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Applications of affine structures to
Calabi-Yau moduli spaces
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In this paper, we review our recent results and the methods of
proofs in [15] in which it is proved that the Hodge metric com-
pletion of the moduli space of polarized and marked Calabi—Yau
manifolds, i.e. the Torelli space, is a complex affine manifold. As
applications it is proved that the period map from the Torelli space
and the extended period map from its completion space, both are
injective into the period domain, and that the period map from
the moduli space of polarized Calabi—Yau manifolds with level m
structure is also injective.
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1. Introduction

In this paper, a compact projective manifold M of complex dimension n with
n > 3 is called Calabi—Yau, if it has a trivial canonical bundle and satisfies
HY(M,Op) =0 for 0 < i < n. We fix a lattice A with an pairing Qg, where
A is isomorphic to H"(My,Z)/Tor for some fixed Calabi-Yau manifold My,
and Qg is the intersection pairing.
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A polarized and marked Calabi—Yau manifold is a triple (M, L,~) con-
sisting of a Calabi—Yau manifold M, an ample line bundle L over M, and a
marking v defined as an isometry of the lattices

v: (A, Qo) — (H"(M,Z)/Tor, Q).

Let Z,, be a smooth irreducible component of the moduli space of polar-
ized Calabi—Yau manifolds with level m structure with m > 3. For example,
see Section 2 of [27] for the construction of Z,,. We define the Teichmiiller
space of Calabi—Yau manifolds to be the universal cover of Z,,, which can
be easily proved to be independent of the choice of m. We will denote by T
the Teichmiller space of Calabi—Yau manifolds.

Let T’ be a smooth irreducible component of the moduli space of equiv-
alence classes of marked and polarized Calabi—Yau manifolds. We call 7’
the Torelli space of Calabi—Yau manifolds in this paper. The Torelli space
T’ is also called the framed moduli as discussed in [1]. We will see that the
Torelli space 7 is the most natural space to consider the period map and
to study the Torelli problem.

We will assume that both Z,, and 7’ contain the polarized Calabi-
Yau manifold that we start with. We will see that the Torelli space 7' is a
natural covering space of Z,,, therefore T is also the universal cover of 7.
See Section 2 for details. The relations of these spaces can be put into the
following commutative diagram,

(1) T
N

Tm T’ ,

Zm

with 7, 7/, and 7 the corresponding covering maps.

Let D be the period domain of polarized Hodge structures of the n-th
primitive cohomology of M. Let us denote the period map on the smooth
moduli space Z,, by

&z : Z, — DT,
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where I' denotes the global monodromy group which acts properly and dis-
continuously on D. Recall that I' is the image of the monodromy represen-
tation

p:7mi(Zy) = C Aut(Hyz, Q).

Then we can lift the period map ®z, to the period map ® : 7 — D from
the universal cover T of Z,,, such that the following diagram commutes

T2 D
T lﬂ'D
(6]

Z —2 D/T.

Similarly we define the period map
®: T =D

on the Torelli space T’ by the definition of marking, such that the above
diagram and diagram (1) fit into the following commutative diagram

T ‘P D
Tm, TI D
>
[}

There is a natural metric, called Hodge metric h, on D, which is a
complete homogeneous metric induced from the Killing form as studied in
detail in [9]. By local Torelli theorem of Calabi-Yau manifolds, both ®z
and ® are nondegenerate. Clearly ®’ is also nondegenerate, and the pull-
back of the Hodge metric to 7' by ®’ also defines a Kahler metric on the
Torelli space T’. These Kahler metrics are still called the Hodge metrics in
this paper.

One of our crucial constructions is the global holomorphic affine struc-
tures on the Teichmiiller space, the Torelli space, and the Hodge metric
completion space of the Torelli space. Here we first outline the construction
of affine structure on the Teichmiiller space to give the reader some basic
ideas of our method. See Section 3 of [15] for details.

Zm

Zm

DJT.
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We first fix a base point p € 7 with its Hodge structure {Hg’n_k}zzo
as the reference Hodge structure. With this fixed base point ®(p) =0 € D,
we identify the unipotent subgroup N, = exp(n,) with its orbit in D. By
using a method of Harish-Chandra, we prove that the image of the period
map has the property that,

q)(T) gN—i-mDa

is a bounded subset in N,. In this case we will simply say that the period
map ® is bounded. Here the Euclidean structure on n, and N, are induced
from the Hodge metric on D by the identification of ny to the holomorphic
tangent space Te’D of D at the base point 0. We also consider N, as a
complex Euclidean space such that the exponential map

exp: ny — Ny

is an isometry.
We then introduce the abelian subalgebra a C ny, which is defined by
the image of the differential of the period map at the base point p € T,

a=de,(T,°T) C Ty'D ~ny,

and
A =exp(a) C Ny

the corresponding abelian Lie group. We consider a and A as an Euclidean
subspace of ny of N respectively. Denote the projection map by

P:N,NnD—AND

and define ¥ = P o ®.
With local Torelli theorem for Calabi—Yau manifolds, we show that the
holomorphic map

U:TsANDc A~CVN

is nondegenerate on 7. Thus W : 7 — AN D induces a holomorphic affine
structure on 7 by pulling back the affine structure on CV.

To proceed further, we must consider the Hodge metric completions of
moduli spaces. More precisely, let Z,Ir{ be the Hodge metric completion of
the smooth moduli space Z,,, and let T,Z be the universal cover of Z with
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the universal covering map
i TH o ZH

We will prove that Z! can be identified to the Griffiths completion space
of finite monodromy as introduced in Theorem 9.6 in [8]. In [15], the space
T.H is called the Hodge metric completion space. In fact, it is proved in [15]
that ’Tnlj is the completion space of the Torelli space with respect to the
Hodge metric on it. Sometimes we simply call 7,2 the completion space for
convenience.

We need to study the extended period maps, which fit into the following
commutative diagram,

3) T e qH 2 p

lﬂm \Lﬂ'ﬁ Lﬂ'D
@H

LA £

where
o4 . zI' - D/T

is the extension map of the period map ¢z _, and
it Zp— ZH

is the inclusion map with i,, a lifting of i o m,,, and ®X is a lifting of the
map q)gm o Tt is elementary to show that there is a suitable choice of i,,
and ®X such that

d=0olo4, .
As a corollary of the boundedness of the period map ®, we know that

@' is actually a bounded holomorphic map from 7,2 to Ny N D. The first
result proved in [15] is the following theorem.

