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We present a simple algebraic construction for all the small resolu-
tions of the SU(5) Weierstrass model. Each resolution corresponds
to a subchamber on the Coulomb branch of the five-dimensional
N =1 SU(5) gauge theory with matter fields in the fundamental
and two-index antisymmetric representations. This construction
unifies all previous resolutions found in the literature in a single

framework.
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In this paper we describe a correspondence between two mathematical ob-
jects that are of great physical interest in the string/M-theory context. On
the one hand, given a Lie algebra g and a (not necessarily irreducible) repre-
sentation R, we consider the partitioning of the fundamental Weyl chamber
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of g by certain codimension one interior walls that we will define later. The
Weyl chamber has the interpretation as the Coulomb branch of certain su-
persymmetric quantum field theories, and the interior walls are the Higgs
branch roots where the Coulomb branch and the mixed branch intersect. On
the other hand, we consider the network of small resolutions for the Weier-
strass model of type g over a base B of complex dimension two or three. The
partitioning of the fundamental Weyl chamber has an exact correspondence
with the network of resolutions. This correspondence can be most easily mo-
tivated from M-theory compactifications when the total space is an elliptic
Calabi-Yau threefold, but the correspondence is much more general.

1.1. Coulomb branches in M-theory compactifications

M-theory compactified on a Calabi-Yau threefold leads to a five-dimensional
supergravity theory with eight supercharges coupled to vector multiplets and
hypermultiplets [CCDF, FKM, AFT, Wi|. We focus on the five-dimensional
supersymmetric quantum field theories with eight supercharges discussed in
[MS, IMS].

The Coulomb branch is the vacuum moduli space where the gauge sym-
metry algebra g is completely broken to its Cartan subalgebra h by the
vacuum expectation value (vev) of the real adjoint scalar ¢ in the vector
multiplet. After modding out the Weyl group of g, we can take the real
scalar field ¢ to be in the fundamental Weyl chamber of the Cartan subal-
gebra. Namely, we have (¢, «;) > 0 for all the simple roots ;.

The hypermultiplet transforms in a given representation R of the gauge
symmetry algebra g. At a generic point on the Coulomb branch, the hy-
permultiplet fields are all massive due to the nonzero vevs of the vector
multiplet scalars ¢. However, over some special codimension one loci on the
Coulomb branch, some hypermultiplet fields become massless and one can
turn on their vevs to go to the mixed Coulomb-Higgs branches. An hyper-
multiplet field with weight w; in the representation R becomes massless over
the codimension one interior walls defined by

(gb, wi) = 0.

We use the word “interior” to remind the readers that these walls are in
the bulk of the Coulomb branch where the hypermultiplet fields become
massless, as opposed to the boundaries of the Coulomb branch where W-
bosons become massless. These codimension one interior walls are sometimes
called the Higgs branch roots on the Coulomb branch in the literature.
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Given a gauge algebra g and a representation R, the codimension one
interior walls partition the fundamental Weyl chamber into several different
subchambers. Each subchamber of the Coulomb branch is called a phase of
the Coulomb branch and is uniquely defined by a collection of signs of the
scalar products (¢, w;) for all the weights w; of the representation R.

1.2. Incidence geometries from Lie algebra representations

The mathematics behind the determination of the number of phases of the
Coulomb branch can be expressed as an enumerative problem for the in-
cidence geometry defined by a Lie algebra g and a representation R of g.
Let b be the Cartan subalgebra of g. We recall that roots of g and weights
of R are elements of h* and each element of h* defines through its kernel a
hyperplane in . We call the hyperplanes defined by the weights of the repre-
sentation R the interior walls and the hyperplanes defined by the roots of g
the boundary walls. The interior walls further intersect at some codimension
two loci, and so on. The collection of interior and boundary walls and their
successive intersections give the Weyl chamber an incidence structure. We
will denote this incidence geometry by

(g, R).

For example, the incidence geometry (Az,3) and (As,4 @ 6) studied in
[ESY] for the SU(3) and SU(4) model are shown in Figure 1.

Let ng be the number of d-dimensional loci from the intersections of
interior walls. We define a polynomial

Pyr(t) = no +nit + not? + -+ + nt".

We always have ng = 1 since all the interior walls intersect at a unique point:
the origin of the Weyl chamber. The integer n, is the number of subchambers
partitioned by the interior walls from the representation R and n,_; is the
number of interior walls.

In the two example shown in Figure 1, we have two chambers C* sep-
arated by one interior wall Wy, for (Ag,3). The resulting generating poly-
nomial is Pa, 3(t) = 1+t + 2t2. In the (A3,4 ® 6) example, we have four
subchambers Cic, ng = 4, three interior walls W+, W©°, ny = 3, one line L,
n1 = 1, and one point O, ng = 1 giving Pa, 4e6(t) = 1+t + 3t% + 4t3.
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Figure 1. Left: The (A2, 3) incidence geometry [ESY], or equivalently, the
Coulomb branch for SU(3) gauge theory with matter in the 3 representation.
The Weyl chamber is spanned by the two vectors p! and ;2 and is divided
by the interior wall W, into two subchambers C*. The interior wall W,
is the Higgs branch root where matter fields become massless. The two
boundary walls are the lines generated by ' and p? where the W-bosons
become massless. Right: The (As,4 @ 6) incidence geometry [ESY]. The
Weyl chamber is the three-dimensional cone spanned by the vectors ', 2,
13, The three interior walls are W+, WO W~ where some matter fields
become massless. The Coulomb branch is partitioned into four subchambers
Ci by the three interior walls, which further intersect at the line L lying at
the bottom of the Weyl chamber. The three boundary walls are spanned by
any pair of the three u’s.

1.3. Coulomb branches and resolutions of elliptic fibrations

The correspondence we will describe in the current paper is that for certain
choices of g and R, the incidence geometry (g, R) can be obtained from
an elliptic fibration with singular fibers in codimension one that collide in
codimension two.

The types of singularities of an elliptic fibration over a codimension one
locus are classified by Kodaira [Kod]. Given a base B, the elliptic fibration
with a given singular fiber over a codimension one locus D of B can be en-
gineered systematically using the Weierstrass model with coefficients having
appropriate vanishing orders over D. This is a direct consequence of the
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Tate’s algorithm [Tat] and for that reason such Weierstrass models are said
to be in the Tate forms [KMSNS]. Tate forms were first introduced in the
physics literature in the context of F-theory [Vaf, MV1, MV2, BIKMSV].
For recent works on elliptic Calabi-Yau threefolds see [Ca, DKW, JT, Cat].
Many interesting questions on elliptic fibrations can also be discussed using
different starting points than a Weierstrass model [BKMT, AE2, EFY, MP)]
or considering the weak coupling limit [Sen, CDE, CDW, AE1l, AE2, ES].

A Weierstrass model in the Tate form is labeled by a choice of a Ko-
daira fiber and from that input a Lie algebra g and a representation R can
be uniquely deduced [BIKMSV, GM]. The representation is due to the pres-
ence of singularities in codimension two and can be understood in string
theory from the picture of branes intersecting at angles: gauge fields live on
the brane (codimension one singularities) while matter fields are localized at
the intersection of these branes. In the simplest case, the representation can
be determined by the Katz-Vafa method [KV]. More generally, the repre-
sentation can be determined by studying the intersection numbers between
curves in the fiber after resolving the singularities [MSN, MT]. Geometri-
cally, these matter fields come from the collisions of codimension one singular
fibers [Mir, AG, BJ] and the dictionary between collisions of singularities and
the assignment of representations have been shown to be compatible with
anomaly cancellation [BJ, GM].

For the SU(N) Weierstrass model in the Tate form I}, with general
coefficients a; ;, the codimension two rank-one fiber enhancements are!

An_1 — An,

(1.1)

An—1 — Dn,

which gives rise to the fundamental ([1) and the two-index antisymmetric
representations ([]). This will be the case we focus on.

Given the Lie algebra g and the representation R arising from the rank-
one enhancements described above, we consider all the small resolutions of
the Weierstrass model in the Tate form corresponding to the gauge algebra
g. This network of small resolutions fits in nicely into the incidence geometry
(g, R). In particular, the number of subchambers n, is equal to the number
of different small resolutions. This correspondence was recently discussed
in [HLSN, ESY, HLMSN, CGKP]. The deformation side of the story was
recently discussed in [GHS1, GHS2].

!The type I§ is special. The fiber enhancements are I§ —15 and 15 —II1. Hence
on the representation theory side we only get the fundamental representation 2.
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From the M-theory compactification point of view, this correspondence
comes as no surprise. At each step of the blow up, one introduces an ambi-
ent projective space whose size is part of the Kéhler moduli of the internal
Calabi-Yau manifold. In M-theory compactification, the real scalars in the
vector multiplet parametrize the Kahler moduli space of the internal Calabi-
Yau manifold [CCDF]. Therefore, the Coulomb branch, which is mathemat-
ically described by the incidence geometry (g, R), should match with the
network of blow ups. In particular, a sequence of blow ups on the geome-
try side should correspond to a trajectory on the Coulomb branch from the
origin to one of the subchambers. Thus, the number of distinct resolutions
should correspond to number of subchambers on the Coulomb branch.

In a previous paper [ESY], we have studied explicitly this correspon-
dence for Weierstrass models of type I3, I3, and Ij. The corresponding gauge
theories have SU(2) gauge symmetry with fundamental representation 2,
SU(3) gauge symmetry with matter in the fundamental representation 3 2,
and SU(4) gauge symmetry with matter in both the fundamental 4 and the
antisymmetric representations 6.

In the current paper we consider the phenomenologically interesting
SU(5) model, namely, the Weierstrass model of the type If, with funda-
mental representation 5 and the antisymmetric representation 10 from the
rank-one enhancements. The network of small resolutions is much more com-
plicated and richer than the lower rank cases. From the two representa-
tions we obtain nine interior walls that define twelve subchambers in the
Weyl chamber. The adjacency of subchambers of the incidence geometry
(A4,5 @ 10) is represented in Figure 6, which was first obtained in [HLSN].
The twelve subchambers are divided by nine interior walls, which intersect
at nine planes. The nine planes further intersect along four lines, which all
intersect at a the origin of the Weyl chamber. We summarize the incidence
geometries in the following table:

Weierstrass model | g R Polynomial Py r ()
I A 2 |1+t
I As 3 14t + 2t
I5 A3 | 406 | 1+t+ 3% + 4¢3
I: Ay [5@10 [ 1+ 4t+ 92 + 9% + 127

2Note that the two-index antisymmetric representation for SU(3) is the same
as the anti-fundamental representation, which defines the same interior walls as
the fundamental representation. Therefore it suffices to consider the fundamental
representation only.
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The connection between the Weyl groups with algebraic varieties and their
birational transformations has been discussed in [Mat]. See also [Nik, Slo,

1.4. Small resolutions of the SU(5) model

The SU(5) model is usually defined by small resolutions of a singular Weier-
strass model [EY]. From a purely mathematical point of view, the SU(5)
model is interesting because it describes an elliptic fibration with a rich
structure of fiber enhancements and flop transitions. The first example of
explicit algebraic crepant resolutions was constructed in [EY] where six dif-
ferent small resolutions connected by flop transitions were obtained.

