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The simple integrable modules with finite dimensional weight
spaces are classified for the quantum affine special linear super-
algebra Uq(ŝl(M |N)) at generic q. Any such module is shown to
be a highest weight or lowest weight module with respect to one of
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1. Introduction

Quantum supergroups associated with simple Lie superalgebras and their
affine analogues were introduced [2, 31, 46] (see also [4, 11, 28]) in the early
90s, and their structure and representations have since been extensively de-
veloped (see, e.g., [1, 16, 17, 20, 22, 29, 33, 34, 36, 39, 42, 43, 47, 48]).
Quantum supergroups were applied to solve interesting problems in a vari-
ety of areas such as topology of knots and 3-manifolds [13, 37, 40], quantum
supergeometry [43, 44], and in particular, Yang-Baxter type integrable mod-
els [2, 10, 33, 45], where the problem of constructing solutions of the spectral
parameter dependent Yang-Baxter equation was converted to the much eas-
ier linear problem of solving the Z2-graded Jimbo equations [2] by using the
representation theory of quantum supergroups.

The Z2-graded Jimbo equations determine the universal R-matrix [16]
of quantum affine superalgebras in loop representations. A basic problem in
studying the equations is to determine which finite dimensional irreducible
representation of a quantum supergroup can be lifted to a representation of
the corresponding quantum affine superalgebra. It was shown that the nat-
ural representations of quantum orthosymplectic supergroups can be lifted
[45], and more importantly, every finite dimensional irreducible representa-
tion of the quantum general linear supergroup Uq(gl(M |N)) [39] can be lifted
to an irreducible representation of the untwisted quantum affine general lin-
ear superalgebra Uq(ĝl(M |N)) [36].

In a very recent paper [35], Huafeng Zhang gave a classification of the
finite dimensional simple modules for Uq(ŝl(M |N)) (more precisely the sub-
algebra U′

q(ŝl(M |N)) without the degree operator) at generic q, providing a
parametrisation of such simple modules in terms of highest weight polyno-
mials. This has much similarity to the classification [41] of finite dimensional
simple modules for the gl(M |N) super Yangian, as explained in [35].

The present paper generalises results of [26, 27, 30] on ŝl(M |N) to the
quantum setting to obtain a classification of the simple integrable modules
with finite dimensional weight spaces for Uq(ŝl(M |N)) at generic q. This also
extends results on loop modules for quantum ŝl(n) [6] to that for the quan-
tum affine superalgebra. A module for a quantum affine superalgebra Uq(ĝ)
is integrable if it is integrable with respect to the subalgebra Uq(ĝ0̄), which
is the quantised universal enveloping algebra of the even subalgebra ĝ0̄ of
ĝ. Thus the integrability of a Uq(ŝl(M |N))-module amounts to integrability
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with respect to the subalgebras Uq(ŝl(M)) and Uq−1(ŝl(N)). The require-
ment of having finite dimensional weight spaces imposes further stringent
conditions on the module.

One result of this paper, Theorem 3.10, states that a zero-level simple
integrable module with finite dimensional weight spaces is necessarily of high-
est weight type with respect to the triangular decomposition of Uq(ŝl(M |N))
induced by the distinguished triangular decomposition of sl(M |N) (cf. equa-
tion (2.3)). A classification of such modules is given in terms of their highest
weight polynomials (see Theorem 3.11).

We show in Theorem 3.11 that any simple integrable Uq(ŝl(M |N))-
module V of zero level with finite dimensional weight spaces can be embedded
in a quantum loop module (cf. (3.9)) as a direct summand. By setting the
loop parameter to 1, we obtain from the image of V a finite dimensional eval-
uation U′

q(ŝl(M |N))-module (cf. (3.10)). This way we recover all the finite
dimensional simple U′

q(ŝl(M |N))-modules, which were classified in [35].
We prove in Theorem 4.2 that only when M or N is equal to 1,

Uq(ŝl(M |N)) admits integrable modules with finite dimensional weight
spaces at nonzero levels. Such a simple integrable module is necessarily a
highest or lowest weight module with respect to the standard triangular de-
composition of Uq(ŝl(M |N)) given in Proposition 2.2. The necessary and
sufficient condition for a simple highest weight Uq(ŝl(M |N))-module to be
integrable with finite dimensional weight spaces is that the highest weight
is integral and dominant [8, 18] with respect to the quantised universal en-
veloping algebra Uq(ŝl(M |N)0̄) of the even subalgebra of ŝl(M |N).

We mention that the quantised universal enveloping superalgebras of
symmetrizable affine Lie superalgebras without isotropic odd simple roots
admit many more integrable highest weight modules at nonzero levels. A
classification of such simple modules was obtained in [42], where a “super
duality" was discovered (see also [38]) identifying such quantised univer-
sal enveloping superalgebras with certain classes of ordinary quantum affine
algebras. Such a super duality emerged as a strong-weak coupling duality be-
tween supergroup Chern-Simons theories on R3 in quantum field theoretical
investigations on supergroup invariants of knots and 3-manifolds [13, 37, 40]
by Mikhaylov and Witten [19].
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2. Preliminaries

In order to study the integrable modules for the quantum affine special lin-
ear superalgebra Uq(ŝl(M |N)), we need its loop presentation [32], which we
discuss here.

2.1. Quantum affine special linear superalgebra

Let us start by discussing some basic structural properties of the special
linear superalgebra [14]. Fix positive integers M and N , and assume that at
least one of them is greater than 1. Let I be the set {1, 2, . . . ,M +N − 1}.
We choose the distinguished Borel subalgebra b for sl(M |N), which consists
of the upper triangular matrices. The Cartan subalgebra h ⊂ b consists of
the diagonal matrices in sl(M |N). Let n be the strictly upper triangular
matrices, then b = h⊕ n.

Equip the free Z-module ⊕M+N
i=1 Zεi with the following bilinear from

(εi, εj) = liδij , li =

{
1, if 1 ≤ i ≤ M,

−1, if M + 1 ≤ i ≤ M +N.

Then the roots of sl(M |N) can be expressed as εi − εj for all i �= j, and
the simple roots with respect to b are given by {αi := εi − εi+1|i ∈ I}. The
even subalgebra sl(M |N)0̄ of sl(M |N) is sl(M)⊕ Cz ⊕ sl(N), where Cz is
the center of sl(M |N)0̄. Let h1 (resp. h2) be the Cartan subalgebra of sl(M)
(resp. sl(N)), and denote by Δ1

0 (resp. Δ2
0) the corresponding set of roots.

Denote by Q the root lattice of sl(M |N), and set Q+ =
∑

i∈I Z≥0αi.
Let ŝl(M |N)=sl(M |N)⊗C[t, t−1]⊕Cc⊕Cd be the untwisted extended

affine Lie superalgebra associated with sl(M |N), where c spans the center,
and d is the degree operator. We take the following Cartan subalgebra ĥ =
h⊗ 1⊕ Cc⊕ Cd for ŝl(M |N). Introduce the affine weight ω0 and null root
δ in h∗ such that ω0(c) = 1, δ(d) = 1, and ω0(h) = δ(h) = 0, ∀h ∈ h. Then

(ω0, αi) = (δ, αi) = 0, ∀i ∈ I, (ω0, ω0) = (δ, δ) = 0, (ω0, δ) = 1.

Then ω0, δ and all the αi together form a basis of h∗. Denote by Q̂ the Z-span
of the αi and δ, i.e., the root lattice of ŝl(M |N), and let α0 = δ −∑

i∈I αi.
Recall that we have the following Borel subalgebras of ŝl(M |N),

Cc⊕ Cd⊕ b⊕ sl(M |N)⊗ tC[t],(2.1)
Cc⊕ Cd⊕ b⊗ C[t, t−1],(2.2)
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where (2.1) is the standard Borel subalgebra, while (2.2) is induced by
b ⊂ sl(M |N). Later we will make use of quantum universal enveloping su-
peralgebras of these Borel subalgebras.

Let us fix once for all a nonzero complex number q which is not a root of
1. For any m ∈ Z+, define [m]q =

qm−q−m

q−q−1 . Let qi = q(εi,εi) for i ∈ I, and set

aij = (εi − εi+1, εj − εj+1), for all i, j ∈ I.

The quantum affine superalgebra Ûq := Uq(ŝl(M |N)) is a Hopf superal-
gebra over C [2, 16, 32, 36, 46], which has two presentations, a Serre presen-
tation in terms of Chevalley generators and Serre type relations, and loop
presentation. Its loop presentation was constructed in [32].

Definition 2.1. The loop presentation of Ûq := Uq(ŝl(M |N)) is as follows.
The set of generators is

{X±
i (n),K±1

i , hi(s), C
±1/2, D±1 | i ∈ I, n, s ∈ Z, s �= 0},

where X±
M (m) for all m ∈ Z are odd, and the other elements are even.

The relations are

C±1/2 are central,
KiK

−1
i = 1 = K−1

i Ki, [Ki,Kj ] = [Ki, hj(s)] = 0, [Ki, D] = 0,

DD−1 = D−1D = 1, Dhi(s)D
−1 = qshi(s), DX±

i (s)D−1 = qsX±
i (s),

KiX
±
j (n)K−1

i = q±aijX±
j (n),

[hi(m), hj(n)] = δm+n,0
[mliaij ]qi(C

m − C−m)

m(qi − q−1
i )

,

[hi(s), X
±
j (n)] = ± [sliaij ]qi

s
C∓ |s|

2 X±
j (n+ s),

[X+
i (m), X−

j (n)] = δij
C(m−n)/2φ+

i (m+ n)− C−(m−n)/2φ−
i (m+ n)

qi − q−1
i

,

[X±
i (m), X±

j (n)] = 0 for aij = 0,

[X±
i (m+ 1), X±

j (n)]q±aij + [X±
j (n+ 1), X±

i (m)]q±aij = 0 for aij �= 0,

and

Symm,n[X
±
i (m), [X±

i (n), X±
j (k)]q−1 ]q = 0 for aij = ±1, i �= M,

Symn,u[[[X
±
M−1(m), X±

M (n)]q−1 , X±
M+1(k)]q, X

±
M (u)] = 0, when M,N > 1,
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where φ±
i (n) are given by the generating series∑

n∈Z
φ±
i (n)z

n = K±1
i exp(±(qi − q−1

i )
∑

s∈Z>0

hi(±s)z±s) ∈ Ûq[[z, z
−1]],

and the symbol Symk,l means symmetrization with respect to k and l. We
have used the notation of q-brackets [X,Y ]u = XY − (−1)|X||Y |uY X, and
written [X,Y ] for [X,Y ]1 for simplicity.

