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Sasakian quiver gauge theories and

instantons on Calabi-Yau cones

Olaf Lechtenfeld, Alexander D. Popov, and Richard J. Szabo

We consider SU(2)-equivariant dimensional reduction of Yang-Mills
theory on manifolds of the form M × S3/Γ, where M is a smooth
manifold and S3/Γ is a three-dimensional Sasaki-Einstein orbifold.
We obtain new quiver gauge theories on M whose quiver bundles
are based on the affine ADE Dynkin diagram associated to Γ. We
relate them to those arising through translationally-invariant di-
mensional reduction over the associated Calabi-Yau cones C(S3/Γ)
which are based on McKay quivers and ADHM matrix models, and
to those arising through SU(2)-equivariant dimensional reduction
over the leaf spaces of the characteristic foliations of S3/Γ which
are Kähler orbifolds of CP 1 whose quiver bundles are based on the
unextended Dynkin diagram corresponding to Γ. We use Nahm
equations to describe the vacua of SU(2)-equivariant quiver gauge
theories on the cones as moduli spaces of spherically symmetric
instantons. We relate them to the Nakajima quiver varieties which
can be realized as Higgs branches of the worldvolume quiver gauge
theories on Dp-branes probing D(p+ 4)-branes which wrap an ALE
space, and to the moduli spaces of spherically symmetric solutions
in putative non-abelian generalizations of two-dimensional affine
Toda field theories.
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1. Introduction and summary

Quiver gauge theories naturally arise through equivariant dimensional re-
duction over Kähler coset spaces [1–3] where they find applications to Yang-
Mills-Higgs theories and the construction of (non-abelian) vortices, and also
as the low-energy effective field theories of D-branes at orbifold singulari-
ties [4–8] which have important ramifications for the AdS/CFT correspon-
dence and whose Higgs branches provide examples of singularity resolution
in string geometry. In this paper we clarify the relations between these two
seemingly disparate appearences of quiver gauge theories in a particular
class of examples.

We consider the simplest coset CP 1 ∼= SU(2)/U(1) (and certain orbifolds
thereof), whose associated quiver gauge theories are described in detail in [9]
(see also [10, 11]); the underlying graph of the quiver bundles in this case
is a Dynkin diagram of type Ak+1. To any Kähler manifold Z one can as-
sociate a U(1)-bundle over Z whose total space is a Sasaki-Einstein man-
ifold with Calabi-Yau metric cone. In particular, when Z = CP 1 any such
Sasaki-Einstein manifold is isomorphic to an orbifold S3/Γ of the three-
sphere for a finite subgroup Γ of SU(2); when Γ = Zk+1 is a cyclic group
then S3/Zk+1 is a lens space. In this paper we describe new quiver gauge
theories which can be associated with the Sasaki-Einstein manifolds S3/Γ
via SU(2)-equivariant dimensional reduction, which in certain limits reduce
to those of [9]; the new quiver bundles are associated to quivers with ver-
tex loop edges. We shall also describe quiver gauge theories associated to
Calabi-Yau cones C(S3/Γ) over these spaces, which correspond to ADE
orbifolds of R4. In translationally-invariant dimensional reduction such field
theories are central in the description of D-branes at an orbifold singular-
ity R4/Γ, and to the McKay correspondence for Calabi-Yau twofolds. The
Sasaki-Einstein manifold S3/Γ interpolates between the two distinct Kähler
manifolds C(S3/Γ) and CP 1, and in this paper we use this bridge to clar-
ify the dynamical relations between the McKay quiver bundles underlying
these worldvolume field theories and the quiver bundles associated with the
Kähler coset space CP 1.

For this, we shall study the relations between vacua of these quiver
gauge theories and instantons on the Calabi-Yau cones C(S3/Γ), which in
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translationally-invariant dimensional reduction in string theory correspond
to D-branes located at points of the Calabi-Yau spaces Mξ which are mini-
mal resolutions of the orbifold singularities M0

∼= R4/Γ (where ξ are Fayet-
Iliopoulos terms serving as stability parameters of the resolution). In particu-
lar, the moduli spaces of translationally-invariant solutions of the Hermitian
Yang-Mills equations on R4/Γ coincide with the resolutions Mξ [12, 13],
which is described by a particular matrix model that can be promoted to
an ADHM matrix model [14]. This correspondence forms the basis for the
four-dimensional N = 2 superconformal quiver gauge theories on D-branes
in which Mξ parameterize the supersymmetric vacuum states [4, 5, 7]; un-
der the AdS/CFT correspondence, this gauge theory is dual to type IIB
supergravity on an AdS5 × S5/Γ background. More generally, in type II
string theory the moduli space of instantons on the ALE space Mξ can
be identified with the Higgs branch of the quiver gauge theory with eight
real supercharges living on the worldvolume of Dp-branes probing a set of
D(p+ 4)-branes which wrap Mξ.

On the other hand, the quiver gauge theories associated with the Calabi-
Yau spaces C(S3/Γ) are technically much more involved, because instead
of translational-invariance along C(S3/Γ) one imposes SU(2)-equivariance
along codimension one subspaces S3/Γ of the cones; the cones are SU(2)-
manifolds with one-dimensional orbit space parameterized by r ∈ R≥0 such
that there is one singular orbit S3/Γ over r = 0 and non-singular orbits
S3/Γ for all r > 0. The condition of SU(2)-equivariance pulls the model
back to the quiver gauge theories associated with S3/Γ, but allows for a
residual dependence on the radial coordinate r which leads to Nahm-type
equations for spherically symmetric instantons; it is important to note that
these Nahm equations describe SU(2)-invariant instantons on C(S3/Γ) and
are not related with monopoles, a feature which somewhat obscures a direct
realization in D-brane field theory. Thus instead of the ADHM-type ma-
trix equations describing translationally-invariant vacua, imposing SU(2)-
equivariance on gauge fields reduces the anti-self-duality equations on the
four-dimensional cone to Nahm-type equations. This difference translates
into significant differences between the well-known McKay quivers and our
new “Sasakian” quivers which characterize equivariant dimensional reduc-
tion over the Sasaki-Einstein orbifolds.

Furthermore, the same moduli space Mξ appears as the moduli space
of SU(2)-invariant instantons on the Calabi-Yau cone R4 \ {0} = C(S3), in
which case the anti-self-dual Yang-Mills equations reduce to the Nahm equa-
tions with suitable boundary conditions [15–17]. This is the moduli space
of the spherically symmetric instanton which has the minimal fractional
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topological charge; these moduli spaces are further studied and extended
to the cones C(S3/Γ) in [18]. Moduli spaces of solutions to Nahm equa-
tions with these boundary conditions also appear as Higgs moduli spaces of
supersymmetric vacua in N = 4 supersymmetric Yang-Mills theory on the
half-space R1,2 × R≥0 with generalized Dirichlet boundary conditions [19];
these boundary conditions are realized by brane configurations in which Dp-
branes end on D(p+ 2)-branes at the boundary of R≥0. Thus the solutions
of both the ADHM-type and Nahm-type equations give rise to the same
moduli space C(S3/Γ), which after minimal resolution of singularities is the
Calabi-Yau twofold Mξ.

We shall show that by considering Γ-equivariant solutions to the Nahm
equations, the moduli space can be described as a quiver variety via an
infinite-dimensional hyper-Kähler quotient construction based on a flat
hyper-Kähler Banach space factored by the action of an infinite-dimensional
group of gauge transformations; the resulting finite-dimensional quiver va-
rieties are based on our Sasakian quivers and have orbifold singularities.
On the other hand the ADHM construction describes a minimal resolution
of the same moduli space, via a finite-dimensional hyper-Kähler quotient
construction using constant matrices, as a quiver variety based on McKay
quivers instead of our Sasakian quivers; the different occurences of quivers
corresponds to the different constraints imposed on the matrices in the re-
spective cases. In particular, we argue that the minimal charge instanton
on R4/Γ (or on its Calabi-Yau resolution) can be constructed both via the
ADHM construction (reduced to the Kronheimer matrix equations) and by
reduction to Nahm equations with respect to a radial coordinate on R4/Γ
(consistently with the construction on R4), wherein one obtains the same
four-dimensional hyper-Kähler moduli space of vacua.

The outline of the remainder of this paper is as follows. In Sect. 2 we give
a fairly self-contained account of the geometry of the Sasaki-Einstein orb-
ifolds S3/Γ in a form that we will use in this paper. In Sect. 3 we derive the
correspondence between homogeneous vector bundles on S3/Γ and represen-
tations of certain new quivers, which we call “Sasakian quivers” and which
play a prominent role throughout the paper. In Sect. 4 we consider SU(2)-
equivariant dimensional reduction over the orbifold S3/Γ, and derive the
correspondence between SU(2)-equivariant vector bundles on product man-
ifolds M × S3/Γ and quiver bundles (Γ-equivariant vector bundles) on M
associated to the Sasakian quivers; the moduli spaces of vacua of the quiver
gauge theories arising from reduction of Yang-Mills theory are described and
it is shown how they reduce to the quiver gauge theories obtained via SU(2)-
equivariant dimensional reduction over CP 1 (and certain orbifolds thereof).
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In Sect. 5 we describe the moduli spaces of translationally-invariant instan-
tons on R4/Γ in terms of Nakajima quiver varieties, and their connection to
moduli spaces of instantons on an ALE spaceMξ which are based on McKay
quivers. Finally, in Sect. 6 we consider SU(2)-equivariant dimensional reduc-
tion over the cones C(S3/Γ) and study the Higgs branch of vacua of the in-
duced quiver gauge theories as moduli spaces of solutions to Nahm equations
which are based on extensions of quiver varieties to the setting of Sasakian
quivers; we discuss their relations to the ADHM-type moduli spaces and to
certain Nakajima quiver varieties of An-type, and also their realization in a
variant of non-abelian affine Toda field theory which extends the duality be-
tween four-dimensional gauge theories and two-dimensional conformal field
theories.

2. Geometry of Sasaki-Einstein three-manifolds

Sphere S3. Let S3 be the standard round three-sphere of radius r. It can
be described via the embedding S3 ⊂ R4 by the equation

(2.1) δμν y
μ yν = r2 ,

where yμ ∈ R and μ, ν, . . . = 1, 2, 3, 4. On S3 one can introduce a basis of
left SU(2)-invariant one-forms {ea} as

(2.2) ea := − 1
r2 η̄aμν y

μ dyν ,

where η̄aμν are the anti-self-dual ’t Hooft tensors

(2.3) η̄abc = εabc and η̄ab4 = −η̄a4b = −δab ,

with ε123 = 1 and a, b, . . . = 1, 2, 3. These one-forms satisfy the Maurer-Cartan
equations

(2.4) dea + εabc e
b ∧ ec = 0 ,

and the round metric on S3 is given by

(2.5) ds2S3 = r2 δab e
a ⊗ eb .

Sasaki-Einstein orbifolds S3/Γ. Sasakian manifolds are the natural
odd-dimensional counterparts of Kähler manifolds; a Riemannian mani-
fold is Sasakian if its associated metric cone is Kähler. A Sasakian man-
ifold is Sasaki-Einstein if its Riemannian metric is an Einstein metric, or
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equivalently if its metric cone is a Calabi-Yau space. Thus Sasaki-Einstein
spaces are the natural odd-dimensional versions of Kähler-Einstein spaces.
For background on Sasaki-Einstein manifolds, see e.g. [20].

Three-dimensional Sasaki-Einstein spaces are completely classified. They
correspond to the homogeneous spherical space forms in three dimensions,
which are the smooth orbifolds S3/Γ where Γ is a finite subgroup of SU(2)
commuting with U(1) ⊂ SU(2) which acts freely and isometrically by left
translations on the group manifold SU(2) ∼= S3; by the McKay correspon-
dence they have an ADE classification and we run through the complete list
below. The orbifold S3/Γ has a description as a Seifert fibration, i.e. as a
U(1) V-bundle

(2.6) πΓ : S3/Γ −→ CP 1/Γ0 ,

which is called the characteristic foliation of the Sasaki-Einstein space. The
space of leaves CP 1/Γ0 is a one-dimensional complex orbifold with a Kähler-
Einstein metric; the ADE group Γ is a central extension (by rotations of
the regular fibres) of the group Γ0 ⊂ SO(3) which acts isometrically on a
local coordinate z ∈ C of the Riemann sphere CP 1 ∼= S2 by SU(2) Möbius
transformations. Concretely, the orbifold base CP 1/Γ0 can be regarded as a
Riemann sphere together with m arbitrary marked points whose coordinate
charts are modelled on C/Zkj

for some ramification indices kj ≥ 0 with j =
1, . . . ,m. Let LΓ → CP 1/Γ0 be the line V-bundle associated to the Seifert
fibration (2.6); it is defined by the identifications

(2.7) (z, w) ∼
(
ζkj

z, ζ
lj
kj
w
)

with ζkj
= exp

(
2π i/kj

)
of the local coordinates (z, w) ∈ C2 of the base and fibre around the j-
th orbifold point, for some integer isotropy weights 0 ≤ lj < kj . Note that
deg(LΓ) = c1(|LΓ|) = d ∈ Z, where |LΓ| → CP 1 is the associated smooth
line bundle obtained by smoothing the orbifold points and eliminating the
monodromies lj = 0; on the other hand, the orbifold Chern class of LΓ is
given by

(2.8) c1(LΓ) = d+

m∑
j=1

lj
kj

∈ Q>0 .

The locally free U(1)-action on S3/Γ arises from rotations in the fibres over
CP 1/Γ0, with the fibre over the j-th ramification point of CP

1/Γ0 given by
S1/Zkj

due to the orbifold identification (2.7). Since S3 is simply connected
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and Γ acts freely, the fundamental group of S3/Γ is the finite group Γ itself.
Using the standard presentation of π1(S

3/Γ) in terms of generators and rela-
tions associated to the Seifert invariants, this gives a geometric presentation
of the orbifold group Γ in terms of the central generator h along the generic
S1 fibre over CP 1/Γ0 together with one-cycles ξj for j = 1, . . . ,m encircling
the orbifold points on CP 1/Γ0, with the relations

(2.9) ξ
kj

j = h−lj and ξ1 · · · ξm = hd .

In particular, by setting h = 1 this yields a presentation of the orbifold fun-
damental group Γ0 = π1(CP

1/Γ0) in terms of generators ξj with relations.
By working on the uniformizing system of local charts of the orbifold

CP 1/Γ0, we can define a local basis of one-forms for S3/Γ as follows. For
this, we use the Seifert description of S3 as the total space of the circle
bundle of the line bundle L → CP 1 of degree one corresponding to the Hopf
fibration S3 → S2. Consider the (k + 1)-tensor power Lk+1 := (L)⊗(k+1) of
L, which is the Hermitian line bundle

(2.10) Lk+1 −→ CP 1

with the unique SU(2)-invariant connection ak+1 having in local coordinates
the form

(2.11) ak+1 = (k + 1) a1 =
k + 1

2(1 + z z̄)
(z̄ dz − z dz̄) .

Let

(2.12) β =
dz

1 + z z̄
and β̄ =

dz̄

1 + z z̄

be the unique SU(2)-invariant forms of types (1, 0) and (0, 1) on CP 1; they
form a basis of covariantly constant sections of the canonical line bundles
K = L2 and K−1 = L−2 obeying

(2.13) dβ − a2 ∧ β = 0 and dβ̄ − a−2 ∧ β̄ = 0 .

The SU(2)-invariant Kähler (1, 1)-form on CP 1 is ω = i
2 r

2 β ∧ β̄. Then basis
one-forms on S3/Γ can be introduced via

(2.14) e1 + i e2 = π∗
Γ β and e3 = 1

d

(
dϕ− i c1(LΓ)π

∗
Γ a1

)
,

where 0 ≤ ϕ < 2π is a local coordinate on the S1 fibre of the Seifert bun-
dle (2.6). The frame element e3 is a connection one-form on the Seifert
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fibration with curvature

(2.15) de3 = 2
d r2 c1(LΓ)π

∗
Γ ω .

From (2.13) and (2.15) we obtain similar Maurer-Cartan equations (2.4) for
ea as on S3. In particular, the Sasaki-Einstein metric on S3/Γ is given by

(2.16) ds2S3/Γ = π∗
Γ ds

2
CP 1 + r2 e3 ⊗ e3 ,

where ds2
CP 1 = r2 β ⊗ β̄ is the Kähler-Einstein metric on CP 1.