Theorem 1.1. For any m > 3, the complete complex manifold T2 ~ An
D is a complex affine manifold, which is a bounded domain in A~ CN.
Moreover, the holomorphic map

. TH s N, nD

is an injection. As a consequence, the complexr manifolds 7',,? and 7'7,{{, are
biholomorphic to each other for any m,m’ > 3.
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This theorem allows us to get rid of the subscript m, and define the com-
plete complex manifold 7 with respect to the Hodge metric by 7H = 'Tn? ,
the holomorphic map it : 7 — TH by iy = i,,, and the extended period
map &7 . TH — D by ® = ®H for any m > 3. Then diagram (3) becomes

(4) TT.gH_* _p

lﬂm iwﬁ lﬂ'D
(I)H

Z, ——=zZH =% p/r.

By these definitions, Theorem 1.1 implies that 7 is a complex affine man-
ifold and that

@H: TH—>N+ﬂD

is a holomorphic injection.

For Theorem 1.1, we remark that one technical difficulty of our argu-
ments is to prove that 7;,51 is independent of m. For this purpose we intro-
duced the smooth complete manifold 7;51 equipped with the Hodge metric.
Moreover we prove the existence of an affine structure on TmH , which is given
by pulling back the affine structure on CV through the holomorphic map

vl 7TH _,AnDc A~CV,

m

where U1 = P o ®!T is shown to be nondegenerate by using affine structures
on 7,7 and A, and the local Torelli theorem for Calabi-Yau manifolds.

By using the completeness of 7,2 with the Hodge metric and Corollary 2
of Griffiths and Wolf in [10], we show that W is a covering map. Finally, we
prove that W is injective using the simply-connectedness of AN D. In fact
we show that AN D is diffeomorphic to a Euclidean space, which follows
from the proof of Lemma 3.1 by using Harish-Chandra’s method.

In diagram (4), it is easy to show that the map iy = i,, is a covering map
onto its image. Then we prove that the Torelli space 7’ is biholomorphic to
the image 7o = i7(7) of i7 in TH. Here the markings and level structures of
the Calabi—Yau manifolds come into play substantially. From this we define
an injective map

70T s TH
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such that diagram (4) together with diagram (2) gives the following com-
mutative diagram

(®)

H
Zm

D/T.

With the injectivity of ® and 7°, we have the global Torelli theorem
on the Torelli space of Calabi—Yau manifolds.

Theorem 1.2. The global Torelli theorem holds on the Torelli space of
Calabi—Yau manifolds, i.e. the period map

. T - D

is injective. Moreover, the complete complex affine manifold TH is the com-
pletion space of T' with respect to the Hodge metric, and it is a bounded
domain in A ~ CN.

Actually we proved that 7H ~ AN D is a bounded pseudoconvex do-
main in A. As a direct corollary, we have the global Torelli theorem on the
moduli space Z, of polarized Calabi—Yau manifolds with level m structure
for any m > 3.

Corollary 1.3. The global Torelli theorem holds on the moduli space Z,, of
polarized Calabi—Yau manifolds with level m structure, i.e. the period map
bz : Z, — D/I is injective.

This paper can be considered as a review of the results and the main
ideas of proofs in [15]. In Section 2, we review the definition of the period
domain of polarized Hodge structures, and briefly describe the constructions
of the moduli space Z,,, the Teichmiiller space 7 and the Torelli space T’ of
Calabi—Yau manifolds, as well as the definitions of the period maps and the
Hodge metrics on the moduli space and the Teichmiiller space respectively.
We also introduce the Hodge metric completion space ’TT,IL{ and study the
extended map @g on 7',5 . In Section 3, we discuss our ideas to prove that
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the image of the period map
o: T —D

lies in Ny N D as a bounded subset in the Euclidean space N, with Eu-
clidean metric induced from the Hodge metric.

In Section 4, we describe the main ideas of the proof that there exists a
global holomorphic affine structure on 7, as well as an affine structure on
7.2 Then we deduce that the extended period map

ot . 7H D

is injective. In Section 5, we define the completion space 7 and the ex-
tended period map ®. We discuss the main steps to show that 7% is the
Hodge metric completion space of the Torelli space 7', which is also a com-
plex affine manifold, and that ®*’ is a holomorphic injection, which extends
the period map

o' . 7' — D.

From this the global Torelli theorems for polarized Calabi—Yau manifolds
on the Torelli space and the moduli spaces with level m structures for any
m > 3 follow directly.

2. Moduli, Teichmiiller, Torelli spaces and the period map

In Section 2.1, we recall the definition and some basic properties of the period
domain. In Section 2.2, we discuss the constructions of the Teichmiilller space
and the Torelli space of Calabi—Yau manifolds based on the works of Popp
[22], Viehweg [30] and Szendréi [27] on the moduli spaces of Calabi-Yau
manifolds. In Section 2.3, we define the period maps from the Teichmiiller
space and the Torelli space to the period domain.

In Section 2.4, we define the Hodge metric completion spaces of Calabi—
Yau manifolds and study the extended period map over the completion
space. We remark that most of the results in this section are standard and
can be found from the literature we refer in the subjects.

2.1. Period domain of polarized Hodge structures

We first review the construction of the period domain of polarized Hodge
structures. We refer the reader to §3 in [23] for more details.



Applications of affine structures to CY moduli spaces 321

A pair (M, L) consisting of a Calabi—Yau manifold M of complex dimen-
sion n with n > 3 and an ample line bundle L over M is called a polarized
Calabi—Yau manifold. By abusing notation, the Chern class of L will also be
denoted by L and thus L € H?(M,Z). We fix a lattice A with a pairing Qo,
where A is isomorphic to H"(My, Z)/Tor for some Calabi—Yau manifold M
and g is defined by the cup-product. For a polarized Calabi—Yau manifold
(M, L), we define a marking v as an isometry of the lattices

(6) v: (A, Qo) — (H"(M,Z)/Tor, Q).

Definition 2.1. Let the pair (M, L) be a polarized Calabi-Yau manifold,
then we call the triple (M, L,~) a polarized and marked Calabi—Yau mani-
fold.

For a polarized and marked Calabi—Yau manifold M with background
smooth manifold X, the marking identifies H"(M,7Z)/Tor isometrically to
the fixed lattice A. This gives us a canonical identification of the middle
dimensional de Rham cohomology of M to that of the background manifold
X, that is,

H™(M,F) = H"(X,F),

where the coefficient ring IF can be Q, R or C. Since the polarization L is an
integer class, it defines a map

L: H'(X,Q) — H""*(X,Q), A~ LAA.