Soon after [EY], another approach was introduced in [KMW] to describe
the resolutions of the SU(5) model. The authors use a toric description
following [BIKMSV]. The resolutions obtained this way are usually called
“toric resolutions” of type I, II, and III, labeled by their Stanley-Reisner
ideal. More recently, a new type of blow up were introduced to discuss the
properties of the SU(5) model [HLSN]. As a by-product of our analysis,
we will clarify how these different resolutions are related to each other in
a unified fashion. Other resolutions of singularities of elliptic fibrations are
studied in [LSN, MCPRT, TW].

1.5. Summary of results

We give a simple construction for all the small resolutions of the SU(5)
model. Our main result is the network of resolutions in Figure 2, which
gives eighteen resolutions, and the weighted blow ups in Section 5.5 for the
other two resolutions %’%,3,%’%’2. After identifying isomorphic resolutions,
there are in total twelve resolutions shown in Figure 5. The number of reso-
lutions exactly matches with the number of subchambers n4 of the incidence
geometry (A4, 5 @ 10). In the physics language, the twelve resolutions corre-
spond to the twelve subchambers on the Coulomb branch of the SU(5) gauge
theory with fundamental and two-index antisymmetric representations.

As a by-product, we obtained the codimension three fibers for the twelve
resolutions in Table 2, 4, 5, 6. The codimension three fibers for the new
resolutions %1 5 and %7 3 match with those of the phases (6.I) and (6.1I)
from the box graphs [HLMSN]

Flops between different resolutions are manifest from the ramifications
of branches in the network of resolutions in Figure 2. At each step of blow
ups, different choices of the blow up center result in different branches of the
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network of resolutions. Partial resolutions, corresponding to the branching
points in the network of resolutions, has conifold-like singularities fibered
over certain subvarieties of the base.

We also clarify some confusions of the SU(5) resolutions in the literature.
We show that the toric models of type I and II can not only be realized as
sequences of blow ups, but are already obtained in the resolutions of [EY].
More precisely, the toric model of type I is isomorphic to %; 3 and the toric
model of type II is isomorphic to %» 3. As to the type III model, it can be
obtained by a sequence of weighted blow ups as in Section 5.5.

1.6. Organization of the paper

We summarize the main result in the network of resolutions in Figure 2.
In Section 2, we describe the Coulomb branch of an SU(5) gauge theory
with matters in the representations 5 and 10. The mathematical description
is the incidence geometry (A4, 5 @ 10). In Section 3, we define the SU(5)
model and present the first two blow ups. In Section 4, we give explicit
constructions for %; ; in terms of sequences of blow ups. In Section 5, we
construct sequences of (weighted) blow ups for the three toric resolutions. In
Section 6, we explore the remaining resolutions from the partial resolutions
T, and Z5". In Section 7, we briefly summarize all the isomorphism between
resolutions.

Note added. After this paper appeared on arXiv, a related paper [BSN]
by Braun and Schéafer-Nameki came out. The authors discussed resolutions
of the SU(5) model using weighted blow ups in the special case of singu-
lar Calabi-Yau hypersurfaces in compact toric varieties. In particular, they
reproduced the fan diagrams presented in Section 5.4 of the current paper.
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Figure 2. The network of resolutions of the SU(5) model. Resolutions found
in [EY] are in blue while new resolutions are in red. Some of the resolutions
are isomorphic to each other and are therefore denoted by the same name.
For example, it can be shown that ;73'_'; =~ 7,t and will therefore both be
denoted by e%’i?,. In the above network we have not exhausted all the possible
partial resolutions, but it is already sufficient to obtain ten out of the twelve
resolutions. There are two more resolution %’%73, 93%2 that can be obtained
by weighted blow ups described in Section 5.5. The variables s, t,r, u,v are
defined in (3.18), (6.3), (6.13), (6.15). The variables 7, @, ¥ are obtained from

r,u,v by replacing y with —s, i.e. their Mordell-Weil duals.
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2. The Coulomb branch of the SU(5) model
2.1. Coulomb branches and incidence geometries

For definiteness we will consider the Coulomb branch of the five-dimensional
N =1 supersymmetric gauge theory, while a similar structure can also be
found in the classical Coulomb branch of the three-dimensional N' = 2 su-
persymmetric gauge theory.

In this section we consider the incidence structure of the Coulomb branch
of the five-dimensional N/ = 1 supersymmetric quantum field theory with
gauge symmetry g of rank r and hypermultiplets in the representation R.
The precise multiplicity, as long as nonzero, for each hypermultiplet will not
affect our analysis. The mathematical description of the Coulomb branch is
the Weyl chamber of g partitioned by several codimension one loci that we
will introduce in a moment.

Let a;, i =1,...,r, be the simple roots of g and u; be the dual basis of
the simple roots «; in the Cartan subalgebra b:

(2.1) (1, o) = 6ij.

Let ¢ be a vector in the Weyl chamber. Physically it is the real scalar field
in the vector multiplet. We can expand ¢ in the Weyl chamber as

(2.2) ¢=¢ipi, ¢i=0.
The Weyl chamber is then parametrized by (¢1,...,¢,) € RS,

2.1.1. Boundary and interior walls. The boundary wall on the Coulomb
branch labeled by the simple root «; is defined by the loci where

(2.3) ¢i = (¢, i) =0

for ¢ = 1,...,r. Physically, this is the codimension one loci where the W-
boson becomes massless and the gauge symmetry is enhanced.

On the other hand, the interior wall on the Coulomb branch labeled by
the weight w is defined by

(2.4) (6, w) = 0.

Physically, this is the codimension one loci where the hypermultiplet field
with weight w becomes massless. In the physics literature, the interior walls
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are called the Higgs branch roots where one can turn on the vevs for the
hypermultiplet fields to go to the mixed Coulomb-Higgs branch.

2.1.2. Phases of the Coulomb branch. The Coulomb branch is di-
vided into several different subchambers or phases by the interior walls.
Each subchamber is defined by a particular sign assignment for (¢, w;) for
all the weights w; in the representations R. The boundary walls, on the other
hand, are literally the boundary of the Coulomb branch so they do not divide
the Coulomb branch. Moving on to higher codimensions, the intersections
between the codimension one interior walls define several codimension two
loci on the Coulomb branch etc. The successive intersections between these
singular loci in each codimension then define the incidence geometry (g, R)
mentioned in the Introduction.

One of the main goals of the current paper is to match the Coulomb
branch, described by the incidence geometry (g,R), with the network of
resolutions Figure 2 in the case of the SU(5) model.

2.1.3. Choice of the representation R. As can be seen from the cur-
rent paper or [ESY], for Weierstrass model of type SU(N) 3 with gen-
eral coefficients a; j, the codimension two fiber enhancements are! either
SU(N) — SU(N +1) or SU(N) — SO(2N). From the Katz-Vafa method
[KV], the corresponding representations are the fundamental representa-
tion ([J) and the two-index antisymmetric representation ([1). Therefore, in
the context of M-theory compactified on elliptic Calabi-Yau threefolds, the
five-dimensional theories have SU(N) gauge group with matters in the fun-
damental and two-index antisymmetric representation from the geometric
data.

Surprisingly, as shown in [IMS] from a purely quantum field theory anal-
ysis, a UV complete N’ = 1 supersymmetric quantum field theory in five
dimension with gauge group SU(N) can only allow for matters in the fun-
damental and two-index antisymmetric representations, but no other repre-
sentations! The supersymmetric quantum field theories and elliptic fibrations
secretly put the same constraint on the possible representations from two
completely different analyses.

2.1.4. Quantum Coulomb branch. The above description is completely
classical and only relies on the representation theory. One might question

3To be more specific, we consider the type I3, Weierstrass model.

4For N = 2 we do not have the latter enhancement to SO(4). It follows that on
the representation theory side we only get the fundamental representation 2 for the
SU(2) model.
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whether the quantum Coulomb branch has a the same incidence structure
as the classical one. In the five-dimensional ' = 1 supersymmetric quantum
field theory, the exact prepotential F(¢) takes the following form [IMS]

(25)  F(6) = ymoTe(@) + 1)
1
5| 2 @l = Y [Gw)l
a:roots w:weights

Note that in particular the derivatives of the prepotential is not continuous
at the boundary walls (where (¢, @) =0) and at the interior walls (where
(¢, w) = 0). Therefore the quantum Coulomb branch also has singularities at
the boundary and the interior walls. It follows that the incidence structure
of the quantum Coulomb branch is still described by the incidence geometry

(g, R).
2.2. The SU(5) Coulomb branch

From the codimension two fiber enhancements of the SU(5) model, the
matters can be seen to be in the fundamental 5 and the two-index anti-
symmetric representations 10 by the Katz-Vafa method [KV] or by a direct
computation of the weights from the resolved geometry [MSN]. The precise
multiplicities for the hypermultiplets in each representation are not impor-
tant for the Coulomb branch structure, as long as they are nonzero. The
classical Coulomb branch of the SU(5) gauge theory is given by the Weyl
chamber of Ay.

We will use the following conventions for the representation theory. The
Dynkin labels for the simple roots of A4 are given by:

a1 = (27_17()70)1 Qg = (_1727 _170)7

2.6
(2:6) ag =(0,-1,2,—-1), ay4=(0,0,—1,2)

Let w? with ¢ =1,...,5 be the weights in the fundamental representation
of A4. Due to the traceless condition of A4, we have

(2.7) > wP =0

The simple roots can be expressed as

(2.8) o =wd —wdy, i=1,2,34
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The Cartan matrix is given by the scalar products (o, a;):

(2.9) Aij =

where we have normalized (o, ;) = 2. The weights of the fundamental and
antisymmetric representations of A4 are given in Figure 3.

The relevant representations here are the 5 and 10 representations. The
weights in 5 are

wP=[1000], wi=[-1100], wi=[0—110]

2.10
(2.10) w;=[00-11], wd=[000-1].

