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BPS spectrum, wall crossing and

quantum dilogarithm identity

Dan Xie

BPS spectrum with finite number of states are found for higher
rank four dimensional N = 2 theory engineered from six dimen-
sional AN−1 (2, 0) theory on a Riemann surface with various kinds
of defects. The wall crossing formula is interpreted as the quantum
dilogarithm identity. Various methods including quiver representa-
tion theory, maximal green mutation, and cluster algebra are used
extensively. The spectral generator and its refined version for the
higher rank theory are written down using the explicit spectrum
information. The finite chamber has an interesting N3 behavior in
the large N limit.
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1. Introduction

Understanding the BPS spectrum of the quantum field theory with extended
supersymmetry always provides important information about the dynamics
of the theory. Such objects gave the key insights to the discovery of the
electric-magnetic duality of 4d N = 4 super Yang-Mills theory [1], and the
exact solution of the Coulomb branch of 4d N = 2 theory [2, 3], etc.

The BPS spectrum for four dimensionalN = 2 theory has the interesting
wall crossing behavior, i.e. the spectrum is not smooth in crossing some
marginal stability walls on the Coulomb branch. Such wall crossing behavior
is very important for the consistency of the solution [2, 3]. The Seiberg-
Witten solution gives us the mass formula for the BPS particle, but it does
not teach us explicitly the BPS spectrum at a given point on the Coulomb
branch. Therefore, the BPS spectrum is only found for very few examples
in the early days, say SU(2) with Nf ≤ 4 and SU(2) with massive adjoint
[4–7].

Quite recently, Mathematician proposed a remarkable wall crossing for-
mula which constructed an invariant quantity from the BPS spectrum [8–10].
Physical understandings of the wall crossing formula using the Hyperkahler
metric of the Coulomb branch of the corresponding three dimensional theory
are given in [11]. However, the formula itself does not give us the answer of
the BPS spectrum of a given N = 2 theory, and finding the BPS spectrum
is still a very difficult problem even with lots of exciting development in the
past few years [12–23], in particular, very few information is known for the
higher rank theory. The main purpose of this paper is to find the explicit
BPS spectrum for a large class of higher rank theories.

We are going to focus on a particular class of theory called theory of class
S which can be engineered by compactifying six dimensional (2, 0) theory
AN−1 theory on a Riemann surface with regular and irregular singularities
[13, 24, 25]. This class is very huge, for example, it includes generalized
superconformal quiver gauge theory[24, 26], general Argyres-Douglas type
theories [25, 27, 28], and lots of new asymptotical free theories [25]. Most of
theories in this class are strongly coupled, but the remarkable geometrical
construction can tell us many properties of them including superconformal
index [29], 3d mirror [30], etc, and this class is a golden arena for studying
the dynamics of the quantum field theory.

In this paper, we would like to study the BPS spectrum of all kinds of
theories from class S. Previous studies of BPS spectrum and wall crossing
mainly focused on the A1 theory, and the geometrical approach using the
flow lines on the Riemann surface [13] and the equivalent quiver approach
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[20, 21, 31] have the tremendous success in understanding the BPS spectrum
of these theories, however very little is known for the higher rank cases 1. It
seems that these higher rank theories are much more difficult than the A1

theory since the underlying combinatorics is much harder.
Our results presented in this paper show that the finite chamber of the

higher rank theory in this class can be easily worked out by combining the
geometric construction and the quiver approach: we can find explicitly the
charges and the order of phases of these particles. To achieve this goal, we
have the following two main assumptions:

1. The triangulation and the network from the corresponding Riemann
surface constructed in [33–35] give the BPS quiver of the theory, and the
potential of the quiver is also given, see Figure 1.

2. The Donadson-Thomas invariant from the quiver with potential en-
codes the BPS spectrum, and the factorization depends on the θ stability
condition of the quiver representation theory [36].

Figure 1: The triangulation of fourth punctured disc of A3 theory which
represents the (A3, A3) Argyres-Douglas theory. The quiver is shown on the
right.

The Donadson-Thomas invariant is in fact very complicated for the gen-
eral quivers, and it is hard to extract the spectrum even the invariant is
found. However, for the finite chamber, the BPS spectrum can be found
using a remarkable combinatorial method called maximal green mutation

1One chamber for T3 theory and one single gauge group with various fundamen-
tals are worked out in [21], and some weakly coupled chambers of pure SU(N)
theory are studied in [32]; Two chambers for the sphere with one type of irregular
singularity is worked out in [16], and this class is also considered in [23].
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introduced by Keller [37] (which is equivalent to the mutation method pro-
posed in [21] and is used implicitly in [13]). Basically, green mutation is
defined by first extending the quivers by adding an extra frozen quiver node
to each node, see Figure 2a. Now each node is defined as green (red) if it is
the source (sink) of the frozen node. The green mutation sequence is defined
as mutating only the green nodes, and the maximal green mutation is
defined as the green mutation sequences such that no green node is left, see
Figure 2b. The road map for finding the finite chamber is

Step 1. Extend the BPS quiver by adding a frozen node to each original
quiver node.

Step 2. Define a charge vector γi for the frozen nodes satisfying 〈γi, γj〉 =
εij with εij the antisymmetric matrix for the quiver, then each green mutation
on a node k probes a BPS hypermultiplet with charge α =

∑
i niγi where ni

is the number of arrows from node k to the ith frozen node.

Step 3. Find the maximal green mutation sequences such that no green
node is left.

The green mutation sequences give the phase order and the charge vector
automatically. In practice, the Java program in [38] developed by Keller is
extremely useful for us to find the maximal green mutation sequences for
the complicated quiver.

Now for each maximal green mutation sequences k = (k1, . . . , ks), one
can associate a quantum dilogarithm product [37]

(1) E(k) = E(Xα1) · · ·E(Xαs),

here E(x) is the familiar quantum dilogarithm function and Xα is operator
satisfying the noncommutative relation

(2) XαXβ = q1/2〈α,β〉Xα+β ,

with 〈α, β〉 the familiar Dirac product of two charges. If there is another
sequences k

′
= (k

′
1, . . . , k

′
r) which represents the spectrum in another cham-

ber, then the wall crossing formula is the following quantum dilogarithm
identity E(k) = E(k

′
). From two chambers shown in Figure 2, we have

(3) E(X1)E(X2) = E(X2)E(q−
1

2X1X2)E(X1),

which is the basic quantum dilogarithm identity found in [39].
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Figure 2: A: The extended quiver derived by adding extra frozen node. B: A
maximal green mutation sequence and the charge is indicated for each green
mutation. C: A different maximal green mutation sequence.

The above combinatorial method is very useful and in principle one could
try all possible green mutations, but in practice it has very limited uses if one
does not know the mutation structure of the quiver. The geometric picture
of the triangulation of the bordered Riemann surface from which the quiver
is derived turns out to be very useful in finding maximal green mutation
sequence. We are going to give many concrete examples showing explicitly
the mutation sequences. In some cases, the result is very elegant, for example,
we find that the minimal chamber of TN theory has the following number
of states

(4) Nmin = 2N(N − 1)2,

whenN = 5, the minimal chamber has 160 states, and we can find the charge
vectors and the phase order explicitly which is very hard to derive without
knowing some structures of the quivers!

Another use of our result is that we can write down the spectral generator
[13] pretty easily for the higher rank theory since the final cluster coordinates
(identified with the spectral generator) associated with the quiver nodes can
be derived given the mutation sequence. A remarkable feature of maximal
green mutation sequence is that it tracks the permutation of the quiver
nodes, so we can identify the final cluster coordinates of the original quiver
node, which do not depend on the specific chamber.
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This paper is organized as follows: Section 2 reviews some backgrounds
about the BPS particles, quivers, and cluster algebra; Section 3 discusses
how to use the quiver representation theory and the θ stability condition
to find the BPS spectrum; Section 4 discusses using the combinatorial tools
called maximal green mutation to find the finite chamber; Section 5 and
section 6 discuss the finite chamber of the A1 theory and AN−1 theory with
many examples; Section 7 shows how to write the spectrum generator for
the higher rank theory; Section 8 discusses briefly the chamber with vector
multiplets; We give a short conclusion in section 9.

2. Review

2.1. Generality about wall crossing

The exact solution of Coulomb branch of four dimensional N = 2 theory is
solved by Seiberg and Witten in [2, 3]. Let’s take pure SU(2) theory as an
example in which the gauge group is broken to U(1) at a generic point of
Coulomb branch, and there are singularities on the Coulomb branch where
extra monopoles or dyons become massless.

The N = 2 supersymmetry algebra allows a central charge extension,
and the central charge of a BPS particle with charge vector γ = (ne, nm) is
described by

(5) Zγ(u) = nea(u) + nmaD(u),

where a is the scalar component in the vector multiplet and aD is the dual
variable, and the central charge depends on the coordinate u of the Coulomb
branch. The BPS particle with charge γ has mass M(γ) = |Z(γ)|. As dis-
cussed in Seiberg and Witten’s original paper, the wall crossing behavior of
these BPS particles is important for the consistency of the solution. Basi-
cally, a BPS particle with charge γ can decay to other BPS particles, say
γ1 and γ2, in crossing the marginal stability wall. Due to the BPS condition
and charge conservation, this is only possible if their central charges have
the same phases:

γ = γ1 + γ2,

argZ(γ) = argZ(γ1) = argZ(γ2).(6)

For pure SU(2) theory, there is only one marginal stability wall for all the
particles, see Figure 3. There are only two chambers: one has finite number
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of hypermultiplets and the other chamber has a W boson and an infinite
number of dyons. All of the particles but two from chamber 1 become un-
stable in crossing the wall. The above wall crossing behavior for pure SU(2)

chamber
2

chamber
1

1 2

2

1

1 2

chamber
1

chamber
2

Figure 3: Top: The marginal stability wall of pure SU(2) theory. Bottom:
The BPS spectrum in two chambers, and there are infinite number of states
in one chamber and finite states in another chamber.

theory happens in the strongly coupled region. However, wall crossing be-
havior is not tied to the strongly coupled effect, and it can also happen in
the weakly coupled region as discussed in [3].

The BPS particle for a general N = 2 theory has charge vector γ =
(ni

e, n
i
m, sf ), here ni

e and the ni
m are the electric and magnetic charge of the

ith U(1) gauge group, and sf is the flavor charge. Therefore the rank of the
charge lattice is R = 2nr + nf , where nr is the rank of the gauge group and
nf is the number of mass parameters. Two charge vectors have a natural
antisymmetric Dirac product

(7) 〈γ1, γ2〉 = ni
ep

i
m − ni

mpie;

Note that the product does not depend on the flavor charge, so the rank of a
matrix formed by an independent basis of BPS particles is 2nr. The central
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charge for a BPS particle with charge γ is

(8) Z(γ)(u) = ni
ea

i(u) + ni
maiD(u) + sfmf .

This formula does not tell us which charge vectors are allowed as a possible
BPS particles, and it also does not tell us which BPS particle is stable, so one
need extra analysis to find the BPS spectrum. By finding the BPS spectrum
of a given N = 2 theory, we mean to find the charge vectors and their order
of phases of all the stable BPS particles. All BPS states in 3+1 dimensions
have at least a half-hypermultiplet (i.e. a hypermultiplet without its CPT
conjugate) of spin degrees of freedom. The CPT conjugate has opposite
phase and same masses, so we will only consider half of the BPS particles
in all later study.

To count the number of BPS states, one can define a helicity supertrace
for a charge vector γ ( see [40] for details):

(9) Ω(γ, u) = −1

2
TrHγ

(−1)2J3(2J3)
2 = (−1)2j(2j + 1).

This index receives contributions from BPS particles (short representation
of the SUSY algebra), and Ω(γ) = 1 for the hypermultiplet, and Ω(γ) = −2
for the vector mulitplet. To track the spin content, a refined index can be
defined [18]:

(10) Ω(γ, y, u) = TrHγ
(−1)2J3y2J3+2I3 .

The hypermultiplet contributes Ω(γ, y) = 1 and the value for the vector
multiplet is Ω(γ, y) = y + y−1. Since the BPS spectrum is only piece-wise
constant across the Coulomb branch, the above index is not an invariant.
Konsetvich and Soilbeman (KS) came up with a remarkable wall crossing
formula which basically constructed a Donaldson-Thomas (DT) invariant
from the BPS spectrum. They first associate a quantum torus algebra eγ on
the charge lattice

(11) 〈eγ1
, eγ2

〉 = (−1)〈γ1,γ2〉〈γ1, γ2〉eγ1+γ2
;

and then define a group element for a BPS particle with charge γ:

(12) Uγ = exp

(
1

n2
enγ

)
,
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and the invariant from the BPS spectrum are given by an ordered product:

(13) A =
∑
γ

UΩ(γ,u)
γ .

The ordered product is taken over the particles with decreasing phases. The
KS wall crossing formula states that this product is independent of the BPS
chamber!

The KS wall crossing formula is very beautiful. However, it is still not
enough to find the BPS spectrum for a given N = 2 quantum field theory.
To apply the wall crossing formula, one need to know at least the spectrum
of one chamber and then apply the known wall crossing formula. In practice,
usually nothing is known for the BPS spectrum of a given theory, and even if
we know the spectrum of one chamber, it seems hard to find other chambers
using the wall crossing formula.

The quiver approach, on the other hand, provides hope of solving the
BPS spectrum in practice. The idea is to attach a unique quiver to a given
N = 2 theory, and then use various tools attached to the quiver to study the
BPS spectrum, since there are many wonderful properties about the quivers,
the BPS counting problem is actually much easier. The factorization of the
DT invariant for a quiver with potential is an important class studied by
Kontesvich and Soilbman [8]. and the quiver approach to study the BPS
spectrum has been used successfully in the early study of the wall crossing in
the physics literature [41–43]. In this paper, we will start with a quiver with
potential for a large class of N = 2 theory, and since the BPS information
is encoded in this quiver, it is called BPS quiver.

2.2. BPS quiver for N = 2 theory

Let’s review some background on BPS quiver which could be understood
directly from the spectrum at a given point on the Coulomb branch [21].
Given a UV complete N = 2 field theory, let’s assume that we know explic-
itly the central charges and the stable BPS spectrum in one chamber, and
each BPS particle can be represented by a ray in the complex plan. Since
there is always an antiparticle whose phase is opposite to it, we only need
to focus on a half plane. However, such choice is arbitrary which leads to
many equivalent descriptions.

Let’s take a half-plane S0 and all the BPS particles fall into this region.
A canonical basis for these BPS states is defined as follows: the basis is
chosen such that the charge of any BPS state in this half plane is expressed
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as a sum of this basis with positive integer coefficient

(14) γ =
∑

niγi,

where ni is a non-negative integer. It is easy to show that such basis is unique
(again using the positivity property). Now a BPS quiver can be formed by
taking the Dirac product of this basis and forming an antisymmetric matrix

(15) εij = 〈γi, γj〉,

which defines a quiver. From this definition, it is easy to see that the left
and right-most of states should be included into this basis, since they can
not be written as the sum of other charges with the positive coefficient. This
basis is not always possible, and usually one need to turn on all the mass
deformations of the theory and it turns out that a BPS quiver can be found
for a large class of theories considered in this paper, which will be discussed
in more detail later.

The basis would be different if we choose a different half-plane S1. If
we slightly rotate the region S0 clockwise and choose S1 such that only the
left-most particle γL drops out, then the charge vector −γL which is in the
right-most of S1 has to be included in the new basis, see Figure 4, and the
charge γL is dropped out. Moreover, other charge vectors should also be
changed, and the new basis is assumed to take the following form (see a
proof in [21]):

γ
′
L = −γL,

γ
′
i = γi + [εiL]+γL,(16)

here [εiL]+ = max[0, εiL]. Now the new antisymmetric tensor built from the
canonical basis is different and we have a new quiver, which is equally good
to capture the BPS spectrum. So the BPS quiver is not just a single quiver
but a family of quivers related by the above transformation on basis called
quiver mutations (we will explain this term later), and by BPS quiver we
really mean its mutation class.

The above definition of the BPS quiver is conceptually good but not
useful for finding the BPS quiver since usually the BPS spectrum is not
known for any chamber. Other approaches are needed to attach a quiver to
a given N = 2 theory. For a large class of N = 2 theory engineered from
compactifying six dimensional higher rank 2 AN−1 theory on a Riemann

2The BPS quiver for A1 theory is discussed in [13, 31].
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Figure 4: By rotating the half plane, the canonical basis is changed.

surface Σ with defects, one could associate a quiver from the combinatorial
data of the Riemann surface. Our main conjecture in this paper is that

Conjecture 1. BPS quiver for these theories is the one found from the
triangulation of a bordered Riemann surface as described in [33–35].

There are many compelling evidence that this conjecture is true, i.e. the
rank of the quiver is always equal to twice of the Coulomb branch dimen-
sions, and the results are in agreement with the quiver found using other
approaches like 2d-4d correspondence.

2.3. Quiver mutation and cluster algebra

After finding a quiver, there are many tools one could use to study the BPS
spectrum like the quiver representation theory, stability and quiver moduli
space [42], etc, which we will review in detail in next section. One could also
attach new combinatorial structure called cluster algebra [44] on the quiver
which proves to be very powerful in BPS counting. There is a huge amount
of literature on cluster algebra, here we only review some basic definitions
which is sufficient for our purpose. The first element of the cluster algebra
is the quiver mutations, which is a combinatorial operation acting on quiver
in following way:

(17) ε
′
ij =

{
−εij if i = k or j = k

εij + sgn(εik)[εikεkj ]+ otherwise

Notice that this definition is the same as the change of the canonical basis
shown in last subsection. The quiver mutations can be represented beauti-
fully using the quiver diagram: A quiver is a directed graph where multiple
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arrows between two vertices are allowed, which is derived using εij as fol-
lows: attach a quiver node for i = 1, . . . , n, and there are εij arrows between
node i and node j 3. The quiver mutation for a quiver without one and two
cycles (such quiver is called 2-acyclic) is defined as the following: Let Q be
a quiver and k a vertex of Q. The mutation μk(Q) is the quiver obtained
from Q as follows, see Figure 5:

1) for each sub quiver i → k → j, create a new arrow between ij starting
from i;

2) we reverse all arrows with source or target k;
3) we remove the arrows in a maximal set of pairwise disjoint 2-cycles.

r s

rs−tt

r s

Figure 5: The quiver mutation.

Formally, the quiver mutation is exactly like the Seiberg duality [45] for
four dimensional N = 1 quiver gauge theory: the quarks are transformed
to antiquarks and vice versa, and there is a new singlet for each meson
field in the original quiver; Finally the potential term is used to integrate
out the massive fields. There are several obvious features about the quiver
mutations: a. μk is invertible and μ2

k = 1. b. If there are no quiver arrows
between two quiver nodes i and j, then μi and μj commute.

2.3.1. Quiver with potential. If there are oriented cycles in the quiver,
one can define a potential term W as familiar from the quiver gauge theory
(a gauge invariant operator). The quiver mutation acting on the quiver itself
is the same form as the Seiberg duality, similarly, the mutation action on the
potential [46] is also the same as what is happening in the context of Seiberg
duality. If there is an oriented path · · · i →α k →β j · · · passing through the
node k under mutation, and the potential involving this piece has the form

(18) W = · · ·αβ · · ·+ · · · ;

In doing the Seiberg duality, the bi-fundamental fields α and β change the
orientations, which are denoted as α∗ and β∗ in the new quiver, and there is

3If εij is positive, the quiver arrows are pointing from node i to node j; otherwise,
they are pointing from node j to node i.
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a new singlet bifundamental field [αβ] between node i and j. The potential
changes in the following way: the αβ term in the original potential is replaced
by the new field [αβ], and there is an extra cubic potential term for the new
quarks and the singlet:

(19) W
′
= · · · [αβ] · · ·+ β∗α∗[αβ] + · · · ;

Now there might be a quadratic term in W
′
which means that there are

two cycles in the new quiver, and the existence of the potential can be used
to integrate out these fields, and we get a reduced quiver Qreduced and a
reduced potential Wreduced, see Figure 6. The quiver and potential after the
mutation are always the reduced one!

mutation **

* *

reduction
* *

W=0

Figure 6: The quiver mutation for the quiver with potential, and the final
quiver is the reduced one.

2.3.2. Cluster X variable and cluster A variable. A complex vari-
able Xi can be defined on each quiver nod 4, and its transformation behavior
under the quiver mutation acting on node k is

(20) X
′
j =

{
X−1

k if j = k

Xj(1 +X
−sgn(εjk)
k )−εjk if j �= k,

namely, only the X variable of the quiver nodes connected to node k is
changed.

4In cluster algebra literature, this X variable is called coefficient and denoted
as y, and the cluster A variable is denoted as x, here we follow the convention of
Fock-Goncharov [33]
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Similarly, another set of A variable isdefined on each quiver node, and
the transformation behavior of the Ak under the quiver mutations are

(21) A
′
k =

∏
A

[εik]+
i +

∏
A

[−εik]+
i

Ak

where [εik]+ = max[εik, 0], and other A variables are not changed. There is
an interesting duality between the X and A variables

(22) Xi =
∑
j

A
εij
j .

Therefore cluster algebra is formed by a lot of seeds, and each seed comprises
of quadruple (εij ,W,XiAi), and the seeds are related by the quiver mutation
formula (17, 19, 20, 21). A degenerate two form can be defined on A space

(23) ω = εijd logAi ∧ d logAj ;

and a poisson structure can be defined on the X space:

(24) {Xi, Xj} = εijXiXj .

These structures are compatible with the cluster transformation, i.e. if you
express (Xi, εij) in terms of (X

′
i , ε

′
ij) using the cluster transformation rule,

and you will get the same form expressed in terms of (X
′
i , ε

′
ij).

3. Quiver representation theory

3.1. Acyclic quiver and BPS spectrum

We review the idea of using quiver representation theory and θ stability
condition to find the BPS spectrum, and this subsection is mainly following
[36]. The quiver considered in this section is assumed to be acyclic, i.e. there
is no closed oriented path in the quiver.

Let’s first discuss some backgrounds on the quiver representation theory
and its moduli space. The content reviewed below is quite standard and more
details could be found in many mathematical literature, i.e. the review by
Reneke [47]. Let’s denote the quiver as Q, and Q0 as the set of quiver nodes,
Q1 as the set of quiver arrows. A representation V of Q consists of complex
vector spaces Vi for i ∈ Q0 of dimension di, and of linear maps Vα : Vi → Vj

for every arrow α : i → j in Q. Physically, a quiver representation can be
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thought of as assigning a U(di) gauge group on each vertex and the linear
map is the expectation value of the scalar in the bifundamental matter.
The homomorphism φ between two quiver representations are a set of linear
maps

(25) φi : Vi → V
′
i ,

which preserves the structure of the quiver representation, i.e Vα = φiV
′
αφ
−1
j .

Again, when the dimension vectors of two representations are same, this is
the familiar gauge transformation acting on the bi-fundamental fields. The
endomorphism of a quiver representation is the morphism between itself,
and the set of all endomorphism of a representation is denoted as End(V ).
The automorphism is the the endomorphism which is also invertible, and
the set of all the automorphism of a representation is denoted as Aut(V ).

A representation N is a subrepresentation of M if Ni ⊂ Mi for all
the quiver nodes and the map Mα satisfies the condition Mα(Ni) ⊂ Nj for
all the arrows. A simple representation is the one whose sub represen-
tations are the zero and itself. The quiver representation with dimension
vector (0, . . . , 1, 0, . . . , 0) is a simple representation, here all the linear maps
associated with the quiver arrows are trivial. The direct sum of two rep-
resentations M

⊕
N consists of the vector space Mi

⊕
Ni on each node,

and the new linear maps associated with the arrows are Mα
⊕

Nα . The
indecomposable representation is the one which can not be written as the
direct sum of two representations. By definition, the simple representation
is an indecomposable representation.

Every representations can be decomposed as a direct sum of the inde-
composable representations, and indecomposable representations are very
important for the BPS counting problem. It is a very difficult problem to
find all the indecomposable representations for a given quiver. However, it
is possible to find the dimension vectors explicitly due to the Gabriel (Kac)
theorem.

Quiver can be classified using the property of the indecomposable rep-
resentations of the quiver. A quiver is of finite type if and only if the
underlying undirect graph is of the ADE Dynkin type, and there are only
finite number of indecomposable representations. For a Dynkin quiver Q,
the dimension vectors of indecomposable representations do not depend on
the orientation of the arrows in Q. A quiver Q is of tame type if and only
if the underlying directed graph is an extended Dynkin graphs of type Â,
D̂, Ê. The indecomposable representations of finite and tame quiver are
in one-to-one correspondence with the positive roots of the corresponding
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root system. All other quivers are called ”wild” and the indecomposable
representations are related to the roots of the quiver.

Let’s review the Gabriel-Kac theorem in some detail. One can define a
Euler form on the positive lattice Λ = ZQ0

+ :

(26) χ(α, β) =
∑
i∈Q0

αiβi −
∑
ρ:i→j

αiβj .

The Tits form is defined as T (α) = χ(α, α). The antisymmetric form from
the Euler form is defined as

(27) 〈α, β〉 = χ(β, α)− χ(α, β).

Notice that 〈ei, ej〉 count the number of arrows from i to j minus the number
of arrows from j to i if ei = (0, . . . , 1, 0, . . . , 0) with one on the ith quiver
node.

The roots could be found explicitly just from the structure of the quivers.
Let’s denote ei = (0, . . . , 1, 0, . . . , 0) as the simple roots and I as the set of
all the simple roots, and define the reflection si on lattice ZQ0 :

(28) si(d) = d− 〈ei, d〉ei
The Weyl group W (Q) is defined as the subgroup generated by si. The
fundamental domain F (Q) is defined as the set of all non-zero dimension
vector d with connected support, i.e. the full sub quiver with nonzero di is
connected, such that (ei, d) ≤ 0 for all i ∈ I. The set of real roots are

(29) Δre(Q) = W (Q)I

and the set of imaginary roots are

(30) Δim(Q) = W (Q)F (Q).

