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Towards a mathematical definition of

Coulomb branches of 3-dimensional

N = 4 gauge theories, I

Hiraku Nakajima

Consider the 3-dimensional N = 4 supersymmetric gauge theory
associated with a compact Lie group G and its quaternionic repre-
sentation M. Physicists study its Coulomb branch, which is a non-
compact hyper-Kähler manifold, such as instanton moduli spaces
on R

4, SU(2)-monopole moduli spaces on R
3, etc. In this paper and

its sequel, we propose a mathematical definition of the coordinate
ring of the Coulomb branch, using the vanishing cycle cohomol-
ogy group of a certain moduli space for a gauged σ-model on the
2-sphere associated with (G,M). In this first part, we check that
the cohomology group has the correct graded dimensions expected
from the monopole formula proposed by Cremonesi, Hanany and
Zaffaroni [CHZ14]. A ring structure (on the cohomology of a mod-
ified moduli space) will be introduced in the sequel of this paper.
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1. Introduction

1(i). 3-dimensional N = 4 SUSY gauge theories

Let M be a quaternionic representation (also called a pseudoreal representa-
tion) of a compact Lie group G. Let us consider the 4-dimensional gauge the-
ory with N = 2 supersymmetry associated with (G,M). It has been studied
by physicists for many years. It is closely related to pure mathematics, be-
cause the correlation function of its topological twist ought to give the Don-
aldson invariant [Don90] of 4-manifolds for (G,M) = (SU(2), 0), as proposed
by Witten [Wit88]. Thus physics and mathematics influence each other in
this class of gauge theories. For example, Seiberg-Witten’s ansatz [SW94]
led to a discovery of a new invariant, namely the Seiberg-Witten invari-
ant. It is associated with (G,M) = (U(1),H). Nekrasov partition function
[Nek03] gave a mathematically rigorous footing on Seiberg-Witten’s ansatz,
and hence has been studied by both physicists and mathematicians.

In this paper, we consider the 3-dimensional gauge theory withN = 4 su-
persymmetry, obtained from the 4d theory, by considering on (3-manifold)×
S1
R and taking R → 0. We denote the 3d gauge theory by Hyp(M) ///G fol-

lowing [Tac], though it is used for the 4d gauge theory originally. One usually
studies only asymptotically conformal or free theories in 4d, while we do not
have such restriction in 3d. Also some aspects are easier, simplified and clari-
fied in 3d, and our hope is that to use understanding in 3d to study problems
in 4d.

We do not review what is Hyp(M) ///G. It is a quantum field theory in
dimension 3, and is not rigorously constructed mathematically.

Instead we will take the following strategy: physicists associate various
mathematical objects to Hyp(M) ///G and study their properties. They ask
mathematicians to construct those objects, instead of Hyp(M) ///G itself, in
mathematically rigorous ways so that expected properties can be checked.
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This strategy is posed explicitly in [MT12] for a particular object, which
is very close to what we consider here. (See §3(iii) for detail on the precise
relation.) Many physically oriented mathematical works in recent years are
more or less take this strategy anyway.

1(ii). Topological twist

An example of mathematical objects is a topological invariant defined so
that it ought to be a correlation function of a topologically twisted version of
Hyp(M) ///G. For the 4-dimensional N = 2 SUSY pure SU(2)-theory (i.e.,
(G,M) = (SU(2), 0)), Witten claimed that the correlation function gives
Donaldson invariants, as mentioned above. In [AJ90] Atiyah-Jeffrey under-
stood the correlation function heuristically as the Euler class of an infinite
rank vector bundle of an infinite dimensional space with a natural section
s in the Mathai-Quillen formalism. The zero set of s is the moduli space
of SU(2) anti-self-dual connections for (G,M) = (SU(2), 0), hence Witten’s
claim has a natural explanation as a standard result in differential topol-
ogy applied formally to infinite dimension. It was also observed that the
3-dimensional story explains an Taubes’ approach to the Casson invariant
[Tau90], at least for homological 3-spheres. And 3 and 4-dimensional stories
are nicely combined to Floer’s instanton homology group [Flo88] and its
relation to Donaldson invariants in the framework of a (3 + 1)-dimensional
topological quantum field theory (TQFT) [Don02]. Another example of a
similar spirit is the Seiberg-Witten invariant in dimensions 3/4 (see e.g.,
[Wit94] for 4d and [MT96] for 3d). This is the case (G,M) = (U(1),H).

Atiyah-Jeffrey’s discussion is heuristic. In particular, it is not clear how
to deal with singularities of the zero set of s in general. We also point out that
a new difficulty, besides singularities of Zero(s), failure of compactness occurs
in general. See §1(iv) and §6(ii) below. Therefore it is still an open problem to
define topological invariants rigorously for more general Hyp(M) ///G. It is
beyond the scope of this paper. But we will use a naive or heuristic analysis of
would-be topological invariants to help our understanding of Hyp(M) ///G.
We hope the study in this paper and its sequel [BFN16a] might be relevant
to attack the problem of the definition of topological invariants.

1(iii). Coulomb branch

Instead of giving definitions of topological invariants, we consider the so-
called Coulomb branch MC of Hyp(M) ///G.
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Physically it is defined as a specific branch of the space of vacua, where
the potential function takes its minimum. However it is only a classical
description, and receives a quantum correction due to the integration of
massive fields. At the end, there is no definition of MC , which mathemati-
cians could understand in the literature up to now. However it is a physi-
cists consensus that the Coulomb branch is a hyper-Kähler manifold with
an SU(2)-action rotating hyper-Kähler structures I, J , K [SW97]. Physi-
cists also found many hyper-Kähler manifolds as Coulomb branches of var-
ious gauge theories, such as toric hyper-Kähler manifolds, moduli spaces of
monopoles on R3, instantons on R4 and ALE spaces, etc. (Reviewed below.)

1(iv). A relation to topological invariants

The Coulomb branch MC might play some role in the study of would-be
topological invariants for Hyp(M) ///G. As topological invariants are cur-
rently constructed only (G,M) = (SU(2), 0) and (G,M) = (U(1),H), we
could touch this aspect superficially. Nevertheless we believe that it is a
good starting point.

First consider Hyp(0) /// SU(2). Let us start with the 4-dimensional case.
A pseudo physical review for mathematicians was given in [NY04, §1], hence
let us directly go to the conclusion. The space of vacua is parametrized by a
complex parameter u, and hence called the u-plane (Seiberg-Witten ansatz).
We have a family of elliptic curves Eu parametrized by u, where Eu degener-
ates to rational curves at u = ±2Λ2. The so-called prepotential of the gauge
theory is recovered from the period integral of Eu. From the gauge theoretic
view point, u is understood as a ‘regularized’ integration of a certain equiv-
ariant differential form over the framed moduli space of SU(2)-instantons
on R4. More rigorously we define the integration by a regularization cooper-
ating T 2-action on R4 (Nekrasov’s Ω-background). The prepotential above
determines the equivariant variable a as a function of u, and hence u as an
inverse function of a.

Witten explained that the Donaldson invariant is given by a u-plane
integral, and the contribution at the singularities u = ±2Λ2 is given by the
Seiberg-Witten invariant [Wit94]. See also [MW97] for a further develop-
ment. This picture was mathematically justified, in a slightly modified way,
for projective surfaces in [GNY08, GNY11].

Now we switch to the 3-dimensional case. As is mentioned above, we
first consider R3 × S1

R and take the limit R → 0. Seiberg-Witten determines
the space of vacua for large R as the total space of the family Eu for u ∈ C

[SW97]. When we make R → 0, points in Eu are removed, and get the moduli
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space of charge 2 centered monopoles on R3. This is a 4-dimensional hyper-
Kähler manifold studied intensively by Atiyah-Hitchin [AH88]. This is the
Coulomb branch MC of the 3-dimensional gauge theory Hyp(0) /// SU(2). It
means that the 3-dimensional gauge theory Hyp(0) /// SU(2) reduces at low
energies to a sigma-model whose target is MC .

This picture gives us the following consequence for topological invariants.
The partition function for the twisted Hyp(0) /// SU(2) is the Casson-Walker-
Lescop invariant as above. On the other hand, the partition function for the
sigma-model with target MC is the topological invariant constructed by
Rozansky-Witten [RW97]. Then as an analog of Seiberg-Witten = Donald-
son in 4-dimension, it is expected that the Casson-Walker-Lescop invariant
coincides with the Rozansky-Witten invariant.

The Rozansky-Witten invariant for MC is a finite type invariant [Oht96,
LMO98, LMMO99] of order 3, which is unique up to constant multiple.
Therefore the coincidence of two invariants is not a big surprise. But it at
least gives an expectation of a generalization to G = SU(r). The Coulomb
branch of Hyp(0) /// SU(r) is the moduli space of charge r centered monopoles
on R3 [CH97]. Neither the SU(r)-Casson-Walker-Lescop invariant and the
Rozansky-Witten invariant associated with MC are not mathematically rig-
orously defined yet, but it is natural to expect that they coincide once they
would be defined. For the former, singularities of moduli spaces must be
treated appropriately. See [CLM90, BH98, BHK01, CLM02], for example,
studying this problem. The convergence of an integral must be proved for
Rozansky-Witten invariants, as the monopole moduli spaces are noncom-
pact.

Let us continue examples from [SW97]. Let G = U(1), M = HN = CN ⊕
(C∗)N , the direct sum of N copies of the vector representation plus its
dual. The Coulomb branch MC is the multi-Taub-NUT space, which is
C2/(Z/NZ) as a complex variety when N > 0, and is R3 × S1 = C× C∗

when N = 0.
The case N = 0 is trivial, so let us exclude it. There is a big distinc-

tion between N = 1 and N > 1 cases, where we have a singularity at the
origin or not. For N = 1, the partition function gives the 3-dimensional
Seiberg-Witten invariant. On the other hand, MC is the Taub-NUT space,
the associated Rozansky-Witten invariant is again finite type of order 3,
hence should be equal to the Casson-Walker-Lescop invariant up to mul-
tiple again. Marino-Moore [MM99], Blau-Thompson [BT01] argued that
the Casson-Walker-Lescop invariant is equal to the 3-dimensional Seiberg-
Witten invariant, more precisely, the (regularized) sum over all Spinc classes,
as proved earlier by Meng-Taubes [MT96] for b1 > 0. In the b1 = 0 case, the



600 Hiraku Nakajima

definition of the Seiberg-Witten invariant is more subtle, and the claim was
shown later by Marcolli-Wang [MW02].

For N > 1, the Coulomb branch MC has a singularity at the origin,
whose contribution to the Rozansky-Witten invariant needs to be clarified.
In the Seiberg-Witten side, compactness of moduli spaces fails, as we will
review in §6(ii). Therefore it is not yet clear how to define the invariant. The
singularity comes from the Higgs branch MH , explained later. Therefore it
is natural to expect that the Rozansky-Witten invariant for MH enters the
picture.

Let us note that MC for Hyp(0) /// SU(2) can be defined as a limit of the
total space of Eu, which is rigorously recovered from Nekrasov’s partition
function. This method could probably apply to if (G,M) gives an asymp-
totically conformal or free theory in dimension 4, but not in general. For
example, it is not clear how to do for (U(1),H).

1(v). (2 + 1)-dimensional TQFT

The Rozansky-Witten invariant associated with a hyper-Kähler manifold M
is expected to fit in the framework of a (2 + 1)-dimensional TQFT. For a
2-manifold Σ, one associates a quantum Hilbert space HΣ, and an invariant
of a 3-manifold X with boundary Σ takes value in HΣ. Then the gluing
axiom is satisfied.

In [RW97, §5], it is proposed that

HΣg
= (−1)1+g

⊕
q

Hq(M, (
∧∗V )⊗g),

where Σg is a 2-manifold of genus g, V is the natural Sp(dimHM)-bundle
over M , and the sign (−1)1+g is introduced so that HΣg

has a correct Z/2-
graded vector space structure. Rozansky-Witten wrote that it is hazardous
to apply this definition for noncompact M , like our Coulomb branch MC .

Nonetheless consider the case g = 0 assuming MC is affine:

HS2 =
⊕
q

(−1)1+qHq(MC ,O) = −C[MC ].

Let us give a nontrivial check for this hazardous assertion. By the gluing
axiom, the invariant of S2 × S1 is equal to the dimension of HS2 . On the
other hand, from the knowledge of the Casson-Walker-Lescop invariant for
S2 × S1, it should be equal to 1/12 if MC is the Taub-NUT space or the
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Atiyah-Hitchin manifold (see [RW97, (4.4), (5.15)] and [BT01, (2.3)]. There-
fore we should have dimC[MC ] = −1/12. For the Taub-NUT space, which
is isomorphic to C2 as an affine variety, this is true after ζ-regularization:

(1.1)
1

(1− t)2

∣∣∣∣
t=1

=

∞∑
n=1

ntn−1

∣∣∣∣∣
t=1

= ζ(−1) = − 1

12
.

The expression 1/(1− t)2 is coming from the natural grading on C[MC ] =
C[x, y] as deg x = deg y = 1. See §4(ii) for more detail. A closely related
observation on −1/12 can be found at [MM99, (6.16)], [BT01, §2.3]. It is
interesting to look for a similar explanation for the Atiyah-Hitchin manifold,
as well as a deeper understanding of this regularization process.

On the other hand, the Casson and Seiberg-Witten invariants are also
expected to fit in the TQFT framework. The quantum Hilbert spaces HΣ

are the cohomology group of moduli spaces of flat SU(2)-bundles and solu-
tions of the (anti-)vortex equation over Σ respectively [Ati88, Don99] (see
also [Ngu14]). This cannot be literally true for the Casson case, as there
is no nontrivial flat SU(2)-bundle on Σ = S2. In the Seiberg-Witten case,
3d invariants depend on a choice of perturbation of the equation, and its
dependence must be understood via the wall-crossing formula. We need to
choose the corresponding perturbation of the (anti-)vortex equation to have
a nonempty moduli space in 2d. For a ‘positive’ (resp. ‘negative’) perturba-
tion, moduli spaces for the vortex (resp. anti-vortex) equation are nonempty,
and symmetric products of Σ. For Σ = S2, the (n− 1)th symmetric product
Sn−1Σ is Pn−1, and its cohomology is n-dimensional. It is compatible with
the above naive computation (1.1), as n appears in the middle.

If Casson-Walker-Lescop = Rozansky-Witten would be true as (2 + 1)-
TQFT’s, we conclude that

C[MC of Hyp(0) /// SU(2)]
?
= H∗(moduli spaces of flat bundles on S2),

and similarly for C[MC of Hyp(H) /// U(1)] and the cohomology group of
moduli spaces of solutions of the (anti-)vortex equation on Σ = S2. This
could not be true for flat bundles as we have remarked above. For the (anti-
)vortex equation we do not have an immediate contradiction, but it is too
strong to be true, as the Coulomb branch seems to be independent of the
choice of perturbation.
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1(vi). Monopole formula

As we have explained just above, it seems difficult to use our current under-
standing of TQFT to determine MC in a mathematically rigorous way.

A work, more tractable to mathematicians, has been done recently by
Cremonesi, Hanany and Zaffaroni [CHZ14]. They write down a combinato-
rial expression, which gives the Hilbert series of the Coulomb branch MC .
It is called the monopole formula.

The monopole formula is a formal Laurent power series

(1.2) HG,M(t)
def.
=

∑
λ∈Y/W

t2Δ(λ)PG(t;λ),

where Y is the coweight lattice of G, W is the Weyl group, and Δ(λ),
PG(t;λ) are certain an integer and a rational function in t respectively. We
postpone a detailed discussion of the monopole formula to §4(i). Let us give a
brief comment here: (1.2) is a combinatorial expression, and mathematically
makes sense contrary to the case of MC .

It is worthwhile to keep a physical origin of the monopole formula in
mind. The monopole formula counts monopole operators, which are defined
by fields having point singularities [BKW02]. Taking a radial coordinate
system around a singular point, the singularity is modeled on a connection
on S2, whose topological charge is given by a coweight of G. This is the
reason why the coweight λ appears in (1.2). We do not review physical
origins of expressions Δ(λ), PG(t;λ). See [CHZ14, §2] and the references
therein.

It is also clear that monopole operators belong to the quantum Hilbert
spaceHS2 for S2. They form a ring (called a chiral ring in physics literature),
by considering the topological quantum field theory associated with S3 with
three punctures.

Combining with our heuristic consideration in the TQFT framework, we
will take the following strategy to find a definition of MC . We will start with
the cohomology group of a moduli space, and look for its modification so
that its Poincaré polynomial reproduces (1.2). Then we will study properties
of the proposed Coulomb branch, whether they are compatible with physical
expectations. We will propose such modification in this paper and its sequel
[BFN16a].

Let us give a remark. In (1.2) we need to assume 2Δ(λ) ≥ 1 for any
λ �= 0, a ‘good’ or ‘ugly’ theory in the sense of [GW09], hence no negative
powers of t appear. Then (1.2) makes sense as a formal power series. This
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assumption fails for example the pure theory (G,M) = (SU(2), 0), though
MC still exists and is the monopole moduli space as we discussed above.
Our proposed definition, though motivated by (1.2), will make sense without
this assumption.

1(vii). Higgs branch, 3d mirror symmetry and symplectic duality

There is a construction of a hyper-Kähler manifold from G and M, which
mathematicians can understand. It is the hyper-Kähler quotient construc-
tion [HKLR87]. (See §2(i) below for detail.) However the Coulomb branch
MC is not the hyper-Kähler quotient ofM by G. In the above examples with
M = 0, the hyper-Kähler quotient M///G is just {0} for any G. (Or ∅ if we
consider only free orbits.) For (G,M) = (U(1),HN ), the hyper-Kähler quo-
tient M///G is the closure of the minimal nilpotent orbit in sl(N,C), or the
cotangent bundle of CPN−1 if the real part of the level of the hyper-Kähler
moment map is nonzero. (When N = 1, the former is {0}, and the latter
is a single point.) In fact, the hyper-Kähler quotient of M by G arises as
the Higgs branch MH , which is yet another mathematical object associated
with the gauge theory Hyp(M) ///G.

For this class of 3-dimensional supersymmetric theories, it has been no-
ticed that two theories often appear in pairs. It is called themirror symmetry
in 3-dimensional theories, as it is similar to more famous mirror symmetry
between two Calabi-Yau’s. The first set of examples was found by Intrili-
gator and Seiberg [IS96]. In fact, the above is one of their examples, where
the mirror theory is the gauge theory for G = U(1)N/U(1) with M = HN

associated with the affine quiver of type A
(1)
N−1. (See §2(iv) below.)

When two theories A, B form a mirror pair, their Higgs and Coulomb
branches are swapped:

MA
C = MB

H , MA
H = MB

C .

This is indeed the case for our example. The hyper-Kähler quotient of HN

by U(1)N/U(1) is C2/(Z/NZ), Kronheimer’s construction of ALE spaces
for type A [Kro89].