We denote by U′
q(ŝl(M |N)) the subalgebra of Ûq without the generators

D±1. By dropping the generators X±
M (n) for all n ∈ Z, we obtain a subalge-

bra of Ûq, which is the quantised universal enveloping algebra Uq(ŝl(M |N)0̄)
of the even subalgebra sl(M |N)0̄ of sl(M |N). Note that this subalgebra con-
tains Uq(ŝl(M)) and Uq−1(ŝl(N)) as subalgebras.

The superalgebra Ûq is Z-graded Ûq = ⊕k∈Z(Ûq)k with homogeneous
components (Ûq)k = {x ∈ Ûq | DxD−1 = qkx}. Let us introduce the follow-
ing subalgebras of Ûq:

• Û+
q (	) (resp. Û+

q (
)) denotes the subalgebra generated by the ele-
ments X+

i (m) for all m ≥ 0 and i ∈ I (resp. X+
i (m) for all m < 0 and

i ∈ I);

• Û−
q (	) (resp. Û−

q (
)) denotes the subalgebra generated by the ele-
ments X−

i (m) for all m > 0 and i ∈ I (resp. X−
i (m) for all m ≤ 0 and

i ∈ I);

• Û0
q(	) (resp. Û0

q(
)) denotes the subalgebra generated by the elements
hi(r) for all r > 0 and i ∈ I (resp. hi(r) for all r < 0 and i ∈ I);

• Û0
q denotes the subalgebra generated by K±1

i (i ∈ I), D±1 and C±1/2.

We have the following obvious result.

Proposition 2.2. Define the following subspaces of Ûq

Ûq(+) := Û+
q (	)Û−

q (	)Û0
q(	), Ûq(−) := Û+

q (
)Û−
q (
)Û0

q(
).

Then B̂ = Ûq(−)Ûq(0) and B̂ = Ûq(0)Ûq(+) are subalgebras, and

Ûq = Ûq(−)Û0
qÛq(+).

Note that B̂ is the quantised universal enveloping algebra of the Borel
subalgebra of ŝl(M |N) given in (2.1). Thus this triangular decomposition of
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Ûq is the quantum analogue of the triangular decomposition of U(ŝl(M |N))
with respect to the Borel subalgebra (2.1).

2.2. Quantum loop superalgebra of sl(M |N)

Let Uq(L(sl(M |N))) be the extended quantum loop superalgebra, namely
the quotient of Ûq by the ideal generated by C±1/2 − 1. We write Uq =
Uq(L(sl(M |N))), and denote by U′

q the C-subalgebra of Uq without the
generators D±1. Define the following subalgebras of Uq:

• Uq(0) denotes the subalgebra generated by hi(r), K±1
i , D±1 for all

i ∈ I and 0 �= r ∈ Z;

• U+
q (resp. U−

q ) denotes the subalgebra generated by X+
i (m) for all i ∈ I

and m ∈ Z (resp. X−
i (m) for all i ∈ I and m ∈ Z),

and let U′
q(0) = Uq(0) ∩U′

q, which is a subalgebra of U′
q. Then

(2.3) Uq = U−
q Uq(0)U

+
q , U′

q = U−
q U

′
q(0)U

+
q .

Define the following subalgebras of Uq and U′
q respectively:

(2.4) B := Uq(0)U
+
q , B′ := U′

q(0)U
+
q .

Then B can be considered as the quantised universal enveloping superalge-
bra of the Borel subalgebra of ŝl(M |N) given in (2.2) without the central
element, and B′ is the subalgebra of B without the generators D±1. Thus
the triangular decompositions (2.3) are quantum analogues of the triangular
decomposition of U(ŝl(M |N)) with respect to the Borel subalgebra (2.2) of
ŝl(M |N).

Set δ = {βij := αi + αi+1 + · · ·+ αj |i, j ∈ I, i ≤ j} with the following to-
tal ordering βi,j < βi′,j′ if i < i′ or i = i′, j < j′. For βi,j ∈ δ and n ∈ Z, define

X+
i,j(n) = [· · · [[X+

i (n), X+
i+1(0)]qi+1

, X+
i+2(0)]qi+2

, . . . , X+
j (0)]qj ,

with the convention that X+
i,i(n) = X+

i (n).

Proposition 2.3. [35, Theorem 3.12] U+
q is spanned by vectors of the form

→∏
1≤a≤b≤M+N−1

(
cab∏
i=1

X+
a,b(nab,i)

)
, cab ∈ Z≥0, nab,i ∈ Z,
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where
→∏

is the ordered product positioning X+
a,b(m) on the left of X+

a′,b′(n) if
βa,b < βa′,b′ .

2.3. Weight modules

All the modules for Ûq and Û′
q considered in this paper are assumed to be

Z2-graded. Given a Ûq-module V , let

Vμ = {v ∈ V |Dv = q(μ,ω0)v, C±1/2v = q±
1

2
(μ,δ)v, Kiv = q

(μ,αi)
i v, i ∈ I}

for any μ ∈ ĥ∗. If Vμ �= 0, we say that μ is a weight of V , and denote by
P (V ) the set of the weights. The module V is said to be a weight module of
type 1 if

V =
⊕

μ∈P (V )

Vμ.

From now on, all modules will be assumed to be of type 1. A Ûq module V is
integrable if V =

⊕
μ∈P (V ) Vμ, and the elements X±

i (m) (i ∈ I, m ∈ Z) act
locally nilpotently. If C±1/2 act by the identity, we say that V is a zero-level
module, or at level 0.

3. Zero-level integrable representations for Uq(ŝl(M |N))

In this section we classify the irreducible integrable modules for Ûq :=

Uq(ŝl(M |N)) with finite dimensional weight spaces such that C±1/2 act as
the identity. Such modules descend to modules for Uq = Uq(L(sl(M |N))).

3.1. Zero-level integrable representations

Let H (resp. H ′) be the subalgebra of Uq generated by K±1
i , D±1, i ∈ I (resp.

K±1
i , i ∈ I). A module V of Uq (resp. U′

q) is called a highest weight module
if there exists a nonzero weight vector v ∈ V with respect to H (resp. H ′)
such that

1) Uqv = V (resp. U′
qv = V ),

2) X+
i (m)v = 0 for all i ∈ I and m ∈ Z, and

3) Uq(0)v (resp. U′
q(0)v) is an irreducible Uq(0)-module (resp. U′

q(0)-
module).
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Call v a highest weight vector of V relative to B (resp. B′) as Bv = Cv
(resp. B′v = Cv). These highest weight modules are defined relative to the
triangular decompositions for Uq (resp. U′

q) defined by (2.3).
Let ψ : U′

q(0) → C be any algebra homomorphism, and let U′
q(0) act on

the one dimensional vector space Cψ = C by ψ. We extend Cψ to a module
over B′ (cf. (2.4)) by letting U+

q act trivially. Construct the induced U′
q-

module

M(ψ) = U′
q ⊗B′ Cψ,

which has a unique simple quotient:

V (ψ) = the simple quotient U′
q-module of M(ψ).(3.1)

The following definition is taken from [35].

Definition 3.1. [35] Let RM,N be the set consisting of elements (P, f, c,Q),
where

1) f(z) =
∑

n∈Z fnz
n ∈ C[[z, z−1]] is a formal series and Q(z) ∈ 1 + zC[z]

is a polynomial such that

Q(z)f(z) = 0;

2) c ∈ C \ {0} with c−c−1

q−q−1 = f0;

3) P = (P1, . . . , PM−1, PM+1, . . . , PM+N−1) with Pi ∈ 1 + zC[z].

With the help of results from [35], we can characterise the integrability
of V (ψ) as follows.

Theorem 3.2. The following are equivalent for the simple U′
q-module V (ψ)

(cf. (3.1)).

1) V (ψ) is an integrable U′
q-module with finite dimensional weight spaces.
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2) There exists (P, f, c,Q) ∈ RM,N such that for any highest weight vector
v ∈ V (ψ),

X+
i (n)v = 0 for i ∈ I, n ∈ Z,(3.2)

ψ

(∑
n∈Z

φ±
i (n)z

n

)
v = qdegPi

i

Pi(zq
−1
i )

Pi(zqi)
v ∈ C[[z±1]], i ∈ I, i �= M,(3.3)

(X−
i (0))1+degPiv = 0, i ∈ I, i �= M,(3.4)

ψ(KM )v = cv, ψ

(∑
n∈Z

φ+
M (n)− φ−

M (n)

q − q−1
zn

)
v = f(z)v,(3.5)

d∑
s=0

ad−sX
−
M (s+ r)v = 0, ∀r ∈ Z, with Q(z) =

d∑
s=0

asz
s,(3.6)

where (3.3) is understood as an equation of Laurent series expanded
about z = 0 for φ+

i (resp. z = ∞ for φ−
i ).

3) V (ψ) is finite dimensional.

Proof. (1) ⇒ (2). When i �= M , let U
(i)
q be the Uqi(ŝl(2)) subalgebra gener-

ated by

X±
i (n),K±1

i , hi(r), n, r ∈ Z, r �= 0.

Then U
(i)
q v is an integrable highest weight U(i)

q -module. By [8, Theorem 3.4],
there exists a polynomial Pi ∈ 1 + zC[z] satisfying (3.3) and (3.4).

When i = M , there exist c ∈ C \ {0}, fn ∈ C, n ∈ Z such that

KMv = cv,

φ+
M (n)− φ−

M (n)

q − q−1
v = ψ

(
φ+
M (n)− φ−

M (n)

q − q−1

)
v = fnv, n �= 0,

φ+
M (0)− φ−

M (0)

q − q−1
v = ψ

(
KM −K−1

M

q − q−1

)
v = f0v.

Since X−
M (n)v for all n ∈ Z belong to the same weight space of V (ψ), and

all weight spaces are finite dimensional, there exist m ∈ Z, d ∈ Z≥0 and
a0, . . . , ad ∈ C satisfying ad �= 0 and a0 = 1 such that

d∑
s=0

ad−sX
−
M (s+m)v = 0.
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Applying hM−1(r) to the above equality, we obtain

0 =

d∑
s=0

ad−s[hM−1(r), X
−
M (s+m)]v +

d∑
s=0

ad−sX
−
M (s+m)hM−1(r)v

=

d∑
s=0

ad−s
[r]q
r

X−
M (s+m+ r)v +

d∑
s=0

ad−sX
−
M (s+m)ψ(hM−1(r))v

=
[r]q
r

(
d∑

s=0

ad−sX
−
M (s+m+ r)v

)
.

