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Twistorial topological strings and a
tt* geometry for N = 2 theories in 4d

SERGIO CECOTTI, ANDREW NEITZKE, AND CUMRUN VAFA

We define twistorial topological strings by considering #t* geom-
etry of the 4d A = 2 supersymmetric theories on the Nekrasov-
Shatashvili %Q background, which leads to quantization of the as-
sociated hyperKahler geometries. We show that in one limit it re-
duces to the refined topological string amplitude. In another limit
it is a solution to a quantum Riemann-Hilbert problem involving
quantum Kontsevich-Soibelman operators. In a further limit it en-
codes the hyperKahler integrable systems studied by GMN. In the
context of AGT conjecture, this perspective leads to a twistorial
extension of Toda. The 2d index of the %Q theory leads to the
recently introduced index for A/ = 2 theories in 4d. The twistorial
topological string can alternatively be viewed, using the work of
Nekrasov-Witten, as studying the vacuum geometry of 4d N = 2
supersymmetric theories on 72 x I where I is an interval with spe-
cific boundary conditions at the two ends.
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1. Introduction

Supersymmetric theories have a rich vacuum structure. On the other hand
studying degenerate states as a function of parameter space in a quantum
mechanical system is well known to lead to Berry’s connection on the pa-
rameter space. Combining these two ideas, it is natural to ask what is the
geometry of the vacua for supersymmetric quantum theories. It is most
natural to study this when we consider the space to be a compact flat ge-
ometry such as tori. This question has been answered for theories with 4
supercharges in d = 2,3,4 dimensions [1, 2] leading to a highly nontrivial
geometry known as tt*. For more supersymmetry the vacuum geometry in
a sense becomes too rigid and more universal and thus less interesting. It
is natural to ask if there is any way which we can get a non-trivial vacuum
geometry out of theories with say 8 supercharges, and in particular for 4d
theories with V' = 2 supersymmetry (for other attempts in this direction
see [3]).

Motivated by the similarity between ¢t* geometry for theories with 4
supercharges and open topological string amplitudes, in [4] a twistorial ex-
tension of topological string was proposed. The main aim of this paper is to
make this more precise and compute the corresponding amplitudes in some
simple cases. Translating the proposal in [4], we come up with a natural def-
inition of twistorial topological string, in terms of the corresponding target
space physics. For topological B-model the target physics involves type I1B
theories on local Calabi-Yau threefolds and for A-model it involves M-theory
compactifications on local Calabi-Yau threefolds times a circle. In both cases
we end up with a theory in 4 dimensions with N/ = 2 supersymmetry. The
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basic idea is to consider the %Q background [5] with some parameter €;. In M-
theory picture this involves rotating the 3-4 plane by ¢; as we go around the
5-th circle (and doing a compensating rotation in the non-compact Calabi-
Yau 3-fold to preserve supersymmetry). In the B-model it is more implicit
but can be viewed as mirror to the above operation. As argued in [5] in such
a case we end up with a theory in 2d which has N/ = 2 supersymmetry with
infinitely many discrete vacua where the Coulomb branch parameters are
quantized d = Eq with a mass gap. This allows us to study the associated
tt* geometry, by putting the theory on a circle of length R = 1/€;. The the-
ory will have natural D-branes labeled by vacua E, and a phase ( depicting
the choice of which combination of two supercharges we preserve on the D-
brane. tt* geometry [1] can be used [6] to compute the wave function of such
D-branes when we take the overlap of these states with vacua of the theory.
The phase ¢ can be extended to the full complex plane excluding 0 and oo
and will play the role of twistor parameter for us. The D-brane amplitudes
define the twistorial topological string amplitudes. One can show that in the
limit R — 0 and ¢ — 0 keeping (/R = e finite, we get a discretization of
refined topological strings at Coulomb branch parameters given by @ = Eel,
which is sufficient to give an unambiguous perturbative expansion in ¢;. In
this limit, the amplitudes reduce to that of refined topological strings, or
equivalently to the full Q background with parameters €1, €5.

One can also interpret this structure in terms of the geometry of N' = 2
supersymmetric vacua in 4d along the lines of [7]. This leads to a direct
interpretation of twistorial topological strings in terms of a tt* geometry
for the A = 2 theories in 4d. Consider the 4d theory on 72 x I where I
is an interval of length L and T2 with radii 1/e;,1/& (and the tilt of the
T? given by an additional angle @ leading to the complex moduli of torus
T = % +i%"). On one end of the the interval I we put a D-brane which is
related to Dirichlet condition along one of the cycles of the T? for electric
gauge components (and its supersymmetric completion). On the other end
we have a 1Q deformation which can be viewed as a D-brane (brane of
“opers”) of a 3d theory obtained from compactification of the 4d theory
on the same circle. In other words, from the perspective of the resulting 3d
theory we have a space given by S' x I where the supersymmetry is reduced
to 4 supercharges by the D-branes on both ends. This results in vacua labeled
by E, which we can study in the usual ¢* setup, treating S' as the circle in
2d. The D-brane wave function of this geometry, in the limit the length L
of the interval goes to infinity, leads to the twistorial topological string.
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In the limit €; — 0, we find evidence that the theory reduces to the
hyperKéahler geometry studied by Gaiotto-Moore-Neitzke in [8]. More pre-
cisely, we obtain a quantum version of this geometry by keeping @ finite,
what we call the #-limit, and obtain a quantum Riemann-Hilbert problem
for the line operators. The twistorial partition function is a wave function
associated to this quantum Riemann-Hilbert problem. There is a further
limit, a ‘classical limit’ where § — 0, where we make contact with the stan-
dard version of the story of [8]. In this limit we expect that the twistorial
topological string partition function gets related to the objects introduced
in [9] as part of the construction of a hyperholomorphic line bundle over
the hyperKéhler moduli space which is the target of the 3d sigma model.
We show that this is indeed the case for some simple examples. We can also
consider, in the # limit, to make the 2d time to be correlated with the phase
of the supersymmetry we preserve on S' as in [10]. In this context we make
contact with the work [11], where the trace of the monodromy of the ¢¢*
geometry in this limit was the object of study.

We can also study other twistorial invariant (i.e. wall-crossing invariant)
objects in the tt* setup. In particular we study the metric on the ground
state vacua (leading to Berry’s connection). Among the vacua, there is a
distinguished one, corresponding to the insertion of the identity operator
in topologically twisted theory. Studying its norm (0]|0) leads to a parti-
tion function which depends only on masses of the 4d theory as well as the
(€1, €2, 0). Tt is the twistorial extension of combining topological string am-
plitudes with anti-topological string amplitudes. In the usual £ background,
a similar object has been related to partition function of the 4d theory on
S4 [12], and in the context of M5 branes on Riemann surfaces the resulting
amplitudes have been related to Toda theories [13, 14]. In these cases we find
a twistorial extension of the resulting theories. Another object one studies
in the 2d setup is the CFIV index [15]. We provide evidence that in the limit
€1 — 0, & — 0 this index becomes equivalent to the recently studied AMNP
index [16] of the associated 4d theories. In addition, studying the R-flow of
the 2d theory [10, 17] leads to the 4d quantum KS monodromy studied in
[11].

In a sense twistorial topological string can be viewed as quantizing the
hyperKéhler geometry associated to circle compactifications of 4d N = 2
theories, where one of the parameters (e;) quantizes the Coulomb branch
base, and another parameter (f) quantizes the Jacobian fiber of the hy-
perKahler space.

For a different approach to a “twistorial” extension of the topological
string see [18].
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The organization of this paper is as follows: In Section 2 we review the
definition of twistorial open topological string [4]. In Section 3 we define
twistorial closed topological strings. We do this in two ways: One is to use
large N dualities of topological strings, which we review and use as a spring
board for a twistorial definition of closed topological string. We also give
alternative, more general definition of twistorial topological string without
employing large N dualities, using tt* of %Q background. We also reinterpret
this in terms of studying tt* geometry by placing branes on the boundaries
of the space. Furthermore we discuss the various interesting limits one can
take, including in particular the #-limit. We study the #-limit in more de-
tail, and relate it to a quantum Riemann-Hilbert problem, in Section 4. In
Section 5 we study twistorial extension of matrix models by studying (2,2)
supersymmetric LG matrix models and the associated D-brane wave func-
tions, and solve explicitly the twistorial extension of the Gaussian matrix
model and a number of related examples (which have abelian tt* geometries).
This example leads, by large N duality, to the twistorial extension of the
conifold (a.k.a. N =2 SQED) which is discussed in Section 6. In Section 7
we evaluate the three point function for the twistorial Liouville theory (both
the twistorial conformal block as well as the twistorial 3—point function). We
also show how the AMNP index is related to the CFIV index. In Section 8
we study the classical limit (C-limit) of the twistorial topological string and
make contact with the hyperholomorphic line bundle on moduli space of
N =2 studied in [9], as well as the twistorial line operators studied in [8].
In Section 9 we close by presenting some concluding remarks. Some technical
details and extensions of the ideas discussed are relegated to appendices.

2. Open twistorial topological string

In this section we first quickly review tt* geometry and then show how it is
connected to the open topological string.

2.1. A lightning review of tt*

Consider a quantum field theory in 2 dimensions with (2,2) SUSY, which is
massive, i.e.there is a discrete set of m vacua, each with a mass gap. Putting
such a theory on a spatial circle of length R, we obtain a Hilbert space with
an m-dimensional ground state subspace. Varying parameters of the theory
(deforming by chiral operators), we get a Berry connection on the bundle of
Hilbert spaces over parameter space, which restricts to a unitary connection
D on the m-dimensional ground state bundle. Moreover, we have the tt*
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equations [1, 19]: if we define the “improved” connection

C

where C' denotes the action of the chiral operators on the vacua, and ( € C*
is arbitrary, then

ngﬁJng@

Ve,V =[Ve, Vel = [V, V] = 0.

We refer to Vo, VC as the ¢t* Lax connection.

Our major objects of study will be flat! sections ) of the tt* Lax con-

nection, obeying

Vep =Vep = 0.

There is a distinguished set of such sections Dy, b=1,..., N, obtained, as
we explain below, from boundary states corresponding to a distinguished set
of D-branes. These D-branes break half the supersymmetry; which half of
the supersymmetry they preserve is characterized by an angle ¢, which is
related to the ¢ appearing above by ¢ = exp(i¢). Thus, for the flat sections
arising from D-branes the parameter ( is restricted to have |(| = 1.

Vacua of the theory also play a distinguished role. They are in 1-1 cor-
respondence with the chiral ring elements. For the chiral ring element a, the
vacuum state (a| is obtained by performing the path integral over a “cigar”
geometry, with a topological twist near the tip, and the chiral operator a in-
serted at the tip [1]. This gives a holomorphic section of the vacuum bundle.
One can also choose a unitary section of the vacua, by suitably normalizing
them. Thus, to associate wave functions to D-branes Dj we consider

vy = (alDy).
In particular, letting a be the identity operator gives a distinguished element
vy = (0| Dy).

Sometimes we will drop the superscript for this distinguished wave function
and denote it simply as . Note that this will depend on the choice of
basis for the vacuum. The holomorphic versus the unitary basis differ by

! From the higher—dimensional hyperKihler perspective of [2] ¢ is a (non—flat)
section of the vacuum hyperholomorphic bundle which is holomorphic in complex
structure (.
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the normalization factor 1/4/(0]0). Both bases will be useful for us. We will
be implicit about which choice of basis we make for the vacuum, until the
examples sections.

Now suppose the theory is an N’ = 2 Landau-Ginzburg model, with chi-
ral multiplet fields X; and a holomorphic superpotential W (X;). In this case
the distinguished D-branes can be described explicitly; they impose Dirich-
let type boundary conditions on the Xj, restricting them to Lagrangian
cycles Dy. Each cycle Dy is a “Lefschetz thimble” beginning from a criti-
cal point of W, along which Re(W/e3) — oo [6]. The chiral ring elements
can also be described explicitly: indeed the chiral ring is the Jacobian ring
R = C[X;]/(0;W), so each chiral ring element a corresponds to some holo-
morphic function f%(X).

The explicit computation of the ¢ is in general very difficult, and no
closed form for them is known, except in a handful of cases. However, there
is a limit in which they simplify: fix some e; € C and take

(1) ( = Reoa, R — 0.

We call (1) the asymmetric limit. For a Landau-Ginzburg theory, we then
have an explicit formula:

fim 0 = [ 4X £2(X) exp(=W(X)/e2)

asym

and in particular

asym

(2) lim ¢22/D dX exp(—W(X)/ea).

However, we emphasize that there is something unphysical about this limit:
we have continued ¢ away from the locus |¢| = 1, so that the corresponding
state 1, no longer has a direct interpretation as a D-brane in the original
theory. This is like taking a non-unitary deformation of the theory, in which
we set W = 0 and replace W — W/es.

2.2. Connection with open topological strings

The kind of N = (2,2) theories we have just discussed can naturally arise
from string theory, as follows. Fix a non-compact Calabi-Yau threefold C'Y,
with a non-compact holomorphic curve Y C C'Y. We consider the Type I1B
superstring on C'Y x R*, with D3-branes on a subspace Y x R2. The theory
admits Q-deformation [20], with parameters
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e ¢; for a rotation in the 2> — 2* plane (transverse to the brane),

e ¢ for a rotation in the 2! — 22 plane (along the brane).

If we hold €, = 0 (the Nekrasov-Shatashvili limit [5] or 1Q background), this
system has 2-dimensional Poincaré invariance and N = (2,2) supersymme-
try.?

Indeed, if we consider a single D3-brane, the theory can be described
as a Landau-Ginzburg model, where the superpotential W = W (X, €1t )
is a “holomorphic Chern-Simons”-type functional, a function of fields X
representing deformations of the holomorphic curve Y [21], depending on
background parameters ¢ controlling the complex structure moduli of C'Y'.
Thus, the theory with the full 2-background turned on can be viewed as a
deformation of this 2-dimensional Landau-Ginzburg model; this viewpoint
will be useful momentarily.

The physical setup just discussed has an analogue in the topological
string: we consider the B model on C'Y with a brane on Y C CY. It has been
found in this case [22—-24] that the refined open topological string partition
function is

Zopen = /dX exp [—;W(X, 61,7?):| .
Now let us consider a slightly fancier situation, where we have N branes
rather than one, and a particular choice for CY, as follows. Consider a
hypersurface in C* of the form

y? = W'(z)? +ww

where W (z) is a polynomial of degree n + 1, and W’ (x) has n simple zeroes.
Fach of these zeroes gives a conifold singularity; blowing each of them up
to an exceptional cycle Y; ~ P! gives a smooth Calabi-Yau threefold, which
we take to be our C'Y. Now we can wrap k; D3-branes around the cycles
Y; x R?, as we considered above. Let N = > ki

The corresponding open topological string amplitude is known to be
[22-24]

o . e 1 :
(3) Zopen(k, €1, €2) = dz? A(x)< exp ( s Z W(m3)> .
J

Dy,

2 Although we are focusing on the B-model to be concrete, all of this discussion
has a parallel version in the A-model; the corresponding physical picture would
involve M-theory on an R* bundle over CY x S', where as we go around S' we
rotate R* by angles €, €.
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Here A(x) is the squared Vandermonde,

Aw) = ][ @ =a™),
J177J2
and the integration cycle Dy is defined by integrating k; of the 27 along the
steepest-descent contour emanating from the i-th critical point of W (along
this contour Re(W/ez) — 400 while Im(W/ez) remains fixed, so that the
integral is convergent).

Now here is the key point: (3) can be identified with the asymmetric
limit of a tt* flat section in the physical N’ = (2,2) theory! Indeed, in this
case the physical theory is a gauged Landau-Ginzburg model, where the field
® is an N x N matrix, we have a gauge group U(N), and the superpotential
is Tr W (®). Upon integrating out the gauge dynamics the Landau-Ginzburg
model is replaced by an effective version, where the fields are just the eigen-
values 2/ of ®, with the superpotential

(4) Wl (z) = Z W(z?) + e Z log(a? — x92).

J J1FT2
We now revisit the formula (2) for the asymmetric limit of the ¢¢* flat sections
corresponding to D-branes of this 2-dimensional model. The integration cy-

cle Dy is the Lefschetz thimble attached to the critical point of werf labeled
by k.3 Thus, (2) is identical to (3):

Zopen(E, €1, 62) = aléylfnl’b ¢g‘(€17 62)'

It was this observation that motivated the definition of the “twistorial
open topological string” in [4]. Namely, on the ¢t* geometry side we can move
away from the asymmetric limit, and this means that we have a deformation
on the topological string side as well: we define [4]

. ~ 0 R
gl]l)jéflt(k’ €1, €2, C) = ﬂ)]}’(eb €2, C)v
where we introduced the notation
€& =R!

with R the length of the circle which appears in the ¢t* story.*

3 More precisely, this is the description for e; = 0; for €; # 0 the critical points
are deformed, as we discuss later in this paper, but their labeling does not change.
4 Note that rescaling the length by a factor of R changes W — RW.
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More generally, for any choice of CY, we expect that the ordinary open
topological string can be recovered as the asymmetric limit of the ¢t* flat
section corresponding to the D-brane, and thus for any C'Y we define the
twistorial open topological string partition function to be wg, i.e. the overlap
between the tt* flat section corresponding to a boundary condition b and the
topological ground state.