Remark 1.3. In order to the above equalities to be literally true, we need
to replace the multi-Taub-NUT spaces by the corresponding ALE spaces.
(The multi-Taub-NUT metric has a parameter gcl, and it becomes the ALE
space when gcl → ∞.) This is because the mirror symmetry is a duality in
infrared. See [IS96, §3.1] for a physical explanation why this is necessary. As
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we are only interested in the complex structure of MC , this process makes
no change for us. We ignore this point hereafter.

Therefore the monopole formula (1.2) for the theory A computes the
Hilbert series of the Higgs branch MB

H of the mirror theory B. And there
are lots of examples of mirror pairs, and we have a systematic explana-
tion via branes, dualities, M -theory, etc. See e.g. [dBHOO97, PZ97, HW97,
dBHO+97] and also §§2(v), §3.

Unfortunately these techniques have no mathematically rigorous foun-
dation, and hence there is no definition of the mirror, which mathematicians
can understand. Moreover, the mirror of a gauge theory Hyp(M) ///G may
not be of a form Hyp(M′) ///G′ for some M′ and G′ in general, as we will
explain in §3(i). Thus it seems that the mirror symmetry is more difficult to
work with, and we will not use it to look for the mathematical definition of
MA

C . In turn, we could hope that our proposed definition of MA
C will shed

some light on the nature of the 3d mirror symmetry.
Let us continue an example of a mirror pair. The pair in Figure 1, both of

quiver types, is known to be mirror each other [dBHOO97]. Higgs branches
are the kth symmetric power of C2/(Z/NZ) and the framed moduli space
space of SU(N) k-instantons on R4, given by the ADHM description respec-
tively. This includes the above example as k = 1 case. The former can be
considered as the framed moduli space of U(1) k-instantons on C2/(Z/NZ).
Their Hilbert series has been computed. For MA

H , it can be written in
terms of the Hilbert series of C2/(Z/NZ) as it is a symmetric product.
For MB

H , the Hilbert series is the K-theoretic Nekrasov partition function
(or 5-dimensional partition function in physics literature), and can be com-
puted via fixed point localization or the recursion by the blowup equation,
e.g., see [NY05b].

MA
H : U(1) k-instantons

on C2/(Z/NZ)

k k k · · · k

k

1

MB
H : SU(N) k-instantons

on R4

k

N

Figure 1: An example of a mirror pair
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We should emphasize that it is not obvious to see why the monopole
formula reproduces those results, as (1.2) looks very different from the known
expression. For MB

C , this is possible after some combinatorial tricks. See §B.
(It was checked in [CHZ14] for small k.) But it is not clear how to check
for MA

C .
Let us mention that Braden et al. [BLPW14] expect that the mirror

symmetry is related to the symplectic duality, which states an equivalence
between categories attached to symplectic resolutions of two different conical
hyper-Kähler manifolds MA

H = MB
C and MA

C = MB
H . The definition of cat-

egories and the dual pair require also that both symplectic resolutions have
torus action with finite fixed points. Since MA

H , MA
C do not have symplectic

resolutions nor torus action with finite fixed points in general, the symplec-
tic duality deals with much more restrictive situations than ones considered
here. If MA

H satisfies these two conditions, it is natural to expect the same
is true for MA

C , as twos are interchanged under the mirror symmetry, as will
be explained in §5(i). Note that it is usually easy to check these conditions
for MA

H , and we have lots of examples, say quiver varieties of type A or
affine type A, toric hyper-Käher manifolds.

No general recipe to construct a symplectic duality pair was given in
[BLPW14]. Since we will propose a definition ofMA

C in this paper, this defect
will be fixed. Moreover we hope that we could give a better understanding on
the symplectic duality, and gain a possibility to generalize it to more general
cases when two conditions above are not satisfied. We have interesting sets
of examples, where only one of two conditions is satisfied.

1(viii). Hikita conjecture

Recently Hikita [Hik15] proposes a remarkable conjecture. Suppose that G is
a product of general linear groups, such as quiver gauge theories §2(iv) and
abelian cases §2(vi). Using perturbation of the moment map equation, we
can modify the hyper-Kähler quotient M///G to μ−1(ζ)/G. In many cases,
it is a smooth manifold, and assume that this happens.

On the Coulomb branch side, we have an action of a torus T on MC ,
where T is the Pontryagin dual of π1(G). See (c) in §4(iii) below. Let MT

C

be the fixed point subscheme. Hikita conjectures that there exists a ring
isomorphism

C[MT
C ]

?∼= H∗(μ−1(ζ)/G),

and checks for several nontrivial cases. This conjecture obviously has a sim-
ilar flavor with our study, though a precise relation is not clear yet. The
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author is currently considering what happens if we consider the equivariant
quantum cohomology group of μ−1(ζ)/G. It seems the quantized Coulomb
branch defined in [BFN16a] plays a role.

1(ix). A proposal of a definition of MC

We take the cohomology group of moduli spaces of solutions of the general-
ized vortex equation for the gauged nonlinear σ-model on S2 as a starting
point for a definition of MC , as discussed in §1(v). The equation will be dis-
cussed in detail in §6. See (6.9). However we need to modify the definition,
as we cannot obtain a reasonable answer for Hyp(0) /// SU(2), as we have
already remarked.

Our proposal here is the following modifications:

1) Drop the last equation in (6.9), which is related to the stability con-
dition via the Hitchin-Kobayashi correspondence.

2) Consider the cohomology group with coefficients in the sheaf of a van-
ishing cycle.

Thus we propose

C[MC ]
?
= H

∗+dimF−dimGC(P )
c,GC(P )

({
(A,Φ)

∣∣∣∣∣ (∂ +A)Φ = 0

μC(Φ) = 0

}
, ϕCS(CF )

)∗
,

where ∂ +A is a partial connection on a GC-bundle P on S2 = P1, Φ is
a section of an associated vector bundle twisted by OP1(−1), and μC is
the complex moment map. And F is the space of all (A,Φ) imposing no
equations, GC(P ) the complex gauge group, and ϕCS is the vanishing cycle
functor associated with the generalized Chern-Simons functional CS defined
on F . See §7 for more detail.

The moduli space above can be loosely regarded as the space parametriz-
ing twisted holomorphic maps from P1 to the Higgs branchMH . It is literally
true if we replace MH = μ−1

C
(0)//GC by the quotient stack [μ−1

C
(0)/GC].

The vanishing cycle functor ϕCS with respect to the generalized Chern-
Simons functional CS is strongly motivated by the one appearing in the
theory of Donaldson-Thomas invariants for Calabi-Yau 3-categories.

The whole paper is devoted to explain why these modifications are nat-
ural. We see that (1) is inevitable even at this stage: (6.9) is just FA = 0
for Hyp(0) /// SU(2). We cannot think of any reasonable modification, which
gives us a non-trivial solution for S2. For Hyp(H) /// U(1), moduli spaces
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depend on the choice of a stability condition, though the Coulomb branch
should not. This problem apparently is related to the dependence of in-
variants of perturbation, mentioned at the end of §1(v). It has a similar
flavor with the problem arising the definition of SU(r) Casson invariants,
mentioned in §1(iv). Thus forgetting the equation and considering all con-
nections seem the only reasonable candidate for the modification.

The definition of the multiplication, when M is of cotangent type as ex-
plained below, will be postponed to [BFN16a]. The goal of [BFN16a] will be
to propose a definition of MC as an affine scheme, i.e., the definition of its
coordinate ring as a commutative ring. There remain lots to be done, in par-
ticular, we have no idea how to define a hyper-Kähler metric on MC at this
moment, though we could construct a natural noncommutative deformation
(or quantization) of MC .

Also we are very far from checking our proposal reproduces various
known examples already mentioned above, except M = 0 and toric cases.
Nevertheless we will reproduce the monopole formula (1.2), so we believe
that our proposal passes the first check that it is a correct mathematical
definition of Coulomb branches.

The paper is organized as follows. In §2 we review the hyper-Kähler
quotient construction and examples of hyper-Kähler manifolds arising in
this way. In §3 we give examples where the mirror of a gauge theory is not
a gauge theory though it is still a reasonable theory. In §4 we review the
monopole formula and its various properties. In particular, we start to list
expected properties of the Coulomb branch suggested from the monopole
formula. In §5 we review the monopole formula when a gauge theory has an
additional flavor symmetry. We add a few properties to the list. Up to here,
all materials are review of earlier works.

In §6 we consider a generalized Seiberg-Witten equation associated with
a gauge theory Hyp(M) ///G and study the compactness property of the
moduli space. We also study the dimension reduction of the equation to write
down the generalized vortex equation, which will lead us to the proposed
definition of the Coulomb branch. In §7 we observe that the complex part of
the reduced equation on a Riemann surface arises the Euler-Lagrange equa-
tion of an analog of the holomorphic Chern-Simons functional, and hence it
is natural to consider the analog of Donaldson-Thomas invariants, or more
precisely the cohomology of the vanishing cycle. We then formally apply
results on the vanishing cycle, known in the finite dimensional situation, to
our case to reduce the equation further. In §8 we compute the dimension of
the cohomology group and check that it reproduces the monopole formula.
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§9 is a detour where we find that a few earlier works are nicely fit with the
framework of §7 when the curve is the complex line C.

In §A we give further examples of hyper-Kähler quotients related to
instantons for classical groups. In §B we give a computation of the monopole
formula in a particular example when the Coulomb branch is a symmetric
product of a surface.
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Okounkov, Balázs Szendröi, and Yuji Tachikawa for discussion and com-
ments on the subject. Parts of this paper were written while the author was
visiting MSRI, Higher School of Economics, Institute Mittag-Leffler. He is
grateful to their hospitality. Last but not least, the author would like to
express his hearty thanks to the late Dr. Kentaro Nagao. Many techniques
used in this paper originate Nagao’s works.

This research is supported by JSPS Kakenhi Grant Numbers 22244003,
23224002, 23340005, 24224001, 25220701.

2. Examples of hyper-Kähler quotients

In view of the 3d mirror symmetry, it is natural to expect that the Higgs
branch MH and the Coulomb branch MC share similar properties. There-
fore it is important to have examples of gauge theories whose Higgs branches
(i.e., hyper-Kähler quotients of linear spaces) are well-understood. In this
section we prepare notation and basics of hyper-Kähler quotients in the first
three subsections, and then we review two important classes of gauge the-
ories, quiver gauge theories and abelian theories. Further examples will be
given in §A.

Here we consider hyper-Kähler quotients only in finite dimension. If we
allow infinite dimensional ones, we have more examples, such as instanton
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moduli spaces for arbitrary gauge groups, solutions of Nahm’s equation, etc.
However it is not clear how to consider the corresponding Coulomb branches,
in particular, the monopole formula introduced in §4 below.

2(i). Hyper-Kähler quotients of linear spaces

Let G be a compact Lie group with the Lie algebra g. Let M be its quater-
nionic representation. Let I, J ,K denote multiplication by i, j, k, considered
as linear operators on M. A quaternionic representation of G is a represen-
tation such that the G-action commutes with I, J , K. We suppose M has
a G-invariant inner product ( , ) which is hermitian with respect to all
I,J ,K. Therefore M is a hyper-Kähler manifold with a G-action preserv-
ing the hyper-Kähler structure. We have the hyper-Kähler moment map
μ : M → g∗ ⊗ R3, vanishing at the origin:

〈ξ,μ(φ)〉 = 1

2
((Iξφ, φ), (Jξφ, φ), (Kξφ, φ)),

where φ ∈ M, ξ ∈ g, and 〈 , 〉 is the pairing between g and its dual g∗.
A hyper-Kähler moment map is, by definition, (a) G-equivariant, and (b)
satisfying

〈ξ, dμφ(φ̇)〉 = (ωI(ξ
∗, φ̇), ωJ(ξ

∗, φ̇), ωK(ξ∗, φ̇)),

where φ̇ is a tangent vector, ξ∗ is the vector field generated by ξ, and ωI ,
ωJ , ωK are Kähler forms associated with three complex structures I, J , K
and the inner product. It is direct to see that two properties are satisfied in
the above formula.

In the following, we only use the underlying complex symplectic struc-
ture. Let us give another formulation. Let GC be the complexification of G.
Let M be its complex representation, which has a complex symplectic form
ωC preserved by GC. We have the complex moment map μC : M → gC

〈ξ,μC(φ)〉 =
1

2
ωC(ξφ, φ),

where ξ ∈ gC. This is the complex part of the hyper-Kähler moment map
under the identification R3 ∼= R⊕ C.

We consider the hyper-Kähler quotient

M///G
def.
= μ−1(0)/G ∼= μ−1

C
(0)//GC,

where //GC is the affine algebro-geometric invariant theory quotient, and the
second isomorphism follows from a result of Kempf-Ness (see e.g., [Nak99,
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Th. 3.12]). Let μ−1(0)reg be the (possibly empty) open subset of μ−1(0),
consisting of points with trivial stabilizers. Then G acts freely on μ−1(0)reg,
and the quotient μ−1(0)reg/G is a smooth hyper-Kähler manifold. The Higgs
branch of the 3d N = 4 SUSY gauge theory Hyp(M) ///G is μ−1(0)reg/G or
its closure inM///G depending on the situation. We only consider Hyp(M) ///
G hereafter, but we actually mean μ−1(0)reg/G when we talk the hyper-
Kähler structure on it.

The hyper-Kähler quotient M///G has a natural SU(2) = Sp(1)-action
induced from the H-module structure of M. It commutes with the G-action,
and hence descends to the quotient. It rotates the hyper-Kähler structure.
In the complex symplectic notation, its restriction to U(1)-action is induced
by the scalar multiplication on M.

2(ii). Cotangent type

There is a class of quaternionic representations, which we call cotangent type.
Let N be a complex representation of G. We put a G-invariant hermitian
inner product on N. Then M = N⊕N∗ is a quaternionic representation of
G. We define J by J(x, y) = (−y†, x†) for x ∈ N, y ∈ N∗, where x† ∈ N∗ is
defined by 〈x†, n〉 = (n, x) for n ∈ N, and y† is defined so that (x†)† = x for
all x ∈ N. Then J is skew-linear as the hermitian inner product is skew-
linear in the second variable. We have J2 = − id from the definition.

In the (complex) symplectic formulation, we start with a complex repre-
sentation N of GC, and take M = N⊕N∗ with a natural symplectic struc-
ture. Then M is naturally a representation of GC, and has a symplectic form
preserved by GC.

2(iii). Complete intersection

Although μ−1
C

(0)//GC makes sense as an affine scheme without any further
condition, we do not expect they behave well in general. We propose to
assume

• μ−1
C

(0) is a complete intersection in M.

More precisely it means as follows. We construct a Koszul complex from μC:

0 → ∧dim gCgC ⊗OM → · · · → ∧2gC ⊗OM

→ gC ⊗OM → OM → Oμ−1
C

(0) → 0.
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Our assumption says that this is exact. Under this assumption, the coordi-
nate ring of μ−1

C
(0) is given by

C[μ−1
C

(0)] =

dim gC∑
i=0

(−1)i
∧igC ⊗ C[M].

This is an equality of virtual C∗ ×GC-modules. Taking the GC-invariant
part, we get the Hilbert series of C[μ−1

C
(0)//GC]. This is the definition used

in the K-theoretic Nekrasov partition function for instantons of classical
groups. See [NS04].

We expect that this complete intersection assumption is related to the
‘good’ or ‘ugly’ condition, appearing in the monopole formula. But it is a
superficial observation as we are discussing the Higgs branch now, while the
monopole formula is about the Coulomb branch.

2(iv). Quiver gauge theory

Let Q = (Q0, Q1) be a quiver, where Q0 is the set of vertices and Q1 is
the set of arrows. We can construct a quaternionic representation of G =
GV =

∏
i∈Q0

U(Vi) associated with Q0-graded representations V =
⊕

Vi,
W =

⊕
Wi. It is a cotangent type, and given in the complex symplectic

description by

N =
⊕
h∈Q1

Hom(Vo(h), Vi(h))⊕
⊕
i∈Q0

Hom(Wi, Vi),

M =
⊕
h∈Q1

Hom(Vo(h), Vi(h))⊕Hom(Vi(h), Vo(h))

⊕
⊕
i∈Q0

Hom(Wi, Vi)⊕Hom(Vi,Wi).

Here o(h) and i(h) are the outgoing and incoming vertices of the oriented
edge h ∈ Q1 respectively.

If Q is the Jordan quiver, the hyper-Kähler quotient μ−1(0)/G is the
ADHM description of the framed moduli space of SU(W )-instantons on R4,
or more precisely its Uhlenbeck partial compactification (see e.g., [Nak99,
Ch.3] and the reference therein). More generally, hyper-Kähler quotient
M///G = μ−1

C
(0)//GC is the quiver variety (with complex and stability pa-

rameters 0), introduced in [Nak94].
For a quiver gauge theory, Z(g∗)={ζR∈g∗ |Ad∗g(ζR)=ζR for any g∈G}

is nontrivial, and is isomorphic to
⊕

i∈Q0
R
√
−1 trVi

, where trVi
: u(Vi) →
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√
−1R is the trace. Then we can form a perturbed hyper-Kähler quotient

μ−1(ζ)/G for ζ ∈ R3 ⊗ Z(g∗). If we decompose ζ as (ζR, ζC) according to
R3 = R⊕ C, we have an algebro-geometric description

μ−1(ζ)/G ∼= μ−1
C

(ζC)//ζRGC,

where //
ζR

is the GIT quotient with respect to the ζR-stability. (See [Nak94,

§3].) If ζ is generic, μ−1(ζ)/G is a smooth hyper-Kähler manifold whose
metric is complete. Moreover, we have a projective morphism

π : μ−1
C

(ζC)//ζRGC → μ−1
C

(ζC)//GC = μ−1(0, ζC)/G.

In an algebro-geometric approach to hyper-Kähler quotients, it is more
natural to replace ζR by a corresponding element for the group G, i.e., a
character χ : G → U(1), where they are related by ζR = dχ. The character χ
defines a GC-equivariant structure on the trivial line bundle over μ−1

C
(ζC).

We introduce the stability condition and form a GIT quotient with a natural
projective morphism to μ−1

C
(ζC)//G:

(2.1) π : μ−1
C

(ζC)//χGC → μ−1
C

(ζC)//GC

It is equipped with a relatively ample line bundle Lχ in a natural way. See
[Nak99, §3] for detail.

In Figure 1 we follow physicists convention. The underlying graph of
the quiver is circled vertices and edges connecting them. (An orientation of
the quiver is not relevant, and usually omitted.) Dimensions of Vi are put
in circled vertices, while dimensions of Wi are put in the boxed vertices,
connected to the corresponding circled vertices. It is more or less the same
as the original convention in [KN90].

When W = 0, the scalar U(1) acts trivially, so we replace G by∏
i∈Q0

U(Vi)/U(1). This is the case for M used by Kronheimer [Kro89],
mentioned in Introduction.

