer
cochain complexes (tensored with C[[q]]). We multiply the given generator of
CF ∗(V1,ζ1 , V2,ζ2)[[q]] by 1/γ, and the generator of CF ∗(V1,ζ1 , V4,ζ4)[[q]] with
γ. So far, the outcome is that when written out in terms of the new gen-
erators, the formulae for (5.26) and (5.27) get divided by γ (hence become
independent of q), whereas (5.28) gets divided by γ2. Finally, let’s change
the given generators of CF ∗(V2,ζ2 , V4,ζ4) by applying the matrix(

q−1/4θ2(u2 + u4, q) q−1/4θ2(u4 − u2, q)
−θ3(u2 + u4, q) θ3(u4 − u2, q)

)
(5.35)

=

(
ζ
1/2
2 ζ

1/2
4 + ζ

−1/2
2 ζ

−1/2
4 ζ

1/2
4 ζ

−1/2
2 + ζ

−1/2
4 ζ

1/2
2

−1 1

)
+O(q).

Using (5.34), one sees that after this further change of generators, (5.27)
turns into (the q-independent expression)

(5.36)

(− (ζ
1/2
1 ζ

1/2
4 − ζ

−1/2
1 ζ

−1/2
4 )(ζ

1/2
1 ζ

−1/2
2 − ζ

−1/2
1 ζ

1/2
2 ),

(ζ
1/2
1 ζ

−1/2
2 ζ

1/2
4 + ζ

−1/2
1 ζ

1/2
2 ζ

−1/2
4 )(ζ

1/2
1 + ζ

−1/2
1 )

)
.

There is a pitfall: the determinant of (5.35) is

(5.37) q−1/4θ2(u2, q
1/2)θ2(u4, q

1/2) = (ζ
1/2
2 + ζ

−1/2
2 )(ζ

1/2
4 + ζ

−1/2
4 )γ(q)2,

hence the matrix is invertible only if ζ2, ζ4 
= −1. However, one can replace
(u2, u4) in (5.34) by (u2 +

1
3 , u4 +

1
3) or (u2 +

2
3 , u4 +

2
3), and cover all cases

in this way. To summarize, we have now shown that in suitable generators,
the products (5.26)–(5.28) become constant in q. Because of associativity, it
then follows automatically that (5.29) is constant in q as well (or one can
check that by direct computation).

So far, we have been a bit vague about the formal context in which this
computation takes place. What we want to do is to order the 12 possible Vk,ζk

nondecreasingly in k, and consider the associated directed A∞-category,
which we denote by Ãq. Using the fact that the Floer cohomology between
a given vanishing cycle with different choices of holonomy is zero, we can
simplify the definition by setting

(5.38) homÃq
(Vk,ζk , Vk,ζ′

k
) = 0 if ζk 
= ζ ′k.

Then, the argument above shows that Ãq is trivial as an A∞-deformation.
There is a natural action of (Z/3)2 on this category, which tensors all objects
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with the restriction of line bundles on the torus having holonomies which
are third roots of unity. After taking the semidirect product, we recover a
category which is Morita equivalent to that associated to the cubic pencil
on CP 2: more precisely,

(5.39) Ãq � (Z/3)2 ∼= Aq ⊗ End(C3).

This is the same trick mentioned in Remark 5.7 (we refer to [45, 51, 53],
where parallel arguments appear, for further explanation). The triviality of
the deformation Ãq implies its equivariant triviality (a general property of
finite group actions in characteristic 0) and, via (5.39), the triviality of Aq.

5.5. The anticanonical pencil on the Hirzebruch surface F1

Our final example is the Lefschetz fibration obtained from the anticanonical
Lefschetz pencil on F1 (CP 2 blown up at one point). This can be obtained
from its counterpart for CP 2 by filling in one of the punctures in the fibre
M , which we choose as shown in Figure 6 (M̄ remains the same, but δM
loses a point). To be precise, this “filling in” process changes the notion of
exact Lagrangian submanifold in M , hence the vanishing cycles will move
around slightly, but that will not affect our computation.

It will turn out that in this case, the deformation Aq is nontrivial already
to first order in q. For that, consider the one-dimensional spaces

(5.40) CF ∗(Vk1,t1 , Vk2,t2) with (k1, k2) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)}.

The products

(5.41)

CF ∗(Vk2,t2 , Vk3,t3)⊗ CF ∗(Vk1,t1 , Vk2,t2) −→ CF ∗(Vk1,t1 , Vk3,t3),

where all morphism spaces are as in (5.40),

and t3 ≡ t1 + t2 ± 1
2 mod 3,

are all nonzero, and remain unchanged under deformation to first order in
q. In contrast, the product

(5.42) CF ∗(V2,5/2, V3,3/2)⊗ CF ∗(V1,1/2, V2,5/2) −→ CF ∗(V1,1/2, V3,3/2)

deforms nontrivially to first order: it is a nonzero constant times 1− q +
O(q2) (the two relevant triangles are shaded in Figure 6).