The weights in 10 are given by w? + w? with 1 <7 < j < 5. Explicitly they
are

wi®=1[0100], w3®=[1-110], wi®=[10-11],

[
2.11) wi®=[100-1], wi®=[-1010], w®=[-11-11],
' wi=[-110-1], w®=[0-101], w®=[0—-11-1],
wid =[00—-10]

The weights of these representations can be organized inside the box graph
in Figure 4.
There are nine nontrivial interior walls® in the Weyl chamber (¢1, ¢2, ¢3,

¢4) € Réo:

w3t —g1 + 32 + 203+ ¢a =0, wh : —¢1 — 202 + 263 + ¢4 =0,
wh i —¢1 — 2¢2 — 3h3 + da =0, w3®: 3¢y + Pa — P34+ 204 = 0,

(2.12) wi®: 3014 ¢ — 3 — 304 =0, wi%: —2p1 + ¢o + 43 + 204 = 0,
w1 —2¢1 + 2 — 3+ 204 =0, wr®: —2¢1 + o — B3 — 34 = 0,
wi® 1 —2¢1 — 4y — G5+ 2¢4 = 0.

The walls defined by other weights only intersect the Weyl chamber at the
origin so do not divide the Weyl chamber into different subchambers. These

“We use the same notation w? or w}® to denote both the weight itself and the

i

interior wall it defines in the Weyl chamber.
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nine interior walls divide the Coulomb branch into twelve different subcham-
bers in Table 1. The sign assignment for each subchamber is encoded in the
box graph with blue (yellow) being the positive (negative) weights.

wif =|(-1,0,1,0) wif=|(1,0,-1,1)
_a?’l - l—a4
wi® = (-1,1,-1,1) wi® =|(1,0,0,-1)
al M l a
—a2 —Q1
wi® =|(0,-1,0,1) wif =|(-1,1,0,-1)

[e

w%([]) - (Oa 07 _15 0)

Figure 3. Weight diagrams for the fundamental representation and antisym-
metric representation of Ay.
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w  |wd +wd|ws + wh|ws + w? ws w%o ’wflio w%o
5 10 10
wg’ wg + ’u;i’ wg’ + w? w3 wg )
5 10
wy  |w§ +wd Wy | Wig
5
w
w§ b

Figure 4. The box graph [HLMSN] for the weights of the fundamental and
antisymmetric representation. A given phase is characterized by specific
signs assignment to each box of the box graph.

The nine interior walls intersect at the following nine planes (Figure 7):

(2.13)

Pl =winwi®Nwi®: ¢1— s =2 — ¢3=0,
P?=wiNwi Nwi®: ¢o=—¢1 +2¢3 + ¢ps = 0,
PP =w§nuwi Nwd®: ¢3=—¢1 —2¢2+ ¢4 =0,
P'=wi’Nwi®: ¢1 = ¢ — d3 + 204 =0,

P? = wi®Nnwi®:
PS = wi® nwi®:
PT = winuwi?:
P8 = w3®

9_ 10 10 .
P’ =wg" Nwz™ :

DW4

10

1= 2 — g3 — 304 = 0,
P2 = —2¢1 — ¢3+ 294 = 0,
¢3 = —2¢1 + ¢2 + 204 = 0,
D o4 =301+ P2 —p3 =0,
s = =201 + g2 — ¢3 = 0.

The nine planes further intersect along the following four lines (Figure 8):

(2.14)

L'=P'nP’nPNP°NPT: ¢y =¢p3 =01 — s =0,
LP=P'NnPNnP ' NPSNP?: ¢ =cy=chs— 3 =0,

LP=P'NP%: ¢1=¢o=—d3+204 =0,
L'=PTNP": ¢3= s =201+ ¢2=0.



698 M. Esole, S.-H. Shao, and S.-T. Yau
Finally, the four lines intersect at the origin of the Weyl chamber (Figure 9):
(2.15) O=L'NnI*>nL*nrL*

The incidence structure of the SU(5) Coulomb branch with matters in 5 and
10 representations, or equivalently, the incidence geometry (A4, 5 @ 10), is
presented in Figure 6 to Figure 9.

2.3. Identification with the network of resolutions

We will now identify a subset of the incidence geometry (A4, 5 @ 10) with the
network of resolutions we constructed in the present paper. It would be in-
teresting to find all the small partial resolutions of the SU(5) model to com-
plete the match with the Coulomb branch incidence structure (A4, 5 & 10).
Even though we do not have the complete network of all the small partial
resolutions, the network in Figure 2 is sufficient to obtain all twelve final
resolutions.5

Let us start with the identification in codimension zero, namely, match-
ing the subchambers with the final resolutions. This is demonstrated in
Table 1 and can also be seen by comparing Figure 5 with 6.

In codimension one, the partial resolutions in Figure 2 are identified as
the interior walls in Figure 7:

wi = (77 2 Bre) U(F = %),
w;o = ‘72+’ wgo =5,
(2.16) wy =75, wi =95,
wi® = %0 U B,
W = B34 U Ba 3.

The U sign for the interior wall w$ means that it is divided into two compo-
nents by other interior walls, with one component corresponding to 91"’ =
% o and the other corresponding to 7, = B, 5. Similarly for w}® and wlC.
The isomorphism between 91+ and % o is explained in Section 7.

6The sequences of weighted blow ups for %5’3 and its dual are not presented in
Figure 2. They are discussed in Section 5.5.
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In codimension two, the partial resolutions in Figure 2 are identified as
the planes in Figure 8:

(2.17) PP=g% P’=9", P'=2.

In codimension three, the partial resolution &7 is identified as one of the
lines in Figure 9:
(2.18) L'=&,.

Finally, the origin O of the Coulomb branch is identified as the original
singular Weierstrass model &p:
(2.19) 0O = &p.

Thus we have successfully embedded the network in Figure 2 into the inci-
dence geometry (A4,5 @ 10). In the physics language, we identify the net-
work of resolutions with the Coulomb branch incidence structure.

In the rest of the paper we will construct the network in Figure 2 by
explicit blow ups.

Phases | a1 | a2 | a3z | a4 | Box graph | Resolution

1(1311) | o | o . Ei: B3
L]

2 (10.1I1) ° Em: P 3 [EY]
L]

3(8III) | e ° 12 EY]

4 (8II) | e %13 [EY]

5(6I1) | o | e B 3

6 (6.1) ° ° ° %%73
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Phases | a1 | ao | ag | a4 | Box graph | Resolution
7 (11.1V) o | o[ o B3,
I
8 (11.III) o | o B
9 (9.11I) . P31 [EY]
]
10 (9.11) . . T P2, [EY]
]
11 (7.I00) . P32 [EY]
12 (4100) | e o | o E B2

Table 1. Subchambers in the incidence geometry (A4, 5 @ 10). A blue (yel-
low) box means the corresponding weight is positive (negative) in that phase.
A dot under «; indicates that the subchamber has the boundary wall cor-
responding to «; as one of the components of its boundary. Physically that
means the W-boson with root a; can become massless in that phase. Six of
the twelve subchambers have been identified in [EY].

3. Definition of the SU(5) model

A Weierstrass model & — B over a base B is an elliptic fibration defined
as a hypersurface cut by a section of the line bundle ¢(3) ® 7*.#% in the
projective bundle P(0p & £? © #3) — B [Del, Nakl, Nak2, MSu]. Here .
is a section on the base B, ¢'(1) is the dual of the tautological line bundle
of the projective bundle, and &'(n) is its n-th tensor product. Projective
coordinates of the P2 projective bundle are denoted by [z : y : 2], where  is
a section of 0(1) ® 7*.£2, y is a section of O(1) ® 7.3, and z is a section
of 0(1). In terms of these projective coordinates, the Weierstrass model is
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Figure 5. Network of small resolutions of the SU(5) model. Each node cor-
responds to a resolution of the SU(5) model. It has a perfect match with
the intersections of subchambers of the SU(5) Coulomb branch with repre-
sentations 5 & 10 in Figure 6.

defined by
(31) & 2+ axyz +azyz® — (23 + apr’z 4 agx2? + ag2®) = 0.

The coefficients a; are sections of .Z*.

Each fiber is an elliptic curve with the neutral element of the Mordell-
Weil group given by the point z = x = 0. This defines a rational section of
the elliptic fibration. The rational section of the elliptic fibration defines
the Mordell-Weil group of the elliptic fibration. On each fiber, the opposite
of a point [z :y: z] with respect to the Mordell-Weil group, is the point
[ : —y — a1z — a3z : z]. This defines a fiberwise involutive automorphism of

& [Tat2]:
(3.2) 128 > E:xiy:z] =[x —y—a1x —azz: z|.

We will see that this involution induces flops between different small res-
olutions of &y. We will call this involution the Mordell-Weil involution of
the elliptic fibration. When extended to the non-singular fibers it defines a
birational map between different resolutions of the Weierstrass model [EY].
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Figure 6. Intersections of subchambers in the (A4, 5 & 10) incidence geom-
etry, namely, the SU(5) Coulomb branch with representation 5 @ 10. Each
circle represents a subchamber and each edge corresponds to a common in-
terior wall between two adjacent subchambers. Physically, the interior walls
labeled by a weight w; (the lines in the figure) correspond to the Higgs
branch roots where the matter fields with weight w; become massless.

Given a Weierstrass model, at any stage of the resolution process, we
denote by s the proper transform of (y + a1z + a3) and by ¢ the proper
transform of the cubic (2% + as2? + asz + ag):

(3.3) s:= Proper transform of (y+ a1z + a3)

t := Proper transform of (x3 + asx® + agr + ag).
When we need to be more precise, we use the notation s; and ¢; to mean the
proper transform of s and t after the k-th blow up. The Weierstrass mosdel
can then be rewritten as
(3.5) &: ys—t=0.

In this new notation, the Mordell-Weil involution is simply

(3.6) (Y, 8) = (=5, —y).
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p7 wé.o pé
10 10 10 10
w? wi P w3 wi
k p®
wy?

P2 w3 P
5 5
Wo Wy

Figure 7. Intersections of the nine (codimension one) interior walls w? and
w}0 at the nine planes P’ in the (A4,5 & 10) incidence geometry.

P Lo ps
p5\ / p2
o~ 2 — Pt — 1 -
P87 x PS
Po L Pt

Figure 8. Intersections of the nine (codimension two) planes in the incidence
geometry (A4, 5 @ 10).

The SU(5) model is usually defined by the following singular Weier-
strass model directly from Tate’s algorithm (in the z = 1 patch of the P?)
[BIKMSV]:

(3.7) & yly+aix+azaed) — (2% + agie02® + aszez + agseq) = 0.
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I3
I
L? O Lt
|
L4
Figure 9. Intersections of the four (codimension three) lines in the incidence
geometry (A4, 5 @ 10).

Here
(3.8) eg=20

is a codimension one locus in the base B where the fiber of &; becomes
singular. Throughout this paper we will assume a;; to be general sections
on the base. Many results in the current paper do not hold for special choices
of Q5.