We denote by H},.(X) = ker(L) the primitive cohomology groups, where the
coefficient ring can also be Q, R or C. We let

HE (M) = HR" (M) 0 HE (M, ©)
and denote its dimension by h*"~* We have the Hodge decomposition
(7) Hy (M,C) = Hp!(M) @ - - & Hp"(M),

such that Hgfk’k(M) = H;f,ln*k(M). It is easy to see that for a polarized

Calabi-Yau manifold, since H?(M, Oy) = 0, we have

HO(M) = HPO(M),  H (M) = H M (M),
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The Poincaré bilinear form @ on H}, (X, Q) is defined by

Qlu,v) = <—1>”“%”/ A
X

for any d-closed n-forms u, v on X. Furthermore, () is nondegenerate and can
be extended to H,,.(X,C) bilinearly. Moreover, it also satisfies the Hodge-
Riemann bilinear relations

(8) 0 (H}’f;”_k(M), H;,f—l(M)) —0 unless k+1=n,
(9) (V=D)* " Qv,m) >0 forve HE*(M)\ {0}.
Let fF = St ho"71 denote % =m, and
F¥=FMM) = H,"(M) @ @ Hy" " *(M),
from which we have the decreasing filtration
H!(M,C)=F’> .- D> F"
We know that

(10) dimg FF = f*,
(11)  Hp(X,C)=FrFe Frk+l and HE"M(M)=FFnFrk,

In terms of the Hodge filtration, the Hodge-Riemann relations (8) and (9)
are

(12) 0 (Fk,F"_k“) —0, and
(13) Q(Cv,v) >0 if v=#£0,
where C'is the Weil operator given by C'v = (\/—1)%_” viorv e H;f;”_k(M).
The period domain D for polarized Hodge structures with data (10) is the
space of all such Hodge filtrations

n 0 n

D={F"c...cF’=H,(X,C)](10),(12) and (13) hold} .

The compact dual D of D is

D={F"c---c F'=H].(X,C) | (10) and (12) hold} .
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The period domain D C D is an open subset. From the definition of period
domain we naturally get the Hodge bundles on D by associating to each
point in D the vector spaces {F k}Z:o in the Hodge filtration of that point.
Without confusion we will also denote by F* the bundle with F* as the fiber
for each 0 < k < n.

Remark 2.2. Here we would like to remark the notation change for the
primitive cohomology groups. As mentioned above, for a polarized Calabi—
Yau manifold we have

n,0 _ n,0 n—1,1 _ n—1,1

For simplicity, we will also use H™(M, C) and H*"~*(M) to denote the prim-
itive cohomology groups Hy, (M, C) and H]],f;"_k(M ) respectively. Moreover,
cohomology will mean primitive cohomology in the rest of the paper.

2.2. Moduli, Teichmiiller and Torelli spaces

We first recall the concept of universal family of compact complex manifolds
in deformation theory. We refer to page 8-10 in [25] and page 94 in [22] for
equivalent definitions and more details.

A family of compact complex manifolds 7 : W — B is called versal at a
point p € B if it satisfies the following conditions:

1) If given a complex analytic family ¢ : ¥V — S of compact complex man-
ifolds with a point s € § and a biholomorphic map

for V=1"Hs) = U=7"Yp),

then there exists a holomorphic map ¢ from a neighbourhood N/ C S
of the point s to B and a holomorphic map f: ¢~ }(N) — W with
t~Y(N) C V such that they satisfy that g(s) = p and fli-1(s) = fo with
the following commutative diagram

1 )

LTHN) *)T
N B.

2) For all g satisfying the above condition, the tangent map (dg)s is
uniquely determined.

g
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The family 7 : W — B is called universal at a point p € B if (1) is satisfied
and (2) is replaced by

(2’) The map ¢ is uniquely determined.

If a family 7 : W — B is versal (universal resp.) at every point p € B, then
it is called a wversal family (universal family resp.) on B.

Let (M, L) be a polarized Calabi-Yau manifold. Recall that a marking
of (M, L) is defined as an isometry

v: (A, Qo) — (H"(M,Z)/Tor, Q).

For any integer m > 3, we follow the definition of Szendréi [27] to define an
m-equivalent relation of two markings on (M, L) by

Y ~m 7" if and only if v oy~ —1Id € m - End(H" (M, Z)/Tor),

and denote [y],, to be the set of all the equivalent classes of such «. Then
we call [7],, a level m structure on the polarized Calabi-Yau manifold.

Two triples (M, L, [y]) and (M', L', [y];n) are equivalent if there exists
a biholomorphic map f : M — M’ such that

=L,
o ~m v,
where f*+/ is given by
7+ (A, Qo) = (H™(M',Z)/Tor, Q)
composed with
fro (H"(M',Z)/Tor, Q) — (H"(M, Z)/Tor, Q).

We denote by [M, L, [v],] the equivalent class of the polarized Calabi—Yau
manifolds with level m structure (M, L, [y],)-

For deformation of polarized Calabi—Yau manifold with level m struc-
ture, we reformulate Theorem 2.2 in [27] as the following theorem, in which
we only put the statements we need in this paper. One can also look at
[22] and [30] for more details about the construction of moduli spaces of
Calabi—Yau manifolds.
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Theorem 2.3. Let [M,L,[v]m] be a polarized Calabi—Yau manifold with
level m structure [y]m, for m > 3. Then there exists a connected quasi-

projective complex manifold Z,, with a universal family of Calabi—Yau man-
ifolds,

(14) fm : XZ,” — Zm,

which contains [M, L, []m] as a fiber and is polarized by an ample line bundle
Lz onXz .

As discussed in [27], Z,, is a smooth irreducible component of the moduli
space of polarized Calabi—Yau manifolds with level m structure.

For m > 3, it is not hard to show that the universal cover of Z,, is
independent of m by using the universal property of the moduli spaces Z,,.
So we will denote by 7 the universal covering space of Z,, for any m > 3.
We call T the Teichmiiller space of Calabi—Yau manifolds. We also denote
by ¢ : U — T the pull-back family of the family (14) via the covering mp, :
T — Zn.

In summary, we have the following proposition.

Proposition 2.4. The Teichmiiller space T of Calabi—Yau manifolds is a
connected and simply connected complex manifold, and the family

(15) p: U =T
which contains M as a fiber, is a universal family.