Suppose that Aq was trivial to first order. This means that its first order
part represents the trivial class in the Hochschild cohomology HH 2(A,A).
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Hence, this part must be the boundary of a degree 1 Hochschild cochain ε.
Concretely, ε consists of endomorphisms ε(Vk1,t1 , Vk2,t2) of each morphism
space in A. If one only considers only the spaces with (5.40), 45 coeffi-
cients of ε are involved. The fact that the products (5.41) have trivial q
term imposes 36 linear conditions. An explicit computation shows that 34
of those conditions are linearly independent, leaving an 11-dimensional space
of choices for our coefficients. However, all those choices can be realized by
boundaries of degree 0 Hochschild cochains, which means ε(Vk1,t1 , Vk2,t2) =
δ(Vk1,t1)− δ(Vk2,t2). Hence, by adding a suitable boundary to ε, we may
assume that it vanishes on all the spaces (5.40). But that contradicts the
condition coming from (5.42), which is that

(5.43) ε(V1,1/2, V3,3/2)− ε(V1,1/2, V2,5/2)− ε(V2,5/2, V3,3/2) 
= 0.

6. Applications of Theorem 4.1

6.1. Monodromy considerations

We will consider a class of examples that includes the Lefschetz pencils from
Section 5, but this time making use of Theorem 4.1. Start with a Lefschetz
pencil on a del Pezzo surface E . Blowing up its base locus yields a rational
elliptic surface E (topologically, CP 2 blown up at 9 points). Let’s write

(6.1) H2(E ) = ZL⊕ ZA0 ⊕ · · · ⊕ ZA8,

with the intersection form diag(1,−1, . . . ,−1). One can choose the basis so
that

[M̄ ] = 3L−A0 − · · · −A8,(6.2)

[δE|] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0 + · · ·+Ad−1

if E is CP 2 blown up at 9− d points,

A0 + · · ·+A6 + (L−A7 −A8)

if E ∼= CP 1 × CP 1.

(6.3)

Generally, we write d for the number of connected components of δE|.
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Lemma 6.1. There are diffeomorphisms of E , which preserve the defor-
mation class of the symplectic form, and which realize the following automor-
phisms of homology: (i) any permutation of {A0, . . . , A8}; (ii) the reflection

(6.4) X 	−→ X + (X · S)S, where S = L−A6 −A7 −A8.

Proof. For (i), one deforms the symplectic form so that E is a blowup of
CP 2 whose exceptional divisors have very small area. Then, a symplectic
automorphism of CP 2 which permutes the blowup points, and permutes
local Darboux charts near those points, can be lifted to an automorphism of
E . For (ii), one deforms the blowup points so that the last 3 are collinear.
Then, the blowup contains a (−2)-curve in class S, which one can contract
to an ordinary double point singularity. The diffeomorphism we are looking
for is the associated monodromy map (a Dehn twist). �

Lemma 6.2. Suppose that our Lefschetz fibration arises from a Lefschetz
pencil on a del Pezzo surface which is not CP 2 blown up at 1 or 2 points.
Then b = 1 is a solution of (3.1).

Proof. This will be a direct application of Lemma 3.3. The simplest case is
where E is CP 2. Then, any diffeomorphism from Lemma 6.1(i) preserves
[δE|]; the subspace of classes that are invariant under such diffeomorphisms
is clearly spanned by [δE|] and [M̄ ].

Next, let E be CP 2 blown up at 9− d points, where 1 ≤ d ≤ 6. Since
[δE|] should be preserved, when considering Lemma 6.1(i), only permuta-
tions which preserve the subsets {A0, . . . , Ad−1} and {Ad, . . . , A8} can be
used. With respect to such permutations, the invariant subspace of homology
is three-dimensional: it is spanned by [δE|], [M̄ ] and Ad + · · ·+A8. How-
ever, since the class S from (6.4) satisfies S · [δE|] = 0, the diffeomorphism
from Lemma 6.1(ii) also preserves [δE|], but not Ad + · · ·+A8. Hence, af-
ter using that diffeomorphism as well, the subspace of invariant cohomology
becomes two-dimensional.