Hence,
∑d

s=0 ad−sX
−
M (s+m+ r)v = 0 and (3.6) holds.

Applying X+
M (0) to

∑d
s=0 ad−sX

−
M (s+m+ r)v = 0, we have

X+
M (0)

d∑
s=0

ad−sX
−
M (s+m+ r)v

=

d∑
s=0

ad−s
φ+
M (s+m+ r)− φ−

M (s+m+ r)

q − q−1
v

=

d∑
s=0

ad−sfs+m+rv = 0,

which implies that Q(z)(
∑

n∈Z fnz
n) = 0, where Q(z) =

∑d
s=0 asz

s.
(2) ⇒ (3). This was established in [35, Theorem 4.5], which is a key result

in the classification of finite dimensional simple U′
q-modules.

(3) ⇒ (1). Clear. �

Definition 3.3. We will denote by V (P, f, c,Q) the U′
q-module V (ψ) cor-

responding to (P, f, c,Q) ∈ RM,N in Theorem 3.2, and call P , f and Q the
highest weigh polynomials of V (P, f, c,Q).

Note that f is a formal Laurent series in general.

The following result is [6, Lemma 1.4].

Lemma 3.4. Let χ : U′
q(0) → C[t, t−1] be a nontrivial homomorphism of Z-

graded algebras. Then there exists a unique r > 0 such that the image of χ
equals to C[tr, t−r].

Let ϕ̃ : U′
q(0) → L := C[t, t−1] be a Z-graded algebra homomorphism

such that ϕ̃(C±1/2) = 1 and ϕ̃(K±1
i ) ∈ C \ {0}. Then for any given b ∈ C,
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we can turn L into a Uq(0)-module via ϕ̃ defined for all f ∈ L by

Df = qt
d

dt
+bf, xf = ϕ̃(x)f, x ∈ U′

q(0).(3.7)

We write ϕ = (ϕ̃, b) and denote by Lϕ the image of ϕ̃ regarded as a Z-graded
Uq(0)-submodule. Then Lϕ is L0 := C or a Laurent subring Lr := C[tr, t−r]
for some integer r > 0. This follows from Lemma 3.4.

Assume that Lϕ is a simple Uq(0)-module. We extend Lϕ to a module
over B (cf. (2.4)) with U+

q acting trivially, and construct the induced Uq-
module

M(ϕ) = Uq ⊗B Lϕ.(3.8)

This has a unique irreducible quotient, which we denote by V (ϕ). Then every
irreducible highest weight Uq-module is isomorphic to some V (ϕ).

Given any simple U′
q-module V (ψ) (cf. (3.1)), we form the vector space

V (ψ)⊗ L and denote w(s) = w ⊗ ts for any w ∈ V (ψ) and s ∈ Z. For any
b ∈ C, we now turn V (ψ)⊗ L into a Uq-module by defining the action

C±1/2w(s) = w(s), Dw(s) = qs+bw(s),

xw(s) = (xw)(s+m), x ∈ (Uq)m.
(3.9)

We denote this Uq-module by L(V (ψ); b) and call it the quantum loop module
associated to V (ψ) and b. Then V (ψ) is an integrable U′

q-module if and only
if L(V (ψ); b) is an integrable Uq-module.

Theorem 3.5. Let V (ϕ) be a Ûq-module such that Lϕ
∼= Lr is an irreducible

U′
q(0)-module. Define ψ = S ◦ ϕ̃ : U′

q(0) → C with S : L → C, t �→ 1, being
the evaluation map. Let v be a highest weight vector of V (ψ) and denote
v(i) = v ⊗ ti for any i ∈ Z. Then

1) V (ψ)⊗ L ∼= ⊕r−1
i=0Uqv(i) as Uq-modules, where Uq-submodules Uqv(i)

are simple. Furthermore, Uqv(0) ∼= V (ϕ).

2) V (ϕ) has finite dimensional weight spaces with respect to H if and only
if V (ψ) has finite dimensional weight spaces with respect to H ′.

Proof. The proofs of [23, Theorem 1.8] and [24, Lemma 1.10] can be adopted
verbatim to prove this result. We refer the interested readers to the paper
[23, 24] for details. �

We note that Uqv(i) ∼= V (ϕ̃, b+ i). In the case r = 0, the formula in part
(1) of the theorem should be understood as V (ψ)⊗ L ∼= ⊕i∈ZUqv(i).
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Given any nonzero simple Uq-submodule Uqv(i) ⊆ L(V (ψ), b), we define
the evaluation module for U′

q by setting t = 1:

Uqv(i) −→ V (ψ), w(s) �→ w.(3.10)

This is a U′
q-module homomorphism, which is surjective.

3.2. Classification theorem

Let V be an irreducible integrable Uq-module with finite dimensional weight
spaces. In this section we generalize the method developed in [30] to show
that V has to be a highest weight module with respect to the triangular
decomposition of Uq given in (2.3).

Introduce the set S = {(a, b)|1 ≤ a ≤ M ≤ b ≤ M +N − 1, a < b}, and
order the elements so that (a, b) > (a′, b′) if and only if b− a > b′ − a′ or
b− a = b′ − a′, a < a′.

We have the following lemmas, which play a key role in the remainder
of the section. Their proofs are relegated to Appendices B and C as they
involve very lengthy computations.

Lemma 3.6. Let va−1,b−1 be a weight vector in V . For any n1, . . . , np ∈ Z

and p ∈ Z>0, denote

va,b := X+
a,b(np) · · ·X+

a,b(n1)va−1,b−1, if b− 1 �= M +N,

(resp. v1,b−a := X+
1,b−a(np) · · ·X+

1,b−a(n1)va−1,b−1, if b− 1 = M +N).

If X+
i (m)va−1,b−1 = X+

k,l(m)va−1,b−1 = 0, ∀i �= M,m ∈ Z, (k, l) > (a− 1, b−
1), then

X+
i (m)va,b = X+

k,l(m)va,b = 0 ∀m ∈ Z, (k, l) > (a, b), i �= M,

(resp. X+
i (m)v1,b−a = X+

k,l(m)v1,b−a = 0 ∀m ∈ Z, (k, l) > (1, b− a)).

Proof. See Appendix B . �

Lemma 3.7. For (a, b) ∈ S, let va,b be a weight vector in V such that

(3.11)
X+

i (m)(X+
a,b(n1) · · ·X+

a,b(nr)va,b) = 0, ∀m,n1, . . . , nr ∈ Z, i �= M,

X+
a,b(p)X

+
a,b(k)va,b = 0, ∀p, k ∈ Z with p ≡ k (mod 2).

Then

(3.12) X+
a,b(p)X

+
a,b(i)X

+
a,b(j)va,b = 0, ∀p, i, j ∈ Z.
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Furthermore, there exists k (0 ≤ k ≤ 2) and n1, . . . , nk ∈ Z such that

wa,b := X+
a,b(n1) · · ·X+

a,b(nk)va,b �= 0,

X+
a,b(m)wa,b = 0, ∀m ∈ Z.

(3.13)

Proof. See Appendix C . �

Let V be an irreducible zero-level integrable module for Uq with finite
dimensional weight spaces. By definition, V is integrable over the even sub-
algebra of Uq. It follows from Chari’s work [6] that there is a non-zero weight
vector v ∈ V such that

(3.14) X+
i (m)v = 0, ∀m ∈ Z, i �= M.

Denote by wt(v) the weight of v. Let X be the subspace of V spanned by
the vectors X+

M (k)X+
M (−k)v for all k ≥ 0, which is a subspace of Vwt(v)+2αM

,
thus is finite dimensional. Therefore, there exists a finite positive integer K
such that

X = span{X+
M (k)X+

M (−k)v | 0 < k < K}.

Thus for any r ∈ Z we have

(3.15) X+
M (r)X+

M (−r)v =
∑

0<k<K

a
(r)
k X+

M (k)X+
M (−k)v, a

(r)
k ∈ C.

Note that the elements X+
M (k) for all k ∈ Z anti-commute among them-

selves and satisfy X+
M (k)2 = 0. Thus equation (3.16) below immediately fol-

lows from (3.15).

Lemma 3.8. Let V be a simple zero-level integrable Uq-module, and let v ∈
V be a nonzero weight vector satisfying (3.14). Then the following relations
hold for large k:

(3.16) X+
M (nk)X

+
M (−nk) · · ·X+

M (n1)X
+
M (−n1)v = 0, ∀n1, . . . , nk ∈ Z;

(3.17) X+
1,M+N−1(mk) · · ·X+

1,M+N−1(m1)v = 0, ∀m1, . . . ,mk ∈ Z.
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Proof. Since (3.16) was proven already, we only need to consider (3.17). For
notational simplicity, we write E(m) = X+

1,M+N−1(m) for all m. Applying

(X+
M+N−1(0))

2k · · · (X+
M+1(0))

2k(X+
1 (m))2k(X+

2 (0))2k · · · (X+
M−1(0))

2k

to (3.16) and then using (A.2), we can show that

(3.18) E(m+ nk)E(m− nk) · · ·E(m+ n1)E(m− n1)v = 0.

Let l + 1 be the minimal integer such that (3.18) holds. Then there exist
r1, . . . , rl such that

v′ := E(m+ rl)E(m− rl) · · ·E(m+ r1)E(m− r1)v �= 0,

E(p)E(k)v′ = 0 for all p, k ∈ Z with p ≡ k (mod 2).

By Lemma 3.6, we have

X+
i (m)(E(n1) · · ·E(nk)v

′) = 0, i �= M,n1, . . . , nk ∈ Z, k ∈ Z≥0.

Now (3.17) follows from (3.13). �

Using Lemma 3.8, we can prove the following result.

Proposition 3.9. Let V be an irreducible zero-level integrable Uq-module
with finite dimensional weight spaces. Then there always exists a nonzero
weight vector w ∈ V such that

X+
i (r)w = 0, ∀i �= M, r ∈ Z,(3.19)

X+
a,b(r)w = 0, ∀(a, b) ∈ S, r ∈ Z,(3.20)

X+
M (n1) · · ·X+

M (nk)w = 0, ∀ni ∈ Z, large k.(3.21)

Proof. By Lemma 3.8, one can find a non-zero weight vector v1,M+N−1 such
that

X+
i (m)v1,M+N−1 = X+

1,M+N−1(m)v1,M+N−1 = 0 i �= M,m ∈ Z.