Calabi-Yau cones C(S3/Γ). Our Sasaki-Einstein orbifolds can be de-
fined as the bases of affine Calabi-Yau cones described by polynomial equa-
tions in C3. The equation (2.1) defines the embedding of S3 into the space
R4 ∼= C2 with the complex coordinates

(2.17) z1 = y1 + i y2 and z2 = y3 + i y4 .

In fact, R4 can be considered as a cone C(S3) over S3,

(2.18) R4 \ {0} = C(S3) ,

with the metric

(2.19) ds2C(S3) = dr2 + r2 δab e
a ⊗ eb

where r2 = δμν y
μ yν and ea are the one-forms (2.2) on S3. We can identify

R4 ∼= C2 with the affine subvariety cut out by the linear relation f(x, y, z) =
x+ y + z = 0 in C3; by rescaling the affine coordinates (x, y, z) ∈ C3 by
λ ∈ C∗, the polynomial f(x, y, z) may also be regarded as cutting out a
copy of the Riemann sphere S2 ∼= CP 1 ⊂ CP 2, and in this way the Calabi-
Yau cone describes the standard Hopf fibration S3 → S2. In this case the
spheres S3 of varying radii are the natural invariant submanifolds for the
action of the Lorentz group SO(4) ∼= SU(2)× SU(2) on R4, in the sense that
the orbits of the free left action of SU(2) on (z1, z2) parameterize families
of three-spheres via the cone relation (2.18).

Consider the action of Γ on C2 given by

(2.20) (z1, z2) 
−→ (g1α z
α, g2α z

α)

for α, β, . . . = 1, 2, where gαβ are the matrix elements of g ∈ Γ in the funda-
mental two-dimensional representation of Γ ⊂ SU(2) on C2. It has a single
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isolated fixed point at the origin (z1, z2) = (0, 0). The orbifold C2/Γ is de-
fined as the set of equivalence classes with respect to the equivalence relation

(2.21) (g1α z
α, g2α z

α) ≡ (z1, z2)

for all g ∈ Γ. It has a singularity at the origin and is a cone over S3/Γ,

(2.22)
(
C2 \ {0}

) /
Γ = C

(
S3/Γ

)
,

with the metric (2.19) for ea given in (2.14).
A natural description of the cone (2.22) is as the complex surface in

C3 which is invariant under the C∗-action given by (x, y, z) 
→ (λwx x, λwy y,
λwz z); due to the scaling symmetry with respect to λ ∈ C∗ = R>0 × S1 these
spaces are cones, and because of the R>0-action the Calabi-Yau metric can
be written in the form (2.19). Explicitly, it can be defined as the subvariety
cut out by a polynomial equation

(2.23) fΓ(x, y, z) = 0 ,

where fΓ(x, y, z) is a weighted homogeneous polynomial, i.e. fΓ(λ
wx x, λwy y,

λwz z) = λn fΓ(x, y, z) for all λ ∈ C∗. The degree n > 0 coincides with the
dual Coxeter number of the corresponding ADE Lie group, while the pair-
wise coprime weights wx, wy, wz ∈ Z≥0 are divisors of n with |Γ| = 2wxwy

and wz =
n
2 = wx + wy − 1. These integers can be expressed in terms of rep-

resentation theory data of the orbifold group Γ: If n� for � = 0, 1, . . . , rΓ is
the dimension of the �-th irreducible representation V� of Γ, where rΓ is
the rank of the corresponding ADE Lie group and � = 0 labels the trivial
representation with n0 = 1, then

(2.24) n =

rΓ∑
�=0

n� and |Γ| =
rΓ∑
�=0

n2
� .

The base of the cone is the intersection of C2/Γ with the sphere S5 ⊂ C3

of radius r, which is just S3/Γ. The characteristic foliation (2.6) is then
generated by the remaining U(1)-action on S3/Γ inherited from the original
C∗-action on the cone. In fact, this construction provides an alternative real-
ization of the leaf space CP 1/Γ0 as a quasi-smooth weighted projective curve
cut out by the same polynomial equation (2.23), but now regarded in the
weighted projective plane CP 2(wx, wy, wz). This yields a natural description
of CP 1/Γ0 = (S3/Γ)/S1 as the complex orbifold

(2.25) CP 1/Γ0 = C
(
S3/Γ

) /
C∗ =

(
(C2 \ {0})/Γ

) /
C∗ .
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Γ-action on one-forms. Consider a one-form

(2.26) Y = Yμ dy
μ = Yz1 dz1 + Yz2 dz2 + Yz̄1̄ dz̄1̄ + Yz̄2̄ dz̄2̄

on R4 ∼= C2 which is invariant under the action of Γ ⊂ SU(2) ⊂ SO(4) de-
fined by (2.20). Then for the components

(2.27) Yz1 = 1
2 (Y1 − iY2) and Yz2 = 1

2 (Y3 − iY4)

we have

(2.28) Yz1 
−→ (g−1)1
α Yzα and Yz2 
−→ (g−1)2

α Yzα

for all g ∈ Γ. On the other hand, for the components (Xa, Xr) in spherical
coordinates, defined as

Y = Yμ dy
μ =: Xa e

a +Xr dr(2.29)

= 1
2 (X1 − iX2) (e

1 + i e2) + 1
2 (X3 − i r Xr) (e

3 + i drr ) + h.c.,

the Γ-action on Yμ implies

(2.30)
X1 + iX2 
−→ π(g)(X1 + iX2) and

X3 + i r Xr 
−→ π(g)(X3) + i r Xr ,

which defines the representation π : Γ→ EndC∞(S3)

(
Ω1
S3

)
of the orbifold

group on one-forms on S3. Once the transformations (2.20) are given explic-
itly, the transformations (2.30) can be worked out from the formulas (2.2)
which in the coordinates (2.17) have the form

(2.31)
e1 + i e2 = i

r2 (z
1 dz̄2̄ − z̄2̄ dz1) and

e3 = i
2r2 (z̄

1̄ dz1 + z2 dz̄2̄ − z1 dz̄1̄ − z̄2̄ dz2) .

Note that Xa and Xτ := r Xr for τ = log r can be considered as components
of one-forms on the cylinder R× S3/Γ with the metric

(2.32) ds2
R×S3/Γ = dτ2 + δab e

a ⊗ eb =
dr2

r2
+ δab e

a ⊗ eb =
1

r2
ds2C(S3/Γ)

where dr = d
(
z1 z̄1̄ + z2 z̄2̄

)1/2
, which is conformally equivalent to the met-

ric (2.19) on the cone (2.22) for ea given in (2.14).
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Ak. In this case Γ = Zk+1 for k ≥ 1 is the cyclic group of order k + 1,
generated by an element h with hk+1 = 1, and the quotient space S3/Zk+1

is the lens space L(k + 1, 1); in this instance Γ0 is the trivial group. It can
be identified with the total space of the U(1)-bundle associated to the line
bundle (2.10), regarded as an S1/Zk+1-fibration over CP

1. Basis one-forms
on this space can be constructed explicitly by using a local section of the
circle bundle of the bundle (2.10) given by the matrix

(2.33) g(z, z̄) =
1

(1+z z̄)1/2

(
1 −z̄
z 1

) (
exp( iϕ

k+1) 0

0 exp(− iϕ
k+1)

)
∈ SU(2) ,

where 0 ≤ ϕ < 2π is a local coordinate on S1 and exp( iϕ
k+1) ∈ S1/Zk+1. On

the trivial rank two complex vector bundle S3/Zk+1 × C2 over S3/Zk+1 we
introduce the flat connection

B := g−1 dg =

(
i

k+1 dϕ+ a1 − exp(− 2 iϕ
k+1) β̄

exp( 2 iϕk+1)β − i
k+1 dϕ− a1

)
(2.34)

=:

(
i e3 −e1 + i e2

e1 + i e2 −i e3
)

,

which is an su(2)-valued one-form on S3/Zk+1. From flatness of the con-
nection (2.34), dB +B ∧B = 0, we obtain the same Maurer-Cartan equa-
tions (2.4) for ea as on S3, i.e. for k = 0.

The relevant group theory data is encoded in the extended simply laced
Dynkin diagram Ak of the affine Âk Lie algebra given by

(2.35) ×

1 1 · · · 1 1

with rΓ + 1 = k + 1 nodes designating the irreducible representations of Γ;
here and in the following the integers at the nodes are the Dynkin in-
dices n� of the affine roots, and the node marked × corresponds to the
trivial representation with n0 = 1. Any unitary representation of Zk+1 is
given by a sum of one-dimensional irreducible representations V� with � =
0, 1, . . . , k (mod (k + 1)) on which the generator h acts as multiplication by

(2.36) ζ�k+1 := exp(2π i �
k+1 ) .
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As a subgroup of SU(2), the generating element of Zk+1 is given by

(2.37)
(
hαβ

)
=

(
ζk+1 0

0 ζ−1
k+1

)
,

and the transformation (2.30) in this case reads as

(2.38) π(h)(X1 + iX2) = ζ2k+1 (X1 + iX2) and π(h)(X3) = X3 .

Alternatively, the transformation (2.38) can be derived immediately from
the definition (2.34) by considering the fibre monodromy ϕ 
→ ϕ+ 2π which
generates

(2.39) e1 ± i e2 
−→ ζ± 2
k+1 (e

1 ± i e2) and e3 
−→ e3 .

The pertinent weighted homogeneous polynomial is

(2.40) fZk+1
(x, y, z) = xk+1 + y2 + z2 ,

with the weights

(2.41) wx = 1 and wy = wz = q + 1 for k = 2q + 1

and

(2.42) wx = 2 and wy = wz = 2q + 1 for k = 2q .

Note that in the special case k = 1 where S3/Z2 = SU(2)/Z2 = SO(3) =
RP 3, this provides a realization of the complex projective line CP 1 as the
smooth Stenzel curve x2 + y2 + z2 = 0 in CP 2.

Dk. In this case Γ = D∗
k−2 for k ≥ 4 is the binary extension of the dihe-

dral group Γ0 = Dk−2 in SU(2) of order 4(k − 2), and S3/D∗
k−2 is a prism

manifold; the orbifold group Γ in this case is the pullback of Γ0 under the
covering homomorphism S3 → SO(3) = SU(2)/Z2 of degree two. It has a
presentation as a non-abelian group generated by elements ξ1, ξ2, ξ3 with
the relations

(2.43) ξ21 = ξ22 = ξk−2
3 = ξ1 ξ2 ξ3 .

Note that ξ3 generates a cyclic subgroup Z2(k−2), and ξ1 = ξ2 ξ3. The center
of this group has order two and is generated by the element h = ξ1 ξ2 ξ3;
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whence the generic fibre of the Seifert manifold S3/D∗
k−2 is S1/Z2, and

the geometry is analogous to that of the lens space S3/Z2. The branching
indices (k1, k2, k3) on CP 1/Dk−2 are given by the elliptic triple (2, 2, k −
2), and so there are three exceptional fibres S1/Z2, S

1/Z2, and S1/Zk−2,
respectively, each with isotropy one; in particular the base orbifold group
is a (2, 2, k − 2) triangle group. Moreover, the degree of the line V-bundle
LD∗

k−2
→ CP 1/Dk−2 is d = 1; whence the underlying smooth line bundle is

|LD∗
k−2

| = L and the orbifold Chern class is given by

(2.44) c1(LD∗
k−2

) = 2 + 1
k−2 .

The extended simply laced Dynkin diagram Dk for the affine D̂k Lie
algebra is

(2.45) × 1

2 2 · · · 2 2

1 1

with rΓ + 1 = k + 1 nodes. As elements of SU(2) the generators of D∗
k−2 are

given by

(2.46)
(
ξ2

α
β

)
=

(
0 1
−1 0

)
and

(
ξ3

α
β

)
=

(
ζ2(k−2) 0

0 ζ−1
2(k−2)

)

together with ξ1 = ξ2 ξ3; in this representation the central element is h =
−1C2 . The transformations (2.30) under the generator ξ3 are analogous to
those of (2.38), while under ξ2 one has

π(ξ2)(X1) = −X1 , π(ξ2)(X2) = X2

and π(ξ2)(X3) = −X3 .
(2.47)

The prism manifold S3/D∗
k−2 can also be described as the weighted projec-

tive curve

(2.48) fD∗
k−2

(x, y, z) = xk−1 + x y2 + z2 = 0 in CP 2(2, k − 2, k − 1) .

E6. In this case Γ = T∗ ∼= SL(2,Z3) is the binary tetrahedral group of order
24 which is a central extension of the tetrahedral group Γ0 = T ∼= A4 by a
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cyclic group Z2. It has a presentation in terms of generators ξ1, ξ2, ξ3 with
relations

(2.49) ξ21 = ξ32 = ξ33 = ξ1 ξ2 ξ3 .

Again the order two center of T∗ is generated by h = ξ1 ξ2 ξ3, and the branch-
ing indices on CP 1/T are given by the Platonic triple (2, 3, 3); whence Γ0 = T

is a triangle group, and there are three exceptional fibres S1/Z2, S
1/Z3,

and S1/Z3 with monodromy one. The line V-bundle LT∗ → CP 1/T with
|LT∗ | = L has orbifold Chern class

(2.50) c1(LT∗) = 13
6 .

The extended simply laced Dynkin diagram E6 for the affine Ê6 Lie
algebra is

(2.51) ×

2

1 2 3 2 1

It is straightforward to write down elements of SU(2) for the generators ξj
of T∗. However, for most practical calculations it is more convenient to note
that the group T∗ ⊂ SU(2) is generated by the order eight dicyclic group D∗

2

and the additional generator

(2.52)
(
gαβ

)
=

1√
2

(
ζ−1
8 ζ−1

8

−ζ8 ζ8

)
=

1

1− i

(
1 1
−i i

)
satisfying g3 = −1C2 . The additional transformations by g in (2.30) read as

(2.53) π(g)(X1) = X2 , π(g)(X2) = −X3 and π(g)(X3) = −X1 .

The Sasaki-Einstein manifold S3/T∗ also has a presentation as the weighted
projective curve

(2.54) fT∗(x, y, z) = x4 + y3 + z2 = 0 in CP 2(3, 4, 6) .
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E7. In this case Γ = O∗ is the binary octahedral group of order 48 which
is a central extension of the octahedral group Γ0 = O ∼= S4 by a cyclic group
Z2. It has a presentation in terms of generators ξ1, ξ2, ξ3 with relations

(2.55) ξ21 = ξ32 = ξ43 = ξ1 ξ2 ξ3 .

The order two center of O∗ is generated by h = ξ1 ξ2 ξ3, and the branching
indices on CP 1/O are given by the Platonic triple (2, 3, 4); whence there are
three exceptional fibres S1/Z2, S

1/Z3, and S1/Z4 each of isotropy one. The
line V-bundle LO∗ → CP 1/O with |LO∗ | = L has orbifold Chern class

(2.56) c1(LO∗) = 25
12 .

The extended simply laced Dynkin diagram E7 for the affine exceptional
Ê7 Lie algebra is

(2.57) 2

× 2 3 4 3 2 1

The representation of O∗ in SU(2) can be obtained similarly to that of T∗

by extending the order 16 dicyclic group D∗
4 by the same generator (2.52).

The spherical three-manifold S3/O∗ also has a presentation as the weighted
projective curve

(2.58) fO∗(x, y, z) = x3 y + y3 + z2 = 0 in CP 2(4, 6, 9) .

E8. In this final case Γ = I∗ is the binary icosahedral group which is a
double cover of the simple icosahedral group Γ0 = I ∼= A5 of order 60, and
S3/I∗ is the Poincaré homology sphere L(5, 3, 2). It has a presentation in
terms of generators ξ1, ξ2, ξ3 with relations

(2.59) ξ21 = ξ32 = ξ53 = ξ1 ξ2 ξ3 .

Once more the order two center of I∗ is generated by h = ξ1 ξ2 ξ3, and the
branching indices on CP 1/I are given by the Platonic triple (2, 3, 5); whence
there are three exceptional fibres S1/Z2, S

1/Z3, and S1/Z5 each of isotropy
one. The line V-bundle LI∗ → CP 1/I with |LI∗ | = L has orbifold Chern class

(2.60) c1(LT∗) = 61
30 .

Note that the orbifold Chern class is always of the form c1(LΓ) = 1 + 2
|Γ0| .
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The extended simply laced Dynkin diagram E8 for the affine exceptional
Ê8 Lie algebra is

(2.61) 3

× 2 3 4 5 6 4 2

Similarly to the E6 and E7 cases, the finite subgroup I∗ ⊂ SU(2) is generated
by D∗

5 and an additional element of SU(2). However, it is more convenient
to notice that it is also generated by

(2.62)

(
σα

β

)
= −

(
ζ−2
5 0
0 ζ25

)
and

(
σ̃ α

β

)
=

1

ζ25 − ζ−2
5

(
ζ5 + ζ−1

5 1

1 −ζ5 − ζ−1
5

)
.