Now, note that in the above example the superpotential W¢/7 is actually
multivalued due to the logarithm. This introduces a wrinkle in the ¢t* ge-
ometry story: we need to consider a cover of the field space, on which We/f
is single-valued. In particular, each vacuum k gets replaced by an integer’s
worth of vacua on this cover. It is convenient to work in a different basis
for the vacua, introducing a phase 6 Fourier dual to this integer. Thus the
coupling constants of the twistorial topological string include, in addition to
the parameters €; and €y, the new circle-valued parameter 6. Similar addi-
tional parameters were encountered in [2], where it was shown that solutions
of the resulting extended version of tt* can be understood as hyperholomor-
phic connections over the extended parameter space; in the examples we
consider below, we will find the same structure.

Additional angular variables will emerge, which also allows us to make
contact with the setup of [8, 25, 26], as we now explain. Consider the local
Calabi-Yau geometry

ww = f(z,y).

This can be interpreted as in geometric engineering context as a 4d theory
with SW curve f(z,y) = 0. Furthermore we can consider B-branes given by
u = 0,x = xo parameterized by a point xy on the SW curve. In the uncom-
pactified worldsheet 2d theory of this brane we get a 2d theory which (in the
€1 = 0 case) has a superpotential W (zg) with dW = y(x¢)dzo where ydzx is
the SW differential [21]. From the 4d viewpoint, this can be interpreted as
a surface operator [27] whose moduli is parameterized by xg. The tt* geom-
etry for this theory would be, by the definition above, the open twistorial
topological string. Note however, in this setup we have extra parameters in
the target space geometry having to do with the choice of the electric and
magnetic Wilson lines around the circumference of S' in the tt* geometry.
This is consistent with the fact that the 2d LG theory has a multi-valued
superpotential and extra parameters can also be introduced for it. In fact
this case has been studied from the perspective of target 4d theory in [26]
(see also [2]). In particular it is shown there that as we take xp around a
cycle v of the SW curve the D-brane wave function picks up monodromy
X, where X, can be interpreted as the line operators of [8, 25]. In this
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way we make a connection between twistorial aspects of hyperKéahler geom-
etry associated with 4d, N' = 2 theories compactified on a circle, with open
twistorial topological string. More precisely, as we will discuss later in the
paper, this connection arises in the limit €1,6 — 0.

3. Closed twistorial topological strings

In the last section we have defined the open twistorial topological string
in terms of the tt* geometry associated to the corresponding physical D-
brane. Now we would like to give a compatible twistorial extension of the
closed sector of the topological string. There are two ways this can be done
in principle. In §3.1 below we use the large N duality of the topological
string [24, 28, 29] to give one such definition. Then in §3.2 we give another
definition purely from the target space point of view, and argue that the
two approaches are equivalent. Finally in §3.5 we reformulate this definition
in terms of the results of [5], which provides a direct 4d tt* interpretation.
For concreteness, we continue to consider only the topological B model
throughout this section, though similar considerations apply to the A model.

3.1. Large N duality and closed twistorial topological strings

For a closed topological string setup which has an open topological string
dual, we can simply define the closed twistorial topological string partition
function to be the same as the open twistorial topological string partition
function:

wtwiSt(t_: 61762707<) - égéit(g7 6176270’4)'

Here the moduli on the two sides are related by
(5) t'= ek,

where the components ¢; of ¢ are the closed string moduli, and the compo-
nents k; of k are the numbers of branes wrapped around cycles Y; on the
open string side. The closed twistorial topological string is not symmetric
under the exchange €; <+ €, unlike the usual closed topological string; this
is why we have been using the notation €.

Note that according to this definition the closed twistorial topological
string does not make sense for arbitrary values of ¢;, since the k; in (5)
have to be integers (although in some examples below we will see that the
partition function admits a natural continuation away from the integral
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locus.) However, in a perturbative expansion around €; = 0, we would not
see this quantization; then we expect to get functions defined on the full
Coulomb branch (arbitrary t).

Let us consider again the main example discussed in §2.2. The holo-
graphic dual of the open topological string theory we considered there is the
closed topological string for the local Calabi-Yau hypersurface

y* = W'(2)? + P(x) + uv,

where P(z) is a polynomial of degree n — 1, whose coefficients are fixed in
terms of k as in [22]. Thus, we may define the closed twistorial topological
string for this local Calabi-Yau as

¢twi8t(£: Eelv €1, g27 95 C) = %éflt(ka €1, €27 9’ C)

To recover the usual closed topological string from our twistorial exten-
sion, we repeat what we did for the open sector: namely, we take ¢ — 0,
0 — 0, and €2 — oo while holding €3¢ = e, finite. As we argued in §2.2, in
this limit the open twistorial topological string reduces to the ordinary open

topological string; via the topological large N duality, we then recover the
ordinary closed topological string partition function:

ZtOp(t,El,EQ) == zquhr(?s)—m ¢tw18t(t7 617g2507C)‘
Cea=en

Note that in this limit we still have the quantization constraint that each ¢;
is an integer multiple of €1, which suffices to define Z!°P in a perturbative
expansion in €j.

3.2. Target space interpretation of closed twistorial
topological string

In this section we give an alternative definition of the closed twistorial topo-
logical string, which is more general and does not use a large N duality. Its
only disadvantage is that it is not easy to compute it when an explicit dual
open string description is lacking.

Suppose given an A/ = 2 theory in 4 dimensions. We may place this the-
ory in the %Q background with parameter €1, corresponding to a rotation in
the 23 — 2 plane. We thus get a theory in 2 dimensions with A" = (2,2) su-
persymmetry. Now we consider tt* geometry for this 2d theory. This involves
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studying the Hilbert space on a circle S}%, and we take the circle radius to
be

R=1/6.

Moreover, in this theory there is a global symmetry corresponding to the
rotation in the 23 — z* plane, and we can also turn on a Wilson line around
Slli, for this symmetry, with holonomy e'? (thus as we go around S}% we are
rotating the z3 — 2% plane by an angle § while compensating it with the a
U(1l) € SU(2) R-symmetry to maintain supersymmetry).

It is known from [5] that in this 2-dimensional theory we have a discrete
set of vacua labeled by integer vectors k= (k1,..., k), with r the complex
dimension of the Coulomb branch of the original N' = 2 theory. Thus, there
is a natural basis of supersymmetric D-branes for this 2-dimensional theory,
labeled by the discrete parameter k together with a continuous parameter ¢
determining which half of SUSY the D-brane preserves. In parallel to what we
did above, we will consider the overlap between such a D-brane state and the
topological vacuum; we propose to define the closed twistorial topological
string partition functlon it to be this overlap. To do so, we need to
relate the parameter k to the Coulomb branch moduli £ on which ¢t i
supposed to depend. When our N' = 2 theory is a Lagrangian gauge theory,
and when we work in the classical approximation, the results of [5] would
lead to the identification # = ke;. More generally this ¢ should be viewed
as €1 deformation of the Coulomb branch parameter, in terms of which the
Nekrasov partition function is expressed. Thus we define

-

wtwist(t_’: k€1,€1,€2797C) = <0‘E, 0, C>61, R=1/é&-

One tricky point requires discussion. Our description of the vacua is
not symmetric under electric-magnetic duality: in writing ¢ = Eel, we are
saying the vacua correspond to points where the Coulomb branch scalars t;
i a particular electric-magnetic duality frame are quantized. In fact, in our
description we used a basis which is electric-magnetic dual to that used in [5].
In the 2-dimensional theory, this asymmetry between electric and magnetic
can be understood as coming from the boundary conditions imposed at
spatial infinity; alternatively this boundary condition can also be understood
as coming from a boundary condition at infinity in the original 4-dimensional
theory; this mechanism was discussed in [7].



206 S. Cecotti, A. Neitzke, and C. Vafa

3.3. Equivalence via physical large N duality

We have now offered two definitions of the closed twistorial topological
string. Each involves tt* geometry for some 2-dimensional field theory; in
one case the theory was living on the noncompact part of the worldvolume
of a D3-brane of the Type IIB superstring in %Q—baekground; in the other
case the theory came from taking a 4-dimensional A/ = 2 theory and turn-
ing on a %Q—baekground. We will now argue that, in cases where they are
both applicable, the two definitions are actually equivalent, because the two
2-dimensional theories in question are equivalent.

The basic idea of the equivalence is a physical version of the open/closed
duality of topological strings. Such ideas have been used before. In partic-
ular, in [30] the topological open/closed duality was embedded in the Type
ITA superstring, which was later applied to derive nonperturbative results
for N/ =1 supersymmetric theories in four dimensions [31, 32]. The Type
IIB version of this involves D5-branes wrapping CP' in CY, and filling the
4-dimensional spacetime, so that there is 4-dimensional Poincaré invariance
on both sides of the duality. In this paper, on the other hand, we have
been discussing D3-branes, which fill only 2 of the 4 noncompact dimen-
sions. However, once we have turned on the %Q—background we have only
2-dimensional Poincaré invariance, whether or not we have the D3-branes
present; thus at least on symmetry grounds there is no reason why there
cannot be an open/closed duality in this setting as well. Moreover, such a
duality has been considered before in the A model, in that case involving
5-dimensional and 3-dimensional theories [33, 34]; see also [35].

The main new point we make here is that the vacuum structures in the
two theories match. Indeed in the open/closed duality story, we meet the
quantization law ¢ = kel, where k keeps track of the number of D-branes.
On the other hand, when we put an A = 2 theory in ;Q background, as
we have reviewed above, the vacua are also labeled by integers k. This is
a good consistency check, and part of the motivation for writing ¢ = Eel in
that context as well.

Strictly speaking, there is a slight mismatch here: to obtain all the vacua
of the N' = 2 theory in %Q—baekground, we should allow the components of
k to be arbitrary integers; on the other hand the numbers of D3-branes
would naively be restricted to be positive integers. It would be interesting to
clarify this point. A possible resolution could involve replacing the matrix
model with gauge group U(N) by a supermatrix model with gauge group
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U(N + M|M), for M — oo. As discussed in [36], this would allow eigenvalues
to occur with negative multiplicity.

3.4. Extra phases and hyperKahler geometry

So far we have defined ¢! to be a function of Coulomb branch moduli
t (which are quantized for finite €;, but become continuous in the limit
€1 — 0). In examples which we consider below, we will find evidence that
Ptist as e — 0 should in fact be viewed not as a function on the Coulomb
branch, but rather as the restriction of something involving a larger space
M. The relevant M is the “Seiberg-Witten integrable system” which has
been considered before in many works, e.g.[37-39], and played a key role in
the study of BPS states of N’ = 2 theories in [8]. Let us quickly recall the
basics.

M is the total space of a complex integrable system arising as a torus
fibration over the Coulomb branch. To describe the torus fibers concretely,
choose an electric-magnetic splitting; then the fibers can be coordinatized
by angles 0., 0,,:, where e, m refer to “electric” and “magnetic”, and i =
1,...,r. From the point of view of the N’ = 2 theory of the last section, M
arises as the moduli space of the theory we obtain by compactification to
3 dimensions on S'. Here the electric coordinates 6,: are the holonomies of
the abelian gauge fields around S', while 6,,,: arise from dualization of the 3-
dimensional gauge field. This compactified theory has A/ = 4 supersymmetry
in 3 dimensions, from which it follows that M carries a natural hyperKéahler
metric, as discussed in [40].

Concretely, what we are proposing is that ¢thst is best viewed as de-
pending on the angular parameters (9 as well as £. Of course, in our discussion
so far we have not seen these extra parameters appear explicitly. We will
argue in Section 3.6 below that in fact they are fixed to

(6) 0. = k0

which explains why we have not seen them so far.

Nevertheless it is sometimes useful to keep these extra parameters in
mind, as we will see below. In fact, as e; — 0 one can see due to periodicity
of 6%, that t* and #° become effectively independent variables. In partic-
ular, in the C-limit which we define in §3.7.4 below, we will identify the
twistorial topological string partition function (rescaled) with the quantity
U considered in [9], which did depend on the extra parameters 9_;; to make
this comparison, we will need to use (6).
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3.5. Relation to Nekrasov-Witten

In the target space description of the closed twistorial topological string,
given in §3.2, we considered an N = 2 theory placed in %Q—background,
with parameter € corresponding to rotation in the 23 — 2% plane. There is
an alternative perspective on the %Q—background, due to Nekrasov-Witten
[7], which gives some further insight into this setup.

Nekrasov-Witten argue that the theory with %Q—background is equiva-
lent to a theory without Q2-background. In the new theory the metric in the
23 — x* directions is modified to a cigar, whose asymptotic radius is 1/¢;.
More precisely, this equivalence is supposed to hold everywhere except for
the tip of the cigar; at the tip, the equivalence breaks down, so from the
point of view of the new theory there is some nontrivial insertion there.
Now suppose that we compactify this new theory from 4 to 3 dimensions
along the circle direction of this cigar. Away from the tip, then, we just
have the compactification of the original A/ = 2 theory to three dimensions
on S'. In the IR, this compactification gives rise to a 3d sigma model into
the hyperKahler space M reviewed in §3.4.

The cigar becomes a half-line in the spacetime of the compactified theory,
parameterized by r = /(23)2 + (2*)2. To describe the situation more com-
pletely, we should now consider the boundary conditions on this half-line. At
r = 0, the compactification produces a boundary condition of the 3d sigma
model, corresponding to the local physics at the tip of the cigar. Nekrasov-
Witten argue that this boundary condition restricts the sigma model field
to a certain subspace O C M. O is a complex submanifold with respect to
one of the complex structures of M, and also Lagrangian with respect to the
corresponding holomorphic symplectic form.> We do not know an explicit
description of O in general; however, if our N’ = 2 theory happens to be a
theory of class S, then M is a moduli space of solutions of Hitchin equa-
tions, and Nekrasov-Witten propose that in this case the O is the space of
opers. At r = 0o (or r = L after regulating) we should also fix a boundary
condition. This boundary condition is not dictated by the local physics of
the original 4d NV = 2 theory; rather it corresponds to a choice of boundary
condition in 4d, the same choice which we discussed at the end of §3.2, which

5 The complex structure in question on M lies on the equator of the twistor sphere
of M; precisely which point of the equator we get is determined by the phase of the
%Q—deformation parameter €;. Here we have taken €; to be real; having made this
choice, we get a definite point of the equator, sometimes referred to as “complex
structure K”. The fact that O is complex Lagrangian in this structure can then be
summarized by saying that O is an (A, A, B) brane on M.
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picks out a particular electric/magnetic duality frame. From the 2d point of
view it corresponds to another brane O in the hyperKahler space M.

If we now compactify on the r interval to the x! — 22 plane, the vacua
of the resulting two-dimensional theory come from configurations where the
sigma model field is constant on the interval. Such configurations correspond
to points of intersection between O and O'. On the other hand, the theory
we obtain by this compactification is just the original N' = 2 theory in %Q—
background; thus the vacua of this theory correspond to these intersection
points. This is one of the key observations of [7].

To apply this point of view to the twistorial topological string, we do
tt* geometry for the two-dimensional theory we obtain by this reduction, as
we did in the previous sections; in other words, we put the two-dimensional
theory on a spatial circle, of radius R = 1/& (say in the z? direction), and
turn on a Wilson line ¢! around that circle for the U(1) symmetry coming
from rotations in the 22 — x* plane (combined with R-symmetry to maintain
supersymmetry). From the viewpoint of the original 4d N" = 2 theory, we are
considering a geometry which in the bulk looks like a 2-torus fibration over
the 7 — 2! plane — indeed we compactified on two circles, with radii 1/e;
and 1/€é. If 6 # 0 then this torus is not rectangular; its complex structure
parameter is given by

€1 0
(7) T = 1€2 + o
See Fig.1.

We have boundary conditions at » =0 and r = L as described above.
Thus the tt* geometry we consider, from this point of view, is describing the
ground state geometry of the 4d A = 2 theory compactified on the torus
with these particular boundary conditions, in the limit L — oo. (Keeping
L finite would give a natural extension of the twistorial topological string,
which we will not consider in this paper, but would be interesting to study.)

Finally, our definition of 1)/“*! is as in the previous sections. We consider
the massive vacua, corresponding to the intersection points k between O and
O" above. Each such vacuum corresponds to a D-brane Dy (¢) of the two-
dimensional theory in the 2! — 22 directions, and we compute the overlap

Yt = (0| DR(0)).