The discriminant locus of & is

(3.9) A = e [—alP + O(ey)]
where
(3.10) P = az,lagg —a1a3,204,3 + a%a%js.

3.1. Resolution of singularities

A resolution of singularities is a map 7 : X’ — X between a nonsingular
variety X’ and a singular variety X such that the following conditions are
satisfied:

1) X’ is a nonsingular variety
2) 7 is a surjective birational map

3) 7 is a proper map

4) 7 is an isomorphism away from the singular locus of X

We will require our resolutions to be crepant and the projection of the
elliptic fibration X’ — B to the base B should define a flat morphism. Since
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we work over C, a morphism 7 : Y — B between irreducible varieties Y and
B with Y Cohen-Macaulay and B regular is flat if and only if the fibers are
all equidimensional. In our case, flatness will mean that the resolved elliptic
fibrations admit fibers that are always one-dimensional.

A birational map is said to be small when the exceptional locus is of
codimension two or higher. A birational map is said to be crepant when X
is normal and 7 preserves the canonical class, that is 7* Ky = Kx/. A small
resolution is always crepant, but a crepant resolution is not necessary small.
One way to construct a small resolution is to give a sequence of blow ups
with centers that are non-Cartier Weil divisors.

3.1.1. Notations for blow ups.. If we blow up X along the ideal gen-
erated by g; to obtain X', we write:

X (917---1gn,|€) X/,

where e defines a generator of the principal ideal corresponding to the ex-
ceptional locus of the blow up. Such a blow up is induced by the following
replacements

gr —egr, k=1,....,n.

where e is a section of O(FE). The g on the lefthand side are the original
generators of the ideal while on those on the righthand side are now the
projective coordinates of the projective bundle generated by the blow up. In
this economic notation we do not have to introduce an extra set of variables
to denote the new projective coordinates. On the other hand, the original
generators of the ideal are now expressed as egy.

Since we will often need successive blow ups, we will denote by Fj the
exceptional divisor of the k-th blow up and by ey a rational section of O(E}).
For the resolutions discussed in the current paper, the total transform of the
divisor ey = 0 in the base B is egejeseseq, which we will denote by w:

(3.11) w = egelegesey.

As we will see, all twelve resolutions of &y have the following universal
fibers over the following loci:

affine A4 over w = 0,
(3.12) affine As over w = P =0,

affine D5 over w = a1 = 0,
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The codimension two fiber then determines the relevant matter representa-
tions to be 5 and 10 by the Katz-Vafa method. In codimension three, we
will have more complicated (generally non-Kodaira) fibers.

3.2. First blow up of the SU(5) model and conifold singularities
The total space of the Weierstrass model & is singular at
(3.13) xr =1y =ep.

Therefore we first blow up the ideal (x,y, eg) to obtain the partial resolution
(531:

(3.14) g $Eyele) o

the proper transform of & is

(3.15) & y(y + arx + azgered)

— el(xS + a271601’2 + a4,3e%ela: + a675686%) =0.

The blow up introduces a P2 bundle (in the ambient space) with projective
coordinates [z : y : ep]. Altogether after the first blow up the ambient space
has projective coordinates
(3.16) leiz ey :z] [z:y:eg).
The proper transform &) is a partial resolution that will be the common
ancestor of all our resolutions with the exception of f%’%’?’ and f%’?{’z.

In order to understand the next possible steps, it is useful to rewrite &1
as follows
(3.17) & 1ys —eit =0,
where s and t are defined as:
(3.18) s=y+ax+ a372€1€(2] and =2+ eoQ(x, 616(2))

with

(3.19) Q(x1,x9) := a271x% + a4 3r172 + a6,5x§.
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In this form, it is clear that &1 has a conifold singularity at

(3.20) y=s=e =1t=0,
which is
(3.21) el =y =a1x = 932(:6 + ag 1€0) = 0.

This locus has two components:
(3.22) e1r=y=2=0, and ey =a1=y=2x+a1e) =0,

in codimension one and in codimension two, respectively. Blowing up e; =
x =y = 0 gives the binomial geometry leading to the six small resolutions
discussed in [EY]. Alternatively, we could also blow up y =e; =0 or s =
e1 = 0. These are the two small resolutions of ys — ejt =0 and are con-
nected to each other by a flop. The flop is induced by the Mordell-Weil
involution (y, s) — (—s, —y) which is an involutive symmetry of the partial
resolution &7.

Before doing the second blow up, let us take a closer look at the fiber
structure of &1. This will give a geometric guidance for the possible options
of the following blow ups. The singular fiber is located at the total transform
of the original divisor eg = 0, which is ege; = 0. The component ey = 0 gives
the node Cy that contains the section of the elliptic fibration. This node is
the proper transform of the original singular fiber:

(3.23) Co: ey=yly+az)—ex®=0.
The other component e; = 0 defines two nodes C+ in the fiber:
(3.24) Cit:ep=y=0 and Cj_-:e1=5=0.

These two components are exchanged by the Mordell-Weil involution of the
elliptic fiber (y,s) — (—s, —y). The two nodes Cj+ intersect only over the
codimension two locus ege; = a; = 0 in the base B. The intersection of Ci4
is x =y = e; = 0, which is contained in the center of the conifold ys = e;t.
The ideal (z,y,e1) is the center of the second blow up of [EY] that gives
the binomial variety %. Alternatively, blowing up C themselves give new
partial resolutions .7 % that we will study in the following. We summarize
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these three options for the second blow ups in the following tree diagram:

o) T

(3.25) (z,v, 60 %

&0 E flop

!
/
/

61) y— L7

A few comments are in order:

e 77T is obtained by blowing up the non-Cartier divisor C4 : (y,e1).
e .7~ is obtained by blowing up the non-Cartier divisor C_ : (s,eq).

e A is obtained by blowing up the ideal (z,y,e;). This is the second
blow up in [EY] with the ideal being the intersection of C4.

e 7% are mapped into each other under the Mordell-Weil involution
(y,s) — (—s,—y) (which is now a birational map) while 2 is invariant.
This involution is the origin of the Zy symmetry in the full network of
resolutions in Figure 2.

In the following sections we will explore the full network of resolutions

from the three partial resolutions %, 7+,
4. Esole-Yau small resolutions
In this section we will reproduce the six resolutions of the SU(5) model that

were previously obtained in [EY] from the partial resolution & discussed in
the last section:

4.1. The binomial structure of the 4 branch

The partial resolution £ is obtained by

/(x7 Y, 61’62)

g$7y7 60‘61) &
1 X

(4.1) A B

) 2
(4.2) B y(y+arx + aszeief)
= 6162(62363 + a27160x2 + a4,3elegx + a6,5e%68),
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in the ambient space with projective coordinates
(4.3) [eax : eay s eo] [z :y:en]
Note that % can be embedded into a hypersurface in A° as follows:
(4.4) B —— V(ys — vivaus) C AS,
with

(4.5) s=y+ax+ aggele%,

(4.6) vi =e1, vy=e9, v3= eax® + CL271€0$2 + CL4736163$ + a6,5e%eg =:t.

The network of resolutions from the Z branch immediately follows from the
binomial structure of V' (ys — v1vgvs). There are six resolutions obtained as
follows:

(37 U]|£2)

il

(4.7) B

We could also obtain the same six resolutions by exchanging the order of
the blow ups:

, V|l 0|l
(4.8) z (5vile) B Jwuill) B i)

We will present the explicit formulas for these resolutions in a moment.
In summary, the branch coming out of the partial resolution % consists
of the following 14 (partial) resolutions:

e the partial resolutions & and %
e the three partial resolutions %; .
e the three partial resolutions %, ;

e the six resolutions %; ;

These different resolutions %; ; are connected to each other by a network
of flop transitions induced by automorphisms of the binomial variety 4. In
particular
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e the involution (y, s) — (—s, —y) is exactly the Mordell-Weil involution
sending a point on the elliptic fiber to its inverse under the Mordell-
WEeil group. Interestingly, it induces a flop:

(49) ﬁﬂj ***** > t@ji .

e the involution (j <> k) connects %; ; and %;, (resp. %;,; and %y ;)
through the flop induced by contracting to the partial resolution %; o
(resp. Pei)

The six resolutions %;; can be described by the following complete
intersection:
(4.10)
viay —yBy =0
Bij§vjo_ —sp_ =0 where (i, 7, k) is a permutation of (1,2, 3)

apa —fByf v =0

where [a4 : G4][a— : 5] are the projective coordinates introduced for the
last two steps of blow ups. Let us rearrange the equations in the following
suggestive form:

viay —ypy =0
(4.11) Bij | (ap)a— — (Byvp)f- =0
via_ —fB_s =10

This is to emphasize that %; ; can also be obtained from % by first blow up
at (y,v;) and then blowing up (a4, 54+vg). Since a4 and (B4 are projective
coordinates of a P!, they cannot vanish at the same time. It follows that
the ideal (ay, Byvk) is the same as (a,vg). Therefore, the blow up with
center (a4, 54+v;) can be equivalently described as the blow up with center
(g, vg). This gives:

viog —yfBy =0
(4.12) Bij§ aya_ —vpfo =0
s —Bra_v; =0
We recognize the %; ; as the blow up (1,7)(1, k) introduced in [HLSN]. In

the same way, we can also show that the resolution (2,7)(2,k) is also the
resolution %; ;. Hence we arrive at the following theorem:
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Theorem 4.1. Let (i,j,k) be a permutation of (1,2,3). The resolution
(1,7)(1,k) and (2,7)(2,k) are isomorphic to %B; j:

(4.13) B ;= (1) (1k) = (2,5)(2, k).

In other words, the resolutions (1,4)(1, k) and (2,4)(2, k) introduced in
[HLSN] are reformulation of the resolutions %; ; of [EY]. This is our first
result in providing a unifying picture for the known resolutions in the liter-
ature from direct blow up.

In the remaining part of this section we will study the three resolutions
B3, $Bo3, H1p2 in details, while the other three are trivially related by
Mordell-Weil involution.

4.2. Resolutions #; 3 and %> 3

In this subsection we will redo the blow up by explicit introducing the gen-
erator e, for the exceptional divisor. This will prove to be convenient when
comparing with the other resolutions in the network.

The centers for the last two blow ups for % 3 are

(4.14) (y,e1)(s,t).

Since the %), takes the conifold form ys = (eje2)t, we can equivalently
replace the center of the blow up (s,t) by (y,ejes). Furthermore, as noted
previously, since y and e; cannot vanish at the same time, the center (y, e1e2)
is the same as (y,ez2). All in all, we can obtain % 3 from % by performing
two blow ups along the following centers

(4.15) (y.e1) (y,e2).