There exists an indecomposable representation of Q of dimension vector
d if and only if d is a positive root d,

(31) d =
∑
i

diei, di ≥ 0.

In case d ∈ Δre(Q), there exists a unique indecomposable (up to isomor-
phism) of dimension vector d. In case d ∈ ΔIm(Q), the number of param-
eters of the set of indecomposable representations is 1− χ(d, d). For the
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real roots d, we have χ(d, d) = 1. Alternatively, the positive real roots are
the positive integer solution of the following equation χ(d, d) = 1, and the
positive imaginary roots are the positive integer solutions of the quadratic
equation T (d, d) ≤ n with n ≤ 0.

From physics’ perspective, the number of parameters of an indecom-
posable representation is equal to the dimension of the Higgs branch of the
quiver gauge theory with gauge group U(di): each arrow contributes didj and
the dimension of the gauge group is d2i , and an overall U(1) is decoupled, so
the dimension of the Higgs branch (assume that all the gauge symmetry is
broken) is

(32) Dim(d) =
∑

didj −
∑
i

d2i + 1 = 1− χ(d, d).

Let’s now give the identification between the possible BPS particles and
the indecomposable representations:

Statement 1. Each indecomposable representation 5 (up to isomorphism)
with dimension vector d represents a possible BPS particle, and the charge
vector γ of this state is the following

(33) γ =
∑

diei.

Here ei is the dimension vector for the simple representation associated with
the quiver node, which represent the elementary BPS particle.

Statement 2. The spin of the BPS particle is equal to 1− χ(d, d). The
real roots give the hypermultiplet and the imaginary roots give the higher
spin states.

3.1.1. Stability condition and stable BPS particle. After identify-
ing the possible BPS states with the indecomposable representation, it is
time to study the stability condition from which one can judge whether an
indecomposable representation is stable or not. The θ stability condition
on quiver representation is the one which we are going to use. Let’s briefly
review those concepts below.

5More precisely it is the Shur representation whose endmorphism is End(V ) = C.
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Let’s fix the dimension vector di and denote the complex vector space
at each quiver node as Mi. Consider the following space

(34) Rd =
⊕
α

Hom(Mi,Mj),

obviously each point of Rd parametrizes a representation. The linear group
Gd =

∏
iGL(Mi) acts on Rd via the following gauge transformation on an

element Ma ∈ Hom(Mi,Mj):

(35) Ma → gjMag
−1
i .

Therefore each Gd orbit parametrizes an isomorphism class of the quiver rep-
resentation with dimension vector d. Physically each orbit ofGd parametrizes
all the gauge equivalent scalar field configuration (the gauge group action
is the complex one). The moduli space Rd/Gd parameterizes all the repre-
sentations with dimension vector d, however, this space is very complicated.
The space is much more simpler if we concentrate on a subspace which cov-
ers almost all the quiver representation, this is the place where the stability
condition plays an important role.

The stability condition (central charge) Z(d) for the quiver representa-
tion is a linear functional acting on the lattice of dimension vectors which is
generated by Z(ei) defined on each vertex. Then for a representation with
nonnegative dimension vectors d, the central charge is

(36) Z(d) =
∑
i

diZ(ei).

The slop of a representation is defined as μ(d) = argZ(d) 6, and the def-
inition of the slop depends only on the dimension vector but not on the
quiver arrows. The quiver information enters into the characterization of
the stability condition though. We say a representation semistable (reps. sta-
ble) if for any proper subrepresentation 7 N , we have μ(N) ≥ μ(M) (resp.
(μ(N) > μ(M)). All the simple representations are stable since it has no
proper subrepresentation, and all the stable representations are indecom-
posable, which can be seen as follows: if a representation P is decomposable

6Usually the slop for a representation is defined as μθ(d) =
θidi∑

di
, where θi is de-

fined on each quiver node, and this gives the name for the θ stability. Our definition
is slightly different but actually equivalent.

7The zero representation and the representation itself is not included into the
proper subrepresentation.
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as P =
∑

iMi in which Mi is the subrepresentation of M , and the dimen-
sion vector is decomposed as d = d1 + d2 + · · ·+ ds, then there is at least
one of representation say M whose slop is bigger than P , which implies the
representation P is unstable.

We denote M ss
θ (Q, d) (resp M s

θ (Q, d)) as the moduli space of semistable
(reps. stable) representations. It was shown in [48] that each point in
M s

θ (Q, d) parametrizes a solution to the D term equations modulo complex
gauge group transformation of the quiver gauge theory:

(37)
∑
a:i→∗

φa+φa −
∑
a:∗→i

φaφa+ = θiIdi
,

here θi is related to the stability condition, so θi is just the Fayet-Iliopolous
(FI) term for the quiver gauge theory defined using the dimension vector d.
M s

θ (Q, d) simply parameterizes the moduli space of the gauge theory with
FI terms turned on.

Now we are coming to the third identification of the BPS spectrum and
quiver representation from the θ stability condition:

Statement 3. The θ stability condition is the stability condition 8 for the
BPS particles: the stable indecomposable representation represents the stable
BPS particle.

One can immediately derive some general features about the BPS spec-
trum: first, there are at least n stable BPS particle since every simple repre-
sentation associated with the quiver node is stable regardless of the chosen
stability condition; second, if there is a BPS particle with charge γ, then kγ
with k ≥ 2 can not be the charge vectors for the BPS particle.

If we change the stability condition, and some of the stable represen-
tations would become unstable, which leads to the wall crossing behavior.
The following two examples are very suggestive to us. Consider the A2 quiver
which is the BPS quiver for (A1, A2) Argyres-Douglas theory:

(38) • → •

The simple representations S1 and S2 corresponding to two quiver nodes are
indecomposable. The only other indecomposable representation P is

(39) 1
1→ 1

8More precisely, we only consider the discrete stability condition in this paper,
which means that only one BPS particle is allowed for each slop.
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whose only subrepresentation is S2. If the stability condition is chosen such
that arg(Z(S1)) > arg(Z(S2)), then P is not stable, and there are only two
stable BPS particles correspond to S1 and S2. If the stability condition is
taken such that arg(Z(S1)) < arg(Z(S2)), then P is stable and we have
three stable BPS particles. This exhausts the two possible chambers for this
theory.

S
2

S
1

A B

S
2 S

1

P

Figure 7: The two chambers for A2 quiver depending on different choices of
the stability condition.

Let’s consider the following affine A1 quiver which is the BPS quiver for
pure SU(2) SYM:

(40) • ⇒ •,

The real roots for this quiver are e1 and e2, fn = (n, n+ 1) and dn = (n, n−
1). Unlike the previous examples, this quiver has an imaginary root Q =
(1, 1) which represents the W boson. These are all possible indecomposable
representations for this quiver, and e2 is the subrepresentation of dn, fn
and Q.

If the stability conditions are taken such that arg(Z(S1)) > arg(Z(S2)),
then S1 and S2 corresponding to roots e1 and e2 are the only stable repre-
sentations. If arg(Z(S1)) < arg(Z(S2)), then all the indecomposable repre-
sentations are stable! These two chambers also successfully recover the BPS
spectrum of the two chambers of the pure SU(2) theory.

This method can be generalized to the other simple ADE quivers, how-
ever, it would be a formidable problem for very complicated BPS quiver
of general N = 2 theory. In next section, we are going to use other combi-
natorial methods to deal with the BPS counting problem, but the quiver
representation theory is always conceptually useful.

3.1.2. Quantum dilogarithm identity. If there are two stability con-
ditions and two different BPS chamber, then what is the invariant con-
structed from them? Kontestvich-Soilbeman wall crossing formula provides
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an invariant, and Reneke derived the similar formula using the Hall algebra
and Harder-Narasimhan filtration [47], see also the exploration of the quiver
invariant and the BPS spectrum in physics literature [49–53].

Reneke’s construction starts with a quantum algebra on the lattice ZQ0

+

for the quiver: one associate a quantum operator to each dimension vector,
and they satisfy the condition:

(41) yαyβ = q
1

2
〈α,β〉yα+β ,

here 〈α, β〉 is the antisymmetric form we defined earlier.
The construction of the invariant uses the Hall algebra and Harder-

Narasimhan filtration in an essential way. Let’s first review the Harder-
Narasimhan filtration: a filtration 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xs = X of a repre-
sentation is called Harder-Narasimhan (HN) if all the sub quotients Xi/Xi−1
is semistable and μ(X1/X0) > μ(X2/X1) > · · · > μ(Xs/Xs−1). Every repre-
sentation X poses a unique HN filtration.

A Hall algebra can be defined on the isomorphic classes of quiver repre-
sentations

(42) [M ].[N ] =
∑
[X]

FX
M,N .[X]

where FX
M,N denotes the number of sub representations U of X which are

isomorphic to N , with the quotient X/U isomorphic to M . This coefficient
is finite and the sum is also finite, and he dimension of [X] is equal to the
sum of dimension [M ] and [N ]. Let’s consider the following special elements
in the Hall algebra

(43) ed =
∑

dimM=d

[M ], esstd =

M semistable∑
dimM=d

[M ],
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here ed contains all the quiver representation isomorphism class with dimen-
sion vector d, and esstd contains all the semi-stable isomorphism class with
dimension vector d. Now because of the uniqueness of HN filtration, [M ]
appears with coefficient 1 in the product

(44)
∏

esstds
· · · esstd2

esstd1
.

and we have

(45) ed =
∑
∗

esstds
· · · esstd1

,

where the sum is running over all decompositions d1 + · · ·+ ds = d such that
μ(d1) > · · · > μ(ds). In particular, we have the following identity

(46)
∑
d

ed =
∏
→

1sstμ

where the right rand side is the ordered product on the semistable quiver
representations, and 1sstμ = 1 + esstμ . The left-hand side does not depend on
the stability condition, so this identify shows that there is an invariant for
each stability condition.

Now use the evaluation map which maps an element from the Hall alge-
bra to the power series in torus algebra

(47) [M ] → (q)1/2χ(α,α)∏
(q−1)αi

yα

where (q−1)n =
∏n

i=1(1− q−i).
Let’s consider the case where all the stable representation correspond

to the real roots, which implies χ(α, α) = −1. If M is semistable, then all
the power Mn would be also semistable and the charge vectors of Mn is nα
whose Tits form is χ(nα, nα) = −n2. Therefore, for a single stable represen-
tation, we have the following series in the torus algebra

(48)
[
1 +

∑
esstμ

]
= 1 +

q−1/2∏
(q−1)αi

yα + · · ·+ q−n2/2∏
(q−1)nαi

ynα + · · ·

Let’s consider α as the simple representation associated with a quiver node,
then α = (0, . . . , 1, . . . , 0) and yα = yi; the above series becomes

(49) E(yi) = 1 +
q

1

2

q − 1
yi + · · ·+ qn

2/2yni
(qn − 1)(qn − q) · · · (qn − qn−1)

+ · · · ,
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which is the famous quantum dilogarithm function. In general for an stable
indecomposable representation from the real root α, one can associate a
quantum dilogarithm function E(yα), and the identity (46) implies that

(50) E(yα1) · · ·E(yαs) = E(yβ1) · · ·E(yβr),

and the product is taken over the stable representation with the decreas-
ing order of the slop, here (α1, . . . , αs) are the stable representations of on
stability condition, and (β1, . . . , βr) are the stable representations of the
other stability condition. One could write a similar formula for the stability
condition involving higher spin states.

3.2. Quiver with potential

Remember that the BPS quiver for a theory is really a class of quivers re-
lated by the quiver mutations. The quiver representation theory is definitely
very different for the quivers related by the quiver mutations. For instance,
consider the A3 quiver and the affine Ã(3, 0) quiver which are related by
quiver mutations, see Figure 9. There are only finite number of indecompos-
able representations for the A3 quiver, but there are infinite many for affine
Ã(3, 0) quiver.

mutationa b ab

c

1 2 3 1 2 3

Figure 9: A3 quiver and affine A2 quiver which are related by quiver muta-
tions.

To solve this problem , one need to add constraints to the affine quiver
to kill many representations. In the original context of Seiberg duality, to
match the moduli space, Seiberg introduced a new superpotential term to
the quiver. In the same spirit, the addition of the potential will kill these
extra representations. In fact, it is possible to add a unique superpotential
W term to the affine Ã(3, 0) quiver. Now a representation of the quiver with
potential should satisfy the extra condition

(51)
∂W

∂φi
= 0,
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for all the fields φi appearing in the potential. The general analysis of the
indecomposable representations of the quiver with potential is quite compli-
cated, and we would like to introduce an algebraic approach.

To deal with this case, let’s first introduce the path algebra associated
with a quiver. The path algebra CQ is generated by the quiver arrows,
moreover we need to add the length zero generator ei attached on the quiver
node, so the elements for the path algebra are

• Path φij in the quiver going from i to j.
• The length zero element ei.
The product between two elements in the path algebra is very simple:

the only nonzero products are φijφjk, eiφij = φij , e
2
i = ei. For example, for

the quiver in left of Figure 9, the path algebra has elements

(52) [e1, e2, e3, a, b, ab]

The path algebra is finite if and only if there is no oriented cycle in the
quiver. The nice thing about the path algebra is that the category of quiver
representation is the same as the category of CQ left modules 9. One could
also define the direct sum of two modules, submodule, and the indecompos-
able modules in a similar way as we did for the quiver representation theory.
Similarly, one can define the stability conditions, etc. The special module
Pi attached to a vertex plays an important role, here Pi = (CQ)ei consists
all the paths ending at node i. The nice thing about the Pi module is that:
the Pi are projective modules, and every projective module is a direct sum
of Pi. The dimension of the homomorphism Hom(Pi, Pj) are the number of
independent paths from node i to node j. Pi is the left-module representing
the indecomposable representation corresponding to the simple root.

Now if we add a potential to the quiver, the path algebra is modified
and becomes the so-called Jacobi algebra. The potential will give zero re-
lations which will kill some of the generators in the original path algebra.
For example, consider the quiver on the right of Figure 9 in which there is a

9 A left CQ-modulue consists an an abelian group (M,+) and operation CQ×
M → M such that for all r, s in CQ and x, y in M , we have following condition

1. r(x+ y) = rx+ ry

2. (r + s)x = rx+ sx

3. (rs)x = r(sx)

4. 1.s = s(53)
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potential term W = abc, and the F term equation from the potential would
be

(54) ab = 0, bc = 0, ca = 0.

Now the Jacobi algebra is generated by

(55) [e1, e2, e3, a, b, c],

and it is finite dimensional. The rule for the product in the algebra is the
same as the one defined for the path algebra, and they should satisfy the
relation in doing the product (54), say ab = 0, etc. Notice that although
the two quivers in Figure 9 are related by quiver mutation, the two Jacobi
algebra is not equivalent, which is natural since the quiver representation
theory is not the same even with the inclusion of the potential. They however
define the same quiver invariant which is formed from the BPS spectrum.

After defining the Jacobi algebra, one can similarly define the modules,
direct sum of modules, and indecomposable modules, etc; Now the possible
BPS states are represented by the indecomposable module of the Jacobi
algebra, and the stability conditions can be similarly defined, everything is
kind of similar. The mathematical results about the representation theory
of quiver with potential is fruitful and they play an important role in the
studying of the BPS spectrum and wall crossing, see [8, 10, 54, 55]. However,
the mathematical descriptions are quite complicated and we do not really
use these descriptions in our later description, so we will not discuss them
in details and leave it to other occasions in the future.

4. Hypermultiplets: Maximal green mutation

4.1. Maximal green mutation: Definition

The detailed analysis of the quiver representation theory is rather compli-
cated, especially when the nontrivial potential exists. There is a remarkable
combinatorial method called green mutation [37] which will make the task
of finding the finite chamber much easier.

Let’s first modify the quiver as follows: introduce an extra frozen node10

for each quiver node, and there is a quiver arrow pointing into the frozen

10A frozen node can never be mutated, which could be though of as the flavor
group.
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node, see Figure 10A. The original quiver and the extended quiver are de-
noted as Q and Q̃ respectively. A non frozen node is called green if it is
the source to the frozen nodes, and called red if it is the sink to the frozen
nodes. A green mutation sequence is the one where only green nodes can be
mutated, and the mutation rule for the extended quiver is the same as the
ordinary one. Several features of the green mutation is immediately clear
from the definition:

frozen

1 2

A

B

1 2

1

1 2

2

1 2

C
2

1 2 1 2

1 2

1 2 1 2
(0,1)

(1,0) (0,1)

(1,1) (1,0)

Figure 10: A: The extended quiver derived by adding extra frozen nodes. B:
A maximal green mutation sequences. C: Another maximal green mutation
sequences of the same quiver.

• If we assign the charge vector γi on each quiver node, and the Dirac
product of these charges satisfies the condition

(56) 〈γi, γj〉 = εij ,

(this can be done explicitly by taking γi = (0, . . . , 1, . . . , 0)). The charge
vector of the quiver node during the quiver mutation is determined by the
quiver arrows connected with the frozen nodes, i.e. the charge vector is

(57) λ =
∑

miλi,

where mi is positive (resp. negative) if the quiver node is the source (resp.
sink) for the frozen nodes. For the green node, the subquiver formed by
positive mi is connected. Let’s denote the charge vector as α, then after the
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mutation on node k, the new charge vector is changed as follows:

α
′
k = −αk,

α
′
i = αi + 〈αi, αk〉αk if 〈αi, αk〉0,(58)

this formula can be checked by looking at the green mutation. The new
quiver is formed by doing the Dirac product using α

′
.

• Each node is either green or red at any step of the green mutation. This
can be seen as follows: let’s mutate a green node k, by the rule of mutation,
all the quiver arrows including the arrows to the frozen node are reversed,
then it becomes red after the mutation. The color of the other quiver nodes
i would not change if there is no quiver arrow to node k or i is the sink of
the arrows between i and k. If i is the source of the arrows between i and k,
then we have two choices to consider: A. i is green, then i is also green after
the mutation; B. i is red, this case is a little bit complicated, but it can be
proven that it is either green or red after we identify the charge vector as
the c vector appearing in the study of the cluster algebra. So we have the
following conclusion: The green node is still green after a green mutation on
other nodes, and the red node can become either red or green.

• If one green node with charge vector mi is mutated, the quiver mod-
uli space with the assignment of dimensions mi has dimension zero, and
therefore this corresponds to a hypermultiplet!

Now let’s introduce the definition of maximal green mutation sequence:

Definition 1. A maximal green mutation sequence is the finite green mu-
tation sequence such that all the nodes are red at the end. It is not hard to
see that the final quiver has basis −γ1,−γ2, . . . , and the quiver (non frozen
part) is isomorphic to the original quiver.

Now each maximal green mutation sequence represents a chamber with
finite number of (hypermultiplets) states! This method is essentially equiv-
alent to that proposed in [21] 11 , but the combinatorial way presented here
make the calculation much easier. An example of maximal green mutations
is shown in Figure 10B, and this chamber has two BPS particles with charge
γ1 and γ2.

11In that paper, one only mutate the quiver nodes with positive coefficient of the
original charges, which means only mutating the green node in our language, more-
over, each mutation corresponds to rotating the half-plane of the central charges,
and when the plane is rotated by 180 degree, the canonical basis is −γi, which
essentially means that no green node is left.
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In the above procedure, we have fixed a quiver from the very beginning,
now according to our previous discussion on the BPS quiver, all the quivers
appearing in this sequence are equally good for describing this particular
BPS chamber, see the illustration in Figure 11. Let’s denote this subset as
[Q]G, apparently only a subset of the quivers in the mutation equivalence
class would appear, and this subset depends on a particular maximal green
mutation sequence. Different green mutation sequence defines different sub-
sets. If a quiver appears in [Q]G, then there will be a maximal green mutation
sequence with length |G|.

Q
1

Q
2

Q
3

Q
4

Q
5

Q
n

Figure 11: The quivers connected by the green mutation.

There are several observations about the feature of maximal green mu-
tations:

1. The length of the maximal green mutations is at least |Q|, where |Q|
is the number of quiver nodes, and each node is mutated at least once. If
there is a BPS particle with charge αi in the spectrum, then the charge
vector kαi, k ≥ 2 will not appear. Notice that this is consistent with the
quiver representation theory by taking discrete stability condition.

2. The final quiver is isomorphic to the original quiver, and each red
node is only connected to one frozen node.

Special quiver. Let’s consider a bipartite quiver which has only two types
of quiver nodes: source and sink (see Figure 12), and the following two special
mutation sequences

μ+ = μi1 · · ·μim , ik is the source node

μ− = μj1 · · ·μjn , jk is the sink node(59)

The order of mutations in μ+ and μ− does not matter since there are no
arrows between the source nodes (the same is true for the sink nodes). Due
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to the special structure of the quiver, there is no cycle in the quiver and
therefore no potential is allowed. The mutation sequences τ = μ2

+ is a max-
imal green mutation sequence as can be easily checked from the definition.

source sink

Figure 12: The bipartite quiver has two types of quiver nodes: sink and
source nodes.

The above observation can be generalized to an acyclic quiver which
always has at least a source node. Let’s do the green mutation on this source
node, and the new quiver is still acyclic and there is again a source node.
Continuing mutating the source node, we are going to find the maximal
mutation sequence with |Q| steps.

The above mutation method only gives us the hypermultiplet. The vec-
tor multiplet does not correspond to the quiver mutation, but it can be
taken as limit of a infinite number quiver mutation sequence. If there is only
one vector multiplet, one might be able to probe the existence of the vector
multiplet by doing the maximal red mutation: one add a frozen node and
quiver arrow for each quiver node, but the arrow is pointing into the quiver
node. The red mutation sequence is the one which only red node is mutated.
The interested reader can check that the red mutation has quite similar prop-
erty as green mutations. This red mutation sequence corresponds to rotating
the half plane in counterclockwise direction. The infinite chamber with one
vector multiplet can found as follows: first do the maximal green mutation
and then do the red mutation carefully to make everything consistent. If
these two sequences has a common limit, then we conclude that there is a
vector multiplet.
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4.2. Finding maximal green mutation sequence: a clue

There is one serious question about the use of the maximal green muta-
tion: there is no information on the order of green mutations and random
green mutations usually would not stop at finite steps. The quiver represen-
tation theory and θ stability do tell us something about the green mutation
sequences, we have the following conjecture:

Conjecture 2. There are infinite number of BPS states if there are stable
higher spin states.

According to this conjecture, the stability condition should be chosen
such that no higher spin stable state exists. For simplicity let’s assume that
the vector multiplet is the possible higher spin states, and denote the cor-
responding representation as Vd, and its subrepresentation as V1, V2, . . . , Vs.
According to the θ stability, Vd is stable if and only if its slop is smaller than
all of its sub representations:

(60) μ(Vi) > μ(Vd), for all i,

So to have a finite chamber, we must ensure that such situation will not
happen in our mutation process.

Let’s look at an example to see how to use the stability condition to de-
termine maximal green mutation sequences. The BPS quiver is the one rep-
resenting SU(2) theory with one flavor, see Figure 13. The gauge boson cor-
responds to the representation d = (1, 1, 1), and S2 = (0, 1, 0), P = (1, 1, 0)
are the sub representations of it. Now, let’s start doing mutation on node 2
in step 1, and probe a BPS particle with charge S2 on the far left. The node
one and node three are green nodes now. In this second step, if mutate node
1 which has charge γ1 + γ2 and probe the BPS particle P , then the vector
multiplet is definitely stable since it would have smaller slop than S2 and P .
So to find a finite chamber, we can only mutate node 1. In step 3, similar
analysis forces us to mutate node 2, etc. At the end, we find the following
maximal mutation sequences

(61) μ2, μ3, μ2, μ1, μ3.

Similar analysis can be done on the mutation sequences starting from other
nodes. A simple but useful fact is that if in the mutated quiver Q1, and there
are two green nodes connected by double arrows, then we can not mutate the
sink nodes of this subquiver which follows directly from the representation
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theory of affine A1 quiver. This follows from the fact the mutated quiver is
equally good for describing this particular chamber. Use this observation, it
is easy to see that in step 3, we can only mutate quiver node 2.

1

23

3 2

1 2

2

3 2

3 2

3

3 2

1

1

1 2

1 2 3

Figure 13: Up: the maximal green mutation sequences. Bottom: the charge
vector for the various BPS particle, the dash line represent the vector boson
which is not stable, since the slop of its subrepresentation γ1 + γ2 is smaller
than it.

4.3. Wall crossing: Quantum dilogarithm identity

Usually there are more than one maximal green mutation sequences for a
given quiver. It would be nice to have an invariant built from the BPS
spectrum, which can be written down using the quiver representation theory.
For the finite chamber, it is actually very easy to write the invariant using the
maximal green mutation data as shown in [37]. Let’s fix a quiver and consider
the quantum algebra on charge lattice, and the commutation relation is

(62) XαXβ = q
1

2
〈α,β〉Xα+β ,

where 〈α, β〉 is the familiar Dirac product.
Assume that we find a maximal green mutation sequence k = (k1, k2, . . . ,

ks) and the charge vector in step i is αi, we can form a quantum dilogarithm
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function for ith mutation:

(63) E(Xαi).

Given a maximal green mutation sequences, we can form a quantum dilog-
arithm product

(64) E(k) = E(Xα1)E(Xα2) · · ·E(Xαs),

If there is another maximal green mutation sequences k
′
whose length is r,

then this represents another chamber and we can form another quantum
dilogarithm product E(k

′
), then these two quantum dilogarithm products

are the same

(65) E(k) = E(k
′
).

which could be interpreted as the wall crossing formula, which has been
proved using quiver representation theory.