Let us try to interpret this from our present point of view. The state (0] cor-
responds to the topological path integral on a cigar in the 2! — z? directions.
In terms of the torus compactification to the r — 2! plane, this means we are
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o/,

=

/¢,

Figure 1. This figure shows the geometry of the 3d space in the Nekrasov-
Witten picture. The geometry is that of T2 fibered over a line R where on
one end of the line we have the %Q background and on the other the electric
(or magnetic) D-brane boundary conditions.

inserting a boundary condition at #! = 0, corresponding to the shrinking of
the 22 circle. We also have a second boundary condition at 2! — oo, coming
from the D-brane D;(¢), and the boundary conditions at 7 = 0 and 7 = L
as described above. Thus in the end 9! is given by a path integral in the
2-dimensional theory over a strip with these 4 boundary conditions, in the
limit L — oo.

3.6. Quantization of the hyperKéahler integrable system

As we have been discussing, the twistorial topological string can be viewed
as the tt* geometry associated with the %Q background, with parameter €.
As such, the Coulomb branch parameters are discretized. Here we argue that
this discretization actually extends to a discretization of the full hyperKéhler
space M.

We take the radius of the 2d circle where we are considering the tt*
geometry to be R and consider in addition a twist in the 3-4 plane by 6 as
we go around the circle. We take the time direction to correspond to the 2d
geometry along the cylinder and we base our Hilbert space on the 2d circle.
For a moment let us consider the limit where €; = 0. In this case we simply
have the compactification of the 4d N = 2 theory on a circle of radius R,
where as we go around the circle we rotate the other two spatial coordinates
by 6. On this geometry one can consider line defects X, ({), studied in [25],
which correspond to supersymmetric Wilson-"t Hooft lines in the IR, where
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denotes an element of the charge lattice and ¢ (taken to be a phase) controls
which half of the supersymmetry the line operator preserves.

As was argued in [11, 25, 41], in this background the line defects become
non-commutative:

X5(OXy(¢) = q<7’7/>X7/ (O)X~(¢)

where
g = exp(if),

and (,7’) denotes the symplectic inner product on the charge lattice.

Now consider turning on the %Q background, letting ¢; # 0. In the later
sections of this paper, we will find evidence through examples that in this
context the above commutation relations should be modified to

(®) X, (O)X (€)= a(Q) X ()X, (C)

where

9 q(¢) = exp[— 2nhier i 2773614 = exp[— 2TEL L i — 27“] .
€20 €9

In the “semi-flat” limit R > 1, this commutation relation can be interpreted
as follows. In this limit we have

2w Ra

X,(Q) = exp{— +16, + QWRQ,YC]

and so the relation (8) would follow from

_ n €1 _i / ~
(10) [a’ya a'Y'] - C<'Y,’Y >27TR - o <<77’7 > €1€2,
o 1 G 11 _
(@ ay] = =200V g g = —gr ) @l
(11) [0,0] = —i(y,7) 0.

Moreover, in this limit we will find that the twistorial topological string
partition function behaves like a wave function. Namely, relative to the elec-
tric/magnetic splitting picked out by our boundary condition, we have (see
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Eqn. (12) below)
Pt o exp|F(ae, ) /CPe1éy + F (a0, )¢ [€169],

where we write {e;} for a basis of the electric charges, and F'(a,,) is the pre-
potential of our N' = 2 theory. As we change the electric/magnetic basis, this
formula changes, because the prepotential F' changes by a Legendre trans-
form. On the other hand the above commutation relations for the a, would
imply that a wave function of the a., would transform by Fourier transform.
At least to leading order in the quantization parameter, this matches. This
is compatible with the interpretation of the holomorphic anomaly [42] as
making the topological string an element of a Hilbert space acted on by
operators with the above commutation relation [43].

As shown in [8], the line operators X, can be viewed as providing local
Darboux coordinates for the holomorphic symplectic structures on the space
M which we reviewed in §3.4. In this context, what (8) means is that M
is being quantized in the twistorial topological string. Roughly speaking,
€1 is a quantization parameter for the base of the hyperKéhler geometry
(Coulomb branch) and 6 is a quantization parameter for the torus fiber.

As we have already noted, in the %Q—background we get a discretization
of the Coulomb branch: a., = k;e;. We now argue that in the %Q—background
we also naturally get a discretization of the 6., so that we have a ‘twistorial
triplet’ discretization:

(aei, Oe,, aei) = k; (617 0, g1)-

To argue for the discretization of the electric angles 6.,, we first recall how in
the R — oo limit the arguments of Nekrasov-Shatashvili give the discretiza-
tion of a.,: we have an effective superpotential which in terms of magnetic
variables looks like .
W = *W(Em” 61) - k:ZEml,
€1
so that at the critical points

a;, = Zie = 0EmiW(Zmi, 61) = k‘iq.

On the other hand, viewed as a superfield ¥,,, has a top component F,,
which is the magnetic flux in the 2d plane, which integrated on the cigar

6 More precisely, the discretization is shifted by a half-integer as is seen in the
context of large N dualities. This is also related to the “quadratic refinement” of

8].
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geometry of tt* leads to the magnetic holonomy 6, around S'. Therefore
the above W implies that the wave function ¢! has a 6,,, dependence
given by

exp(ikiOm, ).

Given the fact that [0, 0,,,] = —i6, this wave function gives a quantization
Oc, = kif, as we wished to show.

3.7. Interesting limits

So far we have formulated what we mean generally by the closed twistorial
topological string partition function: it is a D-brane amplitude in the #t*
geometry associated to a 4-dimensional field theory in %Q-background. In
general, though, this D-brane amplitude would be very complicated to com-
pute. In order to get some handle on it, in this section we point out some
simplifying limits that we shall consider later in this paper. The twistorial
topological amplitude depends on the parameters (€1, €, 6, (). The interest-
ing limits to consider will involve taking various of these parameters to 0
or oo, while holding other parameters or combinations of parameters fixed.
Fig. 2 shows the various limit we take starting with the twistorial topo-
logical string amplitude /%!, The limits on the left correspond to refined
topological string partition function and its NS limit and the right column
corresponds to the various twistorial limits. We discuss these limits next.

3.7.1. The asymmetric limit. The asymmetric limit is the limit in
which we take ( — 0,€és — oo keeping €2 = é( finite, and also set 6 = 0.
In this limit, as we have described above, we expect to obtain the closed
refined topological string amplitudes:

lim "% (1, & = €2/(,0 = 0,() = Z'P(ey, €3).
¢—0

Here, more precisely, to make the right side well defined we should specify in
which polarization we write Z!P: we mean the real polarization determined
by an electric-magnetic splitting, the same splitting which we have discussed
above. Also, as already noted, 1" is strlctly speaking defined on a discrete
subset of the Coulomb branch, @ = e1k for an integer vector k. Still, in the
perturbative expansion in €1 around 0, the a; would appear continuous. This
matches the usual situation for ZP.

This limit is a simplifying limit for in several senses. First, since
Z'P is holomorphic in the a;, in this limit we expect 1'%’ to become holo-
morphic. We also expect the emergence of a Zs symmetry € <> €2, which is

wtwist
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1Pt’wist
€.R,0
C
0—-0,C-0
R—Tle, €0
Zyy Y’
€.,& €-0 R
R—Tle, 0—¢ /e, -9
< C
€,—0 0—-0
ZNS wc
€, -0 R
R—Tle, c

Figure 2. The diagram of various limits. The quantities in the boxes denote
the parameters the object depends on. 1'% is the twistorial partition func-
tion which depends on all three coupling constants (e, R, 0), where R = é,
and the twistor parameter (. The left column denotes the limits leading to
refined and NS limits of topological strings. The right column denotes the
f-limit, and the C-limit. Various reductions are shown by arrows and the
limits we need to take are indicated next to the arrows.

also not there in the full @it (our definition makes clear that e, €5 are not
on the same footing.)
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We could of course take a further limit, sending either e; — 0 or €5 — 0,
leading to the NS limit of the topological string:

Z'%(e1 = 0,€2) — exp[ W5 (a, e2) /e1]

Z'P(e1, €5 — 0) — exp[WNS(ai, 61)/62]

where WS is the Nekrasov-Shatashvili superpotential for the theory in
%Q—background.

3.7.2. An NS-like limit. A second limit we could consider is € — 0.
This corresponds to taking the radius of the circle on which we are com-
pactifying our 2d theory to be R — co. In this limit the vacua of this theory
become decoupled, so that the ¢t* geometry is dominated by classical con-
tributions. In this limit, we expect the brane wave function attached to a
given vacuum (twistorial topological string amplitude) to be dominated by
the value of the Nekrasov-Shatashvili effective superpotential WV at the
corresponding critical point. More precisely, we expect (in the unitary gauge)
to get contributions both from WNS and W 7,
2150 WNS(a,e) W (@,&)

twist ~
(]‘2) @Z’ (617 €2, 9) C) eXp C€2 + C €2

3.7.3. The 0-limit. Next we consider the limit ¢; — 0, while keeping all
the other parameters fixed; we call this the #-limit.

This is a somewhat subtle limit: it corresponds to making the coupling
q(C), given in Eqn. (9) above, effectively (-independent except in small neigh-
borhoods of ( =0 and ¢ = oco.

As we will discuss in the explicit examples below, in this limit we find
singular behavior of the form

WNS(a,06¢) W™ (@, 0e/¢)

(13) wtwist e1—0 ¢9(€27 97 C) —exp - + C . 4o
Cé €
where ... represents terms which are nonsingular in the limit ¢; — 0 and

moreover vanish as € — 0. It is crucial here that we have not taken the limit
0 — 0.

Note that in this limit we are turning off the %Q-background. Thus our
setup is approaching the original 4d N = 2 theory on a circle of radius
R =1/éy, and the vacua at a = Eel become continuous. The values of @
which we can reach still lie on a real subspace of the Coulomb branch,
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determined by the phase of €;; we expect that ¥ admits a further analytic
continuation from this real locus to the full space. Moreover, recall that
the components 0., of 0 are all periodic variables, fixed in terms of a; by
the relatlon 0 = EQ a= k:el Remarkably, in the limit ¢; — 0, the locus of
points (d, 0. ) which we can access fills up the whole parameter-space, i.e. 0.
becomes continuous and arbitrary in this limit. (Said more precisely, for any
desired target point (a, 0_;), there is a way of tuning the vectors kas e — 0
in such a way that in the limit we hit the target point.)

Thus altogether we expect that the #-limit of the partition function will
be a function of the form

(@, 0., R,6,C)

where we have replaced é; by R = 1/é;, to emphasize its role as the radius
of the circle on which we compactify the 4d theory.

In the next section, motivated by examples, we propose that ¢ should
be considered as the solution to a “quantum” Riemann-Hilbert problem,
with the quantum parameter

q = exp(if).

Moreover, in the ‘classical limit’ § — 0, we argue that this quantum Riemann-
Hilbert problem becomes equivalent to the Riemann-Hilbert problem studied
in [8] incorporating the Kontsevich-Soibelman wall crossing [44] in finding
the expectation values of line operators of the 2d theory, wrapped on the cir-
cle. The 6 # 0 limit extends this to the refined wall crossing [11, 41, 45, 46].
In these cases the line operators become actual operators acting on a Hilbert
space satisfying commutation relations

X, X, = qh’ﬂXway

where ~,~" are charges in the central charge lattice and (,) denotes the cor-
responding symplectic product. In this context )¢ should be viewed as a
wave function in this Hilbert space. Moreover as we change the phase of ¢
and cross the phases of BPS central charges, we have the action of quantum
dilogarithm operators on ?. In the same sense the line operators get con-
jugated by quantum dilogarithm operators. In this context the monodromy
of the quantum dilogarithm operators representing wall crossing that was
studied in [11] represent the 2d ¢* monodromy.

3.7.4. The 6-limit — C-limit. A further “classical” limit, which we call
the C-limit, is obtained by starting with the #-limit and then taking 6 — 0.
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In this limit, we will see in explicit examples below that ¢ ~ exp[f/6].
Thus we define the C-limit amplitude by

vC(@,0, R, ¢) = lim [¢*(@,0,6, R, )] """
60—0

As we will see in §8 below, ¢ will turn out to be identified with a key
geometric quantity which entered into the work [9]. The aim of that work was
to construct a certain hyperholomorphic connection over the hyperKahler
moduli space M reviewed in §3.4. Thus, in the C-limit we are recovering
information about the classical hyperKahler geometry of M.

3.7.5. The 0-limit — Top-limit. In §3.7.1 we have described one way of
recovering the usual refined topological string partition function from *wt,
by setting # = 0 and taking the asymmetric limit ¢ — 0 with R/{ = 1/e9
fixed.

Here is another way. We can begin with the #-limit e¢; = 0, then take
the asymmetric limit ( — 0 and R — 0 keeping R/( = 1/¢3 finite, and then
rename 6 — €1/€3, thus reintroducing the parameter ¢;. We also set the
angles 0_; = 0.

In this limit we expect to get back the topological string again (because
the dependence on topological string coupling constants is in the form ¢(()):

- 1 R
Yl — ztop (az,el =fey, — = > .
e ¢

3.7.6. The (C-limit or Z%*P) — NS- limit. Finally, we can go to
the NS limit of the refined topological string in either of two ways. Either
we can start from the full twistorial topological string, take its C-limit,
and then take the asymmetric limit (where we take ¢ — 0, R — 0 holding
R/¢ = 1/ey fixed), or we can simply begin with Z!°P then take the ¢; — 0
limit of (Z!°P)¢ . In either way, we recover the usual NS limit of the refined
topological string.

4. The 6—-limit and the quantum Riemann—Hilbert problem

As we have noted, the twistorial topological string gets simplified in the
f-limit where ¢; — 0. In addition, starting from this limit we can get, by
further reductions, the classical wall-crossing as well as aspects of the hy-
perKéhler geometry studied in [8]. Moreover in a different limit we can ob-
tain the refined topological string amplitudes. So the 6-limit is quite rich. In
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this section we propose a computational scheme for the 6—limit of the twisto-
rial topological string based on a plausible physical picture of the twistorial
brane amplitudes using BPS structure of the 4d, N’ = 2 theory. Our conclu-
sions will be checked in the next two sections by comparing with the exact
twistorial amplitudes of the Abelian geometries in the same limit. Further
evidence is provided by the fact that the proposed formalism reproduces the
TBA equations of [8] in the appropriate limit.

4.1. General picture from dual matrix LG models

To orient our ideas, we start with some heuristic considerations on the
twistorial topological string as defined by the large—NN limit of the ¢¢* brane
amplitudes of the matrix LG models in Eqn. (4). (These models will be an-
alyzed more precisely in Section 5). For definiteness we focus on the cubic
LG model

N
(14) W= (X}/3-tX))+e > log(X;—X;),

i=1 1<i<j<N

where we identify field configurations up to permutations of the X;. At e; =0
the model reduces to the symmetric tensor product of N copies of the mass—
perturbed A, minimal model, each copy having two susy vacua at X; = £+/t.
The point vacua of (14) at €; = 0 then are labeled by (N4, N_) and the cor-
responding D-branes by |Ni, N_) where N (resp. N. = N — N, ) is the
number of eigenvalues Xi‘vac. equal to ++v/t (resp. —V/t). In total we have
N + 1 vacua. The one-field LG model W (X) = X3/3 —tX has a tt* Lax
connection AS which takes values in SL(2,C) and the brane amplitude is
a flat section of the vector bundle corresponding to the fundamental repre-
sentation 2. At €; = 0 the brane amplitudes of the matrix LG model (14)
are flat sections of the SL(2,C) connection AS in the spin N/2 representa-
tion. The Stokes matrices of the associated Riemann—Hilbert problem are
elements of SL(2,C), and (at e; = 0) the two Stokes matrices S+ of the
matrix model (14), acting on the N 4 1 dimensional space of D-branes, are
just these group elements written as matrices in the N + 1 representation,
ie.

15 St = J. .
( ) + eXp( i) N1 irrepr.

When ¢; # 0 the vacuum structure becomes subtler: although the closed
holomorphic one—form dWV is still well defined, it is no longer exact due to
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the non-trivial fundamental group 71 of the field space (CV \ diagonal)/& v,
isomorphic to the braid group By. As a result each of the N + 1 vacua gets
promoted to a f—vacuum and in particular the vacuum amplitudes for the
D-branes gets realized as (§|Ny, N_). ¢ = ¢ acts as a character of By:
switching on a non—zero 6 is equivalent to the insertion in the amplitude of
the corresponding chiral primary

(16) 0(0) = () [[(xi — x;,)',

1<j

where C(0) is some normalization factor. From Eqn. (16) it is obvious that
braiding the two consecutive fields X; and X;1; introduces an extra factor
of ¢, and that the power of ¢ counts the number of such elementary braiding
operations.