The complete sequence of blow ups for % 3 is

(4.16) go (x7y,€0|61) é"l (I’y761|62) % (y761|e3) %17. (y,e2|e4) %173

The resolution can be written as

(4.17) P13 ylesezy + a1z + a3,2€3€163)

3 2 3 522
= erez(eseax” + ag1e07” + aszeperess + ag sepeies),
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in the following projective space

2,2, . 322 .02 :
[efeseserx : ejesesery : 2] [eseaw : efeseay : eg)

(4.18) [z :eqesy :eser] [eqy:er] [y:ea]

Similarly, %5 3 can be obtained by the following sequence of blow ups:

(419) éao \(I,y7€0|61) g)l ($7y,61‘€2) !% (y762|63) (@27. (y761|64) %273

Py 3 can be written as

. 2
(4.20) B3 : yleseay + a1z + az2e5e1€4)
= 6162(6362353 + a2,1€0x2 + CL473686164$ + (1675686%62)

in the following projective space

2 2 23,2 2
[esesese1x : ejesesery : 2] [esean : eqeseny :eg)

(4.21)
[ :eseqy :eqer] leqy :ea] [y:en].

As we will see in Section 5, %13 and %33 provide realizations of the
toric resolutions of type I and type II in [KMW], respectively. The identifi-
cation will be explained in Section 5.2. We postpone the study of the fiber
enhancements for % 3 and %53 to Section 5.1 when we discuss the toric
resolutions.

4.3. Resolution %; 2 = Al

The last resolution we want to study is %12, which can be obtained from
the following sequence of blow ups:

(422) 5’0 (Ivyveo‘el) @([’1 (907?/761|€2) % (9781\63) 931,. (S,€2|84) %172
We can write % 2 as follows:

esy + aixr + a37261636(2) = €48,

ys — e1ea(egeqx® + a2716’0$2 + a473€16368$ + a675e%e§eg) =0.

(4.23) B {

with projective coordinates

2 2 . 2929 ) .
[erezeseix : ejezezery : z],  [eaeax : ezeseqy : egl,

(424) [.% Cesy 6361}, [y : el] [S : 62].
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After a direct computation, the fibers for #; o in various codimensions
are obtained in Table 2.

In fact, one can show that the %, is isomorphic to another resolu-
tion Z‘t

(4.25) T =P

This isomorphism will be further discussed in Section 7. See also Appendix
B.4.1 of [ESY].

Finally, since both % » and % 3 are obtained from the partial resolution
P e, they are related by a flop:

(4.26)

Zm)

(< x

) 2) \

S t\@bﬁ \
g$7y760‘€1) (x,y, 61’62) (y761|€3) OTQ'% \\l

(9@0 é"l < B e%)l,. ,uflap

S /

'ty 6’9//84) v

) B

w =0 w=P=0 w=a; =0 w=a; =azz=0 w=a;=a; =0
Cp — O3 Cr = Cu Cp — Ci3

Cy = Cia+Cyy

C3 = Ci3+ C34 +Cy
Cy— O34+ C

Cy — Coy
C3 — C13+ C34 + C4
Cy = Coa+ Caq +CYL, + CY,

C3 — O34 +2C34- +Ci3
Cy— O34 +Csy +C

Table 2. Fibers of the resolution %o = ,Zt in various codimensions. Cj
is the node coming from the e; = 0 component of w = egejeseseqy =0 on
the base. Cj; is node comes from the intersection of e; = 0 and e; = 0. Note
that C; are not ordered by their positions in the IZ fiber. Here P = ag,lai2 —
as3ai1a32 + agzal = 0.
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5. Models of type I, II, and 111

Few months after [EY], another recipe was presented in [KMW] to resolve
the singularities of the SU(5) model. This method is more combinatorial
in nature and is inspired from the procedure outlined in [BIKMSV] and
toric resolutions of Calabi-Yau hypersurfaces as in [CPR]. The blow up is
expected to be defined by monoidal transformations (blow ups of regular
primes). For these reasons, the constructions of [KMW] are usually called
toric resolutions in the F-theory literature.

In this section we will obtain all the toric resolutions by sequences of
(weighted) blow ups. In particular, the type I and type II toric resolutions
are identified as #; 3 and % 3 obtained in Section 4.

Let us start with the definitions of toric resolutions. There are three
different toric resolutions in the SU(5) model called type I, type II, and
type III. They are related by flops as will be explained in Section 5.4. These
three types are supposed to come from a succession of blow ups that combine
to the following morphism:

(5.1) (z,y,e0) — (zereseded, yeredeses, eperesesey).

However, the explicit sequences of blow ups are not known before the current
paper. Under this morphism, the proper transform of the elliptic fibration
is:

(5.2) ér :yleseqy + arx + a372€%€1€4)

2 3 5.2 2
= 6162(1’36263 + az1x%€eg + as3regeres + agseqeres).

The projective bundles produced by the sequence of blow ups leading to the
morphism (5.1) defines together with the equation of & a Stanley-Reisner
(SR) ideal common to all the three cases:

(5.3) {xyz, ze1, zeq, zes, zeq, weg, yeo, xe1, yer, yea, xeq, epea}.

Each monomial of the Stanley-Reisner ideal indicates a set a variables that
cannot vanish simultaneously. The three types of toric resolutions are then
defined by the following additional elements to add to the SR ideal:

Type I | eges, eje3
(5.4) Type II | eges, eseq
Type II1 | e1eq, egey
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5.1. Fiber structure of toric models of type I, II, and III

Before we give the explicit constructions for type I, I, and III, we can already
determine their fiber structures from (5.2) and their SR ideals (5.4).

For any of the toric model I, II, and III, the fiber over the codimension
one locus egejeseses = 0 consists of the following five rational curves:

Co : ey = ezeqy® + arzy — elegegaz3 =0,
Ci:e1 =eseqy +arx =0,
Cs :e9 = eseqy + a1 + ag,gegelezl =0,
(5.5) S 9
C3 :e3 =y(a1x + asgejeres)
2 2 4,2,2) _

—eperea(ag 1z + agzxregeres + apsegeies) = 0,

Cy:eq = a1y — ereax(zezes + az1e9) =0,

where we have used the elements ey, eay, e4x of the SR ideal to eliminate
some components in Cp, Cy and Cy. Using the SR ideal, the intersections of
the five nodes can be shown to be the affine A4 Dynkin diagram in Figure 10.
The component Cj is the only one that touches the section = z = 0 thanks
to the elements {zeq, zea, 23, 24} in the SR ideal.

Figure 10. Fiber of type IZ. Here we label the nodes by their positions in
the A4 Dynkin diagram.

The different models distinguish themselves by the splitting of their
nodes in higher codimensions. Let us now study their codimension two fibers.
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Let us start with the codimension two locus egejesesey = P = 0, where
(5.6) P = a271a§72 —a43a1a32 + a6,5a% =0,
is one of the component of the discriminant locus A (3.9). All three types
of resolutions share the same fiber enhancement over P = 0 where the third
node ('3 splits into two

(5.7) Cg — C3a + Cgb.

The original affine A4 Dynkin diagram now enhances to the affine A5 Dynkin
diagram.

C3 — C3q + Csy

Table 3. I§ —I§ enhancement from w = 0 to w = P = 0 for models of type
I, IT and III. Here w = egejesesey and P = ag,lai2 —ag3a1a32 + a675a% =0.

Over the codimension two locus epejesegzes = a1 = 0, the nodes split as
(we use the notation Cyp : e, = e, = 0):

Co — Cos, C(') = e4y2 — elegx?’ =0,
C1 — Ci3, Chy,
(58) Cy — Cyy, Cé teg = e3y + a3,26%61 =0,
C3 — Co3, C13, Cy: e3 = yazepeq

— es(az17® + agzzederes + agsedete;) =0,

/
Cy — Chy, Cyy, C4 teq = zeges +az1eg = 0.

In the above splitting, we have not imposed the SR ideal constraints. When
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specializing to a particular type of resolution, its SR ideal would forbid some
of the Cyp nodes on the right hand side to exist if e ep belongs to it. However,
note that the nodes C{;, C%, C% and C) are common to all the three types of
resolutions.

Over egerezezes = a1 = az 2 = 0, the node splits as

Co — Co3, C:eg = eqy’ — eredz® =0,
Cr — Ci3, Cua,
(5.9) CQ — 024, 023,
C3 — Cpyz, Ch3, Cog, Cg re3 = a271x2+a473xegele4+a6,5eée%ei =0,
04 — 014, C24, Cz,; Peq = xegesz + az1€eg = 0.

The node CY% is actually composed of two nodes C':,(,l) + C§2) whose locations

are given by solving the equation for . However, these two nodes are not
split in the sense that the discriminant is not a perfect square. If we work
on a base of dimension three, this is not a problem as all the coefficients are
just in k.

Finally, the fiber enhancements over epejeseses = a1 = az1 = 0 are:

Co — Cps, C’(’) teg = e4y2 — elegx:)’ =0,
C1 — Ci3, Cua,
(5.10) Cy — Caoy, Ch:eg = e3y + azaeie; =0,
Cs — 2Cp3, C13 Csq, CY' 63:yag,g—806162(a4,3$+(1675€g€1€4):0,
Cy — Cly, 205, Csy.

After imposing the SR ideal to the above fiber enhancements for three
types of toric resolutions, we obtain their fiber structure from codimension
one to codimension three in Table 3 and Table 4.
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Fiber enhancements over w = a1 =0

Components Type I Type II Type III
Co C(/) C(/) 06 + Cos
Cq Cia Ci3+ Cla Ci3
Cy Coy + Cé Cé Cé
Cs C4 Ci3 + Cj Cos + Ci3 + C%
Cy Ciy+ Coy + Cfl Cy + Ci '

&

Fiber enhancements over w = a; = az2 =0

Components Type 1 Type 11 Type I11
Coy C(/) C(/) 06 + Co3
1 Cuy Ci3 +Cuy Cis
Cy Coq + Co3 Cos Cas
C(l) C§2)
Cs Cos + OV + O | OV + CP + Crg+ Coy | 1civin o,
Cy Ciy+Co +Cj Ciu+C C
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Fiber enhancements over w = a1 = az1 = 0

Components Type I Type 11 Type 111
Co C[/) C(/) C() + Cos
Cy Cuy Ci13+ Ciy Ci3
Cy Coy + C} (e @
C3 Csq + CY' CY' 4+ Ci3+ Csa | CF + 2Cp3 + Ci3 4+ Cs4
Cy Ca+ 2024 + C3y Cra+ Csy O34

Locus

Type I

Type 11

Type III
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Locus Type I Type I1 Type II1

g

I
S
—

|
S
DN
—

|
S

Table 4. Fibers of toric resolutions of type I, IT and III. Here w = egejesesey
the equation of the divisor over which we have the I? fiber. The fiber enhance-
ment If —Ig over the codimension two locus w = P = 0 is not presented here
but in Table 3 for all three types of toric resolutions. As we will see the fol-
lowing subsections, the type I can be realized as 911 = 921 = %13, type 11
as %o 3, and type III as %’%’3.
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5.2. Explicit constructions of models of type I and 11

In this subsection we will present the explicit sequences of blow ups for the
type I and type II toric resolutions, and identify them as the resolutions in
our network in Figure 2. The construction for type III will be discussed in
Section 5.3. The sequences of blow ups for these four resolutions are:

The relevant resolutions in Figure 2 are 911, 921, %13 and Ay 3. We
will relabel the e; to comply with the convention in the toric resolution (5.2).