For E ∼= CP 1 × CP 1, one can use Lemma 6.1(i) to narrow down the
invariant part of homology to the subspace spanned by [δE|], [M̄ ], and A7 +
A8. The last step is then as before. �

Theorem 4.1 shows that in the situation of Lemma 6.2, the deformation
Aq (with b̄ = 1) is trivial. This recovers the observations made in Sections 5.3
and 5.4.
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6.2. Enumerative geometry

We would like to complement the previous considerations by explicit com-
putations of z(1), still assuming that b = 1. For that, we make use of known
results on the genus zero enumerative geometry of the rational elliptic sur-
face [10, 21].

Lemma 6.3 (Bryan-Leung [10, Theorem 6.2]). Take any class

(6.5) A ∈ H2(E ), M̄ ·A = 1, A ·A = 2k − 1

(note that if M̄ ·A = 1, then A ·A is necessarily odd.) The count of rational
curves in this class is zA = zk ·A, where the numbers zk are determined by
the generating series

(6.6)
∑
k

zkq
k =

∏
m

1

(1− qm)12
=

q1/2

Δ(q)1/2
= 1 + 12q +O(q2).

It remains to organize the way in which we sum over all homology classes,
and for this we follow [24]. All A as in (6.5) can be written as

A = A0 +X − 1
2(X ·X)[M̄ ] + k[M̄ ], where X satisfies(6.7)

M̄ ·X = 0, A0 ·X = 0.(6.8)

Therefore,

z(1) =
∑
X,k

qδE|·A0+δE|·X− d

2
X·X+dkzk (A0 +X)(6.9)

+
∑
X,k

−1
2(X ·X)qδE|·A0+δE|·X− d

2
X·X+dkzk [M̄ ]

+
∑
X,k

qδE|·A0+δE|·X− d

2
X·X+dk kzk [M̄ ]

= qδE|·A0
qd/2

Δ(qd)1/2

∑
X

qδE|·X− d

2
X·X(A0 +X)

+ qδE|·A0
qd/2

Δ(qd)1/2

∑
X

−1
2(X ·X)qδE|·X− d

2
X·X [M̄ ]

+ qδE|·A0
q

d
∂q

( qd/2

Δ(qd/2)

)∑
X

qδE|·X− d

2
X·X [M̄ ].



Lefschetz fibrations 927

Suppose that we are in the situation of Lemma 6.2, so that (3.1) holds.
By taking the product of (6.9) with [M̄ ], one sees that the function ψ ap-
pearing in that equation satisfies

(6.10)
1

ψ
=

q

d
qδE|·A0

qd/2

Δ(qd/2)

∑
X

qδE|·X− d

2
X·X .

The subspace of classes X in (6.8), with the intersection form, is isomorphic
to the (negative definite even) E8 lattice, see e.g. [12]. The sum in (6.10) is
a theta-function (usually an inhomogeneous one) for that lattice. Note also
that ψ determines η, by Lemma 3.4.

Example 6.4. The evaluation of (6.10) is particularly simple for [δE|] =
A0, which corresponds to the anticanonical pencil on the largest del Pezzo
surface. One then has δE| ·X = 0 by (6.8), and therefore the sum in (6.10)
is the ordinary theta-function ΘE8

(q) of the E8 lattice. One concludes (com-
pare [24, Proposition 6.1]) that

(6.11) ψ =
q1/2Δ(q)1/2

ΘE8
(q)

.

Example 6.5. Take E = CP 2. Then, the sum in (6.10) is the inhomoge-
neous theta-function ΘE8+s(q

9), where s is a “shallow hole” [11, p. 121]. By
[24, 58], one has

(6.12) ΘE8+s(q) = 9
Δ(q)1/2

q1/2
q1/18

Δ(q1/3)1/6
.

Applying this to (6.10), one gets

(6.13) ψ = 9
Δ(q9)1/2

q9/2
ΘE8+s(q

9)−1 =
Δ(q3)1/6

q1/2
.

6.3. The anticanonical pencil on F1

The Hirzebruch surface E = F1 is one of the examples excluded from
Lemma 6.2. We already encountered it in Section 5.5: the nontriviality result
proved there, together with Theorem 4.1, implies that b = 1 can’t be a solu-
tion of (3.1); in fact, there can’t even be a solution of the form b = 1 +O(q2).
To close the circle, let’s re-derive that result by an explicit computation.
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There are 8 classes X in (6.8) for which the exponent in (6.9) takes on
its minimal value −1 (these are the classes A1, . . . , A8 of the connected com-
ponents of δE|), and exactly one class where the exponent is zero, namely
A0. Hence,

(6.14) z(1) ≡ q−1[δE|] +A0 +O(q) mod [M̄ ].

This shows that, as predicted by the general theory, z(1) does not lie in the
subspace generated by [δE|] and [M̄ ].