Example. Let’s consider our familiar A2 AD theory. There are two maximal
green mutation as shown in Figure 10. The first chamber has two BPS
hypermultiplets with charges γ1, γ2, and the other chamber has three BPS
hypermultiplets with charge γ2, γ1 + γ2, γ1 (the charges are listed in the
order of decreasing phase angle). The quantum dilogarithm identity from
this theory is

(66) E(Xγ1)E(Xγ2) = E(Xγ2)E(Xγ1+γ2)E(Xγ1).

The above identity has the familiar form if we use the generator Xi = Xγi :

(67) E(X1)E(X2) = E(X2)E(q−
1

2X1X2)E(X1).

4.4. Quantum dilogarithm identity from quantum cluster algebra

In this part, a proof of the quantum dilogarithm identity is given using the
quantum cluster algebra.

4.4.1. Charge vector as c vector. The charge vector appeared in pre-
vious section has a nice interpretation from the cluster algebra. Let’s first
introduce some background on tropical semi-field. Assume the semi field
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is generated by generators yi, i = 1, . . . , n, and each element has the form∏
yai

i , where ai is an integer. The tropical sum is defined as

(68)
∏

yai

i +
∏

ybii =
∏

y
min(ai,bi)
i .

Given a quiver and consider the mutation rule of the cluster X coordi-
nates,

X
′
k = X−1

k

X
′
i = Xi(1 +X

−sgn(εik)
k )−εik .(69)

If we replace the ordinary sum in the new X variables with the tropical sum,
then the cluster coordinates has the following form

(70) [X] =
∏

Xci
i ,

where ci is an integer vector whose entries are all nonpositive or nonnegative
[56], and Xi is the original cluster variable. These c vectors are not the
new stuff, and they are just the charge vector appearing in the study of
green mutation. The initial c vector has only one entry 1 with all the other
entries zero, and the final c vector has only one entry −1, see an example in
Figure 14.

X
1 X

2

(1,0) (0,1)

cluster X variable:

c vector:

X
1

−1 X
2
(1+X

1
)

(−1,0) (0,1)

1 2

X
2

−1(1+X
1
) −1X

1
−1+ X

1
−1X

2
+ X

2

(0,−1)(−1,0)

Figure 14: The X variable and c vectors of the mutations.

The c vector has the following simple transformation rule from the def-
inition if a mutation is done on the vertex k:

c
′
k = −ck

c
′
i = ci if εikck ≤ 0

c
′
i = ci + εikck if εikck > 0(71)
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Since we always mutate on green nodes which means the sign(ck) is always
positive, the above formula simplifies as

c
′
k = −ck

c
′
i = ci if εik < 0

c
′
i = ci + εikck if εik > 0(72)

Let’s now use the c vector analysis to prove the maximal green sequences
for the bipartite quiver. Let’s consider one of the source node whose initial c
vector is (1, 0, . . . , 0), after the mutation μ+, c

′
= (−1, 0, . . . , 0). The c vector

of the sink nodes is not changed. After mutation μ− on the sink node, all the
c vector of the sink nodes becomes c

′
= (0, . . . ,−1, 0), and the final quiver

is a quiver whose nodes are all red.

4.4.2. Quantum cluster algebra. We have actually seen the deforma-
tions in defining a quantum torus algebra on the charge lattice, and the
cluster algebra has a quantum deformation too [57, 58], here we only use
the quantum version of the cluster X variable, and keep the A variable as
classical. There is a quantum X variable associated with each vertex and
the noncommutative relations are

(73) XiXj = qεijXiXj ,

and the transformation rules for the quantum cluster variables under the
mutation on node k are

Xk → X−1
k

Xi → Xi

( |εik|∏
a=1

(1 + qa−1/2X−sgn(εik)
k )

)−sgn(εik)
,(74)

this transformation preserves the form of the commutation relation X
′
αX

′
β =

qε
′
αβX

′
βX

′
α. The mutation can be decomposed into two steps μk = μ

′
k ∗ τk,+,

where τk,+ is defined as the transformation

X
′
k = X−1

k

X
′
i = q1/2εik[εik]+XiX

[εik]+
k if i �= k.(75)
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Here [εik]+ = max(0, εik), and the transformation μ
′
k is given by the adjoint

action Ad(Ψq(Xk)):

X
′
i = Ad(Ψq(Xk))Xi = Ψq(Xk)X

′
iΨq(Xk)

−1(76)

= XiΨq(q
εikXk)Ψq(Xk)

−1

= Xi

( |εik|∏
a=1

(1 + q−sgn(εik)(a−1/2)Xk)

)εik

.

here Ψq is the familiar quantum dilogarithm function. What is important
is that there are another kind of decomposition using μ

′
k,− and τk,−, where

τk,− is defined by replacing εik by −εik, and μ
′
k,− is defined by using the

adjoint action

Ad(Ψq(X
−1
k )−1)Xi = Ψq(X

−1
k )−1X

′
iΨq(X

−1
k )(77)

= Xi

( |εik|∏
a=1

(1 + qsgn(εik)(a−1/2)X−1
k )

)−εik
.

It can be checked that μ
′
k,− ∗ τk,− = μ

′
k,+ ∗ τk,+.

Here comes the crucial point: if there is a sequence of mutations (μ1, μ2,
. . . , μs) such that the final cluster coordinates are the same to the original
one up to the permutation, there is a quantum dilogarithm identity associ-
ated with this sequence. If the c vector is (α1, α2, . . . , αs) and denote the sign
of the c vector as (ε1, ε2, . . . , εs)

12, then the quantum dilogarithm identity
is

(78) Ψq(X
ε1α1)ε1 · · ·Ψq(X

εsαs)εs = 1.

The proof is the following [59]: since the cluster coordinates come back
to itself up to permutation, we have the following identity

(79) Ad(Ψq(X
ε1
1 )ε1)τ1,ε1 · · ·Ad(Ψq(X

εs
s )εs)τs,εsν = 1

Now move all the τi,εi to the far left, and we get

(80) Ad(Ψq(X
ε1α1)ε1) · · ·Ad(Ψq(X

εsαs)εs)τ1,ε1 · · · τs,εsν = 1

Using the relation τ1,ε1 · · · τs,εsν = 1, we get the quantum dilogarithm iden-
tity in the desired form.

12Each c vector is either all nonnegative or nonpositive, ε is the sign of the c.
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The relation to the wall crossing formula is the following: the sign of the
c vector are assembled into two groups, say α1, α2, . . . , αr has positive sign
and the remaining ones has negative sign, we have

(81) Ψq(X
α1) · · ·Ψq(X

αr) = Ψq(X
−αr+1) · · ·Ψq(X

−αs),

which gives the wall crossing formula for the A2 quiver.

5. BPS spectrum for A1 theory

Although the above mutation method is remarkably powerful, this approach
has severe limitations without further knowledge of the quiver mutation
structure. Without such knowledge, the above method is also kind of largely
constrained to the ADE quiver class or its special generalization. The reason
for the difficulty is due to the following two necessary conditions for doing
green mutations:

1. A quiver with 2nr + nf quiver nodes for a given N = 2 theory, here
nr is the rank of the gauge group at the generic point of Coulomb branch
and nf is the number of mass deformations.

2. A mutation sequence whose final quiver is isomorphic to the original
one.

The first condition is by itself already highly non-trivial since usually
there is no information about the BPS spectrum for most of theories. Our
first claim is that the quivers and potential constructed in [34, 35] are the
BPS quiver for the corresponding field theory. The second condition is even
more difficult since the quiver for higher rank theory is of mutation infinite
class, and it is very difficult to find a mutation sequence whose final quiver
is isomorphic to the original one. Luckily, the construction given in [34, 35]
also gives us the above very needed mutation sequence, which we will review
in more detail in later sections.

In this section, we will mainly study the theory engineered using six
dimensional A1 theory which has been discussed in [18, 20, 21, 31, 60]. The
study will be very useful for our later applications to the higher rank theory.
Moreover, Using our method, it is pretty easy to recover the results in the
literature, and in fact we can get a lot more finite BPS spectrums starting
with arbitrary quivers, which is new.
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5.1. Definition of the theory and BPS geometry

In this section, we will consider four dimensional N = 2 theories derived by
compactifying six dimensional (2, 0) A1 theory on a Riemann surface with
regular singularity and irregular singularity. To study the BPS spectrum,
each irregular singularity is replaced by a disc with marked points, and
the number of marked points depend on the specific form of the irregular
singularity, and the regular singularity is interpreted as puncture in the bulk.
There is only one type of marked point since there is only one type of Young
Tableaux of A1 group. The BPS geometry is therefore a bordered Riemann
surface with marked points on the boundary and punctures in the bulk.

5.1.1. Ideal triangulation. The BPS quiver is derived from the ideal
triangulation of the corresponding bordered Riemann surface. Let us begin
with a Riemann surface with boundaries and specify a finite set of points
Mboundary, called boundary marked points, on the boundary circles of Σ.
Each connected component of ∂Σ has at least one boundary marked point;
The bulk puncture is not blown up and remained as a point in the in-
terior of the Riemann surface. The defining data of our theory is a triple
(Σ,Mboundary, p). For notational convenience we sometimes denote this triple
simply by Σ. In other words, Σ is defined by following data:

a. the genus g of the Riemann surface;
b: the number of bulk punctures p.
d. the number b of boundary components;
d. the number of marked points hi on each boundary.
Each puncture represents the regular singularity while the boundary

with marked points means an irregular singularity, all the marked points
have a Young Tableaux label. The punctures and the marked points are
all called marked points for simplicity in the following, and one should be
careful about whether it is in the bulk or one the boundary. One can define
a combinatorial object called ideal triangulation on above Riemann surface.
An ideal triangulation is defined using arcs [61]. A simple arc γ in Σ is a
curve such that

1. the endpoints of γ are marked points;
2. γ does not intersect itself, except at the endpoints;
3. γ is disjoint from the marked points and the boundary.
We also require the arc γ is not contractible into the marked points

or onto the boundary. Each arc is considered up to isotopy. Two arcs are
called compatible if they do not intersect in the interior of Σ. A maximal
collection of distinct pairwise arcs is called an ideal triangulation. An edge
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is called external if it is isotopic to a segment of the boundary, otherwise it
is called internal. It is not hard to get the following formula for the number
of internal edges:

(82) 6g + 3b+ 3p+# |Mboundary| − 6 ,

where as defined previously g (b) is the genus (the number of boundary
components) of Σ, respectively. There are a total of # |Mboundary| external
edges. Several examples for the ideal triangulations for various bordered
Riemann surface are shown in Figure 16

A B C D

Figure 15: The triangulation of various BPS geometry. A: Disc with five
punctures which represents A2 Argyres-Douglas theory. B: Annulus with
one marked point on each boundary, this is pure SU(2) theory. C: Sphere
with four punctures which is SU(2) theory with four fundamental flavors.
D: Disc with three marked points and a bulk puncture, which is the D3

Argyres-Douglas theory.

We always start with an ideal triangulation without self-folded triangles,
and the BPS quiver can be read from the triangulation in the following way:

1. Assign a quiver node to each internal edge of the triangulation.
2. There is a quiver arrow for two nodes if the two corresponding edges

are in the same triangle. The total quiver arrows are the signed sum of the
quiver arrows if the two nodes are in more than one triangles.

There are two special features for the quivers from the triangulated
surface: first the maximal number of arrows are two for any two quiver
nodes, second the quiver is in finite mutation class, namely the quiver will
come back to itself after a finite number of mutations.
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The quantum field theory is formed by gauging two kinds of matter to-
gether 13: trifundamental of SU(2) which is represented by the three punc-
tured sphere and the D type AD theory represented by a sphere with one
irregular singularity and one regular singularity. Each bulk puncture con-
tributes 3 to the charge lattice (one electric, one magnetic and one fla-
vor charge), and each boundary with ni marked points contributes (ni + 3)
(when n is even, there is a mass parameter), so the total dimension of the
charge lattice is

(83) 3p+ 3b+# |Mboundary| − 6 + 6g,

which is equal to the number of the internal edges of the triangulation, so
the BPS quiver from the triangulation has the right dimensions, and it can
be checked that the rank of the quiver matrix is equal to 2nr.

5.1.2. Potential. The potential for the quiver arising from the triangula-
tion of the bordered Riemann surface is given in [62]. There is one potential
term for the quiver arrows in each triangle and one term for each puncture.
If there is a quadratic term in the potential, then the two quiver arrows
are massive and can be integrated out and one get a reduced quiver and
potential.

Figure 16: There is a potential term for each triangle, and a potential term
for each internal puncture.

Mathematically, the above integrating out process corresponds to re-
moving two cycles in the quiver. The quiver defined in previous paragraph
is actually the reduced one. In this paper, the quiver with potential (Q,W )
for a triangulation is always the reduced one.

13The one disc with marked points represents the An type Argyres-Douglas the-
ory.
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The triangulation of the BPS quiver is not unique and two different
of triangulations are related by a sequence local moves called flips. It can
be checked that the two quivers are related by mutations, and the reduced
potential of two triangulations are also related exactly by the mutation rules,
see Figure 17.

f l ip

W=abc+def

a

bc

d e

f

Figure 17: The flip which relates two triangulations of the quadrilateral. The
quivers are related by quiver mutation, and the potentials are also related
by the mutation rule.

5.2. Indecomposable objects: a geometric representation

As we discussed earlier, the indecomposable representations of the quiver
with potential are the possible BPS states. One could find them either from
the indecomposable modules of the Jacobi algebra, or from the representa-
tion theory of (Q,W ). In this subsection, we are going to provide a geometric
representation for these objects.

Let’s consider the Riemann surface without the punctures, the Jacobi
algebra defined from the triangulation is the so-called string algebra. As
discovered in [63], the indecomposable modules of a string algebra are rep-
resented by the strings and bands. Let’s fist give a definition of the strings
and bands. Given an arrow β, and let S(β) be its starting point and e(β) its
ending point. We denote β− as the formal inverse of β with s(β−1) = e(β)
and e(β−1) = s(β), notice that (β−)− = β. A sequence of the quiver arrows
(and their formal inverses) ω = α1α2 · · ·αn is called a string if they satisfy
the following two conditions

1. The ending point of αi is the starting point of αi+1.
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2. The quiver arrows and its formal inverse are not appearing in sequel,
i.e. αi �= α−i+1.

Thus a string w for the Jacobi algebra is defined as a walk in the quiver
avoid the zero relations from the potential:

(84) ω : x1
α1− x2

α2− · · ·xn−1
αn−1− xn

αn− xn+1.

Namely, there is no subsequence in ω which appears in the ideal I defined
by the potential. A string is called cyclic if x1 = xn+1. A band is a simple
cyclic string (the starting point and the ending point are the same for the
string), i,e, it is not a power of any string. The dimensional vector of the
string or band module is defined as

(85) di =
∑
x∈ω

δx,xi
,

namely, the ith component of the dimension vector is equal to the number
of times the quiver nodes xi appears in the ω.

The string and band module have a very nice geometric interpretation
as the curves on the Riemann surface. The curve is required to be not ho-
motopy to the curve of the triangulation and boundary component. The end
points of open curve γ without self-intersection are either on the puncture or
on the boundary, such curves are representing the string module. A simple
closed curve l represents the band module. For two curves γ and γ

′
in Σ,

we denote by I(γ, γ
′
) as the minimal intersection number of two representa-

tives of the homotopic classes of γ
′
and γ. Now the dimension vector of the

module associated with a curve has the dimension vector associated with a
triangulation

(86) d =
∑
γ′∈Γ

I(γ, γ
′
).

It is not hard to see that for the quiver from triangulated surface, the
module from the open curve has no parameters and therefore represent the
hypermultiplet, and the module from the closed curve has 1 parameter which
then represents the W boson. These curves then represent the possible BPS
states, and our result is in perfect agreement with that found in [13]. The
association of the vector multiplet from the closed curve is actually natural
from the M theory point of view, i.e the self-dual string wrapping on the
closed curve gives the W boson.
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Finally, let’s give a simple application of the above example. The BPS
geometry is a annulus with one marked points on each boundary, the trian-
gulation and one closed curve is shown in Figure 18. The dimension vector
for this curve is (1, 1) from the intersection number. The other string module
has dimension (n, n± 1) as seen from the open curves. These results match
the result from the quiver representation theory.

Figure 18: The red closed curve represents the vector boson, and the green
curve represents the hypermultiplet.

The situation is more complicated for the Riemann surface with punc-
tures, and the Jacobi algebra in that cases usually is not a string algebra.
But we will make the following conjecture: the indecomposable modules as-
sociated with the W boson is still represented by the closed curve, and one
can read the subquiver from the intersection pattern. That is actually all we
need for the later analysis.

5.3. Finite cases: Disc and Disc with one puncture

Let’s consider a disc or a disc with one puncture in the bulk. When the
BPS geometry is just a disc with n+ 3 marked points, it represents the An

Argyres-Douglas theory. The quiver from one of the ideal triangulation is of
the An shape which gives the name, see the left of Figure 19. The orientation
of the quiver arrows is not important since they are all in the same quiver
mutation class. These quivers have special property that there are finite
number of indecomposable representations, and all of them represents the
hypermultiplet. This fact means that all the chambers have finite number
of hypermultiplets.

We are going to use the maximal green mutation to find the BPS spec-
trum of these theories by starting with the corresponding Dynkin diagram,
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Figure 19: Two ideal triangulations of a disc with 6 marked points, which
represents A3 Argyres-Douglas theory. The BPS quiver is given too.

since there is only finite number of indecomposable object, one can do ran-
dom green mutations and would definitely find a maximal green mutation
at the end. The minimal chamber has r BPS states, where r is the number
of simple roots of the corresponding lie algebra, and the number of BPS
states in the maximal chamber is equal to the number of positive roots. The
BPS states and charges are in one to one correspondence with the positive
roots of lie algebra. The minimal chamber and maximal chamber is easy to
find. Since the A type quiver is acyclic, there is always a source node and
sink node, the minimal chamber is found by always mutating the source
node in each step, and the maximal chamber is found by mutating sink
node only in each step, see Table 2. Moreover, for every integer l satisfy-
ing lmin ≤ l ≤ lmax, there is a finite chamber with l states. The interested
reader can work out the charge vectors and the corresponding ordering of
phase using the green mutations. The results of the minimal and maximal
chamber of the ADE quiver are summarized in Table 1.

An Dn E6 E7 E8

Minimal n n 6 7 8

Maximal n(n+1)
2 n(n-1) 36 63 120

Table 1: The number of BPS states in the minimal and maximal chamber
for the ADE quiver.

Example 1. Let’s consider the A3 quiver with orientation 1 → 2 ← 3. We
could easily list the chamber with three, four, five, and six BPS states, see
Table 2.
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Maximal green mutation charge vectors

3 μ1, μ3, μ2 γ1, γ3, γ2
4 μ1, μ2, μ3, μ2 γ1, γ2, γ2 + γ3, γ3
5 μ2, μ3, μ2, μ1, μ3 γ2, γ2 + γ3, γ3, γ1 + γ2, γ1
6 μ2, μ3, μ1, μ2, μ3, μ1 γ2, γ2 + γ3, γ1 + γ2, γ1 + γ2 + γ3, γ1, γ3

Table 2: The maximal green mutation sequences and charge vectors for A3

quiver.

If we start with a quiver which is mutation equivalent to the An quiver,
one can do random green mutations too. This fact is rather interesting since
the maximal green mutations actually knows about the potential, although
we did not specify the potential in the definition of green mutations. In
fact, the green mutation is desired for the generic potential of the quiver,
namely, one can mutate the quiver and always get a 2-acyclic quiver due to
the potential.

The new issue is that the number of BPS states in the minimal chamber
and the maximal chamber do not necessarily equal to the number given
by the Dynkin diagram. For example, consider the quiver in Figure 20, the
minimal chamber has 4 BPS states instead of 3. The mutation sequence
corresponding to the minimal chamber is

(87) μ1, μ2, μ3, μ1.

The maximal chamber of this quiver has 5 states. So the number of states
in minimal chamber and maximal chamber is not an quiver invariant. This
is natural from the green mutation subset point of view: the quiver subset
of the minimal and maximal chamber of An quiver is always acyclic and
so it would not include the above cyclic quiver, so the minimal chamber or
maximal chamber is not realized in the cyclic quiver.

1

23

Figure 20: Quiver which is mutation equivalent to the A3 quiver, and there
is a potential term for the cyclic path in the quiver.
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The BPS geometry of D type AD theory is realized as a disc with one
puncture on the bulk. The BPS quiver can be found easily from the trian-
gulation and it is indeed of the D shape in one triangulation, see Figure 21.
This is of the finite type and one could easily find the finite chamber and
the charge vectors by doing random green mutations.

Figure 21: The triangulation of the disc with one puncture in the bulk. The
quiver is of the D shape.

The E type AD theory can be found using A2 theory compactified on
a sphere with one specific irregular singularity as shown in [25]. The BPS
spectrum can be similarly found using random green mutations, and the
minimal and maximal chamber is listed in Table 1.

5.4. Riemann surface without punctures

In this subsection, we are going to study theory whose BPS geometry is a
bordered Riemann surface without bulk punctures, and the Jacobi algebra
of this class of theories are string algebra, and in particular the vector boson
and its corresponding quiver representation can be easily found from the
closed curves on the BPS geometry. By inspection, the subquiver for the
vector boson is always acyclic and there are definitely a source node and a
sink node. Let’s denote the charge vectors of the source node as γsource and
the sink node as γsink. We now argue that the sufficient condition for the
W boson to be unstable is that the source node has larger slop than the the
sink node.

(88) μ(γsource) > μ(γsink).

Let’s prove the above statement using the quiver representation theory. The
W boson representation P has the following two special subrepresentations

(89) P1 = γsink, P2 =
∑

i−source
γi.
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The condition for P to be stable is that the slop of P should be smaller than
all of its subrepresentation, namely P1 and P2 should be on the left of P on
the half plane:

(90) μ(P ) < μ(P1) & μ(P ) > μ(P2).

If P is stable, since dim(P ) = dim(P2) + dim(Psource) and P2 is on the left
of P , then Psource is definitely on the right of P , this implies that

(91) μ(Psource) < μ(P ) < μ(Psink),

In another word, as long as the slop of the source node is larger than the
sink node, the W boson is definitely unstable. Notice that this is not the
necessary condition to find the finite spectrum. In practice, this means that
if the source charge appears before the sink charge in the green mutation
sequence, then this W boson would be killed.

For simple BPS geometry, one can find all possible finite chambers using
the random mutations without worrying about the W boson. Some simple
BPS geometry of this sort and the minimal plus maximal chamber are listed
in Table 3. There is a finite chamber for all the integers lmin ≤ l ≤ lmax. The
minimal chamber is easy to find: there is a source node in the quiver, and
one mutate the source node in each step.

Quiver theory minimal maximal

Ã(1, 1) SU(2) 2 2

Ã(2, 1) SU(2) with Nf = 1 3 5

Ã(2, 2) SU(2) with Nf = 2 4 10

D̃4 SU(2) with Nf = 3 5 22

Figure 26A SU(2) with Nf = 4 12 46

Table 3: The minimal and maximal chamber for SU(2) with Nf ≤ 4.

For more complicated geometry, one can either find the finite chamber
using the random green mutations, or use the following steps:

a. Identify the subquiver corresponding to the W boson which is repre-
sented by the closed curve in the Riemann surface, and identify the source
node and sink node of this subquiver.

b. Do the green mutation such that the charge of the source node appear
before the charge of the sink node. The easiest thing you can do is to mutate
source node first.
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Let’s consider an annulus with n1 marked points and n2 marked points
on each boundary. The BPS quiver from one specific triangulation has the
form of affine Ã(n1, n2) shape where there are n1 arrows in one direction,
and n2 arrows in another direction, see Figure 22. There is only one closed
curve and so only one W boson whose corresponding quiver representation
P has dimension vector (1, 1, . . . , 1). Since node 1 is the source node of
this subquiver, W boson is definitely unstable if node 1 is mutated first,
and we will always find a finite chamber by doing random green mutation
afterwards.

2

8

1

1

8

1 2

2

1 2

Figure 22: The triangulation of an annulus with 4 points on one boundary
and 8 points on another boundary; The quiver is shown on the left which is
of the affine Dynkin diagram Ã(4, 8).

Example 2. Here is another theory whose BPS geometry is a sphere with
three boundary each with a marked point, and the four dimensional theory
is three SU(2) gauge groups coupled through a trifundamental, so the BPS
quiver should have six quiver nodes. The triangulation and quiver are shown
in Figure 23, and there are three closed curves which represent three W
bosons. The sink-source analysis of these bands are listed in Table 4. So
if we mutate node 1 and node 3 first, then the three W bosons would be
unstable, and random green mutations can be done later. A maximal green
mutation sequence is

(92) μ1, μ3, μ2, μ4, μ6, μ5, μ3, μ4.

5.5. Riemann surface with punctures

5.5.1. Asymptotical free theory. The BPS geometry for SU(2) with
Nf = 3 requires the bulk puncture: it is a disc with two marked points
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SU(2)

SU(2) SU(2)
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Figure 23: The triangulation of a sphere with three boundaries each with one
marked point, and the quiver gauge theory underlying this BPS geometry
is shown too. The three closed curves representing the W bosons are drawn
from which one can read the subquiver for them. The BPS quiver is shown
on the right.

Band quiver nodes source sink

B1 (1, 2, 4, 6) 1 2

B2 (1, 2, 3, 5, 6) 1 6

B3 (3, 4, 5) 3 5

Table 4: The source and sink nodes for the three bands from the quiver in
Figure (23).

and two bulk punctures. One triangulation and the BPS quiver is shown
in Figure 24. This quiver has the affine D̃4 shape, and more generally the
quiver is D̃n+2 in one of the triangulation if there is two bulk punctures
and n marked point on boundary of the disc. There is one closed curve
representing the W boson for the gauge group, and its dimension vector
is (1, 1, 2, 1, 1). Since the affine D̃4 quiver is acyclic, the number of BPS
states in minimal chamber has 5 states and can be found using the source
sequences. The maximal chamber has 22 states as found by doing all possible
green mutations.
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Figure 24: An ideal triangulation of twice punctured disc and the corre-
sponding quiver.

