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We study the symplectic analogue of log Calabi–Yau surfaces and
show that the symplectic deformation classes of these surfaces are
completely determined by the homological information.

1. Introduction

In [2] and [6], Auroux and Gross–Hacking–Keel proposed a way to interpret
mirror symmetry for Looijenga pair (X,D), where X is a smooth projective
surface over C and D is an effective reduced anti-canonical divisor on X with
maximal boundary. Under mirror symmetry, certain symplectic invariants of
X −D are conjectured to be related to holomorphic invariants of its mirror.
In this regard, Pascaleff showed in [24] that the symplectic cohomology of
X −D is, as a vector space, isomorphic to the global sections of the struc-
ture sheaf of its mirror. A step towards a deeper understanding of mirror
symmetry for Looijenga pairs would be to classify them. The moduli spaces
of such pairs were studied by Looijenga in [16] and Gross–Hacking–Keel in
[7]. Friedman gave an excellent survery in [4]. Since one direction of mir-
ror symmetry concerns about the symplectic invariants of X −D instead
of the holomorphic invariants, we would like to establish, in this paper, a
classification for ‘symplectic log Calabi–Yau surfaces’ (including ‘symplectic
Looijenga pairs’ as a special case). From symplectic point of view, we have
the following definition of log Calabi–Yau surfaces.

For a connected closed symplectic 4 dimensional manifold (X,ω), which
we assume throughout the whole paper, a symplectic divisor D is a con-
nected configuration of finitely many closed embedded symplectic surfaces
(called irreducible components) D = C1 ∪ · · · ∪ Ck. D is further required to
have the following two properties: No three different Ci intersect at a point
and any intersection between two irreducible components is transversal and
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positive. The orientation of each Ci is chosen to be positive with respect
to ω.

Definition 1.1. A symplectic log Calabi–Yau surface (X,D, ω) is a
closed symplectic real dimension four manifold (X,ω) together with a sym-
plectic divisor D representing the homology class of the Poincare dual of
c1(X,ω).

A symplectic Looijenga pair (X,D, ω) is a symplectic log Calabi–Yau
surface such that each irreducible component of D is a sphere.

Let (X,D, ω) be a symplectic log Calabi–Yau surface. By Theorem A of
[15] or [22] and the adjunction formula, it is easy to show (Lemma 3.1) that
X is uniruled with base genus 0 or 1, and D is a torus or a cycle of spheres.
And if (X,D, ω) is a symplectic Looijenga pair then X is rational.

Similar to studying the moduli space under complex deformation in the
complex category, we would like to classify symplectic log Calabi–Yau sur-
faces up to symplectic deformation equivalence.

Definition 1.2. A symplectic homotopy (resp. symplectic isotopy) of
(X,D, ω) is a smooth one-parameter family of symplectic divisors (X,Dt, ωt)
with (X,D0, ω0) = (X,D, ω) (resp. such that in addition ωt = ω for all t ∈
[0, 1]). (X ′, D′, ω′) is said to be symplectic deformation equivalent to
(X,D, ω) if it is symplectomorphic to (X,D1, ω1) for some symplectic ho-
motopy (X,Dt, ωt) of (X,D, ω). The symplectic deformation equivalence is
called strict if the symplectic homotopy is a symplectic isotopy.

Definition 1.3. Two symplectic log Calabi–Yau surfaces (X i, Di, ωi) for
i = 1, 2 are said to be homological equivalent if there is a diffeomorphsim
Φ : X1 → X2 such that Φ∗[C1

j ] = [C2
j ] for all j = 1, . . . , k. The homological

equivalence is called strict if Φ∗[ω2] = [ω1]. We call Φ a (strict) homological
equivalence.

Here is the main result of this paper.

Theorem 1.4. Let (Xi, Di, ωi) be symplectic log Calabi–Yau surfaces for
i = 1, 2. Then (X1, D1, ω1) is (resp. strictly) symplectic deformation equiva-
lent to (X2, D2, ω2) if and only if they are (resp. strictly) homological equiv-
alent.

Moreover, the symplectomorphism in the (resp. strict) symplectic defor-
mation equivalence has same homological effect as the (resp. strict) homolog-
ical equivalence.
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We remark that when D is a smooth divisor, the relative Kodaira di-
mension κ(X,D, ω) was introduced in [14] and it was noted there that
this notion could be extended to nodal divisors. With this extension un-
derstood, symplectic Calabi–Yau surfaces have relative Kodaira dimension
κ = 0 (cf. Theorem 3.28 in [14]). Moreover, Theorem 1.4 is also valid when
κ(X,D, ω) = −∞. This will be treated in the sequel. Coupled with the tech-
niques developed in [11], [12], some applications to Stein fillings will also be
treated in the sequel.

The paper is organized as follows. In Section 2 we introduce marked
divisors and establish the invariance of their deformation class under blow-
up/down in Proposition 2.10. This reduces Theorem 1.4 to the minimal cases.
In Section 3, we classify the deformation classes of minimal models and finish
the proof of Theorem 1.4.

The authors benefit from discussions with Mark Gross, Paul Hacking
and Sean Keel. Both authors are supported by NSF-grants DMS 1065927
and 1207037.

2. Symplectic deformation equivalence of marked divisors

We study the symplectic deformation equivalence property in a general set-
ting, which was initiated by Ohta and Ono in [23]. Here we provide details
using the notion of marked divisor, which encodes the blow-down informa-
tion. We will show that the deformation class of marked symplectic divisors
is stable under various operations.

2.1. Homotopy and blow-up/down of symplectic divisors

2.1.1. Homotopy. Parallel to the two types of homotopy of a symplectic
divisor (X,D, ω) mentioned in the introduction,

• Symplectic isotopy (X,Dt, ω), and
• Symplectic homotopy (X,Dt, ωt).

We also consider the more restrictive homotopies keeping D fixed:
• D−symplectic isotopy (X,D, ωt) with constant [ωt], and
• D−symplectic homotopy (X,D, ωt)
In particular, D−symplectic homotopies/isotopies are symplectic homo-

topies. To compare these notions we introduce the following terminology.

Definition 2.1. Two symplectic homotopies (X1, D1
t , ω

1
t ) and (X2, D2

t , ω
2
t )

are symplectomorphic if there exist a one parameter family of symplectomor-
phism Φt : (X

1, ω1
t )→ (X2, ω2

t ) such that Φt(D
1
t ) = D2

t for all t ∈ [0, 1].
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Lemma 2.2. A symplectic homotopy (resp. isotopy) of a symplectic divisor
is symplectomorphic to a D−symplectic homotopy (resp. isotopy) and vice
versa.

Proof. A D−symplectic homotopy is a symplectic homotopy by definition,
and by Moser lemma a D−symplectic isotopy is symplectomorphic to a sym-
plectic isotopy.

On the other hand, a symplectic homotopy (X,Dt, ωt) gives rise to a
smooth isotopy Φ : D × [0, 1]→ X. Since the intersections of D are transver-
sal and no three of the components intersect at a common point, we can ap-
ply the smooth isotopy extension theorem to extend Φ to a smooth ambient
isotopy Φ = {Φt} : X × [0, 1]→ X. Then we get a D−symplectic homotopy
(X,D,Φ∗

tωt) which is symplectomorphic to (X,Dt, ωt) via the one param-
eter family of symplectomorphisms {Φt}. Similarly, a symplectic isotopy is
symplectomorphic to a D−symplectic isotopy. �

Lemma 2.2 implies that symplectic isotopies (resp. homotopies) are the
same as D−symplectic isotopies (resp. homotopies), up to symplectomor-
phism. This simple observation will be repeatedly used.

2.1.2. Toric and non-toric blow-up/down. Throughout the paper, we
use the following terminology for symplectic blow-up/down of D ⊂ (X,ω).

A toric blow-up (resp. non-toric blow-up) of D is the total (resp.
proper) transform of a symplectic blow-up centered at an intersection point
(resp. at a smooth point) of D.

Here, for blow-up at a smooth point p on the divisor D, it means that
we first do a C0 small perturbation of D to D′ fixing p and then we do
a symplectic blow-up of a ball centered at p such that D′ coincide, in the
local coordinates given by the ball, with a complex subspace. Similarly, for
blow-up at an intersection point, a C0 small perturbation is performed so
that D′ is ω-orthogonal at p and D′ coincide, in the local coordinates given
by the ball, with two complex subspaces.