The three parameters (e, 6, €;) become three coordinates in the periodic
tt* geometry of the LG model (see [2] and next section) which get unified in
a single twistorial object

(17) q(¢) = exp(— omer ) (6€) + 10 — 278 4/52).

The -limit is taking e; — 0 while keeping 6 fixed, so that ¢({) becomes
a constant independent of ¢, while the amplitudes are still ‘quantum’ in the
sense that ¢ # 1. One also sends N to infinity, keeping the Coulomb branch
parameters a+ = Nie€; finite. In a sense we are making the Coulomb branch
parameters commutative in this limit (i.e. classical) but keeping the fiber
parameters non-commutative (quantum). In this qualitative discussion, we
take N large but finite, and |e1| << |v/#|, while § and Ne; are taken to be of
order one. v/t is assumed to be somehow larger than Ne;. In this regime the
low energy configurations consist of N, fields fluctuating around the ++/%
classical vacuum and N_ = N — N, fields fluctuating around the —+/t one.
As €1 — 0, the only communication between these two sectors is through the
BPS solitons connecting the separated classical vacua; these solitons have
masses > 4|v/t| and their effects are exponentially suppressed for large /7.
For ¢; << 1 these solitons are small deformations of the BPS solitons of the
one-field model W(X) = X3/3 — tX. Note, in particular, that processes in
which several eigenvalues X; change sign, =1/t +— F+/t, are suppressed by
large powers of the exponentially small number e—4lvil/ € hence these soli-
tonic transitions may change the large integers N1 only by O(1) corrections,
that is, they may change the Coulomb branch parameters at only at the
O(e1) level. In the 6-limit, e; — 0, the values of ai get completely frozen.
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This is why the 6-limit was introduced in the first place: one wants to sim-
plify the problem by reducing to a classical (i.e. non—fluctuating) Coulomb
branch, while keeping the angles to be quantum (the angles are the coor-
dinates on the fiber of the hyperKéhler geometry, which is endowed with
a natural symplectic structure, and hence a canonical quantization). More-
over, the BPS phase of the N4 —changing solitons is equal to 4 arg /% up to
O(e1/V/t); then in the 6-limit their BPS rays £/, have sharp positions’.
This can be understood in another way: Taking N; — oo while keeping N;e;
fixed, is the same as the large N limit of matrix models. We know that in
that limit a spectral curve emerges which for this class of models was studied
in [22]. The corresponding spectral curve has a 1-form ydx, where y can be
viewed as the derivative of the effective superpotential

fla,y) =y =W'(@)?+--- =0

and the effective BPS central charges of the 2d theory get related to ¢ ydx
around the cycles of f(z,y) = 0 curve. These can in turn be interpreted as
the central charges of the 4d theory on the SW curve f(z,y) = 0. In this
context the phase of the twistorial parameter ¢ controls the jumps associated
with either the 4d or the 2d BPS states, depending on one’s perspective. The
main point is that in the #-limit these jumps have become sharp. In the cubic
super potential example above we get the SW curve

flay) =y* = (@ =t +az +b,

where a,b are determined in terms of Ny and N_. This shows that the
jumps of the D-brane wave function in the #-limit is sharp. However, it
remains to compute it. Here we motivate what this is, based on the following
observations. The jumps should be a universal property of the geometry, and
given the symplectic symmetry of the problem it should be the same for the
jumps associated with the A-cycles, or the B-cycles of the theory. In the
limit that ¢ >> 0, the system reduces to two decoupled A-cycles where the
associated t; = e; N1, e;N_. As we shall show in the next two sections, a
crucial property of the #t* solutions for the decoupled A—cycles is that, in
the #-limit, the Stokes jumps of their brane amplitudes at the BPS rays in

" The main difficulty in formulating the RH problem without taking the 6-limit,
is that one has to work with Stokes rays whose position is subject to quantum
fluctuations. Then, even if the general RH problem exists, it is not too convenient
for concrete computations.
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the (—plane (the positive and negative imaginary axis for €1 real) are given
by multiplication by the quantum dilogs®

(18) H (1 o efai/<+i0i7&i<ei(k+l/2)9)*1 = ‘I’(Xﬁ:(C)M])
k=0

where X (() are the GMN line operators associated to the charges f + e of
the BPS states of the effective theories W§t

(19) X+(¢Q) = eﬂli/&wi*aic, q= et?
(20) with a4 = afr + ae, 0+ = 9f + 0.,

and the expression (18) becomes exact as Ny — 0o with ax = Nie; fixed.
We note that Eqn. (18) is the formula expected in 4d from the refined version
[41, 45, 46] of the Kontsevich-Soibelman (KS) wall crossing formula [44].
Indeed, the quantum Stokes jump at the ray ¢, of a BPS hypermultiplet of
charge v is given by the (adjoint) action of the quantum dilog [11, 41, 45, 46|

(21) ¥(X4:q)

where X, is the quantum torus algebra element associated to the charge
v € I', whose expectation value is identified with the Darboux coordinate
X, (¢) of [8]. Eqn. (18) thus states that, in the #-limit, the brane amplitude
®(¢) of (14) has jumps at the rays £, associated to charges v of the form
+e £ f which have the expected quantum KS form (21).

So far we have explained how the electric line operators appear in the 6-
limit. The 4d magnetically charged solitons correspond in the 2d model (14)
to BPS solitons connecting vacua with different values of N4. As already
discussed, the leading such solitons connect vacua with Ny — Ny £+ 1, and
their BPS rays +/,,, are sharp in the #-limit. Physically, the magnetic line
function X,,(¢) is identified with the expectation value of the operator X,
which implements the transition of a single eigenvalue field X; from —v/t to
++/t. In terms of ay and 64, X,,, implements the shifts

(22) a+ —>a:|::|:€1, Gi —>9:|::i:(9.

8 For convergence reasons, one assumes # to have a small positive imaginary
part. We set 2m/é; = 1 to simplify the notation. We write f and e for the flavor
and electric charges, respectively.
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Then, acting on a brane wave-function written as a function of (a+,01,a+),

(23) X = eXp(€1(8a+ — 0, )+ 51(8a+ —0a_ )+ 9(89+ — 897))
m) ElXp(@(ag+ - 897)).

Although this identification is a bit heuristic, it may be given a more precise
meaning by looking at the exact solution of the low—energy effective models.
Defining X4 as the operator which acts on the above wave—functions as
multiplication by X4 (¢), we get the commutation relations

(24) X Xa = ¢ Xg Xy,

which yield the correct quantum torus algebra for the 4d model correspond-
ing to the large N limit of (14) which is the A3 Argyres—Douglas (AD) model
whose BPS quiver has the form [11, 47]

(25) e e —e

Besides, the 2d analysis leads (in the regime considered) to a 4d BPS spec-
trum which correctly matches the one in the minimal BPS chamber [11] of
the As AD theory, which consist of three hypermultiplets of charges e + f,
e — f, and m.

Then, to reproduce the exact structure expected from the refined version
of the 4d KS wall crossing formula, it remains to show that the 6—limit Stokes
jumps are given by the action of the operator (21) also at the magnetic BPS
rays +£,,. Since X, is the operator which makes a single eigenvalue to jump
from —+/t to ++/t, which corresponds to the element .J, € gl(2,C), lifting
to the covering LG model before modding out &y, a naive application of
formula (15) would produce, at § = ¢; = 0, the magnetic—ray Stokes matrix

(26) S = (1= XU)=h1 — X@H=1 (1 = XBH=1.. (1 — Xy~

where X%) acts on the j-th factor LG model. Switching on a non-zero ¢
and modding out Gy, identifies the several operators X%), and in addition
introduces in the expression (26) powers of ¢ which keep track of the braiding
numbers of the eigenvalues {X;(t)} for each BPS soliton connecting the two

vacua. This suggests replacing X33/ — X,,, ¢! in the previous formula, with
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the result

(27) Sm}(#l ~ (1 — Xon) 11 = Xing) 11 = Xong?) L+ (1 = Xpng¥ 1)1

N W (X q),

Given the symmetry between electric and magnetic, and in view of the
result (18) for the electric/flavor jumps, this formula is very natural.’

4.2. A Quantum Riemann-Hilbert problem

The brane amplitudes of an ordinary (2,2) model, having a finite number m
of vacua, are the solutions to a Riemann—Hilbert (RH) problem for matrices
U(() of size m which operate on the vacuum vector space C™ [19, 48]. For
finite N, a matrix LG model of the form (4) has f—vacua [2], and the space
of vacua takes the form C™ ® L?(S!), where m = O(N""1). The brane am-
plitudes are now the solutions of an infinite-size RH problem for operators
acting on the Hilbert space C™ ® L?(S'). Except for the special case n = 1,
as N — oo, also m — oo and the space C™ gets replaced by a Hilbert space
direct factor H, so that the full twistorial topological string amplitudes may
be thought of as the solutions to a Riemann—Hilbert problem for quantum
operators acting on the Hilbert space H ® L?(S'). The resulting quantum
RH problem is however extremely hard to formulate in concrete terms, let
alone to solve. One looks for a limit in which the quantum RH problem

9 Other arguments lead to the same conclusion. Suppose that the jump at the
magnetic phase is given by some unknown function f(g,X,,). The phase-ordered
product of the Stokes operators in the (—plane is equal to the 2d quantum mon-
odromy H [19] of the (2,2) matrix LG model. Then the 2d monodromy would
be

H = g~ (X 0) ®(X-50) (g, Xom) ®(X59) B(XZH )

In a unitary theory the spectrum of H should belong to the unit circle [19]. In facts,
if the model flows in the UV to a good SCFT, the 2d monodromy has finite order
r, H" =1, and the order of its adjoint action Ad(H) is a divisor of r. Assuming
the matrix LG model has a good UV limit, we may compute the order of the
adjoint monodromy in the UV limit, Ne; — 0, where the effect of the Vandermonde
coupling is totally negligible. We are reduced to the monodromy of the A, minimal
model, and hence the order of Ad(H) is 3. Using the commutation relations (24), the
equation Ad(H)? = 1 is written as a functional equation for the unknown function
f(g, X). Comparing with the 4d quantum monodromy of the A3 Argyres—Douglas
model [11], we see that the functional equation for f(q; X) is equivalent to the usual
pentagonal identity for the quantum dilog ¥(g; X).
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admits a formulation which is difficult but still reasonable. Formally, the
f—limit is such a limit, although the limit itself is delicate in the sense that
its definition requires appropriate regularizations and/or analytic continua-
tions.

The idea is as follows. We first formulate a quantum-Riemann Hilbert
problem which characterizes the operators X, (¢) and then use that to define
a state in the Hilbert space, which we identify as the 6-limit of the twistorial
topological string amplitude 7.

4.2.1. The operators X,Y(C). At the full quantum level, the holomor-
phic Darboux coordinates X, (¢) (with v € I'), get replaced by quantum
operators XV(C ). Most of the time, we will suppress from the notation the
dependence of these operators on the other variables (Coulomb branch pa-
rameters and couplings) and write only the dependence on the twistor vari-
able ¢ which is taken to be valued in C*, that is, ¢ takes values in the twistor
sphere minus the North and South poles.

It is convenient to think of the phase of ( as time. So we also write
)A(V(p e’t) with p € Ry. In this vein, an useful analogy is to think of the
operators log XW( pe't) as two dimensional quantum chiral fields where ¢ plays
the role of time and log p of the space coordinate. In fact, the operators X €)
are required to satisfy the equal time commutation relations

(28) Xy (pe) Xy (ple™) = 77 Xy (ple) Xy (pe')

where g = exp(27i7). Thus log XV (pe') satisfy ‘canonical’ equal time com-
mutation relations. We shall refer to equation (28) as the equal time quantum
torus algebra.

In correspondence with this analogy, we introduce the following time—
ordering operation T’

09)  TX (pet) X (et = L0 Xy (e t> ¢
K v - N X v A .
q('Yv'Y ) X’y(p e’bt ) X’y/ (plezt) t/ > t.

The quantum operators )A(W(C) are required to satisfy the same piece—
wise holomorphic conditions as their classical counterparts X (¢) except for
two points:

1) As R — oo they are asymptotic to semi—flat operators

(30) X(¢) = exp (Zg + 6., + <27>
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where the 6, satisfy the equal time CCR

(31) [‘977 97’} = —2mit (7,7'),

Here 27 = 0, and the Z,’s, being central, are c-number functions of
the various parameters in the theory.

2) At times equal to the phase of some BPS particle, the XV(C)’S jump
according to the quantum WCF given by conjugation with suitable
quantum dilogarithms rather than the classical one.

4.2.2. I‘he quantum TBA integral equation. The above conditions
fix the X, (¢) to be the solution to a ¢-TBA integral equation which is a
g—deformation of the one written in [8]. Explicitly

Q) [ d¢ ¢+ ¢
2 i /e (-

,y/

(32) X”/(O = T{exp

IOg G(’y,’y’) (qSV/X’Y/ (C,); Q)] X'S;f(C)}

where Q(7') and £, are as in [8], s, are the spins of the BPS particles, and
Gm(X;q) are Fock—Goncharov functions (g—deformed versions of (1 + X)™)
which are defined by their basic property [49-51]

(33) U(Xyiq) " Xy B(Xyiq) = Glyy) (Xy39) X5
for X, X, = g X, X,. In particular,
(34) G—m(X§Q) = Gm(X;qil)il‘

Eqn. (32) is deduced and makes sense under the assumption that the
equal phase BPS states are mutually local.

As ¢ — 119, the above equations reduce to the classical TBA equations
of [8]. Formally, we may expand them in powers of 7 = (logq)/2mi. The
zeroth order is classical TBA corresponding (from that viewpoint) to the
energy of the ground state. Then we get an infinite sequence of integral
equations by equating the order 7" of the two sides of Eqn. (32). Each
equation contain the solutions to the previous integral equations. We discuss
solutions of this TBA system for the Argyres-Douglas case in Appendix B.

1/2

10 Or, rather, as ¢'/?2 — —1, taking into account the quadratic refinement.
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One borrows from ref.[41] the identification of the phase arg( of the
twistor parameter ( € C* with the periodic time of an auxiliary quantum
system whose operator algebra is the quantum torus

(35) Xy Xy = ¢ X X, 4,9 e

defined by the Dirac electromagnetic pairing of charges (-,-): I' x I' — Z.
In particular, one interprets the ordering in BPS phase of the Kontsevich—
Soibelman product of symplectomorphisms [44] as the usual time—ordering
of (time—-dependent) evolution operators in quantum physics [41]. We have
argued in the previous subsection that the 6-limit produces effective opera-
tors X, which generate the algebra (35) of the auxiliary QM system.

In order to complete the problem we need to find w'heta, i.e. the state
in the Hilbert space which corresponds in the electric basis, 7

¢0(a67 967 Ra 97 C) = <9€|71Z)(C)>

The state |1(¢)) is characterized by the jumps as we cross the phases of ¢ for
which there is a BPS state. This implies that [¢(()) satisfies the following
Riemann-Hilbert equation:

WO =5 Y / dC' (g% (). 0)) 1)),

(v,s)eBPS C

Moreover, the boundary condition we have for |¢(()) is given by (13):

i ¢—0, oo F(CL) F(E)CQ
() S5 exp| T+ T

This fixes the state |¢(¢)), completing the formulation of our quantum
Riemann-Hilbert problem.

5. LG matrix models and twistorial matrix models

We have seen how in the 6-limit a quantum Riemann-Hilbert problem can be
used to formally solve for the partition function of the twistorial topological
string, assuming one knows the spectrum of the BPS state (including their
spin data). To solve for the full twistorial topological string partition function
without taking any limits is much harder. In the case when we have a dual
description of the 2d model, as in the LG matrix model, we may be in a better
shape. This is why, in this section we study in some detail the tt* geometry



Twistorial topological strings 227

of the 2d (2,2) matrix Landau-Ginzburg models of the class discussed in
Section 2.2; a more general class is considered in Appendix C. After some
generality (§.5.1), in §§.5.2,5.3 we describe their chiral rings R in terms of
the associated Schrédinger equation [24, 52]. In §.5.4 we solve exactly the ¢t*
geometry for the basic example, the Gaussian model, and describe in detail
the properties of its various tt* quantities. In §.5.5 we introduce a more
general class of models whose tt* geometry may be explicitly computed,
and describe the corresponding tt* geometries in detail. In the last two
subsections we present two additional explicit examples of exactly solved tt*
geometries, namely the generalized and double LG Penner models.

5.1. The models

We consider the LG models with superpotential W of the form

N
(36)  Wlerea,...,en) =Y W(X)+8 Y log(X;— X;)?,

i=1 1<i<j<N

where W (z) is a polynomial of degree (n + 1)

Zn+1 n ek
— n -
(37) W(z) = 1 + 152 tr 2 .