We remark that the family ¢ : & — T being universal at each point is
essentially due to the local Torelli theorem for Calabi-Yau manifolds. In
fact, the Kodaira-Spencer map of the family &4 — T

ko TyOT — HON (M, TVOM,),

is an isomorphism for each p € 7. Then by theorems in page 9 of [25], we
conclude that the family & — 7T is versal at each p € 7. Since

HO(M,0y) = H' (M, Q1) = 7 10(M) = 0,

we conclude from Theorem 1.6 of [25] that the family ¢/ — T is universal
at each p € T. Moreover, the well-known Bogomolov-Tian-Todorov result
([28] and [29]) implies that dimc(7T) = N = h"~bL. We refer the reader to
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Chapter 4 in [14] for more details about deformation of complex structures
and the Kodaira-Spencer map.

Recall that a polarized and marked Calabi—Yau manifold is a triple
(M, L,~), where M is a Calabi-Yau manifold, L is a polarization on M,
and « is a marking

v (A¢ QO) — (Hn(M7 Z)/TOI‘, Q)

Two triples (M, L,~) and (M', L',~") are equivalent if there exists a biholo-
morphic map f: M — M’ with

fiU =L, fv =,
where f*+ is given by
7'+ (A, Qo) = (H"(M',Z)/Tor,Q)
composed with
f*: (H"(M',Z)/Tor,Q) — (H"(M,Z)/Tor, Q).
We denote by [M, L,v] the equivalent class of the polarized and marked

Calabi—Yau manifold (M, L, ). In this paper, we define the Torelli space as
follows.

Definition 2.5. The Torelli space T’ of Calabi—Yau manifolds is the irre-
ducible smooth component of the moduli space of the equivalent classes of
polarized and marked Calabi—Yau manifolds, which contains [M, L,~].

By mapping [M, L,~] to [M, L, [y]m], we have a natural covering map
T, T = Z,.

From this we see easily that 7" is a smooth and connected complex manifold.
We also get a pull-back universal family ¢’ : U’ — T’ on the Torelli space
T’ via the covering map 7/,,.

Recall that we have defined the Teichmiiller space 7 to be the universal
covering space of Z,,, with covering map m,,, : T — Z,,. Therefore we can lift
Tm via the covering map =), : 7' — Z,, to get a covering map 7 : T — T,
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such that the following diagram,

(16) T

commutes.

2.3. The period maps

For the family f,, : Xz — Z,,, we denote each fiber by [Ms, Ls, [ys]m] =
f1(s) and FF = F¥(My) for any s € Z,,. With some fixed point sg € Z,,,
the period map is defined as a morphism ®z : Z,, — D/I" by

s rel(Fr C ... C FY e D,
where 7] is an isomorphism between the complex vector spaces
el B (M, C©) — H™(M,,, C),

which depends only on the homotopy class [vs] of the curve 74 between s
and sg. Then the period map is well-defined with respect to the monodromy
representation

p:m(Zm) = C Aut(Hz, Q).
It is well-known that the period map has the following properties:
1) locally liftable;
2) holomorphic, i.e. F!/0z C F!, 0 <i < n;
3) Griffiths transversality: OF!/0z C Fi=1 1 <i < n.

We define the horizontal tangent bundle T}lL’OD as a subbundle of TH0D),
in terms of the Hodge bundles F¥ — D, 0 < k < n by

n
(17) T,°D ~ T D N @ Hom(F*/FF, PF=1/FF).
k=1
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From Griffiths transversality 3), we see that the tangent map
(d®z,)q: Ty 2, — TV°D

takes values in T%L’(;D for any ¢ € Z,,, and s = ¢z, (q).
From 1) and the fact that 7 is the universal cover of Z,,, we can lift the
period map to ® : T — D such that the diagram

T—-2*.Dp

J/ﬂ'm lﬂ'
[0}

2, —2 DT

is commutative.

From the definition of marking in (6), we also have a well-defined period
map ® : 7' — D from the Torelli space 7’ by defining

-1 0
(18) prsyy (FPC - CFY) e D,

where the triple [M,, Ly, ,] is the fiber over p € T’ of the analytic fam-
ily U’ — T, and the marking -, is an isometry from a fixed lattice A to
H"™(M,,Z)/Tor, which extends C-linearly to an isometry from H = A ®7 C
to H"(M,,C). Here

VWIS CE) =y () C - Cry (F))=H

denotes a Hodge filtration of H.
Then we have the following commutative diagram

o
T D
N
Tm T/ D
y
@
where the maps m,,, 7/

1, and 7 are all natural covering maps between the
corresponding spaces as in (16).

Before closing this section, we state a simple lemma concerning the mon-
odromy group I'. We refer [15] for its proof.

(19)

Zm,

Zm

DT,
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Lemma 2.6. Let v be the image of some element of w1 (Z,,) in T under the
monodromy representation. Suppose that v is finite, then ~v is trivial. There-
fore for m >3, we can assume that T' is torsion-free and D /T is smooth.

2.4. Hodge metric completion and extended period maps

By the work of Viehweg in [30], we know that Z,, is quasi-projective and
consequently we can find a smooth projective compactification Z,, such
that Z,, is Zariski open in Z,, and the complement ?m\Zm is a divisor of
normal crossings. Therefore, Z,, is dense and open in Z,, with the complex
codimension of the complement ?m\Zm at least one.

As in [9], the Hodge metric is a complete homogeneous metric induced
by the Killing form. By local Torelli theorem for Calabi—Yau manifolds, we
know that the period maps ®z ,P® both have nondegenerate differentials
everywhere. Thus it follows from [16] that the pull-backs of h by ®z  and
® to Z,, and T respectively are both well-defined Kéahler metrics.

By abuse of notation, we still call these pull-back metrics the Hodge
metrics. Let us denote Z}Z to be the completion of Z,, with respect to the
Hodge metric. By definition Zn}{ is the smallest complete space with respect
to the Hodge metric that contains Z,,. Then Z C Z,, and the complex
codimension of the complement Z\ Z,, is at least one.

In order to understand Z! and the extended period map @gm well,
we introduce another two extensions of Z,,, which will be proved to be
biholomorphic to Z.

Let Z!, D Z,, be the maximal subset of Z,, to which the period map
@z, : Zn — D/T extends continuously and let &z : Z — D/T be the
extended map. Then one has the commutative diagram

@Zrn
i , 2z,
Zn, —Z —>D/T.

with i : Z,, — Z/ the inclusion map.