To describe the corresponding blow-down operations, recall that an em-
bedded symplectic sphere with self-intersection −1 is called an exceptional
sphere. The homology class of an exceptional sphere is called an exceptional
class.

A toric blow-down refers to blowing down an exceptional sphere con-
tained in D that intersects exactly two other irreducible components and
exactly once for each of them. Moreover, we require that the intersections
are positive and transversal. Such an exceptional sphere is called a toric
exceptional sphere.
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A non-toric blow-down refers to blowing down an exceptional sphere
not contained in D that intersects exactly one irreducible component of D
and exactly once with the intersection being positive and transversal. Such
an exceptional sphere is called a non-toric exceptional sphere.

More precisely, for blow-down of a toric or non-toric exceptional sphere
E, we first perturb our symplectic divisor D to another symplectic divisor D′

(or perturbing E) such that the intersections of D′ and E are ω-orthogonal
(In the case that E is an irreducible component of D, we require E has
ω-orthogonal intersections with all other irreducible components). Then, we
will do the symplectic blow-down of E and D′ will descend to a symplectic
divisor.

Definition 2.3. An exceptional class e is called non-toric if e has trivial
intersection pairing with all but one of the homology classes of the irreducible
components of D and the only non-trivial pairing is 1.

An exceptional class e is called toric if e is homologous to an irreducible
component of D such that e pairs non-trivially with the classes of exactly
two other irreducible components of D and these two pairings are 1.

Clearly, the homology class of a toric (non-toric) exceptional sphere is a
toric (non-toric) exceptional class. Conversely, we have the following obser-
vations.

For a toric exceptional class e, the component of D with class e is ob-
viously a toric exceptional sphere in the class e. For a non-toric exceptional
class e, we also have an exceptional sphere in the class e, at least when D is
ω−orthogonal.

Lemma 2.4. (cf. Theorem 1.2.7 of [20]) Let D be an ω-orthogonal sym-
plectic divisor. There is a non-empty subspace J (D) of the space of ω-tamed
almost complex structure making D pseudo-holomorphic such that for any
non-toric exceptional class e, there is a residue subset J (D, e) ⊂ J (D) so
that e has an embedded J-holomorphic representative for all J ∈ J (D, e).

Proof. It is immediate to prove that e is D-good in the sense of Defini-
tion 1.2.4 in [20] if e is non-toric. Theorem 1.2.7 of [20] then implies the
result. �

2.2. Deformation of marked divisors

When we blow down an exceptional sphere, we encode the process by marking
the descended symplectic divisor.
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Definition 2.5. A marked symplectic divisor consists of a five-tuple

Θ = (X,D, {pj}lj=1, ω, {Ij}lj=1)

such that
• D ⊂ (X,ω) is a symplectic divisor,
• pj , called centers of marking, are points on D (intersection points of D

allowed),
• Ij : (B(δj), ωstd)→ (X,ω), called coordinates of marking, are symplec-

tic embeddings sending the origin to pj such that I−1
j (D) = {x1 = y1 =

0} ∩B(δj) (resp. I−1
j (D) = ({x1 = y1 = 0} ∪ {x2 = y2 = 0}) ∩B(δj)) if pj

is a smooth (resp. an intersection) point of D. Moreover, we require that
the image of Ij are disjoint. Here, B(δj) is the standard symplectic ball of
radius δj .

If pj is an intersection point of D, then we define the symplectic embed-
ding Irej = Ij ◦ re, where re(x1, y1, x2, y2) = (−x2,−y2, x1, y1) interchanges
the two subspaces {x1 = y1 = 0} and {x2 = y2 = 0}. If pj is a smooth point
of D, then we define Irej = Ij . For simplicity, we denote a marked symplec-
tic divisor as (X,D, pj , ω, Ij) or Θ and also call it a marked divisor if no
confusion would arise.

Definition 2.6. Let Θ = (X,D, pj , ω, Ij) be a marked divisor. A D−
symplectic homotopy (resp. D−symplectic isotopy) of Θ is a 4-tuple
(X,D, pj , ωt) such that ωt is a smooth family of symplectic forms (resp. co-
homologous symplectic forms) on X with ω0 = ω and D being ωt-symplectic
for all t.

If Θ2 = (X2, D2, p2j , ω
2, I2j ) is another marked symplectic divisor and

there is a symplectomorphism sending the 4-tuple (X2, D2, p2j , ω
2) to a 4-

tuple (X,D, pj , ω1) which is symplectic homotopic (resp. isotopic) to Θ, then
we say that Θ and Θ2 are D−symplectic deformation equivalent (resp.
strict D−symplectic deformation equivalent).

A symplectic divisor can be viewed as a marked divisor without markings.

Lemma 2.7. Two symplectic divisors are (strict) deformation equivalent if
and only if they are (strict) D-deformation equivalent as marked symplectic
divisors.

Proof. It follows directly from Lemma 2.2. �
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For marked divisors, both D−symplectic deformation equivalence and
its strict version do not involve the symplectic embeddings Ij . We have the
following seemingly stronger definition of deformation.

Definition 2.8. Let Θ = (X,D, pj , ω, Ij) be a marked divisor. A strong
D−symplectic homotopy (resp. strong D−symplectic isotopy) of Θ is
a 5-tuple (X,D, pj , ωt, Ij,t) such that

• the 4-tuple (X,D, pj , ωt) is a D−symplectic homotopy (resp. isotopy)
of Θ,

• D is ωt-orthogonal, and
• Ij,t : B(εj)→ (X,ωt) are symplectic embedding sending the origin to

pj , Ij,0 = Ij |B(εj) and (Ij,t)
−1(D) = {x1 = y1 = 0} ∩B(εj) (resp. (Ij,t)−1(D)

= ({x1 = y1 = 0} ∪ {x2 = y2 = 0}) ∩B(εj)) if pj is a smooth point (resp. pj
is an intersection point), for some εj < δj .

If Θ2 = (X2, D2, p2j , ω
2, I2j ) is another marked sympelctic divisor and

there is a symplectomorphism sending (X2, D2, p2j , ω
2, (I2j )

#) to (X,D,

pj , ω1, Ij,1), where (I2j )
# is the unique choice between I2j and (I2j )

re such that
the existence of symplectomorphism is possible, then we say that Θ and Θ2

are strong D−symplectic deformation equivalent (resp. strong strict
D−symplectic deformation equivalent).

Lemma 2.9. If Θ = (X,D, {pj}lj=1, ω, {Ij}lj=1) and Θ
2 = (X2, D2, {p2j}lj=1,

ω2, {I2j }lj=1) are (strict) D−symplectic deformation equivalent, then they are
strong (strict) D−symplectic deformation equivalent.

Proof. We will only do the case when l = 1. The general case is similar. We
denote p1 as p, I1 as I and I21 as I2.

By assumption, there is a D−symplectic homotopy (X,D, p, ωt) of Θ
such that there is a symplectomorphism sending (X,D, p, ω1) to (X2, D2,
p21, ω

2). Therefore, without loss of generality, we can assume (X,D, p, ω1) =
(X2, D2, p21, ω

2).
The proof is easier when p is a smooth point of D so we only prove the

case when p is an intersection point of D. Moreover, by possibly replacing I2

with (I2)re, we can assume the irreducible component of D corresponding
to {x1 = y1 = 0} in chart I is the same as that of I2.

The idea of the proof goes as follows. First, we find a smooth family
of symplectic embeddings of small ball Φt : (B(δ), ωstd)→ (X,ωt) sending
the origin to p such that Φ0 = I|B(δ) and Φ1 = I2|B(δ). Then, we find an-
other family of symplectic forms ω′

t such that the 4-tuple (X,D, p, ω′
t) is

still a D−symplectic homotopy of Θ with ω′
1 = ω1 and D is ω′

t-orthogonal
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for all t. A corresponding symplectic embeddings I ′t for (X,D, p, ω′
t) will be

constructed based on Φt such that the 5-tuple (X,D, p, ω′
t, I

′
t) is a strong

D−sympelctic homotopy between Θ and Θ2 and this will finish the proof.
We begin our construction of Φt. By the one-parameter family version of

Moser lemma, there exist a sufficiently small ε > 0 and a smooth family of
symplectic embeddings Φ = {Φt} : (B(ε), ωstd)→ (X,ωt) sending the origin
to p for all t ∈ [0, 1]. Moreover, Φ0 can be chosen to coincide with I|B(ε).
This is not yet the Φt we want.