Here 8 = ¢; (in case W is homogeneous, as in the Gaussian matrix model,
it is convenient to absorb a factor of 1/€é; into the fields and in this case we
can view (3 = €1 /€2, up to a constant shift of W). We stress that in Eqn. (36)
the independent chiral fields are not the matrix eigenvalues X; but rather
their elementary symmetric functions ey,

(38) ep = Z X5 Xj, - X,

1<71 <2< <jpe <N

The change of fundamental degrees of freedom from X; to e, automatically
projects the model into its & y—invariant sector (and introduces a Jacobian
factor in the topological measure [1, 19]).

In view of the application to other physical problems [29, 53], as well
as to connect with existing mathematical literature, we find convenient to
enlarge the class of models to LG theories with superpotentials of the form
(36) with W (z) a possibly multi-valued function such that its differential
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dW = W'(2) dz is a rational'! one—form on P! normalized so that z = oo is
a pole of maximal order. The number n of susy vacua of the one-field (i.e.
N = 1) model is the number of zeros of the rational one-form dW, equal to
its total pole order minus 2. The Witten index of the N—field model is then
expected to be

N+n—-1 Nl
= ~-—— forl N.
(39) m < N > - j for large

We shall make more precise statements on the number of susy vacua mo-

mentarily.
The generic degree n + 2 rational differential has only simple poles at
the n + 2 distinct points {wi,wa, ..., wy41,00}
n+1 [
40 W'(2)dz = ¢ dz,
(40) =3

where we may take w; = 0 and wy =1 by a field redefinition. In ref.[29] it
was shown that the matrix LG model (36) with one-field superpotential (40)
corresponds to the (n + 2)-point function of the Liouville theory on P!. The
models whose one—form have higher order poles may be obtained from (40)
by taking limits in which many ordinary singularities coalesce into higher
order ones. In particular the polynomial superpotential (37) is obtained by
making the n 4 2 ordinary singularities to coalesce into a single order n + 2
pole at infinity. By considering these various confluent limits, we get from
(40) p(n + 2) distinct models all with a number of vacua equal to (39) (here
p(k) is the number of partitions of the integer k). This observation allows
to study all rational models with a given n in a unified way.

The one—field superpotential W (z) is, in general, a multi—valued function
of z which is well-defined only up to the periods of the one—form W' dz, that
is, for the generic case (40) up to

n+1
(41) AW = 2mi z Ny Ly, ng € 7.
=1

Comparing with the general analysis in ref.[2], we conclude that in such a
rational model with N > 1 chiral fields we have to introduce p + 1 vacuum

1 The class of models may be further generalized by replacing the Riemann
sphere P! by a higher genus Riemann surface.
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angles 0g, where p is the number of independent residues of the one—form
dW (i.e.the number of its simple poles in C = P!\ {c0}).

A configuration of the chiral fields ej is most conveniently encoded in a
degree N monic polynomial in an indeterminate z as

N

N
(42) P(z) = Z(—l)k e 2Nk = H(z — X;) =det(z — X),

k=0 i=1

where eg = 1.

5.2. Chiral ring and vacuum configurations

To describe the tt* geometry of the (2,2) models (36), we first have to
find their chiral ring R [1]. For generic W(z) all classical vacua are non—
degenerate (that is, massive); in this case, as complex algebras, R ~ C™, m
being the number of supersymmetric vacua. The isomorphism is given by
sending the class of a general chiral superfield, represented by a holomorphic
function h(ey,...,en), into the m—tuple of its values at the classical vacuum
configurations. In the case of the models (36) there is a special class of chiral
operators, the single—trace operators, of the form

N
(43) her,....en) == h(X),
k=1

where h(z) is a holomorphic (polynomial) function. It is easy to show that
all elements of R have a single—trace representative. Then the isomorphism
R ~ C? reduces to

(44) R > /ﬁ(el, R ,eN) — <%Ch(z) P(l)(Z) dz,

’]ih(z) Py (2) dz ) € €

where P(,)(2) is the polynomial specifying the a-th vacuum configuration,
and C' is a large circle. Finding R is then equivalent to computing the m
polynomials P4)(z) describing the classical susy vacua.
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The classical vacua are the solutions {ex} to the system of equations

IW(e;)
dey,

which are obviously equivalent to

(45) -0, k=1,2,...,N,

(46) W'(X;) + I Z [T xi—x) =0,
37“ J?él ki,

from which it is obvious that J], ,;(X; — X ;)2 # 0, that is, on the vacuum
configurations the X;’s are all distinct and the discriminant of the associated
polynomials P(z) is non zero. From the definition

(47) P(z) = H( ="+ Z ey 2"

one gets
(48) P'(x;) = [](Xi - X))
J#i
(49) Pl(x)=2> [] (Xi—Xp).
J# k#i,g

Using these identities, we may rewrite the equations (46) in terms of the
polynomial P(z) describing the vacuum configuration {X;}®~ as

(50) W'(X;) P'(X;) + B P"(X;) = 0.
For the generic case, Eqn. (40), this equation says that the degree N +n — 1
polynomial

n+1

(51) (W) P'(2) + 8 P"(2)) [ (= = we) = 0

(=1
has the N distinct roots X;, and hence it should be a multiple of P(z), the
quotient being some polynomial fr(ba_)l(z) of degree n — 1
_ A

[1,(z — we)

All monic degree N polynomials P(z) which solve this linear second—order

(52) BP"(z)+W'(z) P'(2) P(z).

equation, for some choice of the polynomial f,ga_)l, correspond to a classical
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vacuum. The polynomial !)"T(La_)1 (z) depends on the classical vacuum configura-
tion, and the index a takes the values a = 1,2, ..., m where m is the number
of classical vacua which, in the present case, coincides with the Witten index
m, Eqn. (39). There is a one-to—one correspondence between susy vacua and
distinct polynomials féa_)l(z) Writing

(53) U(z) = VA2 p(z),

we recast Eqn. (52) in the Schrédinger form (identifying h = )

B

0z2 4 2

22 Ly
(54) (/3 + 4 7(2)? + N

o
W(z) + f*”) b(z) =0,

which coincides with the Schrodinger equation discussed in a related context
in refs.[24, 52]. For instance, in the Gaussian case, W (z) = —22/2, Eqn. (54)
reduces to the Schrodinger equation for the harmonic oscillator, with energy
eigenvalue —(fo + %) and coordinate = z/y/23. In this case, for each N
there is a unique susy vacuum given by

(55) P(z) = (8/2)"* Hn(2/\/26)

where Hy(x) is the N—th Hermite polynomial.

5.3. Heine—Stieltjes and van Vleck polynomials

To determine the chiral ring R we are reduced to the following problem:
Given the two polynomials

n+1
(56) A@) = [[e-w),  Be) =55 A0 W),
/=1

respectively of degree n+1 and n, determine all degree n — 1 polynomials
fn—1(2) such that the differential equation

d’P dP
has a solution P(z) which is a polynomial of degree N. This is precisely the
classical Heine-Stieltjes problem, see e.g.§.6.8 of the book by Szego [54]. The
degree N polynomials P(z) describing a vacuum configuration are known as
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Heine—Stieltjes polynomials, while the degree (n — 1) polynomials — f,,_1(2)
as van Vleck polynomials. In 1878 Heine stated [55] that there are at most

(58) m:<N+]3_1>’

polynomials f,,—1(z), of degree n — 1, counted with appropriate multiplicity,
such that the generalized Lamé ODE (57) has a polynomial solution P(z)
of degree exactly N. In fact, he proved that for generic'? A(z), B(z) the
number of solutions is exactly m. This result is consistent with the Witten
index computation in §.5.1, since for particular values of the couplings a few
susy vacua may escape to infinity. Since 1878 many authors gave necessary
conditions for the number of solutions to be precisely m. Finally in 2008
Shapiro proved'® [56, 57] that there exists an Ny such that for all N > N
we have exactly m solutions (counted with multiplicity).

Physically we interpret the result (58) as the statement that each vacuum
corresponds to one of the possible ways of distributing the NV eigenvalues of
the matrix X between the n critical points of the one—field superpotential
W (z). Giving a precise meaning to this statement has been an active field
of research in mathematics for more than a century, see e.g. [55-78].

A lot of properties of the Heine-Stieltjes and Van Vleck polynomials
are discussed in the mathematical literature [55-78]. The best known cases
are n = 1,2. For n =1 the ODE (57) becomes the hypergeometric equa-~
tion whose polynomial solutions are the the Jacobi polynomials. Colliding
two (resp. three) singularities we get the confluent hypergeometric equation
(resp. the parabolic—cylinder equation) whose polynomial solutions are the
Laguerre (resp. Hermite) polynomials. The next case, n = 2, leads to Heun
polynomials [79, 80] and their various multi-confluent limits.

12 The precise meaning of ‘generic’ is that the two polynomials A(z) and B(z)
should be algebraically independent.

13 Shapiro theorem refers to the non-degenerate case, that is, at infinity the
differential dI¥ has at most a single pole. However, if dI¥ has a higher order pole
at oo, a fortiori susy vacua cannot escape since the scalar potential is bounded
away from zero in a neighborhood of co.
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5.4. The Gaussian matrix LG model

The simplest and most basic twistorial matrix theory is the Gaussian model,
that is, the (2,2) Landau-Ginzburg model with superpotential

N
1
(59) Wier) = =5 D XP+8 ) log(Xi— X;)%
i=1 1<i<j<N
where the independent chiral superfields e, (k= 1,...,N) are the elemen-

tary symmetric functions of the matrix eigenvalue superfields X;, Eqn. (38).
The large N duality maps this model to the B-model closed topological
string for the conifold, or equivalently to the 4d SQED.

5.4.1. tt* geometry. From Eqn. (55) the Gaussian model has a single
vacuum {eg|vac} such that

N
(60) S (=R e L = (82N Hy(2//28),

k=0

where Hy (w) = (2w)™ + --- is the N-th Hermite polynomial. In particular,

N
(61) 61|vauc = 0’ 62’vacuum = _’8<2 )’

62 [ - x)’ — Diser((8/2)"/ Hy(=//28) )

1<i<j<N

vacuum

N
_ IBN(Nfl)/Q H k?k = ﬂN(N*l)/Q H(N),
k=1

where we used the Szegd formula [54] for the discriminant of the Hermite
polynomials, and H(z) is the hyperfactorial function, related to the Barnes
G-function G(z) as

(63) H(z) =exp[z logI'(z +1)] /G(z + 1),

so that

1 1 #
(64) log H(z) = —57 log 27 + 5(2 +1)z+ / log I'(t + 1) dt.
0
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The element of the chiral ring

(65) W = log(X; — X;)°
1<J

takes on the vacuum the values

N(N -1
(2)log5—|—logH(N) + 2mik, keZ,

(66)
where the term 27ik takes into account the multiple determinations of the
logarithm. We extend the theory to a cover of field space in which the
superpotential is univalued. The integer k£ then labels the distinct susy vacua
of the extended theory which cover the unique vacuum of the original model.
Following [2, 11], we introduce the f—vacua, the angle 6 being the Fourier
dual to the integer k. Setting x = 0/2m, we represent the chiral operator
J3W acting on the #—vacua as the differential operator [1, 2, 11]

N(N —1)

(67)  Cp=—

log 8 +1log H(N) +

The tt* equations for the metric G (3, x) then read [1, 2, 11]

2 2

9
=1

log Gy =0,

so that the function hy (3, z) = log Gn(3,z) is harmonic in R? (with coor-
dinates (2Re3,2Im 3, x)), and periodic of period 1 in z. hy(f,z) depends
on (3 only trough |3, and vanishes exponentially as |3| — oo by the tt*
IR asymptotics [1, 15, 19]. Moreover, the reality structure of ¢t* requires
hy(B,z) to be an odd function'® of . Hence the ¢t* metric may be written

14 In the topological un-normalized 6-basis one has

log G (x) + log Gy (—x) = log|Hessian of W|

vacuuim

The statement in the text refers to the metric written in the topologically normal-
ized f—vacua.
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as a series of Bessel functions

(69)  hn(B,x) =logGn(B,x) Z A (N) sin(2rma) Ko(4mm|f)),

m>1

for some coefficients A,,(N) to be determined using the appropriate bound-
ary condition to be discussed momentarily. The harmonic function

1 Ohy

(70) VN = 3w

is the solution to the classical electrostatic problem with a charge distribu-
tion

(71) on(Yi,z) = md(y1) 6(y2) Z m Ay (N) cos(2rma).

m>1

For instance, from the well-known identity [81, 82]

2
(72) log =Y

2 [ee]
—4 Z cos(2rkx) Ko(2mkv/ 2% + y?)
k=1

1 1 1
= — 97 _2’)/7
V22 +y? 4 a? ;Z<\/22+y2+(:c—k)2 |k?|>

k#£0
we see that

21
(73) Ap =2 —

m™m

corresponds to a linear periodic array of charge one monopoles superimposed
to a linear screening constant charge distribution. Indeed,

(74) 2 Z cos(2mmz) = dz(x) — 1, where 0z(z) = Zé(m — k)

m>1 kEZ

Comparing with [2, 11], we see that (minus) the charge distribution (74)
gives the Gaussian model with N = 2. We define the magnetic charge func-
tion to be

(75) Z A (N) e72mm2,

m>1
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which is related to the linear charge distribution by

(76) p(r) = 5 0u (Fiy(~iz) — Ex(in) ).

5.4.2. tt* Lax equations. The brane amplitudes are flat sections of the
the tt* Lax equations'®

(77) (Ds+icCs)w = (Ds - éCg)q/ — 0.

The geometrical meaning of these equations is that the brane amplitudes
U(¢) are y—independent holomorphic sections in complex structure ¢ of a
hyperholomorphic bundle V over a hyperKéahler manifold H of coordinates
(B,x + iy), translation in y being symmetries of H and V [2].

In the Gaussian case the tt* equations for the brane amplitude

Un(z) = (0 =27z | D)

take the explicit form (cfr. Eqn. (67))

(78) (85 —iC ax) log Uy = —i¢ yhy — i¢ C(N, B)
(79) (aﬁ —i¢10,) log Uy = Bghy +iC L C(N, B),

whose compatibility condition is Eqn. (68). We write

(80) log\I/NZZUN—I—(I)N—iCUN,
where
s oy =T st s (tog s - M)

= (k) (rog (k) ~ 1) — (1058 ~ 1) ).

k=1

and ®p is the solution to
(82) (85 7 ax) Oy = —iCOphy
(83) (95 — i 0.)x = Dahy,

15 We have redefined ¢ — i/¢ with respect to the usual 2d conventions in order
to adhere to the standard 4d conventions.
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satisfying the appropriate boundary conditions. If ®y, ®',, are two periodic
solutions of (82)(83), A®y = &y — Py satisfies the homogeneous equations

(84) (ag —iC 8x)ACI>N - (ag —i¢ ax> Ady =0,
whose general solution is

(85) A®y =log f(B/¢ — iz + BC),

with f(z) an arbitrary analytic function of z such that f(z+ i) = f(z). To
get the general solution of Eqns. (82)(83), it remains to find a particular
solution. Following [2], we use the integral representation

(86) Ko(4mm|B|) :;/éexp<—27rm6/s—2ﬂ'mﬁs)cis,

(here ¢ C C is a ray chosen so that the integral converges) to rewrite the
harmonic function hy in the form

1 ds L o
hy = — - A, (N ( —27m(B/s—ix+Ls) 727rm(5/s+m+ﬁs)).
(87) N 4i ) s Z ( ) (& e
m>1
Then we look for a particular solution to Eqns. (82)(83) of the form
(88) (I)N = /ds Z <¢N(87 Cv m) 6—2ﬂm(ﬁ/s—ix+ﬁs)
l

m>1

+ QZN(S, ¢;m) e_2ﬂm(/3/8+iz+,§s)).

Plugging this expression in (82)(83) one finds

A (N) 1
(%9) (o, Gim) =~ L
(90) On(s,¢m) = dn(—s,Cm),
so that,
©) o) =g [T S Bl i+ )
1 ds ¢ FN(B/S—I—ix—i—Bs),

S 2mi )y s s+C

where Fiy(z) is the magnetic charge function (75). The amplitude U (3, z, (),
Eqn. (80), as a function of ( is subjected to the Stokes phenomenon, which
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just means that the function ®x(¢) has a discontinuity across the two rays
+¢ C C given by the residues at the poles of the integrals in Eqn. (91)

(92) disc @N‘ = —Fy(£8/¢ F iz £ BC).
(el
In particular, ¥ (3, z,¢) has a non trivial monodromy as ¢ — e*™(

93) U (B,x,e?C) = exp(Fw(B/C iz + B)
— Fy(=B/¢+iz - BO)) U (8,2,0)

5.4.3. The asymmetric limit as a boundary condition. Following
[2], we wish to identify the above solution ¥y (3, x, () with the amplitude for
the basic brane (Dirichlet or Neumann, depending on the Stokes half-plane
[2]). The brane amplitude is a solution to the tt* Lax equations which satis-
fies specific boundary conditions. We use these conditions to uniquely define
the full tt* geometry, that is, to determine the unknown Fourier coefficients
A (N) or, equivalently, the magnetic charge function Fy(z), Eqn. (75).
Fn(z) is uniquely determined [2] by the condition that ¥y (53, x,() repro-
duces the correct brane amplitude in the asymmetric limit 8 — 0 while
keeping fixed 8 and z. In this limit Uy remains the same, Uy — 0, and

1 dt

94 d P =— | ——F t—1
1 dt
- | — F t+1x).
omi J, i o1 I (Bt F i)

In particular, at x = 0 and assuming Im(3/¢) > 0,

as  PUN 1 dt
(95) log Uy (z =0)" = R +7Ti§/et2+(i/02 Fy(Bt)
= C _71'/0 82+1FN(’LBS/C).