We know from Lemma 3.2 that (3.19) has a solution with nontrivial b .
In view of (6.14), it is natural to try the ansatz

(6.15) b = β(q)A0 , β ∈ 1 + qC[[q]].

By an explicit computation extending that in (6.9), one gets

z(1) =
(q8β(q))

1
2

Δ(q8β(q))
1
2

∑
X

(A0 +X)β(q)−
1
2 (X·X)−1qδE|·X−4X·X(6.16)

= q−1[δE|] +A0β(q)
−1 + qβ(q)(−16

3 A0 +
5
3 [δE|])

+ q2(283 A0 +
7
3 [δE|]) +O(q3) mod [M̄ ].

Solving (3.1) to the first few orders in q yields

(6.17) β(q) = 1 + q − 8
3q

2 − q3 +O(q4).

Remark 6.6. In principle, one should be able to check geometrically, using
Figure 6, that (6.17) leads to a deformationAq,b̄ which is trivial to low orders.
As in (5.3), this would mean counting holomorphic polygons that pass over
the “filled in” puncture m times with an additional factor β(q)m. We won’t
try to do that, but one can at least note that (5.42) would become β(q)−
q +O(q2) = 1 +O(q2). Hence, our original argument for non-triviality of the
deformation Aq breaks down if one turns on the appropriate bulk term (as
it must).

7. The elliptic pencil on CP 2, revisited

7.1. The differential equation

We continue our discussion of Example 6.5, with the aim of testing the ideas
from Section 4.2. As before, we set b = 1 throughout, and will omit all bulk
terms from the notation.
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Fix 0 ≤ i < j ≤ 8. Lemma 6.1 says that we can find a diffeomorphism
of E which preserves the deformation class of the symplectic form, reverses
Sij = Ai −Aj , and leaves its orthogonal complement (under the intersection
form) unchanged. Therefore, we necessarily have

(7.1) [M̄ ] ∗ Sij = λSij

for some λ ∈ C((q)). By the same kind of argument, λ is the same for all
(i, j). Explicitly,

(7.2) λ = −1
2([M̄ ] ∗ Sij) · Sij = −1

2

∑
M̄ ·A=1

qδE|·Azk(A · Sij)
2,

where k = 1
2(A ·A+ 1), as in (6.7). For classes A with M̄ ·A = 1,

(7.3)
∑
i<j

(A · Sij)
2 = −9A ·A+ 2δE| ·A+ 1 = −18k + 2 δE| ·A+ 10.

Hence, by summing up (7.2) over all i < j, one gets

(7.4) λ = 1
4

∑
A

qδE|·Azkk − 1
36

∑
A

qδE|·Azk(δE| ·A)− 5
36

∑
A

qδE|·Azk.

All three summands can be identified as before, which yields

λ = 1
36∂q

(
q9/2

Δ(q9)1/2

)
ΘE8+s(q

9)− η

4ψ
− 1

qψ
(7.5)

= 1
4∂q

(
q9/2

Δ(q9)1/2

)
Δ(q9)1/2

q9/2
q1/2

Δ(q3)1/6

− 1
4∂q

(
q1/2

Δ(q3)1/6

)
− 1

q1/2Δ(q3)1/6
.

We now apply an argument of the same kind as Lemma 3.6, but in re-
verse direction, using our knowledge of the eigenvalue λ to determine the

enumerative invariant z
(2)
q . Namely, because of the associativity of the quan-

tum product, the following two expressions must be equal:

[M̄ ] ∗ ([M̄ ] ∗ Sij) = λ2Sij ,(7.6)

([M̄ ] ∗ [M̄ ]) ∗ Sij =

(
1

qψ
[δE|] + η

ψ
[M̄ ] + 4z(2)q

)
∗ Sij(7.7)

=

(
∂q

(
λ

ψ

)
+ 4z(2)q

)
Sij
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In (7.7), we have used the divisor axiom as well as Lemma 3.4. This leads
to the relation

(7.8) z(2)q = 1
4

(
λ2 − ∂q(λ/ψ)

)
.

At this point, we have determined ψ, η and z
(2)
q , hence know the coef-

ficients in the matrix Γ from (3.19). One could now try to solve for Θ in
closed form. We settle for a more modest goal, namely the first few Taylor
coefficients, which can be computed by solving (3.19) order by order in q:

(7.9)

Θ11 = 1 + 6q3 + 6q9 + 6q12 + 12q21 + 6q27 +O(q32),

Θ21 = −18q2 − 72q5 − 306q8 − 1008q11 − 2934q14 − 7704q17

− 19134q20 − 44496q23 − 99270q26 − 212256q29 +O(q32),

Θ12 = −q − q4 − 2q7 − 2q13 − q16 − 2q19 − q25 − 2q28

− 2q31 +O(q32),

Θ22 = 1 + 8q3 + 44q6 + 152q9 + 487q12 + 1352q15 + 3518q18

+ 8480q21 + 19503q24 + 42768q27 + 90530q30 +O(q32).