Notice that Φ1 is a symplectic embedding of (B(ε), ωstd) to (X,ω1) send-
ing the origin to p and so is I2|B(ε). By possibly choosing a smaller ε, there is
a symplectic isotopy of embeddings from Φ1 to I2|B(ε) sending the origin to p
for all time, by the trick in Exercise 7.22 of [18] (This is the trick to prove the
space of symplectic embeddings of small balls is connected). By smoothing
the concatenation of Φt with this symplectic isotopy, we can assume that
Φ1 = I2|B(ε).

We need to further modify Φt by another concatenation. We consider
the family of local divisors Let Ft = Φ−1

t (D) in the standard coordinates in
(B(ε), ωstd). Let Mt be the ordered 2-tuple of the symplectic tangent spaces
to the two branches of Ft at the origin. Since Φ0 = I|B(ε) and Φ1 = I2|B(ε),
Mt is a loop. Let −Mt be the inverse loop of Mt in the space of ordered 2-
tuples of positively transversal intersecting two dimensional symplectic vec-
tor subspaces. We can find an isotopy of symplectic embeddings Ψt from Φ1

to Φ1 in (X,ω1) such that the corresponding ordered 2-tuple of the sym-
plectic tangent spaces of Ψ−1

t (D) at the origin is −Mt. By concatenating Φt

with Ψt, we can assume at the beginning that the Φt we chose is such that
Mt is null-homotopic. This is the Φt we want which gives a nice family of
Darboux balls in (X,ωt).

To construct ω′
t, we will isotope the one parameter family of local di-

visors Ft (fixing both ends) to another one parameter family of symplectic
divisors F1,t such that it coincides with F0 = F1 near the origin for all t.
First, we perform a one-parameter family of C1 small perturbations to make
Ft coincide with a symplectic vector subspace in a sufficiently small ball
(B(ε2), ωstd), where ε2 < ε. In other words, Ft coincides with Mt in B(ε2).
Since Mt is null-homotopic, there is a homotopy Wr,t between Mt (r = 0)
and the constant path M0 = M1 (r = 1) such that Wr,0 = Wr,1 = M0 for
all r. Hence, we can perform a one-parameter family of Lemma 5.10 of [21]
(See its proof) to obtain a 3-parameter family of submanifolds Ur,s,t in B(ε2)
such that Ur,s,t = Ws,t outside a fixed small compact set containing the ori-
gin, Ur,s,t = Wr,t close to the origin and Ur,r,t = Wr,t. As in the proof of
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Lemma 5.10 of [21], from Ur,s,t one can construct an s−parameter of sym-
plectic isotopy Fs,t ⊂ B(ε2) such that

• F0,t = Ft,
• Fs,t is a pair of symplectic submanifolds positively intersecting at the

origin for all s, t ∈ [0, 1],
• F1,t = F0 = F1 = M0 = M1 inside B(ε4) for all t,
• Fs,0 = Fs,1 = F0 = F1, and
• the isotopy is supported inside B(ε3),

where 0 < ε4 < ε3 < ε2.
Due to the last bullet, we obtain a 2−parameter family of marked divi-

sors Ds,t with D0,t = Dt, Ds,0 = Ds,1 = D, and satisfying the bullets 2 and
3 above near the marked point (recall we assume there is only one marking
for simplicity).

The effect of the symplectic isotopy from Dt (s = 0) to D1,t (s = 1)
can be converted through symplectomorphism, as in Lemma 2.2, to replace
(X,D, p, ωt) (s = 0) by an another D−symplectic homotopy (X,D, p, ω′

t)
(s = 1). More precisely, for the 1-parameter family of isotopy Ds,t param-
eterized by t, we can find a 1-parameter family of ambient isotopy Δ =
{Δs}t∈[0,1] = {Δs,t}, Δs,t : X → X extending the 1-parameter family of iso-
topy Ds,t (in particular, for fixed t0, Δs,t0 is an ambient isotopy extension of
Ds,t0) such that Δ0,t = Δs,0 = Δs,1 = IdX . Then we define ω′

t = Δ∗
1,tωt.

By construction, we have
• ω′

i = ωi for i = 0, 1,
• D is positively ω′

t-orthogonal for all t
• there is a family of symplectic embedding Φ′

t : B(ε4)→ (X,ωt) such
that Φ′−1

t (D) = F0 for all t, and
• Φ′

0 = I|B(ε4) and Φ′
1 = I2|B(ε4)

In particular, if we let I ′t = Φ′
t, then (X,D, p, ω′

t, I
′
t) is a strong D−

symplectic homotopy between Θ and Θ2. The strict version follows simi-
larly. �

The ultimate goal for this section is the following proposition, which will
be proved after discussing various operations for marked divisors in the next
subsection.

Proposition 2.10. Let Θ = (X,D, pj , ω, Ij) and Θ2 = (X2, D2, p2j , ω
2, I2j )

be two marked divisors both with l marked points.
(i) Up to moving inside the D−symplectic deformation class, we can blow

down a toric or non-toric exceptional class in Θ (and Θ2) to obtain a marked
divisor Θ̂ (resp. Θ̂2) with an extra marked point (For toric exceptional class,
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original marked points on the exceptional sphere will be removed after blow-
down).

(ii) Moreover, if the blow down divisors Θ̂ and Θ̂2 are D−symplectic
deformation equivalent such that the extra marked points correspond to each
other via the equivalence, then Θ and Θ2 are D−symplectic deformation
equivalent.

2.3. Operations on marked divisors

This subsection studies various operations on marked divisors as well as their
stability properties with respect to D−symplectic deformation.

• Perturbations

The following fact will be frequently used.

Lemma 2.11. Perturbations of a marked divisor preserve the strict D−
symplectic deformation class.

Proof. A perturbation of a marked divisor is determined by a symplectic
isotopy of the corresponding underlying unmarked divisor and isotopies of
the centers (points) on the symplectic isotopy. By Lemma 2.2, the perturbed
divisor is symplectomorphic to the original divisor, up to a D−symplectic
isotopy. The result follows. �

• Marking addition

A marking addition of a marked divisor (X,D, {pj}lj=1, ω, {Ij}lj=1) is an-
other marked divisor (X,D, {pj}l+1

j=1, ω, {Ij}l+1
j=1) with the additional marking

(pl+1, Il+1).

Lemma 2.12. Let (X,D, {pj}lj=1, ω, {Ij}lj=1) be a marked divisor. If the
two marked divisors (X,D, {pj}lj=1 ∪ {q1}, ω, {Ij}lj=1 ∪ {Iq1}) together with
(X,D, {pj}lj=1 ∪ {q2}, ω, {Ij}lj=0 ∪ {Iq2}) are obtained by adding markings
(q1, Iq1) and (q2, Iq2) respectively, then they are strict D−symplectic defor-
mation equivalent if

• the centers q1 and q2 coincide (intersection points of D allowed), or
• q1 and q2 are distinct smooth points of the same irreducible component.

Proof. If q1 and q2 are the same point of D, then the claim is trivial since
Definition 2.6 only involves the centers of marking, but not the coordinates
of markings.
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If q1 and q2 are smooth points of the same irreducible component, say C1,
then we need to show that the 4-tuple (X,D, {pj}lj=1 ∪ {q2}, ω) is symplec-
tomorphic to a D−symplectic isotopy of (X,D, {pj}lj=1 ∪ {q1}, ω). For this
purpose, we find a symplectic isotopy of D fixing C1 setwise, fixing intersec-
tion points and {pj} pointwise and moving q1 to q2. Using the smooth isotopy
extension theorem as in Lemma 2.2, this isotopy of symplectic divisor gives
rise to a smooth isotopy Φt of X. The desired D−symplectic isotopy is ob-
tained by taking theD−symplectic isotopy to be (X,D, {pj}lj=1 ∪ {q1},Φ∗

tω)

and the symplectomorphism to be Φ1 : (X,D, {pj}lj=1∪{q1},Φ∗
1ω)

→ (X,D, {pj}lj=1 ∪ {q2}, ω). �
We note that marking addition at an intersection point of a marked divi-

sor is not always possible because the intersection might not be ω-orthogonal.
However, by Lemma 2.11, marking addition at a non-marked intersection
point is always possible at the cost of choosing another representative in the
strict D−symplectic deformation class because a C0 small perturbation of a
symplectic divisor is sufficient to make the intersection points ω-orthogonal
([5]).