For a quiver gauge theory, good and ugly conditions were analyzed in
[GW09, §2.4, §5.4]. It is conjectured, for example, that a quiver gauge theory
of finite type is good or ugly if and only if

(2.2) dimWi −
∑
j

(2δij − aij) dimVj ≥ −1
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for any i ∈ Q0.
1 Here aij is the number of edges (regardless of orientation)

between i and j if i �= j, and its twice if i = j.
For quiver varieties μ−1

C
(0)//GC with W = 0, Crawley-Boevey [CB01,

Th.1.1] gave a combinatorial condition for the complete intersection assump-
tion above. It can be modified to cover theW �= 0 case using the trick [CB01,
the end of Introduction]. To state the result, let us prepare notation. Let
C = (2δij − aij) be the Cartan matrix. We denote the dimension vectors
(dimVi)i∈Q0

, (dimWi)i∈Q0
by v, w respectively. A root is an element of ZQ0

obtained from the coordinate vector at a loopfree vertex or ± an element
of the fundamental region by applying a sequence of reflections at loopfree
vertices. If there are no loops, this notion coincides with the usual notion of
roots of the corresponding Kac-Moody Lie algebra by [Kac90, Th. 5.4].

Then μ−1
C

(0) is a complete intersection if and only if the following is
true:

• tv(2w −Cv) ≥ tv0(2w −Cv0) +
∑

k(2− tβ(k)Cβ(k)) for any decom-
position v = v0 +

∑
k β

(k) such that w − v0 is a weight of an irre-
ducible highest weight module V (w) of the highest weight w, and β(k)

is a positive root.

(cf. [Nak09, Th.2.15(2)] for a closely related condition.) The dominance con-
dition (2.2) is a necessary condition, from the decomposition v = v0 + αi,
but not a sufficient if there is β(k) with tβ(k)Cβ(k) < 2, i.e., an imaginary
root. Anyway these two conditions are closely related. This is the reason
why we expect the complete intersection assumption and the ‘good or ugly’
condition are the same.

2(v). Type A quiver, nilpotent orbits and affine Grassmannian

As a special class of quiver gauge theories, type A (or linear) quiver gauge
theories are important. The hyper-Kähler quotient, in other words, Higgs
branch was identified with Oμ ∩ Sλ, where Oμ is a nilpotent orbit and Sλ

is Slodowy slice to another orbit Oλ of type A (see [Nak94, §8]). Here we
assume μ−1(0)reg �= ∅, and two partitions λ, μ are defined from dimensions
of V , W by an explicit formula.2 Conversely any Oμ ∩ Sλ for type A is
described as a hyper-Kähler quotient.

1The conjecture is stated only for goodness, and the right hand side is replaced
by 0 in [GW09].

2There is typo in [Nak94, §8]. μ must be replaced by its transpose.
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Let us recall how the identification is constructed. The starting point
is Kronheimer’s realization [Kro90] of Oμ ∩ Sλ as moduli spaces of SU(2)-
equivariant instantons on R4. This construction works for any compact Lie
groups. For type A, we apply the ADHM transform to these instantons. Sup-
pose that an instanton corresponds to (B1, B2, a, b) ∈ M = Hom(V, V )⊕2 ⊕
Hom(W,V )⊕Hom(V,W ), the data for the Jordan quiver. If the original
instanton is SU(2)-equivariant, V , W are representations of SU(2), and
(B1, B2), a, b are SU(2)-linear. Here we mean the pair (B1, B2) is SU(2)-
equivariant, when it is considered as a homomorphism in Hom(V, V ⊗ ρ2),
where ρ2 is the vector representation of SU(2). Let ρi be the i-dimensional
irreducible representation of SU(2). We decompose V , W as

⊕
Vi ⊗ ρi,⊕

Wi ⊗ ρi. Then a, b are maps between Vi and Wi. By the Clebsch-Gordan
rule ρi ⊗ ρ2 = ρi−1 ⊕ ρi+1, (B1, B2) decomposes into maps between Vi and
Vi−1 ⊕ Vi+1. The dimensions Vi, Wi are determined by λ, μ, as mentioned
above. In a nutshell, the McKay quiver for SU(2) is the double of type A∞
Dynkin graph (figure 2). Hence we get a quiver variety of type A∞.

1• � 2• � 3• � 4• � · · ·

Figure 2: McKay quiver for SU(2)

A quiver variety of type A can be obtained also from a framed mod-
uli space of S1-equivariant instantons on R4, where S1 acts on R4 = C2 by
t · (x, y) = (tx, t−1y). The reason is the same as above: (a) irreducible rep-
resentations ρi of S

1 are parametrized by integers i ∈ Z, i.e., weights, and
(b) ρi ⊗ C2 = ρi−1 ⊕ ρi+1, where C2 is the base manifold, identified with
ρ1 ⊕ ρ−1 as an S1-module. Strictly speaking, McKay quiver for S1 is slightly
different from one for SU(2), and infinite in both direction (figure 3). But
the quiver varieties remain the same as V is finite-dimensional.

· · · � −2• � −1• � 0• � 1• � 2• � · · ·

Figure 3: McKay quiver for S1

By [BF10, §5] the framed moduli space of S1-equivariant G-instantons
on R4 is also identified with the intersection Wμ

G,λ of a G[[z]]-orbit GrμG
in the affine Grassmannian GrG = G((z))/G[[z]] with a transversal slice to
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another G[[z]]-orbit GrλG. Here we regard λ, μ as homomorphisms S1 → G,
i.e., coweights ofG.3 This result is true for anyG. Note that the identification
of partitions with coweights in [BF10] is different from one in [Nak94, §10],
which will be used below.

Thus we have identifications

Oμ ∩ Sλ ←→ a framed moduli space of SU(2)-equivariant
G-instantons

�
a quiver variety of type A

�
a framed moduli space of S1-equivariant

G-instantons
←→ Wμ

G,λ.

The identifications Oμ ∩ Sλ and Wμ
G,λ with quiver varieties of type A were

first found in [MV03]. Note however that horizontal arrows remain true for
arbitrary G, while vertical ones are true only for type A. In the top row λ,
μ are nilpotent orbits, while they are coweights in the bottom row. There-
fore we cannot hope a vertical relation for general G. Therefore one should
understand Oμ ∩ Sλ

∼= Wμ
G,λ as a composition of the natural horizontal iden-

tifications and accidental vertical ones. If we apply the ADHM transform to
SU(2) and S1-equivariant instantons for classical groups respectively, we
will obtain different modifications of quiver varieties. It will be discussed
in §§§A.1,A.2,A.3. For a finite subgroup Γ ⊂ SU(2), we can also consider
Γ-equivariant instantons in the same way. See §A.4.

The mirror of this theory is given byOλt ∩ Sμt , where λt, μt are transpose
partitions. (It is not clear at this moment, what is the mirror if μ−1(0)reg = ∅,
i.e., μ is not necessarily dominant.) This mirror symmetry can be naturally
extended to the case of quiver gauge theories of affine type A. It nicely fits
with the level-rank duality of affine Lie algebras of type A via the author’s
work [Nak94]. This was observed by de Boer et al [dBHO+97, §3] based
on brane configurations in string theories introduced by Hanany-Witten
[HW97]. Further examples of the mirror symmetry will be given in §3.

3Here λ (resp. μ) corresponds to a homomorphism at ∞ (resp. 0) of C2. Since
we follow the convention in [Nak94], this is opposite to [BF10]. In particular, Wμ

G,λ

is empty unless λ ≤ μ.
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2(vi). Abelian theory

Let us take a collection of nonzero integral vectors u1, . . . , ud in Zn such
that they span Zn. We have an exact sequence of Z-modules

(2.3) 0 → Z
d−n α−→ Z

d β−→ Z
n → 0,

where β : Zd → Zn is given by sending the coordinate vector ei to ui, and
the kernel of Zd → Zn is identified with Zd−n by taking a base. We have the
corresponding exact sequence of tori:

(2.4) 1 → G = U(1)d−n α−→ T d = U(1)d
β−→ GF = U(1)n → 1,

where maps in (2.3) are induced homomorphisms between coweight lattices
(or equivalently fundamental groups).

Let M = Hd and let T d act H-linearly on M by multiplication. We con-
sider Hyp(M) ///G. It is called the abelian theory. It is of cotangent type
with N = Cd.

The hyper-Kähler quotient M///G is called a toric hyper-Kähler manifold
and was introduced by Bielawski and Dancer [BD00]. Note that we have an
action of GF on M///G. This group is called a flavor symmetry group, and
its importance will be explain in §5 below.

The space Z(g∗) is nontrivial as in quiver gauge theories, and μ−1(ζImH)/
G is a hyper-Kähler orbifold for generic ζImH.

The abelian theory is a good example to understand the 3d mirror sym-
metry. We dualize the exact sequence (2.3) to get

1 → G∨
F

β∨−→ (T d)∨ α∨−−→ G∨ → 1,

where •∨ denotes the dual torus, defined by π1(•)∧. (G∨ is also U(1)d−n,
but we would like to make our framework intrinsic.) Then we can consider
another toric hyper-Kähler manifold M///G∨

F with a G∨-action. It was pro-
posed in [dBHO+97, §4] that Hyp(M) ///G and Hyp(M) ///G∨

F form a mirror
dual theories. In particular, the Coulomb branch of Hyp(M) ///G is M///G∨

F .

3. More on 3d mirror symmetry

It is important to have many examples of 3-dimensional mirror symmetric
pairs, as they determine the Coulomb branches as the Higgs branches of
mirror theories. We give more examples in this section.
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3(i). Mirror could be a non-lagrangian theory

We first remark that the mirror of the gauge theory Hyp(M) ///G may not
be of a form Hyp(M′) ///G′ for some M′ and G′ in general. For example, if
we replace the diagram in Figure 1 by the affine Dynkin diagram of type

E
(1)
6,7,8 as in Figure 4, it is expected that MC is the framed moduli space

of E6,7,8 k-instantons on R4. This example was found in [IS96] for k = 1,
and in [dBHO+97] for general k. It is widely accepted a common belief that

1

k 2k 3k 4k 5k 6k

3k

4k 2k

Figure 4: MC : E8 k-instantons on R4.

there are no ADHM like description of instantons for exceptional groups. It
means that the moduli spaces cannot be given by a hyper-Kähler quotient
M′///G′ (with finite dimensional M′, G′), hence the mirror theory B is not of
a form Hyp(M′) ///G′. In fact, the mirror theory B is known as a 3d Sicilian
theory [BTX10], which does not have a conventional lagrangian description.
See §3(iii) below. Nevertheless we can compute Hilbert series of instanton
moduli spaces of exceptional types by the monopole formula.4 This is even
more exciting, as there is only a few way to compute them, say a conjectural
blowup equation [NY05a, NY05b].

3(ii). Instantons on R4/Γ

Let us consider a quiver gauge theory of affine type. An affine quiver of type
ADE arises as the McKay quiver of a finite subgroup Γ of SU(2). Hence
the Higgs branch, the hyper-Kähler quotient of M by G, parametrizes Γ-
equivariant U(�)-instantons on R4 as in §2(v). In fact, this is a starting point
of the work [KN90], which eventually leads to the study of quiver varieties
[Nak94].

As we have mentioned already in §2(v), the mirror of a quiver gauge
theory of affine type A is another quiver gauge theory again of affine type
A. The precise recipe was given in [dBHO+97, §3.3].

4One need to modify the monopole formula to deal with non simply-laced groups.
See [CFHM14].
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From this example, together with Braverman-Finkelberg’s proposed dou-
ble affine Grassmannian [BF10], we will give an initial step towards the de-
termination of the mirror of the quiver gauge theory of an arbitrary affine
type as follows. It was mentioned in a vague form in [BLPW14, Rem. 10.13].

A framed moduli space of Γ-equivariant G-instantons on R4 has discrete
data, a usual instanton number, as well as ρ0, ρ∞ : Γ → G homomorphisms
from Γ to G given by Γ-actions on fibers at 0 and ∞. A quiver variety, that
is the Higgs branch of a quiver gauge theory of affine type, corresponds to
the case G = U(�). We regard ρ0, ρ∞ as �-dimensional representations of Γ.
They are given by dimension vectors (dimVi)i∈Q0

, (dimWi)i∈Q0
by

ρ∞ =
⊕

ρ⊕ dimWi

i ,

ρ0 =
⊕

ρ⊕ui

i with ui = dimWi −
∑
j

(2δij − aij) dimVj ,

where {ρi} is the set of isomorphism classes of irreducible representations of
Γ, identified with Q0 via McKay correspondence. If some ui is negative, there
is no genuine instanton. In other words, the Higgs branch MH = M///G
contains no free orbits. We do not know what happens in the Coulomb
branch without this assumption. Conversely ui determines dimV modulo the
kernel of the Cartan matrix C, i.e., Zδ for the (primitive) imaginary root δ.
This ambiguity is fixed by specifying the instanton number as

∑
j δj dimVj

where δj is the jth-entry of δ.
Let g be the complex simple Lie algebra of type ADE corresponding to Γ.

Let gaff be the associated untwisted affine Lie algebra, containing the degree
operator d. In [Nak94], an affine Lie algebra representation was constructed
by quiver varieties. Dimension vectors give affine weights of gaff by

λ =
∑
i

(dimWi)Λi, μ =
∑
i

(dimWi)Λi − (dimVi)αi,

where Λi (resp. αi) is the ith fundamental weight (resp. simple root). The
weight λ is always dominant. We also have λ ≥ μ by definition. If we assume
ui ≥ 0 for all i as above, the second weight μ is also dominant.

On the other hand, Braverman and Finkelberg [BF10] associate a pair
(λ ≥ μ) of affine weights with ρ0, ρ∞ and instantons numbers as follows.
They take Γ = Z/�Z, where � is the level of λ, also of μ as λ ≥ μ. They
take G a simply-connected group, possibly of type BCFG. Then [BF10,
Lemma 3.3] says a conjugacy class of a homomorphism Z/�Z → G corre-
sponds to a dominant coweight λ of GC with 〈λ, θ〉 ≤ �, where θ is the highest
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root of g. It can be regarded as a level � weight of Ĝ∨
C
, the Langlands dual

of the affine Kac-Moody group ĜC. Here Ĝ∨
C
does not contain the degree

operator. We assign dominant weights λ, μ of level � to ρ0, ρ∞ respectively
in this way. Then we extend them to λ, μ dominant weights of the full affine
Kac-Moody group G∨

aff so that

instanton number = �〈λ− μ, d〉+ (λ, λ)

2
− (μ, μ)

2
.

See [BF10, (4.3)]. This rule only determines 〈λ− μ, d〉, but it is well-known
that representation theoretic information depend only on the difference
λ− μ.

Thus a pair of affine weights (λ ≥ μ) correspond to instanton moduli
spaces in two ways, when G is of type ADE, first in [Nak94], second in
[BF10], as we have just explained. Take the quiver gauge theory whose Higgs
branch is the quiver variety associated with (λ ≥ μ) in the first way. Then its
Coulomb branch is expected to be the Z/�Z-equivariant instanton moduli
space associated with (λ ≥ μ) in the second way.

However this is not precise yet by the following reason. Since affine
weights of the Lie algebra gaff may not give weights of G∨

aff if G is simply-
connected, we need to replace G by its adjoint quotient. Then [BF10,
Lemma 3.3] says a homomorphism Z/�Z → G corresponds to an element
in the coset Λ/Waff,�, where Λ is the coweight lattice of G, and Waff,� is the
semi-direct product W � �Λ of the Weyl group W and Λ. Here �Λ acts on Λ
naturally. If G is of adjoint type, Λ is the weight lattice of G∨, i.e., the weight
lattice of g. But Waff,� is an extended affine Weyl group, i.e., the semi-direct
product of the ordinary affine Weyl group and a group T consisting of affine
Dynkin diagram automorphisms. Then a point in the coset Λ/Waff,� does

not give an affine weight of Ĝ∨
C
. It only gives a T -orbit.

When G is of type Ar−1, this inaccuracy can be fixed: we replace G by
U(r), and (λ ≥ μ) by a pair of generalized Young diagrams, in other words,

dominant weights of ĜL(r,C). See [Nak09, App. A] for a detailed review. If
we view both Higgs and Coulomb branches as quiver varieties of affine type
A, the rule of the transform of dimension vectors is given by transpose of
generalized Young diagrams, as reviewed in [Nak09, App. A]. It is the same
as one in [dBHO+97] up to a diagram automorphism.

If we take a gauge theory of finite type instead of affine type, λ, μ are
dominant weights of the finite dimensional Lie algebra g in [Nak94]. Then
instead of [BF10], one can use just the ordinary geometric Satake corre-
spondence, i.e., the affine Grassmannian for G of adjoint type. In terms of
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instantons, we use S1-equivariant G-instantons on R4. Then λ, μ are re-
garded as dominant coweights of G, and correspond to S1-actions on fibers
at 0 and ∞. The inaccuracy disappears also in this case. This conjectural
proposal was given in [BLPW14, Rem. 10.7], though their symplectic du-
ality does not make sense in general outside type A, as we mentioned in
Introduction.

3(iii). Sicilian theory

There is another class of 4-dimensional quantum field theories with N = 2
supersymmetry. They are called theories of class S. A theory SΓ(C, x1, ρ1,
. . . , xn, ρn) is specified with an ADE Dynkin diagram Γ, a punctured Rie-
mann surface (C, x1, . . . , xn) together with a homomorphism ρi : su(2) → gΓ
for each puncture xi, where gΓ is the Lie algebra of a compact Lie group
of type Γ. It is constructed as a dimensional reduction of a 6-dimensional
theory associated with Γ, compactified on a Riemann surface C with defects
at punctures specified by ρi. It is believed that SΓ(C, x1, ρ1, . . . , xn, ρn) does
not have a lagrangian description in general, hence is not a gauge theory
studied in this paper. See [Tac] for a review aimed for mathematicians.

Physicists consider its Coulomb and Higgs branches. The Coulomb
branch is expected to be the moduli space of solutions of Hitchin’s self-
duality equation on C with boundary condition at xi given by ρi. On the
other hand, it is asked in [MT12] what is the underlying complex symplectic
manifold of its Higgs branch MH(SΓ(C, x1, ρ1, . . . , xn, ρn)). The underly-
ing complex symplectic manifold is independent of the complex structure
of (C, x1, . . . , xn). It is supposed to satisfy various properties expected by
physical considerations, most importantly it gives a 2d TQFT whose values
are complex symplectic manifolds.

We can further compactify SΓ(C, x1, ρ1, . . . , xn, ρn) on S1
R and take limit

R → 0 to get a 3-dimensional quantum field theory with N = 4 supersym-
metry. This is a 3d Sicilian theory mentioned above. It is expected that the
Higgs branch is unchanged under the compactification by S1

R.
When Γ is not exceptional, its mirror is supposed to be a certain gauge

theory Hyp(M) ///G [BTX10]. Therefore the Higgs branchMH(SΓ(C, x1, ρ1,
. . . , xn, ρn)) is the Coulomb branch of a gauge theory MC(Hyp(M) ///G),
which we are studying in this paper.