Remark 7.1. With the help of the Online Encyclopedia of Integer Se-
quences, the formulae above suggest the following candidates for closed form
solutions:

(7.10)

Θ11 = Θhex (q
3),

Θ12 = −1
3Θhex+d(q

3) = − Δ(q9)1/8

3Δ(q3)1/24
.

where Θhex is the theta-function of the hexagonal plane lattice, and Θhex+d

its inhomogeneous counterpart with respect to a “deep hole” [11, p. 111].

7.2. The mirror map

As mentioned in Section 5.4, the mirror of the cubic pencil on CP 2 is the
extremal rational elliptic surface X = X9111. In fact, for a suitable choice of
coordinates on the base, its elliptic fibration

(7.11) p : X −→ CP 1 = C ∪ {∞}
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is a fibrewise compactification of (5.5). This description makes it easy to
determine the j-invariant of the fibre Xz = p−1(z), which is

(7.12) j(z) = z3
(z3 − 24)3

z3 − 27
.

Following the prediction in Remark 4.10, let’s substitute

z = −Θ11

Θ12
= q−1 + 5q2 − 7q5 + 3q8 + 15q11 − 32q14 + 9q17(7.13)

+ 58q20 − 96q23 + 22q26 + 149q29 +O(q30),

where Θ11, Θ12 are the fundamental solutions from (7.9). Then, to the avail-
able precision,

(7.14) j(z) = q−9 + 744 + 196884q9 + 21493760q18 +O(q23)

agrees with the classical j-function (with parameter q9). This is precisely
what one expects based on Conjecture 4.9: in informal language as in (2.14),
the fibre M̄ is a two-torus with “area” − log(q9), because there are 9 punc-
tures; the mirror of which is precisely the elliptic curve with j-invariant (7.14).

Remark 7.2. To relate this to previous computations in the literature,
consider the family of cubic curves in CP 2 given by

(7.15) x30 + x31 + x22 − z̃−1/3x0x1x2 = 0,

for which the mirror map (see e.g. [39]) is

(7.16) z̃ = q̃ − 15q̃2 + 171q̃3 − 1679q̃4 + 15054q̃5 − 126981q̃6 + · · ·

The curves (7.15) are Z/3-covers of the (compactified) fibres in (5.5), where
z̃ = z−3. Correspondingly, their mirror is Z/3-quotient of the cubic pencil.
Indeed, if one also sets q̃ = q1/3, (7.13) turns into (7.16).

Appendix A. Some Maurer-Cartan theory

A.1. One-parameter formal deformations

We recall some elements of abstract Maurer-Cartan theory (the original
reference is [20]; an exposition close to our purpose is [32]). Let g be a dg
Lie algebra over C. One considers solutions αq ∈ qg1[[q]] (formal power series
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with coefficients in g1 and vanishing constant term) of the Maurer-Cartan
equation

(A.1) dαq +
1
2 [αq, αq] = 0.

Take the group associated to the (pronilpotent) Lie algebra qg0[[q]]. We
denote its elements by exp(γq), for γq ∈ qg0[[q]]. This group acts on the set
of Maurer-Cartan elements by gauge transformations:

(A.2) Γexp(γq)(αq) = αq + ([γq, αq]− dγq) + (terms of order ≥ 2 in γ).

We say that αq is trivial if it is gauge equivalent to zero. If we write αq =
qα1 + q2α2 + · · · , then it follows from (A.1) that the first order piece satisfies
dα1 = 0, and from (A.2) that the class

(A.3) [α1] ∈ H1(g)

is gauge invariant. There are standard rigidity and unobstructedness results:

Lemma A.1. Suppose that H1(g) = 0. Then any Maurer-Cartan element
is trivial.

Lemma A.2. Suppose that H2(g) = 0. Then, any class in H1(g) can be
realized as the first order piece of a Maurer-Cartan element.

Any Maurer-Cartan element defines a deformed differential on g[[q]],
namely

(A.4) dαq
= d+ [αq, ·].

There is a distinguished cohomology class, the Kaledin class

(A.5) κ(αq) = [∂qαq] ∈ H1(g[[q]], dαq
).