Since Z,, \ Z,, is a divisor with simple normal crossings, for any point
in Z,, \ Z,, we can find a neighborhood U of that point, which is isomorphic
to a polycylinder A", such that

UNZ, ~ (A*)F x AN7F,
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Let T;, 1 < i < k be the image of the i-th fundamental group of (A*)¥
under the monodromy representation, then the 7;’s are called the Picard-
Lefschetz transformations. Let us define the subspace Z/ C Z,,, introduced
by Griffiths in [8], which contains Z,, and the points in Z,, \ Z,, around
which the Picard-Lefschetz transformations are of finite order, hence trivial
by Lemma 2.6.

In Section 1.4 of [15], we proved the equivalence of the extended moduli
spaces constructed as above. Moreover, we proved the following lemma.

Lemma 2.7. We have Z!, = Z!" = Z!H which is an open complex subman-
ifold of Z,, with codime(Z,, \ Z2) > 1. The subset ZI'\ Z,, consists of the
points around which the Picard-Lefschetz transformations are trivial. More-
over the extended period map

o4 .zl - DT
18 proper and holomorphic.

Let 7,7 be the universal cover of ZH with the universal covering map
gl 7 5 ZH Thus 7,7 is a connected and simply connected complete
complex manifold with respect to the Hodge metric. We will call 7, the
Hodge metric completion space with level m structure. Recall that the Te-
ichmiiller space 7 is the universal cover of the moduli space Z,, with the
universal covering map denoted by 7, : T — Z,,. Thus we have the follow-
ing commutative diagram

(20) Tt P p

lﬂ'm lwffb iﬂ'D
(I)H

Zp—>=ZH 22 DT,

where i is the inclusion map, 4, is a lifting map of i o 7,,, 7p is the covering
map and &/ is a lifting map of @gm o In particular, ® is a continuous
map from 7,2 to D.

We notice that the lifting maps i7 and ® are not unique, it is easy to
show that there exist suitable choices of i,,, and ®Z such that ® = & o ,,.
We will fix the choices of i, and ®X such that ® = ®X 0, in the rest of
the paper. Without confusion of notations, we denote 7y, := i,,(7) and the
restriction map ®,, = ®|7- . Then we also have ® = ®,, o i,,,. Moreover,
we have the following proposition. See Section 1.4 of [15] for the detailed
proof.
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Proposition 2.8. The image Ty, equals to the preimage (7)~1(Z,,), and

m
im: T = Tm
1S a4 covering map.

Proposition 2.8 implies that 7,, is an open complex submanifold of 7,7
and codimc (7,2 \ T,) > 1. Moreover, we have that 7,7 \ T, is an analytic
subvariety of 7,2

In fact, since Z,, \ Z,, is a union of simple normal crossing divisors,
from Lemma 2.6, we see that the subset ZX \ Z,, consists of normal crossing
divisors in Z!! around which the monodromy group is trivial. Therefore Z1 \
Z,, is an analytic subvariety of Z!1. On the other hand, from Proposition 2.8,
we know that 7,1\ 7,, is the inverse image of Z!I \ Z,, under the covering
map

o TH o ZH
this implies that 7, \ 7, is an analytic subvariety of T,%.

We will call 2 : TH — D the extended period map. Then by using the

closedness of the horizontal tangent bundle T,ll’OD in T1OD, we have

Lemma 2.9. The extended period map
o . T - D
satisfies the Griffiths transversality.
3. Boundedness of the period maps

In Section 3.1, we review some basic properties of the period domain from
Lie group and Lie algebra point of view. We fix a base point p € 7 and
introduce the unipotent space N4 C D, which is biholomorphic to complex
Euclidean space C?. In Section 3.2, we define

T =o"YN,NnD),
and consider, in terms of the notations of Lie algebras in Section 3.1,
pr=p/(pNb)=pNny Cny

and exp(p4) € Ny as complex Euclidean subspaces.
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Let
P+ : N+ﬂD—>exp(p+)ﬂD

be the induced projection map and ®, = P, o ®|+. We first explain the
proof that the image of

d,: T = exp(py)ND

is bounded in exp(py) with respect to the Euclidean metric on exp(py) C
N;. In fact we actually proved that exp(ps) N D is bounded in exp(p).
Then we review the proof of the boundedness of the image of

®: T - N,ND

in Ny otained by proving the finiteness of the map P, |q>(7-). From linear alge-
bra we have that 7\ 7 is an analytic subvariety of 7~ with codimc(7 \ T) >
1. Then we can apply the Riemann extension theorem to get the bounded-
ness of the image of

‘I)ZT—>N+QD

in N+.

As mentioned in the introduction, when the images of these maps are
bounded sets in the corresponding complex Euclidean spaces, we will simply
say that these maps are bounded.

3.1. Period domain from Lie algebras and Lie groups

Let us briefly recall some properties of the period domain from Lie group
and Lie algebra point of view. All of the results in this section is well-known
to the experts in the subject. The purpose to give details is to fix notations.
One may either skip this section or refer to [9] and [23] for most of the
details.

The orthogonal group of the bilinear form @ in the definition of Hodge
structure is a linear algebraic group, defined over Q. Let us simply denote
Hc = Hp,.(M,C) and Hg = H,,(M,R). The group over C is

Gc = {9 € GL(Hc)| Q(gu, gv) = Q(u,v) for all u,v € Hc},
which acts on D transitively. The group of real points in G¢ is
Gr = {g € GL(Hg)| Q(gu, gv) = Q(u,v) for all u,v € Hg},

which acts transitively on D as well.
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Consider the period map ® : 7 — D. Fix a point p € T with the image
0:=®(p)={F) C---CF)}eD.

The points p € T and o € D will be referred as the base points or the refer-
ence points. A linear transformation g € G¢ preserves the base point if and
only if gFIf = Ff for each k. Thus it gives the identification

D~ Gc/B with B={g¢c G gFf = sz, for any k}.
Similarly, one obtains an analogous identification
D~Gr/V < D with V =GgrnNB,
where the embedding corresponds to the inclusion
Gr/V = Gr/GrN B C G¢/B.
The Lie algebra g of the complex Lie group G¢ can be described as
g ={X € End(H¢)| Q(Xu,v)+ Q(u,Xv) =0, for all u,v € Hc}.