We observe that (3.16) still holds if we replace v by v1,M+N−1, namely, for
large k,

(3.22)
X+

M (nk)X
+
M (−nk) · · ·X+

M (n1)X
+
M (−n1)v1,M+N−1 = 0,

∀n1, . . . , nk ∈ Z.
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Applying

(X+
M+N−2(0))

2k · · · (X+
M+1(0))

2k(X+
1 (m))2k(X+

2 (0))2k · · · (X+
M−1(0))

2k

to this equation, and then using (A.2), we obtain

QM+N−2(n1, . . . , nk)v1,M+N−1 = 0,

where QM+N−2(n1, . . . , nk) is given by

X+
1,M+N−2(m+ nk)X

+
1,M+N−2(m− nk) · · ·

· · ·X+
1,M+N−2(m+ n1)X

+
1,M+N−2(m− n1).

Clearly, m+ ni ≡ m− ni (mod 2), i = 1, . . . , k. By using Lemma 3.6 and
Lemma 3.7, we can find a non-zero weight vector v1,M+N−2 such that for all
m ∈ Z,

X+
i (m)v1,M+N−2 = 0, i �= M,

X+
1,M+N−1(m)v1,M+N−2 = X+

1,M+N−2(m)v1,M+N−2 = 0.

Now (3.16) holds with v = v1,M+N−2. Thus for large k,

X+
M (nk)X

+
M (−nk) · · ·X+

M (n1)X
+
M (−n1)v1,M+N−2 = 0, ∀n1, . . . , nk ∈ Z.

Applying

(X+
M+N−2(0))

2k · · · (X+
M+1(0))

2k(X+
2 (m))2k(X+

3 (0))2k · · · (X+
M−1(0))

2k

to this equation, and then using Lemma 3.6 and Lemma 3.7, we can find a
non-zero weight vector v2,M+N−1 such that for all m ∈ Z,

X+
i (m)v2,M+N−1 = 0, i �= M,

X+
1,M+N−1(m)v2,M+N−1 = X+

1,M+N−2(m)v2,M+N−1

= X+
2,M+N−2(m)v2,M+N−1 = 0.

Repeating the above process for v = v2,M+N−1 etc., and after a finite
number of iterations, we will find a nonzero weight vector w such that

(3.23) X+
i (m)w = X+

a,b(m)w = 0, i �= M, m ∈ Z, (a, b) ∈ S,

where the set S is defined in the beginning of Section 3.2.
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Let μ be the weight of w. Observe that V , being irreducible, must be
cyclically generated by w over Uq. By using the PBW theorem for Uq and
equation (3.23), we easily show that any weight of V which is bigger than
μ (relative to B; see also the Borel subalgebra of ŝl(M |N) defined by (2.2))
must be of the form

μ+ a(εM − εM+1) + bδ, a ∈ Z≥0, b ∈ Z.(3.24)

Now we prove (3.21). Suppose it is false, that is, for any positive integer
p, there always exist k > p and n1, . . . , nk ∈ Z such that w̃ := X+

M (n1) · · ·
X+

M (nk)w �= 0. Then ν := μ+ k(εM − εM+1) +
∑k

i=1 niδ is the weight of w̃.
But for large p, and hence large k, we have (ν, εM−1 − εM ) < 0. Thus ν +
(εM−1 − εM ) is a weight of V by considering the action of the Uq(sl2) subalge-
bra generated by X±

M−1(0) and K±1
M−1. However, the weight ν + (εM−1 − εM )

is not of the form (3.24), proving (3.21) by contradiction. �
The following theorem is now an easy consequence of Proposition 3.9.

Theorem 3.10. Let V be an irreducible zero-level integrable Uq-module with
finite dimensional weight spaces. Then V is a highest weight module with
respect to the triangular decomposition of Uq given by (2.3).

Proof. Consider the weight vector w of Proposition 3.9, and let s be the
minimal integer such that (3.21) holds. Then there exist r1, . . . , rs−1 ∈ Z

such that

v := X+
M (r1) · · ·X+

M (rs−1)w �= 0,

X+
M (r)v = 0, ∀r ∈ Z.

It it not difficult to show that we also have X+
i (m)v = 0 for all i �= M and

m ∈ Z. �

Theorem 3.11. Let W be an irreducible integrable Uq-module of type 1
with finite dimensional weight spaces. Then W is isomorphic to an irre-
ducible component of L(V, b) for some b ∈ C, where V = V (P, f, c,Q) (see
Definition 3.3) for some (P, f, c,Q) ∈ RM,N .

Proof. It follows from Theorem 3.10 that there exists a nonzero highest
weight vector v ∈ W , and W = Uqv = U−

q Uq(0)v, where the second equal-
ity follows from (2.3). Clearly Uq(0)v = U′

q(0)v. Irreducibility of W requires
that U′

q(0)v be an irreducible Uq(0)-module, and hence an irreducible U′
q(0)-

module. Since U′
q(0) is a Z-graded commutative algebra, U′

q(0)v being an
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irreducible graded module must be the quotient of U′
q(0) by a maximal

graded ideal M of U′
q(0) which annihilates v. It follows from Lemma 3.4 that

U′
q(0)/M

∼= Lr := C[tr, t−r]. Thus we have a natural Z-graded homomor-
phism ϕ̃ : U′

q(0) → U′
q(0)/M

∼= Lr such that ϕ̃(x)v = xv for all x ∈ U′
q(0).

There exists some b ∈ C such that Dv = qbv. Set ϕ = (ϕ̃, b) (see notation
immediately below (3.7)). Then W is isomorphic to V (ϕ).

Set ψ = S ◦ ϕ̃ and consider the irreducible module V (ψ). By Theorem 3.5,
V (ϕ) is isomorphic to an irreducible component of L(V (ψ), b). Since V (ϕ) is
an integrable Uq-module with finite dimensional weight spaces, so is V (ψ).
Thus it follows from Theorem 3.2 that V (ψ) is isomorphic to V (P, f, c,Q)
(see Definition 3.3) for some (P, f, c,Q) ∈ RM,N . This completes the proof.

�

4. Integrable representations of Uq(ŝl(M |N)) at
nonzero levels

In this section, highest and lowest weight modules for Ûq = Uq(ŝl(M |N))

are defined relative to the triangular decomposition of Ûq given in Proposi-
tion 2.2.

4.1. Integrable representations at nonzero levels

The subalgebra of Ûq generated by X±
i (n),K±1

i , hi(r), C
±1/2, D±1 (with

M + 1 ≤ i ≤ M +N − 1, n, r ∈ Z, r �= 0) is Uq−1(ŝl(N)). Thus C acts on
any nontrivial simple integrable highest weight Uq−1(ŝl(N))-module [8, 18]
by the multiplication by q−� for some fixed � > 0.

We have the following result.

Proposition 4.1. 1) Let W be an integrable Uq−1(ŝl(N))-module with
finite dimensional weight spaces. Suppose that the center C acts on W
by (q−1)r with r ∈ Z>0. If λ is a weight of W , then there exists K > 0
such that

λ+ α+ kδ is not a weight of W for all k ≥ K and α ∈ Δ2
0 ∪ {0}.

2) Let V be an irreducible integrable module for Ûq with finite dimensional
weight spaces. Suppose that the center C acts on V by (q−1)r with
r ∈ Z>0. Then for any λ ∈ P (V ) there exists K > 0 such that

λ+ α+ kδ /∈ P (V ) for all k ≥ K and for all α ∈ Δ2
0 ∪ {0}.
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Proof. Part (1) can be easily proved by adapting the proof of [25, Theo-
rem 1.10] to the present context. We omit the details.

To prove part (2), set T = C[(KN
MKN−1

M+1 · · ·K2
M+N−2KM+N−1)

±1,K±1
M−1,

. . . ,K±1
1 ]. Observe that T commutes with Uq−1(ŝl(N)). Decompose V into

the direct sum of T -invariant subspaces. Each T -invariant subspace is an
integrable Uq−1(ŝl(N))-module with finite dimensional weight spaces. Now
part (1) implies part (2). �

Theorem 4.2. Assume that both M and N are greater than 1. Then there
exists no integrable Ûq-module with finite dimensional weight spaces, where
C does not act by the identity.

Proof. Without lose of generality, we may assume that C acts by q−r with
r > 0. Let Uq(ŝl(M)) be the subalgebra of Ûq generated by X±

i (n), K±1
i ,

hi(s), C±1/2 with 1 ≤ i ≤ M − 1, n, s ∈ Z and s �= 0. Regard V as an in-
tegrable Ûq(sl(M))-module. Note that C acts on V by q−r with r > 0.
By [6, Theorem 5], there exists a weight vector v ∈ V of weight λ such
that X±

i (n)v = 0 and hi(n)v = 0 for all n < 0 and 1 ≤ i ≤ M − 1. Then
hi(n)v �= 0 for all n > 0 and 1 ≤ i ≤ M − 1. Thus λ+ nδ ∈ P (V ) for all
n > 0. This contradicts Proposition 4.1, completing the proof. �

Remark 4.3. A similar result has long been known [12, 15] for affine Lie
superalgebras in the classical setting.

4.2. Integrable representations of Uq(ŝl(1|N))

From now on we assume that N > M = 1.

Lemma 4.4. X±
1,a(m)X±

1,a(n)=−X±
1,a(n)X

±
1,a(m), 1≤a≤N − 1,m, n∈Z.

Proof. The a = 1 case is a defining relation of Ûq. For a ≥ 2, we have

[X+
1,a(m), X+

1,a(n)]q−2 = [[X+
1 (m), X+

2,a(0)]q−1 , [X+
1 (n), X+

2,a(0)]q−1 ]q−2 .

We can rewrite the right hand side as

[X+
1 (m), [X+

2,a(0), X
+
1,a(n)]q−1 ]q−2

+ q−1[[X+
1 (m), [X+

1 (n), X+
2,a(0)]q−1 ]q−1 , X+

2,a(0)],
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where the first term vanishes by Lemma A.2. The second term can be ex-
pressed as

q−1[[[X+
1 (m), X+

1 (n)], X+
2,a(0)]q−2 , X+

2.a(0)]

− q−1[[X+
1 (n), [X+

1 (m), X+
2,a(0)]q−1 ]q−1 , X+

2.a(0)],

where the first term vanishes, as [X+
1 (m), X+

1 (n)] = 0. By manipulating the
second term, we obtain

[X+
1,a(m), X+

1,a(n)]q−2 =− q−1[X+
1 (n), [X+

1,a(m), X+
2,a(0)]q]q−2

+ q[[X+
1 (n), X+

2,a(0)]q−1 , [X+
1 (m), X+

2,a(0)]q−1 ]q−2

=− [X+
1,a(n), X

+
1,a(m)]q−2 .