The adjoint action of exp(γq) relates dαq
and dΓexp(γq)(αq), hence induces

isomorphisms

(A.6) H∗(g[[q]], dαq
) ∼= H∗(g[[q]], dΓexp(γq)(αq)).

The Kaledin class is gauge invariant, which means that it is preserved un-
der (A.6) [32, Proposition 7.3(a)]. In that sense, it is an invariant of the
gauge equivalence class of αq.
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Lemma A.3 ([32, Proposition 7.3(b)]). A Maurer-Cartan element is
trivial if and only if its Kaledin class vanishes.

Application A.4. Given an A∞-algebra (or curved A∞-algebra) A, one
can consider the shifted Hochschild cochain space

(A.7) g = CC ∗(A,A)[1] =
∏
d≥0

Hom∗+1−d(A⊗d,A),

which is a dg Lie algebra with the Gerstenhaber bracket, and with the differ-
ential determined by μ∗

A. The corresponding deformation problem is that of
classifying formal A∞-deformations Aq (which may have a curvature term).
The complex (CC ∗(A,A)[[q]], dαq

) is the Hochschild complex of the deformed
structure Aq, and the element (A.5) is (4.1). There is also a straightfor-
ward generalization to A∞-categories. Hence, Lemma 4.3 is an instance of
Lemma A.3.

A.2. The filtered theory

One variation on this story is to consider a dg Lie algebra g which is pronilpo-
tent, which means that it comes with a complete decreasing filtration

(A.8)

g = F (1)g ⊃ F (2)g ⊃ · · · ,
d(F (i)g) ⊂ F (i)g,

[F (i)g, F (j)g] ⊂ F (i+j)g.

One can then consider solutions α of (A.1) in g1 itself, and let the group
associated to g0 act on them. Essentially, the filtration takes over the role
(ensuring convergence) previously played by the formal parameter q. The
leading part of a deformation is now the image α(1) of α in g/F (2)g, which
gives rise to a gauge invariant class

(A.9) [α(1)] ∈ H1(g/F (2)g).

However, where before, the same cohomology groups were responsible for
deformation theory at any order in q, we now encounter all the different
groups H∗(F (i)g/F (i+1)g). The basic rigidity and unobstructedness results
are:
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Lemma A.5. Suppose that

(A.10) H1(F (i)g/F (i+1)g) = 0 for all i ≥ 2.

Then, two Maurer-Cartan elements in g are equivalent if and only if they
yield the same class (A.9).

Lemma A.6. Suppose that

(A.11) H2(F (i)g/F (i+1)g) = 0 for all i ≥ 2.

Then, any class in H1(g/F (2)g) can be realized as the leading term of a
Maurer-Cartan element in g.

In the present setup, one can’t generally expect to have an analogue of
the Kaledin class. However, there is a (fairly obvious) subclass where such
an analogue can be constructed. Namely, suppose that our filtration has a
splitting compatible with all the given structure, meaning that

(A.12)

g =
∏
i≥1

g(i),

d(g(i)) ⊂ g(i),

[g(i), g(j)] ⊂ g(i+j).

The filtration is F (i) =
∏

j≥i g
(j), and we still require that (A.8) holds (or

equivalently, that differential and bracket are continuous with respect to the
inverse limit topology). In that case, expanding α = α(1) + α(2) + · · · , one
can define

(A.13) κ(α) = [α(1) + 2α(2) + · · · ] ∈ H∗(g, dα).

For this class, an analogue of Lemma A.3 holds. In fact, one can artificially
introduce a formal parameter (which we denote by h, to distinguish it from
similar developments later on) and write αh = hα(1) + h2α(2) + · · · . This
reduces the situation to the previous one, with the added constraint that we
have to preserve the additional grading on g[[h]] obtained by starting with
the decomposition (A.12) and giving h degree −1.

Application A.7. Let A be a graded associative algebra. Take g ⊂
CC ∗(A,A)[1] to be the subspace of Hochschild cochains which decrease de-
grees (with respect to the grading of A). We equip this with the Gerstenhaber



Lefschetz fibrations 935

bracket, and with the differential obtained from the algebra structure of A.
This is a pronilpotent dg Lie algebra, which classifies A∞-extensions of the
algebra structure (by μd terms, d ≥ 3). Note that this is actually an instance
of (A.12), where g(i) consists of Hochschild cochains of degree −i (again,
with respect to the grading of A).

Consider the Euler derivation of A, which multiplies each element by its
degree. This is an element ε ∈ CC 1(A,A), and with respect to the twisted
differential dα associated to an A∞-extension of the algebra structure, it
satisfies

(A.14) dαε = α(1) + 2α(2) + · · · ,

which is (A.13). Since ε itself does not lie in g, this does not show that the
Kaledin class always vanishes; instead, we see that the Kaledin class vanishes
if and only if there is dα-cocycle in the space ε+ g. This explains how the
general theory produces the formality criterion from [52, Remark 7.6].