It is a simple complex Lie algebra, which contains go = {X € g| XHg C Hg}
as a real form, i.e. g = go @ igg. With the inclusion Gr C G¢, go becomes
the Lie algebra of Gr. One observes that the reference Hodge structure
{Hgm_k}zzo of H"(M,C) induces a Hodge structure of weight zero on g,
namely,

8= @gkﬁk with ¢" " ={X¢€ gl XH)" T C H;'Jrk,'nfrfk}'
kEZ

Since the Lie algebra b of B consists of those X € g that preserves the
reference Hodge filtration {F}} C --- C Fz()) }, one thus has

b= @gk’_k.

k>0

The Lie algebra vg of V' is
Uozgoﬂb:goﬂbﬂgzgoﬂgo’o.

With the above isomorphisms, the holomorphic tangent space of D at the
base point is naturally isomorphic to g/b.
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Let us consider the nilpotent Lie subalgebra

PR 7k7k
Ny = Op>19 7.

Then one gets the holomorphic isomorphism g/b = n. We take the unipo-
tent group

Ny = exp(ny).

We shall review and collect some facts about the structure of simple Lie
algebra g in our case. Again one may refer to [9] and [23] for more details.
Let 0 : g — g be the Weil operator, which is defined by

0(X) = (-1)PX for X € g"P.

Then 6 is an involutive automorphism of g, and is defined over R. The (+1)
and (—1) eigenspaces of § will be denoted by £ and p respectively. Moreover,
set

th=tNgo, pPo=»rNgo.

The fact that 0 is an involutive automorphism implies

g=t®p, go=to®po, [, ECE [p,p]CE [Ep] Cp.

Let us consider g. = £y @& v —1pg. Then g. is a real form for g. Recall
that the killing form B(-, -) on g is defined by

B(X,Y) = Trace(ad(X) cad(Y)) for X,Y € g.

A semisimple Lie algebra is compact if and only if its Killing form is negative
definite. Thus it is not hard to check that g. is actually a compact real form of
g, while gg is a noncompact real form. Recall that Gr C G¢ is the subgroup
which correpsonds to the subalgebra gg C g. Let us denote the connected
subgroup G. C G¢ which corresponds to the subalgebra g. C g.

Let us denote the complex conjugation of g with respect to the compact
real form g. by 7., and the complex conjugation of g with respect to the
noncompact real form gg by 7.

The intersection K = G, N G is then a compact subgroup of Gg, whose
Lie algebra is &y = gr N g.. With the above notations, Schmid showed in [23]
that K is a maximal compact subgroup of G, and it meets every connected
component of Gg. Moreover, V =Gr N B C K.
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3.2. Boundedness of the period maps

Now let us fix the base point p € T with ®(p) = 0 € D. Then after fixing
the base point 0o, N4 can be viewed as a subset in D by identifying it with
its orbit in D with the base point ®(p) = 0. We define

T=&YN,nD).

At the base point ®(p) =0 € N N D, we have identifications of the
tangent spaces

TN, =TD ~ny, ~ N,
Then the Hodge metric on Té’OD induces an Euclidean metric on Ny. In
the proof of the following lemma, we require all the root vectors to be unit

vectors with respect to this Euclidean metric.
Let

pr=p/(pNb)=pnny Cny,
or equivalently,

—kk - —kk
P+ = Dk odd, k>19 Cnp >~ @10 77,

1 : .
denote a subspace of To'D ~ ny, and p; can be viewed as an Kuclidean

subspace of ny. Similarly exp(py) can be viewed as an Euclidean subspace
of Ny with the induced metric from N, . Define the projection map

P+Z N+ﬂD—>exp(p+)ﬂD

by

(21) P, =expopy oexp

where exp™ : N, — n, is the inverse of the isometry
exp: ny — Ny,

and

D+t My =Py

is the projection map from the complex Euclidean space n to its Euclidean
subspace p.
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The restricted period map
®: T - N.ND,

composed with the projection map P, , gives a holomorphic map
(22) d,: T —exp(py)ND,
where @, = P, o ®|+.

Because the period map is a horizontal map, and the geometry in the
horizontal direction of the period domain D is similar to Hermitian sym-
metric space as discussed in detail in [9], the proof of the following lemma

is basically an analogue of the proof of the Harish-Chandra embedding the-
orem for Hermitian symmetric spaces, see for example [20].

Lemma 3.1. The image of the holomorphic map
q)+ : 7- — eXp(]J+) M D
is bounded in exp(p.) with respect to the Euclidean metric on exp(ps) € N4.
In fact we proved that exp(py) N D is a bounded domain in complex
Euclidean space exp(p4+). See Lemma 2.9 in [15] for the detailed proof.
The following lemma is proved in [15], by using Griffiths transversality
and the fact that the projection map

WiD—)GR/K

is a Riemannian submersion, together with some basic results in the book
of Grauert-Remmert [5]. .

Lemma 3.2. The restricted map
Pilgn(my : Ny N OJ(TH) — exp(py) N D

s a finite holomorphic map onto its image, i.e. it is a proper holomorphic
map with finite fibers.

Combining the previous results we get the boundedness of the period
map restricted to 7.
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Theorem 3.3. The image of the restriction of the period map
d: T >N,ND
1s bounded in N4 with respect to the Fuclidean metric on Ny .

Let p € T be the base point with ®(p) = {F}} C Fl?*l C...C Fg}. Let
q € T be any point with ®(¢q) = {F}' C F"' C ... C F)}. By using linear
algebra, we prove that ®(q) € Ny if and only if F(f is isomorphic to F;f for
all 0 < k < n. From this we get the following lemma.

Lemma 3.4. The subset T is an open dense submanifold in T, and T\T
is an analytic subvariety of T with codimc(T\T) > 1.

The Riemann extension theorem immediately gives us the following
needed boundedness.

Corollary 3.5. The image of
®: T —D
lies in Ny N D and is bounded with respect to the Fuclidean metric on N .
Recall that in Proposition 2.8 in Section 2.4, we have proved that
D Tn — D
is holomorphic with
C(Tin) = Oy (i (T)) = (T)

and codime (7,2 \ T,,) > 1. Moreover, from the argument following Propo-
sition 2.8, we get that 7,2 \ 7, is an analytic subvariety of 7,2
On the other hand, Corollary 3.5 implies that the image of

by Tin > NN D
is bounded in Ny which implies the following easy corollary.
Corollary 3.6. The image of
oH . TH D

lies in N;xND and is bounded with respect to the Euclidean metric on N.
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4. Affine structures and injectivity of extended period map

In Section 4.1, we introduce the abelian subalgebra a, the abelian Lie group
A = exp(a), and the projection map

P:N,ND— AND.