Let us specify M and G. First suppose Γ is of type A�. If C = S2, the
mirror is the quiver gauge theory associated with the star shaped quiver
with n legs. Entries of the dimension vector are � at the central vertex, and
given by ρi on the ith leg specified by the rule as for the quiver construction
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of the nilpotent orbit ρi( 0 1
0 0 ) (see §2(v)). If C has genus g, we add g loops

at the central vertex. (Figure 5) Note also that quivers considered in §3(i)
are of this type. For type D�, we modify this quiver as in §A.2.

�

k1,1 kn,1

k1,d1
kn,dn

· · ·
n legs

··· g loops

Figure 5: Mirror of a 3d Sicilian theory of type A�

The Coulomb branch MC((SΓ(C, x1, ρ1, . . . , xn, ρn)) of a 3d Sicilian the-
ory is the Higgs branch of the gauge theory, which is the hyper-Kähler quo-
tient M///G. It is an additive version of the moduli space of homorphisms
from the fundamental group π1(C \ {x1, . . . , xn}) of the punctured Riemann
surface to GL�+1(C) or SO(2�,C) with prescribed conjugacy classes around
punctures. (See [CB03].) There is an isomorphism between an open subset of
M///G and the actual moduli space [Yam08], hence it is compatible with the
expectation that MC(SΓ(C, x1, ρ1, . . . , xn, ρn)) is the Hitchin moduli space.
When we make R → 0, the Hitchin moduli space is replace by its additive
version.

The monopole formula for this type of quivers is studied in [CHMZ14b].

4. Monopole formula

We discuss the monopole formula in detail in this section.

4(i). Definition

Let G be a compact Lie group. We assume G is connected hereafter for
simplicity.5 We choose and fix a maximal torus T and a set Δ+ of positive

5The monopole formula for a disconnected group O(N) appears in [CHMZ14c].
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roots. Let Y = Y (T ) be the coweight lattice of G. Let W denote the Weyl
group.

Suppose that a quaternionic representation M (also called a pseudoreal
representation) of G is given. We choose an H-base {b} of M compatible
with the weight space decomposition.

We define two functions,6 one depending on G and M, another depend-
ing only on G, of a coweight λ ∈ Y by

Δ(λ)
def.
= −

∑
α∈Δ+

|〈α, λ〉|+ 1

2

∑
b

|〈wt(b), λ〉|,

PG(t;λ)
def.
=

∏ 1

1− t2di
,

(4.1)

where 〈 , 〉 is the pairing between weights and coweights, and the product in
the second formula runs over exponents of the stabilizer StabG(λ) of λ. Since
we take the absolute value in the second term, Δ(λ) is independent of the
choice of b: it remains the same for jb. It is well-known that PG(t;λ) is equal
to the Poincaré polynomial of the equivariant cohomology H∗

StabG(λ)(pt) of a

point. Both Δ(λ) and PG(t;λ) are invariant under the Weyl group W action
on Y .

We assume 2Δ(λ) ≥ 1 for any λ �= 0, a ‘good’ or ‘ugly’ theory in the sense
of [GW09], hence no negative powers of t appear. (It is good if 2Δ(λ) > 1
and ugly if 2Δ(λ) ≥ 1 and not good. But we do not see any differences of
two conditions in this paper.) Since Δ(λ) is piecewise linear, there is only
finitely many λ for a given 2Δ(λ). Note also that PG(t;λ) can be expanded
as a formal power series in t. Therefore

HG,M(t)
def.
=

∑
λ∈Y/W

t2Δ(λ)PG(t;λ).

makes sense as a formal power series in t.
This elementary, but combinatorially complicated expression is the

monopole formula for the Hilbert series of the Coulomb branch MC ≡
MC(Hyp(M) ///G).

Recall that physicists claim that the Coulomb branch MC is a hyper-
Kähler manifold with an SU(2)-action rotating hyper-Kähler structures I,
J , K. One choose a complex structure I, and take U(1) ⊂ SU(2), fixing I.
Then the Hilbert series is the character of the coordinate ring C[MC ] of MC

with respect to the U(1)-action, endowed with an affine scheme structure

6Following [CFHM14], we change t by t2 from [CHZ14].
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compatible with the complex structure I. Thus the main claim in [CHZ14]
is

HG,M(t) = chU(1)C[MC ].

Remark 4.2. The good or ugly condition 2Δ(λ) ≥ 1 for any λ �= 0 means
weights of C[MC ] are nonnegative and the 0-weight space consists only on
constant functions. If this is not satisfied, it is not clear whether (1.2) makes
sense or not. However C[MC ] itself might be well-defined. It is the case for
Hyp(0) /// SU(2) for example. The only trouble is that weight spaces might
be infinite dimensional, and hence the character chU(1)C[MC ] is not defined.

4(ii). Examples

Let us calculate HG,M(t) for the simplest example. Let G = U(1) and M =
H = C⊕ C∗, the vector representation plus its dual. We identify the coweight
lattice Y (U(1)) with Z, and denote a coweight by m instead of λ.

There is no first term in Δ(m) as Δ+ = ∅. Thus 2Δ(m) = |m|. This is an
ugly theory. The stabilizer of m is always U(1), thus PG(t;m) = 1/(1− t2).
Therefore

HU(1),H(t) =
1

1− t2

∑
m∈Z

t|m| =
1

(1− t)2
.

In this case, Seiberg-Witten [SW97] claim that the Coulomb branch MC

is the Taub-NUT space. It is a 4-dimensional hyper-Kähler manifold with
Sp(1)-action, whose underlying complex manifold is C2. The subgroup com-
muting with the complex structure I is U(1) with the multiplication action
on C2. Therefore the Hilbert series is 1/(1− t)2 as expected.

If we replace M by the direct sum of its N -copies, i.e., M = HN , we get

(4.3) HU(1),HN (t) =
1 + tN

(1− t2)(1− tN )
=

1− t2N

(1− t2)(1− tN )2
.

It is claimed that MC is the multi-Taub-NUT space, which is C2/(Z/NZ)
as a complex variety. It is the surface xy = zN in C3, hence we recover the
above formula if we set deg x = deg y = N , deg z = 2.

In this case, the meaning of individual terms t2Δ(λ)PG(t;λ) = tN |m|/(1−
t2) is also apparent from the exact sequence

0 → C[MC ]
z−→ C[MC ] → C[{z = 0}] → 0.
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We have (1− t2) chU(1)C[MC ] = chU(1)C[{z = 0}]. This explains PG(t;λ) =
1/(1− t2). Since {z = 0} = {xy = 0}, we have C[{z = 0}] = C[x, y]/(xy).
Then tN |m| corresponds to xm form ≥ 0 and ym form ≤ 0 (and 1 form = 0).

4(iii). Expected properties of MC

Let us give several expected properties of the Coulomb branch MC . First
of all,

(a) MC contains a hyper-Kähler manifold (or orbifold, more generally)
with an SU(2)-action rotating I, J , K, as an open dense subset.

Once the Hilbert series is given, the dimension is given by the degree of
the corresponding Hilbert polynomial. We expect

(b) dimHMC = dimR T .

It is a classical result that the fundamental group π1(G) of G is iso-
morphic to the quotient of the coweight lattice Y by the coroot lattice. We
can refine the Hilbert series by remembering the class of λ in π1(G), i.e.,
the coordinate ring C[MC ] has an additional π1(G)-grading. Therefore we
expect

(c) The Pontryagin dual π1(G)∧ = Hom(π1(G),U(1)) acts on MC , pre-
serving the hyper-Kähler structure.

In [CHZ14, CHMZ14a], an additional variable z is introduced, and (1.2) is
refined to

(4.4) HG,M(t, z) =
∑

λ∈Y/W
zJ(λ)t2Δ(λ)PG(t;λ),

where J is the projection from Y to π1(G). In above examples, G is a product
of unitary groups, hence, π1(G) = Zr. Thus we expect the torus U(1)r acts
on MC . In the above formula, z is a (multi) variable for characters of the
torus.

Let us check these expected properties for the abelian case. (a) is clear
as MC is supposed to be the hyper-Kähler quotient M///G∨

F . We have

(b) dimHM///G∨
F = d− n = dimRG.

(c) π1(G)∧ = (Zd−n)∧ = G∨ acts on M///G∨
F .

Therefore these two proposed properties are satisfied.
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In many examples, this group action can be enlarged to a nonabelien
group action. Let us give a particular example.

Take a quiver gauge theory Hyp(M) ///G as in §2(iv). Since G is a prod-
uct of unitary groups, π1(G)∧ is isomorphic to the product of U(1) for each
vertex i ∈ Q0. Therefore

∏
i∈Q0

U(1) acts on MC from (c) above. It is ex-
pected that a larger group containing

∏
i∈Q0

U(1) acts on MC as follows.
We consider the Weyl group W (Q), naturally appeared in the con-

text of quiver varieties [Nak94, §9]: Fix W , or more precisely dimW =
(dimWi) ∈ ZQ0 , but we allow V to change. We regard (dimWi −

∑
j(2δij −

aij) dimVj) ∈ ZQ0 as a weight of the Kac-Moody Lie algebra correspond-
ing to Q. Then we change dimV given by the usual Weyl group action on
weights. Concretely, for each vertex i without edge loops, we consider si,
which change V by a new V ′ by the following rule: A) V ′

j is the same as Vj if
j �= i. B) dimV ′

i = dimWi +
∑

j aij dimVj − dimVi. These si generates the
Weyl group.

Now we fix V again, and introduce the subquiver S = (S0, S1) of Q
consisting of vertices i such that reflections si preserve dimV and edges
between them. We suppose S is of finite type, i.e., the underlying graph is a
disjoint union of ADE graphs. Let G′

S be the simply-connected7 compact Lie
group corresponding to S. Note that G′

S contains U(1)’s corresponding to
vertices in S, as a maximal torus. We then take other U(1)’s corresponding
to vertices not in S, and define GS as the product of G′

S and those U(1)’s.
Now π1(G)∧ =

∏
i∈Q0

U(1) is a maximal torus TS of GS .
We also consider the group Γ of the diagram automorphism of preserving

both dimV , dimW . It acts on GS by outer automorphisms. Then we expect

(d) Γ�GS acts onMC extending the π1(G)∧-action, preserving the hyper-
Kähler structure.

In the above example in Figure 1, the left one contains a type AN−1

subgraph in the bottom. Therefore GS = SU(N)×U(1), where the extra
U(1) comes from the upper circled vertex. We also have the overall U(1)
in SU(2), and Γ = {±1} from diagram automorphisms. Thus their prod-
uct should act on MA

C . This should be the same as the natural action on
MB

H , the framed moduli space of SU(N)-instantons on R4, where SU(N)
acts by the change of framing, U(1)×U(1) acts on the base R4 = C2 with
(t, z) · (x1, x2) = (tzx1, tz

−1x2), and the Γ-action is given by taking dual in-
stantons. In the example in Figure 4, we have E8 ×U(1)×U(1)-action from
this construction.

7The author does not know whether it naturally descends to a quotient or not.
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Remark 4.5. Let us write π1(G) = Y/Ycr, where Y (resp. Ycr) is the
coweight (resp. coroot) lattice of G. Therefore π1(G)∧ is the kernel of the
homomorphism Y ∧ → Y ∧

cr between Pontryagin duals of Y , Ycr. We have
Y ∧ = (X ⊗ R)/X, where X = Hom(Y,Z) is the weight lattice of G. There-
fore the coweight lattice Hom(U(1), π1(G)∧) is the same as the kernel of
the homomorphism X → Hom(Ycr,Z) given by the pairing with coroots Ycr.
It is equal to the character group of G. In summary, we have a natural
isomorphism

(4.6) Hom(U(1), π1(G)∧) ∼= Hom(G,U(1)) ∼= Hom(GC,C
∗).

Thus a coweight χ ∈ Hom(U(1), π1(G)∧) defines a character G → U(1),
and hence gives a stability condition and the corresponding GIT quotient of
μ−1

C
(ζC) by GC as in (2.1).
Therefore an element of (4.6) plays two roles, one on MH , another on

MC . This observation was essentially given already in [IS96, dBHOO97].
The former appears as a value of the hyper-Kähler moment map, or Fayet-
Iliopoulos parameter in the physics terminology. On the other hand, when
GS acts onMC , an element of the Lie algebra ofGS is calledmass parameter.

5. Flavor symmetry

5(i). Line bundles over Coulomb branches

Let us discuss a flavor symmetry following [CHMZ14a]. It means that we
suppose that M is a quaternionic representation of a larger compact Lie
group G̃, which contains the original group G as a normal subgroup. The
quotient GF = G̃/G is called the flavor symmetry group. For a quiver gauge
theory, we can take (at least) GF =

∏
i∈Q0

U(Wi)/U(1) (and G̃ = G×GF ),
where U(1) is the overall scalar, which acts trivially on M///G.

Note that we do not use GF to take a quotient. The gauge theory
Hyp(M) ///G has a GF -symmetric QFT in the sense of [Tac]. (The reader
needs to remember that M is a representation of G̃.) As a concrete mathe-
matical consequence, for example,GF acts as a symmetry group on the Higgs
branch MH(Hyp(M) ///G), which is the hyper-Kähler quotient M///G.

Let us turn to study the role of GF playing on the Coulomb branch
MC(Hyp(M) ///G). As observed in [CHMZ14a], we can naturally put GF

in the monopole formula (1.2) as follows. Let us consider the short exact
sequence of groups

1 → G
α−→ G̃

β−→ GF → 1.
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(This is the same as (2.4) in the abelian case.) Let us fix a coweight λF of
GF and consider the inverse image β−1(λF ). We consider Δ(λ) and PG(t;λ)
for λ ∈ β−1(λF ). Their definitions in (4.1) remain the same. For Δ(λ), the
first term is the sum over Δ+, positive roots of G, considered as positive
roots of G̃. In the second term, we understand wt(b) as a weight of G̃, and
paired with λ. We do not change PG(t;λ), we consider the stabilizer of λ in
G, not in G̃. The sum is over β−1(λF )/W , where W is the Weyl group of
G. We get a function

HG̃,M(t, λF ) =
∑

λ∈β−1(λF )/W

t2Δ(λ)PG(t;λ)

in t together with λF .
It was found in [CHMZ14a] (and more recent one [CHMZ14c]) that this

generalization turned out to be very fruitful by two reasons:
First, let {Hyp(Mi ///Gi)}i=1,2,... be a collection of simpler gauge the-

ories sharing the common flavor symmetry group GF . (Thus Mi is a rep-
resentation of G̃i, and GF = G̃i/Gi.) We define a complicated gauge theory
as Hyp(

⊕
Mi ///

∏′Gi), where
∏′Gi is the fiber product of

∏
Gi and the

diagonal GF over
∏

GF . The Hilbert series of the complicated theory is
written by those HG̃i,Mi

(t;λF ) (i = 1, 2, 3 . . . ) of simpler theories as

∑
λF∈YF /WF

t
−2

∑
α∈Δ

+
F
|〈α,λF 〉|

PGF
(t;λF )

∏
i

HG̃i,Mi
(t;λF ),

where YF , WF , Δ
+
F are the coweight lattice, Weyl group, the set of positive

roots of GF . This is clear from the form of the monopole formula.
Second, if Hyp(M ///G) is a quiver gauge theory of type A (or its Sp /O

version), the Hilbert series are written by Hall-Littlewood polynomials.
Combining two, one can write down the Hilbert series of Higgs branches

of 3d Sicilian theories in terms of Hall-Littlewood polynomials, as an example
of an application [CHMZ14b].

Since quiver varieties of type A are nilpotent orbits (and their inter-
section with Slodowy slices) as we mentioned in §2(iv), the appearance of
Hall-Littlewood polynomials is very suggestive. They appear as dimensions
of spaces of sections of line bundles over flag varieties. See [Bro93], where
the Euler characteristic version was found earlier in [Hes80].

For an abelian gauge theory, the dual torus of GF appears in the quotient
construction of the Coulomb branch as MC = M///G∨

F (§2(vi)). Therefore a
coweight λF of GF , which is a weight of G∨

F , defines a line bundle over the
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resolution μ−1(ζImH)/G
∨
F as

μ−1(ζImH)×G∨F C,

where G∨
F acts on C by λF . It naturally has a connection, which is integrable

for any of I, J , K [GN92]. In particular, it is a holomorphic line bundle with
respect to I.

Based on these observations, it is natural to add the followings to the
list of expected properties:

(e) We have a (partial) resolution of MC whose Picard group is isomor-
phic to the coweight lattice YF of GF . Moreover the character of the
space of sections of a U(1)-equivariant holomorphic line bundle LλF

corresponding to a coweight λF is given by the monopole formula
HG̃,M(t, λF ). (Here we replace MC if necessary so that LλF

is rel-
atively ample.)

(f) The Weyl group WF acts on the Picard group of the partial resolution
above.

As is usual for hyper-Kähler manifolds, a resolution and a deformation
are related by the hyper-Kähler rotation. Therefore we expect

(g) We have a deformation ofMC parameterized by the Cartan subalgebra
hF of GF . The Weyl group WF acts on the homology group by the
monodromy.

Let us check the compatibility of the conjecture with the 3d mirror
symmetry. Recall that the group Γ�GS acting on MA

C (see §4(iii)(d)).
Since the definition of Γ�GS depends on the choice of the theory A, let
us denote it by ΓA �GA

S . It is natural to expect that it is identified with
GB

F (the flavor symmetry group for the theory B) acting on MB
H . This is

indeed the case for the example in Figure 1, where ΓA �GA
S are {±1}�

SU(N)×U(1). The squared N gives us SU(N). The factor U(1) comes from
an internal symmetry of the graph. The edge loop at the circled k gives the
factor End(Ck)⊗ C2 in M. Then U(1) is acting on C2 preserving the hyper-
Kähler structure.8 Finally {±1} is identified with the symmetry defined by
transpose of linear maps in M. (Since M is the cotangent type, transpose
of an element in N is in N.)

8A larger group Sp(1) acts on C
2, but the author does not know how to see it in

the monopole formula.
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Since the mirror symmetry should be a duality, the role of GB
F in MB

C

should be the same as the role of ΓA �GA
S playing in MA

H . The diagram
automorphism group ΓA induces automorphisms on MA

H . This is clear.
Let us turn to GA

S . Recall that we have defined GA
S in two steps. We

first define the maximal torus of GA
S as π1(G)∧, where the group G is the

one we take the quotient. Then we consider the Weyl group invariance

in the second step. So consider TA
S

def.
= π1(G)∧ first. By (4.6) a coweight

λS ∈ Hom(U(1), TA
S ) defines a character of G, and hence gives a (partial)

resolution and a line bundle on it for the Higgs branch MA
H as in (2.1). This

is exactly the property (e) for GB
F and MB

C .
Moreover, if we take λS generic in Hom(U(1), TS), we expect that the

Picard group of μ−1
C

(0)//λS
GC is isomorphic to Hom(U(1), TA

S ) and we have

an action of the Weyl group of GA
S , as in (f).