• Marking moving

Sometimes, it is useful to be able to move an intersection point.

Lemma 2.13. Let (X,D = C1 ∪ C2 ∪ · · · ∪ Ck, {pj}lj=1, ω, {Ij}lj=1) be a
marked divisor. Let [C2]

2 = −1 and p1 = C1 ∩ C2. For any smooth point p1
on C2, there is a marked divisor (X,D = C1 ∪ C2 ∪ · · · ∪ Ck, {p1} ∪ {pj}lj=2,

ω′, {Ij}lj=1) such that p1 = C1 ∩ C2, where ω′ = ω and C1 = C1 away from a
small open neighborhood of C2. Moreover, these two marked divisors are in
the same D−symplectic deformation equivalence class.

Proof. By Lemma 2.11 we may assume that the intersection points of D are
ω-orthogonal. In particular, if Cj intersects C2, then Cj coincides with a
fiber of the symplectic normal bundle of C2 when identifying the symplectic
normal bundle with a tubular neighborhood of C2.

Choose an ω-compatible almost complex structure J integrable near C2

which coincides with (Ij)∗(Jstd) for all j and making the symplectic normal
bundle a holomorphic vector bundle. We blows down C2 and identify the
ball obtained by blowing down C2 as a chart (B(ε), ωstd, Jstd). In this chart,
Cj descends to the union of complex vector subspaces Vj each of which
corresponds to an intersection point of C2 ∩ Cj . On the other hand, p1 being a
point on C2 represents a complex vector subspace Vp1

in this chart. We take a
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smooth family of complex vector subspacesWt from V1 to Vp1
avoiding Vj for

all j 	= 1. Applying the trick in Lemma 5.10 of [21] with N = N ′ = ∅, i = 1,
S being the center of B(ε), S1 being the descended C1, Wt = W t

1, we obtain
an isotopy of symplectic manifolds Ct supported in B(ε) from the descended
C1 (i.e. Ct=0) to some Ct=1 = C̃1 such that Ct coincides with Wt near the
origin of B(ε) for all t. By blowing up B(ε2) ⊂ B(ε) for some sufficiently
small ε2, we can lift this symplectic isotopy to a D−symplectic deformation
from (X,D = C1 ∪ C2 ∪ · · · ∪ Ck, {pj}lj=1, ω, {Ij}lj=1) to (X,D = C1 ∪ C2 ∪
· · · ∪ Ck, {p1} ∪ {pj}lj=2, ω

′, {Ij}lj=1) such that p1 = C1 ∩ C2, where C1 is the
proper transform of C̃1. �

• Canonical blow-up

Given a marked divisor with l markings, there are l canonical blow-ups
we can do, namely, blow-ups using the symplectic embeddings Ij and hence
the blow-up size is B(δj). A canonical blow-up of a marked divisor is still a
marked divisor with one less the number of pj ’s.

Lemma 2.14. If Θ = (X,D, {pj}lj=1, ω, {Ij}lj=1) and Θ2 = (X2, D2,

{p2j}lj=1, ω
2, {I2j }lj=1) are D−symplectic deformation equivalent, then so are

the marked divisors obtained by canonical blow-ups using I1 and I21 .

Proof. By Lemma 2.9, Θ and Θ2 are strong D−symplectic deformation
equivalent. By blowing up using I1,t, we obtain a D−symplectic deforma-
tion equivalence between the blown-up marked divisors. �

2.4. Proof of Proposition 2.10

Proof of Proposition 2.10. For a non-toric class e, we can find by Lemma 2.4,
a pseudo-holomorphic representative E such that D is at the same time
pseudo-holomorphic, after possibly applying Lemma 2.11 to deform Θ within
the strict D−symplectic deformation class. By positivity of intersection, E
intersects exactly one irreducible component of D and the intersections is
positively transversally once and hence a non-toric exceptional curve. By
perturbing E, we can assume E has ω-orthogonal intersection with D. We
can get a marked divisor after blowing down E with a marked point corre-
sponds to the contracted E.

For a toric class e, we again apply Lemma 2.11 to deform Θ within
its strict D−symplectic deformation class such that every intersection is
ω-orthogonal. The irreducible component E of D in the class e is a toric
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exceptional sphere. Hence, E intersects two other irreducible components of
D once. We apply Lemma 2.13 to find another representative of Θ in the
D−symplectic deformation class such that after we blow down the excep-
tional curve, the intersection point corresponding to the exceptional curve is
an ω-orthogonal intersection point so this descended divisor is still a marked
divisor (recall, a marking for a marked divisor at an intersection point re-
quires the intersection point is an ω-orthogonal intersection).

Finally, suppose the blow down divisors are D−symplectic deformation
equivalent. We want to do canonical blow-ups and marking additions to
recover our original divisor D and D2. Notice that, marking additions are
needed because when one blow down a divisor which originally has markings
on it, the marking will not persist after the blow-down. Therefore, when we
blow up the symplectic ball back, we need marking additions to get back the
original marked divisor. We remark that we may not get back exactly the
pair of D and D2 by just canonical blow-ups and marking additions but we
can get some pair in the same D−symplectic deformation equivalence classes
by Lemma 2.11.

Since D−symplectic deformation equivalence is stable under canonical
blow-ups (Lemma 2.14) and marking additions (Lemma 2.12), we conclude
that Θ is D−symplectic deformation equivalent to Θ2. �

3. Minimal models

We first collect some facts, which should be well known to experts.

Lemma 3.1. Let (X,D, ω) be a symplectic log Calabi–Yau surface. Then X
is rational or an elliptic ruled surface, and D is either a torus or a cycle of
spheres. If (X,D, ω) is a symplectic Looijenga pair, then (X,ω) is rational.

Proof. Since D is symplectic and [D] = PD(c1(X,ω)), we have c1(X,ω) ·
[ω] = [D] · [ω] > 0. By Theorem A of [15] or [22], X is rational or ruled.

Write D = C1 ∪ C2 · · · ∪ Ck, where each Ci is a smoothly embedded
closed symplectic genus gi surface. By adjunction, we have [Ci] · [D] = [Ci]

2 +
2− 2gi. Therefore, we have

[Ci] ·
⎛
⎝∑

j �=i

[Cj ]

⎞
⎠ = 2− 2gi ≥ 0.

In particular, we have gi ≤ 1 for all i. Since we assumed D is connected (we
always assume a symplectic divisor is connected), D is either a torus or a
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cycle of spheres. Here a cycle of spheres means that the dual graph is a circle
and each vertex has genus 0.

If X is not rational, then X admits an S2−fibration structure over a
Riemann surface of positive genus. After possibly smoothing, we get a torus
T representing the class c1(X). Moreover, c1(X)(f) = 2 where f is the fiber
class. The projection from T to the base is of non-zero degree. Therefore,
the base genus of X is at most 1.

If (X,D, ω) is a symplectic Looijenga pair, then at least one of the sphere
component pairs positively with the fiber class (by c1(X)(f) = 2 again).
Hence, the base genus is 0 and X is rational. �

For a cycle with k spheres we will also call it a k−gon, and a torus a
1−gon. If we allow some Ci to be positively immersed, then by adjunction
we see that the only possibility is a single sphere with one positive double
point, which we call a degenerated 1-gon.

The following observations are straightforward.

Lemma 3.2. The operations of toric blow-up, non-toric blow-up, toric blow-
down and non-toric blow-down all preserve being symplectic log Calabi–Yau.

In the next subsection it is convenient to apply a slightly more general
version of toric blow-down: Suppose a component C of a bi-gon D is an
exceptional sphere. The generalized toric blow down of D along C is blowing
down C, which results in a degenerated 1-gon. Notice that the homology
class of a degenerated 1-gon is still Poincare dual to the first Chern class.