The additional transformations by σ̃ in (2.30) are given by

(2.63)

π( σ̃ )(X1) =
1
5

(
ζ25 − ζ−2

5

) (
ζ5 − ζ−1

5

)
(X1 − 2X3) ,

π( σ̃ )(X2) = −
(
ζ2
5−ζ−2

5

)2

3+ζ2
5+ζ−2

5

X2

and π( σ̃ )(X3) = −1
5

(
ζ25 − ζ−2

5

) (
ζ5 − ζ−1

5

)
(2X1 +X3) .

Note that, in contrast to the Ak and Dk cases, for the E-series the Γ-action
generally mixes horizontal and vertical components of one-forms on the S1-
bundle (2.6). The Poincaré three-sphere S3/I∗ also has a presentation as the
weighted projective curve

(2.64) fI∗(x, y, z) = x5 + y3 + z2 = 0 in CP 2(6, 10, 15) .

3. Homogeneous vector bundles and quiver representations

Γ-modules. As previously, denote by V�
∼= Cn� for � = 0, 1, . . . , rΓ the irre-

ducible unitary representations of the ADE orbifold group Γ, and introduce
the vector space

(3.1) V̂ =

rΓ⊕
�=0

V�

which is the multiplicity space for the regular representation of Γ of dimen-
sion |Γ|, i.e. the finite-dimensional vector space of functions on Γ. The action
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of a group element g ∈ Γ on V̂ is represented by n� × n� unitary matrices
V�(g) on V� for each � = 0, 1, . . . , rΓ. Let us fix the vector space

(3.2) VR =

rΓ⊕
�=0

R� ⊗ V�
∼= CN with R�

∼= CN� and N :=

rΓ∑
�=0

n�N� .

Every Γ-module is of this form: The action of Γ on (3.2) is defined by a
group homomorphism γ : Γ→ U(N) with

(3.3) w� ⊗ v� 
−→ γ(g)(w� ⊗ v�) = w� ⊗
(
V�(g)(v�)

)
for all g ∈ Γ, w� ∈ R� and v� ∈ V�.

Γ-projection. For any irreducible representation V� of Γ, the fibred prod-
uct

(3.4) V� := SU(2)×Γ V�

is a homogeneous complex vector bundle of rank n� over the Sasaki-Einstein
orbifold S3/Γ. Using (3.4), one can introduce an SU(2)-equivariant complex
vector bundle of rank N over S3/Γ as the Whitney sum

(3.5)

rΓ⊕
�=0

R� ⊗ V� with R�
∼= CN� and

rΓ∑
�=0

n�N� = N .

Since Γ ⊂ SU(2), the bundle (3.5) is Γ-equivariant. The action of Γ on the
components of any anti-Hermitian connectionX = Xa e

a on the bundle (3.5)
is given by a combination of the action (2.30) and the adjoint action gener-
ated by (3.3) as

(3.6)
X1 + iX2 
−→ γ(g)π(g)(X1 + iX2) γ(g)

−1 and

X3 
−→ γ(g)π(g)(X3) γ(g)
−1 .

If we consider a connection on a bundle over the Calabi-Yau cone (2.22)
then one additionally has the Γ-action

(3.7) Xr 
−→ γ(g)Xr γ(g)
−1 .

The Γ-action on sections of the bundle (3.5) is given by (3.3), while on⊕rΓ
�=0 u(N�)-valued sections A of the corresponding adjoint bundle it is given
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by

(3.8) A 
−→ γ(g)Aγ(g)−1 .

Alternatively, one may start from a complex vector bundle over S3 of rank
N with gauge group U(N) broken to the subgroup

(3.9) G(R) =
rΓ∏
�=0

U(N�)

commuting with the Γ-action (3.3), after imposing Γ-symmetry which re-
duces the initial bundle to the vector bundle (3.5) over S3/Γ.

Γ-equivariance. After imposing Γ-symmetry, any homogeneous rank N
Hermitian vector bundle over S3 decomposes into isotopical components
as the bundle (3.5) with the gauge group (3.9) under the action of the
orbifold group Γ. The requirement of Γ-equivariance of an SU(2)-equivariant
connection X = Xa e

a states that it defines a covariant representation of Γ,
in the sense that its components satisfy the equations

(3.10) γ(g)Xa γ(g)
−1 = π(g)−1(Xa)

for all g ∈ Γ, where γ(g) is given in (3.3). This condition decomposes the
connection components fibrewise as

(3.11) Xa =
⊕

(�,�′ )∈Qa
1

(Xa)
�,�′ with (Xa)

�,�′ ∈ HomC

(
Cn�′ N�′ , Cn� N�

)
,

where Qa
1 for a = 1, 2, 3 is the set of non-zero blocks; given � = 0, 1, . . . , rΓ,

the corresponding pairs (�, �′ ) ∈ Qa
1 are found by comparing (3.3) with the

covariance conditions

(3.12) γ(g)
(
Xa

(
w�′ ⊗ v�′

))
= π(g)−1(Xa)

(
w�′ ⊗

(
V�(g)(v�′)

))
for g ∈ Γ, w�′ ∈ R�′ and v�′ ∈ V�′ .

The requirement of Γ-equivariance in this way naturally defines a rep-
resentation of a finite quiver Q = QΓ = (Q0,Q1, s, t) associated with the
Sasaki-Einstein orbifold S3/Γ, i.e. an oriented graph given by a finite set
of vertices Q0, a finite set of arrows Q1 ⊂ Q0 × Q0, and two projection maps
s, t : Q1 ⇒ Q0 taking each arrow to its source vertex and its target ver-
tex respectively; in the present case the vertices are just the nodes of the
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affine ADE Dynkin diagram corresponding to Γ, while the arrows are de-
termined by the non-zero blocks of the horizontal and vertical connection
components X1 + iX2 and X3. A (linear) representation of the quiver Q is a
Q0-graded vector space R =

⊕rΓ
�=0 R�, R�

∼= CN� together with a collection
of linear transformations B = (Be : Rs(e) → Rt(e))e∈Q1

. Given a Q0-graded
vector space R, the representation space

(3.13) RepQ(R) :=
⊕
e∈Q1

HomC

(
Rs(e), Rt(e)

)
is the affine variety parameterizing representations of the quiver Q into R.
Note thatR is the multiplicity space of the Γ-module (3.2), and hence there is
a one-to-one correspondence between representations of the discrete group
Γ ⊂ SU(2) and the representation varieties (3.13). The gauge group (3.9)
acts naturally on (3.13) as

(3.14) Be 
−→ gt(e)Be g
−1
s(e)

where g� ∈ U(N�); note that the diagonal U(1) subgroup of scalars in (3.9)
acts trivially, so we will often factor it out and work instead with the projec-
tive gauge group PG(R) := G(R)/U(1). If the quiver is equiped with a set of
relations R, i.e. formal C-linear combinations of arrow compositions of the
quiver, then we denote by RepQ,R(R) the subvariety of (3.13) consisting of
representations of Q into R which satisfy the relations R. For background on
quivers and their representations in the context of this paper, see e.g. [21,
Sect. 5] and [9].

Ak. In this case n� = 1 for all � = 0, 1, . . . , k (mod (k + 1)) and the gener-
ator h of the cyclic group Zk+1 acts on V�

∼= C as V�(h)(v�) = ζ�k+1 v�. On
the vector space (3.1) the generating element acts as the diagonal matrix

(3.15) diag
(
1, ζk+1, . . . , ζ

k
k+1

)
.

In this case we will also often consider the vector spaces

(3.16) V ⊕n
1 ⊕ V−n

∼= Cn+1 � (z1, . . . , zn, zn+1)

for n ≥ 1, on which the generator h acts as the map

(3.17) (z1, . . . , zn, zn+1) 
−→ (ζk+1 z
1, . . . , ζk+1 z

n, ζ−n
k+1 z

n+1)

which defines a homomorphism of the cyclic group Zk+1 into the Lie group
SU(n+ 1).



840 O. Lechtenfeld, A. D. Popov, and R. J. Szabo

The covariant representations of Zk+1 are characterized by the equations

(3.18)
γ(h) (X1 + iX2) γ(h)

−1 = ζ−2
k+1 (X1 + iX2) and

γ(h)X3 γ(h)
−1 = X3 ,

and for k ≥ 2 it is easy to see that the non-zero blocks are given fibrewise
by the matrix elements

(X1 + iX2)
�,�+2 =: ϕ� ∈ HomC

(
CN�+2 , CN�

)
,

(X1 − iX2)
�+2,� =: −ϕ†

� ∈ HomC

(
CN� , CN�+2

)
,(3.19)

(X3)
�,� =: χ� ∈ EndC

(
CN�

)
for � = 0, 1, . . . , k, where we used the relation

(3.20) X1 − iX2 = −(X1 + iX2)
† .

In the case k = 1, when ζ22 = 1 and the Z2-projection is given by S3 →
RP 3, one has only non-vanishing blocks (X1 ± iX2)

�,�, (X3)
�,� ∈ EndC(C

N�)
for � = 0, 1. Analysis of the explicit form of the matrices (3.19) and of the
corresponding quivers shows that the general cases of even and odd rank k
should be treated separately.

a) k = 2q, S3/Z2q+1:

Using the property ζ2q+1
k+1 = 1, one can show that the matrix

diag
(
1, ζ2k+1, . . . , ζ

2k
k+1

)
(3.21)

= diag
(
1, ζ2k+1, . . . , ζ

2q
k+1, ζk+1, ζ

3
k+1, . . . , ζ

2q−1
k+1

)
is equivalent to the matrix (3.15) with permuted diagonal elements. Then
by using the matrix

γ(h) = diag
(
1CN0 ⊗ 1,1CN1 ⊗ ζ2k+1, . . . ,1C

Nq ⊗ ζ2qk+1,(3.22)

1
C

Nq+1 ⊗ ζk+1,1C
Nq+2 ⊗ ζ3k+1, . . . ,1C

N2q ⊗ ζ2q−1
k+1

)
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in (3.18) we obtain the solution

(X1 + iX2)
�,�+1 =: φ�+1 ∈ HomC(C

N�+1 ,CN�)

and (X1 + iX2)
k,0 =: φk+1 ,

(X1 − iX2)
�+1,� =: −φ†

�+1 ∈ HomC(C
N� ,CN�+1)

and (X1 − iX2)
0,k =: −φ†

k+1

(3.23)

with � = 0, 1, . . . , 2q − 1, and

(3.24) (X3)
�,� =: �� ∈ EndC(C

N�)

with � = 0, 1, . . . , 2q, where �†� = −��. Note that in these equations we use
the same symbol N� as in (3.19), but they are in fact related by permutation,
as are χ� and ��, and ϕ� and φ�. Finally we obtain the irreducible affine Â2q-
type quivers Q

̂A2q
given by

(3.25) •

��

��

•�� �� • �� �� · · · �� • �� �� • ��

��

with 2q + 1 vertices, arrows and loop edges. For clarity, throughout we des-
ignate arrows associated to the horizontal components X1 + iX2 by solid
lines and arrows associated to the vertical components X3 with dashed lines;
in particular, here the loop edges are associated with the bundle endomor-
phisms ��. The underlying graph of this quiver is the extended affine Dynkin
diagram A2q from (2.35).

b) k = 2q + 1, S3/Z2q+2:

In this case one finds that the Z2q+2-equivariant vector bundle over S
3/Z2q+2

is a direct sum of two irreducible bundles and the associated quiver splits
into two connected quivers of the type (3.25). Arguing in a similar way as
above, we now have

γ(h) = diag
(
1CN0 ⊗ 1,1CN1 ⊗ ζ2k+1, . . . ,1C

Nq ⊗ ζ2qk+1,(3.26)

1
C

Nq+1 ⊗ 1,1
C

Nq+2 ⊗ ζ2k+1, . . . ,1C
N2q+1 ⊗ ζ2qk+1

)
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with ζ2�k+1 = ζ�q+1, and the corresponding reduced quivers are given by

•��
		 •��

		
for q = 0 ,(3.27)

• 


�� •��

		 • 


�� •��

		
for q = 1 ,(3.28)

Q
̂Aq

� Q
̂Aq

for q ≥ 2 ,(3.29)

with the quiver (3.29) having (q + 1) + (q + 1) vertices, arrows and loop
edges.

Dk. The dicyclic group D∗
k−2 has k − 1 two-dimensional representations

Wj
∼= C2 on which the generators ξ2 and ξ3 act as the matrices

(3.30) Wj(ξ2) =

(
0 1

(−1)j 0

)
and Wj(ξ3) =

(
ζj2(k−2) 0

0 ζ−j
2(k−2)

)

for j = 0, 1, . . . , k − 2; in particular, W1 is the fundamental representation
(2.46). For � = 1, . . . , k − 3 the representations V� :=W� are irreducible,
while W0 = V0 ⊕ Vk and Wk−2 = Vk−2 ⊕ Vk−1 simultaneously diagonalize
into two eigenlines, with V0 the trivial representation and

(3.31)
Vk(ξ2) = Vk−2(ξ3) = Vk−1(ξ3) = −1 = −Vk(ξ3) and

Vk−2(ξ2) = −ik = −Vk−1(ξ2) .

The covariant representations of D∗
k−2 are characterized by the equations

(3.32)
γ(ξ2) (X1 + iX2) γ(ξ2)

−1 = (X1 + iX2)
† and

γ(ξ2)X3 γ(ξ2)
−1 = −X3

together with

(3.33)
γ(ξ3) (X1 + iX2) γ(ξ3)

−1 = ζ−2
2(k−2) (X1 + iX2) and

γ(ξ3)X3 γ(ξ3)
−1 = X3 ,

where we have used the relation (3.20). By working in the canonical basis
of Wj

∼= C2, from these equations it is straightforward to see that all repre-
sentation spaces Wj for j = 0, 1, . . . , k − 2 are X3-invariant, while under the
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horizontal connection components they transform as

(3.34) (X1 + iX2)(W0) ⊂ W2 and (X1 + iX2)(W1) ⊂ W3 ,

and

(3.35)
(X1 + iX2)(Wk−3) ⊂ Wk−5 and

(X1 + iX2)(Wk−2) ⊂ Wk−4 ,

together with

(3.36) (X1 + iX2)(Wj) ⊂ Wj−2 ⊕Wj+2 for j = 2, . . . , k − 4 .

After diagonalising the reducible representations W0 and Wk−2 into their si-
multaneous eigenlines, some straightforward linear algebra shows that (X1 +
iX2)(V�) ⊂ V2 for � = 0, k and (X1 + iX2)(V�) ⊂ Vk−4 for � = k − 2, k − 1,
while X3(V0) ⊂ Vk, X3(Vk) ⊂ V0 and X3(Vk−2) ⊂ Vk−1, X3(Vk−1) ⊂ Vk−2.

Following our treatment of the A2q+1 family above, we use the block
diagonal matrices

γ(ξj) = diag
(
1CN0 ⊕ 1CNk ,1CN1 ⊗W2(ξj), . . . ,(3.37)

1
C

Nk−3 ⊗W2(k−3)(ξj),1C
Nk−2 ⊕ 1

C
Nk−1

)
in (3.32) and (3.33) to obtain the solution

(3.38)

(X1 + iX2)
�,�−1 =: φ+

�−1 ∈ HomC

(
C2N�−1 , C2N�

)
,

(X1 − iX2)
�−1,� =: −φ+

�−1
† ∈ HomC

(
C2N� , C2N�−1

)
,

(X1 + iX2)
�,�+1 =: φ−

�+1 ∈ HomC

(
C2N�+1 , C2N�

)
,

(X1 − iX2)
�+1,� =: −φ−

�+1
† ∈ HomC

(
C2N� , C2N�+1

)
for � = 1, . . . , k − 4, together with

(X1 + iX2)
�′,� =: ϕ� ∈ HomC

(
CN� , C2N�′

)
,

(X1 − iX2)
�,�′ =: −ϕ†

� ∈ HomC

(
C2N�′ , CN�

)
,

(3.39)
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for �′ = 1 (resp. �′ = k − 3) and � = 0, k (resp. � = k − 2, k − 1), while for
the vertical components we find

(X3)
�,� =: �� = −�†� ∈ EndC

(
C2N�

)
,

(X3)
�′,�′′ =: χ�′ ∈ HomC

(
CN�′′ , CN�′

)
,

(X3)
�′′,�′ =: −χ†

�′ ∈ HomC

(
CN�′ , CN�′′

)(3.40)

for � = 1, . . . , k − 3, and �′ = k (resp. �′′ = 0) and �′ = k − 1 (resp. �′′ = k −
2). We thereby arrive at the quiver

(3.41) •

��





•

��

��• �� 

 •�� ��
�� · · · ���� •�� 



�� •�� ��

•

��

��

•

��

��

with k + 1 vertices, 2k arrows and k − 3 loop edges; its underlying graph
is the affine Dynkin diagram Dk from (2.45). Note that the horizontal seg-
ment of this quiver consists of a chain of k − 4 connected Â1-type quivers
from (3.28).