5(ii). Abelian case

In [CHZ14, §6], the proposal (e) was checked for the abelian theory. Let us
give a different proof.

We keep the notation in §2(vi). We choose and fix a coweight λF of GF ,
considered also as a weight of G∨

F . We define the Coulomb branch MC by
M///G∨

F and its partial resolution M̃C by μ−1(λF , 0)/G
∨
F = μ−1

C
(0)//λF

(G∨
F )C.

Here λF is considered as (LieG∨
F )

∗ in the first description as a hyper-Kähler
quotient, and the stability parameter in the second description as a GIT
quotient. (The complex parameter is set 0.) We have a relative ample line
bundle LλF

= μ−1(λF , 0)×G∨F C. Our goal is to check that the character of
the space of sections of LλF

is given by HG̃,M(t, λF ).
In order to have a clear picture, we consider the action of π1(G)∧ = G∨

on MC . We take a lift of the action to the line bundle LλF
. It means that we

lift λF to a weight λ̃F of (T d)∨ so that we have the induced G∨ = (T d)∨/G∨
F -

action on μ−1(λF , 0)×G∨F C. Then the space of sections is a representation
of U(1)×G∨. The monopole formula is refined as

(5.1) HG̃,M(t, λF ) =
∑

λ∈Zd−n

zλt2Δ(λ)PG(t;λ),

as in (4.4). Here we use the identification β−1(λF ) = λ̃F + Imα ∼= Zd−n, as
we choose the lift λ̃F . We understand z as a multi-variable, and zλ means
zλ1

1 · · · zλd−n

d−n .
SinceG is torus, the stabilizer of λ is alwaysG itself. Therefore PG(t;λ) =

1/(1− t2)rankG. And the Weyl group is trivial, as we have already used
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above. We have

2Δ(λ) =

d∑
i=1

∣∣∣(λ̃F + α(λ))i

∣∣∣ ,
where (λ̃F + α(λ))i is the ith-component of λ̃F + α(λ) ∈ Zd.

Let us start the proof. A key is a trivial observation that the hyper-
Kähler quotient of M by T d is a single point at any level of the hyper-Kähler
moment map. It is enough to check d = 1, then it is obvious that the solution
(x, y) ∈ C2 of {

xy = ζC,

|x|2 − |y|2 = ζR

is unique up to U(1) for any ζR, ζC. Let us see this in the GIT picture.
Let ζC = 0, as it becomes trivial otherwise. A function on xy = 0, which
has weight m ∈ Z with respect to the C∗-action z · (x, y) = (zx, z−1y), is xm

if m ≥ 0, y−m if m ≤ 0, up to constant multiple. This function has weight
|m| with respect to the dilatation action t · (x, y) = (tx, ty). Therefore with
respect to the C∗ × C∗-action, the character of C[x, y]/(xy) is

(5.2)
∑
m∈Z

zmt|m|.

This trivial observation can be applied to our situation by considering
hyper-Kähler quotients of M̃C by G∨, which are nothing but hyper-Kähler
quotients of M by T d. We have the complex moment map

μG∨
C : M̃C → (LieG∨)∗ ⊗ C ∼= gC.

We consider it as a set of functions defining the subvariety (μG∨
C

)−1(0).
It is a complete intersection, and the space of sections on (μG∨

C
)−1(0) and

that of M̃C differ by the factor 1/(1− t2)rankG = PG(t;λ). Now we consider
(μG∨

C
)−1(0) is a quotient of the subvariety (μT d

C
)−1(0) in M, where μT d

C
is

the complex moment map of the T d-action on M. The latter is given by
xiyi = 0 (i = 1, . . . , d) in the standard coordinate system (xi, yi)

d
i=1 of M. A

section of LλF
with weight λ with respect G∨ is a function on xiyi = 0 with

weight λ̃F + α(λ), hence is a monomial in either xi or yi according to the
sign of (λ̃F + α(λ))i. Now we deduce (5.1) by the same argument in (5.2).
We replace zm by zλ, t|m| by t2Δ(λ) respectively.

As a byproduct of this proof of the monopole formula, we obtain a linear
base of the coordinate ring C[MC ]. It is given by monomials in components
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of the moment map μG∨
C

and

(5.3)
∏
i

(
x
α(λ)i
i or y

−α(λ)i
i

)
for each λ ∈ Zd−n. Here we take x

α(λ)i
i if α(λ)i ≥ 0 and y

−α(λ)i
i otherwise.

Let us give an explicit presentation of the coordinate ring C[MC ]. It
is an algebra over C[gC], the polynomial ring over gC by the moment map
μG∨

C
: MC → gC. Let us denote the element (5.3) by zλ. (The element gives

the corresponding character zλ, and there is no fear of confusion.) Then
C[MC ] is

⊕
λ∈Zd−n C[gC]z

λ with multiplication

zλzμ = zλ+μπ

(∏
i

ξ
di(λ,μ)
i

)
,

where π : C[td
C
] → C[gC] is the projection induced by the inclusion gC ⊂ td

C
,

ξi is a standard linear coordinate function on td
C
, and

di(λ, μ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if α(λ)i × α(μ)i ≥ 0,

−α(μ)i if α(λ)i ≥ 0, α(μ)i ≤ 0, α(λ+ μ)i ≥ 0,

α(λ)i if α(λ)i ≥ 0, α(μ)i ≤ 0, α(λ+ μ)i ≤ 0,

−α(λ)i if α(λ)i ≤ 0, α(μ)i ≥ 0, α(λ+ μ)i ≥ 0,

α(μ)i if α(λ)i ≤ 0, α(μ)i ≥ 0, α(λ+ μ)i ≤ 0.

This is because the moment map μG∨
C

is induced from μT d

C
on M, which

is given by xiyi. We write zλ by x
α(λ)i
i or y

−α(λ)i
i , and identify ξi with xiyi.

Then we get the above formula of di(λ, μ) according to signs of α(λ)i, α(μ)i,
α(λ+ μ)i.

This formula is found by Hikita [Hik15, App. 2], Dimofte and Hilburn
[DH14].

6. Topological twist

In this section we discuss PDE’s relevant to the topologically twisted version
of our gauge theories. For (G,M) = (U(1),H), it is nothing but the Seiberg-
Witten monopole equation [Wit94]. More general cases were discussed for
example in [Tau99, Pid04, Hay13]. However their reductions to 2-dimension
were not discussed before, as far as the author knows, except it is of course
well known that the dimension reduction of the Seiberg-Witten equation
is the (anti-)vortex equation. Therefore we will discuss equations from the
scratch though our treatment is more or less a standard textbook material.
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6(i). Generalized Seiberg-Witten equations

We consider only the case when the 4-manifold X is spin for simplicity. See
Remark 6.2 for a framework close to the usual Seiberg-Witten equation for
a spinc 4-manifold under an additional assumption on (G,M).

Recall thatM is a quaternionic representation of G. Therefore Sp(1), the
group of unit quaternions, acts on M commuting with the G-action. Then

M can be made a representation of Ĝ
def.
= Spin(4)×G = Sp(1)× Sp(1)×G

in two ways, by choosing Sp(1)× Sp(1) → Sp(1) either the first or second
projection. Let us distinguish two representations, and denote them by M+

and M−. We write Spin(4) = Sp(1)+ × Sp(1)− accordingly.
We regard H as an Sp(1)+ × Sp(1)−-module by left and right multipli-

cation. The quaternion multiplication gives a Ĝ-homomorphism H⊗M− →
M+. Combining this with H⊗M+ → M− given by (x,m) �→ −xm, we have
a Clifford module structure (over R) on M+ ⊕M−.

We regard the hyper-Kähler moment map (see §2(i) for detail), as a
map μ : M+ → g⊗ sp(1)+ by identifying sp(1)+ with the space of imaginary
quaternions. It is equivariant under Ĝ.

Let X be an oriented Riemannian 4-manifold. We assume X is spin, as
mentioned above. Let P → X be a principal G-bundle. We have the associ-
ated Ĝ-principal bundle, denoted by P̂ , by taking the fiber product with the
double cover PSpin(4) of the orthonormal frame bundle PSO(4) of TX given
by the spin structure. Let A be a connection on P . We extend it to a connec-
tion on P̂ , combining with the Levi-Civita connection on the PSpin(4)-part.
We denote the extension also by A for brevity. We have induced covariant
derivatives ∇A on P̂ ×Ĝ M+ and P̂ ×Ĝ M−. Combining them with Clifford

multiplication, we have Dirac operators D±
A : Γ(P̂ ×Ĝ M±) → Γ(P̂ ×Ĝ M∓).

Let Φ be a section of P̂ ×Ĝ M+. Applying the hyper-Kähler moment

map fiberwise, we regard μ(Φ) as a section of P̂ ×Ĝ (g⊗ sp(1)+). Note that

P̂ ×Ĝ sp(1)+ ∼= PSO(4) ×SO(4) sp(1)+ is the bundle Λ+ of self-dual 2-forms.
Hence μ(Φ) is a section of Λ+ ⊗ (P ×G g).

Now we define a generalized Seiberg-Witten equation by

D+
A Φ = 0,

F+
A = μ(Φ).

(6.1)

Here F+
A is the self-dual part of the curvature of A. More precisely it is of

the connection on P , not of the extended one on P̂ .
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Remark 6.2. Assume that G contains a central element acting by the
multiplication of −1 on M. This is true for (G,M) = (U(1),H) correspond-
ing to the usual Seiberg-Witten monopole equation. Then we can replace
Ĝ by its quotient Ĝ′ = Spin(4)×G/± (1, 1). The example G = U(1) gives
Ĝ′ = Spinc(4). Then we consider a principal Ĝ′-bundle P̂ ′ together with an
isomorphism P̂ ′/G ∼= PSO(4) of SO(4) = Spin(4)/± 1-bundles. The general-

ized Seiberg-Witten equation still makes sense for a connection A on P̂ ′ and
a section Φ of P̂ ′ ×Ĝ′ M

+. Here A is supposed to induce the Levi-Civita
connection on PSO(4). In this framework, we do not need to assume X to

be spin, an existence of a lift of PSO(4) to a Ĝ′-bundle P̂ ′ is sufficient. This
framework is used in the usual Seiberg-Witten equation.

When M is of the form O⊗R H for a real representation O of G, we
have a further generalization. An example is M = g⊗R H. The point is H

has two H-module structures by left and right multiplications.
We regard H as a representation of Spin(4) = Sp(1)+ × Sp(1)− as above.

We consider M as a hyper-Kähler manifold by the left multiplication. And
the moment map is regarded as μ : M → g⊗ sp(1)+ as above. We have three
possibilities to makeM = O⊗R H as an Sp(1)+ ⊗ Sp(1)−-module. (They are
possible topological twists in physics literature.) Let (g+, g−) ∈ Sp(1)+ ×
Sp(1)− and x ∈ H. Then the action is either (1) x �→ g+x, (2) x �→ g+xg

−1
+ ,

or (3) x �→ g+xg
−1
− . The case (1) is the same as the case studied above.

In the cases (2), (3), it is better to replace Ĝ by SO(4)×G as (−1,−1) ∈
Sp(1)+ × Sp(1)− acts trivially on H.

The case (2) means that we regard H with S+ ⊗ S+ = Λ0 ⊕ Λ+. Then Φ
is a section of (Λ0 ⊕ Λ+)⊗ (P ×G O). Let us write it by C ⊕B. The Dirac
operator D+

A is identified with dA ⊕ d∗A via the isomorphism S+ ⊗ S− =
Λ1, where S± is the spinor bundle. Hence the generalized Seiberg-Witten
equation is

dAC + d∗AB = 0,

F+
A = μ(C ⊕B).

This is the equation in [VW94] if M = g⊗R H.
Now consider the case (3). Then H is identified with S+ ⊗ S− = Λ1.

Hence Φ is a section of Λ1 ⊗ (P ×G O). The Dirac operator is identified
with d∗A ⊕ d−A via S− ⊗ S− = Λ0 ⊕ Λ−. Therefore the equation is

d−AΦ = 0 = d∗AΦ,
F+
A = μ(Φ).
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This is the equation in [KW07] if M = g⊗R H. For M = g⊗R H, there is
a one-parameter family of equations parametrized by t ∈ P1. See [KW07,
(3.29)].

6(ii). Roles of Higgs branch

Suppose X is compact. We return back to the equation (6.1).
From the Weitzenböck formula forD+

A for a solution (A,Φ) of generalized
Seiberg-Witten equations, we have

0 =
1

2
Δ|Φ|2 + |∇AΦ|2 +

s

4
|Φ|2 + (F+

AΦ,Φ)(6.3)

=
1

2
Δ|Φ|2 + |∇AΦ|2 +

s

4
|Φ|2 + 2|μ(Φ)|2,

where s is the scalar curvature. For the ordinary Seiberg-Witten equa-
tion, we have |μ(Φ)|2 = |Φ|4/4. Then considering a point where |Φ|2 takes
a maximum, one concludes sup |Φ|2 ≤ supX max(−s, 0). (See e.g., [Mor96,
Cor. 5.2.2].)

The same argument works if there exists a constant C such that |φ|4 ≤
C|μ(φ)|2 for φ ∈ M. However this is not true in general. If there is nonzero
φ such that μ(φ) = 0, the inequality is not true. In fact, it is easy to check
the converse. If μ(φ) = 0 implies φ = 0, the inequality holds. Thus we have
proved

• If the Higgs branch MH is {0}, Φ is bounded for a solution of (6.1).

The author learned this assertion during Witten’s lecture at the Isaac New-
ton Institute for Mathematical Sciences in 1996, 18 years ago.

IfMH �= {0}, we should study behavior of a sequence of solutions (Ai,Φi)
with |Φi| → ∞. We consider the normalized solution Φ̄i = Φi/‖Φi‖L2 .
From (6.3) we derive a bound on sup |Φ̄i|, ‖∇AΦ̄i‖L2 , and also

∫
X |μ(Φ̄i)|2 ≤

C‖Φi‖−2
L2 for a constant C. Thus Φ̄i converges weakly in W 1,2 and strongly

in Lp for any p > 0. Moreover μ(Φ̄i) converges to 0, i.e., the limit Φ̄∞ takes
values in μ−1(0). Thus the Higgs branch MH naturally shows up.

Further analyses are given in e.g., [Tau13] for a special case (G,M) =
(SU(2), g⊗H). See also [HW14] for a special case (G,M) = (U(1),HN ) and
dimension 3.
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6(iii). Kähler surfaces

Let us consider the case X is a compact Kähler surface, following [Wit94,
§4], [Mor96, Chapter 7].

The bundle Λ+ of self-dual 2-forms decomposes as Λ0ω ⊕ Λ0,2, where ω
is the Kähler form. It induces a decomposition F+

A = (F+
A )1,1 ⊕ F 0,2

A . The
moment map μ(Φ) also decomposes as μR(Φ)⊕ μC(Φ).

We replace Ĝ by its subgroup G̃ = U(1)× Sp(1)− ×G. The principal
bundle PSpin(4) has the reduction PU(1)×Sp(1)− to U(1)× Sp(1)−-bundle. We

have a square root K
−1/2
X of the anti-canonical bundle K−1

X , associated with
the standard representation of U(1). On the other hand, the bundle associ-

ated with the vector representation of Sp(1)− is Λ0,1 ⊗K
1/2
X . The bundle P̂

likewise has a reduction P̃ to a G̃-bundle. It is also the fiber product of P
and PU(1)×Sp(1)− over X. The connection A on P extends to a connection

on P̃ as before, by combined with the Levi-Civita connection.
Since the multiplication of i on M commutes the action of U(1)×G,

we can view M+ as a complex representation of G̃. Hence P̃ ×G̃ M+ is a
complex vector bundle. A direct calculation shows that μR(iΦ) = μR(Φ),
μC(iΦ) = −μC(Φ).

We combine the complex structure i with the following which is a con-
sequence of the Weitzenböck formula:∫

X
|D+

AΦ|2 +
1

2
|F+

A − μ(Φ)|2(6.4)

=

∫
X
|∇AΦ|2 +

1

2
|F+

A |2 + 1

2
|μ(Φ)|2 + s

4
|Φ|2.

The right hand side is unchanged when we replace Φ by iΦ. On the other
hand, (A,Φ) is a solution of the generalized Seiberg-Witten equation if and
only if the left hand side vanishes. Hence (A,Φ) is a solution if and only if
both (A,Φ) and (A, iΦ) are solutions, that is

D+
AΦ = 0 = D+

A(iΦ),

F 0,2
A = 0 = μC(Φ),

(F+
A )1,1 = μR(Φ).

(6.5)

In particular, P ×G GC has a structure of a holomorphic principal bundle

induced from A. Then P ×G M and P̃ ×G̃ M+ = K
−1/2
X ⊗ (P ×G M) are

holomorphic vector bundles.



636 Hiraku Nakajima

We claim that Φ satisfies D+
AΦ = 0 = D+

A(iΦ) if and only if Φ, viewed as
a section of (P̃ ×G̃ M+)∗, is holomorphic. It is enough to check the assertion
at each point p, hence we take a holomorphic coordinate system (z1, z2)
around p. We write z1 = x1 + iy1, z2 = x2 + iy2. We assume tangent vectors
∂/∂x1, ∂/∂y1, ∂/∂x2, ∂/∂y2 correspond to 1, i, j, k respectively under the
isomorphism TpX ∼= H. Then

D+
AΦ =

2∑
α=1

∂

∂xα
· ∇ ∂

∂xα

Φ+
∂

∂yα
· ∇ ∂

∂yα

Φ

= −∇ ∂

∂x1

Φ+ i∇ ∂

∂y1

Φ+ j∇ ∂

∂x2

Φ+ k∇ ∂

∂y2

Φ

= −2∇ ∂

∂z1

Φ+ 2∇ ∂

∂z2

Φj.

If we replace Φ by iΦ, the first term is multiplied by i, and the second term
by −i. Therefore the assertion follows.

Theorem 6.6. A solution of the generalized Seiberg-Witten equation (6.1)
on a compact Kähler surface X consists of a holomorphic GC-bundle P, a

holomorphic section Φ of K
1/2
X ⊗ (P×GC

M) satisfying

μC(Φ) = 0,

(F+
A )1,1 = μR(Φ)ω.

The equation (F+
A )1,1 = μR(Φ)ω corresponds to the stability condition

by the Hitchin-Kobayashi correspondence. Therefore the moduli space of
solutions has an algebro-geometric description.

Remark 6.7. For the original Seiberg-Witten equation for (G,M) =
(U(1),H), μC(Φ) = 0 can be written as αβ = 0 where Φ = α+ jβ. Therefore
we have either α = 0 or β = 0. We do not have such a further reduction in
general.