Application A.8. We consider the classification theory of noncommuta-
tive divisors with fixed A and P (see Section 2.5). Take B as in (2.51), and
equip it with a weight grading as before. Define g ⊂ CC ∗(B,B)[1] to be the
subspace of Hochschild cochains which strictly increase weight. The filtra-
tion by weight makes g into a pronilpotent dg Lie algebra, and in fact into
an instance of (A.12). The cohomology of the pieces g(i) is determined by
the long exact sequence [49, Section 2c]

· · · → Hj−2i(hom(A,A)(P
⊗Ai,A))(A.15)

−→ Hj(g(i)) −→ Hj−2i+1(hom(A,A)(P
⊗Ai,A)) → · · ·

Suppose that (2.55) holds. Then g satisfies (A.11) as well as (A.10). More-
over, from (A.15) for i = 1 we then get

0 → H1(g(1)) −→ H0(hom(A,A)(P,A))(A.16)

−→ H0(hom(A,A)(P,A)) → · · ·

Applying Lemmas A.5 and A.6, one sees that noncommutative divisors are
classified (up to isomorphism) by a certain subspace of H0(hom(A,A)(P,A)),
which is the kernel of the map in (A.16). In particular, the uniqueness part
yields Lemma 2.5.
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A.3. A combined setup

Take a pronilpotent Lie algebra g as in (A.8). However, this time we want to
consider solutions αq of (A.1) in g1[[q]], modulo the action of exponentiated
elements of g0[[q]]. The leading order term (with respect to the filtration) of
such a Maurer-Cartan element gives rise to a class

(A.17) [α(1)
q ] ∈ H1(g/F (2)g)[[q]].

The analogues of Lemmas A.5 and A.6 are:

Lemma A.9. Suppose that (A.10) holds. Then, two Maurer-Cartan ele-
ments in g[[q]] are equivalent if and only if they yield the same class (A.17).

Lemma A.10. Suppose that (A.11) holds. Then, any class in

H1(g/F (2)g)[[q]]

can be realized by a Maurer-Cartan element in g[[q]].

In this framework, one can meaningfully restrict attention to certain
kinds of subalgebras of C[[q]]. For g as in (A.12), suppose that a C-linear
subspace V ⊂ C[[q]] is given. Defining its symmetric products as in (2.57),
take the dg Lie algebra

(A.18) g[V ] =
∏
i

g(i) ⊗ Si[V ] ⊂ g[[g]].

One can then consider solutions of the Maurer-Cartan equation in g[V ]1, and
there is a natural action of exponentiated elements of g[V ]0. The primary
invariant of a Maurer-Cartan element is the class

(A.19) [α(1)
q ] ∈ H1(g(1))⊗ V = H1(g/F (2)g)⊗ V.

Lemma A.11. Suppose that (A.10) holds. Then, two Maurer-Cartan ele-
ments in g[V ] are equivalent if and only if they yield the same class (A.19).

Lemma A.12. Suppose that (A.11) holds. Then, any class in

H1(g/F (2)g)⊗ V

can be realized by a Maurer-Cartan element in g[V ].
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Application A.13. Take g as in Application A.8. Then, g[[q]] describes
the theory of deformations of noncommutative divisors. If (2.55) holds, one
can apply Lemma A.12. In view of (A.16), this implies Lemma 2.7.

A.4. Fields of definition for rigid objects

When looking at Conjecture 1.4 and Remark 2.2 in combination, the follow-
ing question comes up. Consider the Fukaya category of a closed Calabi-Yau
manifold, defined over C((q)). Suppose that we have a split-generating full
subcategory, which is defined over some sub-field of C((q)). What are the
implications of that fact for objects of the Fukaya category (not belonging
to that subcategory)? Clearly, there is very little one can say about a gen-
eral object, which might be a Lagrangian submanifold with any C((q))-local
coefficient system. Instead, we should restrict to objects that are rigid (have
no nontrivial degree 1 endomorphisms). This type of question is a classical
one in algebraic geometry, and we can use the arguments developed there
to obtain a satisfactory answer.