Let’s now give a conjecture on the number of states in the maximal
chamber from the the following assumption: the number of states is a con-
tinuous function of the parameters of the BPS geometry. Consider affine D̃n

quiver, we further conjecture that it is of the order of n2:

(93) f(n; 2) = an2 + bn+ c,

when n = 0, the geometry becomes a three puncture sphere, but only the
mass deformations corresponding to bulk punctures are allowed, therefore
there are only two BPS states. When n = 1, the underlying theory is a SU(2)
with two flavors, so f(1) = 10, finally f(2) = 22 as from the experimental
study. Using these initial data, we conjecture the maximal chamber has the
following number of states:

(94) f(n; 2) = 2n2 + 6n+ 2.

which is in agreement with the result found from computer scanning in [64].
The above analysis can actually be generalized to other type of BPS

geometry. Let’s an annulus with 1 and n marked points on each boundary,
and the BPS quiver in one particular triangulation is the affine Ã(n, 1)
quiver. The minimal chamber has n+ 1 states, let’s use f(n, 1) to represent
the number of states in maximal chamber and again assume the number of
states is a quadratic function of n. Using the initial data f(0, 1) = 0 (since
this is a trivial theory), f(1, 1) = 2 for pure SU(2) theory, and f(2, 1) = 5
for SU(2) with one flavor, we find

(95) f(n, 1) =
n2 + 3n

2
.
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BPS geometry Quiver theory minimal maximal

Annulus: B1, Bn Ã(n, 1) SU(2)−AD n+1 n(n+3)
2

Bn, two punctures D̃n+2 2− SU(2)−AD n+ 3 2n2 + 6n+ 2

Table 5: The minimal chamber and maximal chamber for two class of BPS
geometry.

More generally, consider an annulus with n1 and n2 marked points on
each boundary, and the BPS quiver is the affine quiver Ã(n1, n2) from one
particular triangulation. The number of states in maximal chamber should
be invariant under exchange of n1 and n2, so

(96) f(n1, n2) = f(n1 + n2, n1n2),

and it should be a quadratic polynomial from our assumption. Denote x =
n1 + n2, y = n1n2, then the general expression reads

(97) f(n1, n2) = ax2 + by2 + cxy + dx+ ey + f.

Using the result for f(n, 1), f(2, 2) = 10, f(3, 0) = 5, and f(4, 0) = 9, 14 the
number of states in maximal chamber is

(98) f(n1, n2) =
1

2
x2 +

1

4
y2 − 1

4
xy +

1

2
x+

1

4
y − 1.

Immediately, we make the prediction that the maximal chamber of the quiver
Ã(n, 0) has states

(99) f(n, 0) = 1/2(−2 + n+ n2).

It would be interesting to prove our this conjecture using computer scanning,
etc.

Now let’s give an example showing how to use the generalized source-
sink sequence to find the finite chamber for the theory defined using the
bulk puncture.

Example 3. Consider a Riemann surface with two boundaries with a sin-
gle marked point and a bulk puncture. The N = 2 theory is SU(2)× SU(2)

14Notice that disc with one bulk puncture is representing D type Argyres-Douglas
theory, but the quiver is of the cyclic affine type, so the maximal number of states is
different from the one derived from the D type Dynkin diagram as listed in Table 1.
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asymptotical quiver gauge theory. One triangulation and the quiver are
shown in Figure 25.

1

2

3 4

5
1

2

5

3

4

Figure 25: The quiver of two boundaries with a single marked point plus a
bulk puncture, the W boson is represented by closed curve.

There are two closed curves representing W bosons for two SU(2) gauge
groups. The subquvier corresponding to these two bands and the source-
sink nodes are shown in Table 6. Since 2 and 1 are the source nodes for

Band quiver nodes source sink

B1 (2, 3, 5) 2 3

B2 (1, 2, 3, 4) 1 4

Table 6: The source and sink nodes for the two bands of the quiver shown
in Figure (25).

two bands, and if we mutate node 1 and node 2 first, then the W bosons
will be disabled and a finite chamber can be found by doing random green
mutations. We just list one chamber below

(100) μ1, μ2, μ5, μ1, μ3, μ4, μ1.

There are many other possibilities which could be easily found from the
green mutations.

5.5.2. Fourth punctured sphere.

Example 4. Consider the fourth punctured sphere which represents SU(2)
theory with four flavors. The BPS quiver from one triangulation is shown
in Figure 26A. Now there are three closed curves and we list the source and
sink nodes in Table 7.
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Band quiver nodes source sink

Ba,b (2, 5, 4, 6) 5 6

Ba,c (1, 5, 3, 6) 6 5

Ba,d (5, 1, 2, 3, 4) (1, 3) (2, 4)

Table 7: Source and sink nodes for three bands of the quiver of SU(2) with
four flavors, see Figure (26)A.

We want charge vectors γ5, γ6, γ1 to appear first in doing green muta-
tions 15 , which can be done by doing the mutation sequences μ6, μ1, μ5,
which will ensure all the W bosons are unstable. Then we can do green
mutation in a random way. One sequence is the following

μ6, μ1, μ5, μ2, μ3, μ4, μ3, μ1,

μ4, μ6, μ5, μ3, μ5, μ4, μ2, μ3, μ5.(101)

and this chamber has 17 states. There are many other possibilities for the
maximal green mutations, and this example has been studied extensively in
[64]. The result is that the maximal chamber has 46 states and the mini-
mal chamber has 12 states. The minimal chamber can be found using the
following mutation sequences

(102) (μ5, μ6), (μ1, μ2, μ3, μ4), (μ5, μ6), (μ1, μ2, μ3, μ4).

If we start with another triangulation as shown in Figure 26B, then there
are also three subquivers for W bosons and the source, sink nodes are shown
in Table 8. We found the following special beginning sequences which will

Band quiver nodes source sink

Ba,d (4, 6, 2, 5) (5, 6) (2, 4)

Ba,b (3, 6, 1, 5) (1, 3) (6, 5)

Ba,c (1, 2, 4, 3) (2, 4) (1, 3)

Table 8: The source and sink analysis for the bands of another quiver from
SU(2) with four flavors.

15Equivalently, we can do the green mutation such that charge γ5, γ6 and γ3
appear first.
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Figure 26: A: one triangulation of fourth punctured sphere and the quiver.
B: another triangulation of fourth punctured sphere and the quiver.

make W boson unstable:

(103) μ5, (μ2, μ1), μ5,

because this sequence will produce the following charge vectors,

(104) γ5, γ2, γ1 + γ5, γ1.

which will ensure the source charges of each band appear before that of the
sink node. After these steps, one can do random green mutations, i.e. the
following mutation sequences are the maximal one:

(105) μ5, μ2, μ1, μ5, μ6, μ3, μ6, μ4, μ6, μ2, μ1, μ2, μ5, μ2.

The evidence for S duality. Notice there are three closed curves and
therefore three possible W boson, which indicate that there are three duality
frames and each W boson represents a duality frame. However, a natural
question for the consistency is whether they can appear in a single chamber.
We will prove that this can not happen by studying the quiver representation
of quiver in Figure 26A. Let’s first list all the sub representations of the three
bands, see Table 9.
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First of all, band Ba,b and Ba,c can not be coexisting since the necessary
condition for the stability of the bands is that the slop of the source node
is smaller than the sink node, this is can not be satisfied simultaneously for
two bands since node 5 and node 6 exchange the role of source and sink
in two bands. Next consider the pair of bands Ba,d and Ba,b, they share a
comment subquiver 2 ← 5 → 4, now to make Ba,d stable, we need to mutate
this subquiver first such that all the charge vectors γ2, γ4, γ5 appear, but his
automatically will make Bab unstable since μ(γ5) > μ(γ6) (the slop of the
source charge is bigger than the sink charge)! Similar analysis applies to the
bands Ba,d and Ba,c.

Band quiver nodes Subrepresentation

Ba,b (2, 5, 4, 6) γ2 + γ4 + γ6, γ2 + γ6, γ4 + γ6, γ6
Ba,c (1, 5, 3, 6) γ1 + γ3 + γ5, γ1 + γ5, γ3 + γ5, γ5
Ba,d (5, 1, 2, 3, 4) γ2 + γ3 + γ4 + γ5, γ2 + γ5 + γ4, γ2, γ4, γ1 + γ2 + γ5 + γ4

Table 9: Subrepresentations of various bands of SU(2) with four fundamen-
tals.

It is possible to generalize the above consideration to other theories
defined from the bordered Riemann surface. Our conjecture is that there
are only a maximal set of non-intersected closed curves whose W boson can
become simultaneously stable.

5.5.3. Sphere with five punctures.

Example 5. Let’s consider a sphere with five punctures, which represents
the conformal quiver gauge theory 2− SU(2)− SU(2)− 2. A triangulation
and the corresponding quiver are shown in Figure 27. The subquiver and
source-sink analysis of various bands are listed in the following Table 10.

Now let’s take two disjoint triangles, say Δ123 and Δ789, and do the
mutation sequences

Step1 : μ1, (μ2, μ3), μ1,

Step2 : μ7, (μ8, μ9), μ7.(106)

This mutation will create the charge vectors

(107) γ1, γ1 + γ2, γ2, γ3, γ7, γ7 + γ8, γ8, γ9,
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Figure 27: A triangulation and quiver of the sphere with five punctures.

Band quiver nodes source sink

Ba,b (1, 5, 8, 6, 2) (2, 5) (1, 6)

Ba,c (7, 8, 5, 3, 2, 4) (3, 7) (8, 2)

Ba,d (5, 3, 6, 7, 9) (6, 9) (7, 5)

Ba,e (9, 8, 6, 3, 1, 4) (8, 1) (3, 9)

Bb,c (7, 6, 3, 1, 4) (6, 1) (3, 4)

Bb,e (9, 5, 3, 2, 4) (3, 4) (2, 5)

Bc,d (2, 4, 9, 8, 6) (4, 8) (6, 9)

Bc,e (7, 6, 2, 1, 5, 9) (2, 9) (1, 7)

Bd,e (1, 4, 7, 8, 5) (5, 7) (4, 8)

Table 10: The source and sink analysis of the bands of the sphere with five
punctures.

and they will kill all the W boson! For example, for the band Bab, the
source charge vector γ2 appears before the sink γ6, so it is unstable. After
the above step, we will always find the finite chamber by doing random
mutation sequences. A maximal green mutation sequences are

μ1, (μ2, μ3), μ1, μ7, (μ8, μ9), μ7, μ6, μ3, μ8, μ5, μ8,

μ2, μ6, μ7, μ4, μ3, μ6, μ7, μ4, μ3, μ1, μ8, μ9, μ4, μ3.(108)

One can do similar analysis for sphere with more punctures, although
the analysis would become very tedious. In next section, we are going to
describe another simpler method to find the finite chamber using the higher
rank realization of the same theory.



460 Dan Xie

6. BPS spectrum for AN−1 theory

A large class of four dimensional N = 2 field theory can be engineered by
compactifying six dimensional AN−1 (2, 0) theory on a Riemann surface with
regular singularity and irregular singularity 16. The geometric data defining
the theory is:

1. A Riemann surface Mg,pi,bj , where g is the genus, pi is the regular
singularity, and bj is the irregular singularity.

2. pi is classified by the Young Tableaux 17[24, 65], and bj is classified
by a Newton Polygon [25] 18.

Let’s describe a little bit about the the four dimensional theory de-
fined by various geometries. The Riemann surface Mg,pi,0 defines a four di-
mensional superconformal field theory whose gauge coupling constants are
identified by the complex structure moduli of M . Different duality frames
are realized as different degeneration limits of the same Riemann surface.
Weakly coupled gauge theory description in each duality frame is completely
determined by the genus and the Young Tableaux type, and generically the
theory is formed by gauging the flavor symmetries of the strongly coupled
isolated SCFT defined by the three punctured sphere. Many properties of
these theories including S duality [24, 66], Seiberg-Witten curve, 3d mirrors
[30], central charges, and superconformal index [29] can be understood from
this beautiful geometric construction.

The Riemann surface M0,p,b (one regular and one irregular singularity on
the sphere) and M0,0,b (only one irregular singularity on the sphere) define
another type of SCFT called Argyres-Douglas theory, which is typically an
isolated theory (without marginal deformations) and has fractional scaling
dimension for the operator spectrum. Lots of properties regarding these type
of theories are studied in detail in [35].

In general,Mg,pi,bj defines a four dimensionalN = 2 theory which in each
duality frame is formed by gauging the flavor symmetries of the following two
types of matters: AD type theory represented by a sphere with one irregular
singularity and one regular singularity, and the isolated SCFT represented
by a sphere with three regular singularities.

The BPS geometry of the underlying field theory can be derived by blow-
ing up the irregular singularity, and each irregular singularity is replaced by

16Roughly speaking, regular singularity means first order pole while the irregular
singularity means the higher order pole.

17We call a puncture full if the Young Tableaux has the form [1, 1, . . . , 1], and
simple if the Young Tableaux is [N − 1, 1].

18The degenerating case needs further data, i.e. a sequence of Young Tableaux.



BPS spectrum 461

a boundary with marked points labeled also by Young Tableaux. The de-
tailed map between the irregular singularity and the corresponding marked
boundary is worked out in [35]. The bordered Riemann surface relevant for
the construction of ideal triangulation is depicted in the Figure 28. Once
an ideal triangulation is given, the BPS quiver can be found from this ge-
ometric data by introducing more structures into each triangle of the ideal
triangulations. In next subsection, we will describe the construction of the
BPS quiver in more detail.

b
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2

p
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1 n
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3

Figure 28: Left: The Riemann surface with regular and irregular singular-
ity defines a four dimensional UV complete N = 2 theory; Right: The BPS
geometry for the corresponding 4d theory is derived by replacing each ir-
regular singularity with a boundary with marked points labeled by Young
Tableaux.

6.1. Dot diagram, network and quiver

Let’s review the results presented in [34] which discussed how to find the BPS
quiver for the higher rankN = 2 theory defined byMg,pi,bj . The construction
starts with an ideal triangulation of the bordered Riemann surface and a
choice of cyclic path connecting all the punctures in the triangulation. The
difference from the A1 case is that more structures are needed to put on the
edges and inside each triangle: there are more than one quiver node on each
edge and there are quiver nodes inside each triangle.

The basic ingredient is attach a quiver to a single triangle with different
Young Tableaux at the vertex, and the full quiver is derived by gluing the
triangle quivers together. Given a triangle labeled by three Young Tableaux
(Y1, Y2, Y3) in a cyclic order, one could find a dot diagram and a tessellation
of the triangle using the brane construction proposed in [67]. Let’s put the
triangle inside a two dimensional lattice with unit spacing, and put the three
vertices at positions (N, 0), (0, 0), and (0, N). The dot diagram for the lattice
points bounded by the triangle (including the points on the boundary) is
found as follows:
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a. Decorating the boundary edge of the triangle with black dots and
white dots using Y vertex right ahead of it in the clockwise direction: If the
Young Tableaux Y has partition [n1, n2, . . . , ns], then first put n1 − 1 white
dots and a black dots to represent the n1 column, and the second step is
done by putting n2 − 1 white dots and 1 black dot, and continue this way
until the whole Young Tableaux is represented by the black-white pattern
on this boundary edge.

b. Constructing the dot diagram inside the triangle using only following
two types of polygons whose edge is formed by lines 19 connecting two black
dots. 1: Triangles whose edges have the same lengths. 2: Trapeziums whose
parallel sides have lengths n1, n2 and the other two sides have length n1 −
n2

20.
There are two types of polygons in the dot diagram: The type A polygon

is the one whose triangle completion has the same orientation as the big
triangle, and the type B polygon has opposite orientation. A bipartite 21

network and the quiver can be constructed directly from the dot diagram 22:
we put a colored vertex inside each polygon using the following rule (see
Figure 29):

a: Assign a white vertex to each type A polygon.
b: Assign a black vertex to each type B polygon.

Figure 29: Left: The orientation of the big triangle. Middle: Put a white
vertex to each polygon whose triangle completion has the same orientation
as the big triangle. Right: Put a black vertex to each polygon whose triangle
completion has opposite orientation.

19The lines should be parallel with the boundary edges.
20This constraint is from the supersymmetric condition on the brane configura-

tion.
21 A bipartite network has vertices colored with the black or white, and there are

no edges connecting the vertices with the same color.
22Roughly speaking, the network is the (p, q) five brane web with two types of

decoration on brane junctions.
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A bipartite network is formed by connecting the white vertex and black
vertex if there is a common edge between two corresponding polygons (ver-
tices with the same color are never connected). Moreover, an extra line
is coming out of the boundaries for the boundary polygon. The network
formed in this way is always bipartite but there may be vertices with only
two edges. We can use the following moves to get rid of degree two vertices
and get another bipartite network: Remove degree two vertices and then
use the contraction to merge the line connecting the vertices with the same
color. After this reduction, one can find a quiver from the network using
the following rule: Assign a quiver node to each surface and the quiver ar-
rows are determined by the black vertices, namely there is a clockwise closed
circles around it, see Figure 30 23.

Figure 30: Left: The dot diagram and the bipartite network. Right: The
quiver from the network: the black dot is the gauged node while the white
one is the flavor node.

When there are more than three punctures, we start with a regular ideal
triangulation and take a closed loop connecting all the punctures, and the
boundary edges on this closed loop are decorated using the information of
the Young Tableaux of the punctures in the same way as the triangle. The
decoration of the other internal edges are automatically determined by the
S duality property which is studied in detail in [26]. After the decorations on
the edges of all the triangles in the triangulation, one can do the tessellations
on each triangle using the minimal polygon and find the network, quiver,
etc. Many examples would be given in following sections..

Remember that we have taken a clockwise convention in doing the dec-
oration of the boundary edges and the quiver arrows. One can take the

23The quiver diagram is very much like the dot diagram itself, however, usually
more than one black dot represent a single quiver nodes. It is easy to read the quiver
directly from the dot diagram without drawing the network after some practices.
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anti-clockwise orientation for the decoration and the choice of the quiver
arrows, and they will give the equivalent result.

6.1.1. Quiver with potential and mutation. The BPS quiver of the
N = 2 theory is derived from the bipartite network as described in some de-
tail above. The potential W can also be read pretty easily from the network,
see Figure 31:

1. There is a potential term for each vertex of the network.
2. Each edge attached to this vertex represents a quiver arrow, and

the potential term is a cyclic product of all the edges (the quiver arrows)
attached on the vertex.

Figure 31: The rules for defining the potential for the quiver from bipartite
network.

This assignment of the potential for the quiver is exactly like the rule
for the corresponding N = 1 quiver gauge theory from the network. The
BPS quiver is actually a pair (Q,W ) and the above rule makes sure that
under the square move, the two quivers with potentials (Q,W ) and (Q

′
,W

′
)

are related by the mutation rules. This can be checked easily if the quiver
mutations are represented by the square moves.

Now a major difference with the A1 case is that not all of our quivers
are acyclic, namely, there are two cycles in the quiver. To eliminate these 2-
cycles, one need the quadratic superpotential term associated with them, but
these super potentials are sometimes missing. This fact is actually important
for the consistency of our construction. Such quiver is not suitable for our
later study of the spectrum using the quiver mutations which require the
absence of 2-cycles, and one need to use the quiver representation theory
directly to study them.

The BPS quiver (Q,W ) constructed above have the following features:
a. The total number of quiver nodes are equal to 2nr + nf , where nr is

the rank of the gauge group and nf is the number of the mass deformations.
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b. The rank of the quiver is equal to 2nr, this has been checked in many
cases, it would be nice to have a general proof though.

c. The maximal number of arrows between two quiver nodes are two.

6.1.2. Two flips. Different triangulations of the same bordered Riemann
surface are related by a sequence of local move called flip which relate two
triangulations of the quadrilateral. In [34] we proved that if the dot diagram
for the quadrilateral does not have the “bad” configuration shown in Fig-
ure 32, the corresponding quivers of two triangulations (include the flavor
nodes) are related by quiver mutation (or equivalently the two networks are
related by square moves). Even for the “bad” corner, if we consider only the
quiver nodes represented by the closed surfaces, the quivers from different
triangulations are still related by quiver mutations. This is good enough
for us, since only the quiver nodes associated with the closed surfaces are
included into the BPS quiver.

Moreover, a sequence of quiver mutations acting only on the quiver nodes
inside the triangle is also very useful for our later study of the BPS states
counting. We call such quiver mutation sequences as “triangle” flip. In the
following, we will provide some details on these two types of flips.

Figure 32: The network would be non-minimal if the boundary of the dot
diagram has this form at any vertex.

Quadrilateral flip. This sequence of quiver mutations representing the
quadrilateral flip are first discovered by Fock-Goncharov (FG) for the full
puncture case in [33], and it is later generalized to general cases in [34]. The
FG rules is best described using the dot diagram on the quadrilateral in
which black dots are the quiver nodes. The quiver mutations representing
flip can be done in N − 1 steps: in step i, we inscribe a rectangle with lengths
i× (N − i) 24 along with the diagonal edge, i.e. inside the quadrilateral (the

24We ignore an irrelevant normalization factor here.
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sides with length (N − i) is in parallel with the diagonal edge), then further
decompose the rectangle into unit squares and we mutate the quiver nodes at
the center of each little square at this step, see Figure 33 for the description
of A3 theory. The quiver after these sequence is the same as the quiver from
the quadrilateral derived by flipping the diagonal edge of the original one.
Notice that in each step the mutated quiver node has four quiver arrows.
The total number of quiver mutations for one flip is

(109) Nm =

k∑
i=1

i(k − i) =
1

6
(N3 −N).

Step 1 Step 2 Step 3

Figure 33: Three steps for quiver mutations representing the flip for the
quadrilateral with full punctures.

The quiver mutation sequences for the flip are found for the non-full
puncture case if the glued network is minimal. In this case, usually a quiver
node is represented by more than one black dots in the dot diagram. One
still have the same rectangle and unit square decomposition for each step,
but we only do the quiver mutations for the quiver nodes with four arrows.
See Figure 34 for the quiver mutation sequences representing the flip of the
quadrilateral with a non-full puncture puncture.

The number of quiver mutations realizing the flip in the case of the non-
full puncture can be counted explicitly if there is only one non-full puncture
with partitions [n1, n2, . . . , nr], and the total number of flips would be

(110) Nm −
r∑

i=1

1

6
(n3

i − ni).

One can count the number of quiver mutations representing the flips case
by case for more general quadrilaterals.

There is a very nice heuristic way of explaining why mutating the quiver
nodes with four quiver arrows in each step. Let’s regard the quiver from
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Figure 34: Three steps for quiver mutations representing the flip with non-
full puncture, and the two red nodes are identified as a single quiver node.
In first step, the quiver nodes represented by the red dot has six arrows on
it, so we do not mutate it; In second step, the quiver node represented by
the red node has four arrows, and we mutate it.

the bipartite network as a four dimensional N = 1 quiver gauge theory by
assigning SU(N) to each quiver nodes (including the nodes associated with
the open surfaces, which are the flavor groups.). Then the theory is anomaly
free, and the flavors for each gauge group are Nf = 2N, 3N, etc for the min-
imal network we considered thus far. Only for Nf = 2N or the quiver nodes
with four arrows, the gauge group is in conformal window, and one could
do Seiberg duality (or quiver mutations) on it!

If the glued network for the quadrilateral is not minimal (there is a
“bad” corner for the dot diagram and there are quiver nodes with only two
quiver arrows on it.), the two networks associated with two triangulations
of the quadrilateral are not related by square moves. We now state that the
quivers associated with the closed surfaces (consider only the gauged quiver
nodes) are still related by the quiver mutations.

One need special treatment for the quiver nodes with two arrows, namely
those quiver nodes with Nf = N . By analogy with the Seiberg duality, one
can still do the Seiberg duality on the quiver nodes with Nf = N if we
assign the rank N to all the quiver nodes, but the rank of the gauge group
becomes 0 after the Seiberg duality, so this quiver . node is frozen after the
mutation. Then some other nodes may have five arrows where one arrow
is connected with this zero rank gauge group, and we count the effective
arrows of the quiver nodes by ignoring such type of arrows. The mutations
sequences for the quadrilateral flip are found in the following steps: still use
the inscribed rectangular in each step, and mutate the non-frozen quiver
nodes with effective number of flavors Nf = N or Nf = 2N . For example,
the quiver mutations representing the flip of quadrilateral in Figure 35 are:

(111) (μ4), (μ2, μ3), (μ1, μ5).
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Figure 35: The quiver mutation sequences representing the flip for the
quadrilateral with a “bad” corner.

Triangle flip. There are another flip called “triangle” flip acting only on
the quiver nodes inside each triangle, which turns out to be very impor-
tant for our later study of BPS states counting. Let’s first study a triangle
with three full punctures and we will describe the mutation sequences rep-
resenting the triangle flip. To describe the sequences, it is useful to label the
quiver nodes inside each triangle with three non-negative integers (a, b, c)
such that the distances to the sides A,B,C satisfying the following relation
(see Figure 36):

(112) a+ b+ c = N.

Let’s take side C as a reference side, and the mutation sequences for the
triangle flip could be described in (N − 2) steps: in each step 1 ≤ i ≤ N − 2,
there are N − 1− i ordered sub steps: in each substep (1 ≤ j ≤ N − 1− i)
starting with j = 1, we mutate quiver nodes with label (a, b,N − j − 1). The
total number of quiver mutations is

(113) Ns =

N−2∑
i=1

N−i−1∑
j=1

j =
1

6
(N3 − 3N2 + 2N).