Ek. The constructions above can in principle be extended to the excep-
tional series. For example, the binary tetrahedral group T∗ has seven ir-
reducible representations consisting of three one-dimensional representa-
tions given by the quotient T∗ → Z3, three two-dimensional representations
obtained by taking tensor products of these one-dimensional representa-
tions with the fundamental representation of T∗ ⊂ SU(2), and one three-
dimensional representation given by the quotient T∗ → T ⊂ SO(3); we leave
it to the interested reader to work out the details of the corresponding E6

quiver diagram. For the extended Dynkin diagrams E7 and E8 the represen-
tation theory becomes somewhat more complicated.

4. Equivariant dimensional reduction and quiver bundles

Equivariant vector bundles. In this section we consider the dimensional
reduction of invariant connections on equivariant vector bundles over prod-
uct manifolds. Let E be an SU(2)-equivariant Hermitian vector bundle of
rank N over M × S3, where M is a smooth, closed and oriented manifold
of real dimension D; the group SU(2) acts trivially on M and by isome-
tries on S3 ∼= SU(2). The sphere S3 can be regarded as a coset space G/H
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with G = SU(2) and the trivial stabilizer subgroup H = {1}; for the rele-
vant background on equivariant dimensional reduction over coset spaces, see
e.g. [1–3].

We will use the same symbol E for the vector bundle

(4.1) E −→ M × S3/Γ

obtained by projection to the orbifold M × S3/Γ. By standard induction
and reduction, there is an equivalence between SU(2)-equivariant vector
bundles (4.1) and Γ-equivariant vector bundles over M which are described
by the quivers QΓ from Sect. 3; the finite orbifold group Γ ⊂ SU(2) also acts
trivially on M . A representation of the quiver QΓ in the category Bun(M)
of complex vector bundles on M is called a quiver bundle on M .

Every SU(2)-equivariant complex vector bundle (4.1) can be decomposed
uniquely up to isomorphism into isotopical components as a Whitney sum

(4.2) E =
rΓ⊕
�=0

E� ⊗ V� ,

where E� → M are Hermitian vector bundles of rank N� with
∑rΓ

�=0 n�N� =
N and trivial Γ-action, and the homogeneous bundles V� → S3/Γ are defined
in (3.4). As we showed in Sect. 3, the gauge group G(R) of the bundle (4.2)
is given by (3.9).

Γ-equivariant connections. Let A be an SU(2)-equivariant gauge con-
nection on E and F = dA+A ∧A its curvature, both with values in the Lie
algebra u(N). It has the form

(4.3) A = A+X = Aμ̂ e
μ̂ +Xa e

a ,

where eμ̂ and ea are basis one-forms on M and S3, respectively, and Aμ̂ and
Xa are u(N)-valued matrices which depend only on the coordinates of M
with μ̂, ν̂, . . . = 1, . . . , D. Since S3 is a group manifold, there are no further
restrictions on Aμ̂ and Xa coming from SU(2)-invariance.

We shall also use the same symbol A for the connection obtained by
projecting (4.3) to the orbifold M × S3/Γ. The gauge potential projection
from M × S3 to M × S3/Γ is defined by the equations

(4.4) γ(g)Aμ̂ γ(g)
−1 = Aμ̂

for all g ∈ Γ, together with the equations (3.10) for Xa which are resolved
by the matrices (3.11).
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The calculation of the curvature F = dA+A ∧A for A of the form (4.3)
yields

(4.5) F = F +
(
dXa + [A,Xa]

)
∧ ea + 1

2

(
[Xa, Xb]− 2 εcabXc

)
ea ∧ eb ,

where F = dA+A ∧A is the curvature of the gauge potential A on M with
gauge group G(R). Given local real coordinates xμ̂ on M one can choose
dxμ̂ as basis one-forms eμ̂ on M . Then from (4.5) we find the non-vanishing
components of the field strength tensor

Fμ̂ν̂ = ∂μ̂Aν̂ − ∂ν̂Aμ̂ + [Aμ̂, Aν̂ ] ,(4.6)

Fμ̂a =: Dμ̂Xa = ∂μ̂Xa + [Aμ̂, Xa] ,(4.7)

Fab = [Xa, Xb]− 2 εcabXc .(4.8)

Quiver gauge theory. The dimensional reduction of the Yang-Mills equa-
tions on M × S3/Γ can be seen at the level of the Yang-Mills Lagrangian;
reduction of the Yang-Mills action functional defines a quiver gauge theory
on M associated to the quiver QΓ. Let d volM be the Riemannian volume
form with respect to an arbitrarily chosen metric on the manifold M , and
let d volS3/Γ denote the Riemannian volume form associated to the met-
ric (2.16) on the Sasaki-Einstein manifold S3/Γ; the corresponding Hodge
duality operator for the product metric on M × S3/Γ is denoted � . With
trN denoting the trace in the fundamental representation of the U(N) gauge
group, by substituting in (4.6)–(4.8) and integrating over S3/Γ we arrive at
the action

SYM := −1
4

∫
M×S3/Γ

trN F ∧ �F(4.9)

= −1
8

∫
M×S3/Γ

d volM ∧ d volS3/Γ

· trN
(
Fμ̂ν̂ F μ̂ν̂ + 2Fμ̂aF μ̂a + FabFab

)
= −π r3

6 d
c1(LΓ)

∫
M
d volM trN

(
Fμ̂ν̂ F

μ̂ν̂ +
2

r2
Dμ̂XaD

μ̂Xa

+
1

r4

3∑
a,b=1

(
[Xa, Xb]− 2 εcabXc

)2)
.

In the sector of this field theory with Aμ̂ = 0 and locally translationally-
invariant scalar fields Xa, the global minima of the action are described by
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the matrix equations

(4.10) Fab = [Xa, Xb]− 2 εcabXc = 0 .

In general these equations will contain both holomorphic F-term constraints
on the scalar fields, which define the set of relations RΓ among the arrows
for the quiver QΓ, and also non-holomorphic D-term constraints, which yield
stability conditions for the corresponding moduli variety of quiver represen-
tations. Hence solutions of the BPS equations are determined by stable
representations of the quiver with relations (QΓ,RΓ). The corresponding
stable quotient RepQΓ,RΓ

(R)
//

PG(R) is a finite set whose points are in
one-to-one correspondence with representations of the Lie algebra su(2) in
RepQΓ

(R) ⊂ u(N).

Ak. In this case from (3.22), (3.26) and (4.4) we obtain a block diagonal
form similar to X3 for the gauge potential A = Aμ̂ e

μ̂ given by

(4.11) A = diag
(
A0, A1, . . . , Ak

)
.

After projection from M × S3 to M × S3/Zk+1 the scalar field X = Xa e
a

from (4.3) has horizontal components

(4.12)
X1 + iX2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 φ1 0 · · · 0

0 0 φ2
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 φk

φk+1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ and

X1 − iX2 = −(X1 + iX2)
† ,

and vertical component

(4.13) X3 = diag(�0, �1, . . . , �k)

for k = 2q. We will not consider here the case k = 2q + 1 given by the for-
mulas (3.26)–(3.29), as it can be simply reduced to a doubling of the matri-
ces (4.12)–(4.13) with k substituted by q.
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From (4.11)–(4.13) one sees that the u(N)-valued gauge potential A
splits into N� ×N�′ blocks A��′ as

(4.14) A =
(
A��′

)
with A��′ ∈ HomC

(
CN�′ , CN�

)
,

where the indices �, �′, . . . run over 0, 1, . . . , k, and

A�� = A� ⊗ 1 + �� ⊗ e3 ,(4.15)

A� �+1 =: Φ�+1 =
1
2 φ�+1 ⊗ (e1 − i e2 ) ,

Ak0 =: Φk+1 =
1
2 φk+1 ⊗ (e1 − i e2 ) ,

(4.16)

A�+1 � = −Φ†
�+1 = −1

2 φ
†
�+1 ⊗ (e1 + i e2 ) ,

A0k = −Φ†
k+1 = −1

2 φ
†
k+1 ⊗ (e1 + i e2 ) ,

(4.17)

with all other components vanishing.
For the curvature

(4.18) F =
(
F ��′

)
with F ��′ = dA��′ +

k∑
�′′=0

A��′′ ∧ A�′′� ,

we obtain the non-vanishing field strength components

F �� = F � − 1
4

(
2 i �� + φ†

� φ� − φ�+1 φ
†
�+1

)
β ∧ β̄ + d�� ∧ e3 ,(4.19)

F � �+1 = 1
2 Dφ�+1 ∧ β̄ + 1

2

(
iφ�+1 + �� φ�+1 − φ�+1 ��+1

)
e3 ∧ β̄ ,(4.20)

F �+1 � = −
(
F � �+1

)†
(4.21)

= −1
2

(
Dφ�+1

)† ∧ β − 1
2

(
iφ†

�+1 + φ†
�+1 ��−��+1 φ

†
�+1

)
e3 ∧ β ,

Fk 0 = 1
2 Dφk+1 ∧ β̄ + 1

2

(
iφk+1 + �k φk+1 − φk+1 �0

)
e3 ∧ β̄ ,(4.22)

F0 k = −
(
Fk 0

)†
(4.23)

= −1
2

(
Dφk+1

)† ∧ β − 1
2

(
iφ†

k+1 + φ†
k+1 �k−�0 φ

†
k+1

)
e3 ∧ β .

Here we defined F � := dA� +A� ∧A� = 1
2 F

�
μ̂ν̂(x) dx

μ̂ ∧ dxν̂ and introduced
the bifundamental covariant derivatives

(4.24) Dφ�+1 := dφ�+1 +A� φ�+1 − φ�+1A
�+1 ,

with Ak+1 := A0, �k+1 := �0 and � = 0, 1, . . . , k.
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The quiver gauge theory action functional (4.9) is obtained by substi-
tuting in (4.18)–(4.23) to get

SYM =
π r3

6 (k + 1)

∫
M
d volM

k∑
�=0

trN�

(
F �
μ̂ν̂

† F � μ̂ν̂ +
1

r2
(
Dμ̂φ�+1

) (
Dμ̂φ�+1

)†(4.25)

+
1

r2
(
Dμ̂φ�

)† (
Dμ̂φ�

)
+

1

2r4
(
2 i �� + φ†

� φ� − φ�+1 φ
†
�+1

)2
+

1

r4
(
iφ�+1 + �� φ�+1 − φ�+1 ��+1

) (
iφ�+1 + �� φ�+1 − φ�+1 ��+1

)†
+

1

r4
(
iφ� + ��−1 φ� − φ� ��

)† (
iφ� + ��−1 φ� − φ� ��

))
.

The corresponding F-term relations are

(4.26) φ�+1 ��+1 = �� φ�+1 + iφ�+1

for � = 0, 1, . . . , k, which give the relations Rk for the quiver Q
̂Ak
. The D-

term constraints are given by

(4.27) φ�+1 φ
†
�+1 − φ†

� φ� = 2 i ��

for � = 0, 1, . . . , k.

Reduction to Ak+1 quiver gauge theory. We will now compare the
Âk-type quiver gauge theory for k = 2q with that based on the Ak+1 quiver
which arises from SU(2)-equivariant dimensional reduction over CP 1 [9, 22].
For this, we notice that for ϕ = 0 in (2.34) the field B becomes an su(2)-
valued one-form on CP 1 ↪→ S3/Zk+1 with e3 = −i a1, i.e. fixing ϕ = 0 re-
duces our geometry to the base CP 1 of the fibration (2.10). The same effect
can also be achieved by taking the limit k → ∞ as was discussed in e.g. [23];
however, here we will keep k finite since we want to compare the Âk-type
and Ak+1 quiver gauge theories.

Let us now describe the dynamical transition from the cyclic Âk-type
quiver (3.25) to the linear Ak+1 quiver

(4.28) • �� • �� · · · �� • �� •

which arises by restricting an irreducible representation of SU(2) on Ck+1

to the subgroup U(1) ⊂ SU(2) [9]. In terms of the matrices (3.23) and (3.24)
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it can be realized by putting

(4.29) φk+1 = 0 ,

and fixing

(4.30) �� = − i
2 (k − 2�) 1CN� for � = 0, 1, . . . , k .

For this choice the relations (4.26) are automatically satisfied, and the ex-
pressions (4.19)–(4.25) reduce to the expressions for the Ak+1 quiver gauge
theory derived in [9].

Note that the case k = 2q + 1 reduces in this limit to an Aq+1 �Aq+1

quiver gauge theory, which can be obtained within the framework of [9] by
restricting instead a reducible representation of SU(2) on Cq+1 ⊕ Cq+1.

Reductions to Dk and Ek quiver gauge theories. For a general ADE
group quotient Γ→ Γ0, setting ϕ = 0 in (2.14) again reduces the geometry
to the base CP 1/Γ0 of the Seifert fibration (2.6). Similar reductions as in the
Âk case above then define a quiver gauge theory onM based on the ordinary
(unextended) Dynkin diagram of ADE type, which arises from a putative
equivalence between SU(2)-equivariant vector bundles on M × CP 1/Γ0 and
Γ0 ×U(1)-equivariant vector bundles on M , where SU(2) acts trivially on
the manifoldM ; this V-bundle equivalence generalizes the equivalences of [9,
22] to the equivariant dimensional reduction over two-dimensional orbifolds
CP 1/Γ0.

5. Instantons on orbifolds and quiver varieties

McKay quivers. We begin by describing a class of quivers of paramount
importance to the study of instantons on the Calabi-Yau cones C(S3/Γ) and
their relevance to the McKay correspondence; see e.g. [24, 25] for further
details. Given the representation VR of the orbifold group Γ from (3.2),
consider the decomposition

(5.1) VR ⊗ V� =

rΓ⊕
�′=0

a��′ V�′

with tensor product multiplicities a��′ = dimCHomΓ(V�, VR ⊗ V�′) ∈ Z≥0.
The McKay quiver QΓ,R has vertices labelled by the irreducible represen-
tations of the orbifold group Γ, i.e. the vertices of the associated extended
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ADE Dynkin diagram, and a��′ arrows from vertex � to vertex �′. In general,
the matrix A = (a��′) is not symmetric unless VR is a self-dual representation
of Γ; in that case QΓ,R is the double Q of some quiver Q, i.e. the quiver with
the same set of nodes Q0 = Q0 and with arrow set Q1 = Q1 � Qop

1 , where
Qop is the opposite quiver obtained from Q by reversing the orientation of
the edges. The quiver QΓ,R contains no loop edges if and only if the triv-
ial representation V0 does not appear in the decomposition (3.2) of VR into
irreducible Γ-modules, i.e. N0 = 0.

The McKay correspondence is the observation that for the self-dual fun-
damental representation VR = C2 of Γ ⊂ SU(2), the matrix A = AΓ is the
adjacency matrix of the simply-laced extended Dynkin diagram correspond-
ing to Γ; hence the McKay quiver QΓ,C2 associated to the fundamental rep-
resentation is the double quiver of the affine ADE Dynkin graph with any
choice of orientation. A simple application of Schur’s lemma shows that
the representations of QΓ,C2 into R correspond bijectively to Γ-equivariant
homomorphisms VR → C2 ⊗ VR, since by (3.2) and (5.1) one has

(5.2) HomΓ(VR,C
2 ⊗ VR) =

rΓ⊕
�,�′=0

a��′ HomC(R�, R�′) ,

and so given a morphism in HomΓ(VR,C
2 ⊗ VR) one can pair it with an

arrow from � to �′ to get a map R� → R�′ ; hence we have

(5.3) HomΓ(VR,C
2 ⊗ VR) = RepQΓ,C2

(R) .