Hence, X+
1,a(m)X+

1,a(n) = −X+
1,a(n)X

+
1,a(m).

Similarly, one can show that X−
1,a(m)X−

1,a(n) = −X−
1,a(n)X

−
1,a(m). �

Theorem 4.5. Assume that N > M = 1. Let V be an irreducible integrable
Ûq-module with finite dimensional weight spaces. Suppose that C acts by
(q−1)r for some non-zero r ∈ Z. If r > 0 (resp. r < 0), then V is a highest
(resp. lowest) weight module.

Proof. Without lose of generality, we may assume that r > 0.

Claim 1. For any weight vector v ∈ V , the following vector space, spanned
by {

X+
1,a1

(m1) · · ·X+
1,ak

(mk)v

∣∣∣∣ 1 ≤ a1 ≤ · · · ≤ ak ≤ N, k ≥ 0,
mi ≥ 0,mi < mi+1 when ai = ai+1

}
,

is finite-dimensional.

By Proposition 2.3, it is sufficient to prove that, for 1 ≤ p ≤ N , the vector
space S+

p (v) spanned by {X+
1,p(m1) · · ·X+

1,p(mr)v | r ∈ Z≥0,mi ≥ 0} is finite-
dimensional.

For S+
1 (v), which is spanned by {X+

1 (m1) · · ·X+
1 (mr)v | 0 ≤ m1 < · · · <

mr, r ∈ Z≥0}, we consider

X+
1 (n)v =

n(q − q−1)

q−n − qn
C
|n|
2 [h2(n), X

+
1 (0)]v

=
n(q − q−1)

q−n − qn
C
|n|
2

(
h2(n)X

+
1 (0)v −X+

1 (0)h2(n)v
)
.
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From Proposition 4.1 there exists n0 > 0 such that

h2(n)v = 0 and h2(n)X
+
1 (0)v = 0

for all n > n0. Now it is easy to see that S+
1 (v) is spanned by

{X+
M (m1) · · ·X+

M (mr)v | r ≥ 0, 0 ≤ mi ≤ n0,mi �= mj , i �= j},

which is clearly finite-dimensional.
For any r ≥ 1 and mi ≥ 0, observe that

(4.1) X+
1 (m1) · · ·X+

1 (mr)v = 0,

if there exists j(1 ≤ j ≤ r) such that mj > n0. From Proposition 4.1 there
exists Kv > 0 such that X+

i (k)v = 0 for all k ≥ Kv, 2 ≤ i ≤ N . Applying
the element Qp := (X+

p (Kv))
r · · · (X+

2 (Kv))
r (p ≥ 2 and Q2 = (X+

2 (Kv))
r)

to (4.1), and using equations (A.2) and (A.4) repeatedly, we obtain

X+
1,p(m1 + (M − p)Kv) · · ·X+

1,p(mr + (M − p)Kv)v = 0,

if mj > n0 for some j(1 ≤ j ≤ r). Combining this with Lemma 4.4, we con-
clude that the vector space S+

p (v) is spanned by

{X+
1,p(m1) · · ·X+

1,p(mr)v | 0 ≤ m1 < · · · < mr ≤ (M − p)Kv + n0, r ∈ Z≥0},

which is finite-dimensional. This completes the proof of Claim 1.
In a similar way, one can prove

Claim 2. For any weight vector v ∈ V , the vector space spanned by the
following set{

X−
1,a1

(m1) · · ·X−
1,ak

(mk)v

∣∣∣∣ 1 ≤ a1 ≤ · · · ≤ ak ≤ N, k ≥ 0,
mi > 0,mi < mi+1 when ai = ai+1

}
,

is finite-dimensional.

Let N+ (resp. N−) be the subalgebra of Ûq generated by X+
1,a(0),

X±
1,a(n), n > 0, 1 ≤ a ≤ N (resp. X+

1,a(0), X
±
1,a(n), n < 0, 1 ≤ a ≤ N). Com-

bining Proposition 2.3 with Claims 1 and 2, we obtain

Claim 3. For any weight vector v ∈ V , the space N+v is finite-dimensional.
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For any weight vector v∈V , set W =C[K1,K
−1
1 ]U

(⊕
n>0Ch1(n)

)
N+v.

From Proposition 4.1 and Claim 3, one can see that W is finite-dimensional.
Define the following subalgebras of Ûq:

• Uq−1(ŝl(N)) is generated by X±
i (n), hi(r),K

±1
i , C±1/2, D±1, n, r ∈ Z,

r �= 0, 2 ≤ i ≤ N ;

• Û+
q−1,N by {X+

i (0), X±
i (n), hi(n) | n > 0, 2 ≤ i ≤ N};

• Û−
q−1,N by {X−

i (0), X±
i (n), hi(n) | n < 0, 2 ≤ i ≤ N}; and

• Û0
q−1,N by {K±1

i , C±1/2, D±1 | 2 ≤ i ≤ N}.
Now consider W = Û−

q−1,N Û0
q−1,N Û+

q−1,NW. Clearly, W is an integrable
Uq−1(ŝl(N))-module. Using Proposition 4.1, one can show that Û+

q−1,NW is
finite-dimensional. By [6, Proposition 1.7], we have W ∼= ⊕

λmλV (λ), where
V (λ) are irreducible integrable Uq−1(ŝl(N))-modules with highest weight λ
and multiplicities mλ ∈ Z≥0, which are nonzero for only finitely many λ.
Thus W has a maximal weight. Since V is simple, V =N−U

(⊕
n<0Ch1(n)

)
W.

Thus this maximal weight of W is also the highest weight of V . �

Recall that for ordinary quantum affine algebras, a simple highest (resp.
lowest) weight module is integrable if and only if its highest (resp. lowest)
weight is integral dominant (resp. anti-dominant) [8, 18].

Corollary 4.6. Assume that N > M = 1. A simple Ûq-module V at nonzero
level is integrable with finite dimensional weight spaces if and only if V is

1) a highest weight module with a highest weight which is integral dominant
with respect to Uq(ŝl(M |N)0̄), or

2) a lowest weight module with a lowest weight which is integral anti-
dominant with respect to Uq(ŝl(M |N)0̄).

Proof. As simple highest or lowest weight Ûq-modules defined with respect
to the triangular decomposition of Ûq given in Proposition 2.2 automatically
have finite dimensional weight spaces, the corollary immediately follows from
Theorem 4.5 and the preceding remarks on integrable highest weight modules
for ordinary quantum affine algebras. �
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Appendix A. Relations in Uq(L(sl(M |N)))

We present some technical results which are used in the main body of the
paper.

The following identities are valid for the q-bracket.

Lemma A.1. For any homogeneous elements a, b, c of Ûq, and nonzero
scalars u, v, x,

[a, bc]v = [a, b]xc+ (−1)|a||b|xb[a, c] v
x
,

[ab, c]v = a[b, c]x + (−1)|b||c|x[a, c] v
x
b,

[a, [b, c]u]v = [[a, b]x, c]uv

x
+ (−1)|a||b|x[b, [a, c] v

x
]u
x
,

[[a, b]u, c]v = [a, [b, c]x]uv

x
+ (−1)|b||c|x[[a, c] v

x
, b]u

x
.

(A.1)

We can derive from Definition 2.1 the following relations:

[X+
i (m), [X+

i (m), X+
j (k)]q−1 ]q(A.2)

= [X+
i (m), [X+

i (m), X+
j (k)]q]q−1 = 0, i �= M, ai,j = ±1,

[X+
M (m), [X+

M (m), X+
j (k)]q−1 ]q−1(A.3)

= [X+
M (m), [X+

M (m), X+
j (k)]q]q = 0, aM,j = ±1.

[X+
i−1(m), X+

i (n)]qi(A.4)
= qki [X

+
i−1(m+ k), X+

i (n− k)]qi

+

k∑
s=1

qs−1
i (q2i − 1)X+

i (n− s)X+
i−1(m+ s),

[X+
i−1(m), X+

i (n)]qi(A.5)
= q−k

i [X+
i−1(m− k), X+

i (n+ k)]qi

−
k−1∑
s=0

q−s−1
i (q2i − 1)X+

i (n+ s)X+
i−1(m− s).

[X+
M (m), X+

M+1(n)]q(A.6)

= qk[X+
M (m+ k), X+

M+1(n− k)]q

+

k−1∑
s=0

qs(1− q2)X+
M (m+ s)X+

M+1(n− s).
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[X+
i+1(m), X+

i (n)]q(A.7)
= qk[X+

i+1(m− k), X+
i (n+ k)]q

+

k∑
s=1

qs−1(q2 − 1)X+
i (n+ s)X+

i+1(m− s), i ≥ M.

[X+
i+1(m), X+

i (n)]q(A.8)
= q−k[X+

i+1(m+ k), X+
i (n− k)]q

−
k−1∑
s=0

q−s−1(q2 − 1)X+
i (n− s)X+

i+1(m+ s), i ≥ M.

Combining (A.4) with (A.5), (A.7) with (A.8), respectively, we have

[X+
i−1(m), X+

i (n)]qi(A.9)
= q±k

i [X+
i−1(m± k), X+

i (n∓ k)]qi

+

|k|∑
s=0

csX
+
i (n∓ s)X+

i−1(m± s) cs ∈ C,

[X+
i+1(m), X+

i (n)]q(A.10)
= q±k[X+

i+1(m∓ k), X+
i (n± k)]q

+

|k|∑
s=0

csX
+
i (n± s)X+

i+1(m∓ s), i ≥ M, cs ∈ C.

We have the following result.

Lemma A.2.

1) [[[X+
i−1(m), X+

i (n)]qi , X
+
i+1(k)]qi+1

, X+
i (n)] = 0, i �= M .

2) [X+
i (0), X+

a,b(n)] = 0, a < i < b, n ∈ Z.

3) [X+
M (0), X+

a,M (n)]q−1 = 0, a < M,n ∈ Z.

4) [X+
b (0), X+

a,b(n)]qb = 0, b �= M,n ∈ Z.

Proof. Part (1) can be found in [31, Lemma 6.1.1]. Part (2) follows from (1),
part (3) follows from (A.3), and part (4) follows from (A.2). �
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Appendix B. Proof of Lemma 3.6

Proof of Lemma 3.6. Set v(t−1)
a,b := X+

a,b(nt−1) · · ·X+
a,b(n1)va−1,b−1, t = 1, . . . ,

p+ 1. We use induction on t starting from the given case t = 1. Assume that

X+
i (m)v

(t−1)
a,b = 0 = X+

k,l(m)v
(t−1)
a,b ,(B.1)

for all i �= M, m ∈ Z, (k, l) > (a, b).