6(iv). Dimension reduction

Let us suppose the spin 4-manifold X is R× Y for a spin 3-manifold Y .
The 3-dimensional generalized Seiberg-Witten equation is an R-invariant
solution of (6.1). We regard so(3) = sp(1) as the space of imaginary quater-
nions, and we have the Clifford multiplication so(3)⊗M → M. We take a
principal G-bundle P → Y and consider the associated Ḡ-bundle P̄ with
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Ḡ
def.
= Spin(3)×G, as in the 4-dimensional case. The 3-dimensional gener-

alized Seiberg-Witten equation is a system of partial differential equations
for a connection A on P and a section Φ of P̄ ×Ḡ M:

DAΦ = 0,

∗ FA = −μ(Φ).
(6.8)

Here μ(Φ) is a section of P̄ ×Ḡ (g⊗ so(3)), and considered as a P ×G g.
valued 1-form. The Hodge star ∗ send 2-forms to 1-forms in 3-dimension,
the lower equation makes sense.

The same remark on the bound on Φ in 6(ii) applies also in the 3-
dimensional case: We need to understand the behavior of solutions (Ai,Φi)
with |Φi| → ∞ in order to define invariants rigorously.

For the Floer homology group, we consider the equation

d

dt
Φ = −DAΦ,

d

dt
A = − ∗ FA − μ(Φ)

on R× Y . This is the gradient flow equation for a generalized Chern-Simons
functional given by

E(A,Φ) =
∫
Y
CS(A) +

1

2
(DAΦ,Φ) d vol .

Here CS is the (normalized) Chern-Simons functional satisfying

d

dt

∫
Y
CS(A) =

∫
Y
(
dAt

dt
∧ FAt

) =

∫
Y
(
dAt

dt
, ∗FAt

) d vol .

In the framework of a topological quantum field theory in 3d, it is natu-
ral to expect that one should consider the generalized Seiberg-Witten equa-
tion (6.8) for a 3-manifold Y with cylindrical ends. As ‘boundary condi-
tions’, one should look at the translation invariant solutions of (6.8) over
Y = R× C for a 2-dimensional Riemann manifold C [Don99, §2]. Since C
is a Kähler manifold, we can apply the argument in §6(iii) to reduce the
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equation to

A defines a holomorphic GC-bundle P on C,

Φ is a holomorphic section of K
1/2
C ⊗ (P×GC

M),

μC(Φ) = 0,

∗ FA = μR(Φ),

(6.9)

where ∗ is the Hodge star operator in 2-dimension. The first condition is
automatic as C is complex dimension 1, and hence F 0,2

A is automatically 0.
This is the equation for the gauge nonlinear σ-model whose target is the

Higgs branch M///G = μ−1(0)/G.

7. Motivic Donaldson-Thomas type invariants

From the (2 + 1)-dimensional TQFT framework explained in §1(v), the
Coulomb branch MC of Hyp(M ///G) is expected to be related to the coho-
mology of moduli spaces of solutions of (6.9). This is a starting point, and
must be modified as we have explained in Introduction. We should get a rea-
sonable answer for (G,M) = (SU(2), 0) and we should recover the monopole
formula (1.2) for good or ugly theories.

Our proposal is as in §1(ix). Besides reproducing (1.2), these modifica-
tions are natural in view of recent study of Donaldson-Thomas (DT) invari-
ants, as we will explain below. Recall that DT invariants were introduced
as complex analog of Casson invariants [DT98]. As we can use algebro-
geometric techniques to handle singularities in moduli spaces, DT invariants
are easier to handle than the original Casson invariant in a sense. Therefore
it should be reasonable for us to model the theory of DT invariants.

7(i). Holomorphic Chern-Simons functional

Let C be a compact Riemann surface. We choose and fix a spin structure,

i.e., the square root K
1/2
C of the canonical bundle KC . We also fix a (C∞)

principal GC-bundle P with a fixed reference partial connection ∂. (See
Remark 7.1(b) below, for a correct formulation.) A field consists of a pair

∂ +A : a partial connection on P . So A is a C∞-section of Λ0,1 ⊗
(P ×GC

gC).

Φ : a C∞-section of K
1/2
C ⊗ (P ×GC

M).
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Let F be the space of all fields. There is a gauge symmetry, i.e., the group
GC(P ) of all (complex) gauge transformations of P natural acts on the
space F .

Our notation is slightly different from one in (6.9). We replace Φ by Φ
for brevity, and A is a partial connection instead of a connection.

Remarks 7.1. (a) When we have a flavor symmetry GF , we slightly change
the setting as follows. Recall we have an exact sequence 1 → G → G̃ →
GF → 1 of groups. Choose a principal (GF )C-bundle PF with a partial con-
nection ∂F , and also a G̃-bundle P̃ with a partial connection ∂

∼
. Then F

consists of

∂
∼
+ Ã : a partial connection on P̃ . Moreover, we assume that the

induced connection on PF is equal to ∂F .

Φ : a C∞-section of K
1/2
C ⊗ (P̃ ×G̃C

M).

Since the notation is cumbersome, we will restrict ourselves to the case
without flavor symmetry except we occasionally point out when a crucial
difference arises.

(b) A C∞ principal GC-bundle is classified by its ‘degree’, an element in
π1(G). This is compatible with what is explained in §4(iii)(c). In particular,
we need to take sum over all degrees to define the Coulomb branch. Since
the sum occurs at the final stage, and is not relevant to most of calculations,
we will not mention this point from now.

We define an analog of the holomorphic Chern-Simons functional by

(7.2) CS(A,Φ) =
1

2

∫
C
ωC((∂ +A)Φ ∧ Φ),

where ωC( ∧ ) is the tensor product of the exterior product and the complex

symplectic form ωC on M. Since (∂ +A)Φ is a C∞-section of
∧0,1 ⊗K

1/2
C ⊗

(P ×GC
M), ωC((∂ +A)Φ ∧ Φ) is a C∞-section of

∧0,1 ⊗KC =
∧1,1. Its in-

tegral is well-defined. This is invariant under the gauge symmetry GC(P ).
When M is a cotangent type, we can slightly generalize the construction.

Let us choose M1, M2 be two line bundles over C such that M1 ⊗M2 = KC .
We modify Φ as

Φ1, Φ2 : C∞-sections of M1 ⊗ (P ×GC
N) and M2 ⊗ (P ×GC

N∗) re-
spectively.
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Then

(7.3) CS(A,Φ1,Φ2) =

∫
C
〈(∂ +A)Φ1,Φ2〉.

It is a complex valued function on F .

Remark 7.4. In this expression, analogy with the holomorphic Chern-
Simons functional over a Calabi-Yau 3-fold X is clear. We consider a kind
of dimension reduction from X to C, and connection forms in the reduced
direction are changed to sections Φ1, Φ2.

Let us consider critical points of CS. We take a variation in the direction
(Ȧ, Φ̇):

dCS(A,Φ)(Ȧ, Φ̇)

=
1

2

∫
C
ωC((∂ +A)Φ ∧ Φ̇) + ωC((∂ +A)Φ̇ ∧ Φ) + ωC(ȦΦ ∧ Φ)

=

∫
C
ωC((∂ +A)Φ ∧ Φ̇) + 〈Ȧ ∧ μC(Φ)〉.

Therefore (A,Φ) is a critical point of CS if and only if the following two
equations are satisfied:

(∂ +A)Φ = 0,

μC(Φ) = 0.
(7.5)

The first equation means that Φ is a holomorphic section of K
1/2
C ⊗ (P ×GC

M) when we regard P as a holomorphic principal bundle by ∂ +A. Thus
we have recovered the second and third equations in (6.9).

When we have a flavor symmetry GF , the partial connection ∂F on PF

is fixed, and we only arrow Ã on P̃ to vary in the ‘G-direction’. The Euler-
Lagrange equation remains the same, if we understand ∂ +A involves also
∂F .

Remark 7.6. When M is of an affine quiver type in §2(iv), the solution
of (7.5) is analogous to quiver sheaves considered by Szendröi [Sze08]. When
we further assume M is of Jordan quiver type, it is also analogous to ADHM
sheaves considered by Diaconescu [Dia12b]. In these cases, hyper-Kähler
quotients parametrize instantons on C2/Γ (and its resolution and deforma-
tion) via the ADHM description [KN90], where Γ is a finite subgroup of
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SU(2) corresponding to the quiver. We apply the ADHM description fiber-
wise, critical points give framed sheaves on a compactified C2/Γ-bundle over
C. We do not have the corresponding 3-fold for general (G,M), but it is
philosophically helpful to keep the 3-fold picture in mind.

Moreover, one could probably consider analog of Gromov-Witten in-
variants, namely invariants of quasimaps by Ciocan-Fontanine, Kim, and

Maulik, again imposing a stability condition [CFKM14]. The twist by K
1/2
C

is not included, and they are analog of usual Gromov-Witten invariants for
stable maps from P1 to μ−1

C
(0)//GC.

Note that there are two bigger differences between our moduli and one
in [Sze08, Dia12b, CFKM14]: we assume P to be a genuine G-bundle (or a
vector bundle for G = GL(N)), while it is just a coherent sheaf in [Sze08,
Dia12b] and the base curve C is not fixed in [CFKM14]. And a stability
condition in [Sze08, Dia12b, CFKM14] is not imposed here.

As is clear from Diaconescu and his collaborators [Dia12a, CDP12], a
change of stability conditions is worth studying, but we cannot impose the
stability condition in order to reproduce the monopole formula, as is clear
from the special case (G,M) = (SU(2), 0).

If the space Z(g∗
C
)={ζC ∈ g∗

C
| Ad∗g(ζC)=ζC for any g∈G} is nontrivial,

we could perturb CS by choosing a section ζ̃C of KC ⊗ Z(g∗
C
):

CSc̃(A,Φ) =

∫
C

1

2
ωC((∂ +A)Φ ∧ Φ)− 〈A ∧ ζ̃C〉.

The Euler-Lagrange equation is

(∂ +A)Φ = 0,

μC(Φ) = ζ̃C.

It is not clear whether this generalization is useful or not, but we will study
the toy model case C = C in §9(ii).

7(ii). The main proposal

Our main proposal is that the coordinate ring of the Coulomb branch MC

of Hyp(M) ///G is the equivariant cohomology (with compact support) of
the vanishing cycle associated with CS:

(7.7) C[MC ]
?
= H

∗+dimF−dimGC(P )
c,GC(P ) (space of solutions of (7.5), ϕCS(CF ))∗,
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up to certain degree shift explained later. Since F is infinite-dimensional, it
is not clear whether the conventional definition of the vanishing cycle functor
ϕf can be applied to our situation. We expect that it is possible to justify
the definition, as the theory for usual complex Chern-Simons functional for
connections on a compact Calabi-Yau 3-fold has been developed Joyce and
his collaborators (see [BBD+12, BBBJ13] and the references therein).

Since both dimF , dimGC(P ) are infinite (and its difference also as we
will see below), we need to justify the meaning of the cohomological degree
in (7.7). This will be done below by applying results for ϕf proved in a finite
dimensional setting formally to our situation. Then cohomological degree
in (7.7) will match with the grading on the left hand side coming from the
U(1)-action, appeared in the monopole formula. We hope that this argument
can be rigorously justified when the definition of the vanishing cycle functor
is settled.

However, most importantly, it is not clear at this moment how to define
multiplication in (7.7). In the subsequent paper [BFN16a], we replace P1 by
the formal punctured disc D× = SpecC((z)), mimicking the affine Grass-
mannian. We also replace the cohomology group by the homology group.
Then we can define multiplication by the convolution. If M = 0, there is
a natural pairing between the cohomology of the space for P1 (thick affine
Grassmannian) and homology of the affine Grassmannian (cf. [Gin95, Ch.6]).
It is not clear whether this remains true in general at this moment. The rea-
son which we take the dual of the cohomology group in (7.7) comes only
from the comparison with the M = 0 case, and hence it is not strong in our
current understanding.

Next we should have a Poisson structure in (7.7) from the complex sym-
plectic form of MC . In [BFN16a], we consider C∗-equivariant cohomology
where C∗ acts on D× by rotation. It will give us a noncommutative de-
formation of the multiplication, and hence a Poisson structure in the non-
equivariant limit. We call it the quantized Coulomb branch.

The equivariant cohomology group (7.7) is a module over H∗
GC(P )(pt).

Therefore we should have a morphism from MC to Spec(H∗
GC(P )(pt)). It

should factor through Spec(H∗
G(pt)) where GC(P ) → GC is given by an eval-

uation at a point in C, as Ker(GC(P ) → GC) acts freely on F . Note that
H∗

G(pt) = C[gC]
G = C[hC]

W is a polynomial ring, where hC is a Cartan sub-
algebra of gC. Since we have dim hC = dimMC/2, it is natural to expect
that MC is an integrable system.
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7(iii). Motivic universal DT invariants

Since (7.7) is too much ambitious to study at this moment, we consider less
ambitious one, which is the motivic universal Donaldson-Thomas invariant
defined by

(7.8)
[crit(CS)]vir
[GC(P )]vir

.

This is expected to be obtained by taking weight polynomials with respect
to the mixed Hodge structure given by the Hodge module version of (7.7).
The definition of motivic DT invariants have been worked out for degree
zero by [BBS13], and also by [BBD+12, BBBJ13] and the references therein
for general cases.

Since we do not study the multiplication on (7.7) in this paper, our
primary interest will be the Poincaré polynomial of (7.7) and its comparison
with the monopole formula. For C = P1, we introduce a stratification on the
space (R introduced below) in question such that each stratum has vanishing
odd degree cohomology groups. Therefore the Poincaré polynomial is equal
to the weight polynomial, hence (7.8) looses nothing for our purpose.

Since both F , GC(P ) are infinite dimensional, one still needs to justify
the above definition, defined again via the vanishing cycle functor. Also note
that [GC(P )]vir is the virtual motive of GC(P ), i.e.,

(7.9) (−L
1

2 )− dimGC(P )[GC(P )],

which must be interpreted appropriately.
Maybe it is worthwhile to mention one more thing need to be justified at

this stage. The moduli stack of holomorphic GC-bundles over C is of infinite
type. For example, over P1, it can be reduced to TC-bundles, in other words,
sums of line bundles, but we have no control for the degrees of those line
bundles. Therefore we need to stratify crit(CS) by the Harder-Narashimhan
filtration, and consider motivic invariants for strata, and then take their sum.
The last sum is infinite, so we need to justify it. In practice, at least for P1,
the ‘good’ or ‘ugly’ assumption means that we only get positive powers of
L for each stratum, and we consider it as a formal power series in L.

Remark 7.10. We call the above the universal DT invariant, as no sta-
bility condition is imposed following [MMNS12]. It is a hope that usual DT
invariants and wall-crossing formula could be understood from the universal
one as in [MMNS12]. In [MMNS12], the authors considered representations
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of a quiver, hence arbitrary objects in an abelian category. However, we do
not include coherent sheaves (for G = GL), it is not clear whether this is a
reasonable hope or not.

7(iv). Cutting

We suppose that M is of cotangent type, so M = N⊕N∗. We consider the
scalar multiplication on the factor N∗. Then we have (t · v, t · w) = t(v, w)
for t ∈ U(1).

We have the induced C∗-action on F given by

(A,Φ) �→ (A, t · Φ).

Then CS is of weight 1:

CS(A, t · Φ) = tCS(A,Φ).

Thus the result of Behrend-Bryan-Szendröi [BBS13] can be applied (at least
formally) to get

[crit(CS)]vir = −(−L
1

2 )− dimF (
[CS−1(1)]− [CS−1(0)]

)
.

We introduce the reduced space of fields by

Fred
def.
= {(∂ +A,Φ1)} = FC

∗
.

We have a projection F → Fred induced fromM → N. Note that CS is linear
in Φ2 once (∂ +A,Φ1) is fixed. It is zero if (∂ +A)Φ1 = 0, and nonzero
otherwise. (See (7.3).) Therefore the argument by Morrison [Mor12] and
Nagao [Nag11] can be (at least formally) applied to deduce

[CS−1(1)]− [CS−1(0)] = −(−L
1

2 )2 dim(fiber)[R],

where R is the locus {(∂ +A)Φ1 = 0} in Fred. Hence

(7.11) [crit(CS)]vir = (−L
1

2 )2 dim(fiber)−dimF [R].

Note that R is the space of pairs of principal holomorphic GC-bundles
(P, ∂ +A) together with holomorphic sections Φ1 of the associated bundle
M1 ⊗ (P ×GC

N).
If we take M1 = KC (and hence M2 = OC) and N = N∗ = gC, R is the

space of Higgs bundles, introduced first by Hitchin [Hit87].
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The fiber in (7.11) is the space of Φ2, i.e., all C∞ sections of M2 ⊗
(P ×GC

N∗). This is obviously infinite dimensional, and hence dim(fiber)
must be interpreted appropriately. Observe that dimF is also infinite di-
mensional, however. Note that we also have dimG(P ) in (7.9). We combine
them ‘formally’ to get

2 dim(fiber)− dimF + dimGC(P )(7.12)

= dim{Φ2} − dim{Φ1}+ dimGC(P )− dim{∂ +A}.

Next note that

dim{Φ2} − dim{Φ1}
= dimC∞(KC ⊗M∗

1 ⊗ (P ×GC
N∗))− dimC∞(M1 ⊗ (P ×GC

N))

= dimC∞(Λ0,1 ⊗M1 ⊗ (P ×GC
N))− dimC∞(M1 ⊗ (P ×GC

N)),

where the second equality is true because ‘dim’ is the same for the dual space.
Now this is safely replaced by a well-defined number thanks to Riemann-
Roch:

− ind(∂ on M1 ⊗ (P ×GC
N))

= − deg(M1 ⊗ (P ×GC
N)) + rank(M1 ⊗ (P ×GC

N))(g − 1),

where g is the genus of C. Let us write this number by −i(PN). Similarly
we have

dimGC(P )− dim{∂ +A} = ind(∂ on P ×GC
gC)

= dimGC(1− g).

Let us denote this by i(P ). We have

(7.13)
[crit(CS)]vir
[GC(P )]vir

= (−L
1

2 )i(P )−i(PN) [R]

[GC(P )]
.

This argument can be ‘lifted’ to the case of the cohomology group of
vanishing cycles thanks to a recent result by Davison [Dav13, Th. A.1].
Applying his result formally even though the fiber is infinite dimensional,
we get

H∗+dimF−dimGC

c,GC(P ) (F , ϕCS(CF )) ∼= H
∗+dimF−dimGC−2 dim(fiber)
c,GC(P ) (R,C)

∼= H
∗−i(P )+i(PN)
c,GC(P ) (R,C).
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7(v). Second projection

There is a second projection R → A(P ), where A(P ) is the space of all
(partial) connections. The fiber at ∂ +A ∈ A(P ) is the space of holomorphic
sections Ker(∂ +A on M1 ⊗ (P ×GC

N)). This depends on the isomorphism
class of ∂ +A. Let us denote the isomorphism class by [P]. If we write P,
it will be a representative of [P], considered as a holomorphic principal GC-
bundle. Let

h0(PN)
def.
= dimH0(M1 ⊗ (P×GC

N)).