1)

ngya 80’61) (y761|€4) ($764|€2) (y762|€3)

(5.11) & < & Tt

91—&-

+
Ty

The defining equation for 911 is precisely (5.2). It lives in the following
ambient space parametrized by the projective coordinates:

22 . 232 cene2onn -
[eresezesn : ereszesey @ 2] [ezesx : eaezeqy : e

(5.12) lesy:el] [z:ed [y: e

From the ambient space parametrization, one can read off the relevant
SR ideals eges, eres in (5.4) that defines the type I resolution.

2)
x,y,eole ,e1le x,y, eqle x,eqle
(5.13) go\ﬁ y€ole1) s (y:erled) o, (@Y, eales) 7+ (z, eqle2) 7
with projective coordinates
(5.14) [ere3ede s s eresesety : 2] [esesx : eaeseqy : eg)
' lesy i e1] [eaw:y:egeq] [z:ey]
%i again shares the same defining equation (5.2) and the same SR
ideal as the type I resolution. Hence it is also a toric resolution of
type L
3)
x,y, eole x,y,e1le ,e1le ,eale
(5.15) 505 Y €oler) @plﬁ Y, €1les) Y. (y, e1]eq) Bra (y, e2les) r

(s, tles)
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with projective coordinates

2.2 . 232 cenleqn -
[erezeseqan : epezenesy @ 2] [eaesw : egeseqy €]

(5.16) [ :eseqy : ereq] [esy:er] [y: e

%1 3 again shares the same defining equation (5.2) and the same SR
ideal as the type I resolution. Hence it is also the type I resolution as
already mentioned in Section 4.2.

4)
z,y, eple x,y,e1le ,eale ,e1le
(5.17) (5%5 Y €oler) éalg y, e1les) (@{(y 2les) .. (y, e1]eq) By
" oor (s, tles) ’
with projective coordinates
(5.18) [ere3edesn : eresesedy - 2] [eaesw : eaedeqy : eq)

[z :eseqy:ereq] [eay:ea] [y:ei]

From the ambient space parametrization, one can read off the relevant
SR ideals eges, eaeq in (5.4) that defines the type II resolution. We
notice that the first two blow ups are the same as those of [EY]. The
last two blow ups show that this resolution is exactly the same as the
resolution denoted as (1,2)(1,1) in [LSN, HLSN].

The three resolutions 911, %i, 21,3 in Figure 2 share the same defin-
ing equation (5.2) and the same SR ideal, but they live in seemingly dif-
ferent projective spaces parametrized by (5.12), (5.14), (5.16). In fact, the
three ambient spaces (5.12), (5.14), (5.16) can be shown to be isomorphic,
therefore 911, %i, 21,3 should be identified as one single resolution in the
network of resolutions in Figure 2:

(5.19) type I: Z1 = T8 = B 3.

In addition to the above isomorphism, there are many more in the network
of resolutions in Figure 2. We summarize all the isomorphisms between dif-
ferent sequences of resolutions in Section 7. We do not present the detailed
calculation of the isomorphism in the current paper as it is completely par-
allel to the SU(4) example in Section B.4.1 of [ESY]. The isomorphism be-
tween the ambient spaces (5.12), (5.14), (5.16) is also a direct consequence
of the toric diagram discussed in Section 5.4.
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On the other hand, the type II toric resolution is identified as the reso-
lution %5 3, which is obtained by a sequence of blow ups:

(520) type 11 : %273.

In summary, we have provided explicit constructions for the toric res-
olutions of type I and type II in terms of sequences of blow ups. We have
included the type I and type II resolutions into a unified framework of blow
ups summarized in Figure 2. In particular, the type I and type II resolutions
are not new resolutions in addition to the six resolutions %; ; found in [EY];
rather, they can be realized as %1 3 and % 3, respectively.

5.3. Type III from a flop of %> 3

In this subsection we will construct the type III toric resolution from a flop
of By 3 (type II). Indeed, from the representation theory prediction Figure 6,
the type III model (which corresponds to the subchamber 2) is related to
P33 (which corresponds to the subchamber 1) by a flop. Later in Section 5.5,
we will realize type III as a sequence of weighted blow up. Here we follow a
similar idea in [TY].

The flop of % 3 is obtained by first blowing up %> 3 and then blowing
down to obtain type III. Recall that the resolution %, 3 (type II) is obtained
by the following sequence of blow ups

x,y, eole x,y,e1le ,eale ,etle

(5.21) éaog Y, eole) @("1§ y, €1 2)% (y, e2le3) @, (y, e1les) By,
It can be written as

(5.22) B3 y(eseqy + a1z + ag,gegele@

3 2 3 52 2
= ejeg(z’ezes + ag 1x%€p + aq3regeres + ag sepeies),

in the ambient space parametrized by

(5.23) [ere3ede s s eresesely : 2] [esesx : eaeseqy : eq)
[ :eseqy i ereq] [eqy:ea] [y:eq].

The locus we wish to blow up in %53 is the codimension two locus
defined by Ci4 : e1 = e4 = a1 = 0. C4 is parametrized by:

(5.24) 0:0:2] [ezesz:0:ep] [r:0:0] [0:e2] [y:0]
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in the ambient space.
Let us now blow up %3 3 along Ci4

(5.25) By 5 L) 5
which gives

(5.26) 7 :y(eseqesy + a1 + a3726(2)6164€§)

= eresea(reses + ag1x’eq + agzreferese? + agsepeieies),
with projective coordinates

(5.27) [eredelesela  erededededy - 2] [eaesx : eaedeqesy : e
[z : eseqesy : ereqel] [esesy:ea] [y:eies] [er:eq].

The variety B is nonsingular and isomorphic to %3 3 away from the center
of the blow up. Now the codimension two locus C'4 is replaced in % by the
divisor

(5.28) 014 — D5 ey =a1 = 0.

which is a F,-fibration over w = a; = 0 in the base for some integer p. The
integer p will be determined to be zero in a moment. Over that locus in the
base the projective coordinates are:

(5.29) [0:0:2] [ezesz:0:e9] [x:0:0] [0:e2] [y:0] [e1:eq].

If we blow down Z by contracting the new P! : [e1 : e4] in Ds, it results
in the original type II model %5 3. To obtain the flop of %53, we should
therefore contract the other P! : [esesz : 0 : o] in Ds.

Before performing the alternative blow down, let us first summarize the
scalings for the variables of B

T |Y|€ | €1 |€E2|€E3|¢€E4|E5
/11111 -1
b |11 1 |-1
(5.30) 75 1 11
n 1 1 -1
s 1 1 ]-1
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It is useful to replace the previous scalings ¢; by the following equivalent
scalings £}

o 1 -1 -1 1 1\ /4
A 0 1 1 -2 0]]&
(5.31) gl=1o o 1 -1 of|¢
Z, 00 0 1 0]t
A o0 o0 0 1) \4

The scalings for each variable with respect to ¢, are now:

r |y | e | el €2 | €3 | €4 | €5
drojof1ry0j0|1]0/]-1
Gl1jofo[-1]ol-1]2]0

(5:32) glojofof-1]1]-1]1]0
gofoj1jfo|l1(0{0]-1]0
elojlofo[1[ofo|1]-1

We are interested in the locus of D5 where x, y, es cannot be zero. Therefore
we can rescale © =y = eg = 1 by the scaling freedom ¢}, ¢}, %, respectively.
We are then left with the scalings ¢}, ¢; under which z, y and ey are un-
charged:

T |Y|le| el | ex|e3|es|es
(5.33) €'1 010 0 -1
€’5 0[]0 0 1 010 1 |-1

—_
—_

Observe that D5 : e5 = a3 = 0 is parametrized by (es, eg, €1, e4) in this patch.
From the scalings, we recognize Ds to be a Fg ~ P! x P! in the fiber with
projective coordinates [es : eg][e1 : e4].

To obtain the type IIT model, we contract the P! : [es : eg] by considering
the following projection map [TY]:

(5.34) (les : eol,[e1 : ea],e5) — ([e1 : eq], €3 = eses, €9 = epes)

The blow down variety, which we will denote by %573 since it is related to
%3 by a flop, is then

(5.35)  Bys: y(Eseay + arx + agoéjeres)

3 = 2~ ~3 -5 2 9
—erea(x’egfs + as17°€ + ag 3xéjeres + ag5€peie;s) = 0,
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with projective coordinates

T |y | el €y | €4 | €3 | €
Glilol-1lol2[1]0

(5.36) alolo[-1[1[1[1]0
o1t [o]-1]ofo
alofofrol1]-1]21

Even though we performed the blow down in the patch x =y = ey =1, it is
obvious to take closure to the whole space as presented above.

We notice that the defining equation (5.35) is exactly the same as the
defining equation for the toric resolution (5.2). It remains to check that the
SR ideal of %5 5 contains ejey, egeq for it be of type III (see (5.3)). We can
determine the SR ideal of ,%’%’3 by following the sequence of blow up and
blow down from %> 3.

To begin with, the SR ideal for % contains

(5-37) €0€3, €264, €1€4

where the first two are inherited from %33 while ejes comes the blow up

B 3 m B. Next, in blowing down P to ,%’%73, we define €3 = eges, €y =
epes and “forget” the original variables e3 and eg. Note that €3 and €y can
be zero at the same time by setting e; = 0, so épé3 is not part of the SR

ideal of %’%73. It follows that the SR ideal of %; 5 contains
(5.38) €2€4, €164,

and we conclude that

(5.39) type 111 : ;.

In summary, we constructed the type I1I model %573 from a flop from the
type II model % 3. Since our flop is the composition of an explicit blow
up and a blow down, the projectivity of the resolution %%’3 is ensured. In
Section 5.5, we will give a more direct construction of type III in terms of a
sequence of weighted blow ups.

In the next subsection we will provide the toric description that unifies
all the discussion of type I, 11, and IIT models.
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B3 (type IT) ¢-----==---"--v > By 5 (type III)

R

Figure 11. Flop of a codimension two locus as the composition of a blow up
and a blow down. The common blow down of type II (%2 3) and type III
(@%3) is a partial resolution corresponding to the wall wi% as can be seen
from Figure 6.