3.1. Minimal reductions

Definition 3.3. A symplectic log Calabi–Yau surface (X,D, ω) is called a
minimal model if either (X,ω) is minimal, or (X,D, ω) is a symplectic
Looijenga pair with X = CP 2#CP 2.

Lemma 3.4. Every symplectic log Calabi–Yau surface can be transformed
to a minimal model via a sequence of non-toric blow-downs followed by a
sequence of toric blow-downs.

Proof. Non-toric blow-down. Suppose e is an exceptional class intersect-
ing each component of D non-negatively. Then e is a non-toric exceptional
class by adjunction.

By Lemma 2.4, there is an ω-compatible almost complex structure J
such that D is J-holomorphic (possibly after perturbation of D) and e has
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an embedded J-holomorphic sphere representative E. Thus we can perform
non-toric blow-down along E.

By iterative non-toric blow-downs, we end up with a symplectic log
Calabi–Yau surface (X0, D0, ω0) such that any exceptional class pairs nega-
tively with some component of D.

Toric blow-down. IfX0 is not minimal and not diffeomorphic to CP 2#CP 2,
then for any ω0-compatible J0 making D0 J0-holomorphic, the exceptional
class with minimal ω0-area has an embedded J0-holomorphic representative,
by Lemma 1.2 of [25]. Therefore, this embedded representative must coincide
with an irreducible component C of D0.

Therefore if D0 is a torus then X0 must be minimal. So from now on we
assume that D0 is a cycle of spheres, ie. (X0, D0, ω0) is a Looijenga pair.

Suppose that C intersects two other components of D0 and hence a
toric exceptional sphere. In this case we perform toric blow down along C
to get another symplectic Looijenga pair (X ′

0, D
′
0, ω

′
0). We claim that there

is no exceptional class in X ′
0 that pairs all irreducible components of D′

0

non-negatively. If there were one, by Lemma 2.4, after possibly perturb-
ing D′

0 to be ω′
0−orthogonal, then there would be an embedded pseudo-

holomorphic representative E′
0 intersecting exactly one irreducible compo-

nent of D′
0 transversally at a smooth point. This E′

0 can be lifted to the
symplectic log Calabi–Yau surface (X0, D0, ω0) because the contraction of C
becomes an intersection point of D′

0, which is away from E′
0. Contradiction.

Therefore, we can continue to perform toric blow-down until the ambient
manifold is minimal, diffeomorphic to CP 2#CP 2 or the minimal area excep-
tional sphere intersect only one irreducible component of the divisor.

We now consider the case that the minimal area expectional sphere C
only intersects with one component of the divisor D0, then D0 must be a
bigon. We claim that X0 = CP 2#CP 2 in this case, and hence (X0, D0, ω0)
is minimal, according to Definition 3.3. To see why X0 = CP 2#CP 2, we
apply a generalized toric blow-down along C to obtain (X ′

0, D
′
0, ω

′
0) where

D′
0 is a degenerated 1-gon. We next show that (X ′

0, ω
′
0) is minimal. After

possibly perturbing the nodal point of D′
0 to be ω

′
0−orthogonal so D′

0 can be
made a pseudo-holomorphic nodal sphere, the analysis above also shows that
there is no exceptional class in X ′

0 that intersects [D
′
0] non-negatively. Since

D′
0 represents the Poincáre dual of c1(X

′
0, ω

′
0), there are also no exceptional

class intersecting [D′
0] negatively. Thus, it means that X

′
0 = CP 2 or S2 × S2.

If X ′
0 is S2 × S2, then D′

0 is obtained by blowing down a component of a
bi-gon D0 in X0 = CP 2#2CP 2. In this case there are three exceptional class
in (X0, ω0) with pairwise intersecting number 1. It is simple to check by
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adjunction that any exceptional class not represented by any of the two
components of D0 is non-toric. But this situation would not appear due to
our procedure which performs non-toric blow down first. Hence the only
possibility is that X ′

0 = CP 2, from which it follows that X0 = CP 2#CP 2.
In summary, we can do iterative toric blow-downs from (X0, D0, ω0) to

obtain a symplectic Looijenga pair (Xb, Db, ωb) such that either (Xb, ωb) is
minimal or Xb is diffeomorphic to CP 2#CP 2. �

From Lemma 3.1, Lemma 3.2, Lemma 3.4 and adjunction formula, we
can enumerate the minimal symplectic log Calabi–Yau surfaces up to the
homology of the irreducible components.

• Case (A): The base genus of X is 1. D is a torus.
• Case (B): X = CP 2. c1 = 3H. Then the symplectic log Calabi–Yau are
(B1) D is a torus,
(B2) D consists of a H−sphere and a 2H−sphere, or
(B3) D consists of three H−spheres.
• Case (C): X = S2 × S2, c1 = 2f + 2s, where f and s are the homology

classes of the two factors. By adjunction, the homology af + bs of any em-
bedded symplectic sphere satisfies a = 1 or b = 1. Symplectic log Calabi–Yau
surfaces are

(C1) D is a torus.
(C2) If D has two irreducible components C1 and C2, then the only

possible case (modulo obvious symmetry) is [C1] = f + bs and [C2] = f +
(2− b)s. Its graph is given by

•2b •4−2b

(C3) If D has three irreducible components C1, C2 and C3, then the only
possible case (modulo obvious symmetry) is [C1] = f + bs, [C2] = f + (1−
b)s and [C3] = s. Its graph is given by

•2b •2−2b

•0

(C4) If D has four irreducible components, then the only possible case
(modulo obvious symmetry) is [C1] = f − bs, [C2] = f + bs, [C3] = s and
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[C3] = s. Its graph is given by

•2b •0

•0 •−2b

It is not hard to draw contradiction if D has 5 or more irreducible com-
ponents.

• Case (D): X = CP 2#CP 2. c1 = f + 2s, where f and s are fiber class
and section class, respectively, such that f2 = 0, f · s = 1 and s2 = 1. By
adjunction, the homology af + bs of an embedded symplectic sphere satisfies
b = 1 or b = 2− 2a.

(D1) D cannot be a torus because it would not be minimal.
(D2) If D has two irreducible components C1 and C2, then the only two

possible cases (modulo obvious symmetry) are ([C1], [C2]) = (af + s, (1−
a)f + s) and ([C1], [C2]) = (f, 2s). The graphs are given by

•2a+1 •3−2a

and

•4 •0

(D3) If D has three irreducible components, then the only possible case
(modulo obvious symmetry) is [C1] = af + s, [C2] = −af + s and [C3] = f .

•2a+1 •−2a+1

•0

(D4) If D has four irreducible components, then the only possible case
(modulo obvious symmetry) is [C1] = af + s, [C2] = −(a+ 1)f + s, [C3] = f
and [C4] = f .

•2a1+1 •0

•0 •−2a1−1

It is not hard to draw contradiction if D has 5 or more irreducible com-
ponents.



368 T.-J. Li and C. Y. Mak

3.2. Deformation classes of minimal models

In this section, we study the symplectic deformation classes of minimal sym-
plectic log Calabi–Yau surfaces.

Proposition 3.5. Let (X,D = C1 ∪ · · · ∪ Ck, ω) be a minimal symplectic
log Calabi–Yau surface. If D = C1 ∪ · · · ∪ Ck ⊂ (X,ω) is another symplectic
divisor representing the first Chern class such that [Ci] = [Ci] for all i. Then
(X,D, ω) is symplectic deformation equivalent to (X,D, ω).

The proof of Proposition 3.5 is separated into two cases, Proposition 3.6
and Proposition 3.9.

3.2.1. Isotopy in rational surfaces.

Proposition 3.6. Suppose (X,D, ω) and (X,D, ω) satisfy the assumptions
of Proposition 3.5 such that, in addition, X is rational, then D is symplectic
isotopic to D.

The proof of Proposition 3.6 when D is a torus is given by [28] and
Theorem B and Theorem C of [27]. We only need to deal with symplectic
Looijenga pairs.

Recall that cohomologous symplectic forms on a rational or ruled 4-
manifold are symplectomorphic (cf. [29], [10] and the survey [26]). Therefore
it suffices to consider the following ‘standard symplectic models’ for S2 × S2,
CP 2 and CP 2#CP 2.