The triangle flip for the non-full puncture can be defined in a similar
way. Let’s start with the simplest case where the only non-full puncture
has partition [n1, 1, 1, . . . , 1], see Figure 37. The only difference from the full
puncture case is that some of the inside nodes are missing (the boundary
node are filling inside though which we will not count as the inside node.).
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Figure 36: Each quiver node inside the triangle can be labeled by three
integer numbers (a, b, c) satisfying the relation a+ b+ c = N , here a is the
distance to the sides labeled by A, etc.
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Figure 37: Left: A triangle with a non-full puncture for A3 theory. Right: A
triangle with two non-full punctures for A4 theory.

There are two edges (ab and bc) representing full punctures which could
be used to glue other triangles, and we would like to describe the triangle
flip relative to these two edges. The labeling of the remaining quiver nodes
inside the triangle are the same as the full puncture case: they are labeled
by (a, b, c) with 1 ≤ c ≤ N − n1 − 1. The triangle flip with respect to edge
B = ab is represented by the following mutation sequences:

Step 1: Mutate quiver nodes with label (a, i, c) starting from i = N − 2
and ending with i = 1.

Step 2: Mutate quiver nodes with label (a, i, c) staring from i = N − 2
and ending with i = 2, here only the quiver nodes with coordinate c ≤ N −
n1 − 2 are mutated.
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Step j: Mutate quiver nodes with label (a, i, c) staring from i = N − 2
and ending with i = j, moreover, we only mutate quiver nodes with c ≤
N − n1 − j.

The above steps stop for c = 1. According to above procedure, the “tri-
angle” flip for the quiver on the left of Figure 37 has the following mutation
sequences:

(114) μ1, μ3.

If there is another non-full puncture b with partition [m1, 1, 1, . . . , 1],
then some of the inner quiver nodes around puncture b will be missing as
shown in Figure 37. The “triangle” flip is implemented using the similar
quiver mutation sequences:

Step j: Mutate quiver nodes with label (a, i, c) staring from i = N − 2
and ending with i = j, moreover, we only mutate quiver nodes with c ≤
N − n1 − j.

So the mutation sequences implementing the “triangle” flip of the right
triangle is

(115) [μ1, (μ2, μ3), μ4], [μ1, μ3].

For more general configurations, one can also find similar mutation se-
quences for the triangle flip, since it seems that there is not a uniform for-
mula, we choose not to present the details here.

6.2. One boundary

In this subsection, we are going to use maximal green mutation to find the
finite spectrum of a theory whose BPS geometry has only one boundary, i.e.
a disc with several marked points. The underlying N = 2 theory is a general
Argyres-Douglas theory as discussed in detail in [25].

6.2.1. Disc with full punctures. Let’s consider the higher rank gener-
alization of a disc with n marked points whose Young Tableaux are all full.
The corresponding irregular singularities are identified in [35] and many
other properties of these theories are studied in [25]. In particular, if there
are 2(k + 1) marked points, the theory is the so-called (AN−1, AkN−1) the-
ory 25.

25The meaning of this label is that the BPS quiver is a direct product of the two
corresponding Dynkin diagrams.
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We are going to use the quadrilateral flip and the triangle flip to find the
finite BPS chamber of this class of theories. Let’s define an internal edge as
green if the quiver nodes on this edge are all green in the green mutation.
The idea for finding the BPS spectrum is the following: Do the quadrilateral
flips on the green edge in a random way, and stops if no internal green edge is
left; finally the triangle flip are done for the quiver nodes inside each triangle.
One could also do the triangle flip first and then do the quadrilateral flip,
which is actually equivalent to the previous prescriptions. In the following,
we are going to do the quadrilateral first, and let’s discuss several simple
examples in the following part of this subsection.

Example 6. Consider a disc with three full punctures, and the triangula-
tion is just a triangle and the quiver is given in Figure 38. Since there is
no quadrilateral here, we only need to do the triangle flip, and the maximal
green mutation sequence is the same as the triangle flip. The number of BPS
states in this chamber is

(116) Nbps = Ns =
1

6
(N3 − 3N2 + 2N).

We conjecture that this is the minimal chamber, and there might be
other chambers which could be found using random green mutations. The
quiver shown in Figure 38 has N = 5, and the maximal mutation sequences
are

μ1, (μ2, μ3), (μ4, μ5, μ6),

μ1, (μ2, μ3),

μ1.(117)

The mutation orders in each bracket is irrelevant.
The number of BPS states in the minimal chamber might be derived

in the following simple way. Assume that the number of BPS states is a
smooth function of N , and it scales as N3. Since for N ≤ 2, the theory is
trivial and the number of BPS states is zero, the number of states in the
minimal chamber takes the following form

(118) f(N) = aN(N − 1)(N − 2).

There is only one quiver node for N = 3 and the number of BPS states for
this theory is one. Using the simple data f(3) = 1, we find a = 1

6 which is
exactly the answer derived from the mutations. Amazingly, we could get the
right number of the BPS states by using this simple assumptions.
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Figure 38: Top: The BPS quiver from the triangulation of a disc with three
full punctures. Bottom: The initial and final configuration of the maximal
green mutation.

Example 7. Consider a disc with four full punctures which is the BPS ge-
ometry for the (AN−1, AN−1) theory. The maximal green mutation sequences
involves one quadrilateral flip and two triangle flips, and the number of BPS
states in this chamber is

Nbps = Nm + 2Ns =
1

6
(N3 −N) +

1

3
(N3 − 3N2 + 2N)(119)

=
1

2
N(N − 1)2.

The charge vector of the BPS states can be easily found from the green
mutation sequences.

Let’s write explicitly the mutation sequences for N = 4. It is important
to track the position of the quiver nodes, i.e. whether it is inside the triangle
or on the diagonal edge, since we need to do the triangle flip at the end. In
the example, the quiver nodes 1, 4, 6 are grouped inside one triangle after
the flip, and 3, 5, 7 is put inside another triangle. So the mutation sequences
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are

quadrilateral flip : (μ1, μ2, μ3) (μ4, μ5, μ6, μ7) (μ8, μ9, μ2),

triangle flip 1 : μ1, (μ4, μ6), μ1,

triangle flip 2 : μ3, (μ5, μ7), μ3.(120)
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Figure 39: Left: The BPS quiver from a disc with four full punctures. Right:
The position of the original quiver nodes after the quadrilateral flip.

Example 8. Consider a disc with five full punctures which is either a type
I AD theory if N is even, or type II AD theory if N is odd [35]. One chamber
involves two quadrilateral flips and three triangle flips, so the number of
states are

(121) N1 = 2Nm + 3Ns = 1/6N(N − 1)(5N − 4).

In another chamber, there are three big flips and also three triangles, and
the number of the states are

(122) N2 = 3Nm + 3Ns = 1/2N(N − 1)(2N − 1).

Let’s give the mutation sequences for these two chambers for N = 3
(higher rank cases are exactly the same). The mutation sequences involving
two quadrilateral flips are (see Figure 40):

F1 : (μ2, μ3), (μ1, μ6),

F2 : (μ4, μ5), (μ2, μ7),

triangle flip : (μ3, μ4, μ5).(123)
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The mutation sequences for the chamber involving three quadrilateral flips
are (see Figure 41)

F2 : (μ4, μ5), (μ6, μ7),

F1 : (μ2, μ3), (μ1, μ4),

F2 : (μ6, μ7), (μ3, μ5),

triangle flip : (μ2, μ6, μ7).(124)

Although the final quivers for two flip sequences are the same, the positioning
of the original quiver nodes are quite different. For example, quiver nodes
(3, 4, 5) are inside the triangle in first chamber, but quiver nodes (2, 6, 7) are
playing this role in another chamber.

For a disc with n+ 3 full punctures, the minimal flip number are n and
the maximal number of flips are n(n+1)

2 , so we find the following chambers:

fmin = nNm + (n+ 1)Ns,

fmax =
n(n+ 1)

2
Nm + (n+ 1)Ns.(125)

Notice that fmax is not necessarily the number of BPS states in the maximal
chamber.
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Figure 40: The flip sequences and the quiver positions for chamber found
using two quadrilateral flips.
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Figure 41: The flip sequences and the quiver positions for chamber involving
three quadrilateral flips.

Generalized pentagon identity I. The pentagon identify for the A1

theory is nicely represented by the five flip sequences of the pentagon which
actually implies the basic quantum dilogarithm identify. As we show earlier
using the maximal green mutation, this quantum dilogarithm identity is the
wall crossing formula for the A2 Argyres-Douglas theory: The product on
one side of the identify corresponds to the chamber involving two flips F1, F2

while the product on the right is derived from the flip sequences F2, F1, F2.
Now similar quantum dilogarithm identity can be found using wall cross-

ing formula for the higher rank theory which is also represented by a pen-
tagon. Now each quadrilateral flip is represented by a sequence of quiver
mutations. However, unlike the A1 case, the triangle flips are also impor-
tant for finding the BPS spectrum. We need to list the charge vectors of
two chambers for N = 3, which are crucial for writing down the quantum
dilogarithm identity. Let’s call the chamber involving 2 flips (resp. 3 flips)
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as chamber I (chamber II), and the charge vectors for chamber I are

F1 : (γ2, γ3), (γ1 + γ3, γ2 + γ6),

F2 : (γ4, γ5), (γ5 + γ6, γ4 + γ7),

triangle flip : (γ1, γ6, γ7);(126)

Similarly, the charge vectors for chamber II are

F2 : (γ4, γ5), (γ6 + γ5, γ4 + γ7),

F1 : (γ2 + γ4, γ3 + γ5 + γ6), (γ1 + γ3 + γ5 + γ6, γ2 + γ4 + γ7),

F2 : (γ3, γ2) (γ1 + γ3, γ2 + γ6),

triangle flip : (γ1, γ6, γ7).(127)

A quantum dilogarithm function E(yγ) is associated for each BPS parti-
cle with charge γ and all the BPS particle from one chamber form a ordered
product. The wall crossing formula means that the two products from two
chambers are the same. Using the mutation sequences and the charge vec-
tors, we have

E(yγ2)E(yγ3)E(yγ1+γ3)E(yγ2+γ6)E(yγ4)E(yγ5)E(yγ5+γ6)(128)

E(yγ4+γ7)E(yγ1)E(yγ6)E(yγ7)

= E(yγ4)E(yγ5)E(yγ5+γ6)E(yγ4+γ7)E(yγ2+γ4)E(yγ3+γ5+γ6)

E(yγ1+γ3+γ5+γ6)E(yγ2+γ4+γ7)E(yγ3)E(yγ2)E(yγ1+γ3)

E(yγ2+γ6)E(yγ1)E(yγ6)E(yγ7).

It is interesting to note that the charge vectors from the triangle flip are the
same for two chambers and they are living at the far left of the quantum
dilogarithm product, so they do not participate in the wall crossing process
and they can be cancelled out in the quantum dilogarithm identity 26:

E(yγ2)E(yγ3)E(yγ1+γ3)E(yγ2+γ6)E(yγ4)E(yγ5)E(yγ5+γ6)E(yγ4+γ7)(129)

= E(yγ4)E(yγ5)E(yγ5+γ6)E(yγ4+γ7)E(yγ2+γ4)E(yγ3+γ5+γ6)

E(yγ1+γ3+γ5+γ6)E(yγ2+γ4+γ7)E(yγ3)E(yγ2)E(yγ1+γ3)E(yγ2+γ6).

In fact, the cancellation of the BPS states from triangle flip in the quan-
tum dilogarithm identity is true for any N by explicitly checking the charge
vectors. This is not so surprising from the quantum cluster algebra point

26We thank A.Neitzke for the helpful discussion on this point.
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of view, since the five quadrilateral flips would bring the coordinates back
to their original values up to a permutation, so the quantum dilogarithm
identity should only involve the mutations from the quadrilateral flips, see
Figure 42. The mutation sequences and c vector is shown in Table 11 for the
five flips, and we can write the quantum dilogarithm identity

E(yγ2)E(yγ3)E(yγ1+γ3)E(yγ2+γ6)E(yγ4)E(yγ5)E(yγ5+γ6)E(yγ4+γ7)(130)

E(yγ2+γ6)−1E(yγ1+γ3)−1E(yγ2)−1E(yγ3)−1E(yγ2+γ4+γ7)−1

E(yγ1+γ3+γ5+γ6)−1E(yγ3+γ5+γ6)−1E(yγ2+γ4)−1E(yγ4+γ7)−1

E(yγ5+γ6)−1E(yγ5)−1E(yγ4)−1 = 1,

which is the same quantum dilogarithm identity derived from the wall cross-
ing formula.

Flips Mutation c vector sign

F1 (μ2, μ3), (μ1, μ6) (γ2, γ3), (γ1 + γ3, γ2 + γ6) (+,+), (+,+)

F2 (μ4, μ5), (μ2, μ7) (γ4, γ5), (γ5 + γ6, γ4 + γ7) (+,+), (+,+)

F3 (μ6, μ1), (μ5, μ3) (−γ2 − γ6,−γ1 − γ3), (−γ2,−γ3) (−,−), (−,−)

F4 (μ7, μ2), (μ1, μ4) (−γ2 − γ4 − γ7,−γ1 − γ3 − γ5 − γ6), (−γ3 − γ5 − γ6,−γ4 − γ2) (−,−), (−,−)

F5 (μ5, μ3), (μ6, μ7) (−γ4 − γ7,−γ6 − γ5), (−γ5,−γ4) (−,−), (−,−)

Table 11: The mutation data for the five flips of the pentagon.

There is no need to calculate the cluster coordinates following the de-
tailed mutation sequences, which would be a really tedious calculation. The
easy way is to use the extended quiver introduced for the purpose of green
mutation: we do green mutations for the first two flips and then red muta-
tion for the next three flips, and every node is green again after five flips.
There is a general theorem for the mutation sequence of an extended quiver:
if the final quiver nodes are all green, then the final cluster coordinate is
identical to the initial one up to a permutation. Using this theorem, we can
easily verify that the cluster coordinates are back to themselves after five
flips.

6.2.2. General (AN−1, AnN−1+j) theory. Other punctures are needed
for the general Argyres-Douglas theory considered in [35]. Let’s now consider
general (AN−1, AnN−1+j) theory with 0 < j < N , and the Stokes matrices
analysis suggests that there are j more marked points which are labeled by
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Figure 42: The pentagon identity for higher rank pentagon.

simple Young Tableaux. The number of marked points and their labels are

(131) full : 2(n+ 1); simple : j

The cyclic distribution of the marked points on the boundary of the disc is
the following: there are 2(n+ 1) full punctures followed by j simple punc-
tures.

We will try to find the finite chamber using the following idea: do the
quadrilateral flip sequences on the green edge and do the triangle flips at
the end. Again, it is important to track the position of the quiver nodes, i.e.
whether it is on the edge or inside the triangle, etc. The story is pretty the
same as the full puncture cases, so we just give a simple example and the
interested reader can do the similar exercises for the other BPS geometry.

Example 9. Let’s consider a five punctured disc with four full punctures
and one simple puncture of N = 4. The triangulations and the quiver are
shown in Figure 43. Using the two quadrilateral flips and triangle flips, one
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get the following maximal green mutation sequences:

F1 : (μ3, μ13, μ9), (μ2, μ10, μ8, μ12), (μ11, μ13, μ7)

F2 : (μ4, μ5, μ6), (μ3, μ12), μ2

triangle flip 1 : μ9, (μ8, μ10), μ9

triangle flip 2 : (μ6, (μ5, μ12), μ6(132)

For another chamber involving three quadrilateral flips (see Figure 44),
the mutations sequences are,

F2 : (μ4, μ5, μ6), (μ7, μ12), μ8,

F1 : (μ3, μ9, μ13), (μ2, μ10), μ11,

F2 : (μ4, μ8, μ12), (μ5, μ7, μ9, μ13), (μ6, μ12, μ10),

triangle flip 1 : μ4, (μ5, μ13), μ4,

triangle flip 2 : μ8, (μ7, μ9), μ8,(133)

simple simple

simple

1 1
2 3

4

5

6
789

1 0
1 3 1 2

9

1 0

1 1
2 3

1 21 3

8 7
6

5

4

2

3

4

5 6789

1 0

1 1

1 3

1 2

F
1

F
2

Figure 43: The chamber involving two quadrilateral flips for the theory de-
fined by a disc with four full punctures and one simple puncture. The quiver
positions in each step are indicated.
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Figure 44: The chamber involving three quadrilateral flips for the theory
defined by a disc with four full punctures and one simple puncture. The
quiver positions in each step are indicated.

Generalized pentagon identity II. The pentagon identity can be gen-
eralized to the case where there are several full punctures and simple punc-
tures. Similarly, one chamber comes from doing two quadrilateral flips while
the other one is derived using three flips. The triangulation and quiver for
the pentagon with only one simple puncture are shown in Figure 45 for
N = 3. The mutation sequences and the charge vectors for two chambers is
shown in Table 12, and it is straightforward to write the following pentagon
identity (again the terms from the triangle flip can be dropped out):

E(yγ2)E(yγ6)E(yγ1+γ6)E(yγ2+γ5)E(yγ3)E(yγ4)E(yγ4+γ5)(134)

= E(yγ3)E(yγ4)E(yγ4+γ5)E(yγ2+γ3)E(yγ5+γ6)E(yγ1+γ4+γ5+γ6)

E(yγ2)E(yγ5)E(yγ2+γ5)E(yγ1+γ6).

The interested reader can work out the pentagon identity for other com-
binations of full punctures and simple punctures.

Sink-source sequences. The BPS quiver for (AN−1, Ak−1) from our net-
work construction is mutation equivalent to the quiver formed by a product
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Figure 45: The quiver from pentagon with four full punctures and one
simple puncture, here N = 3.

Chamber I

Mutations F1 : (μ2, μ6, μ1, μ5), F2 : (μ3, μ4, μ2), Tflip : (μ6, μ4)

Charges (γ2, γ6, γ1 + γ6, γ2 + γ5), (γ3, γ4, γ4 + γ5), (γ1, γ5)

Chamber II

Mutations F2 : (μ3, μ4, μ5), F1 : (μ2, μ6, μ1), F2 : (μ3, μ5, μ4, μ6), Tflip : (μ5, μ3)

Charges (γ3, γ4, γ4 + γ5), (γ2 + γ3, γ5 + γ6, γ1 + γ4 + γ5 + γ6), (γ2, γ5, γ2 + γ5, γ1 + γ6), (γ1, γ5)

Table 12: The mutation data for two chambers of a pentagon with one
simple puncture.

of AN−1 and Ak−1 Dynkin diagram which gives the name for the theory in
[16]. The quiver mutation sequences for relating our quiver and the square
(AN−1, Ak−1) quivercan be readily found. Let’s give an example for N = 5
and k = 5 whose quiver is derived from a disc with four full punctures.
The quiver mutations transforming the quiver from the triangulation to the
(A4, A4) form are:

μ1, (μ2, μ3), μ4, (μ5, μ6).(135)

Let’s now focus on the (AN−1, Ak−1) quiver and choose a convention that
the horizon direction is (Ak−1) quiver. The special feature of the subquiver in
the horizontal direction and the vertical direction are that they are bipartite,
and the quiver arrows form cyclic squares, see the left quiver in Figure 46.
Moreover, if a quiver node is a sink node in the horizontal direction, it would
be a source node in the vertical direction. Let’s denote the signature of a
quiver node as (−,+) if it is a sink in the horizontal direction and source in
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Figure 46: The mutations transforming the quiver from the triangulation to
the (A4, A4) quiver.

the vertical direction. Define the quiver mutation sequences

τ1 = μ−+,
τ2 = μ+−,(136)

here μ−+ (resp. μ+−) is the quiver mutation on all the quiver nodes with

signature (−,+) (resp. (+,−)). It can be checked explicitly that (τ1)
h
′
and

(τ2)
h give two maximal green mutation sequences, where h

′
(resp. h) is

the Coxeter number for group Ak−1 (AN−1). Such sequences are found in
[16], here the charge vectors can be easily found using the maximal green
mutations. When N = 2, the quiver is just the bipartite quiver of Ak−1
Dynkin diagram. The Coxeter number of A1 group and Ak−1 group are two
and k, and τ22 is the source green mutation sequence and gives a total of k − 1
states which is actually the minimal chamber; τk1 is the sink green mutation

sequence and gives a total of k(k−1)
2 states which is the maximal chamber.

In general, one of the green mutation sequence is the minimal chamber, but
the other one might not be the maximal chamber.

6.2.3. Other AD theories from the disc. The (A,A) type AD theories
involve only the full and simple punctures, and more general punctures ap-
pear for other type of AD theories considered in detail in [35]. There are two
more general classes whose BPS geometry involves a single disc. The type II
AD theory which also has only full punctures and the simple punctures, but
the boundary nodes of the simple puncture are gauged (we include the node
on the edge of the simple puncture into our BPS quiver). The strategy of
finding the BPS spectrum is the following: doing the quadrilateral flips and
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triangle flips as we did for the (A,A) theory, and then do arbitrary green
mutation sequences involving the boundary nodes!

The BPS geometry of type III AD theory also involves a single disc, and
the Young Tableaux for the marked points are more fruitful. The definition
of type III AD theory includes a sequences of Young Tableaux which satisfies
the following condition

(137) Yn ⊂ Yn−1 · · · ⊂ Y1,

where Y1 is taken to be the full Young Tableaux so that the BPS quiver has
the simple description [35], and Yi−1 is derived by further decomposing the
columns of Yi. The BPS geometry is a disc with 2(n− 1) Young Tableaux:
Yn, Yn−1, . . . , Y2, Yn, . . . , Y2 are arranged in cyclic order. The strategy for
finding the finite states chamber for type III AD theory is the following:
do the mutation sequences corresponding to flips; and then do the green
mutations on the edge nodes and internal nodes repeatedly. This mutation
sequences are very useful since many superconformal field theory engineered
using Riemann surface and regular punctures has an realization as type III
AD theory.

Example 10. Let’s take Y3 = [2, 4], Y2 = [2, 1, 1, 1, 1], and Y1 = [1, 1, 1,
1, 1, 1], and the dot diagram and quiver are shown in Figure 47. This theory
is in fact equivalent to the one engineered using A1 theory on a sphere with
five punctures. After doing the flip sequences, one need to do green muta-
tions on the edge nodes and internal nodes repeatedly. One maximal green
mutation sequences are

(μ2, μ3, μ4), (μ6, μ7, μ8, μ9), (μ1, μ5, μ3),(138)

(μ2, μ7, μ6, μ4, μ8, μ9, μ4, μ6, μ7, μ2)

For the theory engineered using six dimensional A1 theory compactified
on a sphere with k punctures , there is a higher rank realization using type
III AD theory with the following Young tableaux

(139) Y3 = [2, k − 1], Y2 = [2, 1, 1, . . . , 1], Y1 = [1, 1, 1, . . . , 1].

The BPS geometry is a fourth punctured disc with marked points Y3, Y2, Y3,
Y2. It is not hard to find the finite chamber using the mutation sequences
representing the flips of this quadrilateral.
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Figure 47: The triangulation of the fourth punctured disc with ordered
puncture (Y3, Y2, Y3, Y2). The bottom part shows the triangulation of A1

theory on a sphere with 5 punctures whose quiver is equivalent to the disc
configuration.

6.3. Riemann surface without punctures

6.3.1. Annulus with one marked point on boundary. The next sim-
plest BPS geometry is the annulus with one marked point on each boundary,
which represents a gauge group coupled with two matter sectors. To find the
finite spectrum, one can not not do random quadrilateral flips on the green
edges. This is the case where the flip sequences found in A1 theory plays an
important role here: we do the flip sequences found from the finite spectrum
of the corresponding A1 theory with the same type of BPS geometry, and
finally do the green mutations on the quiver nodes inside each triangle.

Example 11. The BPS geometry is an annulus with a simple puncture
on each boundary from which a quiver can be found from the dot diagram
on the triangulation, see Figure 48B. We do the flip sequences found from
the A1 version: first mutate edge 1 and then mutate edge 2. Here some new
features appear: one need to do more rounds of mutations. The flip one edge
1 is realized by the quiver mutations on node 1, 2, 3, etc. The maximal green
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Figure 48: A: The triangulation and quiver for the annulus with one marked
point on each boundary, here N = 2. B: The quiver for annulus where each
boundary has a simple puncture, here N = 4. C: The quiver with two full
punctures on each boundary of the annulus, here N = 4.

mutation sequences for the pure SU(4) theory is

(140) (μ1, μ2, μ3), (μ4, μ5, μ6), (μ1, μ2, μ3), (μ4, μ5, μ6).
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The order of mutations in each bracket is not important since the corre-
sponding quiver nodes are disconnected. There are 12 total BPS states, and
in general this chamber for pure SU(N) theory has the following number of
BPS states

(141) Nbps = N(N − 1),

In fact, the BPS quiver is a sink-source product of affine A1 diagram and
AN−1 Dynkin diagram, and the mutation sequence is just a generalization
of the bipartite quiver. The result is the same as found in [21, 68].
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Figure 49: The triangulation, BPS quiver and the superpotential of the pure
SU(3) theory.

Unique finite chamber for pure SU(N) theory:. Let’s now argue
that the finite chamber for SU(N) theory is unique: the above chamber is
the only finite chamber. Let’s do the analysis for the SU(3) theory, and the
BPS quiver and the superpotential can be easily found from the network
construction, see Figure 49. The potential is shown in Figure ??, and the F
term equations from the quiver are

(142) cdf + bde = 0, fac+ eab = 0 dea = 0, dfa = 0, acd = 0, abd = 0

The maximal green mutation sequences are

(143) (μ3, μ4), (μ1, μ2), (μ3, μ4).