Then from local Torelli for Calabi—Yau manifolds, we get that the holomor-
phic map

UV: T sANDc A~CN

is nondegenerate, therefore defines a global affine structure on 7.
In Section 4.2, we consider the extended period map

vl TH 5 AnD,

where WX = P o ® Then by using the affine structure, local Torelli for
Calabi-Yau manifolds and extension of Hodge bundles we get that W/ is
nondegenerate and hence defines a global affine structure on 7,2/, A lemma
of Griffiths-Wolf in [10] tells us that the completeness of 7,2 with Hodge

metric implies that
v T 5 AND

m

is a covering map. In Section 4.3, we explain the idea to prove that ¥/ is an
injection by using the holomorphic affine structure on 7,2. As a corollary,
we get that the holomorphic map ® is an injection.

4.1. Affine structure on the Teichmiiller space

Let us consider
a=dd,(T)T) C TyD ~ny

where p is the base point in 7 with ®(p) = 0. Then by Griffiths transver-
sality, a C g~ ! is an abelian subalgebra of n, determined by the tangent
map of the period map

d® : TYOT — THOD.
Consider the corresponding Lie group

A £ exp(a) C N;.
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Then A can be considered as a complex FEuclidean subspace of Ny with the
induced Euclidean metric from N,.
Define the projection map

P: N.nNnD—AND
by
P =expopoexp !

where exp~! : N. — n, is the inverse of the isometry
exp: ny — N,

and
p:ng —a

is the projection map from the complex Euclidean space n to its Euclidean
subspace a.

The period map ® : 7 — N, N D composed with the projection map P
gives a holomorphic map

(23) UV:T—AND
where U = P o ®. Similarly we define
v TH L AnD

by WH = P o ®H We will prove that the map in (23) defines a global affine
structure on the Teichmiiller space T . First we review the definition of com-
plex affine structure on a complex manifold.

Definition 4.1. Let M be a complex manifold of complex dimension n. If
there is a coordinate cover {(U;, ¢;); i € I} of M such that ¢, = p; 0 ¢} ' is
a holomorphic affine transformation on C" whenever U; N Uy, is not empty,
then {(U;, ¢;); ¢ € I} is called a complex affine coordinate cover on M and
it defines a holomorphic affine structure on M.

First we have the following theorem. We refer the reader to [15], Theo-
rem 3.2, for its proof.
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Theorem 4.2. The holomorphic map
U:T—AnDcCA~CY
s nondegenerate, therefore defines a global holomorphic affine structure on T .
We remark that this affine structure on 7 depends on the choice of the

base point p. Affine structures on 7 defined in this ways by fixing different
base point may not be compatible with each other.

4.2. Affine structure on the Hodge metric completion space

First recall the diagram (20):

H

(24) T g P p

lﬂ'm \Lﬂfn{ lﬂ'D
<I>H

Zp—>ZH 22 DT

By Corollary 3.6, we define the holomorphic map
vl TH 5 AnD

by composing the extended period map ® : TH — N, N D with the pro-
jection map P: Ny N D — AN D. We also define the holomorphic map

Uy T — AND
by restricting ¥,,, = W | | which is given by ¥,, = P o ®,,.
Next, recall that 7,, C 7,1 is an open complex submanifold of T,} with
codime (7,2 \ T,,) > 1, iy, is a covering map onto 7,,, and
Tm = im(T) = (Wg)il(zm)’
We can choose a small neighborhood U of any point in 7, such that

U s v=xl(U) c z,,

is a biholomorphic map. We can shrink U and V simultaneously such that
7 W (V) = Uy W, and 7, : W, — V is also biholomorphic. Choose any W,
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and denote it by W = W,,. Then i,, : W — U is a biholomorphic map. Since
=004, =V, 0i,,

we have Uy = U, | © iy |w. Theorem 4.2 implies that Wy is biholomor-
phic onto its image, if we shrink W, V' and U again. Therefore

Uplo: U= AND

is biholomorphic onto its image. By pulling back the affine coordinate chart
in A~ CV, we get an induced affine structure on 7,, such that U, is an
affine map.

In conclusion, we have the following lemma.

Lemma 4.3. The holomorphic map
U : T — AND

1s a local embedding. In particular, V,, defines a global holomorphic affine
structure on Tp,.

Next we will show that the affine structure induced by
Uy Tmm —AND

can be extended to a global affine structure on 7,2 which is precisely induced
by the extended period map

o T 5 AN D.
Definition 4.4. Let M be a complex manifold and N C M a cloesd sub-
set. Let Fg — M \ N be a holomorphic vector bundle. Then Ej is called

holomorphically trivial along N, if for any point x € N, there exists an open
neighborhood U of & in M such that Fy|y x is holomorphically trivial.

We need to following elementary lemma, which is Proposition 4.4 from
[18], to proceed.

Lemma 4.5. The holomorphic vector bundle Ey — M \ N can be extended
to a unique holomorphic vector bundle E — M such that E|M\N = FEy, if
and only if Eg is holomorphically trivial along N.
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On the period domain D we have the Hodge bundle which is the hori-
zontal subbundle of the tangent bundle of D,

(25) P Hom(F*/F¥1 FA=1/FF),
k=1

in which the differentials of the period maps ®, <I>THn and P, take values.
From local Torelli for Calabi—Yau manifolds, we know that the image of
the differential of the period map at each point is the Hodge subbundle
Hom(F™, F"~1/F™). On the other hand, as the variation of Hodge structure
from geometry, the Hodge bundles naturally exist on 7 and 7p,.

Let us denote the restriction to AN D of the Hodge subbundle H =
Hom(F™, F"~1/F") on D by

Ha = Hom(F", F"'/F™)| snp.

By the definition of A, the holomorphic tangent bundle of A N D is naturally
isomorphic to H4 as described explicitly in the proof of Theorem 4.2 in
[15]. Theorem 4.2 and Lemma 4.3 give the natural isomorphisms of the
holomorphic vector bundles over 7 and 7,, respectively

dU . THOT ~ Uy,
AW, THOT,, =~ UF H .

We remark that the period map @gm . ZH 5 D/T" can be lifted to the
universal cover to get ® : TH — D due to the fact that around any point
in Z,f{ \ Z,, the Picard-Lefschetz transformation, or equivalently, the mon-
odromy is trivial, which is given in Lemma 2.7. Hence the Hodge bundle
(UHY*9{ 4 is the natural extension of U* H4 over T,2. More precisely we
have the following lemma.