• S2 × S2 model:
When X is diffeomorphic to S2 × S2, we define the product symplectic

form ωλ = (1 + λ)σ × σ with σ a symplectic form on the second factor with
area 1 and λ ≥ 0. Let E0 be the class of the first factor, F be the class of
the second factor and E2k = E0 − kF for 0 ≤ k ≤ l, where l is the integer
with l − 1 < λ ≤ l. For 0 ≤ k ≤ l, let Uk be the set of ωλ-compatible almost
complex structure such that E2k is represented by an embedded pseudo-
holomorphic sphere.

• CP 2 model:
When X is diffeomorphic to CP 2, we use a multiple of the Fubini–Study

form, cωFS .
• CP 2#CP 2 model:
When X is diffeomorphic to CP 2#CP 2, we use ωλ to denote a form

obtained by blowing up (CP 2, (2 + λ)ωFS) with size 1 + λ. So the line class
H has area 2 + λ and the exceptional class E1 has area 1 + λ, where λ >
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−1. Let F = H − E1 be the fiber class and let also E2k+1 = E1 − kF for
0 ≤ k ≤ l, where l is again the integer with l − 1 < λ ≤ l. Similarly, let Uk

be the space of ωλ-compatible almost complex structure such that E2k+1 is
represented by an embedded pseudo-holomorphic sphere.

Proposition 3.7. (Proposition 2.3 and Corollary 2.8 of [1], see also Propo-
sition 6.4 of [13]) Let (X,ωλ) be one of the above two cases. For each
0 ≤ k ≤ l, Uk is non-empty and path connected. As a result, any two embed-
ded symplectic spheres C0 and C1 representing the same class Ej for some
0 ≤ j ≤ 2l + 1 are symplectic isotopic to each other.

Lemma 3.8. Let (X,ωλ) be as in Proposition 3.7. Assume C0, C1 ⊂ X are
two embedded symplectic spheres representing the same class Ej for some 0 ≤
j ≤ 2l + 1. Then there is a Hamiltonian diffeomorphism of (X,ωλ) sending
C0 to C1.

Proof. By Proposition 3.7, we can find a symplectic isotopy Ct ⊂ X from
C0 to C1. We can extend this symplectic isotopy from a neighborhood of C0

to a neighborhood of C1 by a Moser type argument (See e.g. Chapter 3 of
[18]). Our aim is to extend this symplectic isotopy to an ambient symplectic
isotopy in order to obtain the result.

We first extend this symplectic isotopy to an ambient diffeomorphic
isotopy Φ : X × [0, 1]→ X. By considering the pull-back form Φ∗ωλ, we
can identify C0 = Φ−1

t (Ct) for all t in the family of symplectic manifold
(X × {t},Φ∗ωλ|X×{t}), as in Lemma 2.2. We denote Φ∗ωλ|X×{t} as ωt

λ. By
definition, ωt

λ is fixed near C0 for all t. Identify a tubular neighborhood of
C0 with a symplectic normal bundle. Then, choose a smooth family of ωt

λ-
compatible almost complex structure Jt on X such that Jt is fixed near C0

and the fibers of the normal bundle of C0 are Jt-holomorphic. Pick a point
p0 on C0. Let the Jt holomorphic sphere representing the fiber class F and
passing through p0 be CF

t . Since the fiber class with a single point constraint
has Gromov–Witten invariant one or minus one, CF

t forms a symplectic iso-
topy by Gromov compactness. By Lemma 3.2.1 of [20] (let C0 be CS1 and
[CF

t ] be B1), we can assume that the intersection between C0 and CF
t is

ωt
λ-orthogonal, after possibly perturbing Jt.
Now, Φ(C0, t) ∪ Φ(CF

t , t) = Ct ∪ Φ(CF
t , t) is an ωλ orthogonal symplectic

isotopy in (X,ωλ) (Strictly speaking, CF
t is the image of another diffeomor-

phic isotopy Ψ such that CF
t = Ψ(CF

0 , t) and C0 = Ψ(C0, t), then the isotopy
we want is Φ(Ψ(·, t), t)). We can extend this symplectic isotopy to a neighbor-
hood of it by another Moser type argument since Φ(C0, t) intersects Φ(CF

t , t)
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ωλ-orthogonally. We have the exact sequence

H1(C0 ∪ CF
0 ,R) = 0→ H2(X,C0 ∪ CF

0 ,R)→ H2(X,R)→ H2(C0 ∪ CF
0 ,R)

where the last arrow is an isomorphism and hence H2(X,C0 ∪ CF
0 ,R) = 0.

By Banyaga extension theorem (See e.g. [18]), there is an ambient symplectic
isotopy extending the symplectic isotopy Ct ∪ Φ(CF

t , t). Finally, this ambient
symplectic isotopy is a Hamiltonian isotopy because H1(X) = 0. �

Proof of Proposition 3.6. As seen in the previous section, D and D have at
most four irreducible components. We are going to prove Proposition 3.6
by dividing it into the cases of two, three or four irreducible components.
The proof for bigons is written with details, while the proof for triangles or
rectangles being similar to that of bigons will be sketched.

• Bigons
First, let (X,ω) = (S2 × S2, cωλ) for some constant c, D = C1 ∪ C2, D =

C1 ∪ C2 and [Ci] = [Ci] for i = 1, 2. Without loss of generality, we may as-
sume [C1]

2 ≤ [C2]
2. From the enumeration, we have [C1] = F + (2− b1)E0

and [C2] = F + b1E0 for some b1 ≥ 1, or [C1] = (2− a1)F + E0 and [C2] =
a1F + E0 for some a1 ≥ 1. We consider the latter case and the first case can
be treated similarly.

We first consider a1 ≥ 2. By Lemma 3.8, after composing a Hamilto-
nian diffeomorphism, we can assume C1 and C1 completely coincide. Fix an
ω-tamed almost complex structure J0 making C1 = C1 pseudo-holomorphic
and integrable near C1. Consider the set of ω-tamed almost complex struc-
ture J agree with J0 near C1. Fix J ∈ J , we want to inspect all possible
degenerations of J-holomorphic nodal curve representing [C2]. By positiv-
ity of intersection, positivity of area and adjunction, the homology class
aF + bE0 of any J-holomorphic curve has non-negative coefficient for the
E0 factor (i.e. b ≥ 0). Therefore, the irreducible components (possibly not
simple) of any J-holomorphic curve representing [C2] give rise to a decom-
position [C2] = (s1F + E0) + s2F + · · ·+ smF , where sj > 0 for 2 ≤ j ≤ m
(by positivity of intersection with [C1]). If s1 ≤ 0, then s1F + E0 = [C1] by
positivity of intersection with [C1]. The sum of non-negative Fredholm index
of the underlying curve of each individual component is given by Indnodal =
(4s1 + 2) + 2(m− 1) when s1 ≥ 0, and Indnodal = 2(m− 1) when s1 < 0 be-
cause the class s1F + E0 is primitive and the underlying curve for sjF
has homology F (the index formula for a pseudo-holomorphic curve with
class A is 2c1(A)− 2). On the other hand, the index of the class [C2] is
given by IndC2

= 2(2a1 + 2)− 2 = 4(
∑m

i=1 si) + 2 = (4s1 + 2) + 4(
∑m

i=2 si).
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If s1 ≥ 0 and m ≥ 2, we have

Indnodal + 2 ≤ (4s1 + 2) + 4

(
m∑
i=2

si

)
= IndC2

If s1 < 0, we have s1 = 2− a1 and hence

Indnodal + 2 = 2(m− 1) + 2 ≤ 2

(
m∑
i=2

si

)
+ 2

= 2(a1 − (2− a1)) + 2 = 4a1 − 2 < IndC2

Therefore, any degeneration happens in codimension two or higher.
Then we can apply the standard pseudo-holomorphic curve argument to

obtain a symplectic isotopy from C2 to C2 transversal to C1 for all time along
the isotopy and finish the proof. Since we could not find a reference that fits
exactly to our situation (Proposition 1.2.9(ii) of [20] is a very closely related
one), we provide some details here. We will basically follow [19] together with
Lemma 3.2.2 and Proposition 3.2.3 of [20].