Let’s now give a proof that this is the unique sequences for finding a finite
chamber using the quiver representation theory. The dimension vector for
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two indecomposable representations representing vector bosons are

(144) P1 = (1, 0, 1, 0), P2 = (0, 1, 0, 1),

The two corresponding subquivers are the affine A1 quiver and the sink
nodes are 1 and 2, therefore we have to mutate node 3 or node 4 in the first
step (the analysis of the quiver representation theory is the same as the BPS
quiver of the pure SU(2) theory.). If we mutate node 3 first, and the node
1 and node 2 would form an affine A1 quiver (both of them are green), with
node 1 as the sink node, and they represent the vector boson too. So we can
not mutate on node 2 and node 1 in this second step, and we have to mutate
node 4 in second step. Similar analysis can be done for the following quiver
mutation sequences 27 , and the above mutation sequences are the unique
one to find a finite spectrum. The proof can be easily generalized to higher
rank pure SU(N) theory, and our conclusion is that there is only one finite
chamber.

Example 12. The BPS quiver for SU(N) withNf ≤ 2N theory is shown in
Figure 50. The quiver has a main body formed by the quiver of pure SU(N)
theory, and each additional flavor adds a new vertex and new triangle to
the quiver. The strategy of finding the finite spectrum is very simple: doing
the quiver mutation sequences for the pure SYM and then do random green
mutations on the extra flavor nodes.

Let’s list one maximal green mutation sequences for the SU(4) gauge
theory with Nf = 1 (the BPS quiver is shown in Figure 50B):

(μ1, μ2, μ3), (μ4, μ5, μ6), (μ1, μ2, μ3), (μ4, μ5, μ6),

μ7, μ4, μ1, μ5, μ2, μ6, μ3.(145)

Similarly, for SU(4) gauge theory with Nf = 2 (the BPS quiver is shown in
Figure 50C), a maximal green mutation sequence is

(μ1, μ2, μ3), (μ4, μ5, μ6), (μ1, μ2, μ3), (μ4, μ5, μ6),

μ7, μ4, μ1, μ5, μ2, μ6, μ3,

μ8, μ2, μ6, μ1, μ5, μ7, μ4.(146)

In general, each extra flavor would need 2N − 1 extra green mutations
(one need to mutate the extra node once and all the other quiver nodes

27The crucial point is the following: if there are two green quiver nodes connected
by two arrows, the sink node can not be mutated.
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Figure 50: The BPS quiver for SU(4) theory with n1 + n2 fundamental
flavors.

for the pure SU(N) theory once), and the finite chamber has the following
number of states

(147) N(N − 1) + (2N − 1)Nf

This is in agreement with the result presented in [21]. Notice that there are
other finite chambers if we start mutating the extra quiver nodes first, and
the above number is not necessarily the minimal chamber for SU(N) with
Nf flavors, since the number might be smaller if we start with a quiver which
is mutation equivalent to the above one.

Example 13. If there is one simple puncture on one boundary and one
full puncture on another boundary. When N is even, the underlying N = 2
theory is actually a linear quiver:

(148) SU(N)− SU(N − 2)− · · · − SU(2),

and it is the following linear quiver

(149) SU(N)− SU(N − 2)− · · · − SU(3)− 1,

when N is odd.
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Figure 51: The dot diagram for the annulus with one simple and one full
puncture on each boundary, and the quiver is shown on the right.

Let’s look at the example shown in Figure 51 with N = 3, which ge-
ometry actually represents SU(3) gauge theory with Nf = 1. The maximal
green mutation sequence from our prescriptions are

F1 : (μ1, μ2, μ5),

F2 : (μ3, μ4, μ1),

Triangle : (μ3, μ5).(150)

The first two steps are the mutation sequences for the quadrilateral flips,
and the last step is some kind of generalized triangle flip.

In general, there are are two quadrilateral flips and each flip involves
1
2N(N − 1) steps. Finally one need to do the triangle flip on one triangle with
three full punctures which gives 1

6N(N − 1)(N − 2) mutations, moreover,
one need to do green mutations on the quiver nodes on the edges which
involve 2(N − 2) mutations.

Example 14. Let’s now consider an annulus with two full punctures on
each boundary. The underlying N = 2 theory is actually a linear quiver

SU(2)− SU(4)− · · · − SU(N − 2)− SU(N)− SU(N − 2)(151)

− · · · − SU(4)− SU(2),

when N is even, and it is the linear quiver

1− SU(3)− · · ·SU(N − 2)− SU(N)− SU(N − 2)(152)

− · · · − SU(3)− 1.
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when N is odd. The BPS geometry and the quiver is shown in Figure 48.
There are quiver nodes inside each triangle, so we need to do triangle flip
first, and then do two flips, so the total number of BPS states in this chamber
is

(153) Nbps = 2Ns + 2Nm =
1

3
N(N − 1)(2N − 1).

Some funny numerology. We have found some sequences of numbers
which seems to have the following pattern on dependence of rank N if all
the punctures are simple or full:

a. The number of BPS states is at most cubic in N .
b. The number has factor N(N − 1).
The first fact might be related to N3 behavior of six dimensional (2, 0)

theory; the latter fact is a manifestation that when N = 0 and N = 1, there
is no BPS states. These two facts suggest that the dependence on N has
very fewer parameters and elegant form. For example, if the number of BPS
states with a fixed BPS geometry has N2 behavior, then the number of BPS
states has only one free parameter and it must take the following form

(154) f1(N) = aN(N − 1).

If there is a N3 behavior for the number of BPS states, then the formula
has a maximal three parameters and take the following simple form

(155) f2(N) = N(N − 1)(aN + b).

So it is easy to determine those parameters using the result of the lower rank
theory. For instance, when there are two simple punctures, the number of
BPS states under large N has only one parameter a which can be fixed as 1
by substituting the result f1(2) = 2. Similarly, if there are two full punctures,
using the result f2(2) = 2 and f2(3) = 10, we find a = 2

3 and b = −1
3 which

reproduce the results from explicit counting.

6.3.2. More marked points and more boundaries. The situation is
quite similar for the Riemann surface with more marked points and more
boundaries. One simply recalled the flip sequences from the maximal green
mutations of the corresponding A1 theory which is described in detail in
previous section, and then use the same flip sequences to the higher rank
theory.

Example 15. Let’s consider an annulus with one full puncture on one
boundary, and two simple punctures on the other boundary. The triangula-
tion and the quiver is shown in Figure 52. The minimal flip sequences for
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the A1 theory is F1, F2, F3, and one maximal green mutation sequences for
N = 3 are

F1 : (μa, μb, μc),

F2 : (μf , μg, μa,

F3 : (μd, μe, μf ),

triangle flip : (μd, μc).(156)
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Figure 52: The triangulation and dot diagram of annulus with two simple
punctures on one boundary and one full puncture on another boundary. The
quiver is also shown.

6.4. Once punctured disc

This is the case where the geometric knowledge of the A1 theory can not
be generalized since the quiver mutation will create self-folded triangle, and
furthermore one need to do mutation on quiver nodes corresponding to an
edge of the self-folded triangle. The mutation on this special edge does not
have a good meaning in the higher rank case, i.e. we do not know the muta-
tion sequences for such flip. So one need some new clues about the mutation
sequences. The irregular realization is crucial in providing the clues about
the mutation sequences.
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Let’s consider the simplest BPS geometry of this type: a once punctured
digon and all punctures are full. The experimental rule we find is the follow-
ing: first mutate the quiver nodes inside each triangle and use the mutation
sequences corresponding to the triangle flip; then mutate the quiver nodes
on two edges; and then do the quiver mutations on the inside nodes again,
etc. This strategy is pretty successful in finding the maximal green mutation
sequences.

Example 16. The BPS geometry is the once punctured digon which rep-
resents an AD theory, and we take all the puncture as full. This type of AD
theory is actually isomorphic to the AN−2 theory compactified on a sphere
with N simple punctures and a full puncture. The theory in one duality
frame has the Lagrangian description and is given by

(157) 1− SU(2)− SU(3)− · · · − SU(N − 1)−N

The theory is isomorphic to SU(2) with four flavors when N = 3. We con-
jecture that the minimal chamber has the following number of BPS states:

(158) Nbps = N(N − 1)2.

The method for finding the spectrum is the following: first do the triangle
flips for all the quiver nodes inside two triangles, and then do the quiver
mutations on the quiver nodes on the edge. One need to mutate multiple
times in this fashion, and the shape of the quivers inside the quiver nodes
might change, however, the triangle flips can be done for each connected
subquiver inside the triangle. The maximal green mutation sequences for
N = 4 is

(μ7, μ8, μ9, μ7;μ10, μ11, μ12, μ10), (μ1, μ2, μ3, μ4, μ5, μ6),(159)

(μ10, μ11, μ12, μ7, μ8, μ9), (μ2, μ3, μ5, μ6),

(μ10, μ11, μ12, μ7, μ8, μ9), (μ2, μ3, μ5, μ6).

This type of sequences can be seen from the irregular realization of the
same theory, i.e. it can be realized by a rank 2N − 1 theory compactified on
a sphere with an order three irregular singularity with the type

(160) Y3 = [N,N − 1], Y2 = [N − 1, 1, 1, . . . , 1], Y3 = [1, 1, . . . , 1].

The BPS geometry is a fourth punctured disc with cyclic ordered marked
points (Y3, Y2, Y3, Y2), and we draw the dot diagram and the quiver forN = 4
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Figure 53: The triangulation and quiver for the once punctured digon, all
the punctures are full. There are two triangles and the quiver is derived by
identifying the quiver nodes on the edges of the triangulation.

in Figure 54, which is the same as the quiver using the AN−1 representation.
In the irregular realization, all the mass nodes are put on the diagonal edge,
and one can start doing triangle flip first, and then do the quadrilateral flip,
which gives the above sequences.
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Figure 54: Top: The irregular realization can be seen from the 3d mirror of
this theory, and we draw the dot diagram. Bottom: The quiver from this
realization, which is the same as in Figure (53).

For other type of theories, one do random quadrilateral flips and if we
encounter the above once punctured digon , we do the above specific mu-
tation sequences and then keep going until there is no green edge left, as
usual, we would need to do triangle flip at the end. In this way, we can find
many maximal mutation sequences.
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6.5. Closed Riemann surface

We consider four dimensional superconformal field theory derived by com-
pactifying six dimensional AN−1 theory on a Riemann surface with regular
punctures. The scaling dimensions of Coulomb branch operators are integer
and usually there are marginal coupling constants. We are going to find the
maximal mutation sequences for these class of theories.

TN theory. : The TN theory is realized as the sphere with three full
punctures. The BPS quiver is derived from the triangulation of the three
punctures sphere: there are two triangles with the same boundaries. We
conjecture that the minimal chamber has the following number of states:

(161) Nbps = 2N(N − 1)2.

The reasoning is still based on our conjecture that the BPS states is of the
order N3, and the BPS states is zero for N = 0 and N = 1, so the BPS
states has the following form

(162) f(N) = N(N − 1)(aN + b),

Using the result for N = 2 and N = 3 found in [21], we get the conjectured
form. There are 72 states for N = 4, 160 states for N = 5 which we have
checked explicitly. The charge vectors and the phase order can be found from
the maximal green mutations. Interestingly, this formula gives the correct
answer for N = 2 even if the mutation method can not be applied to that
quiver.

Example 17. The triangulations and dot diagram for T3 and T4 theory
is shown in Figure 55. The maximal green mutations for T3 theory is

(μ7, μ8), (μ1, μ2, μ3, μ4, μ5, μ6)(163)

(μ7, μ8), (μ1, μ2, μ3, μ4, μ5, μ6)(164)

(μ7, μ8), (μ1, μ2, μ3, μ4, μ5, μ6)(165)
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Figure 55: The triangulation and the quivers for T3 and T4 theory.

The Green mutation sequences for the T4 theory is

[μ10, (μ11, μ12), μ10], [μ13, (μ14, μ15), μ13]

μ1, μ2, μ3, μ4, μ5, μ6, μ7, μ8, μ9

μ10, μ11, μ12, μ13, μ14, μ15

μ1, μ2, μ3, μ4, μ5, μ6, μ7, μ8, μ9

μ10, (μ11, μ12), μ10, μ13, (μ14, μ15), μ13

μ1, μ2, μ3, μ4, μ5, μ6, μ7, μ8, μ9

μ10, μ11, μ12, μ13, μ14, μ15

μ2, μ5, μ8

μ10, (μ11, μ12), μ10, μ13, (μ14, μ15), μ13

μ1, μ3, μ4, μ6, μ7, μ9(166)

The basic rule is to mutate the internal nodes using the triangle flip
such that no green nodes left, then mutate all the boundary nodes. One
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need to do such sequences in several rounds. The motivation is coming from
the irregular realization of the TN theory. For example, the T4 theory has
another realization using rank 9 theory compactified on a sphere with the
following order three type III irregular singularity

(167) Y3 = [6, 4], Y2 = [4, 3, 3], Y1 = [1, 1, 1, . . . , 1]

and the quiver for this irregular singularity is a fourth punctured sphere
with cyclic ordered punctures [Y3, Y2, Y3, Y2], the BPS quiver is shown in
Figure 56. It is easy to check that the two quivers from different realization
are the same. Now all the mass nodes in A3 realization are living on the

Figure 56: The irregular realization of T4 theory.

single diagonal edges of the irregular realization, and the quiver nodes inside
triangles are living inside the triangles in the irregular realization too. The
mutation sequences for the flip is mutating the quiver nodes on the boundary
nodes first, and then mutating the quiver nodes inside two triangles. We need
to do more than one rounds following our early study on this type of AD
theories. That is how we find the above mutation sequences.

Example 18. SU(N) with Nf = 2N : This is represented by a sphere with
two full punctures and two simple punctures. The triangulation and the
quiver is shown in Figure 57. We find a finite chamber with following number
of states:

(168) Nbps = 2N(2N − 1).
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The mutation sequences for SU(3) with 6 flavor is the following

μ1, μ2, μ3, μ4, μ5, μ6

μ7, μ8, μ9, μ10

μ1, μ2, μ3, μ4, μ5, μ6

μ7, μ8, μ9, μ10

μ1, μ2, μ3, μ4, μ5, μ6

μ7, μ8, μ9, μ10

In general, one first mutate the 2N quiver nodes on the boundary, and
then (2N − 2) quiver nodes on the internal edges. The number of mutations
for one cycle is 4N − 2, and one need to do N cycles, so the total number
of states are N(4N − 2).
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Figure 57: The triangulation and quivers for the theory defined by sphere
with two full punctures and two simple punctures.

For more general theory defined by a sphere with punctures, it is pos-
sible to find a realization using the irregular singularity. Such realization is
always possible if all the Young Tableaux has the form [n1, 1, 1, 1, . . . , 1], in
particular, it is possible if all the punctures are full. The irregular realization
uses a even higher rank six dimensional group and a type III irregular sin-
gularity with an order 3 pole, see [35] for the exact map. The BPS geometry
is a disc with four punctures. One can use the mutation sequences for the
flip to find the maximal green mutations.

Example 19. Let’s consider the theory defined by A2 theory compactified
on a sphere with four full punctures. This is a superconformal gauge theory
with a SU(3) group coupled to two T3 theory. The three dimensional mirror
for this theory is shown in Figure 58 from which we can read an irregular
realizations, and we take the following rank 8 realization.

(169) Y3 = [6, 3], Y2 = [3, 2, 2, 2], Y1 = [1, 1, 1, 1, 1, 1, 1, 1, 1].
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The BPS quiver is shown in Figure 58. This quiver is the same as the
quiver derived from the triangulations of the fourth puncture sphere, we
indicate the specific triangulations on Figure 58. The interested reader can
check that the two quivers are indeed the same. Basically, the flavor nodes of
the theory lives on the diagonal edge of the triangulation of fourth punctured
disc. One of the maximal green mutation sequences which has 60 states is
the following

(μa, μb, μc, μd, μe, μf , μg, μh), (μm, μn, μo, μi, μj , μk), (μp, μl),(170)

(μa, μb, μc, μd, μe, μf , μg, μh), (μp, μn, μm, μo, μp, μn),

(μj , μl, μi, μk, μj , μl), (μa, μb, μc, μd, μe, μf , μg, μh), (μp, μn, μj , μl),

(μa, μd, μe, μh), (μm, μo, μi, μk), (μp, μn, μj , μl).

Figure 58: The quiver for the theory defined by a A2 theory compactified
on a sphere with four full punctures.

For general N , based on the assumption that the number of BPS states
in minimal chamber is a polynomial function of N and the scaling behavior
is N3, we conjecture that the function is

(171) f(N) = 2N(N − 1)(2N − 1).

Using this method, one can find finite chambers for any theory defined on a
sphere with regular punctures.
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7. Spectral generator

Let’s first review the meaning of the spectral generator of A1 case introduced
in [13], and we will rephrase it in terms of the language of cluster algebra.
The Seiberg-Witten curve of the theory is

(172) x2 = Φ(z),

where z is the coordinate on the Riemann surface, x is the coordinate on the
cotangent bundle, and φ(z) is a quadratic differential defined on the Riemann
surface. The Seiberg-Witten differential is λ = xdz =

√
Φ(z)dz and one can

use it to define a foliation on the Riemann surface from the following flow
equation

(173) λ
dz

dt
= eiθ,

here θ is a fixed angle and in fact is the slop of the BPS hypermultiplet
for some critical value θ. For more details on the structure of the foliation,
please see [13, 69, 70]. What we want to point out is that the topology of the
foliation is exactly equivalent to the bipartite network introduced earlier and
therefore also equivalent to the triangulation, see [71]. The branch points
of the Seiberg-Witten differential is the vertex for the foliation which is
identified with the black vertices of our network, see Figure 59.

When θ is changed, the foliation is also changed smoothly. However,
when θ arrives at a critical value, then the topology of the foliation is changed
due to the appearance of a hypermultiplet which is represented by the flow
lines connected by two branch points. Locally, this change of topology is
just the square move for the network which then corresponds to the quiver
mutations. The θ actually parameterizes one half plane of the central charge,
therefore by rotating θ angle 180 degree, one can probe all the BPS particles
by tracking the change of the topology of the network. This is essentially
the same as finding a maximal green mutation of the original quiver (for the
chamber with finite number of states).

Now for each face of the network, one can associate a cluster X co-
ordinate which parameterizes the framed moduli space of flat connections
defined on the Riemann surface. The appearance of the hypermultiplet acts
like a square move on the network and therefore acts like a cluster transfor-
mation on the coordinate. When the θ angle is rotated by 180 degrees, the
cluster coordinates for each face are changed to a certain value. Moreover,
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Figure 59: Top: The local picture of the flow lines and the equivalent bipar-
tite network. Bottom: The new flow line after an appearance of the hyper-
mulitplet and the new bipartite network, which is actually the square move
of the original network.

the final cluster coordinates do not depend on the chamber one probe as
long as long as initial foliation is given.

However, it is usually difficult to track the change of the network and
therefore hard to find the BPS spectrum. There is an easy way of getting the
final cluster coordinate without knowing the detailed spectrum information.
The method uses the definition of the cluster coordinates from the cross
ratio of the flags [33] attached on each marked points. The rotation by
180 degree acts like a Z2 action on the attached flag, and the change of
the cluster coordinates can be worked out explicitly using the definition
of the cross ratio. The final cluster coordinates is the spectral generator
from which one could find sensible factorization and therefore the explicit
spectrum information.

In this paper, we are not pursing a similar geometric derivation of the
spectral generator for the higher rank theory, which we will discuss in an-
other occasion. However, we will give a derivation using the information of
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the BPS spectrum though, in particular, the maximal green mutation is very
useful.

One of the remarkable feature of the maximal green mutation is that it
keeps track of the position of the quiver nodes. Let’s label the frozen nodes
as (1, 2, . . . , n) which is the same labeling of the original quiver. Then after
doing the maximal green mutations, the cluster X coordinate for nth quiver
node is equal to the coordinate of the quiver nodes connected to the nth
frozen node. Let’s check this explicitly using the simple pentagon geometry
of the A1 theory. The two chambers and the final cluster coordinates are
shown in Figure 60. The final coordinates from chamber 1 is

(174) Xf
1 = X

′
1 = x−11 (1 + x2 + x2x1), Xf

2 = X
′
2 = x−12 (1 + x1)

−1.

and the results are the same from chamber 2 due to the permutation of
the quiver nodes! This expression is clearly the same as the one given in
[13], see formula 11.27 and 11.28 (with a slightly different convention for the
definition of the coordinate.).
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Figure 60: Top: The triangulation for the five punctured disc which gives
the BPS quiver for A2 AD theory. Bottom: Two BPS chambers from the
maximal green mutations and the final cluster coordinates.

Exact similar consideration can be generalized to higher rank theories:
the spectral generator can be written down using the explicit maximal green
mutation sequences. Let’s consider a disc with four full punctures, and the
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initial configuration and the final configuration of the maximal green muta-
tion is listed in Figure 61. The mutation sequences are

(1, 5, 9), (2, 4, 6, 8), (3, 5, 7),

(1, 2, 4, 1), (9, 6, 8, 9),

and the final coordinates or the spectral generator can be written down using
the mutation formula for the X coordinate and the permutation:

Xf
1 = X

′
3, Xf

2 = X
′
2, Xf

3 = X
′
1,

Xf
4 = X

′
6, Xf

5 = X
′
5, Xf

6 = X
′
4,

Xf
7 = X

′
9, Xf

8 = X
′
8, Xf

6 = X
′
9.(175)

1 2 3

4 5 6

7 8 9

1 2 3

4

5

6

7 8 9

1 2 3

4 6

5

7 8 9

Figure 61: The initial configuration and the final configuration of the max-
imal green mutation of the quiver from the disc with four full punctures.

The expression is rather long and the interested reader can find the
expression in the appendix A. One can write down the spectral generator
for all the theories whose BPS spectrum is discovered in this paper, many
examples are given in the appendix A. It would be interesting to find other
factorizations of the spectral generator which will give the BPS spectrum in
other chamber.

Since there is a quantum cluster algebra, then one could also define
a refined version of the spectral generator, which would then tell us the
spin information of the BPS particles. The refined spectral generator can be
easily found using the explicit mutation sequences, let’s consider the example
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shown in Figure 60, the noncommutative commutation relation is

(176) XαXβ = qεαβXβXα

and the quantum cluster transformation is

X
′
k = X−1

k ,

X
′
i = Xi

( |εik|∏
a=1

(1 + qa−1/2X−sgn(εik)
k )

)−sgn(εik)
.(177)

Using the above quantum cluster transformation, the refined spectral gen-
erator can be written down using the mutation sequences from chamber 1

(178) Xf
1 = X−1

1 + q
1

2X−1
1 X2 +X2, Xf

2 =
1

X2 + q−
1

2X2X1

.

In the limit q → 1, the refined spectral generator is the same as the classical
one given in [174]. A more complicated example of refined spectral generator
is given in appendix B.

8. Vector multiplets

8.1. Wall crossing between chamber with Infinite
number of states

Previous sections focused on the finite chambers and their wall crossing
behavior. In this section, we would like to say something about the chamber
with higher spin states using the quiver representation theory. Our treatment
is very elementary and we hope to do a more thorough analysis in the future.

There are also wall crossing behavior between two chambers with infinite
states, as discovered in original paper of Seiberg-Witten [3]. We can actually
see this type of wall crossing behavior using the quiver representation theory
for some simple examples. Consider SU(2) theory with one flavor whose BPS
quiver is of the type Ã(2, 1) shown in Figure 62, the possible BPS states are
represented by the curves on the triangulated Riemann surface, which are
listed in Table 13.
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1

23

3 2
1

Figure 62: The triangulation and BPS quiver for SU(2) theory with one
flavor, and the curve corresponding to the W boson is drawn as the red
curve.

charge

Hypermultiplet (γi + γj , i �= j), (nγi + nγj + (n± 1)γk, i �= j �= k)

Vector multiplet γ1 + γ2 + γ3

Table 13: The indecomposable representation of the quiver Ã(2, 1).

Name Indecomposable subrepresentation

A γ1 + γ2 + γ3 B,S2

B γ1 + γ2 S2

C γ1 + γ3 S1

D γ2 + γ3 S2

En nγ1 + nγ2 + (n+ 1)γ3 A,B, S2, D

Fn nγ1 + nγ2 + (n− 1)γ3 A,B, S2

Gn nγ1 + nγ3 + (n+ 1)γ2 B,S2

Hn nγ1 + nγ3 + (n− 1)γ2 A,B, S2

In nγ2 + nγ3 + (n+ 1)γ1 A,B, S2

Jn nγ2 + nγ3 + (n− 1)γ1 A,B, S2, D

Table 14: The subrepresentations of the indecomposable representation of
the quiver Ã(2, 1).

Representation A is the W boson whose subrepresentations are γ2, γ1 +
γ2

28, so it is stable if the slop of its subrepresentations are smaller than γ2

28Let’s give a little bit explanation of the sub-representation listed in Table For
example, D is a subrepresentation of series E1 because one can select a one dimen-
sional subspace of V3 = 2 such that it maps to zero of V1 = 1, etc, and therefore
the representation D = (0, 1, 1) is a subrepresentation of E1.
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and γ1 + γ2. There are two choices of the stability conditions on the simple
representations which will make the W boson stable, one of them is shown
in Figure 63 (another is given by exchanging S1 and S2.). There are more
choices depending on the relative slop of other representations. Let’s explain
this using the results shown in Figure 63. f In chamber one, representations
Fn and In are unstable since their subrepresentation A is on their right. The
reason is the following: consider representations Fn whose charge vector can
be decomposed as:

nγ1 + nγ2 + (n− 1)γ3 = (n− 1)(γ1 + γ2 + γ3) + γ1 + γ2(179)

= (n− 1)A+B,

so Fn is lying in between A and B, and A as its subrepresentation is on
its right, so it is unstable! Similarly Jn is also unstable since its subrepre-
sentation D is always on its right. C,D,Gn, Hn are always stable since all
their proper sub representations have higher slops. Finally the stability of
En depends on on the relative position of C and D, since En series lie in
between the charge vector C and A, all En are unstable if D is on the right
of C as shown in chamber 1 of Figure 63, On the other hand, if D is on the
left of C, then some of the representations of En series are lying in between
C and D and they are stable, the truncation of the En series depend on the
relative position of C and D, so we have an infinite number of chambers!