Then we have

(−L
1

2 )−i(PN)+i(P ) [R]

[GC(P )]
(7.14)

=
∑

[P]∈A(P )/GC(P )

(−L
1

2 )i(P )−i(PN)+2h0(PN) [GC(P ) · P]
[GC(P )]

=
∑

[P]∈A(P )/GC(P )

(−L
1

2 )i(P )−i(PN)+2h0(PN) 1

[Aut(P)]
.

This is a well-defined object.
Note that

− i(PN) + 2h0(PN) = h0(PN) + h1(PN)

= h0(PN) + h0(PN∗) = h0(PM),

where h1(PN) = dimH1(M1 ⊗ (P⊗GC
N)), and PN∗ , PM are vector bun-

dles associated with representations N∗, M, and h0 denotes the dimensions
of their holomorphic sections. In particular, this combination is always non-
negative, and makes sense even when M is not necessarily cotangent type.
Therefore it is reasonable to conjecture that this computation remains true
even without assuming M is of cotangent type.

8. Computation for C = P
1

8(i). Parametrization of GC-bundles

Let us assume C = P1. Then all holomorphic principal GC-bundles can be
reduced to TC-bundles, and they are unique up to conjugation by the Weyl
group. This is a result of Grothendieck [Gro57]. Note that line bundles are
classified by its degree on P1. Therefore isomorphism classes of GC-bundles



Coulomb branches of 3d N = 4 gauge theories, I 647

are parametrized by the coweight lattice Y of G modulo the Weyl group
W , or dominant coweights in other words. A coweight is called a magnetic
charge in the physics literature. Therefore a coweight is denoted by m in
[CHZ14], but we denote a coweight by λ following a standard notation in
mathematics.

Let us explain these more concretely. Suppose GC = GL(N). Then a GC-
bundle is nothing but a rank N vector bundle. It decomposes into a direct
sum of line bundles OP1(λ1)⊕ · · · ⊕ OP1(λN ). As the order of sum does not
matter, we may assume λ1 ≥ · · · ≥ λN . This is the dominance condition. We
can make arbitrary λ = (λ1, . . . , λN ) to a dominance one by the action of
the symmetric group, which is the Weyl group of GL(N).

Keep in mind that rank and degree of the vector bundle are

rank = N, deg =
∑

λi.

The degree is called the topological charge, denoted by J(λ) in [CHZ14,
(2.7)]. See (4.4).

By our formula (7.14), the motivic invariant is the sum over all isomor-
phism classes, i.e., dominant coweights.

When we have a flavor symmetry GF , we add a (GF )C-bundle with
a partial connection ∂F as additional data. Its isomorphism class is also
parametrized by a dominant coweight λF . It is a background flux, i.e., it
enters in the formula, but it is fixed, and we do not sum over λF .

Let us note also that the calculation below is true in the level of Poincaré
polynomials, not only as motives. Considering isomorphism classes of GC-
bundles, we have a stratification of the space R. Each stratum is a vector
bundle over a GC(P )-orbit, and hence has no odd cohomology groups. There-
fore the short exact sequences associated with the stratification splits, hence
the cohomology group is isomorphic (as a graded vector space) with the sum
of cohomology groups of strata.

8(ii). Calculation of contributions from matters

Let B(N) be a base of N compatible with weight space decomposition. For
b ∈ B(N), let wt(b) be its weight. Hence

N =
⊕
b

Cb.

We denote the pairing between weights and coweights by 〈 , 〉. When a
principal bundle P is reduced to a TC-bundle, the associated vector bundle
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decomposes as

PN =
⊕
b

P×TC
Cb,

a sum of line bundles. If λ is the coweight for P, the degree of the line bundle
is 〈λ,wt(b)〉+ degM1. Then

h0(PN) + h1(PN) =
∑
b

|〈λ,wt(b)〉+ degM1 + 1|.

This is because

dimH0(OP1(n)) + dimH1(OP1(n)) = |n+ 1|.

For our standard choice M1 = M2 = OP1(−1), we have∑
b

|〈λ,wt(b)〉|,

which coincides with the second term in Δ(λ) in (4.1) if we replace −L
1

2 by
t. (Recall Δ(λ) appears as t2Δ(λ) in (1.2)).

The calculation remains the same for M not necessarily cotangent type.

8(iii). Calculation of automorphism groups
(GC = GL(N,C) case)

Let us first suppose that GC is GL(N,C). Then P is a usual vector bundle of
rank N . We write λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ), a non-increasing sequence of
integers. We also write λ = (· · · (−1)k−10k01k1 · · · ), which is a modification
of the usual notation for partitions, i.e., −1 appears k−1 times, 0 appears k0
times, etc in the sequence λ.

In this notation, we have

dimEnd(P) =
∑
α,β

kαkβ dimHom(OP1(α),OP1(β))

=
∑
β≥α

kαkβ(β − α+ 1).

For Aut(P), we replace the block diagonal entries α = β by GL(kα). There-
fore

(8.1) [Aut(P)] = [End(P)]
∏
α

[GL(kα)]

[End(Ckα)]
.
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The ratio [GL(k)]/[End(Ck)] is easy to compute and well-known:

[GL(k)]/[End(Ck)] = (Lk − 1)(Lk − L) · · · (Lk − L
k−1)L−k2

= (−1)k(1− L)(1− L
2) · · · (1− L

k)L− k(k+1)

2 .

Thus

(−L
1

2 )i(P )

[Aut(P)]
= (−1)

∑
kα(−L

1

2 )d
∏
α

1

(1− L)(1− L2) · · · (1− Lkα)
,

where

d = i(P )− 2 dimEnd(P) +
∑

kα(kα + 1)

= −2
∑
β≥α

kαkβ(β − α)− 2
∑
β≥α

kαkβ +
∑
α,β

kαkβ +
∑

kα(kα + 1)

= −2
∑
β≥α

kαkβ(β − α) +
∑

kα.

The first term is

−2
∑
i<j

(λi − λj),

which is equal to the first term in Δ(λ) in (4.1), again if we replace −L
1

2

by t.
The term ∏

α

1

(1− L)(1− L2) · · · (1− Lkα)

is PU(N)(t;λ) if we put L = t2.

Therefore up to the factor (−1)
∑

kα(−L
1

2 )
∑

kα , it coincides with (1.2).
Note that

∑
kα is N = rankG, and hence is independent of λ.

Recall that the rank of the group is dimHMC (§4(iii)(3)). Therefore

HG,M(t) = (L
1

2 )− dimH MC
[crit(CS)]vir
[GC(P )]vir

.

The virtual motive is shifted already by − dim /2, hence HG,M(t) is shifted
by − dim in total. This shift is unavoidable, as the monopole formula starts
with 1 which corresponds to constant functions on MC . This convention is
not taken in the cohomology side.
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8(iv). Calculation of automorphism groups (general case)

Let us turn to a general case. The relevant calculation was done in [BD07,
§7]. We reproduce it with shortcuts of a few arguments for the sake of the
reader.

As in [BD07, Def. 2.4], we add the torsor relation to our motivic ring:
[P] = [X][G] for a principal G bundle P over a variety X.

Let P , U , L be the parabolic subgroup, its unipotent radical and its
Levi quotient associated with the dominant coweight λ. (L = StabG(λ) in
the previous notation.) Since the underlying C∞ principal GC-bundle P will
not occur any more except through the formula i(P ) (which is dimGC in
our case), there is no fear of confusion. Let u be the Lie algebra of U , and
Pu be the associated vector bundle. Then generalizing the computation for
G = GL(N,C), we have

Lemma 8.2 ([Ram83, Prop. 5.2]). We have Aut(P) = L�H0(P1,Pu).

The proof is not difficult. It could be an exercise for the reader.
Since P is now a T -bundle, we have

Pu =
⊕
α∈Δ+

〈λ,α〉>0

Pgα
,

where Pgα
is the line bundle associated with the root subspace gα. Its degree

is 〈λ, α〉. Hence

dimH0(P1,Pu) =
∑
α∈Δ+

〈λ,α〉>0

(〈λ, α〉+ 1) .

Therefore
[H0(P1,Pu)]

[U ]
= L

2〈λ,ρ〉,

where ρ is the half sum of positive roots. Note 2〈λ, ρ〉 = ∑
α∈Δ+〈λ, α〉. Since

we take λ dominant, this is the first term (up to sign) of Δ(λ) in (4.1).
We substitute this into Lemma 8.2. Since LU = P ,

[Aut(P)] = L
2〈λ,ρ〉[P ] = L

2〈λ,ρ〉 [G]

[G/P ]
,

where G/P is the partial flag variety. (We implicit used the torsor relation.
See [BD07, p.637] for detail.)
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The partial flag variety G/P has the Bruhat decomposition. Therefore
we only need to compute ordinary cohomology. To connect with the ring
of invariant polynomials, we use an isomorphism of equivariant cohomology
groups:

H∗
G(G/P ) ∼= H∗

L(pt).

The spectral sequence relating equivariant and ordinary cohomology groups
collapses forG/P (as there is no odd degree cohomology). HenceH∗

G(G/P ) =
H∗(G/P )⊗H∗

G(pt). Thus we get

[G/P ] =
[H∗

L(pt)]

[H∗
G(pt)]

=
PG(−L

1

2 ;λ)

PG(−L
1

2 ; 0)
.

From the special case P = B of this computation, we have

[B] = [G]PG(−L
1

2 ; 0)(1− L)rankG,

as [H∗
T (pt)] = (1− L)− rankG. On the other hand, B is the product of T and

its unipotent radical. Hence [B] = (L− 1)rankG[L]
1

2
(dimGC−rankG). We get

[G]PG(−L
1

2 ; 0) = (−1)rankG[L]
1

2
(dimGC−rankG).

Now we combine all these computation to get

(−L
1

2 )i(P )

[Aut(P)]
= (−1)rankG(−L

1

2 )−4〈λ,ρ〉+rankGPG(−L
1

2 ;λ).

This coincides with the contribution of terms not involving M in the mono-
pole formula up to the factor (−1)rankG(−L

1

2 )rankG.

9. Computation for C = C

9(i). Motivic universal DT invariant for gC × M

Since we assume C is compact, we cannot apply the argument in §7 to C = C.
However we further consider the dimension reduction in the C-direction to
a point as in Remark 7.4. In practice, it means that we replace ∂ +A by an
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element ξ in the Lie algebra gC. We thus arrive at

CS(ξ,Φ) =
1

2
ωC(ξΦ,Φ) = 〈ξ,μC(Φ)〉.

This is a function on a finite dimensional space F = gC ×M, and all com-
putation in §7 become rigorous. We repeat our assertions in this setting:

1) (ξ,Φ) is a critical point of CS if and only if

ξΦ = 0, μC(Φ) = 0.

2) The motivic universal DT invariant is defined by

[crit(CS)]vir
[GC]vir

.

3) Assuming M is of cotangent type (i.e., M = N⊕N∗), we use a C∗-
action given by (ξ,Φ1,Φ2) �→ (ξ,Φ1, tΦ2) to get

[crit(CS)]vir
[GC]vir

=
[R]

[GC]
,

where R is the locus ξΦ1 = 0 in Fred = {(ξ,Φ1) ∈ gC ×N}.
Note that (7.12) vanishes in this setting.

4) We further have

(9.1)
[crit(CS)]vir

[GC]vir
=

[R]

[GC]
=

∑
[ξ]∈gC/GC

Ldim(Ker ξ on N)

[StabGC
(ξ)]

.

All these are rigorous now.

9(ii). Another C∗-action

It is interesting to note that we have another C∗-action (ξ,Φ) �→ (tξ,Φ),
which makes sense without the cotangent type condition. It is of weight 1,
even when we perturb μC by ζC ∈ Z(g∗

C
). The cutting for this action was

used by Mozgovoy [Moz11] for (G,M) of quiver type.
Then the application of results on the cutting implies as in §7(iv)

(9.2)
[crit(CS)]vir

[GC]vir
= (−L

1

2 )−(dimM−2 dim gC)
[μ−1

C
(ζC)]

[GC]
.

Note that dimM− 2 dim gC is the expected dimension of μ−1
C

(ζC)/GC.
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Let us again suppose M is of cotangent type and consider the restriction
of the projection μ−1

C
(ζC) → N∗ given by (Φ1,Φ2) �→ Φ2. When M is of

quiver type, it was studied by Crawley-Boevey and his collaborators [CBH98,
CB01, CBVdB04]. The argument can be modified to our setting as follows.

Let us fix Φ2 ∈ N∗ and consider an exact sequence

0 → Lie(StabGC
(Φ2)) → gC → N∗,

where the second arrow is the inclusion and the third arrow is the action of
GC on N∗ : ξ �→ ξΦ2. We consider the transpose

N → g∗C
t−→ Lie(StabGC

(Φ2))
∗ → 0.

From the definition of the moment map, the first arrow is given by Φ1 �→
μC(Φ1,Φ2). Let KΦ2

denote the kernel of N → g∗
C
.

If we have a solution of μC(·,Φ2) = ζC then ζC is in the image of the
first map. Hence we must have t(ζC) = 0 by the exact sequence. Moreover, if
t(ζC) = 0, the space of solutions is an affine space modeled byKΦ2

. Therefore
we are led to introduce the following condition:

Definition 9.3. We say Φ2 is ζC-indecomposable if t(ζC) = 0, in other
words,

〈ξ, ζC〉 = 0 for any ξ ∈ Lie(StabGC
(Φ2)).

If M is of quiver type (with W = 0) and ζC is generic, this is equivalent
to that Φ2 is indecomposable in the usual sense. See the proof of [CBVdB04,
Prop. 2.2.1]. On the other hand, this imposes nothing if ζC = 0.

This condition is invariant under GC-action. Let N∗
ζC-ind

be the con-
structible subset of N∗ consisting of ζC-indecomposable Φ2.

Let us go back to (9.2). We have

(−L
1

2 )−(dimM−2 dim gC)
[μ−1

C
(ζC)]

[GC]
(9.4)

=
∑

[Φ2]∈N∗ζC-ind/GC

LdimKΦ2
−dimN+dim gC

[StabGC
(Φ2)]

=
∑

[Φ2]∈N∗ζC-ind/GC

[Lie(StabGC
(Φ2))]

[StabGC
(Φ2)]

,

where we have used the exact sequence to compute the alternating sum of
the dimension.
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In the situation of [CBVdB04], we replace GC by its quotient GC/C
∗ as

explained at the end of §2(iv). If ζC is generic and hence Φ2 is indecomposable
in the usual sense, StabGC/C∗(Φ2) and its Lie algebra is isomorphic by the
exponential. Then each term in the summand is 1. Hence the sum is the motif
of the space of indecomposable modules. This is one of crucial steps in their
proof of Kac’s conjecture for indivisible dimension vectors. See [CBVdB04,
Prop. 2.2.1].

Suppose ζC = 0, hence Φ2 is an arbitrary element. When (G,M) is of
quiver type with W = 0, the right hand side of (9.4) was computed in
[Moz11]. Let us introduce variables xi for each i ∈ Q0 and denote

∏
i x

vi

i

by xv for v = (vi)i∈Q0
. Summing up to the motivic Donaldson-Thomas in-

variants for all dimension vectors, the generating function is given by

(9.5)
∑
v

[crit(CS)]vir
[GC]vir

xv = exp

( ∞∑
d=1

∑
v av(L

d)xdv

d(1− L−d)

)
,

where av(q) is the Kac polynomial counting the number of absolute inde-
composable representations of dimension vector v of the finite field Fq. See
[Moz11, Th. 1.1].

Note that Kac polynomials have combinatorial expressions very similar
to the monopole formula due to Kac-Stanley (see [Kac83, p.90] and also
[Hua00] for a detail of the proof).

Appendix A. Instantons for classical groups

We give further examples of hyper-Kähler quotients arising as instanton
moduli spaces for SO / Sp groups on R4 with various equivariant structures.

A.1. The case of R4

It is well-known that the ADHM description of SU(N)-instantons on R4 can
be modified for SO / Sp groups.

For SO(N) k-instantons, we take the vector representation W of SO(N),
the vector representation V of Sp(k) and set

M =

{
(B1, B2, a, b) ∈ Hom(V, V )⊕2 ⊕Hom(W,V )⊕Hom(V,W )(A.1) ∣∣∣∣∣ (Bαv, v

′) = (v,Bαv
′) for v, v′ ∈ V , α = 1, 2,

(aw, v) = (w, bv) for v ∈ V , w ∈ W

}
,
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where ( , ) is either the symplectic form or orthogonal form on V or W
respectively. Then the framed instanton moduli space is the hyper-Kähler
quotient μ−1(0)/ Sp(k).

For Sp(N) k-instantons, we replace W by the vector representation of
Sp(N), V by the vector representation of O(k). It should be warned that
the group is not SO(k).

A.2. Nilpotent orbits and Slodowy slices for classical groups

Let us generalize discussions in §2(v) to classical groups. This straightfor-
ward generalization was mentioned [Nak94, Remark 8.5(4)] for the SU(2)-
equivariant case, but not explicitly written down before.

Suppose (B1, B2, a, b) in (A.1) corresponds to an SU(2)-equivariant in-
stanton. Then V , W are representations of SU(2), and (B1, B2), a, b are
SU(2)-linear. Here we mean the pair (B1, B2) is SU(2)-equivariant, when it
is considered as a homomorphism in Hom(V, V ⊗ ρ2), where ρ2 is the vector
representation of SU(2).

Let us decompose V , W as
⊕

Vi ⊗ ρi,
⊕

Wi ⊗ ρi as in §2(v). Since ρi
has a symplectic or orthogonal form according to the parity of i, we have
either symmetric or orthogonal forms on Vi, Wi. For example, for SO(N)-
instantons, linear maps B1, B2, a, b can be put into a graph (see Figure A1)
as before. Groups Sp(v1

2 ), O(w1), etc in circles or squares indicate, we have

Sp(
v1
2
) O(v2) Sp(

v3
2
) · · ·

O(w1) Sp(
w2
2
) O(w3) · · ·

Figure A1: Intersection of a nilpotent orbit and a Slodowy slice

a symmetric or an orthogonal form on V1, W1, etc. (Here vi = dimVi, wi =
dimWi.) The spaceM consists of linear maps, both directions for each edges,
satisfying the transpose condition like in (A.1). And the group G, by which
we take the hyper-Kähler quotient, is the product of groups in circles. It is
not relevant here whether we should put either O(w1),. . . or SO(w1),. . . , as
we only need orthogonal forms. However, it is matter that for O(v2),. . . , as
G is the product of groups in circles. As a special case w2 = w3 = · · · = 0,
we recover Kraft-Procesi’s description of classical nilpotent orbits [KP82].
This special case also appeared later in [KS96].
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A nilpotent orbit Oλ in SO corresponds to an even partition λ. It corre-
sponds to that dimWeven is even, and is compatible with that Weven has a
symplectic form. Similarly Oμ corresponds to an even partition as dimVodd

is even.