We perturb C2 and C2 so that they have 2a1 + 1 distinct intersection
points and call these intersection points {pj}2a1+1

j=1 . We form the universal
moduli space for genus 0 curve representing the class [C2] with 2a1 + 1 point
constraints {pj}2a1+1

j=1 with respect to the space of almost complex structures
J . We want to pick J, J ∈ J that are regular for all underlying (marked)
simple curves appearing in a degeneration of [C2] except C1 = C1 such that
C2 is J-holomorphic and C2 is J-holomorphic.

To find J and J , we note the following two facts. For any J ∈ J (resp.
J ∈ J ) making C2 J-holomorphic (resp. making C2 J-holomorphic), the
Fredholm operator taking the point constraints {pj}2a1+1

j=1 into account is
regular by automatic transversality (See Theorem 3.1 and Proposition 3.2 of
[13], and also [8], [9]). On the other hand, for a generic choice of J (resp. J)
making C1 and C2 J-holomorphic (resp. C1 = C1 and C2 J-holomorphic),
each simple curve other than C1 and C2 (resp. other than C1 and C2) in any
degeneration has a somewhere injective point away from C1 and C2 (resp.
away from C1 and C2) and hence is regular (See Chapter 3.4 of [19]). As a
result, we can find J, J ∈ J as desired.

For such J, J , there is a regular smooth path Jt ∈ J (regular in the
sense of Definition 6.2.10 of [19]) such that the parametrized moduli space
of Jt−holomorphic curves representing [C2] and passing through {pj}2a1+1

j=1

forms a non-empty one dimensional smooth manifold. Since degeneration
happens in codimension 2 or higher, if we choose Jt to be also regular with
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respect to the lower dimensional strata, the one dimensional moduli space is
also compact.

Thus, there is a family of embedded Jt-holomorphic spheres Ct all of
which passing through {pj}2a1+1

j=1 . By positivity of intersection, Ct is the only
Jt-holomorphic family passing through {pj}2a1+1

j=1 , hence we have a symplectic
isotopy from C2 to C2. Finally, by applying Lemma 3.2.1 of [20] to {Ct}
to get another symplectic isotopy {Ct′} transversal to C1, we get that the
intersection pattern of {Ct′} ∪ C1 is unchanged along the symplectic isotopy.
This finishes the proof when a1 ≥ 2.

The case that a1 = 1 can be treated similarly, which is easier and only
requires an analogue of Proposition 3.7 and Lemma 3.8 for symplectic sphere
with non-negative self-intersection (See e.g Proposition 3.2 of [13]).

Now, we consider (X,ω) = (CP 2#CP 2, cωλ) for some constant c, D =
C1 ∪ C2, D = C1 ∪ C2 and [Ci] = [Ci] for i = 1, 2. By the enumeration, there
are two possible cases.

The first one is when [C1] = [C1] = (1− a1)f + s = (2− a1)F + E1 and
[C2] = [C2] = a1f + s = (a1 + 1)F + E1. By symmetry, it suffices to consider
a1 ≥ 1. If a1 ≥ 2, we apply Lemma 3.8 and assume C1 completely coincides
with C1. Again, we inspect all possible J-holomorphic degenerations of C2

for J making C1 J-holomorphic. A direct index count as before shows that
any degeneration of C2 has at least codimension two. Therefore, the same
method applies. The case that a1 = 1 is dealt similarly.

The other case is [C1] = [C1] = f = F and [C2] = [C2] = 2s = 2F + 2E1.
This cannot cause additional trouble as they have non-negative self-
intersection numbers. One can deal with this similar to the previous cases.

The case that X = CP 2 is analogous and easier.
• Triangles and Rectangles
Now, we consider X = S2 × S2 or X = CP 2#CP 2 and assume D,D has

three or four irreducible components. We observe that, there is at most one
component with negative self-intersection number and one with positive self-
intersection numbers in all cases. Moreover, the homology class of the compo-
nent with negative self-intersection number is of the form Ei + jF for some
j and i = 0,−1. If there is a negative self-intersection component, we can
apply Lemma 3.8 and assume the negative self-intersection components for
D and D completely coincide. Then we study all the possible J-holomorphic
degeneration of the positive curve for J making the negative component
J-holomorphic. One can show that the degeneration happens in at least
codimension two by index count. Therefore, we can find a relative pseudo-
holomorphic isotopy Φt from the positive self-intersection component of D
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to the positive self-intersection component of D. At the same time, since the
remaining components of D and D are sphere fibers, which cannot have any
pseudo-holomorphic degeneration, the pseudo-holomorphic isotopy Φt can be
extended to a pseudo-holomorphic isotopy from D to D. Hence, the result
follows when there is a negative self-intersection component. The remaining
cases are all similar and simpler, including the case when X = CP 2. �
3.2.2. Elliptic ruled surfaces. In this subsection, we want to finish the
proof of Proposition 3.5 for the torus type.

Proposition 3.9. Suppose (X,D, ω) and (X,D, ω) are minimal symplectic
log Calabi–Yau surfaces such that X is elliptic ruled. Then they are symplectic
deformation equivalent to each other.

We first describe the complement of D following [30]. Any ω-compatible
almost complex structure J provides us a J-holomorphic ruling, meaning
that there is a sphere bundle map π : X → T2 such that fibers are J-
holomorphic. Usher proves in [30] (Lemma 3.5) that, if D is J-holomorphic,
π|D is a two to one covering and in particular D is transversal to the J-
holomorphic sphere foliation. If a tubular neighborhood of D is taken out,
we have a J-holomorphic annulus foliation, which defines an annulus bundle
X − P (D) over the torus T2. We want to identify this annulus bundle.

Equip the orientation of T2 such that π|D is orientation preserving, where
the orientation of D is determined by J . Choose a positively oriented basis
{t, u} ∈ H1(D,Z) and {v, w} ∈ H1(T

2,Z) such that π∗t = v and π∗u = 2w.
Let A = {z ∈ C|12 ≤ |z| ≤ 2}. The monodromy of this annulus bundle around
the loop corresponding to v is orientation preserving and does not flip the
boundary. Therefore, the monodromy is isotopic to the identity. Similarly,
the monodromy of this annulus bundle around the loop corresponding to w is
orientation preserving but flip the boundary components due to π∗u = 2w.
Therefore, the monodromy is isotopic to the map sending z to z−1. This
annulus bundle is isomorphic as an annulus bundle to (See the paragraph
before Lemma 3.6 of [30])

S
1 × R× A

(x+ 1, z) ∼ (x, z−1)

if X is the smoothly trivial sphere bundle, and isomorphic to

R× S1 × A

(x+ 1, eiθ, z) ∼ (x, eiθ, eiθz−1)

if X is the smoothly non-trivial sphere bundle.
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Let D be another connected symplectic torus representing c1(X). For
D, we can also define J , π, T2, t, u, v, w as above. Let τ : T2 → T2 be a
diffeomorphism sending v and w to v and w, respectively. By construction,
the pull-back annulus bundle τ∗(X − P (D))→ T2 has the same monodromy
(up to isotopy) as X − P (D)→ T2 over the one-skeleton. The existence of
an annulus bundle isomorphism from X − P (D) to τ∗(X −D) covering the
identity of T2 reduces to whether X − P (D) and τ∗(X −D) are isomorphic
annulus bundle (covering some diffeomorphism of the base), which is true
because there is only one class of isomorphic annulus bundle for a choice of
monodromies over one skeleton (and it is explicitly described above in our
case). Therefore, we have a bundle isomorphism F : X − P (D)→ X − P (D)
covering τ . On the other hand, since the image of τ∗ ◦ π∗|H1(D,Z) equals the
image of π∗|H1(D,Z), there are two lifts of τ to τ̃i : D → D such that π ◦
τ̃i = τ ◦ π, for i = 1, 2. Then, there is a unique way, up to isotopy, to get
a sphere bundle isomorphism F̃ : X → X extending F and τ̃1 (or, F and
τ̃2) by following the pseudo-holomorphic foliation. In particular, we have
F̃ (D) = D.

Using F̃ , we can identify D ⊂ (X,ω) with D ⊂ (X, F̃ ∗ω). Proposition 3.9
will follow if we can find a symplectic deformation equivalence from (X,D, ω)
to (X,D, F̃ ∗ω), which can be obtained by the following lemma.