The McKay quiver also comes equiped with a set of relations RΓ,C2 that
are determined by mapping B ∈ RepQΓ,C2

(R) ∼= u(N) to the corresponding

matrices B1, B2 ∈ EndC(VR) under (5.3) with respect to the canonical basis
of C2, which obey Γ-equivariance conditions derived from (2.20) and (3.3)
as

(5.4) γ(g)B1 γ(g)
−1 = (g−1)1

αBα and γ(g)B2 γ(g)
−1 = (g−1)2

αBα

for all g ∈ Γ. Then the relations RΓ,C2 for QΓ,C2 are given by the commutation
relations

(5.5) [B1, B2] = 0 .
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Since Γ ⊂ SU(2), the commutator [B1, B2] is Γ-invariant and hence is valued
in the Lie algebra

(5.6) g(R) := EndaΓ(VR) =

rΓ⊕
�=0

u(N�)

of the broken gauge group (3.9).

Generalized instanton equations. Introduce closed two-forms on R4

given by

(5.7) ωa := 1
2 ηaμν dy

μ ∧ dyν ,

where ηaμν are components of the self-dual ’t Hooft tensor given by

(5.8) ηabc = εabc and ηab4 = −ηa4b = δab .

The two-forms ωa, a = 1, 2, 3, are self-dual,

(5.9) ∗ ωa = ωa ,

where ∗ is the Hodge duality operator for the standard flat Euclidean metric
on R4. They define a hyper-Kähler structure on R4 with complex structures

(5.10) (Ja)μν = ωa
νλ δ

λμ ,

where the complex structure J3 identifies R4 = C2 with the complex coor-
dinates (2.17).

Let A =Wμ dy
μ be a connection on the (trivial) V-bundle VR := R4 ×

VR of rank N over R4/Γ with curvature F = dA+A ∧A. In the following
we shall study the moduli space of solutions (with finite topological charge)
to the generalized instanton equations [18]

(5.11) ∗ F + F = 2ωa Ξa ,

where

(5.12) Ξa := diag
(
i ξa0 1N0

, i ξa1 1N1
, . . . , i ξarΓ 1NrΓ

)
for a = 1, 2, 3 are elements of the center of the Lie algebra (5.6) and the
Fayet-Iliopoulos parameter ξ = (ξa� ) is the linearization of the bundle action.
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For ξ = 0 the equations (5.11) are the anti-self-dual Yang-Mills equations on
the orbifold R4/Γ, while for ξ1 = ξ2 = 0, ξ3 �= 0 they become the Hermitian
Yang-Mills equations which imply that the V-bundle VR is a (semi-)stable
vector bundle [26, 27]; for generic ξ �= 0 they correspond to BPS-type equa-
tions for Yang-Mills theory with sources [18].

Moduli spaces of translationally-invariant instantons. We will pro-
vide a geometric interpretation of the McKay quiver in terms of moduli
spaces of translationally-invariant Γ-equivariant instantons on the V-bundle
VR. Dimensional reduction of the equations (5.11) leads to the matrix equa-
tions

(5.13)

[W2,W3] + [W1,W4] = Ξ1 ,

[W3,W1] + [W2,W4] = Ξ2 ,

[W1,W2] + [W3,W4] = Ξ3 ,

where the constant matrices Wμ with μ = 1, 2, 3, 4 take values in the Lie
algebra u(N) and can be regarded as components of the gauge potential
along the internal space of the dimensional reduction. The reduced equa-
tions (5.13) can be interpreted as hyper-Kähler moment map equations,
and hence the moduli space of translationally-invariant instantons is given
by a hyper-Kähler quotient [18].

When R = V̂ is the multiplicity space (3.1) of the self-dual regular rep-
resentation of Γ (so that N = |Γ|), this finite-dimensional hyper-Kähler quo-
tient construction was used by Kronheimer in [12] to construct a family of
four-dimensional hyper-Kähler manifolds Mξ. The representation theory of
the orbifold group Γ and the McKay correspondence are encoded in the
property that Mξ for generic ξ �= 0 is an ALE gravitational instanton, i.e.
it is diffeomorphic to the minimal smooth resolution of the Kleinian sin-
gularity M0 = C2/Γ. The birational morphisms π :Mξ → M0 are isomor-
phisms over the cone C(S3/Γ) whose exceptional fibre π−1(0) is a graph
of rational curves Σ�

∼= CP 1, � = 1, . . . , rΓ which is dual to the ordinary
(unextended) ADE Dynkin graph associated to Γ; the parameters ξ = (ξa� )
are the periods of the trisymplectic structure over Σ� under the isomorphism
H2(Mξ;R) ∼= RrΓ+1 [12]. The varietyMξ also inherits a natural hyper-Kähler
metric over C(S3/Γ) parameterized by ξ which is asymptotically locally Eu-
clidean (ALE), i.e. it approximates the flat Euclidean metric on the orbifold
R4/Γ at the end of Mξ up to order r

−4.
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One way to regard the complex deformation Mξ is by modifying the
polynomial equation (2.23) in C3 which deforms the cone C(S3/Γ) to

(5.14) fΓ(x, y, z;�t ) = 0 ,

where �t = (t0, t1, . . . , trΓ) are coordinates on the base of the deformation
related to the periods ξa� ; see e.g. [7, Sect. 2.1] for details of this construction.
Explicitly, for the five classes of Sasaki-Einstein three-manifolds we have

(5.15)

fZk+1
(x, y, z;�t ) = Pk+1(x;�t ) + y2 + z2 ,

fD∗
k−2

(x, y, z;�t ) = xk−1 +Qk−2(x;�t ) + t0 y + x y2 + z2 ,

fT∗(x, y, z;�t ) = y3 +Q2(x;�t ) + P4(x;�t ) + z2 ,

fO∗(x, y, z;�t ) = y3 + P3(x;�t ) +Q4(x;�t ) + z2 ,

fI∗(x, y, z;�t ) = y3 +Q3(x;�t ) + P5(x;�t ) + z2 ,

where Pk(x;�t ) = xk +
∑k

�=0 t� x
k−� and Qk(x;�t ) =

∑k+1
�=1 t� x

k−�+1. This
realizes Mξ as a fibration over the x-plane with generic fibre C∗ (for A and
D series) or elliptic curves (for E series).

Nakajima quiver varieties. Kronheimer’s construction can be inter-
preted in terms of moduli spaces of representations of the McKay quiver
with relations (QΓ,C2 ,RΓ,C2) into the regular representation space (3.1) of Γ;
see [28] for further details. This moduli space is a particular example of a
Nakajima quiver variety [29].

For a quiver Q based on Γ and a Q0-graded vector space R, introduce
stability parameters ξ : Q0 → R3 ∼= C⊕ R and identify the Lie algebra g(R)
with its dual g(R)∗ using the Cartan-Killing form. The vector space RepQ(R)
carries a metric defined by the Hilbert-Schmidt norm

(5.16) ‖B‖2 :=
∑
e∈Q1

trNs(e)
BeB

†
e

and a holomorphic symplectic form

(5.17) ωC(B,B′ ) :=
∑
e∈Q1

ε(e) trNs(e)
BeB

′
ē ,

where ē ∈ Qop
1 is the reverse edge of e with ε(e) = 1 and ε(ē) = −1 for e ∈ Q1.

It decomposes as a sum of Lagrangian subspaces RepQ(R) = RepQ(R)⊕
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RepQop(R) with RepQop(R) ∼= RepQ(R)
∗, which geometrically identifies it

as the cotangent bundle RepQ(R)
∼= T ∗RepQ(R); hence it is naturally a

quaternionic vector space which gives it the structure of a flat hyper-Kähler
manifold that is preserved by the bifundamental action (3.14) of the gauge
group (3.9). The corresponding (1, 1)-form is

(5.18) ωR(B,B′ ) :=
1

2

∑
e∈Q1

ε(e) trNs(e)

(
BeB

′
e
† −B†

ē B
′
ē

)
.

Then the quiver variety associated to Q and R is the hyper-Kähler quo-
tient

(5.19) Xξ(Q, R) := RepQ(R)
///

ξ PG(R)

by the corresponding hyper-Kähler moment map μ = (μC, μR) : RepQ(R)→
R3 ⊗ g(R) vanishing at the origin, where μC : RepQ(R)→ g(R)⊗ C is de-
fined by its components

(5.20) μC(B)� =
∑

e∈s−1(�)

ε(e)BeBē

while μR : RepQ(R)→ g(R) is defined by

(5.21) μR(B)� =
i

2

∑
e∈s−1(�)

(
BeB

†
e −B†

ē Bē

)
for � = 0, 1, . . . , rΓ. There are relations

(5.22)

rΓ∑
�=0

trN�
μC(B)� = 0 =

rΓ∑
�=0

trN�
μR(B)�

which follow from cyclicity of the traces.
The quiver variety is then constructed via suitable quotients of the level

set μ−1(Ξ); this necessitates the traceless condition

(5.23)

rΓ∑
�=0

ξa� N� = 0 for a = 1, 2, 3 .

The canonical map Xξ(Q, R)→ X0(Q, R) is a smooth (hyper-Kähler) reso-
lution of singularities for generic values of ξ. By choosing ξ such that the
gauge group PG(R) acts freely, the dimension of the hyper-Kähler quotient
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(and of the vacuum moduli space of the corresponding quiver gauge theory)
is given by [30, Sect. 3.3]

(5.24) dimRXξ(Q, R) = dimRRepQ(R)− 4 dimR PG(R) = 4− 2 �N · CQ
�N

where the generalized Cartan matrix CQ of the quiver Q is defined by

(5.25) �N · CQ
�N ′ = 2

rΓ∑
�=0

N�N
′
� −

∑
e∈Q1

Ns(e)N
′
t(e)

for dimension vectors �N := (N0, N1, . . . , NrΓ) and �N ′ := (N ′
0, N

′
1, . . . , N

′
rΓ)

of two quiver representations R and R′; note that �N · CQ
�N ∈ 2Z. It follows

that if �N · CQ
�N > 2 then the representation R is decomposable, while if

�N · CQ
�N = 2 the representation is rigid, i.e. it has no moduli. Dimension

vectors �N of indecomposable quiver representations are called roots of the
quiver (see [31, Sect. 2]); in particular rigid representations correspond to
real roots. Imaginary roots have Cartan form with �N · CQ

�N ≤ 0 and param-
eterize moduli spaces of dimension dimRXξ(Q, R) ≥ 4.

McKay quiver varieties. The relations (5.5) for the McKay quiver Q =
QΓ,C2 can be written using the isomorphism (5.3) as μC(B) = 0; in fact,
one may set Ξ1 = Ξ2 = 0 by a non-analytic change of coordinates on the
representation space (3.13) [12, 32]. On the other hand, the real moment
map equations μR(B) = Ξ3 in this case can be written as

(5.26)
[
B1, B

†
1

]
+
[
B2, B

†
2

]
= i

2 Ξ3 .

In this instance the generalized Cartan matrix CQ coincides with the ex-
tended Cartan matrix ĈΓ = 21CrΓ+1 −AΓ of the simply-laced affine Lie al-
gebra ĝΓ associated to Γ.

The Kronheimer construction is then obtained by specialising to the
quiver variety associated to the McKay quiver with relations (QΓ,C2 ,RΓ,C2)

and the multiplicity space R = V̂ , so that

(5.27) Mξ = RepQΓ,C2 ,RΓ,C2

(
V̂
) ///

ξ PG
(
V̂
)
.

Explicitly, the equations (5.13) and μ(B) = Ξ are related by identifying the
Γ-equivariant matrices B1 :=

1
2 (−W4 + iW3) and B2 :=

1
2 (W1 + iW2) with

B ∈ RepQΓ,C2
( V̂ ) under the isomorphism (5.3). Since Γ acts freely on the
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cone C(S3) = C2 \ {0}, the variety (5.27) is coordinatized by a fixed si-
multaneous eigenvalue pair (z1, z2) of the commuting matrices B1, B2 mod-
ulo its Γ-orbit, where the orbit is the regular representation on the coor-
dinates. Since the dimension vector �n = (n0, n1, . . . , nrΓ) spans the kernel
of the extended Cartan matrix ĈΓ, it follows from the general dimension
formula (5.24) that the quiver variety (5.27) has dimension dimRMξ = 4.

Superconformal quiver gauge theory. The construction of quiver vari-
eties for R = V̂ has a natural interpretation in the four-dimensional N = 2
superconformal quiver gauge theory on the worldvolume of n Dp-branes
probing a single D(p+ 4)-brane placed at the orbifold singularity of C2/Γ [4,
5, 7]. The field theory has gauge group (3.9), with N� = nn� the number of
constituent fractional Dp-branes, and is based on the McKay quiver QΓ,C2 :
At each vertex � = 0, 1, . . . , rΓ there is an N = 2 vector multiplet which
corresponds to an N = 1 chiral multiplet ϕ� transforming in the adjoint
representation of U(N�), while for each edge e there is a bifundamental hy-
permultiplet which corresponds to a pair of N = 1 chiral multiplets (Be, Bē)
with Be a complex matrix transforming as in (3.14). The cubic N = 1 super-
potential is then determined from the complex moment map given by (5.20)
as

(5.28) WΓ(B,ϕ) =

rΓ∑
�=0

trN�
μC(B)� ϕ� .

One can modify the superpotential by shifting it with complex Fayet-
Iliopoulos terms to

(5.29) WΓ(B,ϕ)ξ =WΓ(B,ϕ)−
rΓ∑
�=0

i ξC� trN�
ϕ�

whilst still preservingN = 2 supersymmetry. In the supersymmetric vacuum
state all fermion fields are set to zero, with the scalar fields taking constant
vacuum expectation values. The F-term equations

(5.30)
∂WΓ(B,ϕ)ξ

∂ϕ�
= 0

then reproduce the deformed McKay quiver relations μC(B)� = i ξC� for � =
0, 1, . . . , rΓ. The D-term equations instead encode qualitative stability infor-
mation about the (non-degenerate) kinetic term given by the metric (5.16),
and they correspond to the level sets (5.26) of the real moment map from
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(5.21). By factoring solutions to these equations by the action of the gauge
group (3.9) we obtain the vacuum moduli space. It follows that the quiver
variety Xξ(Q, R) for Q = QΓ,C2 and R = V̂ can be realized as the Higgs
branch of this quiver gauge theory.

Moduli spaces of framed instantons. We can work instead with framed
McKay quivers [14, 25, 29] which are obtained by adding a node with dou-
bled arrows to each vertex of the McKay quiver with relations (QΓ,C2 ,RΓ,C2),
where in general the extra nodes correspond to Γ-modules VS which pa-
rameterize the holonomies of instanton gauge connections at infinity. The
extended representation space is given by

(5.31) RepQ(R,S) := RepQ(R) ⊕
rΓ⊕
�=0

HomC(R�, S�)⊕HomC(S�, R�) .

The corresponding quiver varieties Xξ(Q;R,S) parameterize moduli of
framed instantons on the ALE spacesMξ, or alternatively the Higgs branches
of quiver gauge theories of N > 1 D(p+ 4)-branes at the orbifold singular-
ity with framing corresponding to the addition of probe Dp-branes to the
D(p+ 4)-branes [4]; in this case the moduli arise as ADHM data. A connec-
tion on a framed vector bundle E → Mξ of rank N is specified by the Chern
classes of E and a flat connection at the end of Mξ, which is isomorphic
to the Sasaki-Einstein space S3/Γ. The McKay correspondence can then
be stated as a one-to-one correspondence between flat U(N) connections
on S3/Γ, which correspond to representations VS of the fundamental group
π1(S

3/Γ) = Γ in U(N), and integrable highest weight representations of the
affine Lie algebra ĝΓ of ADE type associated to Γ at level N . In [29] Naka-
jima constructs natural representations of ĝΓ at level N on the cohomology
of the quiver varieties in terms of geometric Hecke correspondences.

In general, although the ADHM construction of Yang-Mills instantons
on ALE spaces is a finite-dimensional hyper-Kähler quotient construction, it
cannot be presented as translationally-invariant anti-self-duality equations
with Fayet-Iliopoulos terms ξ as in (5.13). However, for the instanton config-
uration of minimal topological charge c1(E) = 0 and c2(E) = (|Γ| − 1)/|Γ|
corresponding to N� = n� and a single D(p+ 4)-brane above, the “outer”
framing fields decouple [4, Sect. 8.1] and the relevant quiver is the unframed
McKay quiver with relations, i.e. the ADHM equations in this case reduce
to (5.13) [14, Ex. 3]. This fact is consistent with the constructions of mod-
uli spaces Xξ(Q; V̂ , S) of minimal charge Yang-Mills instantons on the ALE
spaces Mξ, described in [33] and [32, Sect. 7], as the four-dimensional non-
compact hyper-Kähler manifold Mξ itself. Note that the orbifold group Γ
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acts non-trivially on the ADHM matrices but trivially on the vector bundle
E → Mξ, while the embedding of Γ in U(N) is defined by the asymptotic
holonomy of the gauge connection rather than by covariance equations such
as (3.10).