The general situation is this: consider algebraically closed fields K ⊂ K̃.
Let B be an A∞-category over K. We consider the associated triangulated
enlargement, the category Tw(B) of twisted complexes, and its (chain level)
idempotent completion Twπ(B) (this is ΠTw(B) in the notation of [43,
Section 4c]; it is quasi-equivalent to the category of perfect modules over B).
Let’s extend coefficients to K̃, forming B̃ = B⊗K K̃. There is a commutative
diagram

(A.20) Tw(B)⊗K K̃

��

�� Tw(B̃)

��
Twπ(B)⊗K K̃ �� Twπ(B̃),

where the horizontal arrows are full and faithful (in fact, inclusions of full
A∞-subcategories), and the vertical arrows are cohomologically full and
faithful.

Lemma A.14. Suppose that B is proper. Let P̃ be an object of Twπ(B̃)
which is rigid, meaning that

(A.21) H1(homTwπ(B̃)(P̃ , P̃ )) = 0.
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Then P̃ is “defined over K up to quasi-isomorphism”, which means that
there is some object P of Twπ(B) whose image under the horizontal map
in (A.20) is quasi-isomorphic to P̃ .

Proof. Without loss of generality, we may assume that B is strictly proper
(has chain level morphism spaces which are of finite total dimension). To
simplify the notation, we also find it convenient to assume that B itself
already admits shifts (translations).

Our object P̃ is a direct summand (homotopy retract) of a twisted com-
plex built from objects X1, . . . , Xm of the original A∞-category B̃ (in that
order). We want to consider “all possible direct summands of twisted com-
plexes built from the same pieces”. To implement this concretely, take the
additive enlargement ΣB from [43, Section 3c], which allows finite direct
sums. In it consider the object C =

⊕
iXi. To make it into a twisted com-

plex, we should equip it with a differential

(A.22) d ∈ hom1
ΣB(C,C)

which satisfies two conditions. One is strict upper triangularity:

(A.23) d = (dji), dji ∈ hom1
B(Xi, Xj), dji = 0 if j ≥ i.

The second is the generalized Maurer-Cartan equation

(A.24) μ1
ΣB(d) + μ2

ΣB(d, d) + · · · = 0.

Writing out (A.24) shows that it is a system of polynomial equations (of
degree ≤ m− 1) for the coefficients of d. Next, we need an endomorphism
of the twisted complex (C, d), which is idempotent up to chain homotopy.
The necessary data are

p ∈ hom0
ΣB(C,C),(A.25)

h ∈ hom−1
ΣB(C,C).(A.26)

The required conditions

μ1
Tw(B)(p) = 0,(A.27)

μ1
Tw(B)(h) = p− μ2

Tw(B)(p, p),(A.28)
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can be written out as

μ1
ΣB(p) + μ2

ΣB(d, p) + μ2
ΣB(p, d) + · · · = 0,(A.29)

μ1
ΣB(h) + μ2

ΣB(d, h) + μ2
ΣB(h, d) + · · ·(A.30)

= p− μ2
ΣB(p, p)− μ3

ΣB(d, p, p)− · · ·

The conditions (A.24), (A.29), (A.30) are a finite set polynomial equations
for the coefficients of d, p and h (of degrees ≤ m+ 1). They define an affine
scheme over K, which we denote by U. To every K-point of U, one can asso-
ciate an object of Twπ(B). We denote all such objects indiscriminately by P .
U carries a bounded chain complex of (trivial) vector bundles, whose fibre is
homΣB(C,C), and whose differential is given by μ1

Tw(B) at any point. The
corresponding cohomology sheaves carry two idempotent endomorphisms,
given by left and right composition with p at any point. Hence, we get a
coherent sheaf E on U, whose fibre at any K-point is

(A.31) [p]H1(homTw(B)(C,C))[p] ∼= H1(homTwπ(B)(P, P )).

Let S be the subscheme which is the support of this sheaf. Denote by Ul the
irreducible components of U, and by Sl ⊂ Ul the piece of S which lies in Ul.

Now consider the same construction over K̃. Because K is already al-
gebraically closed, Ũl = Ul ×K K̃ are the irreducible components of Ũ =
U×K K̃ [22, Corollaire 4.4.5]. Similarly, the support of the correspondingly
defined sheaf Ẽ is S̃ = S×K K̃. Each K̃-point of Ũ now gives an object of
Twπ(B̃). Moreover, because of rigidity, the quasi-isomorphism type of this
object is locally constant on Ũ \ S̃, hence constant within each Ũl \ S̃l.

Our original P̃ gives a point in Ũl, for some l, which does not lie in S̃l.
Again using the fact that K is algebraically closed, it follows that there is
a point in Ul which does not lie in Sl (by an application of [23, Corollaire
10.4.8]). That point defines the required P . �

Remark A.15. This argument uses a crude approximation of moduli stacks
of objects [56]. The much more complicated question of fields of definition of
A∞-categories has been studied in [55], but the results there require smooth-
ness assumptions.
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