We claim that both equalities hold at t, and we will prove this in the sections
below.

B.1. Proof of first equality

We first prove that X+
i (m)v

(t)
a,b = 0 for all i �= M.

• If i>b+ 1 or i<a−1, then [X+
i (m), X+

a,b(n)]=0. Thus X+
i (m)v

(t)
a,b=0.

• If i = a− 1, we have

X+
a−1(m)v

(t)
a,b = [X+

a−1(m), X+
a,b(nt)]qav

(t−1)
a,b

= [[X+
a−1(m), X+

a (nt)]qa , X
+
a+1,b(0)]qa+1

v
(t−1)
a,b .

Using equation (A.9), we can rewrite the right hand side as

qnt
a [[X+

a−1(m+ nt)), X
+
a (0)]qa , X

+
a+1,b(0)]qa+1

v
(t−1)
a,b

+

|nt|∑
s=0

cs[[X
+
a (nt ∓ s)X+

a−1(m± s), X+
a+1,b(0)]qa+1

v
(t−1)
a,b

= qnt
a X+

a−1,b(m+ nt)v
(t−1)
a,b +

|nt|∑
s=0

csX
+
a,b(nt ∓ s)X+

a−1(m± s)v
(t−1)
a,b

= 0.

• If i = b+ 1, we consider the case with a = M − 1 and b = M + 1 as an
example, and the proof for the general case is similar. By (A.7) and (A.8),
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we have

X+
M+2(m)v

(t)
M−1,M+1

= X+
M+2(m)X+

M−1,M+1(nt)v
(t−1)
M−1,M+1

= [X+
M+2(m), [X+

M−1,M (nt), X
+
M+1(0)]q−1 ]qv

(t−1)
M−1,M+1

= [X+
M−1,M (nt), [X

+
M+2(m), X+

M+1(0)]q]q−1v
(t−1)
M−1,M+1

= qm[X+
M−1,M (nt), [X

+
M+2(0), X

+
M+1(m)]q]q−1v

(t−1)
M−1,M+1

+

|m|∑
s=0

cs[X
+
M−1,M (nt), X

+
M+1(±s)]q−1X+

M+2(m∓ s)v
(t−1)
M−1,M+1,

where the second term on the right hand side vanishes by (B.1). We can
rewrite first term as

−q1+m[[[X+
M−1(nt), X

+
M (0)]q, X

+
M+1(m)]q−1 , X+

M+2(0)]q−1v
(t−1)
M−1,M+1,

which, by (A.1), is equal to

− q1+m[[[X+
M−1(nt), [X

+
M (0), X+

M+1(m)]q−1 ]q, X
+
M+2(0)]q−1v

(t−1)
M−1,M+1

= qm[[[X+
M−1(nt), [X

+
M+1(m), X+

M (0)]q]q, X
+
M+2(0)]q−1v

(t−1)
M−1,M+1.

Using (A.10), we can cast the right hand side into

q2m[[[X+
M−1(nt), [X

+
M+1(0), X

+
M (m)]q]q, X

+
M+2(0)]q−1v

(t−1)
M−1,M+1

+

|m|∑
k=0

c′k[[[X
+
M−1(nt), X

+
M (m± k)X+

M+1(∓k)]q, X
+
M+2(0)]q−1v

(t−1)
M−1,M+1,

where the second term vanishes by (B.1), and the first term can be rewritten
as

−q1+2m[[[X+
M−1(nt), X

+
M (m)]q, X

+
M+1(0)]q−1 , X+

M+2(0)]q−1v
(t−1)
M−1,M+1.



Integrable representations of quantum affine superalgebras 579

By (A.9), this can be expressed as

− q1+3m[[[X+
M−1(nt +m), X+

M (0)]q, X
+
M+1(0)]q−1 , X+

M+2(0)]q−1v
(t−1)
M−1,M+1

+

|m|∑
l=0

c′′l [[X
+
M (m± l)X+

M−1(nt ∓ l), X+
M+1(0)]q−1 , X+

M+2(0)]q−1v
(t−1)
M−1,M+1

= −q1+3mX+
M−1,M+2(nt +m)v

(t−1)
M−1,M+1 = 0.

• For i = a (a �= M), we obviously have

X+
a (m)v

(t)
a,b = X+

a (m)X+
a,b(nt)v

(t−1)
a,b = [X+

a (m), X+
a,b(nt)]q−1

a+1
v
(t−1)
a,b

= [[[X+
a (m), [X+

a (nt), X
+
a+1(0)]qa+1

]q−1
a+1

, X+
a+2,b(0)]qbv

(t−1)
a,b ,

which can be rewitten as

qm−nt
a [[[X+

a (m), [X+
a (m), X+

a+1(nt −m)]qa+1
]q−1

a+1
, X+

a+2,b(0)]qbv
(t−1)
a,b

+

|nt−m|∑
s=0

cs[[[X
+
a (m), X+

a+1(±s)X+
a (nt ∓ s)]q−1

a+1
, X+

a+2,b(0)]qbv
(t−1)
a,b ,

by using (A.9). The first term vanishes by (A.2), and the second terms is
equal to

|nt−m|∑
s=0

cs

(
X+

a (m)X+
a+1,b(±s)X+

a (nt ∓ s)

− q−1
a+1X

+
a+1,b(±s)X+

a (nt ∓ s)X+
a (m)

)
v
(t−1)
a,b ,

which obviously vanishes. Similarly, one can prove that X+
b (m)v

(t)
a,b = 0.

• For a < i < M ,

X+
i (m)v

(t)
a,b = [X+

i (m), X+
a,b(nt)]v

(t−1)
a,b

= [X+
a,i−2(nt), [[X

+
i (m), [X+

i−1(0), [X
+
i (0), X+

i+1(0)]q]q], X
+
i+2,b(0)]qb ]qv

(t−1)
a,b

= qmi [X+
a,i−2(nt), [[X

+
i (m), [X+

i−1(0), [X
+
i (m), X+

i+1(−m)]q]q], X
+
i+2,b(0)]qb ]qv

(t−1)
a,b

+

|m|∑
s=0

cs[X
+
a,i−2(nt), [[X

+
i (m), [X+

i−1(0), X
+
i+1(±s)X+

i (∓s)]q], X
+
i+2,b(0)]qb ]qv

(t−1)
a,b ,
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where the first term on the right hand side vanishes by lemma A.2 (1). Hence
by (B.1), we have

X+
i (m)v

(t)
a,b =

|m|∑
s=0

cs[X
+
i (m), [X+

a,i−1(nt), X
+
i+1,b(±s)X+

i (∓s)]qi ]v
(t−1)
a,b

= 0, for a < i < M.

• Similarly, one can prove that X+
i (m)v

(t)
a,b = 0 for M < i < b.

Thus we have proved that X+
i (m)v

(t)
a,b = 0, ∀i �= M,m ∈ Z.

B.2. Proof of second equality

Now we prove that X+
k,l(m)v

(t)
a,b = 0 for all m ∈ Z, (k, l) > (a, b).

• For k < a < M and l < b,

X+
k,l(m)v

(t)
a,b = X+

k,l(m)X+
a,b(nt)v

(t−1)
a,b = [[X+

k,a(m), X+
a+1,l(0)]q, X

+
a,b(nt)]v

(t−1)
a,b

= [[X+
k,a(m), [X+

a+1,l(0), X
+
a,b(nt)]]qv

(t−1)
a,b −[[X+

k,a(m), X+
a,b(nt)], X

+
a+1,l(0)]qv

(t−1)
a,b ,

where the first term on the right hand side vanishes by Lemma A.2. It is not
difficult to show that [X+

k,a(m), X+
a,b(nt)]v

(t−1)
a,b = 0. Hence we can rewrite the

right hand side as

− [X+
k,a(m), X+

a,b(nt)]X
+
a+1,l(0)v

(t−1)
a,b

= −[[X+
k,a−1(m), X+

a (0)]q, [X
+
a (nt), X

+
a+1,b(0)]q]X

+
a+1,l(0)v

(t−1)
a,b

= −[[[X+
k,a−1(m), X+

a (0)]q, X
+
a (nt)]q−1 , X+

a+1,b(0)]q2X
+
a+1,l(0)v

(t−1)
a,b

− q−1[X+
a (nt), [[X

+
k,a−1(m), X+

a (0)]q, X
+
a+1,b(0)]q]q2X

+
a+1,l(0)v

(t−1)
a,b

= −[[[[X+
k,a−2(m), X+

a−1(0)]q, X
+
a (0)]q, X

+
a (nt)]q−1 , X+

a+1,b(0)]q2X
+
a+1,l(0)v

(t−1)
a,b

− q−1[X+
a (nt), X

+
k,b(m)]q2X

+
a+1,l(0)v

(t−1)
a,b ,

where the second term on the right hand side vanishes, and the first term
can be rewritten as

− [[X+
k,a−2(m), [[X+

a−1(0), X
+
a (0)]q, X

+
a (nt)]q−1 ]q, X

+
a+1,b(0)]q2X

+
a+1,l(0)v

(t−1)
a,b =

− q−nt [[X+
k,a−2(m), [[X+

a−1(−nt), X
+
a (nt)]q, X

+
a (nt)]q−1 ]q, X

+
a+1,b(0)]q2X

+
a+1,l(0)v

(t−1)
a,b

+

|nt|∑
s=0

cs[[X
+
k,a−2(m), [X+

a (±s)X+
a−1(∓s), X+

a (nt)]q−1 ]q, X
+
a+1,b(0)]q2X

+
a+1,l(0)v

(t−1)
a,b .
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The first term on the right hand side vanishes by (A.2), and the second term
can be expanded into

|nt|∑
s=0

cs[X
+
a (±s)[X+

k,a−2(m), X+
a−1(∓s)]q, X

+
a,b(nt)]X

+
a+1,l(0)v

(t−1)
a,b

+ q2
|nt|∑
s=0

cs[X
+
a,b(±s)[X+

k,a−2(m), X+
a−1(∓s)]q, X

+
a (nt)]q−2X+

a+1,l(0)v
(t−1)
a,b

by using (A.1). We can show that the first term vanishes identically, and the
second can be rewritten as

q2
|nt|∑
s=0

csX
+
a,b(±s)X+

k,a−2(m)X+
a−1(∓s)X+

a (nt)X
+
a+1,l(0)v

(t−1)
a,b

= q2
|nt|∑
s=0

csX
+
a,b(±s)X+

k,a−2(m)X+
a−1(∓s)X+

a,l(nt)v
(t−1)
a,b

= q2
|nt|∑
s=0

csX
+
a,b(±s)X+

k,l(m∓ s+ nt)v
(t−1)
a,b = 0.