Ak. For the cyclic group Γ = Zk+1, the fundamental representation (2.37)
is reducible with splitting C2 = V1 ⊕ Vk, and the decomposition (5.1) reads
as

(5.32) C2 ⊗ V� = V�+1 ⊕ V�−1

for � = 0, 1, . . . , k. Thus only a�,�±1 = 1 are non-zero, which gives precisely

the adjacency matrix of the Âk-type Dynkin diagram (2.35). The McKay
quiver QΓ,C2 is the corresponding double quiver

(5.33) •

		 ��• 



��

•�� �� · · ·�� �� •�� 

 •��

��

The solutions to the Γ-equivariance conditions are matrices

(5.34)

B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 ψk+1

ψ1 0
. . . 0 0

0 ψ2
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 ψk 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

B2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 ϕ1 0 · · · 0

0 0 ϕ2
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 ϕk

ϕk+1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
corresponding respectively to the two summands in (5.32), where the ar-
rows between vertices of the quiver (5.33) are represented by linear maps
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ψ�+1 ∈ HomC(R�, R�+1) and ϕ�+1 ∈ HomC(R�+1, R�) for � = 0, 1, . . . , k. The
relations (5.5) read as

(5.35) ϕ�+1 ψ�+1 = ψ� ϕ�

while the stability conditions (5.26) are given by

(5.36) ϕ�+1 ϕ
†
�+1 − ϕ†

� ϕ� = ψ†
�+1 ψ�+1 − ψ� ψ

†
� − 1

2 ξ
3
� 1CN�

on R� for each � = 0, 1, . . . , k. By (5.24) the dimension of the corresponding
Nakajima quiver variety is given by

(5.37) dimRXξ(QΓ,C2 , R) = 4 + 4

k∑
�=0

N�N�+1 − 4

k∑
�=0

N2
� .

This is equal to four when N� = n for all � = 0, 1, . . . , k, and for n = 1
the quiver variety is a minimal resolution Mξ of the quotient singularity

X0

(
QΓ,C2 , V̂

)
= C2/Zk+1.

6. Instantons on cones and Nahm equations

Moduli spaces of spherically symmetric instantons. In this section
we describe the moduli spaces of representations of the “Sasakian” quiv-
ers from Sect. 3 in an analogous way to those of the McKay quivers from
Sect. 5. Comparing the two quiver diagrams (5.33) and (3.25), the two
translationally-invariant Γ-equivariant complex Higgs fields (5.34) yield a
quiver based on the Dynkin diagram of type Âk involving an arrow between
vertices for each Higgs field, while the SU(2)-equivariant Higgs fields (4.12)–
(4.13) yield a quiver based on the same Dynkin graph involving an arrow for
the complex horizontal Higgs field together with a loop edge for the vertical
Higgs field.

The SU(2)-invariant (spherically symmetric) reduction of Γ-invariant
connections on the trivial V-bundle VR over R4/Γ is most conveniently done
by exploiting conformal invariance of the ξ-deformed anti-self-duality equa-
tions (5.11) and considering them on the cylinder R× S3/Γ. The connection
in these coordinates is written as

(6.1) A =Wτ dτ +Wa ê
a

where, in contrast to (2.2), the basis of left SU(2)-invariant one-forms

(6.2) êa := − 1
r2 η

a
μν y

μ dyν
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on S3 are invariant with respect to the action of the orbifold group Γ ⊂
SU(2); this SU(2) group is the right-acting factor of the Lorentz group
SO(4) = SU(2)× SU(2) on R4 which preserves the complex structure J3

from (5.10), while the left-acting SU(2) factor does not (only a U(1) sub-
group preserves J3). Now the matrices Wa with a = 1, 2, 3 and Wτ depend
on the radial coordinate r = e τ , and by defining

(6.3) Ya := e 2τ Wa , Yτ := e 2τ Wτ and s = e−2τ

the equations (5.11) reduce to the ordinary differential equations [18]

(6.4) 2
dYa
ds

= [Yτ , Ya]−
1

2
εbca [Yb, Yc] +

1

s2
Ξa

for the Γ-invariant functions Ya, Yτ : R>0 → g(R) with a = 1, 2, 3. For Ξa =
0 these equations coincide with the Nahm equations. In contrast to the
ADHM-type matrix model, no stability parameters Ξ will be required to
define the resolution of singularities of the moduli space of solutions [15, 16,
30] which will instead arise from the chosen boundary conditions at large s;
henceforth we set Ξ = 0 without loss of generality (see also [18, Sect. 5]).

Let us momentarily consider the case with trivial orbifold group Γ =
{1}, and let G be a compact simple Lie group with maximal torus T ; let
GC = G ⊗ C and T C = T ⊗ C denote the corresponding complexified groups.
Then the equations (6.4) are equivalent to the equations considered by Kro-
nheimer [15, 16] (see also [17]) in the description of SU(2)-invariant in-
stantons [18]. Kronheimer shows in [15] that, for the spherically symmetric
Yang-Mills instantons which have minimal topological charge on the cone
R4 \ {0} = C(S3), under certain boundary conditions the moduli space is
again a Calabi-Yau twofold M ′

ξ which is a minimal resolution of C(S
3/Γ′ ).

This is the moduli space of SU(2)-invariant framed G-instantons on C(S3)
with a “pole” type singularity at the origin, which in terms of Nahm data
is characterized by the space of smooth solutions to (6.4) satisfying the
boundary conditions

(6.5)
lim
s→∞ Yτ (s) = 0 , lim

s→∞ Ya(s) = Ta and

lim
s→0

s Ya(s) = Ia for a = 1, 2, 3 ,

where Ta are fixed elements of the Cartan subalgebra t of the Lie algebra g
of G whose common centralizer is T , and

(6.6) [Ia, Ib] = εcab Ic
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where the generators Ia define an embedding of SU(2) in G. The elements
Ta parameterize a hyper-Kähler structure on the regular coadjoint orbit
GC/T C, while the elements Ia specify the holonomy of the gauge connection
at infinity which generically reduces the orbit to a smaller space. The quo-
tient defining the moduli space is taken by the action of the gauge group Ĝ
consisting of gauge transformations g : R>0 → G which are trivial at infinity.

One can solve (6.4) by taking Ya, Yτ as constant matrices from t, which
produces singular abelian instanton solutions with delta-function sources
in the Maxwell equations [15, 16, 18]. By considering s-dependent solu-
tions with boundary conditions (6.5), the moduli space can be obtained
by an infinite-dimensional hyper-Kähler quotient construction [30, Sect. 5].
For the subregular representation I = (Ia), the resulting manifold is again
a four-dimensional hyper-Kähler ALE space M ′

ξ which is a resolution of

singularities of the orbifold M ′
0 = C2/Γ′ [15], where the finite subgroup

Γ′ ⊂ SU(2) is obtained from the homogeneous Dynkin diagram of G; if G
is not simply-laced then this graph is understood as the associated homo-
geneous Dynkin diagram of ADE-type whose quotient by a finite group of
diagram symmetries yields the Dynkin diagram of G, see [34]. The reso-
lution parameters ξ = (ξa� ) for a = 1, 2, 3 and � = 0, 1, . . . , rΓ′ are the peri-
ods of the trisymplectic structure determined by Ta under the isomorphism
H2(GC/T C;R) = H2(G/T ;R) ∼= t ; if G is not of ADE-type then the hyper-
Kähler cohomology classes are pullbacks of those associated to Ta by the
surjective quotient map t′ → t from the Cartan subalgebra t′ of the asso-
ciated Lie group with homogeneous Dynkin diagram. For nilpotent orbits
with Ta = 0, the moduli spaces of dimension four are cones C(S3/Γ′ ), while
in dimensions ≥ 8 they correspond to the minimal nilpotent orbit, i.e. the
orbit of the highest root vector in g, which is the cone over the 3-Sasakian
homogeneous manifold associated to G [17]. For generic non-regular orbits
and smaller SU(2) representations, if the moduli space is four-dimensional
then by [13] it is a disjoint union of ALE spaces and cones.

For a non-trivial orbifold group Γ, we can repeat this construction with
G = G(R). Then the moduli space of solutions to the Nahm equations (6.4)
with the boundary conditions (6.5) is a product of rΓ + 1 moduli spaces
of Nahm data associated with each factor U(N�) of the gauge group (3.9)
for � = 0, 1, . . . , rΓ. If each block of I in G(R) is the subregular representa-
tion of SU(2) in U(N�), then the moduli space is a product of ALE spaces
M ′

ξ0
×M ′

ξ1
× · · · ×M ′

ξrΓ
where M ′

ξ�
is a minimal resolution of the orbifold
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C2/ZN�
for � = 0, 1, . . . , rΓ; note that M ′

ξ�
is a point if N� = 1. Due to Γ-

invariance of the frame (dτ, êa) and hence of the components of A, irre-
ducible connections occur only for irreducible actions of Γ on the V-bundle
VR, i.e. when N� = N for some � ∈ {0, 1, . . . , rΓ} and N�′ = 0 for �′ �= �, in
which case the moduli space is the four-dimensional hyper-Kähler mani-
fold M ′

ξ�
→ C2/ZN ; for example, the four-parameter family of ’t Hooft one-

instanton solutions [18, Sect. 5]

(6.7) Yτ = 0 and Ya =
1

s+ λ
Ia with λ ∈ R≥0

live on the base of this deformation for λ = 0. In dimensions ≥ 8 with Ta = 0
the moduli space is the cone over the 3-Sasakian homogeneous manifold
SU(N)

/
S
(
U(N − 2)×U(1)

)
of dimension 4(N − 1) with N ≥ 3.

Sasakian quiver gauge theory. In Sect. 4 we considered the SU(2)-
equivariant dimensional reduction of Yang-Mills theory from M × S3/Γ to
M . For the cones we consider instead the reduction from M̃ × C(S3/Γ) to
M̃ × R>0, which by the Γ-action in (3.7) is described by the same quiver (in
applications to holography M̃ is the boundary of M).

The only change in the resulting quiver gauge theory action is the ad-
dition of a term proportional to trN FτaFτa in (4.9). This additional term
allows for a vacuum state of the quiver gauge theory on M̃ with not only
flat gauge fields Fab = 0 = Fτa but also anti-self-dual gauge fields F on
C(S3/Γ). The reduction of the anti-self-dual Yang-Mills equations on the
cone C(S3/Γ), with the conformally equivalent metric (2.32), for SU(2)-
invariant connections

(6.8) A = Xτ dτ +Xa e
a

on the V-bundle VR is carried out in [18, Sect. 5] and shown to be given by
Nahm-type equations

(6.9)
dXa

dτ
= 2Xa −

1

2
εbca [Xb, Xc]− [Xτ , Xa] .

As the one-forms ea are not Γ-invariant, the matrices Xa now decompose as
in (3.11), allowing for reducible Γ-actions on VR.

These equations have a solution with constant matrices Xa = 2Ia and
Xτ = 0 which yields vanishing curvature F = 0, where Ia ∈ RepQΓ,RΓ

(R)
//

PG(R) are SU(2) generators in the N -dimensional irreducible representation
on the vector space VR; this is in contrast to the case of flat space considered
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earlier where all such matrices are necessarily diagonal [12]. For the multi-
plicity space R = V̂ of the regular representation of Γ, i.e. when N� = n� for
all � = 0, 1, . . . , rΓ, the moduli space of all constant matrices is the orbifold
M0 = C2/Γ, as discussed above. We shall find that the moduli space of τ -
dependent solutions with suitable boundary conditions at τ → ±∞ is also
an orbifold M ′

0 = C2/Γ′ for Γ′ = Z|Γ|, where Γ′ = Γ only for the A series;
in this instance Ia embed the group SU(2) irreducibly into PG = SU(|Γ|).
This expectation is supported by the explicit BPST-type instanton solutions
Xa = f(τ) Ia, Xτ = 0 constructed by [18, Sect. 5] in this case (see below)
which are parameterized by a four-dimensional moduli space consisting of
one dilatation parameter valued in R≥0 and three gauge rotational SU(2)
parameters, analogously to [32, Sect. 7]; since the subgroup of SU(|Γ|) which
commutes with Ia in this case is its center Z|Γ|, the gauge rotations are ac-
tually valued in SU(2)/Z|Γ| = S3/Z|Γ| and so the moduli space is the cone
C
(
S3

/
Z|Γ|

)
.

Sasakian quiver varieties. To substantiate and extend these statements,
we generalize the infinite-dimensional hyper-Kähler quotient construction
of the moduli space of SU(2)-invariant instantons on C(S3) (see e.g. [30,
Sect. 5]) to the general setting of quiver varieties. We put

(6.10)
C1 = −Zt + iZ3 :=

1
2t (−Xτ + iX3) and

C2 = Z1 + iZ2 :=
1
2t (X1 + iX2)

where t := e 2τ = r2. For a Γ-module (3.2), we may identify the t-dependent
Γ-equivariant matrices C1, C2 :R>0→EndC(VR) with maps R>0→RepQop

Γ
(R)

into the representation space of the opposite quiver associated to the Sasakian
quiver QΓ; we denote this infinite-dimensional affine space by R̂epQop

Γ
(R). For

this, let

(6.11) C2
Γ =

rΓ⊕
�=0

dΓ� V�

be a two-dimensional representation of the orbifold group Γ determined by
the Γ-equivariance conditions on C1, C2 described in Sects. 2–3. Let AΓ =
(aΓ��′) be the adjacency matrix of the quiver QΓ, i.e. a

Γ
��′ is the number

of arrows joining vertex � to vertex �′; note that AΓ is not a symmetric
matrix in general. Then the multiplicities dΓ� can be determined by using
the tensor product multiplicities m��′

�′′ appearing in the Clebsch-Gordan
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decomposition

(6.12) V� ⊗ V�′ =

rΓ⊕
�′′=0

m��′
�′′ V�′′

via the relations

(6.13)

rΓ∑
�′′=0

dΓ�′′ m�′′�
�′ = aΓ��′ for �, �′ = 0, 1, . . . , rΓ .

Then by analogous arguments to those which led to (5.2), we find

(6.14) HomΓ(VR,C
2
Γ ⊗ VR) =

rΓ⊕
�,�′=0

aΓ��′ HomC(R�′ , R�) = RepQop
Γ
(R)

from which the identification follows.
The space R̂epQop

Γ
(R) has the natural structure of an infinite-dimensional

quaternionic vector space by identifying the Γ-module C2
Γ as a module of

rank one over the quaternions H. With suitable boundary conditions that
we describe below, it carries a metric defined by the L2-norm

(6.15)
∥∥(c1, c2)∥∥2 := ∫

R>0

dt trN
(
c†1 c1 + c†2 c2

)
and a holomorphic symplectic form

(6.16) ωC

(
(c1, c2) , (c

′
1, c

′
2)
)
:=

∫
R>0

dt trN
(
c1 c

′
2 − c′1 c2

)
,

where ci := δCi are solutions of the linearised (around Ci given by (6.10))
equations (6.9). Let Ĝ(R) be the group of gauge transformations g : R>0 →
G(R) which are trivial at infinity; it acts on R̂epQop

Γ
(R) as

(6.17) C1 
−→ g C1 g
−1 − 1

2

dg

dt
g−1 and C2 
−→ g C2 g

−1 .