5.4. Toric descriptions of type I, II, III

The Weierstrass models &y has the description as a hypersurface in the P2-
bundle with homogeneous coordinates [z : y : z] over a base B. As always,
we will restrict ourselves to the patch z # 1 where all the nontrivial fiber
enhancements take place. If we further restrict to the normal direction of
the divisor eg = 0 on the base B parametrized eg, locally the Weierstrass
model & is described by a hypersurface in this ambient space C3 : (z,, eg).

To resolve the singularity of &, we successively blow up the ambient
space C? along certain ideals. The blow up of C? has a concise toric geometry
description. In particular, for the type I (<71+ = %+ = % 3), the type 11
(%23), and the type III (%53) resolutions, they are defined by the same
hypersurface equation (5.2) in different blow ups of the ambient C3. Their
ambient spaces are related by toric flops as we will describe in the following.

5.4.1. Fans. Here we give a lightening review on the fan diagram for toric
geometry [HK].

Let N =2 7Z" be a lattice of rank r and set Ng = N ® R. A cone o C Ny
is defined by the set

(5.40) o={ajvy + -+ agvgla; > 0}

generated by a finite set of lattice vectors v; in N such that o N (—o) = {0}.
A collection X of cones in Ng is called a fan if

1) each face of a cone in ¥ is also a cone in X, and

2) the intersection of two cones in X is a face of each.
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Given a fan with edges vy,...,v, in N, we can construct the toric geom-
etry as follows. First we associate a coordinate system (x1,...,x,) to every
edge. This defines a C™. Define

(5.41) Z2(2) = Ur {(21, ..., an)|z; = 0 Vi € I}

where I C {1,...,n} for which {z;]i € I} does not belong to a cone in .
Next, we identify all the integers Q°, such that

(5.42) > Qivi=0
=1

Note that since we have n lattice vectors on a r-dimensional lattice IV, there
are going to be (n — 1) Q,’s.
The toric geometry is then given by

Cr-Z(X
(5.43) Xo=——g (=)
where G is (n — r)-dimensional action on (x1,...,x,) defined by
(5.44) Gz, x) = A%y, \%x,,).

The set Z(X) is going to be identified as the SR ideal of the resolution.

5.4.2. Toric flops between Type I, II, III. After the review above,
we are now ready to give the toric descriptions for the ambient spaces for
resolutions of type I, II, III along the normal direction of the divisor eg.
We will illustrate the case in details for type II while the other two can be
straightforwardly reproduced.

Starting with the C? : (x, v, eg) for the original Weierstrass model &, the
fan diagram consists of three linearly independent three-dimensional lattice
vectors, say7,

(5.45) #=(1,0,0), ¥=(0,1,0), € =(0,0,1).

The only cone in the fan diagram is one generated by the above three vectors.
Since there is no linear relation between the three vectors, there is no scaling
G to mod out.

"We will denote the lattice vectors in the fan diagram by adding vector symbols
~to the original symbols x, y, e etc.
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When we blow up & along the ideal (z,y, ep) to obtain &1, we perform
the following replacements

(5.46) T —eir, Yy — ey, ey — e1eq,
with the new x, v, eg being the homogeneous coordinates of a P2 : [x : y : e

while the exceptional divisor e; being a section of the Op2(—1) bundle. The
scalings can be summarized as:

TlYlc €1
(5.47) (111 ]-1

The SR ideal is zyeg, namely, those three coordinates can not vanish at the
same time because they are coordinates of a P2.

From the above scaling, the fan diagram for the blow up @p:(—1) of C?
can be obtained by adding an additional lattice vector €]

(5.48) €l =T+ Y+ €.

With this extra lattice vector, there are now three cones generated by
(61, 2,7), (é1,Z,€)), and (€7, €, ), respectively. In particular, since &, ¥, €)
are not the faces of a single cone, they cannot vanish at the same time. That
is, the SR ideal includes zyeg.

Now it is clear that each step of blow up will introduce a new lattice
vector €; corresponding to the exceptional divisor of the blow up to the
fan diagram. The fan diagrams for the type I are presented following three
paths % 3, 921, 911 in Figure 2 are presented in Figures 14, 15, and 16,
respectively. From the toric description it is now obvious why the three
resolutions % 3, 92'_’;, ﬂli are identified. The type II resolution and its
partial resolutions are shown in Figure 17.

For readers’ convenience, we list the scalings and the relevant part of

the SR ideals® of the type I and type II resolutions here’

(549) TypeI go (x7y760‘€1) (gdl (x,y,€1|€2) %\(3%61‘64) %17. ,(y762‘63) %173

8There is a common SR ideal (5.3) shared by all three types of resolutions that
is not listed here.

9There are three equivalent ways ﬂli, %i, 21,3 to obtain the type I resolution
as discussed in Section 5.2. Here we present the sequence of resolution for % ;.
We have exchanged e3 with e, compared with the previous text for convenience of
comparison here.
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|y | €| el €2 | €4 | €3
G111 |-1]0]0]0
(5.50) PBig: |l | 11101 |-1]0|0]| SR:eges, ere3
31011101 1]01]-1]0
ly|Of1] 010 1]0]-1

r |y | €| el €2 | €3 | €4
G|1j1}1{-1{0101]O0

(5.52) %273 . EQ 1 1 0 1 -1 0 0 SR: €p€e3, €2€4
310|100 1]-1]0
ly 0101 0]-1

For the type III resolution, it is obtained by blowing up type II first and
then blowing down. Its scalings and the relevant SR ideal are'’

T |Yy|le|er|ex|es|eq
Zl1[olo0 1101
(5.53) TypeIll: | £ | 0|0| 0 |-1| 1 |-1|1 /| SR:ejeq, ezeq
Jolt[ol1 o001
10011011

From the scalings and the SR ideal, one can construct the fan diagrams
as shown in Figure 12. From the fan diagrams, it is then clear that type 11
resolution is related to type I and III by Atiyah flops.

5.5. Weighted blow ups for type III

Using the previous construction of the resolution %%73, it is easy to express
it as a sequence of toric blow ups after the following linear transformation

10We have removed the tildes on eg and ez for convenience of comparison here.
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%3 (Type I) PBs3 (Type II) Py 5 (Type IIT)

Figure 12. Toric diagrams for the ambient spaces along the x, y, ey directions
of the type I, II, and III models.

from the scaling of equation (5.36):

o 2 -1 2 -1 I

gl (o o0 1 -1 0

(5:54) al=lo 1 1 olla

0 0 1 0 -1 4

which gives:

T |Y| €| €1 | €| €3 | €y
212 1(0]7-1{01/0
(5.55) TypeIll: (£ 0|1 0] 0[1]-1]0
10111100 1]-2
Z/1ojol1(-2]1{0/0

From these scalings, we derive the following sequence of weighted blow ups
for A3 ,:

,€0,€3/€4)1 1 1 €o,€e2€1)1 1
(5.56) éao(x>y760‘€2)(2,2,1)£1/ (y, eales) g’é(y 0, €3] 4)2727253/ (€0, €2le1)1 s a,

Here the subscript stands for the weight for the blow up. For example,
(z,y,e0le2)(2,2,1) means we do the replacements = — edr, y — ey, ey —
eseq for the blow up. The composition of these weighted blow ups reproduces
the defining equation of %’%73 with the correct SR ideal. See Figure 18 for a
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<
~
=
S
=
<
<

%3 (Type 1) %35 (Type 11I)

Figure 13. Type III is obtained by blowing up % 3 along the node Pl [eg :
e4] and then blowing down along the P! : [eq : e3].

toric illustration of this sequence of blow ups. The SR ideal can be read off
from the ambient space from the above weighted blow up:

2.2 c 25352, . . . o2
[reseseqer : yeseseser 2] [T eqesy : egesen]
(5.57) 2.2 2.2, .2 2. 2
[eay” : eqer] [y” :eger ze3] [eg : €3]
where we have used the isomorphism P? , = P" and P? 2 P3,, (see, for

example, Lecture 10 of [Har]).

6. The 7,7 and ;" branches

Let us summarize our construction for the network in Figure 2 so far. In
Section 4, we have explored the % branch and obtained the six resolutions

%;.; in [EY]. In Section 5, we have identified the type I resolution as 7;% =

%j_ = % 3, type 11 as Ay 3, and type III as %’%73. Furthermore, as noted

before and will be discussed in Section 7, Zt = K.
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.

A
N\

x =)

Figure 14. 50 (z,y,e0ler) @@1 (z,y,e1lez) B (y,e1les) (@17. \(y»62‘€3) %173 (Type I)

Among the resolutions in Figure 2, we are then left with
(6.1) Tt Tk,

while the .7~ branch and the other three of %, ; are trivially obtained by
the Mordell-Weil involutions. In this section we will study the 7,7 and Z;"
branches. In the end, we find

Ty = B3 = T4 (type 1),
(6.2 g5 = 7t = B,

L%)—t = %%73

. +
6.1. Resolutions yz:l:

The partial resolution 9; can be written as

(6.3) Ty : ea(esy® + eredazay — eleaeqags)
T

2 2.3
= x (e1€3x” + epera 1T + efezeqas s — ary)
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A ‘

A
N\

T €y

Figure 15. & ey coler) & Werled) gy oedles) Tyt (r.cales) Tyt (Type I)

with the projective coordinates of the ambient space:
(6.4) leresedn : ere3edy 2] [esw :enedy i eo] [esy:el] [z:y:es]

Over the codimension one locus epejeses = 0, we have the following five
nodes in the singular fiber:

Co : e = ezesy® + ajzy — eregz’ = 0,
C1:e1 =egesy +arx =0,

(6.5) Coriea=2=0, Cy_:ea=r=0,
C3 : e3 = egeler(azay — elesedag 5)

2. 3
— z(egerag, 1 + efegegas 3 — ary) = 0.

We would like to blow up the non-Cartier divisor (x,esz) or (r,es) cor-
responding respectively to Cy4 and Cs_. The blow ups defined in this way
correspond respectively to 921 and .Z," related by a flop. Since 921 is a
model of type I, we know its fiber structure already. We will therefore focus
on 9;:

2 2 3 5
eo(esy” + ejefas oy — e7eseqelags) = re
(6.6) %_ { ( Y 0932y 1 0%, ) ’

e1e3x? + eperag 1T + e3esesedas s — a1y = eqr,
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Q

A
N\

x =)

Figure 16. & ey coler) & Werled) gy [eddes) Tt Jvesles) T (Type 1)

with the projective coordinates:

2 .. 223 cone2e o -
[ereseqesx : eresejesy 2] [esx : eaezeqy : eg)

(6.7) lesy i e1] [z:y:eseq] [ea:7].