Lemma 3.10. Let π : (X,ωi, Ji)→ B be a symplectic surface bundle over
surface such that Ji is ωi-compatible and fibers are Ji holomorphic for both
i = 0, 1. Moreover, we assume the orientation of fibers induced by J0 and
J1 are the same and the orientation of the total space induced by ω2

0 and
ω2
1 are the same. Assume D ⊂ (X,ωi) is a Ji holomorphic surface for i =

0, 1. and π|D is submersive. Then there is a smooth family of (possibly non-
homologous) symplectic forms ωt on X making D symplectic for all t ∈ [0, 1]
joining ω0 and ω1.

Proof. Fix a point p ∈ X and consider a non-zero tangent vector v ∈ TpX
which does not lie in the vertical tangent sub-bundle TpX

vert. Since fibers
are Ji holomorphic, we have Span{v, Jiv} ∩ TpX

vert = {0}. Choose a volume
form (symplectic form) ωB on B. Since π is a submersion, π∗Span{v, Jiv} =
Tπ(p)B. Therefore, we have ωB(π∗(v), π∗(Jiv)) 	= 0. By possibly changing the
sign of ωB, we can assume ωB(π∗(v), π∗(Jiv)) > 0. Moreover, this inequal-
ity is true for any v ∈ TpX not lying in TpX

vert. By continuity, ωB(π∗(v),
π∗(Jiv)) > 0 for any p ∈ X and any v ∈ TpX − TpX

vert for both i = 0, 1.
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Now, we apply the Thurston trick. For any K ≥ 0, we let ωK
i = ωi +

Kπ∗ωB, which is clearly closed. It is also non-degenerate because it is non-
degenerate for the vertical tangent sub-bundle and for any p ∈ X, and any
v ∈ TpX − TpX

vert, we have ωK
i (v, Jiv) = ωi(v, Jiv) +KωB(π∗(v), π∗(Jiv))

> 0. The first term being greater than zero is by compatibility and the second
term being non-negative is due to K ≥ 0 and the first paragraph. Notice
that D is symplectic with respect to ωK

i for both i = 0, 1 because π|D is
submersive and D is Ji-holomorphic.

Now, we consider ωK
t = (1− t)ωK

0 + tωK
1 , which is clearly closed and

non-degenerate for TXvert. For v ∈ TpX − TpX
vert, we have ωK

t (v, J0v) =
(1− t)ω0(v, J0v) + tω1(v, J0v) +KωB(π∗v, π∗J0v). We know that the first
and the third terms on the right hand side are non-negative but we have no
control on the second term. However, there is a sufficiently large K such that
ωK
t (v, J0v) > 0 for all p ∈ X and v ∈ TpX − TpX

vert and for all t because
the sphere subbundle of TX is compact. By smoothening out the piecewise
smooth family from ω0 to ωK

0 , ω
K
t and from ωK

1 to ω1, we finish the proof.
�

We remark that Lemma 3.10 can be viewed as a relative version of Propo-
sition 4.4 in [17] in dimension four.

3.3. Proof of Theorem 1.4

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let (Xi, Di, ωi) be symplectic log Calabi–Yau sur-
faces for i = 1, 2, which are homological equivalent via a diffeomorphism Φ.

Let {e1, . . . , eβ} be a maximal set of pairwisely orthogonal non-toric ex-
ceptional classes in X. We can choose an almost complex structure J1 (pos-
sibly after deforming D1) such that D1 is J1-holomorphic and all ej has
embedded J1-holomorphic representative, by Lemma 2.4. Since (X1, D1, ω1)
and (X2, D2, ω2) are homological equivalent via Φ, {Φ∗(ej)} is a maximal
set of pairwisely orthogonal non-toric exceptional classes. We can find an
ω2-tamed almost complex structure (possibly after deforming D2) J2 such
that D2 is J2-holomorphic and the Φ∗(ej) has embedded J2-holomorphic
representative. After blowing down the J i-holomorphic representatives of
ej , and Φ∗(ej) for all 1 ≤ j ≤ β, we obtain two symplectic log CY surfaces
(X1, D1, ω1) and (X2, D2, ω2).

Clearly, (X1, D1, ω1) and (X2, D2, ω2) are homological equivalent for
some natural choice of diffeomorphism Φ. Now, a component in D1 is ex-
ceptional if and only if the corresponding component in D2 is exceptional.
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By Lemma 3.4, we pass to minimal models (Xi
b, D

i
b, ω

i
b) by toric blow-downs.

By identifying X1
b and X2

b with a natural choice of diffeomorphism Φb, the
homology classes of the components of D1

b and D2
b are the same.

By Proposition 1.2.15 of [20] or Theorem 2.9 of [3], up to a D-symplectic
homotopy (ie. a deformation of ω2

b keeping D2
b symplectic), we can assume

[ω1
b ] = Φb

∗
[ω2

b ]. Therefore, X
1
b and X2

b are actually symplectomorphic ([29],
[10]) and we thus can choose Φb to be a symplectomorphism from (X1

b ,

Φb
−1

(D2
b ), ω

1
b ) to (X

2
b , D

2
b , ω

2
b ). Therefore, we conclude that (X

1
b , D

1
b , ω

1
b ) and

(X2
b , D

2
b , ω

2
b ) are symplectic deformation equivalent, by applying Proposi-

tion 3.5 to (X1
b , D

1
b , ω

1
b ) and (X1

b ,Φb
−1

(D2
b ), ω

1
b ). Further, by Lemma 2.7,

they are D−symplectic deformation equivalent.
Now we record the sequence of non-toric and toric blow-downs by mark-

ings D1
b and D2

b . As marked divisors, they are D−symplectic deformation
equivalent by Lemma 2.12. Finally, by Proposition 2.10 (and viewing un-
marked divisors as marked divisors without markings), (X1, D1, ω1) is D−
symplectic deformation equivalent to (X2, D2, ω2), and hence symplectic de-
formation equivalent to (X2, D2, ω2) by Lemma 2.7. Tracing the steps, we
see that the symplectomorphism in the symplectic deformation equivalence
between (X1, D1, ω1) and (X2, D2, ω2) has the same homological effect as Φ.

Now, assume (X1, D1, ω1) is strictly homological equivalent to (X2, D2,
ω2) via a diffeomorphism Φ. It means that Φ is a homological equivalence
and Φ∗[ω2] = [ω1]. We first note that, up to symplectic isotopy of D1 and
D2, which preserves the strict D-symplectic deformation class (Lemma 2.11),
we can assume Di are ωi-orthogonal. We have shown that there is a D−
symplectic homotopy (X1, D1, ω1

t ) of (X1, D1, ω1) and a symplectomophism
Ψ : (X1, D1, ω1

1)→ (X2, D2, ω2) with the same homological effect as Φ.
Therefore, we have [ω1] = Φ∗[ω2] = Ψ∗[ω2] = [ω1

1]. By Theorem 1.2.12 of [20],
ω1
t can be chosen such that [ω1

t ] is constant for all t. By Corollary 1.2.13
of [20], there is a symplectic isotopy (X1, D1

t , ω
1) such that D1

0 = D1 and
(X1, D1

1, ω
1) is symplectomorphic to (X1, D1, ω1

1) and hence to (X
2, D2, ω2).

Therefore, the result follows. �

In the case X1 = X2 = X, Theorem 1.4 implies the symplectic defor-
mation class of (X,D, ω) is uniquely determined by the homology classes
{[Cj ]}kj=1 modulo the action of diffeomorphism on H2(X,Z). The fact the
the homology classes of D completely determine the symplectic deformation
equivalent class can be regarded as in the same spirit of Torelli type theorems
in a weak sense.
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If (X1, ω1) = (X2, ω2) = (X,ω) and [C1
j ] = [C2

j ] for all j, we can take
the strict homological equivalence to be identity and hence the symplecto-
morphism from (X,D1, ω) to the time-one end of the symplectic isotopy of
(X,D2, ω) in Theorem 1.4 has trivial homological action. Therefore, the num-
ber of symplectic isotopy classes of homological equivalent log Calabi–Yau
surfaces in (X,ω) is bounded above by the number of connected components
of Torelli part of the symplectomorphism group of (X,ω).
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