Lemma 4.6. The isomorphism TYOT,, ~ U* Ha of holomorphic vector
bundles over T, has a unique extension to an isomorphism of holomorphic
vector bundles over T,X with

TYOTH o~ (0l 9 4.

With the same notation H = Hom(F™, F"~'/F") to denote the corre-
sponding Hodge bundles on 7,, and 7,2, the above lemma simply tells us
that the isomorphism of bundles T'Y7,, ~ H on 7,, extends to isomorphism



Applications of affine structures to CY moduli spaces 343

on 7,1,
THOTH ~ .
Then we can prove the following theorem by using the extension of the
period map and the fact that ¥, : 7,, — AN D is an affine map.

Theorem 4.7. The holomorphic map
v TH 5 AnD
is nondegenerate. Hence W defines a global affine structure on T

For the proof of the above theorem, see Theorem 3.7 in [15]. In the
remark following the proof there, one can also see the geometric origin of
Theorem 4.7 due to the special feature of the period map of Calabi—Yau
manifolds.

Recall the following lemma due to Griffiths and Wolf, which is proved
as Corollary 2 in [10].

Lemma 4.8. Let f: X — Y be a local diffeomorphism of connected Rie-
mannian manifolds. Assume that X is complete for the induced metric. Then
f(X) =Y, f is a covering map and Y is complete.

This lemma, together with Theorem 4.7 proved above, gives the following
corollary.

Corollary 4.9. The holomorphic map
v TH 5 AnD

is a universal covering map, and the image WH(TH) = AN D is complete
with respect to the Hodge metric.

It is important to note that the flat connections which correspond to the
global holomorphic affine structures on 7, on 7, or on T,7 are in general
not compatible with the corresponding Hodge metrics on them.

4.3. Injectivity of the period map on the Hodge metric
completion space

The main purpose of this section is Theorem 4.10 stated below. The idea
of proof is to show directly that A N D is simply connected, which together
with Corollary 4.9 implies the theorem.
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Theorem 4.10. For any m > 3, the holomorphic map
v TH 5 AND
18 an injection and hence a biholomorphic map.

Proof. As explicitly described in the proof of Lemma 3.2 as given in [15],
the natural projection

m: D — Gr/K,

when restricted to the underlying real manifold of exp(py) N D, is given by
the diffeomorphism

(26) my  exp(p+) N D — exp(po) — Gr/K,

which is defined by mapping exp(Y)o to exp(X)o for Y € p; and X € pg
with the relation that

X = TO(Y + To(Y))

for some real number Tj. Here 0 is the base point in exp(py)N D, and
exp(Y)o and exp(X)o denote the left translations.
By Griffiths transversality, one has

acC g_l’l Cprand ag =a+ To(a) C po.
Then AN D is a submanifold of exp(py) N D, and the diffeomorphism 7
maps AN D C exp(ps) N D diffeomorphically to its image exp(ag) inside
Gr/K, from which one has the diffeomorphism

AN D ~exp(ag)

induced by 7. Since exp(ap) is simply connected, one concludes that A N D
is also simply connected.
Now since 7,2 is simply connected and

vl TH 5 AND
is a covering map, we conclude that WZ must be a biholomorphic map. [J

Since U1 = P o ®! we also have the following corollary.
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Corollary 4.11. The extended period map
oH . TH 5~ N, ND
18 an injection.
5. Global Torelli

In this section, we first explain the proof that 7,2 does not depend on the
choice of the level m, so that we can denote the Hodge metric completion
space TH by TH = T and the extended period map ® by & = & for
any m > 3. Therefore TH is a complex affine manifold and that ® is a
holomorphic injection.

As a direct corollary, we derive the global Torelli theorem for the injec-
tivity of the period maps from the Torelli space 7’ and from its completion
space TH to the period domain. Another corollary is the global Torelli the-
orem on the moduli space of polarized Calabi—Yau manifolds with level m
structure for any m > 3.

For any two integers m,m’ > 3, let Z,, and Z,,» be the smooth quasi-
projective manifolds as in Theorem 2.3 and let ZI and Z, be their com-
pletions with respect to the Hodge metric. Let TmH and Twlf be the universal
cover spaces of Z! and Zg/ respectively. From Theorem 4.10, we know that
both 7,2 and T2 are biholomorphic to A N D. Hence we have the following
proposition.

Proposition 5.1. For any m > 3, the complex manifold T,f{ 1s complete
equipped with the Hodge metric, and is bitholomorphic to AN D. So for any
integers m, m’' > 3, the complex manifolds 7'75[ and 7'75 are biholomorphic
to each other.

Proposition 5.1 shows that 7,7 is independent of the choice of the level
m structure, and it allows us to introduce the following notations.
We define the complex manifold 77 = 7,27 the holomorphic map

i T — TH
by i1 = imm, and the extended period map

o . TH 5 D
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by &/ = & for any m > 3. In particular, with these new notations, we
have the commutative diagram

(27) T To7H 2% . p

\Lﬂ-nl lern‘ lﬂ—D
<I)H

Z, —=zH =% pIT.
The main result of this section is the following,

Theorem 5.2. The complex manifold TH is a complex affine manifold
which can be embedded into A ~ CN and it is the completion space of the
Torelli space T' with respect to the Hodge metric. Moreover, the extended
period map

7. 7TH 5 N, nD

18 a holomorphic injection.

Proof. By the definition of 7 and Theorem 4.10, it is easy to see that 7
is a complex affine manifold, which can be embedded into A ~ CV. It is also
not hard to see that the injectivity of ®¥ follows directly from Corollary 4.11
by the definition of ®#. Now we only need to show that 7 is the Hodge
metric completion space of 7', which follows from the following lemma. [

The proof of the following lemma depends crucially on the level struc-
tures. See Lemma 4.3 in [15] for its proof.

Lemma 5.3. Let To C TH be defined by To :=i7(T). Then Ty is biholo-
morphic to the Torelli space T".

From this we get directly the following global Torelli theorem on the
Torelli space.

Corollary 5.4 (Global Torelli theorem). The period map
o T — D
18 injective.

As another direct corollary, we have the global Torelli theorem on the
moduli space Z,, of polarized Calabi—Yau manifolds with level m structure
for any m > 3.
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Corollary 5.5. The period map
bz : Z,—D/T
158 1njective.

Corollary 5.5 is derived from Corollary 5.4 by using the equivariance of
the period map ® : TH — D with respect to the induced action of the
fundamental group 7 (Z) on TH and the action of the monodromy group
I' on D. See Corollary 4.5 of [15] for the detail.
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