The fiber enhancements are obtained in Table 5 by a straightforward calcu-
lation.

. +
6.2. Resolutions 75
The partial resolution ﬂ?f can be written as follows:

2 2 5.3 _
e2(y” + azege1y — ap segeseses) = ar,

61.7}2 + ag1€0€1T + a4,3€%€%62€3 — a1y = esr,

(6.8) Ty {

with projective coordinates

(6.9) [esesers : e3e3e1y - 2] [x:eseay:ieo] [y:el] [r:eal
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Y Y Y
T €o x € x €
y

R\

T €y

Figure 17. éDO (z,y,e0le1) 51 (z,y,e1le2) %\(9752‘63) %27. (y,e1les) %273 (Type II)

w=0 w=P=0 w=a; =0 w=a; =azz=0 w=a =az; =0
C,—Cu Cr— Cuy
C1— Cu
~ y ., | Cy = Cy Cy— Coy
Cs = Cay + Co- gz:éMJrc e C3 = Caa +Ch +Cy C3 = C34 + C}
P Ci— Cru+Cu+Cau+C | Ci— Cu+ 20+ Caa +2C)

Table 5. Fibers of the resolution %’%3 = %J[ o 931 Here w = egejesesey
and P = ag 103, — as3aias + ags5ai = 0.

The codimension one fiber for 9; is

Co:ep= eng —ar=ez’ — a1y —esr = 0,

C: = 2— = + 207
(6.10) 1:€e1 = ey T = aiy +esr

Cr: e3 = er1x(z + azie0) — a1y = eay(y + azaeger) — ar = 0,
Co:eo=x=a1y+esr=0.
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C, in fact splits into two. First notice that over r # 0, we can write

1
(6.11) T = - eay(y + CL3726(2)61).

3
A\

xr €o

(y,e0,eslea)

Figure 18. &<oboeleleay g el o 2 gl
The toric description for the weighted blow up for type III (%’%3)

+

Ty’
S
0" ‘

i
< <

éao gxayaeo‘el) & (y761’62) 9"‘ £x7y762’63) (724» (
C.

2
s 7)/6’4) V_//

7t

Figure 19. The sequences of blow ups for %1
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Substitute this into the other equation in C, we have
(6.12) e1z? + asepe1T — a1y
1
= 5Y [elegy(y + (13726361)2 + ag 1eperear(y + ag,ge%el) - a1r2]
1
= ﬁ yu,
where we have defined
(6.13) U= elegy(y + (I3,26(2)61)2 + az 1eperear(y + ag,gegel) —ayr?.
It follows that over r # 0, C,. splits into two components:

C.—C3:e3=y=xz=0,
(6.14) T 3:€3=Y )
Ci:es=u=v=ei(z”+azie0xr) — a1y =0,

where we have defined
(6.15) v = eay(y + azaeder) — ar.

The partial resolution is singular at the intersection between C3 and
Cy. It is then clear that we should blow up C3 and Cj to obtain the final
resolutions ‘?31 and 9;:

o+
e - P
¥
ngo (LZ/: 60‘61) 571 (y7 €1|€2) §+ (62,T|€3) %_;'_
(u,,
. 63/64)
7

Let us start with the easier one, 931

(6.16) AR {62(642/2 +azpe1egy — agsegeieses) = ar,
. 34+

ereqr? + ase1epx + Q473€86%6263 — a1y = easr,
with projective coordinates

2 2.2 2 2
[eregesen : ejezezey : 2] [eax : ezezely : eo)

(617) [e4y . 61] ['r : 62] [l’ 1y 63].
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We immediately notice that 5731 shares the same defining equation as that
for 75t (6.6). The ambient spaces and SR ideals can also be shown to be
the same following a similar calculation in Appendix B.4.1 of [ESY]. Since
%‘t is related to 7 j‘r, which is identified as %) 3 as the type I resolution,
by a flop, we will denote it by %%73. We therefore conclude
(6.18) Bl 3= T = Tt

Moving on to the other resolution fgt, we are going to do the blow up
in the r # 0 patch. First let us rewrite %f in this patch as

v — a6,5686?€2€3 =0,

elx2 + az1epe1r + (14,3636%6263 — a1y = esr,

(6.19) Z":{uy=es [2a65edetedy(y + aszeder)
—a%’56806{6%€3+Ta271a675€864116%—a473€8€%€27‘2—|—7"3]

= 0’

where we have used z = %egy(y + CL372€%€1) — %0675686?6563. Next, we blow

up the ideal (u,v,e3) to obtain Z;" :
(v — agsejeteses = 0.
elm2 + az1epe1x + a4,3ege%egege4 — a1y = eseqr,
uy = es [2a6,5ege‘1‘e%y(y + ag,ze%el) — a%’5€(1)06,{€§€364
(6.20) T +ragasseletes — aszedetear® + 3] =0,
equ = ere3y(y + aggeger)?
+ag1e0erear(y + azgeder) — arr?,

2
[ eav = eay(y + as2eper) — ar,

with the ambient space parametrized by

[egezeserx : edesesery 1] [z eqezeqy : e

(6.21) e o] [usvies.

After a straightforward but rather tedious calculation, one obtains the fiber
1~

enhancements in Table 6. Since 7, is related to B 5 = Tyt by a flop, we
will give it a new name to fit in the network in Figure 2:

(6.22) B 3= Ty
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This completes our constructions for the twelve small resolutions of the
SU(5) model.

w=0 w=P=0 w=a; =0 w=a; =agz=0 w=a; =a; =0
Ci = Cu €= Cu
Cr— Cuy Cy = Oy Cy — Coy
Cy = Caa+ Cyy Cy — Oy C3 — C34 Cs3 = Cy

Cy— Cru+Coy+Ci+CYf

Cy— Cry+ Oy + C3y

Cy — Cry +2Co
FCy + 200+ C

+C) + Cyy + Cy

Table 6. Fibers of the partial resolution @%3 = %‘t Here w = egejeqes
and P = a2,1a§72 — ag3a1a32 + a6,5a% =0.

7. Isomorphisms

In the network of resolutions in Figure 2, seemingly different sequences of
blow ups can result in the same resolution. By that we mean the composition
of the sequences of blow ups are the same, even if each individual step might
be different. That is to say, a given resolution can admit more than one
“history” of blow ups when we trace back along the network in Figure 2
to the original Weierstrass model &y. It is only after identifying isomorphic
resolutions that the network can match with the Coulomb branch.

In this section we summarize all the isomorphisms in the network. The
explicit calculation is similar to the SU(4) model and we refer the readers to
Appendix B.4.1 of [ESY] for more details. As described in [ESY], we identify
two resolutions if they share the same defining equation, the same scalings
for each variables, and the same SR ideal.

The partial resolutions ﬁf and % are isomorphic to each other,

(7.1) 7t = B,



Singularities and gauge theory phases I1 741

after relabeling e with e3 and vice versa. This is similar to the isomorphism
between % and 77 in the SU(4) model [ESY].

We immediately have the more isomorphisms between resolutions inher-
ited from (7.1). Recall that Z;" is obtained from Z;* by blowing up (s, e3)
while %, 2 is obtained from %; by blowing up (s, e2). In the same way, 911
is obtained from .7, by blowing up (y, e3) while blowing up (y, e2) from %,
would give % 3. It follows that ,71 ', is isomorphic to %13 and that 7" T s
isomorphic to %1 2. One can further show that 9 51 is isomorphic to 9
We conclude that

(7.2) T = B3 = Ty,
Tt = Bo.

Note that the resolution in the first line is the toric type I studied in the
previous sections. Their isomorphisms can be most easily seen from the toric
diagrams in Figures 14, 15, and 16.

Similarly one can show that

(7.4) Tt = Tyt

We therefore assign the same notation % 5 for both of them in Figure 2.
Finally, we also have the isomorphisms between their counterparts under
the Mordell-Weil involution.

8. Discussion and conclusion

e We present twelve resolutions for the Tate form with general coeffi-
cients a;; of the If type over a base B of complex dimension two or
three. Ten of them can be obtained by sequences of blow ups summa-
rized in Figure 2, while another two resolutions %%,3, %31,72 are obtained
by sequences of weighted blow ups.

e Six of the twelve resolutions are %; ; with (i # j) obtained in [EY],
corresponding to the hexagon in Figure 5. The new resolutions %1 3
B? ;3 and their Mordell-Weil duals %’3 ; and %’3 1 can also be obtained
from the network in Figure 2. Finally, the resolution %’23 and its
Mordell-Weil dual %’372 can be obtained by sequences of weighted blow
ups.

e The twelve resolutions correspond to the twelve subchambers in the
SU(5) Coulomb branch with fundamental 5 and antisymmetric rep-
resentations 10. We have also identified the partial resolutions in the
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network in Figure 2 as interior walls, planes, lines, and the origin on
the Coulomb branch coming from the intersections of interior walls. It
would be interesting to find all the partial resolutions corresponding
to the full incidence geometry (A4, 5 @ 10) in all codimensions.

e We should emphasize that the correspondence between the network
with the incidence geometry holds for Weierstrass models on general
bases B of complex dimension two or three, regardless of the Calabi-
Yau condition. In this sense it is more general than the string/M-theory
context.

(2)
@

1 1
<%1,3’ t%3,1

2 R B}, B
2,37<73,2 2 2
B, B,

<@2,37 <%3,2

Figure 20. The fibers over the codimension three locus w = a1 = ag 1 = 0 for
all twelve resolutions. The numbers of the nodes are the multiplicities and
the black node stands for the eg = 0 node that passes through the section
z = 0. Here w = egejesezey = 0.

e All twelve resolutions share the same fibers in all codimensional loci
(but not necessarily the same splitting for each node), except for the
codimension three locus w = a; = ag;; = 0. The (non-Kodaira) fibers
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over the codimension three locus w = a1 = ag 1 = 0 for all twelve res-
olutions are summarized in Figure 20.

The network of resolutions in Figure 2 provides a unified framework for
all the known resolutions of the model. In particular, we have shown
that the toric resolution of type I, type II, and type III are identified
as K13 = ,711 = %i, s 3, and %’%3 in our network, respectively.

One important aspect of this work is that all the resolutions we ob-
tained are manifestly projective varieties as they are constructed by
sequences of blow ups or projective flops (in the case of %%73 and %%2)
Since they are projective crepant resolutions of the same space, they all
share many common topological invariants. For example, in the case
of elliptic Calabi-Yau varieties, they share the same Hodge diamond
by a famous theorem of Batyrev on projective crepant resolutions of
Calabi-Yau spaces [Bat].

It would be interesting to consider similar results for more general
groups and for enhancements that are not necessary of rank one. In
such cases it is not clear if the geometry will match the description of
the Coulomb branch.
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