To get the coefficients A,,(IN) we compare this expression with the asym-
metric limit of the amplitude ¥y (z = 0)* computed directly.

5.4.4. The Selberg integral. The asymmetric limit is just the normal-
ized holomorphic period, which may be computed using the Selberg (Metha)
integral [83-85]. After shifting x — = + 1/2 (to compensate for the Jacobian



Twistorial topological strings 239

of X; — ez), we have!6

(96) ()™~ oy AN () (Ci)

/ dy = T2 T (v — vy)2i8/c+o)
1<J

_ . 1)if/2¢ kzﬁ/C—l—kx)
dn(8)7 (/)Y kHl NN

where dy(3) is the value of the Szego discriminant of the vacuum configura-
tion, Eqn. (62), and the factor (¢/i)NNV=1%8/2C arises from the field rescaling
X; = Y; = +/i/C X;. Using the following variant of Binet formula [86]

(97) logT'(z) = (z—1/2)logz — z + %log 27
1 > ds __—omat
_W/O S log(1 — e ),
we rewrite
- 18
(98) log Un(z=0)* =" llogf‘ kiB/¢) — k—log(i/¢)
k=1 C
~ g (i3/¢) + log@'/o]
_ iy, L o~ 2mh(iB/C)s
_(UN 77/0 32+1 Zlog )
— Nlog(l — 6_2”(i5/g)5)} + const,

where the constant!” depends only on N. Comparing Eqns. (95) and (98)
yields the identification

16 The fields Y; are related to the X; by the rescaling Y; = \/2/7 X;. The bizarre—
looking factors i arise from the replacement ¢ — i/¢ with respect to the usual 2d
conventions.

" The constant is related to the overall normalization of the amplitude ¥ y;
fixing the normalizations in the standard way, also this constant matches in the
asymmetric limit.
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N
(99) Fn(z) = Zlog(l - 6_2”]“'2) — Nlog(1 —e ™)
= /log(l — 6727@2) wn (y) dy,
N
(100)  wn() = 8y —k) - Noly—1),

corresponding to a linear charge distribution

(101) pn(z) = N dz(x Zéz (kx) = —/5Z(y:r) wn (y) dy,

that is, to a superposition of point Abelian monopoles at the points (0,0,
j/k) € R3 of charge —1/k.

We note that a crucial ingredient in matching the asymmetric limit of
the brane amplitude with the period integral was the identity

1
(102) / log(yf) — 1) wn (y) dy,
0

which allows to read the function F(z) directly from the chiral ring R and
viceversa.

5.4.5. The brane amplitude. Using (99) the full brane amplitude for
the Gaussian matrix LG model becomes

(103)  log¥y = éUN —i(Un

1 _—
_ 1 —27rk(6/s—zx+ﬂs)
2 J, s s — {Z og )
1 7
1 27rkz(6/s+m:+ﬂs)
S 2mi ), s s+ C{ Z og(1 )

_ Nlog(l _ e—2ﬂ(ﬂ/8+im+68))}
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This expression is reminiscent of the TBA equations of [8]. The precise
relation of the brane amplitude (103) with the TBA equations for 4d SQED
will be discussed in Section 6 below.

5.4.6. Interlude: The twistorial Gamma function. The brane ampli-
tudes for an interesting class of tt* geometries may all be expressed in terms
of a single new transcendent function which we call the twistorial Gamma
function. The twistorial Gamma function, I'(u, 1, z), is defined as the ana-
lytic continuation to u, it independent complex variables of the ( = ¢ brane
amplitude for the Abelian ¢t* geometry associated to the charge distribu-
tion p(x) = 1 — dz(x), i.e.to the periodic linear array of Abelian monopoles,
Eqn. (72). Explicitly (assuming Rep > 0 and Re i > 0)

(104) 10g(w> = p(logp— 1) + p(log it — 1)—

1T dt .
o B | 1 —27(p/t—iz+pat)
27r/t(t—i) Og< ¢ )
0
1 [ dt .
_ S | 1— =27 (p/t+iz+pt)
o | t{t+1) Og< ¢ )
0

I'(u, i1, x) is a three—variable extension of the Euler Gamma function. It re-
duces to it in various limits; moreover, for each functional equation satisfied
by the classical Gamma function, there is an analogue identity for its twisto-
rial extension. These identities are most conveniently expressed in term of
the related function

(105) A, i) = exp| = (1/2 = @) log | T, @),
To the difference equation I'(z 4+ 1) = 2 I'(2) it corresponds the identity
(106) Alp, o+ 1) = pA(p, i, ).

The reflection property I'(z) I'(1 — z) = 7/ sin(7z) generalizes to
T

sin(r(p+2z—p))

(107) A(Ma Fs .’L’) A(_Mv —i, 1- .’E) =

Finally, the Gauss product formula (n is any natural number)

n—1
(108) L(nz) = (2m) =2 == V2 TT (2 + k/n)
k=0
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extends to the product formula

n—1
(109)  A(np, nji,na) = (2m) =2 prlebet =12 TT A, i, 2 + K /).
k=1

The relation of I'(, i, ) with the classical Gamma function is manifest in
its two asymmetric limits (we assume 0 < x < 1)

(110) A(p,0,2) =T'(p + )
(111) A0, i, z) = F(Fl(f”)x) T(1—z+ ).

The Weierstrass infinite product representation of the Gamma function

w el e

k=1

has the twistorial extension (for Rep >0, Reg > 0and 0 < z < 1)

211 —x — L
(113) T(u, i, ) = Ml/Q—w ( r—pt M) e~ 2v(ztp) o
T+ 2u 4+ /2% + 2ui

_ o2 _ z)?2 B
y 1 a +\/(1 L)+ 4k 2tk

i1 1+%+\/(1+g)2+4%§

9

which may be taken as the definition of the function. The properties listed
above easily follow from this representation.

5.4.7. The brane amplitude in terms of twistorial Gamma func-
tions. Our findings for the tt* Lax equations of the Gaussian model may
be summarized in a simple ‘rule of thumb’: to get the exact brane ampli-
tude, take the period integral expressing the asymmetric limit of the brane
amplitude, Eqn. (96), and simply replace each Euler Gamma function in the
RHS by its twistorial version'®

(114) [(kiB/¢ + kx) ~ T (kiB/¢, —kiC B, k).

We shall see in the remaining part of this section that this ‘rule of thumb’
works for a larger class of tt* geometries.

18 For ¢ # i the twistorial amplitude with the normalization in Eqn. (103) dif-
fers from the ‘rule of thumb’ one by the trivial factor expliUn(83)/¢ — Un(iB/¢) —
iUN(B)C = Un(=ifC)], cfr. Eqn. (98).
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5.5. Abelian tt* geometries in (R? x S1)”

The Gaussian matrix model of Section 5.4 is only the first instance in a large
class of multi-matrix (2,2) models for which the exact ¢¢* brane amplitudes
may be computed in closed form. In this and the next sections we give
some further examples, deferring to Appendix C the discussion of an even
larger class of solvable tt* geometries describing twistorial extensions of Toda
theories. All these models are characterized by the condition that they have
no magnetic BPS states.

tt* geometry [1, 2] states that, for a four—supercharge theory with m
susy vacua, the vacuum Berry connection is an U(m) hyperholomorphic
connection on some hyperKéahler manifold, possibly dimensionally reduced
along the orbits of an isometry group. For the present class of LG models,
Eqn. (36), freezing all couplings in W (z), the ¢t* Berry connection, as a
function of the coupling 3 in front the log of the Vandermonde determi-
nant and its associated vacuum angle 6 [1, 2, 11], is an U(m) Bogomolnyi
monopole in R? x S! [2]. Taking into account the dependence on the cou-
plings in W (z) (and related angles), we extend the Bogomolnyi monopole to
a higher dimensional hyperholomorphic U(m) ‘monopole’ [2]. For the mod-
els with m = 1 the tt* monopole is Abelian, and the tt* equations become
linear, hence explicitly solvable.

In view of this fact, it is interesting to classify all functions W(z) such
that the corresponding model (36) has a single susy vacuum for all N € N.
Limiting ourselves to the case of W’(2) rational, we see from the discussion in
§.5.3 that this requires the unique van Vleck polynomial f(z) to have degree
zero, and hence to be the eigenvalue of a Schrodinger Hamiltonian. Then
the requirement that there is a unique susy vacuum for all N is equivalent
to the requirement that the Schrédinger Hamiltonian has a complete system
of polynomial eigenfunctions. By a theorem of Bochner [87] there are just
three such Schrodinger operators, whose Heine polynomials are respectively
the Hermite, the Laguerre, and Jacobi polynomials'?. Although this result is
classical, it is instructive to look at it from the viewpoint of the class S[A;]
theories [88]. To each LG model (36) with W’(z) rational we may associate
the S[A;] theory engineereed on the sphere by the quadratic differential

(115) bo2(2) = (W’2 + lower order) dz?,

19 Other classical orthogonal polynomials, such as the Chebyshev, Legendre and
Gegenbauer ones, are special instances of the Jacobi polynomials.
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(see also [89]). The three Abelian ¢t* geometries then correspond to the
three free S[A;] theories. In the language of complete theories [47], and
ideal triangulations of marked surfaces [90], they correspond to*’

a) a disk with four marked points on the boundary, whose triangulation
quiver is the A; Dynkin graph, which corresponds to a free hypermul-
tiplet with flavor symmetry SU(2);

b) a disk with one regular puncture and two marked points on the bound-
ary, whose triangulation quiver is the Dy (disconnected) Dynkin graph,
corresponding to a free hypermultiplet doublet with flavor symmetry

SU(2) x SU(2);

c) a sphere with three regular punctures (the 7% theory) which corre-
sponds to a free half—hypermultiplet in the %(2,2, 2) representation
of the flavor SU(2) x SU(2) x SU(2) group.

The tt* Abelian geometries associated to the free S[A;] theories are
higher-dimensional hyperholomorphic ‘monopoles’ in the space (R? x S)",
where r is the number of SU(2) factors in their flavor group. The three
real coordinates associated to each SU(2) factor are given by the complex
coupling p; in front of the corresponding logarithmic term in W and its
associated vacuum angle 6;.

To each one of the three Abelian tt* geometries there is associated yet an-
other remarkable mathematical structure, namely a Selberg integral whose
evaluation yields a product of Gamma functions [83-85]. While deep rela-
tions between all these structures are well known in the mathematical litera-
ture (see e.g.chapter 8 of [83]), tt* geometry makes their mutual connections
more transparent and natural.

We summarize the several structures in the table:

model ‘ W(z) | polyn. [r[S8[Ai] | Selberg int.

Gaussian —22/2 Hermite | 1| Ay | Ay_1 Metha

Generalized Penner plogz — Az Laguerre | 2 | Dy BCx Metha
Double Penner p1log z 4+ pglog(z —p) | Jacobi | 3| Ty Morris

20 Note that all three models may be obtained from T3 by taking suitable limits.
Colliding two of the three regular singularities of T we get a degree 4 irregular
singularity i.e.the Dy model; colliding all three regular singularities we get a degree
6 irregular one, i.e. the A; model. The Laguerre and Hermite polynomials are
obtained from the Jacobi ones in the corresponding limits.
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5.5.1. Solving Abelian tt* equations in (R? x S')". We consider a
general Abelian ¢t* geometry in (R? x S')". To fix the ideas we focus on
a LG model defined by a family of rational one-forms A(y,) in CV, which
are invariant under a discrete group I' of symmetries of CV, and whose
zeros form a single orbit of T'. The form A(u,) are parametrized by the
independent periods 2mijy, 2mipe, - . ., 2wip, of A(pg) (cfr. Eqn. (40)). Then
the LG model with superpotential the multi—valued function

X;
(116) WX ta) = / Alta).

restricted to the I'-invariant sector, defines an Abelian ¢t* geometry on the
space (R? x S1)" coordinatized by the reduced periods g = (1, - - - , i) and

angles 0 /27 Ly = (1,...,2,). The rescaled coordinates 47i p1, are just the
central charges of the BPS solitons wrapping the generators {~,} of the field
space homology group

Hl(((CN \ {polar locus})/T, Z).

The tt* metric G(p, i1, x) satisfies the equations

(117) O, 0, log G(p, i, @) = 0y, 0z, log G(p, 1, x)

(118) 8ﬂa8$b log G, p1, ) = 6ﬂb6$a log G(u, i1, )

(119) <8ﬂac")ub + 8%8“) logG(p, i, x) = 0,

for all a,b=1,2,...,r. Using periodicity in the x,, invariance under overall

U(1) rotations of the p,, and (generic) decoupling at infinite mass |u,|, we
end up with solutions of the form

(120)
log G(p, i, @) = Z A(m) Ky (47r (m-p)(m - ﬁ)) exp(2mim - x),

for some numerical coefficients A(m) which are further restricted by the ¢¢*
reality condition [1]

(121) A(—m) = —A(m), A(m)=ia(m) € iR.

Sign—coherence. In all known examples, the coefficients A(m) enjoy a
sign—coherence property: there exists a natural basis of periods, {v,}, such
that A(m) = 0 unless the components of the r—vector m are all non—negative
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integers or all non—positive integers. As we shall argue in Section 6, this
property arises from 4d: it is related to sign—coherence of BPS spectra of 4d
N = 2 theories which have a quiver description [47]. In the sign—coherent
case we may summarize the real coefficients a(m) in a magnetic charge
function F'(z) which generalizes the one defined in Eqn. (75) for the Gaussian
model, i.e.

(122) F(z)=—-m Y a(m)e>™™?,

meZL,

We may repeat word—for-word the analysis for the Gaussian case, with the
result that the exact brane amplitude V(u, i, x,() (a section of the tt*
hyperholomorphic line bundle £ which is holomorphic in complex structure
¢) has the form?!

(123 logW(.i,¢) = L Ulw) ~ G U (@)
1 ds ( . _
~ 5 Z?S_gF(u/s—zw—i-us)
1 [d -
— 5 ejSiCF(p/s—Fm—i-us),

where U(u) is the value?? of the superpotential W(X;, u) at the zero of
A(p). We also write the tt* metric G(u, i, ), Eqn. (120), and the CFIV
index Q(w, fr, @) [15] of a general Abelian #t* geometry in terms of the

21 This is correct in a region where the complex numbers ji,, i, all belong to
the same half-plane, so that the integral of all terms in the sum defining F'(z)
converge for the same choice of ray ¢ C C. In the general case one needs to choose
different rays /£ for each term in the sum [2]. The implied deformation of the contours
introduces various Stokes factors from the residues at poles (cfr. Eqn. (92)). For
simplicity we write expressions valid for Re i, > 0, Re i, > 0, the general case being
obtained by analytic continuation and multiplication by the appropriate Stokes
factors.

22 The value is not uniquely defined; varying U(u) is equivalent to changing the
trivialization of £. However there is a physically natural trivialization, and hence a
natural U ().
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magnetic charge function F'(z)

_ 1 ds ) _

(120)  loGluia) = 5 [ 5 [Plufs—iw+as)
—F(u/s—i—iw—i—ﬁs)}
(125) Q. fa) = —— [ & [Fu(s/s — i+ is)
B, p, ) = o J, 52 Ha |FalM/S s

—Fa(u/s+iw+ﬁs)]
(126) where F,(z) = 27* Z mg a(m) e 2T™E,
meZL,

These quantities satisfy the two basic tt* bilinear relations (cfr. Eqn. (4.19)
of ref.[19]) which in the present situation reduce to

(127) U(x, () U(—x,—() =1
(128) U(—2,1/0) = G(~2) ¥(x,().

It remains to determine the Fourier coefficients a(m), or equivalently
the magnetic function F(z). tt* theory gives at least four different ways to
fix them:

a) from the IR asymptotics of the CFIV index [15]. The real number
—ma(m) gets identified with the (net signed) number of BPS soli-
tons with central charge 47im - u, i.e.solitons wrapping the homolog-
ical cycle m - 7. One should count BPS solitons with collinear central
charges with the appropriate weight (see [10] appendix). In particular,
7 ged(m) a(m) should be an integer.

b) from the UV limit of the CFIV index which expresses the UV di-
mensions h(x) of the chiral primaries [1, 15]. These dimensions are
constrained by the chiral ring R to be piecewise linear functions of
the a’s. This implies a(m) = O(1/|m|) in agreement with the IR pre-
dictions. The discontinuities of h(x) should be integers [19], implying
specific integrality properties of the a(m)’s.