If the relative order of S1 and S2 are interchanged, then B = γ1 + γ2 are
stable and the analysis of other stable particles are the same, the results are
shown in Table 15.

Chamber
1

S
3
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2

S
1

S
2

AG
n

C
DH

n

S
1

S
2
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S
3

H
n D

C
G

n
E

n<N

Figure 63: Two choices of stability condition which will make W boson
stable.
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Stable particles

Chamber 1 S1, S2, Gn, A,Hn, C,D, S3

Chamber 2 S1, S2, Gn, A,Hn, D,En<N , C, S3

Chamber 3 S2, B, S1Gn, A,Hn, C,D, S3

Chamber 2 S2, BS1, Gn, A,Hn, D,En<N , C, S3

Table 15: The BPS spectrum with infinite number of states of SU(2) with
one flavor.

The above infinite chambers can be found using the green mutation
and red mutation method. Let’s consider chamber 1, we can do the green
mutations

(180) μ1, μ2, μ3, μ2, μ3, μ2 . . .

The charge vectors for the infinite mutation sequences are exactly the states
on the left of the W boson:

(181) S1, S2, Gn,

see the top of Figure 64. The green mutation only probes this part of the
spectrum. To probe the other part of the spectrum, one need to use the red
mutations. Since γ1 and γ2 are already probed, one can only start mutating
node 3; After first step, one can mutate either node 2 or node 1, we choose to
mutate node 2. In third step, there are still two choices: either mutate node
3 or node 1, however, the charge vector for node 3 is γ1 which has already
found by doing green mutation, therefore we can only mutate node 1 in this
step, there is no ambiguity in the later mutations, the red mutations are

(182) μ3, μ2, μ1, μ3, μ1, μ3, μ1, . . .

and the charge vectors for this part are

(183) S3, D, C, Hn.

Combining the green mutation and red mutation, we find W boson as the
common limit and recover the BPS states in chamber one. It is very easy to
recover the other chambers using the mutation method.
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Figure 64: Top: The green mutation with infinite number of steps. Bottom:
The red mutation with infinite number of steps which approach to the same
limit as the green mutation at the top.

8.2. Theory without finite chamber

The SU(2) N = 2∗ theory has no finite chamber [21]. Here let’s give a very
simple proof using the quiver representation theory. The BPS (Q,W ) for
this theory is shown in Figure 65. The three W boson are represented by
the subquiver of pure SU(2) theory, and each node is a sink for the W boson,
so if we start mutating any of the quiver nodes, one of the W boson would
be stable, and there is no way we can find a finite chamber.

a b

c

d e
f

W=abc+def+abcdef

Figure 65: The BPS quiver for SU(2) with one massive adjoint, the super-
potential is also given.

It is easy to generalize the above analysis to N = 2∗ SU(N) theory.
The BPS quiver for SU(3) with one massive adjoint is given in [34]. The
triangulation, dot diagram and the quiver is shown in Figure 66 for N = 3.

The subquivers representing the W bosons are listed in Table 16. Let’s
now look at the green mutation sequences. Because of the existence of the
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Figure 66: The BPS quiver for SU(3) with one massive adjoint, and the
superpotential is also given.

vector boson represented by W1 and W2, one could not mutate node 3 and
4 in first step. If we mutate node 2 and 1 in first step, then in second step we
can only mutate nodes 3 and 4, since mutating node 5 would make W3 and
W4 stable. Similarly, one can only mutate nodes 1 and 2 in third step to
avoid activating W3 or W4, but this will finally make W5 stable! Therefore
there is no finite chamber for SU(3) with a massive adjoint. Similar analysis
can be done to the general SU(N) theory and the conclusion is that there
is no finite chamber for SU(N) theory with a massive adjoint!

Name Quiver nodes Source Sink

W1 (1,3) 1 3

W2 (2,4) 2 4

W3 (2,3,5) 3 2

W4 (1,4,5) 4 1

W5 (1,3,5,4) 4 5

Table 16: The subquiver of vector bosons and the source-sink analysis for
the BPS quiver of SU(3) with one adjoint.

9. Conclusion

Finite BPS chambers are found for a large class of 4d N = 2 theories engi-
neered from six dimensional AN−1 (2, 0) theory on a Riemann surface with
regular and irregular singularity. Our results greatly extend the knowledge
of the BPS spectrum of various kinds of higher rank N = 2 quantum field
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theories, and should be a first step towards a full understanding of the BPS
spectrum of these theories. There are many open questions which deserve
further study:

a. It is interesting to find all the finite chambers for a given BPS quiver
of a given theory. Since an explicit combinatorial algorithm is given, it may
be possible to do it using computer scanning. It is also interesting to do
the similar scanning for all the BPS quivers of a given theory, and try to
answer the following questions: what is the minimal chamber and what is the
maximal chamber? whether any length between the minimal and maximal
length is realized as the length of a BPS chamber, etc.

b. In fact, the spectrum we found should be called potential chamber
of the theory, and it would be interesting to see if such spectrum is truly
realized on the Coulomb branch. It seems to us that all the finite chamber
can be realized on the moduli space, but this definitely needs further study.
Although the detailed factorization might not be realized physically, the
spectral generator is the correct one regardless of the chamber, and it is
interesting to explore how to find the sensible factorizations of the given
spectral generator and therefore find new chambers.

c. We have not found any efficient way to deal with chamber with higher
spin states. It would be nice to find new methods to deal with this problem.

d. The BPS counting in the supergravity context is studied in [51, 72–80],
can we apply our combinatorial method to that context?

With the BPS spectrum on hand, there are many physical questions one
could ask:

a. Why the spectrum of a given theory has the specific structure? Can we
learn about the UV theory from the BPS data? Recently, it is proposed that
the BPS spectrum can be used to calculate the index of the superconformal
field theory [81], it would be interesting to carry out this explicitly. Further-
more, the finite spectrum usually happens in the strongly coupled region of
the Lagrangian theory, and the massless BPS particles at the singularity of
the Coulomb branch should be included into the stable BPS spectrum. Since
the BPS particles at the singularity is very important in understanding the
IR physics, can we learn something deep about the quantum dynamics like
the exact solutions and confinement from the explicit BPS spectrum?

b. The quantum dilogarithm identify has important implications for mir-
ror symmetry of 3d N = 2 theory [82, 83]. We have found a huge number of
new quantum dilogarithm identities, can we use them to find new 3d Mirror
pairs? The quantum dilogarithm identity is closed related to the integrable
system [84], it would be interesting to find the detailed connection.
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c: The finite spectrum has an interesting N3 scaling behavior in the
large N limit, which is in agreement with the degree of freedom of N M5
branes. Since the BPS states can be thought of as self-dual string wrapping
on various one cycles on the punctured Riemann surface, it is natural to
think this N3 scaling should be related to M5 brane dynamics.

d. The BPS spectrum is important for finding the Coulomb branch met-
ric of the corresponding 3d theory derived by compactifying 4d theory on
a circle, and it would be interesting to find out the Hyperkahler metric
explicitly this using the BPS spectrum [85].
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Appendix A. Explicit spectral generator

A.1. A3 quiver

In this section, we give some explicit expression for the spectral generator
using the cluster transformation rule for the X coordinates under mutation
on node k,

X
′
k = X−1

k

X
′
i = Xi(1 +X

−sgn(εik)
k )−εik .(A.1)

For the A3 quiver shown in Figure A1A, the maximal green mutation se-
quences are

(A.2) μ1, μ2, μ3, μ1.

The final cluster coordinates are: 29

29We only show the cluster coordinates due to the mutation, the permutation
can be found using the green mutation as we show in Figure A1A, the spectral
generator is derived by combining the permutation and the cluster transformation.
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x̂[1] = 1+x1+x1x2

x2(1+x3+x1x3)
,x̂[1] = 1+x1+x1x2

x2(1+x3+x1x3)
,x̂[1] = 1+x1+x1x2

x2(1+x3+x1x3)
,

x̂[2] = 1+x3+x1x3

x1(1+x2+x2x3)
,x̂[2] = 1+x3+x1x3

x1(1+x2+x2x3)
,x̂[2] = 1+x3+x1x3

x1(1+x2+x2x3)
,

x̂[3] = 1+x2+x2x3

(1+x1+x1x2)x3
;x̂[3] = 1+x2+x2x3

(1+x1+x1x2)x3
;x̂[3] = 1+x2+x2x3

(1+x1+x1x2)x3
;

1

32

1

2

3

1 2 3

A:

B:

1

1
1

1 2 3 1 2 3

Figure A1: Two quivers in A3 mutation class, we show the initial configu-
ration and final configuration of the maximal green mutation.

If we use another quiver in the same mutation class as the above quiver,
say the quiver in Figure A1B, then one maximal green mutation sequences
are

(A.3) μ1, μ2, μ3,

and the final cluster coordinates would be:

X̂[1] = 1+x2+x1x2

x1
,X̂[1] = 1+x2+x1x2

x1
,X̂[1] = 1+x2+x1x2

x1
,

X̂[2] = 1+x3+x2x3+x1x2x3

(1+x1)x2
,X̂[2] = 1+x3+x2x3+x1x2x3

(1+x1)x2
,X̂[2] = 1+x3+x2x3+x1x2x3

(1+x1)x2
,

X̂[3] = 1
(1+x2+x1x2)x3

.X̂[3] = 1
(1+x2+x1x2)x3

.X̂[3] = 1
(1+x2+x1x2)x3

.

Notice that the final coordinates depend on the initial quiver, but the
quantum dilogarithm identity is independent of the quiver, they are all equal
by changing the basis of the quantum torus from one quiver to another
quiver.

A.2. Disc with three AN−1 full punctures

Let’s consider a disc with three full punctures and N = 5 , the BPS quiver
is shown in Figure A2, and the maximal mutation sequence is

(A.4) μ1, μ2, μ3, μ4, μ5, μ6, μ1, μ2, μ3, μ1
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We find the spectral generator (final cluster coordinates) as following

X̂[1] = 1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6

(1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5)x6
,X̂[1] = 1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6

(1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5)x6
,X̂[1] = 1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6

(1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5)x6
,

X̂[2] = (1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5)(1+x6+x5x6+x4x5x6)
(1+x4+x2x4+x1x2x4)x5(1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6)

,X̂[2] = (1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5)(1+x6+x5x6+x4x5x6)
(1+x4+x2x4+x1x2x4)x5(1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6)

,X̂[2] = (1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5)(1+x6+x5x6+x4x5x6)
(1+x4+x2x4+x1x2x4)x5(1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6)

,

X̂[3] = (1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5)(1+x1+x1x3+x1x3x6)
x3(1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5)(1+x6+x5x6+x4x5x6)

,X̂[3] = (1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5)(1+x1+x1x3+x1x3x6)
x3(1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5)(1+x6+x5x6+x4x5x6)

,X̂[3] = (1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5)(1+x1+x1x3+x1x3x6)
x3(1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5)(1+x6+x5x6+x4x5x6)

,

X̂[4] = 1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5

x4(1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5)
,X̂[4] = 1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5

x4(1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5)
,X̂[4] = 1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5

x4(1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5)
,

X̂[5] = (1+x4+x2x4+x1x2x4)(1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6)
x2(1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5)(1+x1+x1x3+x1x3x6)

,X̂[5] = (1+x4+x2x4+x1x2x4)(1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6)
x2(1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5)(1+x1+x1x3+x1x3x6)

,X̂[5] = (1+x4+x2x4+x1x2x4)(1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6)
x2(1+x5+x3x5+x4x5+x3x4x5+x2x3x4x5)(1+x1+x1x3+x1x3x6)

,

X̂[6] = 1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5

x1(1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6)
.X̂[6] = 1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5

x1(1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6)
.X̂[6] = 1+x2+x1x2+x2x5+x1x2x5+x1x2x3x5

x1(1+x3+x2x3+x3x6+x2x3x6+x2x3x5x6)
.

Here xi is the initial cluster variable. This result is the same as the for-
mula [7.13− 7.15] in [23] if we identify the initial coordinates in the following
way

(A.5) x1 = r200, x2 = r110 x3 = r011, x4 = r020, x5 = r101, x6 = r002.

1

2 3

4 5 6

1

2

4

5 6

3

6

1

2

4

3

5

Figure A2: The quiver from disc with three full punctures and N = 5. The
initial and final configuration of the maximal green mutation are indicated.
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A.3. Disc with four AN−1 full punctures

The quiver is shown in Figure A3, and the green mutation sequence is

(1, 5, 9), (2, 4, 6, 8), (3, 5, 7),

(1, 2, 4, 1), (9, 6, 8, 9),

(A.6)

1 2 3

4 5 6

7 8 9

1 2 3

4

5

6

7 8 9

1 2 3

4 6

5

7 8 9

Figure A3: The initial configuration and the final configuration of the max-
imal green mutation of the quiver from the disc with four full punctures.

We take N = 4 and the spectral generator is

X̂[1] = 1+x2+x2x3+x2x5+x2x3x5+x2x4x5+x2x3x4x5+x2x3x5x6+x2x3x4x5x6+x2x3x5x6x9+x2x3x4x5x6x9+x2x3x4x5x6x8x9

x3(1+x6+x2x6+x6x9+x2x6x9+x6x8x9+x2x6x8x9+x2x5x6x8x9+x6x7x8x9+x2x6x7x8x9+x2x5x6x7x8x9+x2x4x5x6x7x8x9)
,X̂[1] = 1+x2+x2x3+x2x5+x2x3x5+x2x4x5+x2x3x4x5+x2x3x5x6+x2x3x4x5x6+x2x3x5x6x9+x2x3x4x5x6x9+x2x3x4x5x6x8x9

x3(1+x6+x2x6+x6x9+x2x6x9+x6x8x9+x2x6x8x9+x2x5x6x8x9+x6x7x8x9+x2x6x7x8x9+x2x5x6x7x8x9+x2x4x5x6x7x8x9)
,X̂[1] = 1+x2+x2x3+x2x5+x2x3x5+x2x4x5+x2x3x4x5+x2x3x5x6+x2x3x4x5x6+x2x3x5x6x9+x2x3x4x5x6x9+x2x3x4x5x6x8x9

x3(1+x6+x2x6+x6x9+x2x6x9+x6x8x9+x2x6x8x9+x2x5x6x8x9+x6x7x8x9+x2x6x7x8x9+x2x5x6x7x8x9+x2x4x5x6x7x8x9)
,

X̂[3] = 1+x4+x1x4+x1x2x4+x1x2x3x4+x4x8+x1x4x8+x1x2x4x8+x1x2x3x4x8+x1x2x4x5x8+x1x2x3x4x5x8+x1x2x3x4x5x6x8

x1(1+x2+x2x3+x2x5+x2x3x5+x2x4x5+x2x3x4x5+x2x3x5x6+x2x3x4x5x6+x2x3x5x6x9+x2x3x4x5x6x9+x2x3x4x5x6x8x9)
,X̂[3] = 1+x4+x1x4+x1x2x4+x1x2x3x4+x4x8+x1x4x8+x1x2x4x8+x1x2x3x4x8+x1x2x4x5x8+x1x2x3x4x5x8+x1x2x3x4x5x6x8

x1(1+x2+x2x3+x2x5+x2x3x5+x2x4x5+x2x3x4x5+x2x3x5x6+x2x3x4x5x6+x2x3x5x6x9+x2x3x4x5x6x9+x2x3x4x5x6x8x9)
,X̂[3] = 1+x4+x1x4+x1x2x4+x1x2x3x4+x4x8+x1x4x8+x1x2x4x8+x1x2x3x4x8+x1x2x4x5x8+x1x2x3x4x5x8+x1x2x3x4x5x6x8

x1(1+x2+x2x3+x2x5+x2x3x5+x2x4x5+x2x3x4x5+x2x3x5x6+x2x3x4x5x6+x2x3x5x6x9+x2x3x4x5x6x9+x2x3x4x5x6x8x9)
,

X̂[7] = 1+x6+x2x6+x6x9+x2x6x9+x6x8x9+x2x6x8x9+x2x5x6x8x9+x6x7x8x9+x2x6x7x8x9+x2x5x6x7x8x9+x2x4x5x6x7x8x9

(1+x8+x5x8+x5x6x8+x7x8+x5x7x8+x4x5x7x8+x1x4x5x7x8+x5x6x7x8+x4x5x6x7x8+x1x4x5x6x7x8+x1x2x4x5x6x7x8)x9
,X̂[7] = 1+x6+x2x6+x6x9+x2x6x9+x6x8x9+x2x6x8x9+x2x5x6x8x9+x6x7x8x9+x2x6x7x8x9+x2x5x6x7x8x9+x2x4x5x6x7x8x9

(1+x8+x5x8+x5x6x8+x7x8+x5x7x8+x4x5x7x8+x1x4x5x7x8+x5x6x7x8+x4x5x6x7x8+x1x4x5x6x7x8+x1x2x4x5x6x7x8)x9
,X̂[7] = 1+x6+x2x6+x6x9+x2x6x9+x6x8x9+x2x6x8x9+x2x5x6x8x9+x6x7x8x9+x2x6x7x8x9+x2x5x6x7x8x9+x2x4x5x6x7x8x9

(1+x8+x5x8+x5x6x8+x7x8+x5x7x8+x4x5x7x8+x1x4x5x7x8+x5x6x7x8+x4x5x6x7x8+x1x4x5x6x7x8+x1x2x4x5x6x7x8)x9
,

X̂[9] = 1+x8+x5x8+x5x6x8+x7x8+x5x7x8+x4x5x7x8+x1x4x5x7x8+x5x6x7x8+x4x5x6x7x8+x1x4x5x6x7x8+x1x2x4x5x6x7x8

x7(1+x4+x1x4+x1x2x4+x1x2x3x4+x4x8+x1x4x8+x1x2x4x8+x1x2x3x4x8+x1x2x4x5x8+x1x2x3x4x5x8+x1x2x3x4x5x6x8)
.X̂[9] = 1+x8+x5x8+x5x6x8+x7x8+x5x7x8+x4x5x7x8+x1x4x5x7x8+x5x6x7x8+x4x5x6x7x8+x1x4x5x6x7x8+x1x2x4x5x6x7x8

x7(1+x4+x1x4+x1x2x4+x1x2x3x4+x4x8+x1x4x8+x1x2x4x8+x1x2x3x4x8+x1x2x4x5x8+x1x2x3x4x5x8+x1x2x3x4x5x6x8)
.X̂[9] = 1+x8+x5x8+x5x6x8+x7x8+x5x7x8+x4x5x7x8+x1x4x5x7x8+x5x6x7x8+x4x5x6x7x8+x1x4x5x6x7x8+x1x2x4x5x6x7x8

x7(1+x4+x1x4+x1x2x4+x1x2x3x4+x4x8+x1x4x8+x1x2x4x8+x1x2x3x4x8+x1x2x4x5x8+x1x2x3x4x5x8+x1x2x3x4x5x6x8)
.

X̂[2] = A2∗B2
C2∗D2

X̂[2] = A2∗B2
C2∗D2X̂[2] = A2∗B2
C2∗D2

A2 = (1 + x1 + x1x2 + x1x2x3 + x1x2x5 + x1x2x3x5 + x1x2x3x5x6A2 = (1 + x1 + x1x2 + x1x2x3 + x1x2x5 + x1x2x3x5 + x1x2x3x5x6A2 = (1 + x1 + x1x2 + x1x2x3 + x1x2x5 + x1x2x3x5 + x1x2x3x5x6
+x1x2x3x5x6x9),+x1x2x3x5x6x9),+x1x2x3x5x6x9),
B2 = (1 + x6 + x2x6 + x6x9 + x2x6x9 + x6x8x9 + x2x6x8x9 + x2x5x6x8x9B2 = (1 + x6 + x2x6 + x6x9 + x2x6x9 + x6x8x9 + x2x6x8x9 + x2x5x6x8x9B2 = (1 + x6 + x2x6 + x6x9 + x2x6x9 + x6x8x9 + x2x6x8x9 + x2x5x6x8x9
+x6x7x8x9 + x2x6x7x8x9 + x2x5x6x7x8x9 + x2x4x5x6x7x8x9),+x6x7x8x9 + x2x6x7x8x9 + x2x5x6x7x8x9 + x2x4x5x6x7x8x9),+x6x7x8x9 + x2x6x7x8x9 + x2x5x6x7x8x9 + x2x4x5x6x7x8x9),
C2 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6C2 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6C2 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6
+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9
+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x

2
5x6x8x9),+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x
2
5x6x8x9),+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x
2
5x6x8x9),

D2 = x2 (1 + x3 + x3x6 + x3x6x9 + x3x6x8x9 + x3x6x7x8x9) ,D2 = x2 (1 + x3 + x3x6 + x3x6x9 + x3x6x8x9 + x3x6x7x8x9) ,D2 = x2 (1 + x3 + x3x6 + x3x6x9 + x3x6x8x9 + x3x6x7x8x9) ,

X̂[4] = A4∗B4
C4∗D4

X̂[4] = A4∗B4
C4∗D4X̂[4] = A4∗B4
C4∗D4
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A4 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6A4 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6A4 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6
+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9
+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x

2
5x6x8x9),+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x
2
5x6x8x9),+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x
2
5x6x8x9),

B4 = (1 + x3 + x3x6 + x3x6x9 + x3x6x8x9 + x3x6x7x8x9) ,B4 = (1 + x3 + x3x6 + x3x6x9 + x3x6x8x9 + x3x6x7x8x9) ,B4 = (1 + x3 + x3x6 + x3x6x9 + x3x6x8x9 + x3x6x7x8x9) ,
C4 = x6(1 + x2 + x2x3 + x2x5 + x2x3x5 + x2x4x5 + x2x3x4x5 + x2x3x5x6C4 = x6(1 + x2 + x2x3 + x2x5 + x2x3x5 + x2x4x5 + x2x3x4x5 + x2x3x5x6C4 = x6(1 + x2 + x2x3 + x2x5 + x2x3x5 + x2x4x5 + x2x3x4x5 + x2x3x5x6
+x2x3x4x5x6 +x2x3x5x6x9 + x2x3x4x5x6x9 + x2x3x4x5x6x8x9) ,+x2x3x4x5x6 +x2x3x5x6x9 + x2x3x4x5x6x9 + x2x3x4x5x6x8x9) ,+x2x3x4x5x6 +x2x3x5x6x9 + x2x3x4x5x6x9 + x2x3x4x5x6x8x9) ,
D4 = (1 + x9 + x8x9 + x5x8x9 + x7x8x9 + x5x7x8x9 + x4x5x7x8x9D4 = (1 + x9 + x8x9 + x5x8x9 + x7x8x9 + x5x7x8x9 + x4x5x7x8x9D4 = (1 + x9 + x8x9 + x5x8x9 + x7x8x9 + x5x7x8x9 + x4x5x7x8x9
+x1x4x5x7x8x9),+x1x4x5x7x8x9),+x1x4x5x7x8x9),

X̂[5] = A5∗B5
C5∗D5

X̂[5] = A5∗B5
C5∗D5X̂[5] = A5∗B5
C5∗D5

A5 = (1 + x8 + x5x8 + x5x6x8 + x7x8 + x5x7x8 + x4x5x7x8 + x1x4x5x7x8A5 = (1 + x8 + x5x8 + x5x6x8 + x7x8 + x5x7x8 + x4x5x7x8 + x1x4x5x7x8A5 = (1 + x8 + x5x8 + x5x6x8 + x7x8 + x5x7x8 + x4x5x7x8 + x1x4x5x7x8
+x5x6x7x8 + x4x5x6x7x8 + x1x4x5x6x7x8 + x1x2x4x5x6x7x8),+x5x6x7x8 + x4x5x6x7x8 + x1x4x5x6x7x8 + x1x2x4x5x6x7x8),+x5x6x7x8 + x4x5x6x7x8 + x1x4x5x6x7x8 + x1x2x4x5x6x7x8),
B5 = (1 + x2 + x2x3 + x2x5 + x2x3x5 + x2x4x5 + x2x3x4x5 + x2x3x5x6B5 = (1 + x2 + x2x3 + x2x5 + x2x3x5 + x2x4x5 + x2x3x4x5 + x2x3x5x6B5 = (1 + x2 + x2x3 + x2x5 + x2x3x5 + x2x4x5 + x2x3x4x5 + x2x3x5x6
+x2x3x4x5x6 + x2x3x5x6x9 + x2x3x4x5x6x9 + x2x3x4x5x6x8x9),+x2x3x4x5x6 + x2x3x5x6x9 + x2x3x4x5x6x9 + x2x3x4x5x6x8x9),+x2x3x4x5x6 + x2x3x5x6x9 + x2x3x4x5x6x9 + x2x3x4x5x6x8x9),
C5 = x5(1 + x4 + x1x4 + x1x2x4 + x1x2x3x4 + x4x8 + x1x4x8 + x1x2x4x8C5 = x5(1 + x4 + x1x4 + x1x2x4 + x1x2x3x4 + x4x8 + x1x4x8 + x1x2x4x8C5 = x5(1 + x4 + x1x4 + x1x2x4 + x1x2x3x4 + x4x8 + x1x4x8 + x1x2x4x8
+x1x2x3x4x8 + x1x2x4x5x8 + x1x2x3x4x5x8 + x1x2x3x4x5x6x8),+x1x2x3x4x8 + x1x2x4x5x8 + x1x2x3x4x5x8 + x1x2x3x4x5x6x8),+x1x2x3x4x8 + x1x2x4x5x8 + x1x2x3x4x5x8 + x1x2x3x4x5x6x8),
D5 = (1 + x6 + x2x6 + x6x9 + x2x6x9 + x6x8x9 + x2x6x8x9 + x2x5x6x8x9D5 = (1 + x6 + x2x6 + x6x9 + x2x6x9 + x6x8x9 + x2x6x8x9 + x2x5x6x8x9D5 = (1 + x6 + x2x6 + x6x9 + x2x6x9 + x6x8x9 + x2x6x8x9 + x2x5x6x8x9
+x6x7x8x9 + x2x6x7x8x9 + x2x5x6x7x8x9 + x2x4x5x6x7x8x9),+x6x7x8x9 + x2x6x7x8x9 + x2x5x6x7x8x9 + x2x4x5x6x7x8x9),+x6x7x8x9 + x2x6x7x8x9 + x2x5x6x7x8x9 + x2x4x5x6x7x8x9),