These ingredients endow R̂epQop
Γ
(R) with the structure of a flat hyper-Kähler

Banach manifold which is invariant under the action of Ĝ(R). The corre-
sponding (1, 1)-form is

ωR

(
(c1, c2) , (c

′
1, c

′
2)
)

(6.18)

:=
1

2

∫
R>0

dt trN
(
c1 c

′
1
† − c′1 c

†
1 + c2 c

′
2
† − c′2 c

†
2

)
.
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With û(N) denoting the Lie algebra of infinitesimal gauge transforma-
tions R>0 → u(N) which are trivial at infinity, the corresponding hyper-

Kähler moment map μ = (μC, μR) : R̂epQop
Γ
(R)→ R3 ⊗ û(N) is given by

μC(C1, C2) =
dC2

dt
+ [C1, C2] ,(6.19)

μR(C1, C2) =
i

2

( dC1

dt
+
dC†

1

dt
+
[
C1, C

†
1

]
+
[
C2, C

†
2

] )
.(6.20)

The vanishing locus μ−1(0) then coincides with the solution space of the
Nahm equations (6.9). Notice how this moment map formally compares with
that of the McKay quiver variety from Sect. 5 by setting W4 =

d
dt + Zt and

Wa = Za for a = 1, 2, 3. Its image belongs to the set of gauge equivalence
classes of elements valued in the subspace R3 ⊗ R̂epQop

Γ
(R) ⊂ R3 ⊗ û(N): Via

a gauge transformation (6.17) one can go to a temporal gauge with Zt = 0
in which the components of the moment map are given by

(6.21) μa(Z) =
dZa

dt
+
1

2
εbca [Zb, Zc]

for a = 1, 2, 3.
However, in contrast to the moment maps used in the construction of

Nakajima quiver varieties, here μ is not Γ-invariant. Hence our vacuum mod-
uli are generically parameterized by an orbifold μ−1(0)/PĜ(R) which cannot
be described as a hyper-Kähler quotient. As long as the action of the Lie
group PĜ(R) is proper, the space of orbits μ−1(0)/PĜ(R) has the struc-
ture of a stratified Hausdorff differential space (see e.g. [35]). Here we shall
take an explicit and illuminating route that avoids the intricate technical
stacky issues involved in taking such quotients: We first describe the hyper-
Kähler quotient corresponding to the full unbroken gauge group G = U(N),
and then implement Γ-equivariance; we denote the (singular) quotient space

obtained in this way by R̂epQop
Γ
(R)

//
PĜ(R).

It remains to specify suitable boundary conditions for the equations μC =
μR = 0. Using results of [36], one can put solutions of the Nahm equations
into a Coulomb gauge such that C1, C2 converge as t → ∞ to the exact
“model” solution

(6.22) C̃1 =
i

2
T3 +

i

t+ λ
J3 and C̃2 =

1

2
T+ +

1

t+ λ
J+ ,

where λ ∈ R≥0 is a scale parameter, the elements T3, T+ = T1 + iT2 are val-
ued in the Cartan subalgebra of the Lie algebra (5.6), and J3, J+ = J1 + i J2
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generate a representation of SU(2) in U(N) which resides in the represen-
tation space (6.14) and which commutes with Ta, i.e. Ja for a = 1, 2, 3 take
values in the Lie algebra of the common centralizer of Ta in U(N). Suitable
moduli spaces of Nahm data asymptotic to this model solution yield com-
plex coadjoint orbits of U(N) [15, 16, 36]. The model solution with Ta = 0 is
exactly the BPST-type instanton solution on the orbifold R4/Γ which is dis-
cussed in [18, Sect. 5]; it generates nilpotent orbits [15]. On the other hand,
if the joint centralizer of Ta is the maximal torus U(1)

N , then Ja = 0 and
the orbits are regular [16]. Henceforth we set Ja = 0 but keep Ta arbitrary
corresponding to generic semisimple orbits.

Thus analogously to the boundary conditions in (6.5), we consider solu-
tions with the asymptotics

(6.23) lim
t→∞ C1(t) =

i
2 T3 and lim

t→∞ C2(t) =
1
2 T+ ,

and which acquire simple poles

(6.24) lim
t→0

t C1(t) =
i
2 I3 and lim

t→0
t C2(t) =

1
2 I+

at t = 0 with residues defining a representation I3, I+ = I1 + i I2 of su(2)

in (6.14). We denote by R̂epQop
Γ
(R)ξ,I the subspace of R̂epQop

Γ
(R) consist-

ing of pairs (C1, C2) satisfying these boundary conditions and with suitable
analytic behaviour, and by Ĝ(R)I ⊂ Ĝ(R) the subgroup of gauge transforma-
tions preserving the boundary conditions (6.24). Here ξ = (ξa� ) with ξa� ∈ R

for a = 1, 2, 3 and � = 0, 1, . . . , rΓ parameterize the periods of the trisym-
plectic structure determined by Ta, while fixing the singular part of the
Nahm data to I = (Ia) guarantees that tangent vectors (infinitesimal defor-
mations) are regular and square-integrable so that the L2-metric (6.15) is
well-defined; these boundary conditions are the main distinguishing feature
from the construction of moduli spaces of (framed) monopoles. In terms
of our original SU(2)-invariant instantons which are parameterized by the
connections (6.8), the boundary conditions (6.23)–(6.24) mean that they
have regular values at the origin which determine an SU(2) representation
I = (Ia) in U(N), whereas their behaviour at infinity is governed by a pole
at r =∞ with residue which gives the Fayet-Iliopoulos parameters of the
quiver gauge theory; this somewhat undesirable asymptotic behaviour will
be eliminated by our construction below.

The corresponding quiver variety is then the infinite quotient

(6.25) Mξ,I(QΓ, R) := R̂epQop
Γ
(R)ξ,I

//
PĜ(R)I .
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This quotient space is finite-dimensional: In the temporal gauge the moment
map equations μa = 0 from (6.21) can be written as

(6.26) [Za, Zb] + εcab
dZc

dt
= 0

for a, b = 1, 2, 3; this leaves the space of solutions to the ordinary differential
equations (6.26) modulo the action of the finite-dimensional gauge group
(3.9). Putting Za =

1
2t Xa for constant Xa sets up a one-to-one correspon-

dence between such solutions of the equations (6.26) and solutions of the
BPS equations (4.10) describing the vacuum moduli space of quiver gauge
theory based on the Sasakian quiver with relations (QΓ,RΓ).

Orbits and slices. Let us now describe the Higgs branch of vacuum
statesMξ,I(QΓ, R) more explicitly. By a standard symplectic quotient argu-

ment [17], the hyper-Kähler quotient by PĜI is equivalent to the holomorphic
symplectic quotient μ−1

C
(0)

/
PĜ C

I by the action (6.17) of the complexifica-

tion Ĝ C

I of the gauge group ĜI . The complex Nahm equation μC(C1, C2) = 0
implies that the path C2(t) lies in the same adjoint orbit in the complex
Lie algebra gC := g⊗ C for all t ∈ R>0. It also implies that the Casimir in-
variants of C2 are independent of t. Since we quotient only by gauge trans-
formations which are trivial at infinity, the boundary condition (6.23) then
implies that the Casimir invariants of C2 coincide with those of T+.

It follows that the moduli space of solutions to the Nahm equations
with the boundary conditions (6.23) is the closure OT+

of the adjoint orbit
OT+

of T+ in gC obtained by adding the (finitely many) orbits of elements
that have the same Casimir invariants as T+. The orbit OT+

is a complex
symplectic manifold, with the standard Kirillov-Kostant-Souriau symplectic
form, of dimension dimCOT+

= dimC GC − dimCZT+
where ZT+

⊂ GC is the
subgroup that commutes with T+; note that T C ⊆ ZT+

. If T+ is regular, i.e.
dimCZT+

= dimC T C, then OT+
= OT+

as every element of gC with the same
Casimir invariants is conjugate to T+ in this case; in general, the closure OT+

always contains a regular orbit.
Next we have to implement the correct pole structure (6.24) at t = 0

which is determined by a representation I of SU(2) in G; representations of
SU(2) in U(N) are in one-to-one correspondence with ordered partitions �λ =
(λ1, . . . , λs) of N with at most N parts, which correspond combinatorially
to Young diagrams with N boxes and at most N rows. By definition they
satisfy

(6.27)

s∑
i=1

λi = N with λ1 ≥ λ2 ≥ · · · ≥ λs > 0 ,
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where the part λi is the dimension of the i-th irreducible SU(2)-module oc-
curing in the decomposition of the fundamental representation CN of U(N)
as a representation of SU(2); the integer s := �(�λ ) is called the length of
the partition �λ. Solutions of the complex Nahm equation with this singu-
lar behaviour are in a bijective correspondence with points in the Slodowy
slice [15] which is the affine subspace of gC given by

(6.28) SI = I+ + z(I−) ,

where z(I−) is the centralizer of I− in gC; the correspondence associates to
points of (6.28) the solution of the complex Nahm equation given by

(6.29) C1(t) =
i

2t
I3 and C2(t) =

1

2t
I+ +

∑
α∈P−

t−mα cα vα ,

where we used a complex gauge transformation to gauge fix C1; here cα ∈ C

and P− parameterizes the lowest weight vectors vα ∈ gC of weight mα ∈
1
2 Z<0 for the adjoint action of SU(2) on gC, i.e. [I−, vα] = 0 and [ i I3, vα] =
mα vα, so that

∑
α∈P− cα vα ∈ z(I−). The Slodowy slice SI intersects OI+ in

the single point I+ transversally, i.e. SI ⊕ TI+OI+ = gC, and it meets only
those orbits whose closures contain OI+ where it has transverse intersections
which are thereby submanifolds of gC.

It follows that the moduli space of solutions to the Nahm equations
with boundary conditions (6.23)–(6.24) is the intersection OT+

∩ SI of di-
mension dimCZI− − dimC T C; it is a complex symplectic manifold with the
restriction of the Kirillov-Kostant-Souriau symplectic form. Here the di-
mension of the centralizer ZI− of I− coincides with the number of sum-
mands in the decomposition of gC into irreducible representations of SU(2),
as each irreducible representation has a one-dimensional subspace of lowest
weight vectors; as SU(2)-modules are self-dual, we can explicitly decompose
gC ∼= CN ⊗ CN under the SU(2) embedding I by using the fact that for each
positive integer n = 2j + 1 with j ∈ 1

2 Z≥0 the Lie group SU(2) has a unique
irreducible spin-j representation on Cn which obey the Clebsch-Gordan rules

(6.30) Cn ⊗ Cn′ ∼=
j+j′⊕

j′′=|j−j′ |
Cn′′

,

with n′ = 2j′ + 1 and n′′ = 2j′′ + 1. It is shown by [17] that this manifold can
be naturally identified with the hyper-Kähler quotient OT+

∩ SI
∼=

(
OT+

×
PGC × SI

) ///
0 PG which is interpreted as matching the two solutions to the
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Nahm equations coming from OT+
on R>0 and from PGC × SI on (0, 1]; the

latter moduli space consists of pairs (g(1), C2), where g : (0, 1]→ PGC is the
unique complex gauge transformation which gauge fixes C1 in (6.29).

It remains to implement Γ-equivariance. This requires that the pair
(C1, C2) belong to the representation space (6.14), and hence our moduli
space (6.25) can be described easily as the intersection

(6.31) Mξ,I(QΓ, R) ∼= OT+
∩ SI ∩ RepQop

Γ
(R)

which is naturally a hyper-Kähler variety with the restricted hyper-Kähler
structure of OT+

∩ SI . Since the complex gauge transformation which fixes
C1 in (6.29) resides in PG(R)C, and with the understanding that the SU(2)
representation I already resides in (6.14) (or else (6.31) is empty), by re-
stricting the gauge group G to the subgroup G(R) ⊂ U(N) we can compute
the dimension of the moduli space of vacua using the hyper-Kähler quotient
construction above to get

dimRMξ,I(QΓ, R)(6.32)

= dimR

(
(OT+

∩ RepQop
Γ
(R))× PG(R)C × (SI ∩ RepQop

Γ
(R))

)
− 4 dimR PG(R)

= dimRRepQop
Γ
(R)− 2 dimR T (R) + dimR

(
z(I−) ∩ RepQop

Γ
(R)

)
− 2 dimR G(R)

= dimR

(
z(I−) ∩ RepQop

Γ
(R)

)
+ 2 �N ·

(
AΓ

)
 �N

− 2

rΓ∑
�=0

N� (N� + 1) .

For Sasakian quivers this dimension is always a multiple of four.

Nilpotent cones. On imposing Γ-equivariance, one generically encoun-
ters further phenomena. The Γ-equivariance of C2 generally requires T+ = 0
and therefore the Casimir invariants of T+ all vanish; the corresponding
spherically symmetric instanton solutions are then regular at r =∞. The
only elements C2 of g

C which have vanishing Casimir elements are nilpo-
tent elements. For g = u(N), one can conjugate any N ×N complex matrix
to its Jordan normal form which for a traceless nilpotent matrix takes a
block diagonal form J+ = diag(Jd1

, . . . ,Jdm
) where Jdp

for p = 1, . . . ,m is



Sasakian quiver gauge theories 871

a regular nilpotent dp × dp matrix of the form

(6.33) Jdp
=

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1
0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
with (Jdp

)dp=0, whose centralizer is generated by Jdp
, (Jdp

)2, . . . , (Jdp
)dp−1;

here we have decomposed N =
∑m

p=1 dp into integers satisfying d1 ≥ d2 ≥
· · · ≥ dm > 0. Note that �d = (d1, . . . , dm) defines an ordered partition of N
and hence corresponds to an embedding of SU(2) in U(N) with nilpotent
generator J+; that every nilpotent element arises in this way is a conse-
quence of the Jacobson-Morozov theorem.

In particular, there is a unique regular nilpotent element JN , corre-
sponding to the irreducible representation of SU(2) on CN with partition
�d = (N), which has vanishing Casimir invariants and which generates the
regular nilpotent orbit OJN

of maximal dimension. The closure of this orbit
is the nilpotent coneN = OJN

, of dimension dimCN = dimC GC − dimC T C,
consisting of all nilpotent elements of gC, each generating finitely many or-
bits; the irreducible subvariety N has singularities corresponding to non-
regular nilpotent orbits. Among these orbits there is the unique subregular
nilpotent orbit whose closure contains all non-regular nilpotent orbits and
has complex codimension two in N ; it corresponds to the subregular rep-
resentation of SU(2) in U(N) with �d = (N − 1, 1) and appears as the locus
of Kleinian quotient singularities C2/ZN in N [37] (the cone over S3/ZN ).
On the other hand, the element T+ = 0 generates the unique nilpotent orbit
consisting of a single singular point in N . The minimal nilpotent orbit is the
unique nilpotent orbit of smallest non-zero dimension, which is generated
by the highest root vector of gC and thereby consists of N ×N matrices
H of rank one with H2 = 0; it corresponds to the SU(2) embedding with
�d = (2, 1, 1, . . . , 1) and is the cone over SU(N)

/
S
(
U(N − 2)×U(1)

)
of com-

plex dimension 2(N − 1).
It follows that our moduli space (6.31) in this case is the singular variety

(6.34) M0,I(QΓ, R) ∼= N ∩ SI ∩ RepQop
Γ
(R)

of dimension given by the formula (6.32); the appearence of orbifold sin-
gularities here is not surprising given our earlier observation concerning the
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stacky nature of the quotient parameterizing the vacuum moduli. The struc-
ture of the singular locus and the dimension of the moduli space now depend
on the embedding I of su(2) in RepQop

Γ
(R) that determines the transverse

slice SI to the orbit of the nilpotent element I+, and on the particular
Sasakian quiver QΓ. In general, our moduli spaces generically have higher
dimension than the naive (non-equivariant) prediction because of two non-
standard features: The representation varieties RepQop

Γ
(R) ⊂ u(N) contain

the Lie algebras (5.6) as proper subalgebras, while the quotient defining the
moduli space is taken with respect to the broken gauge group (3.9) which is a
proper subgroup of U(N). For example, if I = 0 is the trivial representation
corresponding to the partition �λ = (1, 1, . . . , 1), then S0 = gC and hence the
moduli space is simply the cone

(6.35) M0,0(QΓ, R) ∼= N ∩ RepQop
Γ
(R)

consisting of all Γ-equivariant nilpotent endomorphisms of VR; it has dimen-
sion

(6.36) dimRM0,0(QΓ, R) = 4 �N ·
(
AΓ

)
 �N − 2

rΓ∑
�=0

N� (N� + 1) .

Ak. For the cyclic group Γ = Zk+1 with k = 2q, the adjacency matrix of
the quiver (3.25) is given by aΓ��′ = δ�′� + δ�′,�+1 and the tensor product multi-
plicities arem��′

�′′ = δ�′′,�+�′ . By (6.13) the two-dimensional Γ-module (6.11)
decomposes into irreducible representations as C2

Γ = V0 ⊕ V1 so that

(6.37) C2
Γ ⊗ V� = V� ⊕ V�+1

for � = 0, 1, . . . , k; note that C2
Γ is not a self-dual representation of Γ. With

CQΓ
= 21Ck+1 −AΓ − (AΓ )
 the generalized Cartan matrix of the Sasakian

quiver QΓ, by (5.24) the dimension of the corresponding Nakajima quiver
variety is given by

(6.38) dimRXξ(QΓ, R) = 4 + 4

k∑
�=0

N�N�+1 .