• By modifying the above computations slightly, one can prove that
X+

k,l(m)v
(t)
a,b=0 for k<a=M, l<b. It is even easier to show that X+

k,l(m)v
(t)
a,b

= 0 for k < a, l ≥ b.
• Now consider the cases k ≥ a, l > b. For k < M , we have

X+
k,l(m)v

(t)
a,b = X+

k,l(m)X+
a,b(nt)v

(t−1)
a,b

= [X+
k (m), [X+

k+1,b(0), X
+
b+1,l(0)]q−1 ]qk+1

X+
a,b(nt)v

(t−1)
a,b

= X+
k (m)[X+

k+1,b(0), X
+
b+1,l(0)]q−1X+

a,b(nt)v
(t−1)
a,b

= (X+
k (m)X+

k+1,b(0)X
+
b+1,l(0)−q−1X+

k (m)X+
b+1,l(0)X

+
k+1,b(0))X

+
a,b(nt)v

(t−1)
a,b ,

which, by using Lemma A.2, can be expressed as

− qX+
k (m)X+

k+1,b(0)([X
+
a,b(nt), X

+
b+1,l(0)]q−1 −X+

a,b(nt)X
+
b+1,l(0))v

(t−1)
a,b

− q−2X+
k (m)X+

b+1,l(0)X
+
a,b(nt)X

+
k+1,b(0)v

(t−1)
a,b

= −qX+
k (m)X+

k+1,b(0)X
+
a,l(nt)v

(t−1)
a,b

+ qX+
k (m)X+

k+1,b(0)X
+
a,b(nt)X

+
b+1,l(0)v

(t−1)
a,b

− q−2X+
k (m)X+

b+1,l(0)X
+
a,b(nt)X

+
k+1,b(0)v

(t−1)
a,b ,
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where the first two terms on the right hand side vanish by (B.1), and the
third can be manipulated to yield

− q−2X+
k (m)[X+

b+1,l(0), X
+
a,b(nt)]qX

+
k+1,b(0)v

(t−1)
a,b

+X+
k (m)X+

a,b(nt)X
+
k+1,l(0)v

(t−1)
a,b

= q−1X+
k (m)X+

a,l(0)X
+
k+1,b(0)v

(t−1)
a,b +X+

k (m)X+
a,b(nt)X

+
k+1,l(0)v

(t−1)
a,b

= X+
k (m)X+

a,b(nt)X
+
k+1,l(0)v

(t−1)
a,b .

We can further manipulate the right hand side to obtain

X+
k (m)X+

a,b(nt)X
+
k+1,l(0)v

(t−1)
a,b

= [X+
k (m), [[X+

a,k−1(nt), [X
+
k (0), X+

k+1(0)]qk+1
]qk , X

+
k+2,b(0)]qk+2

]X+
k+1,l(0)v

(t−1)
a,b

= qm[X+
k (m), [[X+

a,k−1(nt), [X
+
k (m), X+

k+1(−m)]qk+1
]qk , X

+
k+2,b(0)]qk+2

]X+
k+1,l(0)v

(t−1)
a,b

+

|m|∑
s=0

cs[X
+
k (m), [[X+

a,k−1(nt), X
+
k+1(±s)X+

k (∓s)]qk , X
+
k+2,b(0)]qk+2

]X+
k+1,l(0)v

(t−1)
a,b ,

where the first term on the right hand side vanishes by (A.2). Hence we can
rewrite the right hand side as

|m|∑
s=0

cs[X
+
k (m), [X+

a,k−1(nt), X
+
k+1,b(±s)X+

k (∓s)]qk ]X
+
k+1,l(0)v

(t−1)
a,b

=

|m|∑
s=0

csX
+
k (m)X+

a,k−1(nt)X
+
k+1,b(±s)X+

k (∓s)X+
k+1,l(0)v

(t−1)
a,b

=

|m|∑
s=0

csX
+
k (m)X+

a,k−1(nt)X
+
k+1,b(±s)X+

k,l(∓s)v
(t−1)
a,b

= 0.

• Now we consider the case k = a = M, l > b. Since

X+
M,l(m)v

(t)
M,b = [X+

M,b+1(m), X+
b+2,l(0)]q−1v

(t)
M,b

= −q−1X+
b+2,l(0)X

+
M,b+1(m)v

(t)
M,b,

it is sufficient to show that X+
M,b+1(m)v

(t)
M,b = 0.
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By (A.10) and X+
i (m)v

(t−1)
M,b = X+

i (m)v
(t)
M,b = 0 for i �= M , we have

X+
M,b+1(m)X+

M,b(nt)v
(t−1)
M,b

= [X+
M,b(0), X

+
b+1(m)]q−1 [X+

M,b−1(0), X
+
b (nt)]q−1v

(t−1)
M,b .

Hence,

X+
M,b+1(m)v

(t)
M,b = X+

M,b+1(m)X+
M,b(nt)v

(t−1)
M,b

= [[X+
M,b(0), X

+
b+1(m)]q−1 , [X+

M,b−1(0), X
+
b (nt)]q−1 ]qv

(t−1)
M,b

= [[[X+
M,b(0), X

+
b+1(m)]q−1 , X+

M,b−1(0)]q, X
+
b (nt)]q−1v

(t−1)
M,b

− q[X+
M,b−1(0), [[X

+
M,b(0), X

+
b+1(m)]q−1 , X+

b (nt)]]q−2v
(t−1)
M,b

= −q[X+
M,b−1(0), [[X

+
M,b−2(0), [X

+
b−1(0), [X

+
b (0), X+

b+1(m)]q−1 ]q−1 ]q−1 , X+
b (nt)]]q−2v

(t−1)
M,b

= [X+
M,b−1(0), [X

+
M,b−2(0), [[X

+
b−1(0), [X

+
b+1(m), X+

b (0)]q]q−1 , X+
b (nt)]]q−1 ]q−2v

(t−1)
M,b

= qnt [X+
M,b−1(0), [X

+
M,b−2(0), [[X

+
b−1(0), [X

+
b+1(m− nt), X

+
b (nt)]q]q−1 , X+

b (nt)]]q−1 ]q−2v
(t−1)
M,b

+

|nt|∑
s=0

cs[X
+
M,b−1(0), [X

+
M,b−2(0), [[X

+
b−1(0), X

+
b (±s)X+

b+1(m∓ s)]q−1 , X+
b (nt)]]q−1 ]q−2v

(t−1)
M,b

=

|nt|∑
s=0

cs[X
+
M,b−1(0), [[X

+
M,b−1(0), X

+
b (±s)X+

b+1(m∓ s)]q−1 , X+
b (nt)]]q−2v

(t−1)
M,b

=

|nt|∑
s=0

cs[X
+
M,b−1(0), [[X

+
M,b−1(0), X

+
b (±s)]q−1X+

b+1(m∓ s), X+
b (nt)]]q−2v

(t−1)
M,b

=

|nt|∑
s=0

cs[[X
+
M,b−1(0), X

+
b (±s)]q−1X+

b+1(m∓ s), X+
b (nt)]X

+
M,b−1(0)v

(t−1)
M,b

=

|nt|∑
s=0

cs[X
+
M,b−1(0), X

+
b (±s)]q−1X+

b+1(m∓ s)X+
b (nt)X

+
M,b−1(0)v

(t−1)
M,b

+X+
b (nt)[X

+
M,b−1(0), X

+
b (±s)]q−1X+

b+1(m∓ s)X+
M,b−1(0)v

(t−1)
M,b

=

|nt|∑
s=0

cs[X
+
M,b−1(0), X

+
b (±s)]q−1X+

b+1(m∓ s)X+
b (nt)X

+
M,b−1(0)v

(t−1)
M,b

=

|nt|∑
s=0

cs[X
+
M,b−1(0), X

+
b (±s)]q−1X+

M,b+1(m∓ s+ nt)v
(t−1)
M,b

= 0.

This completes the proof of the second equality.
Thus Lemma 3.6 is proved. �
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Appendix C. Proof of Lemma 3.7

Proof of Lemma 3.7. Note that (3.13) directly follows from (3.12). Hence we
only need to prove (3.12).

We first show that

(C.1) X+
a,b(p)X

+
a,b(k)X

+
a,b(l)va,b = 0 for all p, k, l ∈ Z with p ≡ l (mod 2).

For a < M , we have

[X+
a,b(p), X

+
a,b(p+ 1)]

= [[X+
a (p), X+

a+1,b(0)]q, [X
+
a (p+ 1), X+

a+1,b(0)]q]

= [[X+
a (p), X+

a+1,b(0)]q, X
+
a (p+ 1)]q−1 , X+

a+1,b(0)]q2

+ q−1[X+
a (p+ 1), [[X+

a,b(p), X
+
a+1,b(0)]q]q2

= [[[X+
a (p), X+

a+1(0)]q, X
+
a (p+ 1)]q−1 , X+

a+2,b(0)]qa+2
, X+

a+1,b(0)]

= −q[[[X+
a+1(0), X

+
a (p)]q−1 , X+

a (p+ 1)]q−1 , X+
a+2,b(0)]qa+2

, X+
a+1,b(0)]

= q[[[X+
a (p+ 1), X+

a+1(−1)]q−1 , X+
a (p+ 1)]q−1 , X+

a+2,b(0)]qa+2
, X+

a+1,b(0)]

= 0.

Similarly, one can show that [X+
M,b(p), X

+
M,b(p+ 1)] = 0, b > M.

From (3.11), we have

X+
a,b(p)X

+
a,b(p± 1)X+

a,b(l)va,b = 0 for all p ≡ l (mod 2).

This establishes (C.1) for |p− k| = 1.
We now use induction on |p− k| to prove (C.1). By the induction hy-

pothesis, for all p, k, l ∈ Z with p ≡ l (mod 2), |p− k| ≤ 2i− 1,

(C.2) X+
a,b(p)X

+
a,b(k)X

+
a,b(l)va,b = 0.