¢) matching the asymmetric limit of the brane amplitude with the period
integral, as we did for the Gaussian model. For instance, if we have

(129) /eiW/g‘ ANy — (elemegtary) Hz,zlr(iék@#a/C)’
function szl F(igh,aﬂa/C)
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we immediately conclude that the model has n +n’ primitive BPS
solitons of central charges 4mi ¢, 41, and —4mi Zh,aua, respectively. In
particular, ¢, , and gh,a should be non—negative integers corresponding
to the cycles £y qVa, —gh,a% wrapped by the primitive BPS solitons.
The BPS solitons have the sign—coherence property discussed around
Eqn. (122), and the magnetic function may be read directly from the
RHS of Eqn. (129)

(130) F(z) = Zlog(l _ 6—27rlk~z) o Zlog(l o 6_27rl~h'z),
k=1 h=1

d) from the holomorphic function U(u). Indeed, the very fact that our ¢¢*
geometry is Abelian means that the BPS solitons do not interact, and
then U (p) should be identified with the effective twisted superpotential
of a (2,2) U(1)" gauge theory coupled to n +n' chiral superfields of
charges /; , and —lﬁhya, respectively. This gives

n'

(131) i (1og (- ) — 1) Z(fh-u)(log(fh-u) - 1)-

k=1 h=1

Thus we may extract the charge vectors I, —1, directly from the
critical value of the (canonical) superpotential U(u). F'(z) is then given
by Eqn. (130). More generally, as in Eqn. (99), we may introduce a
BPS density w(y) such that

(132) F(z)= /log(l - e_Qﬂy'z) w(y) dy,
(133) Utn) = [y ) (l0(y - ) - 1) wlw) dy.

The fact that one gets the same coefficients a(m) by using any one of the
above four methods is a non—trivial check of the correctness of the procedure.
The ‘rule of thumb’ of §.5.4.7 gives the exact brane amplitude corre-
sponding to the boundary condition (129) as a product of twistorial Gamma
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functions??

n
O=1Ir
k=1
n/ ~ ~ ~
[1 TG - /¢~ - ¢, 8- 2) ",
h=1
(modulo, possibly, rational shifts of @, which correspond to insertions of
chiral primaries in the period integral).

A priori, extracting the soliton charges [, —1}, from the integral (129)
may be a bit ambiguous since, using the functional identities for the Euler
Gamma function, we may write the RHS as a product of Gamma functions
in many different ways (allowing also for rational shifts of the arguments).
However, since the twistorial Gamma function satisfies the same identities
as the Euler one, the brane amplitude is well defined, independently of how
we write the RHS of (129).

5.5.2. Constructing new Abelian tt* geometries from old ones.
Our explicit computations of twistorial brane amplitudes in the examples
of Section 6 consist of several steps in which one constructs a sequence of
tt* geometries one after another. For instance, to get the brane amplitudes
for SQED, we first solve the tt* equations for the Gaussian model at finite
N; for each N we get a one-dimensional®* Abelian tt* geometry, which de-
pends on the coordinates (€1, ). This yields the SQED amplitude at special
discrete loci in its parameter space

(135) ae =(N+1/2)eg and 0. = (N +1/2)6.

The next task is to extend this discrete family of one-dimensional ¢t* geome-
tries to a sound #t* geometry in one more quaternionic dimension, depending
on continuous coordinates (ae, 8, €1, ), such that its restriction to the lo-
cus (135) reproduce the tt* geometry of the Gaussian model of size N. Here
one needs appropriate techniques to construct the higher—dimensional tt*
geometry from the smaller ones. Having done that, the next task is to con-
sider various physically interesting limits of the result. These limits should
produce full (regular) limiting ¢t* geometries with sound metrics, indices,
and brane amplitudes. Again, we need appropriate techniques.

23 Again, this expression differs from the brane amplitude in the standard nor-
malization, Eqn. (123), by the trivial factors discussed in footnote 18.
24 In the quaternionic sense.
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Constructing new tt* geometries out of old ones to serve as physically
natural generalizations/limits is a formidable task. However, if the ¢t* ge-
ometries are Abelian, it can be done explicitly with the help of the magnetic
charge function F'(z) introduced in the previous subsection. The magnetic
charge function F(z), being directly related to the charge distribution of
the tt* higher—dimensional monopole [2], is a gauge—invariant datum of the
tt* geometry, i.e. a totally unambiguous way of describing all ¢t* quantities.
F(z) is also the datum on which we have the best physical control: from
Eqn. (123) we see that F'(z) is simply the logarithm of the Stokes jump of
the (Abelian) tt* amplitude which is given by well understood wall cross-
ing formulae. The datum F'(z) determines the ¢t* metric and CFIV index
by Equns. (124) and (125). In addition, from Eqns. (130) and (131) we see
that from F(z) we may also reconstruct the ‘semi-flat’ holomorphic function
U(p). Concretely, to give F'(z) is equivalent to specifying the 2d BPS charge
distribution w(y) which describes the 2d Stokes jumps, cfr. Eqn. (132) which
determines the function U(p)

(136) U(p) = /dw w(w) (w- p) (log (w- ) ~1).

Plugging this expression in Eqn. (123), we write the (Abelian) twistorial
brane amplitude corresponding to the given datum F'(z).

In Section 6 we shall use this strategy to get the general SQED ¢t* geom-
etry away from the special locus (135) and to define some of its interesting
limits.

5.6. Example: the generalized Penner model

The (2,2) generalized Penner model is given by the superpotential

N
(137)  Wen) =Y ( — Xi+ logXi> tuslog [T (X —X;)?
i=1 1<i<j<N

where the basic chiral fields are the elementary symmetric polynomials ey,
and puy # 0. The two complex couplings, 1 and us are the independent
residues of the rational one—form A(p) = dWW. From the discussion in §§.5.2,
5.3 and 5.5 we know that A(u) has a unique simple zero (modulo Gy)
specified by the N—th associated Laguerre polynomial

(138) Py(2) = (DN N1 ad 28" n).
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The generalized Penner model corresponds to an Abelian tt* geometry in
(R? x S1)2 to which our results apply. To get the explicit expressions one has
only to specify the magnetic function F(p1, pe) which may be determined
by any one of the four methods of the previous section. Conceptually, the
simplest one is from the effective twisted superpotential U (1, u2) which is
defined by the two equations

N—-1
(139) 9, U (1, p2) = log[(—1)V Py (0)] = D log(p + kpo)
k=0

(140)  90,,U(p1, p2) = log Discr Py ()
N —1

= (k log(kpz2) — log Mz) + > klog(pr + kus),
k=1 1

=

B
Il

where we used known properties of the Laguerre polynomials [54]. U (1, p2)
has the expected form, Eqn. (131), to be interpreted as the effective twisted
superpotential of an Abelian gauge theory

(141) Ulpr, p2) = {(kﬂz)(log(k/m) — 1) — pa(log p2 — 1)}

- I1]=

,_.

+ (1 + kpz) (log(pr + kpa) —1).

ingl

Therefore U(p1, u2) defines a magnetic function

(142) F(z1,22) i {log(l — 6—27rsz) — log(l — 6_27I'z2)}
+ szl log< ”(21““2)).

=0

Replacing this magnetic function in Eqns. (123), (124), and (125), we get the
various tt* quantities for the generalized Penner model. Using Eqn. (134),
we may write the brane amplitude in closed form as a product of twistorial
Gamma functions

k;:u’Qv ku27 kJ:Q
143 U= U (p1 + kpo, fr + kfi2, z1 + kao
( ) H HZa /1'27332) ]CHO )
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Alternatively, we arrive at the same conclusion using the period integral
which in this case is the BCy Metha integral [84, 85]

1 dl‘ 2
R o *xi/Q 2 2p0
(144) '/lll (me (2]z;]?) ) | | |22 — 22|

1<J

N
H k:,u2 H I'(1+ 2 + 2kpsg)
P i T+ g+ o)
which corresponds to (143) after keeping into account the Jacobian factor
(which shifts z; by 1/2 and z2 by an integer).

5.7. Example: the double Penner model

The superpotential for the double Penner (matrix) LG model is

(145) W(X;, ) = leogX +uzzlog (1-

+ us Z log(Xi —Xj) ,
1<i<j<N

where field configurations are identified modulo permutations of the X;’s.
The polynomial P(z) describing the vacuum configuration satisfies the hy-
pergeometric ODE

N(p1+ po + (N — 1)ps)
146 pry(H B2 ) pro P =0,
(146) Hs +(z+z—1 z2(z—1)

whose solution is the N—th Jacobi polynomial of argument 1 — 2z and pa-
rameters o = uq/pu3 — 1, B = pa/ps — 1, normalized to be monic, that is,
([83],5.8.5)

(_I)N('U’l/lu’?’)N (1 /pa—=1, pa/ps—1)
147 P(z) = P ’ 1-—2z
(147) =) (N + 1 /ps+ po/ps — )y N ( )

where (a)y is the Pochhammer symbol

I'(a+ N)

(148) (@)y=ala+1)(a+2)---(a+N-1)= T'(a)

By definition one has

(149)  U(p) =m log[(—l)NP(O)] + p2log[P(1)] 4 pslog Discr P(z).
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Using the properties of the Jacobi polynomials (cfr.[83], Theorem 8.5.2)
we get

N
50) ) =3 { (o + (k= 1) (0 + 6~ L) 1)

k=1

+ (2 + (k= Dp3) (log(uz + (k= 1)us) — 1)
— (p1 + p2+ (N +k —2)u3)
. (log(/u +ug+ (N +k— 2),ug) — 1)

+ (kus) (bg(kﬂz) - 1) — K3 (10g 3 — 1) }

which again has the proper form to be interpreted as an effective twisted
superpotential. The corresponding magnetic function F'(z) is

N
(151 Z { 10g 7r(21+(k—1)zs)) + log(l N e—27r(22+(k—1)23))
k=1

+log(1 — e ™) —log(1 — 6—27r(21+z2+(N+k—2)z3))
— log(l — 6_2”3) },

from which we compute all {t* quantities. In particular, the brane amplitude
is written as a product of twistorial Gamma functions (for brevity we omit
to write the obvious second argument of the various functions)

(152) W = H{ (2 Ok = ) /€0 + (k = D) T(ikys /. k)

-1

X F(i(ug + (k — 1)/;3)/{,3:2 + (k — 1)333) F(’iﬂg/c,x;g)
X T (i + iz + (N + b = 2)us)

—1
JJ1+$2+(N+I€—2)$3> }

Again, the same result could have been obtained by matching the asymmet-
ric limit of the brane amplitude with the period integral which in this case
is the Selberg integral [83-85].
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6. Twistorial topological strings for the N' = 2 SQED
(conifold B-model)

In this section we show how the large N behavior of the tt* geometries
studied in Section 5 produces the twistorial topological string amplitudes
of Section 3. In particular, the large N asymptotics of the Gaussian model
reproduce the A/ =2 SQED amplitudes with the Coulomb branch param-
eter a identified with Ne;. The simplest way to connect the Gaussian tt*
geometry with N'=2 SQED is to compare the tt* metric G and brane
amplitude ¥y computed in Section 5 with the hyperKéahler geometry of
SQED compactified on a circle studied in [8]. The relation between tt* and
the TBA-like equations of [8] was already outlined in [2]; we start by making
the dictionary between the two geometries more precise.

6.1. The dictionary between tt* and GMN hyperKéihler
geometries

Both tt* Lax equations and the TBA equations of GMN [8] determine a
hyperKé&hler geometry; moreover they both encode a Riemann—Hilbert (RH)
problem. From the discussion in Section 4 we expect the RH problem of [§]
to be a certain classical limit of the ¢t* one for the large N (2,2) model dual
to the given N' = 2 theory. Both RH problems are formulated as integral
equations with singular kernels. The TBA equations are based on the kernel

8]

1 d¢ ¢+¢
1 - 5
159) -0
while in tt* one uses the simpler kernel
1 d¢ 1 d¢
(154) i O EC which under ¢’, ¢ — 1/¢’,1/¢ becomes 5 CCI C’C—C'

To reconcile the two kernels, we notice that the basic ¢t* relations, Equa-
tions. (127) and (128), imply the reality condition

(155) (G@) "2 ¥(@, ~1/0)) = (Glz) /> ¥(x, (),

which has the same form as the GMN one X.,(—1/¢) = X,(¢)!. Then the
tt* amplitudes should be identified with the corresponding GMN objects
times G'/2. More conceptually, the tt* amplitude ¥(¢) is a section of the
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hyperholomorphic vector bundle ¥V — M written in a holomorphic trivializa-
tion (in complex structure I, corresponding to ¢ = 0). To get the section in
a unitary trivialization we have to perform a complex gauge transformation
by G~1/2. The GMN quantities correspond to unitary gauge ¢t* quantities,
and satisfy the reality condition in the form (155). The change of kernels
from (154) to (153) just implements the change of gauge. Indeed,

1o 1A LA
omi ' — ¢ Ami ¢ = ¢ 4w
1 d¢ 1 d¢ ¢ 1 d¢
- 10 ¢ 1de ¢ 1d
2mi (' (' —=C¢  Ami ¢ ('—C¢  Ami
Using these identities and Eqn. (124), the Abelian ¢t* brane amplitude (123)
may be rewritten as

(156)

ci 1 fd¢ ¢+ ¢
(158) log W)™ = 2 U —iCU =35 | T ¢

1 [de ¢ ¢
471 Vi C/ C/+C

F(p/¢ —iz+ )

1
F(p/s+iz+fs)+ ilogG,
which shows that

tt*
(159) log U(C)MN = log (G—W \p(g)) :

In particular, as ¢ — 0 (resp. { — oo) the GMN amplitude becomes G—/2,
(resp. G'/?) in agreement with general tt* geometry [19].

6.2. Twistorial double Gamma function
The analysis of §.5.4 gives the brane amplitudes for the Gaussian matrix

model in the form of a product of twistorial Gamma functions (up to ele-
mentary normalization factors)

ﬁ (ikB/¢, —ikBC, ka)

(160) R | o et

where 8 = ¢€1/é and = = 0/27. To compare with N’ =2 SQED or the B-
model for the conifold, it is convenient to introduce the twistorial version of
the double Gamma function, T'y(u, i1,y | €, €, ) whose arguments are four
complex variables u, i, €,€ and two period real ones y, x. The function
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Do(u, i,y | €, € x) allows us to write in a closed form the brane amplitude
for all Abelian tt* geometries.
For Re it > 0, Ree > 0 we define the function?

2
(161) U(ple) = ew(*m(,u/e) + g— log e — g log(2me),
€

where ¥(=2)(2) is the polygamma function of order —2,

(162) P (2) = / logI'(s) ds
0
= %zlog%r - %z(z — 1)+ zlogI'(2) —log G(z + 1),

G(z) being the Barnes G—function. From the identity G(z + 1) = T'(z) G(2)
we see that 1(=2)(2) satisfies the difference equation

(163) V(24 1) — D (2) = z(logz — 1) + %log 27,

The function U(u | €) may be defined as the unique solution to the difference
equation

(164) U+ ele) = Ul )+ pu(logu 1),
normalized as U(0|€) = 0 and satisfying

d® U(sele)

165 —
(165) ds3 €

>0, forallseR,.

For Re pn > 0, Ree > 0, the twistorial double Gamma function I'y(u, 1, y |
€,€ 1) is defined as

(166)  logTa(p. i,y |e.&2) = Ul +¢/2| &) + U(f + /2] &

oo

1 ds
_%0 mlogW(X(S);CI(S))
s L g w(x () (s

27 s(s—1)
0

25 All multivalued functions are assumed to have their normal values (i.e.real on
the real axis).



Twistorial topological strings 257

where
1 X (&) = e~ 2m(w/C—iy+ic) — o 2m(e/C—iz+eQ)
(167) Q)=e ; q(¢)=e :

and ¥ (x; q) is the quantum dilogarithm [91] defined for |¢| < 1 (i.e.for Ree >
0) as

(168) W(x;q) = (2% 9)x = [J(1 -2
k=0

W(z;q) satisfies the recursion relation

(169) U(2q;q) = (1 —2q'?) ¥(a3).