It follows that all representations R of the Sasakian quiver in this case are
indecomposable and correspond to imaginary roots; the Nakajima quiver
variety is four-dimensional for irreducible quiver bundles (4.2) corresponding
to simple representations R with N� = N for some � ∈ {0, 1, . . . , rΓ} and
N�′ = 0 for �′ �= �.
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The respective summands in (6.37) correspond to the matrix pairs
(C1, C2) which can be decomposed analogously to (4.12)–(4.13) as

(6.39)

C1 = diag(ρ0, ρ1, . . . , ρk) and

C2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 φ1 0 · · · 0

0 0 φ2
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 φk

φk+1 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

with ρ� : R>0 → EndC(R�) and φ�+1 : R>0 → HomC(R�+1, R�) for � = 0, 1,
. . . , k. The complex Nahm equations determined by the complex moment
map μC from (6.19) read as

(6.40)
dφ�+1

dt
= φ�+1 ρ�+1 − ρ� φ�+1

in HomC(R�+1, R�) for t ∈ R>0 and � = 0, 1, . . . , k, while the real Nahm equa-
tions from μR in (6.20) are given by

(6.41)
dρ�
dt

+
dρ†�
dt

= φ�+1 φ
†
�+1 − φ†

� φ� −
[
ρ�, ρ

†
�

]
in EndC(R�) for t ∈ R>0 and � = 0, 1, . . . , k; here the boundary conditions
(6.23) require setting T+ = 0. Note the formal similarily between these equa-
tions and the constant F-term and D-term relations (4.26) and (4.27): In the
temporal gauge Zt = 0 the path ρ� is Hermitian, and the right-hand sides
of (4.26) and (4.27) are replaced with the corresponding radial variations
in (6.40) and (6.41).

By (6.32) the dimension of the corresponding Sasakian quiver variety is
given by

dimRM0,I(QΓ, R) = dimR

(
z(I−) ∩ RepQop

Γ
(R)

)
(6.42)

+ 2

k∑
�=0

N� (N�+1 − 1) .

In particular, when N� = 1 for all � = 0, 1, . . . , k (so that N = k + 1) this
dimension formula becomes

(6.43) dimRM0,I

(
QΓ , V̂

)
= dimR

(
z(I−) ∩ RepQop

Γ
( V̂ )

)
,
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whereas the real dimension of the nilpotent cone N in sl(k + 1,C) is 2k (k +
1). Let us examine some particular cases for illustration.

For the trivial representation I = 0, the moduli space has dimension
4(k + 1) ≥ 8 and it contains the BPST-type instanton solutions from [18,
Sect. 5], i.e. the model solution (6.22) with Ta = 0, λ > 0 and Ja the gen-
erators of the regular embedding of the group SU(2) into SU(k + 1); this
four-parameter family lies in the subcone C(S3/Zk+1) along the subregular
orbit of the equivariant nilpotent cone M0,0

(
QΓ , V̂

)
= N ∩ RepQop

Γ

(
V̂
)
in

the complex Lie algebra sl(k + 1,C).
Now let us consider the regular representation I = Ireg of SU(2) in

SU(k + 1). To determine the centralizer z(I−) in RepQop
Γ
( V̂ ) in this case,

we need to determine the space of matrices (6.39) which commute with the
nilpotent matrix Jk+1 from (6.33). It is easy to see that the general form
of such matrices is given by C1 = ρ1Ck+1 and C2 = φJk+1 for arbitrary
ρ, φ ∈ C; hence the moduli space in this case is four-dimensional. Upon in-
tersecting with the nilpotent cone N in sl(k + 1,C), we expect to see the
singular locus C2/Zk+1 by Brieskorn’s theorem [37]. This can be checked
directly: It remains to quotient the space (ρ, φ) ∈ C2 by the commutant sub-
group of SU(2) in SU(k + 1), which in this case is simply the center Zk+1

of SU(k + 1) and hence the moduli space is biholomorphic to the orbifold
singularity

(6.44) M0,Ireg

(
QΓ , V̂

) ∼= C
(
S3

/
Zk+1

)
.

This is in marked contrast to the non-equivariant case where the moduli
space would consist of just the single element I+. The model solution (6.22),
with Ta = 0, λ = 0 and Ja the generators of the regular embedding of SU(2),
lives in this moduli space. Recall that this was precisely the situation for the
solution (6.7); in this sense the ’t Hooft and BPST instantons are “equiva-
lent” for fixed PG(R) = SU(N). Moreover, for the minimal charge instantons
and suitable boundary conditions, by taking a trivial Γ-action one can ex-
tend instantons from R4 to R4/Γ and its deformation Mξ, giving the same
four-dimensional moduli space. On the other hand, by an appropriate choice
of non-trivial Γ-action on the rank N vector bundle E → Mξ and suitable
embedding of SU(2) in SU(N) at infinity, one obtains BPST-type instan-
tons on C2/Γ in a four-dimensional moduli space via both ADHM and Nahm
equations.

A completely analogous calculation shows that for the subregular rep-
resentation I = Isubreg the dimension of the moduli space is equal to 8, and
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upon dividing by the commutant subgroup the moduli space can be de-
scribed topologically as the cone

(6.45) M0,Isubreg

(
QΓ , V̂

) ∼= C
(
SU(3)

/
S(U(1)×U(1))

)
.

One can carry on with smaller representations of SU(2) whose centralizers
have complex dimension two or more; in general the commutant subgroup
of SU(k + 1) is a Lie group of rank �(�λ )− 1, where �λ is the partition corre-
sponding to the SU(2) embedding I, and it is abelian if and only if the parts
of �λ are all distinct integers. The construction continues until we reach the
trivial representation I = 0 with maximal moduli space dimension 4(k + 1).
When some N� > 1 one encounters moduli spaces of even higher dimensions.

Non-abelian affine Toda field theory. We have found that imposing
Zk+1-equivariance on the matrix pairs (C1, C2) yields matrices (6.39) and
reduces the anti-self-duality equations on C2/Zk+1 to the equations (6.40)–
(6.41). With N� = 1 for all � = 0, 1, . . . , k, the equation (6.40) can be written
as

(6.46)
d log φ�+1

dt
= ρ�+1 − ρ� .

By taking ρ�, φ� ∈ R (where Hermiticity of C1 is automatic in the temporal
gauge Zt = 0), differentiating (6.46) with respect to t and using (6.41) we
get the equations

(6.47) 2
d2 log φ�+1

dt2
= (φ�+2)

2 − 2 (φ�+1)
2 + (φ�)

2

which are the equations of the affine Toda lattice associated with the Âk-
type Lie algebra for rotationally symmetric fields in two-dimensions, see
e.g. [38, App. A]. These equations are explicitly integrable and their solu-
tions are parameterized in terms of 2(k + 1) arbitrary constants, where the
integrability is based on the underlying group theory structure and the so-
lutions can be expressed as particular matrix elements in the fundamental
representation of SU(k + 1). Imposing the requirements that these solutions
vanish as t → ∞ and that they admit the appropriate pole structure (6.24)
at t = 0 reduces the number of free parameters accordingly. For example, the
2(k + 1)-parameter family of solutions presented in [38, eqs. (A31)–(A33)]
vanish at t =∞ and are regular at the origin t = 0; for generic values of these
parameters the solutions correspond to the trivial representation I = 0 of
SU(2). Solutions with residues at t = 0 defining non-trivial representations
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of SU(2) in SU(k + 1) require fixing some of these parameters appropriately.
All of this agrees with our analysis of the moduli space of solutions above
for the Âk-type quiver gauge theory.

For N� > 1, our equations (6.40)–(6.41) are a variant of non-abelian
affine Toda lattice equations; however, they do not coincide exactly with the
existing non-abelian generalizations considered previously in the literature,
see e.g. [39]. Nevertheless, our equations have a Lax pair and zero curvature
presentation from their origin as anti-self-duality equations in four dimen-
sions, and in the abelian limit they coincide with the affine Toda lattice
equations; hence we may refer to (6.40)–(6.41) as non-abelian affine Toda
lattice equations. We also have an explicit description of their moduli spaces
of solutions as real slices of the (singular) hyper-Kähler moduli spaces of our
Sasakian quiver gauge theories. This description may have important uses
as generalizations of the standard conformal two-dimensional Âk Toda field
theories which are well studied in the literature. In particular, our approach
is reminescent of the recent AGT duality [40, 41] which relates them to
four-dimensional N = 2 superconformal quiver gauge theories of Âk-type.

An quiver gauge theory. In the non-equivariant case Γ = {1}, Kron-
heimer’s moduli spaces of SU(2)-invariant U(N)-instantons on C(S3) with
Ta = 0 can be regarded in certain cases as particular classes of Nakajima
quiver varieties associated to a linear An quiver (4.28) for some n ≤ N de-
termined by the SU(2) embedding I [29, Sect. 8]; the identification is based
on the ADHM transform of instantons on R4. The ADHM moduli space is
itself a quiver variety based on the Jordan quiver

(6.48) • 		

which is the oriented graph of the Â0 Dynkin diagram corresponding to
the k = 0 limit of the cyclic group Zk+1; the representation space of the
corresponding double quiver is HomC(WQ,C

2 ⊗WQ) where WQ
∼= CN . The

Kronheimer moduli space is constructed from the SU(2)-invariant part of
HomC(WQ,C

2 ⊗WQ), in much the same way that the representation space
(5.3) parameterizes Γ-equivariant instantons on R4. Now we decompose the
vector space WQ into irreducible representations of SU(2) on C� as

(6.49) WQ =

n⊕
�=1

Q� ⊗ C� with Q�
∼= Cv� ,
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where the dimension vector �v = (v1, . . . , vn) represents the SU(2)-module
structure of the instantons at the origin. From the Clebsch-Gordan de-
composition (6.30) we have C2 ⊗ C� = C�−1 ⊕ C�+1, and hence by Schur’s
lemma HomSU(2)(WQ,C

2 ⊗WQ) coincides with the representation variety of
the double of the An quiver (4.28). To accomodate a non-trivial holonomy
of the anti-self-dual connection at infinity which is specified by an SU(2)
embedding I corresponding to an ordered partition �λ of N , we consider
the corresponding framed quiver with framing nodes specifying a represen-
tation WS of SU(2) in U(N) with S�

∼= Cw� , where the dimension vector
�w = (w1, . . . , wn) labels the number 0 ≤ w� ≤ N of parts of �λ with λi = �
for � = 1, . . . , n; then

(6.50) N =

n∑
�=1

�w� and �(�λ ) =

n∑
�=1

w� .

We denote this framed Nakajima quiver variety by X0(QAn
;Q,S) ∼= N ∩ SI ;

the dimension vectors �v and �w obey certain consistency relations with the
nilpotent orbits in N which are described in [29, Sect. 8].

In the Γ-equivariant case, we have to take the intersection (6.34). More-
over the roles of the vector spacesWQ andWS are interchanged: The SU(2)-
module WQ now describes the behaviour of the instanton connection at in-
finity, while WS describes the SU(2)-module structure of its regular value
at the origin r = 0. Demanding as usual that the SU(2) representation fit
into the Γ-equivariant structure, it follows that our moduli space admits a
presentation as the subvariety

(6.51) M0,I(QΓ, R) ∼= X0(QAn
;Q,S) ∩ RepQop

Γ
(R)

of Γ-equivariant maps in a framed Nakajima quiver variety associated to a
linear An quiver. This gives a realization of the vacuum states of the Sasakian
quiver gauge theory in the Higgs moduli spaces of certain An quiver gauge
theories.

Because of the role reversal of boundary conditions, we cannot interpret
this presentation as an ADHM matrix model of the type which arises from
systems of Dp–D(p+ 4) branes. Instead, as the scalar fields Za for a = 1, 2, 3
have a Nahm pole boundary condition parameterized by the partition �λ,
we may give an (indirect) interpretation of our moduli of Nahm data in
terms of configurations of Dp–D(p+ 2)–D(p+ 4) branes following [19]. For
this, we consider a system of N parallel D(p+ 2)-branes wrapping C(S3/Γ)
which transversally intersect �(�λ ) D(p+ 4)-branes with λi D(p+ 2)-branes
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ending on the i-th D(p+ 4)-brane at the apex r = 0 of the cone C(S3/Γ)
for i = 1, . . . , �(�λ ). The D(p+ 2)-branes support a four-dimensional N = 2
quiver gauge theory based on the An quiver, with scalar fields Za for a =
1, 2, 3 along the D(p+ 4)-branes such that (C1, C2) ∈ HomSU(2)(WQ,C

2 ⊗
WQ); the gauge group at the �-th node of the quiver (4.28) is U(w�) for
� = 1, . . . , n. Due to the orbifold singularity at r = 0, there are an additional
N� constituent fractional Dp-branes probing the D(p+ 4)-branes. It would
be interesting to give a more direct picture in terms of the original scalar
fields Xa from the SU(2)-equivariant dimensional reduction over the cone
C(S3/Γ).
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[1] L. Alvarez-Cónsul and O. Garćıa-Prada, Dimensional reduction and
quiver bundles, J. Reine Angew. Math. 556 (2003) 1. arXiv:math-dg/
0112160.

[2] O. Lechtenfeld, A. D. Popov, and R. J. Szabo, Quiver gauge theory and
noncommutative vortices, Prog. Theor. Phys. Suppl. 171 (2007) 258.
arXiv:0706.0979 [hep-th].

[3] B. P. Dolan and R. J. Szabo, Equivariant dimensional reduction
and quiver gauge theories, Gen. Rel. Grav. 43 (2010) 2453. arXiv:
1001.2429 [hep-th].

[4] M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instan-
tons, arXiv:hep-th/9603167.

[5] C. V. Johnson and R. C. Myers, Aspects of type IIB theory on ALE
spaces, Phys. Rev. D 55 (1997) 6382. arXiv:hep-th/9610140.



Sasakian quiver gauge theories 879

[6] M. R. Douglas, B. R. Greene, and D. R. Morrison, Orbifold resolution
by D-branes, Nucl. Phys. B 506 (1997) 84. arXiv:hep-th/9704151.

[7] S. S. Gubser, N. A. Nekrasov, and S. L. Shatashvili, Generalized coni-
folds and 4-dimensional N = 1 superconformal field theory, JHEP 9905
(1999) 003. arXiv:hep-th/9811230.

[8] M. R. Douglas, B. Fiol, and C. Romelsberger, The spectrum of BPS
branes on a noncompact Calabi-Yau, JHEP 0509 (2005) 057. arXiv:
hep-th/0003263.

[9] A. D. Popov and R. J. Szabo, Quiver gauge theory of non-abelian vor-
tices and noncommutative instantons in higher dimensions, J. Math.
Phys. 47 (2006) 012306. arXiv:hep-th/0504025.

[10] B. P. Dolan and R. J. Szabo, Dimensional reduction, monopoles and dy-
namical symmetry breaking, JHEP 0903 (2009) 059. arXiv:0901.2491
[hep-th].

[11] R. J. Szabo and O. Valdivia, Covariant quiver gauge theories, JHEP
1406 (2014) 144. arXiv:1404.4319 [hep-th].

[12] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler
quotients, J. Diff. Geom. 29 (1989) 665.

[13] P. B. Kronheimer, A Torelli-type theorem for gravitational instantons,
J. Diff. Geom. 29 (1989) 685.

[14] P. B. Kronheimer and H. Nakajima, Yang-Mills instantons on ALE
gravitational instantons, Math. Ann. 288 (1990) 263.

[15] P. B. Kronheimer, Instantons and the geometry of the nilpotent variety,
J. Diff. Geom. 32 (1990) 473.

[16] P. B. Kronheimer, A hyper-Kählerian structure on coadjoint orbits of a
semisimple complex group, J. London Math. Soc. 42 (1990) 193.

[17] R. Bielawski, Hyper-Kähler structures and group actions, J. London
Math. Soc. 55 (1997) 400; On the hyper-Kähler metrics associated to
singularities of nilpotent varieties, Ann. Global Anal. Geom. 14 (1996)
177.

[18] T. A. Ivanova, O. Lechtenfeld, A. D. Popov, and R. J. Szabo, Orbifold
instantons, moment maps and Yang-Mills theory with sources, Phys.
Rev. D 88 (2013) 105026. arXiv:1310.3028 [hep-th].



880 O. Lechtenfeld, A. D. Popov, and R. J. Szabo

[19] D. Gaiotto and E. Witten, Supersymmetric boundary conditions in
N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789.
arXiv:0804.2902 [hep-th]; S-duality of boundary conditions in N =
4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721.
arXiv:0807.3720 [hep-th].

[20] C. P. Boyer and K. Galicki, Sasakian Geometry, Oxford University
Press, 2008.

[21] A. D. Popov and R. J. Szabo, Double quiver gauge theory and
nearly Kähler flux compactifications, JHEP 1202 (2012) 033. arXiv:
1009.3208 [hep-th].
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