X̂[6] = A6∗B6
C6∗D6

X̂[6] = A6∗B6
C6∗D6X̂[6] = A6∗B6
C6∗D6

A6 = (1 + x7 + x4x7 + x1x4x7 + x1x2x4x7 + x1x2x3x4x7) ,A6 = (1 + x7 + x4x7 + x1x4x7 + x1x2x4x7 + x1x2x3x4x7) ,A6 = (1 + x7 + x4x7 + x1x4x7 + x1x2x4x7 + x1x2x3x4x7) ,
B6 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6B6 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6B6 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6
+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9
+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x

2
5x6x8x9

)
,+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x

2
5x6x8x9

)
,+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x

2
5x6x8x9

)
,

C6 = x4 (1 + x8 + x5x8 + x5x6x8 + x7x8 + x5x7x8 + x4x5x7x8 + x1x4x5x7x8C6 = x4 (1 + x8 + x5x8 + x5x6x8 + x7x8 + x5x7x8 + x4x5x7x8 + x1x4x5x7x8C6 = x4 (1 + x8 + x5x8 + x5x6x8 + x7x8 + x5x7x8 + x4x5x7x8 + x1x4x5x7x8
+x5x6x7x8 + x4x5x6x7x8 + x1x4x5x6x7x8 + x1x2x4x5x6x7x8) ,+x5x6x7x8 + x4x5x6x7x8 + x1x4x5x6x7x8 + x1x2x4x5x6x7x8) ,+x5x6x7x8 + x4x5x6x7x8 + x1x4x5x6x7x8 + x1x2x4x5x6x7x8) ,
D6 = 1 + x1 + x1x2 + x1x2x3 + x1x2x5 + x1x2x3x5 + x1x2x3x5x6D6 = 1 + x1 + x1x2 + x1x2x3 + x1x2x5 + x1x2x3x5 + x1x2x3x5x6D6 = 1 + x1 + x1x2 + x1x2x3 + x1x2x5 + x1x2x3x5 + x1x2x3x5x6
+x1x2x3x5x6x9),+x1x2x3x5x6x9),+x1x2x3x5x6x9),

X̂[8] = A8∗B8
C8∗D8

X̂[8] = A8∗B8
C8∗D8X̂[8] = A8∗B8
C8∗D8

A8 = (1 + x4 + x1x4 + x1x2x4 + x1x2x3x4 + x4x8 + x1x4x8 + x1x2x4x8A8 = (1 + x4 + x1x4 + x1x2x4 + x1x2x3x4 + x4x8 + x1x4x8 + x1x2x4x8A8 = (1 + x4 + x1x4 + x1x2x4 + x1x2x3x4 + x4x8 + x1x4x8 + x1x2x4x8
+x1x2x3x4x8 + x1x2x4x5x8 + x1x2x3x4x5x8 + x1x2x3x4x5x6x8) ,+x1x2x3x4x8 + x1x2x4x5x8 + x1x2x3x4x5x8 + x1x2x3x4x5x6x8) ,+x1x2x3x4x8 + x1x2x4x5x8 + x1x2x3x4x5x8 + x1x2x3x4x5x6x8) ,
B8 = (1 + x9 + x8x9 + x5x8x9 + x7x8x9 + x5x7x8x9 + x4x5x7x8x9B8 = (1 + x9 + x8x9 + x5x8x9 + x7x8x9 + x5x7x8x9 + x4x5x7x8x9B8 = (1 + x9 + x8x9 + x5x8x9 + x7x8x9 + x5x7x8x9 + x4x5x7x8x9
+x1x4x5x7x8x9),+x1x4x5x7x8x9),+x1x4x5x7x8x9),
C8 = (1 + x7 + x4x7 + x1x4x7 + x1x2x4x7 + x1x2x3x4x7)x8,C8 = (1 + x7 + x4x7 + x1x4x7 + x1x2x4x7 + x1x2x3x4x7)x8,C8 = (1 + x7 + x4x7 + x1x4x7 + x1x2x4x7 + x1x2x3x4x7)x8,
D8 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6D8 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6D8 = (1 + x5 + x4x5 + x1x4x5 + x5x6 + x4x5x6 + x1x4x5x6 + x1x2x4x5x6
+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9+x5x6x9 + x4x5x6x9 + x1x4x5x6x9 + x1x2x4x5x6x9 + x4x5x6x8x9
+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x

2
5x6x8x9

)
,+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x

2
5x6x8x9

)
,+x1x4x5x6x8x9 + x1x2x4x5x6x8x9 + x1x2x4x

2
5x6x8x9

)
,
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A.4. A2 pentagon

The quiver is shown in Figure A4, and the maximal mutation sequence is

(A.7) (μ2, μ4, μ1, μ5), (μ3, μ6, μ2, μ7), (μ3, μ4, μ6).

So the final cluster coordinates are

x̂[1] = 1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7

x4(1+x1+x1x2+x1x2x5)
,x̂[1] = 1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7

x4(1+x1+x1x2+x1x2x5)
,x̂[1] = 1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7

x4(1+x1+x1x2+x1x2x5)
,

x̂[2] = 1+x7+x6x7+x5x6x7+x4x5x6x7+x1x4x5x6x7

x6(1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7)
,x̂[2] = 1+x7+x6x7+x5x6x7+x4x5x6x7+x1x4x5x6x7

x6(1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7)
,x̂[2] = 1+x7+x6x7+x5x6x7+x4x5x6x7+x1x4x5x6x7

x6(1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7)
,

x̂[3] = 1+x3+x2x3+x3x7+x2x3x7+x3x6x7+x2x3x6x7+x2x3x5x6x7+x2x3x4x5x6x7

(1+x6+x5x6+x3x5x6+x4x5x6+x1x4x5x6+x3x4x5x6+x1x3x4x5x6+x1x2x3x4x5x6)x7
,x̂[3] = 1+x3+x2x3+x3x7+x2x3x7+x3x6x7+x2x3x6x7+x2x3x5x6x7+x2x3x4x5x6x7

(1+x6+x5x6+x3x5x6+x4x5x6+x1x4x5x6+x3x4x5x6+x1x3x4x5x6+x1x2x3x4x5x6)x7
,x̂[3] = 1+x3+x2x3+x3x7+x2x3x7+x3x6x7+x2x3x6x7+x2x3x5x6x7+x2x3x4x5x6x7

(1+x6+x5x6+x3x5x6+x4x5x6+x1x4x5x6+x3x4x5x6+x1x3x4x5x6+x1x2x3x4x5x6)x7
,

x̂[4] = 1+x4+x1x4+x1x2x4

x1(1+x2+x2x5+x2x4x5)
,x̂[4] = 1+x4+x1x4+x1x2x4

x1(1+x2+x2x5+x2x4x5)
,x̂[4] = 1+x4+x1x4+x1x2x4

x1(1+x2+x2x5+x2x4x5)
,

x̂[5] = (1+x1+x1x2+x1x2x5)(1+x3+x2x3+x3x7+x2x3x7+x3x6x7+x2x3x6x7+x2x3x5x6x7+x2x3x4x5x6x7)
x2(1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7)

,x̂[5] = (1+x1+x1x2+x1x2x5)(1+x3+x2x3+x3x7+x2x3x7+x3x6x7+x2x3x6x7+x2x3x5x6x7+x2x3x4x5x6x7)
x2(1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7)

,x̂[5] = (1+x1+x1x2+x1x2x5)(1+x3+x2x3+x3x7+x2x3x7+x3x6x7+x2x3x6x7+x2x3x5x6x7+x2x3x4x5x6x7)
x2(1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7)

,

x̂[6] = (1+x2+x2x5+x2x4x5)(1+x6+x5x6+x3x5x6+x4x5x6+x1x4x5x6+x3x4x5x6+x1x3x4x5x6+x1x2x3x4x5x6)
(1+x4+x1x4+x1x2x4)x5(1+x3+x2x3+x3x7+x2x3x7+x3x6x7+x2x3x6x7+x2x3x5x6x7+x2x3x4x5x6x7)

,x̂[6] = (1+x2+x2x5+x2x4x5)(1+x6+x5x6+x3x5x6+x4x5x6+x1x4x5x6+x3x4x5x6+x1x3x4x5x6+x1x2x3x4x5x6)
(1+x4+x1x4+x1x2x4)x5(1+x3+x2x3+x3x7+x2x3x7+x3x6x7+x2x3x6x7+x2x3x5x6x7+x2x3x4x5x6x7)

,x̂[6] = (1+x2+x2x5+x2x4x5)(1+x6+x5x6+x3x5x6+x4x5x6+x1x4x5x6+x3x4x5x6+x1x3x4x5x6+x1x2x3x4x5x6)
(1+x4+x1x4+x1x2x4)x5(1+x3+x2x3+x3x7+x2x3x7+x3x6x7+x2x3x6x7+x2x3x5x6x7+x2x3x4x5x6x7)

,
x̂[7] = 1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7

x3(1+x2+x2x5+x2x4x5)(1+x7+x6x7+x5x6x7+x4x5x6x7+x1x4x5x6x7)
.x̂[7] = 1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7

x3(1+x2+x2x5+x2x4x5)(1+x7+x6x7+x5x6x7+x4x5x6x7+x1x4x5x6x7)
.x̂[7] = 1+x5+x3x5+x4x5+x1x4x5+x3x4x5+x1x3x4x5+x1x2x3x4x5+x3x5x7+x3x4x5x7+x1x3x4x5x7+x1x2x3x4x5x7

x3(1+x2+x2x5+x2x4x5)(1+x7+x6x7+x5x6x7+x4x5x6x7+x1x4x5x6x7)
.
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Figure A4: The quiver for A2 pentagon with all punctures full.

A.5. SU(2) with four flavors

The quiver is shown in Figure A5. The maximal green mutation sequences
are

(A.8) μ1, μ2, μ3, μ4, μ5, μ6, μ1, μ2, μ3, μ4, μ5, μ6.

So the spectral generator is

x̂[1] = A1
B1

x̂[1] = A1
B1x̂[1] = A1
B1

A1 = (1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6A1 = (1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6A1 = (1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6
+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6

+x1x3x4x
2
5x6 + x1x2x3x4x

2
5x6 + x1x2x3x4x

2
5x

2
6),+x1x3x4x

2
5x6 + x1x2x3x4x

2
5x6 + x1x2x3x4x

2
5x

2
6),+x1x3x4x

2
5x6 + x1x2x3x4x

2
5x6 + x1x2x3x4x

2
5x

2
6),
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Figure A5: The quiver for SU(2) with four flavors.

B1 = x4(1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6B1 = x4(1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6B1 = x4(1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6
+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6

+x1x2x3x4x5x
2
6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x5x

2
6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x5x

2
6 + x1x2x3x4x

2
5x

2
6),

x̂[2] = A2
B2

x̂[2] = A2
B2x̂[2] = A2
B2

A2 = (1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6A2 = (1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6A2 = (1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6
+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6

+x1x2x3x4x5x
2
6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x5x

2
6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x5x

2
6 + x1x2x3x4x

2
5x

2
6),

B2 = x3(1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6B2 = x3(1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6B2 = x3(1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6
+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6 + x1x3x4x

2
5x6+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6 + x1x3x4x

2
5x6+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6 + x1x3x4x

2
5x6

+x1x2x3x4x
2
5x6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x

2
5x6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x

2
5x6 + x1x2x3x4x

2
5x

2
6),

x̂[3] = A3
B3

x̂[3] = A3
B3x̂[3] = A3
B3

A3 = (1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6A3 = (1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6A3 = (1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6
+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6

+x1x2x3x4x5x
2
6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x5x

2
6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x5x

2
6 + x1x2x3x4x

2
5x

2
6),

B3 = x2(1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6B3 = x2(1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6B3 = x2(1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6
+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6 + x1x3x4x

2
5x6+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6 + x1x3x4x

2
5x6+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6 + x1x3x4x

2
5x6

+x1x2x3x4x
2
5x6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x

2
5x6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x

2
5x6 + x1x2x3x4x

2
5x

2
6),

x̂[4] = A4
B4

x̂[4] = A4
B4x̂[4] = A4
B4

A4 = (1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6A4 = (1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6A4 = (1 + x6 + x1x6 + x4x6 + x1x4x6 + x1x5x6 + x4x5x6 + 2x1x4x5x6
+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6 + x1x3x4x

2
5x6+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6 + x1x3x4x

2
5x6+x1x2x4x5x6 + x1x3x4x5x6 + x1x4x

2
5x6 + x1x2x4x

2
5x6 + x1x3x4x

2
5x6

+x1x2x3x4x
2
5x6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x

2
5x6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x

2
5x6 + x1x2x3x4x

2
5x

2
6),

B4 = x1(1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6B4 = x1(1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6B4 = x1(1 + x5 + x2x5 + x3x5 + x2x3x5 + x2x5x6 + x3x5x6 + 2x2x3x5x6
+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6+x1x2x3x5x6 + x2x3x4x5x6 + x2x3x5x

2
6 + x1x2x3x5x

2
6 + x2x3x4x5x

2
6

+x1x2x3x4x5x
2
6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x5x

2
6 + x1x2x3x4x

2
5x

2
6),+x1x2x3x4x5x

2
6 + x1x2x3x4x

2
5x

2
6),

x̂[5] = A5∗C5
B5∗D5

x̂[5] = A5∗C5
B5∗D5x̂[5] = A5∗C5
B5∗D5
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A5 = (1 + x1 + x1x5 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x3x5x6A5 = (1 + x1 + x1x5 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x3x5x6A5 = (1 + x1 + x1x5 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x3x5x6
+x21x2x3x5x6),+x21x2x3x5x6),+x21x2x3x5x6),
C5 = (1 + x4 + x4x5 + x2x4x5 + x3x4x5 + x2x3x4x5 + x2x3x4x5x6C5 = (1 + x4 + x4x5 + x2x4x5 + x3x4x5 + x2x3x4x5 + x2x3x4x5x6C5 = (1 + x4 + x4x5 + x2x4x5 + x3x4x5 + x2x3x4x5 + x2x3x4x5x6
+x2x3x

2
4x5x6),+x2x3x
2
4x5x6),+x2x3x
2
4x5x6),

B5 = x5(1 + x2 + x2x6 + x1x2x6 + x2x4x6 + x1x2x4x6 + x1x2x4x5x6B5 = x5(1 + x2 + x2x6 + x1x2x6 + x2x4x6 + x1x2x4x6 + x1x2x4x5x6B5 = x5(1 + x2 + x2x6 + x1x2x6 + x2x4x6 + x1x2x4x6 + x1x2x4x5x6
+x1x

2
2x4x5x6),+x1x
2
2x4x5x6),+x1x
2
2x4x5x6),

D5 = (1 + x3 + x3x6 + x1x3x6 + x3x4x6 + x1x3x4x6 + x1x3x4x5x6D5 = (1 + x3 + x3x6 + x1x3x6 + x3x4x6 + x1x3x4x6 + x1x3x4x5x6D5 = (1 + x3 + x3x6 + x1x3x6 + x3x4x6 + x1x3x4x6 + x1x3x4x5x6
+x1x

2
3x4x5x6),+x1x
2
3x4x5x6),+x1x
2
3x4x5x6),

x̂[5] = A6∗C6
B6∗D6

x̂[5] = A6∗C6
B6∗D6x̂[5] = A6∗C6
B6∗D6

A6 = (1 + x2 + x2x6 + x1x2x6 + x2x4x6 + x1x2x4x6 + x1x2x4x5x6A6 = (1 + x2 + x2x6 + x1x2x6 + x2x4x6 + x1x2x4x6 + x1x2x4x5x6A6 = (1 + x2 + x2x6 + x1x2x6 + x2x4x6 + x1x2x4x6 + x1x2x4x5x6
+x1x

2
2x4x5x6),+x1x
2
2x4x5x6),+x1x
2
2x4x5x6),

C6 = (1 + x3 + x3x6 + x1x3x6 + x3x4x6 + x1x3x4x6 + x1x3x4x5x6C6 = (1 + x3 + x3x6 + x1x3x6 + x3x4x6 + x1x3x4x6 + x1x3x4x5x6C6 = (1 + x3 + x3x6 + x1x3x6 + x3x4x6 + x1x3x4x6 + x1x3x4x5x6
+x1x

2
3x4x5x6),+x1x
2
3x4x5x6),+x1x
2
3x4x5x6),

B6 = x6(1 + x1 + x1x5 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x3x5x6B6 = x6(1 + x1 + x1x5 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x3x5x6B6 = x6(1 + x1 + x1x5 + x1x2x5 + x1x3x5 + x1x2x3x5 + x1x2x3x5x6
+x21x2x3x5x6),+x21x2x3x5x6),+x21x2x3x5x6),
D6 = (1 + x4 + x4x5 + x2x4x5 + x3x4x5 + x2x3x4x5 + x2x3x4x5x6D6 = (1 + x4 + x4x5 + x2x4x5 + x3x4x5 + x2x3x4x5 + x2x3x4x5x6D6 = (1 + x4 + x4x5 + x2x4x5 + x3x4x5 + x2x3x4x5 + x2x3x4x5x6
+x2x3x

2
4x5x6).+x2x3x
2
4x5x6).+x2x3x
2
4x5x6).

Appendix B. Refined spectral generator

Let’s describe a simple way of finding the refined spectral generator from
the classical spectral generator. The q deformation of the cluster algebra is

(B.9) XiXj = qεijXiXj ,

where εij is the antisymmetric tensor read from the quiver, and the cluster
transformation on quantum cluster algebra is

X
′
k = X−1

k ,

X
′
i = Xi

( |εik|∏
a=1

(
1 + qa−1/2X−sgn(εik)

k

))−sgn(εik)
.(B.10)

Given the mutation sequences, one could find the final quantum cluster
coordinates.

In practice, there is a way of reading the quantum cluster algebra from
the classical one using the ∗ invariance. One could define a ∗ action on the
quantum cluster algebra

(B.11) ∗ (q) = q−1, ∗(Xi) = Xi, ∗(XiXj) = ∗(Xj) ∗ (Xi) = XjXi,
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and any monomial appearing in the quantum cluster algebra should be in-
variant under this ∗ action, this would uniquely fix the q factor before each
monomial. So we will first find the classical spectral generator and then find
the quantum version by adding the q factor before each monomial to make
it ∗ invariant.

1 3

42

2

1 3

4

Figure B1: The quiver and maximal green mutation for a quiver from a disc
with four A2 full punctures.

Let’s look at an example which is represented by a A2 theory on a disc
with four full punctures. The quiver and the initial and final configuration of
the maximal green mutation sequences is shown in Figure B1. The maximal
green mutation sequences are

(B.12) μ2, μ3, μ1, μ4, μ2, μ3.

and the final cluster coordinates are

X̂[1] = 1+x4+x2x4+x1x2x4

x2(1+x1+x1x3+x1x3x4)
,X̂[1] = 1+x4+x2x4+x1x2x4

x2(1+x1+x1x3+x1x3x4)
,X̂[1] = 1+x4+x2x4+x1x2x4

x2(1+x1+x1x3+x1x3x4)
,

X̂[2] = 1+x2+x1x2+x1x2x3

x1(1+x3+x3x4+x2x3x4)
,X̂[2] = 1+x2+x1x2+x1x2x3

x1(1+x3+x3x4+x2x3x4)
,X̂[2] = 1+x2+x1x2+x1x2x3

x1(1+x3+x3x4+x2x3x4)
,

X̂[3] = 1+x3+x3x4+x2x3x4

(1+x2+x1x2+x1x2x3)x4
,X̂[3] = 1+x3+x3x4+x2x3x4

(1+x2+x1x2+x1x2x3)x4
,X̂[3] = 1+x3+x3x4+x2x3x4

(1+x2+x1x2+x1x2x3)x4
,

X̂[4] = 1+x1+x1x3+x1x3x4

x3(1+x4+x2x4+x1x2x4)
.X̂[4] = 1+x1+x1x3+x1x3x4

x3(1+x4+x2x4+x1x2x4)
.X̂[4] = 1+x1+x1x3+x1x3x4

x3(1+x4+x2x4+x1x2x4)
.

Using the ∗ invariance, we can easily find the refined spectral generator:
X̂[1] = 1

x2+q−1/2x1x2+x1x2x3+x1x2x3x4
+ 1

q1/2x2x4
−1+x1x2x4

−1+x1x2x3x4
−1+x1x2x3

X̂[1] = 1
x2+q−1/2x1x2+x1x2x3+x1x2x3x4

+ 1
q1/2x2x4

−1+x1x2x4
−1+x1x2x3x4

−1+x1x2x3
X̂[1] = 1

x2+q−1/2x1x2+x1x2x3+x1x2x3x4
+ 1

q1/2x2x4
−1+x1x2x4

−1+x1x2x3x4
−1+x1x2x3

+ 1
x4

−1+x1x4
−1+x1x3x4

−1+q1/2x1x3
+ 1

x1
−1x4

−1+x4
−1+q−1/2x3x4

−1+x3
,+ 1

x4
−1+x1x4

−1+x1x3x4
−1+q1/2x1x3

+ 1
x1

−1x4
−1+x4

−1+q−1/2x3x4
−1+x3

,+ 1
x4

−1+x1x4
−1+x1x3x4

−1+q1/2x1x3
+ 1

x1
−1x4

−1+x4
−1+q−1/2x3x4

−1+x3
,

X̂[2] = 1
x1+q1/2x1x3+qx1x3x4+x1x2x3x4

+ 1
q1/2x1x2

−1+qx1x2
−1x3+q2x1x2

−1x3x4+qx1x3x4
X̂[2] = 1

x1+q1/2x1x3+qx1x3x4+x1x2x3x4
+ 1

q1/2x1x2
−1+qx1x2

−1x3+q2x1x2
−1x3x4+qx1x3x4

X̂[2] = 1
x1+q1/2x1x3+qx1x3x4+x1x2x3x4

+ 1
q1/2x1x2

−1+qx1x2
−1x3+q2x1x2

−1x3x4+qx1x3x4

+ 1
x2

−1+x2
−1x3+qx2

−1x3x4+q1/2x3x4
+ 1

x2
−1x3

−1+x2
−1+q1/2x2x4

−1+x4
,+ 1

x2
−1+x2

−1x3+qx2
−1x3x4+q1/2x3x4

+ 1
x2

−1x3
−1+x2

−1+q1/2x2x4
−1+x4

,+ 1
x2

−1+x2
−1x3+qx2

−1x3x4+q1/2x3x4
+ 1

x2
−1x3

−1+x2
−1+q1/2x2x4

−1+x4
,

X̂[3] = 1
x4+q−1/2x2x4+q−1x1x2x4+x1x2x3x4

X̂[3] = 1
x4+q−1/2x2x4+q−1x1x2x4+x1x2x3x4

X̂[3] = 1
x4+q−1/2x2x4+q−1x1x2x4+x1x2x3x4

+ 1
q−1/2x3

−1x4+q−1x2x3
−1x4+q−2x1x2x3

−1x4+q−1x1x2x4
+ 1

q−1/2x3
−1x4+q−1x2x3

−1x4+q−2x1x2x3
−1x4+q−1x1x2x4

+ 1
q−1/2x3

−1x4+q−1x2x3
−1x4+q−2x1x2x3

−1x4+q−1x1x2x4

+ 1
x3

−1+x2x3
−1+q−1x1x2x3

−1+x1x2
+ 1

x2
−1x3

−1+x3
−1+q−1/2x1x3

−1+x1
,+ 1

x3
−1+x2x3

−1+q−1x1x2x3
−1+x1x2

+ 1
x2

−1x3
−1+x3

−1+q−1/2x1x3
−1+x1

,+ 1
x3

−1+x2x3
−1+q−1x1x2x3

−1+x1x2
+ 1

x2
−1x3

−1+x3
−1+q−1/2x1x3

−1+x1
,

X̂[4] = 1
x3+q1/2x3x4+x2x3x4+x1x2x3x4

+ 1
q−1/2x1

−1x3+x1
−1x3x4+x1

−1x2x3x4+x2x3x4
X̂[4] = 1

x3+q1/2x3x4+x2x3x4+x1x2x3x4
+ 1

q−1/2x1
−1x3+x1

−1x3x4+x1
−1x2x3x4+x2x3x4

X̂[4] = 1
x3+q1/2x3x4+x2x3x4+x1x2x3x4

+ 1
q−1/2x1

−1x3+x1
−1x3x4+x1

−1x2x3x4+x2x3x4

+ 1
x1

−1+x1
−1x4+x1

−1x2x4+q−1/2x2x4
+ 1

x1
−1x4

−1+x1
−1+q1/2x1

−1x2+x2
.+ 1

x1
−1+x1

−1x4+x1
−1x2x4+q−1/2x2x4

+ 1
x1

−1x4
−1+x1

−1+q1/2x1
−1x2+x2

.+ 1
x1

−1+x1
−1x4+x1

−1x2x4+q−1/2x2x4
+ 1

x1
−1x4

−1+x1
−1+q1/2x1

−1x2+x2
.
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