We now consider X+
a,b(p)X

+
a,b(p+ 1 + 2i)X+

a,b(l)va,b.
For a < M , we have

[X+
a,b(p), X

+
a,b(p+ 1 + 2i)]

= [X+
a,b(p), [X

+
a (p+ 1 + 2i), X+

a+1,b(0)]q]

= [[X+
a,b(p), X

+
a (p+ 1 + 2i)]q−1 , X+

a+1,b(0)]q2

+ q−1[X+
a (p+ 1 + 2i), [X+

a,b(p), X
+
a+1,b(0)]q]q2
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where the second term on the right hand side vanishes by Lemma A.2, and
the first can be rewritten as

[[[[X+
a (p), X+

a+1(0)]q, X
+
a (p+ 1 + 2i)]q−1 , X+

a+2,b(0)]qa+2
, X+

a+1,b(0)]q2

= q2i[[[[X+
a (p+ 2i), X+

a+1(−2i)]q, X
+
a (p+ 1 + 2i)]q−1 , X+

a+2,b(0)]qa+2
, X+

a+1,b(0)]q2

+

2i∑
s=1

cs[[[X
+
a+1(−s)X+

a (p+ s), X+
a (p+ 1 + 2i)]q−1 , X+

a+2,b(0)]qa+2
, X+

a+1,b(0)]q2 ,

We note that the first term on the right hand side vanishes:

[[X+
a (p+ 2i), X+

a+1(−2i)]q, X
+
a (p+ 1 + 2i)]q−1 , X+

a+2,b(0)]qa+2

= −q[[X+
a+1(−2i), X+

a (p+ 2i)]q−1 , X+
a (p+ 1 + 2i)]q−1 , X+

a+2,b(0)]qa+2

= q[[X+
a (p+ 2i+ 1), X+

a+1(−2i− 1)]q−1 , X+
a (p+ 1 + 2i)]q−1 , X+

a+2,b(0)]qa+2

= 0.

Hence

[X+
a,b(p), X

+
a,b(p+ 1 + 2i)]

=

2i∑
s=1

cs[[[X
+
a+1(−s)X+

a (p+ s), X+
a (p+ 1 + 2i)]q−1 , X+

a+2,b(0)]qa+2
, X+

a+1,b(0)]q2

=

2i∑
s=1

cs[[X
+
a+1,b(−s)X+

a (p+ s), X+
a (p+ 1 + 2i)]q−1 , X+

a+1,b(0)]q2 .

By (3.11),

X+
a,b(p)X

+
a,b(p+ 1 + 2i)X+

a,b(l)va,b = [X+
a,b(p), X

+
a,b(p+ 1 + 2i)]X+

a,b(l)va,b.

Hence

X+
a,b(p)X

+
a,b(p+ 1 + 2i)X+

a,b(l)va,b

=

2i∑
s=1

cs[[X
+
a+1,b(−s)X+

a (p+ s), X+
a (p+ 1 + 2i)]q−1 , X+

a+1,b(0)]q2X
+
a,b(l)va,b.
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We can rewrite the right hand side as

2i∑
s=1

cs

(
X+

a+1,b(−s)X+
a (p+ s)X+

a (p+ 1 + 2i)

− q−1X+
a (p+ 1 + 2i)X+

a+1,b(−s)X+
a (p+ s)

)
X+

a+1,b(0)X
+
a,b(l)va,b

=

2i∑
s=1

csX
+
a+1,b(−s)X+

a (p+ s)X+
a,b(p+ 1 + 2i)X+

a,b(l)va,b

−
2i∑
s=1

q−1csX
+
a (p+ 1 + 2i)X+

a+1,b(−s)X+
a,b(p+ s)X+

a,b(l)va,b.

Note that the first term on the right hand side vanishes by (3.11), and by
using (3.11) and (A.9) we can rewrite the second term as

−
2i∑
s=1

q−1cs[[X
+
a (p+ 1 + 2i), X+

a+1(−s)]q, X
+
a+2,b(0)]qa+2

X+
a,b(p+ s)X+

a,b(l)va,b

=

2i∑
s=1

ds[[X
+
a (p+ 1 + 2i− s), X+

a+1(0)]q, X
+
a+2,b(0)]qa+2

X+
a,b(p+ s)X+

a,b(l)va,b

+

2i∑
s=1

d′s
s−1∑
r=0

cr[X
+
a+1(−s+ r)X+

a (p+ 1 + 2i− r), X+
a+2,b(0)]qa+2

X+
a,b(p+ s)X+

a,b(l)va,b.

The second term on the right hand side varnishes by (3.11). This leads to

X+
a,b(p)X

+
a,b(p+ 1 + 2i)X+

a,b(l)va,b

=

2i∑
s=1

dsX
+
a,b(p+ 1 + 2i− s)X+

a,b(p+ s)X+
a,b(l)va,b.

We observe that |(p+ 1 + 2i− s)− (p+ s)| = |1 + 2i− 2s| ≤ 2i for 1 ≤ s ≤
2i− 1. Thus X+

a,b(p)X
+
a,b(p+ 1 + 2i)X+

a,b(l)va,b = 0 by (C.2).
For a = M , by using (A.6), we obtain

[X+
M,b(p), X

+
M,b(p+ 1 + 2i)]

= [X+
M,b(p), [X

+
M (p+ 1 + 2i), X+

M+1,b(0)]q−1 ]

= [[X+
M,b(p), X

+
M (p+ 1 + 2i)]q−1 , X+

M+1,b(0)]

− q−1[X+
M (p+ 1 + 2i), [X+

M,b(p), X
+
M+1,b(0)]q],
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where the second term on the right hand side varnishes by Lemma A.2. We
note that

[X+
M,b(p), X

+
M (p+ 1 + 2i)]q−1

= [[[X+
M (p), X+

M+1(0)]q−1 , X+
M (p+ 1 + 2i)]q−1 , X+

M+2,b(0)]q−1

= q−1[[[X+
M (p+ 1), X+

M+1(−1)]q, X
+
M (p+ 1 + 2i)]q−1 , X+

M+2,b(0)]q−1

= q2i−1[[[X+
M (p+ 1 + 2i), X+

M+1(−1− 2i)]q, X
+
M (p+ 1 + 2i)]q−1 , X+

M+2,b(0)]q−1

+

2i−1∑
s=0

cs[[X
+
M (p+ 1 + s)X+

M+1(−1− s), X+
M (p+ 1 + 2i)]q−1 , X+

M+2,b(0)]q−1

=

2i−1∑
s=0

cs[X
+
M (p+ 1 + s)X+

M+1,b(−1− s), X+
M (p+ 1 + 2i)]q−1 .

Hence

[X+
M,b(p), X

+
M,b(p+ 1 + 2i)]

=

2i−1∑
s=0

cs[[X
+
M (p+ 1 + s)X+

M+1,b(−1− s), X+
M (p+ 1 + 2i)]q−1 , X+

M+1,b(0)].

Now we have

X+
M,b(p)X

+
M,b(p+ 1 + 2i)X+

M,b(l)vM,b

= [X+
M,b(p), X

+
M,b(p+ 1 + 2i)]X+

M,b(l)vM,b by (C.2)

=

2i−1∑
s=0

cs[[X
+
M (p+ 1 + s)X+

M+1,b(−1− s), X+
M (p+ 1 + 2i)]q−1 , X+

M+1,b(0)]X
+
M,b(l)vM,b

=

2i−1∑
s=0

csX
+
M+1,b(0)X

+
M (p+ 1 + s)X+

M+1,b(−1− s)X+
M (p+ 1 + 2i)X+

M,b(l)vM,b by (3.11)

=

2i−1∑
s=0

csX
+
M+1,b(0)X

+
M (p+ 1 + s)[X+

M+1,b(−1− s), X+
M (p+ 1 + 2i)]qX

+
M,b(l)vM,b

We have

[X+
M+1,b(−1− s), X+

M (p+ 1 + 2i)]qX
+
M,b(l)vM,b

= [[X+
M+1(−1− s), X+

M (p+ 1 + 2i)]q, X
+
M+2,b(0)]q−1X+

M,b(l)vM,b.
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By using (A.7), we can rewrite the right hand side as

2i−1∑
s=0

q−1−s[[X+
M+1(0), X

+
M (p+ 2i− s)]q, X

+
M+2,b(0)]q−1X+

M,b(l)vM,b

+

2i−1∑
s=0

s∑
r=0

cr[X
+
M (p+ 1 + 2i− r)X+

M+1(r − 1− s), X+
M+2,b(0)]q−1X+

M,b(l)vM,b,

and this can be simplified to

2i−1∑
s=0

q−1−s[[X+
M+1(0), X

+
M (p+ 2i− s)]q, X

+
M+2,b(0)]q−1X+

M,b(l)vM,b

=

2i−1∑
s=0

q−sX+
M,b(p+ 2i− s)X+

M,b(l)vM,b. by (3.11)

Hence,

X+
M,b(p)X

+
M,b(p+ 1 + 2i)X+

M,b(l)vM,b

=

2i−1∑
s=0

csq
−sX+

M+1,b(0)X
+
M (p+ 1 + s)X+

M,b(p+ 2i− s)X+
M,b(l)vM,b.

By using (3.11), we can rewrite the right hand side as

2i−1∑
s=0

csq
−s[X+

M+1,b(0)X
+
M (p+ 1 + s)]qX

+
M,b(p+ 2i− s)X+

M,b(l)vM,b

= −
2i−1∑
s=0

csq
1−sX+

M,b(p+ 1 + s)X+
M,b(p+ 2i− s)X+

M,b(l)vM,b.

We observe that X+
M,b(p+ 2i)X+

M,b(l)vM,b = 0 by (3.11) since p+ 2i ≡
l(mod2), and |p+ 2i− s− (p+ 1 + s)| ≤ 2i− 1 for 1 ≤ s ≤ 2i− 1. Hence,
from (C.2) and the above equality we have

X+
M,b(p)X

+
M,b(p+ 1 + 2i)X+

M,b(l)vM,b = 0.

Now we have prove that

(C.3) X+
a,b(p)X

+
a,b(p+ 1 + 2i)X+

a,b(l)va,b = 0 (a, b) ∈ S.
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Similarly, one can prove that

(C.4) X+
a,b(p)X

+
a,b(p− 1− 2i)X+

a,b(l)va,b = 0.

This completes the proof of (C.1).
Using arguments similar to those in the proof of (C.1) one can show that

(C.5) X+
a,b(p)X

+
a,b(k)X

+
a,b(l)va,b = 0 for all p, k, l ∈ Z with p ≡ k (mod 2).

Now (3.12) follows from (C.1), (C.5) and (3.11). �
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