A.3. Affine Grassmannian and S1-equivariant instantons

The discussion in the previous subsection can be modified to the case of
S1-equivariant instantons on R4. We have a different quiver as the dual of
ρi is ρ−i for irreducible representations of S1.

For an SO(r)-instanton, the corresponding quiver is Figure A2. From

Sp(
v0
2
) U(v1) U(v2) · · ·

O(w0) U(w1) U(w2) · · ·

Figure A2: Wμ
G,λ for G = SO(r)

the isomorphisms V ∼= V ∗, W ∼= W ∗ given by the symplectic and orthogonal
forms, we have Vi

∼= V ∗
−i, Wi

∼= W ∗
−i. Therefore we do not need to consider

Vi, Wi for i < 0. The moment map takes value in R3 ⊗ (sp(v0/2)⊕ u(v1)⊕
u(v2)⊕ · · · ). The u(v1)⊕ u(v2)⊕ · · · -component is as for ordinary quiver
gauge theories. The sp(v0/2)-component is given by

B0,1B1,0 −B∨
1,0B

∨
0,1 + i0i

∨
0 ,

where B0,1 : V1 → V0, B1,0 : V0 → V1, i0 : W0 → V0. And ∨ is defined by
(B1,0v0, v−1) = (v0, B

∨
1,0v−1), by using the symplectic pairing ( , ) between

V1 and V−1, V0 and itself, etc. Thus (G,M) for SU(2)-equivariant and S1-
equivariant instantons are different for classical groups.

A.4. The case of R4/Γ

Let Γ be a finite subgroup of SU(2). Consider a Γ-equivariant G-instanton
on R4. The case G = U(�) was explained in §3(ii). So we explain how it can
be modified to the case when G is SO / Sp.
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As above, the isomorphisms V ∼= V ∗, W ∼= W ∗ induces Vi
∼= V ∗

i∗ , Wi
∼=

W ∗
i∗ , where i∗ is determined by the McKay correspondence as ρ∗i ∼= ρi∗ . It

fixes the trivial representation ρ0, and hence induces a diagram involution
on the finite Dynkin diagram. It is the same diagram involution given by
the longest element w0 of the Weyl group as −w0(αi) = αi∗ , where αi is the
simple root corresponding to the vertex i. In the labeling in [Kac90, Ch. 4], it
is given by i∗ = �− i+ 1 for type A�, 1

∗ = 5, 2∗ = 4, 3∗ = 3, 4∗ = 2, 5∗ = 1,
6∗ = 6 respectively. For type D� with odd �, it is given by

i∗ =

⎧⎪⎨⎪⎩
�− 1 if i = �,

� if i = �− 1,

i otherwise,

It is the identity for other types.
When i∗ = i, we determine whether ρi ∼= ρ∗i is given by a symplectic or

orthogonal form as follows: The trivial representation, assigned to i = 0, is
orthogonal. For type A� with odd � with i = (�+ 1)/2, it is orthogonal. For
other types, ρi0 for the vertex i0 adjacent to the vertex i = 0 in the affine
Dynkin diagram is the representation given by the inclusion Γ ⊂ SU(2).
Therefore ρi0

∼= ρ∗i0 is symplectic. If i is adjacent to i0 and i∗ = i, then ρi ∼= ρ∗i
is orthogonal. If j is adjacent to such an i with j∗ = j, then ρj ∼= ρ∗j is
symplectic, and so on. From this rule, we determine either Vi

∼= V ∗
i ,Wi

∼= W ∗
i

is symplectic or orthogonal.
We impose constraint on linear maps B, a, b between Vi, Wi’s induced

from (A.1) either as in §A.2 or §A.3.
Examples discussed in §A are not of cotangent type in general. We also

remark that G is not connected if it contains O(N) as a factor. A criterion
on the complete intersection property in §2(iii) is not known in general. See
[Cho15] for special cases.

Appendix B. Hilbert series of symmetric products

We compute

Hk(t, z) =
∑

λ=(λ1≥···≥λk)

z
∑

λit
∑

i N |λi|PU(k)(t, λ).
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We formally set H0(t, z) = 1 and consider the generating function over all
k. Our goal is to show that

(B.1)

∞∑
k=0

Hk(t, z)Λ
k = exp

( ∞∑
d=1

Λd

d
H1(t

d, zd)

)
.

The first term H1(t, z) = (1− t2N )/(1− t2)(1− tNz)(1− tNz−1) is the
Hilbert series of C2/(Z/NZ), and the above is its plethystic exponential.
Then it is the Hilbert series of symmetric powers.

Let us first note that there is a one-to-one correspondence between domi-
nant coweights λ = (λ1 ≥ · · · ≥ λk) and (k0, k1, · · · ;m) ∈ Z∞

≥0 × Z such that

(a) k0 �= 0.

(b) k0 + k1 + · · · = k. In particular, there are only finitely many nonzero
kα.

The correspondence is given by m = λk and kα = #{i | λi − λk = α}. This
is an extension of usual two types of presentations of partitions.

We write (t; t)k = (1− t)(1− t2) · · · (1− tk) as usual. Under the bijection
we have ∑

λi =
∑
α

kα(m+ α),
∑

|λi| =
∑
α

kα|m+ α|,

PU(k)(t, λ) =

∞∏
α=0

1

(t2; t2)kα

.

Hence

∞∑
k=0

Hk(t, z)Λ
k = 1 +

∑
m∈Z

∞∑
k0=1

k1,k2,···=0

∞∏
α=0

tN |m+α|kαz(m+α)kαΛkα

(t2; t2)kα

= 1 +
∑
m∈Z

∞∏
α=0

∞∑
kα = 0 for α �= 0
kα = 1 for α = 0

tN |m+α|kαz(m+α)kαΛkα

(t2; t2)kα

.

By the q-binomial theorem (see e.g., [Mac95, Ch. I, §2, Ex. 4]) we have

∞∑
kα=0

tN |m+α|kαz(m+α)kαΛkα

(t2; t2)kα

=
1

(tN |m+α|zm+αΛ; t2)∞
,
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where (a; t)∞ = (1− a)(1− at) · · · . For α = 0, we subtract the first term
k0 = 0, which is 1. Hence this is equal to

(B.2) 1 +
∑
m∈Z

( ∞∏
α=0

1

(tN |m+α|zm+αΛ; t2)∞
−

∞∏
α=1

1

(tN |m+α|zm+αΛ; t2)∞

)
.

We separate the sum to two parts m ≥ 0 and m < 0. First suppose m ≥
0. Note that |m+ α| = m+ α in this case. We change m+ α to α and get

∞∑
m=0

( ∞∏
α=m

1

(tNαzαΛ; t2)∞
−

∞∏
α=m+1

1

(tNαzαΛ; t2)∞

)
.

We cannot take the sum
∑∞

m=0 separately as each sum diverges. But it is
possible once we subtract 1 from each term. Hence we get

∞∑
m=0

( ∞∏
α=m

1

(tNαzαΛ; t2)∞
− 1

)
−

∞∑
m=0

( ∞∏
α=m+1

1

(tNαzαΛ; t2)∞
− 1

)

=

∞∏
α=0

1

(tNαzαΛ; t2)∞
− 1.

The last −1 cancels with 1 in (B.2).
Let us turn to m < 0. We have∑
m<0

( ∞∏
α=0

1

(tN |m+α|zm+αΛ; t2)∞
−

∞∏
α=1

1

(tN |m+α|zm+αΛ; t2)∞

)

=

∞∏
α=0

1

(tNαzαΛ; t2)∞

∞∑
m=1

(
m∏

α=1

1

(tNαz−αΛ; t2)∞
−

m−1∏
α=1

1

(tNαz−αΛ; t2)∞

)
.

We use the same trick as above. We subtract 1 from each term in the sum∑∞
m=1 and separate the sum. We get

∞∏
α=0

1

(tNαzαΛ; t2)∞

( ∞∏
α=1

1

(tNαz−αΛ; t2)∞
− 1

)
.

Adding 1 and terms with m ≥ 0, m < 0, we get

∞∏
α=0

1

(tNαzαΛ; t2)∞

∞∏
α=1

1

(tNαz−αΛ; t2)∞
.

Now it is straightforward to check (B.1).
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Note Added in Proof

After this paper was posted to ArXiv, several important progresses have
been made. Bullimore et al. write a paper [BDG15], where it is argued from
a physical intuition that C[MC ] is embedded into a localization of another
C[MC ] of the abelian gauge theory where the gauge group G is replaced by
its maximal torus T . This embedding is rigorously given in the definition of
[BFN16a]. At the same time, [BDG15] discusses Coulomb branches of quiver
gauge theories of type ADE when μ is not necessarily dominant. It clarifies
a problem raised in §2(v).

The sequel [BFN16a], announced here, is written, and it is shown that
the definition there reproduces many examples in quiver gauge theories
[BFN16b]. Further examples have been studied in later papers by the author
with collaborators.
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Donaldson-Thomas invariants, Invent. Math. 192 (2013), no. 1,
111–160.

[BD00] R. Bielawski and A. S. Dancer, The geometry and topology
of toric hyperkähler manifolds, Comm. Anal. Geom. 8 (2000),
no. 4, 727–760.



Coulomb branches of 3d N = 4 gauge theories, I 661

[BD07] K. Behrend and A. Dhillon, On the motivic class of the stack
of bundles, Adv. Math. 212 (2007), no. 2, 617–644.

[BDG15] M. Bullimore, T. Dimofte, and D. Gaiotto, The Coulomb
Branch of 3d N = 4 Theories, ArXiv e-prints (2015),
arXiv:1503.04817 [hep-th].

[BF10] A. Braverman and M. Finkelberg, Pursuing the double affine
Grassmannian I: transversal slices via instantons on Ak-
singularities, Duke Math. J. 152 (2010), no. 2, 175–206.

[BFN16a] A. Braverman, M. Finkelberg, and H. Nakajima, To-
wards a mathematical definition of Coulomb branches of 3-
dimensional N = 4 gauge theories, II, ArXiv e-prints (2016),
arXiv:1601.03586 [math.RT].

[BFN16b] A. Braverman, M. Finkelberg, and H. Nakajima, Coulomb
branches of 3d N = 4 quiver gauge theories and slices in the
affine Grassmannian (with appendices by Alexander Braver-
man, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hi-
raku Nakajima, Ben Webster, and Alex Weekes), ArXiv e-prints
(2016), arXiv:1604.03625 [math.RT].

[BH98] H. U. Boden and C. M. Herald, The SU(3) Casson invariant for
integral homology 3-spheres, J. Differential Geom. 50 (1998),
no. 1, 147–206.

[BHK01] H. U. Boden, C. M. Herald, and P. Kirk, An integer valued
SU(3) Casson invariant, Math. Res. Lett. 8 (2001), no. 5-6,
589–603.

[BKW02] V. Borokhov, A. Kapustin, and X. Wu, Monopole operators and
mirror symmetry in three dimensions, JHEP 0212 (2002), 044.

[BLPW14] T. Braden, A. Licata, N. Proudfoot, and B. Webster, Quan-
tizations of conical symplectic resolutions II: category O and
symplectic duality, ArXiv e-prints (2014), arXiv:1407.0964

[math.RT].

[Bro93] B. Broer, Line bundles on the cotangent bundle of the flag va-
riety, Invent. Math. 113 (1993), no. 1, 1–20.

[BT01] M. Blau and G. Thompson, On the relationship between the
Rozansky-Witten and the 3-dimensional Seiberg-Witten invari-
ants, Adv. Theor. Math. Phys. 5 (2001), no. 3, 483–498.



662 Hiraku Nakajima

[BTX10] F. Benini, Y. Tachikawa, and D. Xie, Mirrors of 3d Sicilian the-
ories, JHEP 1009 (2010), 063, arXiv:1007.0992 [hep-th].

[CB01] W. Crawley-Boevey, Geometry of the moment map for repre-
sentations of quivers, Compositio Math. 126 (2001), no. 3, 257–
293.

[CB03] W. Crawley-Boevey, On matrices in prescribed conjugacy
classes with no common invariant subspace and sum zero, Duke
Math. J. 118 (2003), no. 2, 339–352.

[CBH98] W. Crawley-Boevey and M. P. Holland, Noncommutative de-
formations of Kleinian singularities, Duke Math. J. 92 (1998),
no. 3, 605–635.

[CBVdB04] W. Crawley-Boevey and M. Van den Bergh, Absolutely inde-
composable representations and Kac-Moody Lie algebras, In-
vent. Math. 155 (2004), no. 3, 537–559, With an appendix by
Hiraku Nakajima.

[CDP12] W.-y. Chuang, D.-E. Diaconescu, and G. Pan, Chamber struc-
ture and wallcrossing in the ADHM theory of curves II,
J. Geom. Phys. 62 (2012), no. 2, 548–561.

[CFHM14] S. Cremonesi, G. Ferlito, A. Hanany, and N. Mekareeya,
Coulomb Branch and The Moduli Space of Instantons, JHEP
1412 (2014), 103, arXiv:1408.6835 [hep-th].

[CFKM14] I. Ciocan-Fontanine, B. Kim, and D. Maulik, Stable quasimaps
to GIT quotients, J. Geom. Phys. 75 (2014), 17–47.

[CH97] G. Chalmers and A. Hanany, Three-dimensional gauge theories
and monopoles, Nuclear Phys. B 489 (1997), no. 1-2, 223–244.

[CHMZ14a] S. Cremonesi, A. Hanany, N. Mekareeya, and A. Zaffaroni,
Coulomb branch Hilbert series and Hall-Littlewood polynomi-
als, JHEP 1409 (2014), 178, arXiv:1403.0585 [hep-th].

[CHMZ14b] S. Cremonesi, A. Hanany, N. Mekareeya, and A. Zaffaroni,
Coulomb branch Hilbert series and Three Dimensional Si-
cilian Theories, JHEP 1409 (2014), 185, arXiv:1403.2384

[hep-th].

[CHMZ14c] S. Cremonesi, A. Hanany, N. Mekareeya, and A. Zaffaroni,
T σ
ρ (G) Theories and Their Hilbert Series, JHEP 1501 (2015),

150, arXiv:1410.1548 [hep-th].



Coulomb branches of 3d N = 4 gauge theories, I 663

[Cho15] J. Choy, Moduli spaces of framed symplectic and orthogonal
bundles on P2 and the K-theoretic Nekrasov partition functions,
Ph.D. thesis, Kyoto University, 2015.

[CHZ14] S. Cremonesi, A. Hanany, and A. Zaffaroni, Monopole operators
and Hilbert series of Coulomb branches of 3d N = 4 gauge the-
ories, JHEP 1401 (2014), 005, arXiv:1309.2657 [hep-th].

[CLM90] S. E. Cappell, R. Lee, and E. Y. Miller, A symplectic geome-
try approach to generalized Casson’s invariants of 3-manifolds,
Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 2, 269–275.

[CLM02] S. E. Cappell, R. Lee, and E. Y. Miller, A perturbative SU(3)
Casson invariant, Comment. Math. Helv. 77 (2002), no. 3, 491–
523.

[Dav13] B. Davison, The critical CoHA of a quiver with potential, ArXiv
e-prints (2013), arXiv:1311.7172 [math.AG].

[dBHO+97] J. de Boer, K. Hori, H. Ooguri, Y. Oz, and Z. Yin, Mirror
symmetry in three-dimensional gauge theories, SL(2,Z) and D-
brane moduli spaces, Nuclear Phys. B 493 (1997), no. 1-2, 148–
176.

[dBHOO97] J. de Boer, K. Hori, H. Ooguri, and Y. Oz, Mirror symme-
try in three-dimensional gauge theories, quivers and D-branes,
Nuclear Phys. B 493 (1997), no. 1-2, 101–147.

[DH14] T. Dimofte and J. Hilburn, private communication, 2014.

[Dia12a] D.-E. Diaconescu, Chamber structure and wallcrossing in the
ADHM theory of curves, I, J. Geom. Phys. 62 (2012), no. 2,
523–547.

[Dia12b] D.-E. Diaconescu, Moduli of ADHM sheaves and the local
Donaldson-Thomas theory, J. Geom. Phys. 62 (2012), no. 4,
763–799.

[Don90] S. K. Donaldson, Polynomial invariants for smooth four-
manifolds, Topology 29 (1990), no. 3, 257–315.

[Don99] S. K. Donaldson, Topological field theories and formulae of Cas-
son and Meng-Taubes, Proceedings of the Kirbyfest (Berkeley,
CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ.,
Coventry, 1999, pp. 87–102.



664 Hiraku Nakajima

[Don02] S. K. Donaldson, Floer homology groups in Yang-Mills theory,
Cambridge Tracts in Mathematics, vol. 147, Cambridge Univer-
sity Press, Cambridge, 2002, With the assistance of M. Furuta
and D. Kotschick.

[DT98] S. K. Donaldson and R. P. Thomas, Gauge theory in higher di-
mensions, The geometric universe (Oxford, 1996), Oxford Univ.
Press, Oxford, 1998, pp. 31–47.

[Flo88] A. Floer, An instanton-invariant for 3-manifolds, Comm.
Math. Phys. 118 (1988), no. 2, 215–240.

[Gin95] V. Ginzburg, Perverse sheaves on a Loop group and Langlands’
duality, ArXiv e-prints (1995), arXiv:alg-geom/9511007

[alg-geom].

[GN92] T. Gocho and H. Nakajima, Einstein-Hermitian connections on
hyper-Kähler quotients, J. Math. Soc. Japan 44 (1992), no. 1,
43–51.
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[GNY11] L. Göttsche, H. Nakajima, and K. Yoshioka, Donaldson =
Seiberg-Witten from Mochizuki’s formula and instanton count-
ing, Publ. RIMS 47 (2011), no. 1, 307–359.

[Gro57] A. Grothendieck, Sur la classification des fibrés holomorphes
sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138.

[GW09] D. Gaiotto and E. Witten, S-duality of boundary conditions in
N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13
(2009), no. 3, 721–896.

[Hay13] A. Haydys, Dirac operators in gauge theory, March 2013, to
appear in “New Ideas in Low-Dimensional Topology”, Series
on Knots and Everything, Volume 56, edited by L. Kauffman
and V. Manturov, arXiv:1303.2971 [math.DG].

[Hes80] W. H. Hesselink, Characters of the nullcone, Math. Ann. 252
(1980), no. 3, 179–182.

[Hik15] T. Hikita, An algebro-geometric realization of the cohomology
ring of Hilbert scheme of points in the affine plane, IMRN
(2016), to appear, arXiv:1501.02430 [math.AG].



Coulomb branches of 3d N = 4 gauge theories, I 665

[Hit87] N. J. Hitchin, The self-duality equations on a Riemann surface,
Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126.

[HKLR87] N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček, Hyper-
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