Eqns. (164), (169) and (104) imply that I'a(u, i1, y | €, €, ) satisfies the dif-
ference equation
IOgPQ(M +eputey+x ’ €, €, I’) - 10gF2(H7ﬂa Y | €, €, 1“) =

(170) :10g[r(ﬂ+e/2,ﬁ+g/2,y+w/2)/\/§]

Then the Gaussian brane amplitude, Eqn. (160), may be written in the
compact form (absorbing ¢ in /3, 8, an neglecting the trivial factors in foot-
note 18)

o Dy((N+ DB (N+ 35BN+ )z 8,8,)
(171)  Yn(B,B,2,( =1) = T9(3/2,3/2,2/2, |B. 3, 7) T(8, B,2)N

From Eqn. (170) it is clear that in the asymmetric limit g — 0, € — 0

1 1 1
(172) Do, fi, y | €, €)™ =Ty <M+y — g gTlet 2$)

where I'y(z |w) is the (ordinary) double Gamma function defined by the
recursion relation

(173) oz 4+wlw) =T1(2) T2z |w),
where T'y(2) = T'(2)/V/27.

6.3. Relation with SQED amplitudes in %Q—background

In the rRHS of Eqn. (171) we may neglect the denominator which has trivial
dependence of N (and may argued to arise from the normalization of the
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measure in the LG model). Then, keeping into account the factor G]_Vl/ % as
required by the dictionary of §.6.1 (and restoring all elementary factors) we
may rewrite (171) in the form

Ufac +e/2)|er)  Ulaeta/2)¢|a)
gQC €2

(174)  log(Gy*Wy) =i ¢

- L edg’ gjg log ¥ (X.(¢'): 4(¢))
s _ZdCC,’ S g () sal) )
where
(175) X(Q) = e Prhe/Cri g

is the (exact) GMN electric line for SQED, and

(176) q(¢) = e~ Zr(a/Eal—imtal/E)

Eqn. (174) coincides with the original Gaussian model brane amplitude,
Eqn. (171), provided the Coulomb branch parameter a. is equal to

1\ e 1
(177) Ra. = <N+2> - = <N+2> B,

€2

as predicted by the large N duality, §.3.1. As anticipated in §.3.6, in the
present set—up this relation is enhanced to a fully twistorial relation between
the Coulomb branch and % -background parameters

Ra, 1 €1/€
(178) b | = <N + 2> 2w
Ra, €1/ €

Note that, apart from the first two ‘elementary’ terms?® in the RHS of (174),
which we shall discuss momentarily, the amplitude depends on a., 0. and a.
only through the electric line X, (().

26 In the language of [8] these terms are the ‘semi-flat’ part of the amplitude.
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The exact GMN magnetic line for SQED, X,,,({), may also be recovered
from the Gaussian matrix model; indeed

Gy 1/2‘1’1\7(0 — X, (0)

179 .
(179) 0 1(0) 6. 0

This result is consistent with the physical idea that the magnetic line is the
cost in energy for carrying a matrix eigenvalue from infinity to the vacuum
configuration. This result agrees with the physical picture of §. 4.1, where we
think of the one-vacuum Gaussian model as a n = 2 model in the limit of
infinite separation between the vacua. In the RHS we have set the magnetic
angle 0, to zero. In SQED the dependence on 0, is trivial, and hence 6,,
is just part of the overall normalization of the Gaussian amplitude.

6.4. The higher—dimensional tt* geometry

As discussed in §.5.5.2, we promote the LG model amplitudes (174) to the
brane amplitudes for a higher-dimensional Abelian tt* geometry on (R? x
S1)2. We simply do this by declaring (ae, 0¢, €, 0 = 27z) to be independent
coordinates of (R? x S')2. The resulting geometry is best described in the
general framework of Section 5.5; it is the Abelian tt* geometry defined by
the magnetic function

(180) le 22 Z log 27r[Z1+(k+1/2)z2])

which yields the holomorphic function
(181)

)3 (s (k0 £) ) i (o5 (55) ) )

where we used the standard notation for the two periods of the tt* geometry
p1 = ae and po = €1. The function (181) satisfies the recursion relation

1 1
(182)  Ul(ae + €1,€1) = Ulae, €2) + <a6 + 261> (log <a6 + 261> = 1> )
as well as the analogue of Eqn. (165), and hence

1
(183) Ulae, 1) =U <ae + 56 | 61> + irrelevant constant,
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so that the brane amplitudes of the higher dimensional ¢t* geometry, re-
stricted to the R? x St loci (178), reproduce the LG amplitudes (174). In
§.6.5 we show that the holomorphic function U(a. + S€1 | €1) is equal to the
Nekrasov—Shatashvili effective twisted superpotential for A/ =2 SQCD in
%Q background.

The above procedure gives the tt* geometry for SQED in half-Omega
background without any restriction on the parameters nor problems with
the absolute normalization of the functional measure. The corresponding
brane amplitude in unitary gauge is given by Eqn. (174), where now a,
e, Oe, €1, €1, x = /27 are arbitrary parameters. In the holomorphic gauge
(in complex structure I) it is the twistorial double Gamma function itself
(setting, for simplicity, ( =i, éo = 1)

(184) \I/(ae, Qe, O, | €1, €1, l‘)hOI = FQ(ae, Qe, 98/27T ’ €1, €1, I’)
From Eqn. (170) we see that under the shift
(185) (ae, e, 06) — (ae + €1, Ge + €1, O + 27m:),

the amplitude gets multiplied by the twistorial Gamma function of argu-
ments ae + €1/2, 0./2m + x/2, i.e. by the GMN magnetic line at 6, =0
evaluated at the mid point in the Coulomb branch

(186) U(ae + €1,de + €1, 00 + 21 | €1, €, )
= Xm(ae + 61/27C_Le + g1/2a Oc + 72,00 = O)

\Ij(aea C_le, 06 | €1, El) x)hOI'

The tt* metric and CFIV index may be obtained by plugging in the

magnetic function (180) in the general expressions (124) and (125). The ¢¢*
metric is

o
1 d
(187)  Glaaeb|evano) =exp| - Im [ % log WX, ():4(5)
T S
0
6.5. SQED twistorial amplitudes and the %Q—background
Weﬁ'(ae, 61)

To properly identify the brane amplitude (174) with the partition function
of N =2 SQED in % Q-background, it remains to consider the holomorphic
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term

1
(188) U (ae + €1 ‘ 61>

and its antiholomorphic counterpart.

In the discussion around Eqn. (131) we saw that, in an Abelian ¢t* geom-
etry, the holomorphic function U(u) is identified with the effective twisted
superpotential of the corresponding (2,2) model. In the case of the large-N
Gaussian amplitude the corresponding (2,2) model is expected to be N' = 2
SQED in %beackground, so consistency requires the holomorphic function
U to be identical to the Nekrasov—Shatashvili effective twisted superpo-
tential Weg(ae, €1) [5]. In general, the effective superpotential consists of a
perturbative part plus an instanton part. In theories like SQED only the per-
turbative part is present. The perturbative part may be formally written in
terms of a Schwinger proper—time integral which requires (—regularization;
then

_ . d [(Aer)® /°° tsdt e tac/a
1 es = 1 e 1
(189) Weti (e, €1) = €1 Jm ds{ (s) Jo t? 2sinh(t/2)

The integral may be written in terms of the Hurwitz zeta—function ((s, z).
In particular,

(190)  —0u, West(ac, €1) = lim j{(A/q)s ¢ (5’ ac/er ¥ 1>}

s—0 ds 2

1 1
E_%log(A/€1)+10gF<2+ae/€1> —510g271'
€1

Now, from Eqn. (161)
1 1 1
191) 0, U (ac+ =€1|€1 ) =logDl | = +aec/er | + de loge; — = log 2,
© 2 2 € 2
1

so (we have set A = & to 1) the two twisted superpotentials®”

1
(192) — Wegt(@e,€1) and U <ae+ 261]61>

2T The overall sign just reflects a different convention on the sign of the twistor
parameter (.
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are equal (up to an irrelevant additive constant). This completes the proof
that the Gaussian matrix LG model brane amplitudes correspond to SQED
in 1Q-background under the identification (178).

6.6. The 6—-limit tt* geometry

Consider the metric of the higher—dimensional SQED tt* geometry, Equa-
tion (187). The second argument of the quantum dilogarithm

(193) q(C) = €_2W€1/€2C+i9_2”51C/§27

is a non—trivial function of the twistor parameter ¢ instead of a fixed elliptic
nome ¢. This corresponds to the fact that (e;,6,€;) are not fixed parame-
ters of the geometry, but rather coordinates of the higher—dimensional #t*
manifold (R? x S1)2.

To make contact with more standard (and limited) approaches, one
would like to reduce the tt* geometry to a simpler hyperKéhler manifold
of quaternionic dimension 1 of coordinates ae, 6, a. (and 6,,) with fixed q.
This would correspond to a family of Abelian tt* geometries on R? x St de-
pending on the parameter ¢. In view of Eqn. (193), this is roughly equivalent
to taking e; — 0 while keeping fixed ¢ = e'?. This direct limit is however not
well-defined, and the geometric construction gives a precise meaning to the
f-limit.

The family of reduced ¢t* geometries is specified, according to Sec-
tion 5.5, by a magnetic function F(z;¢q). One takes

1 e—27rmz

. _ —2mz, - _ e
(194) F(z;q) = log¥(e 7 q) = Z m qgni? — gmi2’

m>1

with the proviso that ¢ is morally a phase, €, and hence we must state the
additional rule that under complex conjugation®® g <+ ¢~! so that

1 6727rm2

(195) F(zq) = Z m g — g2 —log ¥ (2;q),

m>1
with a sign flip. Hence in the #-limit the SQED ¢t* metric (187) becomes

1 ds 1 ds
196)  logGp=— [ — log®(Xe(s):q) + — | — log ®(X.(s); q).
(196)  1ogGo = 5 [ T logW(Xe(si) + 5 [T ox WE G0

28 Note that this is exactly the action of ‘complex conjugation’ on the quantum
torus algebra in the related subject of quantum cluster algebras [49-51].
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To the function

(197) F(zq) = — Zlog(l _ e 2mlz+(k+1/2) logq])
k>0

there corresponds the holomorphic function (cfr. Eqn. (181))

(198) U(u)=—_ (u+ (k+1/2)logq) <log(u + (k+1/2)logq) — 1)
k>0

=U(p,logq).

Hence, reintroducing all factors, the #-limit brane amplitude for SQED is

(199) 1og¢9 — —; WNS <a37 —chﬂogq> + Z~£ WNS <ae> _ig2 10gq)
& C 2w €2 2m ¢
1 a¢’ ¢'+¢ .
_R Z?C’—C log‘I’(Xe(Q )aQ)
1 ¢’ (' +¢ n-1.
Sl B log (X, (¢ L q).

6.7. 6—-limit vs.the quantum KS wall crossing formula

The Stokes jumps of the brane amplitude are intrinsically defined, inde-
pendently of a choice of trivialization. From Eqn. (199) we see that, in the
f—limit, the SQED brane amplitude ¥({)y jumps at the BPS rays in (—plane
as

(200) T(et0C)g = V(X (O)F'5q) U(e ™C)p.

While the explicit computation above holds for Abelian tt* geometries, we
argued in Section 4, that this should be true for all (reduced) tt* geometries
defined by the #-limit of a 4d N/ = 2 theory on %Q background.

Composing all jumps at the several BPS phases one would get an ordered
product

(201) (e = | J] ®(x4(0)sa) | (e,

BPS
phases

which looks like the 4d A =2 quantum monodromy M(q) [11, 41] whose
invariance (up to conjugacy) under arbitrary changes of parameters is equiv-
alent to the refined version [41, 45, 46] of the Kontsevich-Soibelman wall
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crossing formula [44]. However, for this identification to work we also need
that in the #-limit line operators X ({) satisfy the quantum torus algebra
[49-51]

(202) X4(0) X4 (Q) = ¢ X0 (¢) X4(0),

where (-,-): I' x I' — Z is the Dirac electro-magnetic pairing. If this relation
holds, then the adjoint action of the operators \I'(XV(C ); q) on the quantum
torus algebra generate a quantum cluster algebra action [49-51] which pro-
duces the correct action of the quantum monodromy [11, 92].

Thus, to conclude that the twistorial brane amplitudes in the 6-limit
correspond to the refined version of the GMN quantities, it remains to show
that the quantum torus algebra commutation relations (202) are satisfied in
this limit. In particular, in SQED case the 6-limit quantum torus algebra
would read

(203) Xm(g) Xe(g) =49 Xe(g) Xm(C)v

where X, (¢) and X,,,(¢) are the electric and magnetic line operators, respec-
tively. The validity of (203) is equivalent to the #-limit of the functional
equation for the twistorial double Gamma function I'y. Indeed, the 6-limit
of Eqn. (186) is

(204) Xm(C) \I](aea e, 96; C)@ = \I’(aea Qe, 96 + ‘9; C)@v

which says that, in this limit, X,,(¢) may be represented by the operator

(205) exp (e 8(2)6) .

Since X (¢) = e~ 27ee/CHile=2macC this implies

(206) X () Xe() = € Xe(€) Xim(0),
which is the relation we wanted to check, Eqn. (203).
7. Twistorial invariant aspects of the tt* geometry
We have defined the twistorial topological string as the D-brane wave func-

tion for the %Q background. In this section we briefly discuss other aspects
of tt* geometry for the %Q background. In particular we focus on aspects
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where the twistor parameter ( disappears from the computations. We will
focus on three aspects: The tt* metric, the @Q-function (CFIV index) and the
monodromy operator.

The tt* metric does not depend on the twistor parameter because there
are no boundaries involved. We will mainly focus on the metric for the
ground state. This involves roughly speaking Z,; |¢E\2 by gluing two hemi-
spheres to get a sphere. This will only depend on the external parameters
defining the theory (i.e. the triplet of masses) as well as the €;, é&a. We will
explicitly compute it for the case of the twistorial version of 2 M5 branes on
a sphere with 3-punctures. By the AGT relation this is related to the three
point function of the Liouville theory. Here we will be able to compute a
twistorial version of the DOZZ formula. Its interpretation as an amplitude
of some integrable 2d system remains to be seen.

Another thing we can do is to study the 2d monodromy. This was a
powerful tool in classification of the 2d N =2 theories [19]. In fact the
computations done in [11] can now be interpreted as computing the trace
of the monodromy for the %Q background in the #-limit. In particular it
corresponds to considering the 2d theory on a torus, where as we go around
the temporal circle we do an R-twist.

Another aspect of the tt* geometry is the CFIV index [15], which at the
conformal point measures the central charge of the theory. It is natural to ask
what is the interpretation of this in the 4d theory. In this section we argue
that the computation of AMNP [16] can be interpreted as computing the
CFIV index of the %Q background in the C-limit. We provide evidence for
this by computing the two indices for the case of SQED. The fact that both
CFIV index and the AMNP index do not depend on ¢ and are continuous,
and that they agree in various limits (e.g. when SQED dominates) strongly
suggests they are the same in general.

In the rest of this section we discuss the relation between CFIV index
and the AMNP index as well as the ¢¢* metric for the 2 M5 brane theory on
three times punctured sphere, as examples of these other aspects of the ¢t*
geometry.

7.1. C—limit: the 4d AMNP index vs. the CFIV index

The CFIV index of the 2d (2,2) theory [15] is clearly an interesting quantity
to compute. It encodes the amount of degrees of freedom in the 2d theory
(and at 2d conformal points measures the central charge and the dimension
of the chiral primary operators [1, 15]). When the 2d (2,2) theory arises
from the %Q background of a 4d N = 2 theory, its CFIV index computes
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also a four—dimensional susy—protected physical quantity. More generally, as
discussed in the context of theories with 2d LG duals §§.5.5.2, 6.4, and 6.6,
the CFIV index is defined for all ¢t* geometries, including the higher—
dimensional analytically—continued one (§.6.4), the #—limit one (§.6.6), and
its C—limit geometry (to be discussed in detail in Section 8). Then, in the
present setup, the CFIV indices of these diverse tt* geometries yield an
increasingly-refined sequence of susy—protected quantities for the 4d N' = 2
theory

(207) Qc, Q0)s, Q0 e).

In the previous sections we wrote the exact form of all these indices under
the assumption that the higher—dimensional ¢t* geometry is Abelian. In
particular Q¢, Q(6)s and Q(6,€1) are explicitly known for N'=2 SQED.
All these indices, being susy—protected, count 4d multi-BPS states with
some very special weight so that the full index is wall crossing invariant and
smooth in parameter space.

In this section we focus on the coarser version of the index, the C-limit
one Q¢. In §.7.1.2 below we show that the exact Q¢ index for N' = 2 SQED is
equal (up to overall normalization) to the 4d wall-crossing invariant quantity
Z, proposed by AMNP [16]. Thus Q¢ and Z are two smooth, wall crossing
invariant, susy—protected quantities, both counting multi-BPS states with
weights which happen to agree for all mutually—local multi—hypermultiplet
states. Then the (properly normalized) indices Q¢ and Z are expected to be
equal in general.

It would be desirable to have a direct four-dimensional definition of
Q¢ (and its refined cousins Q(0)g, Q(0,€1)). This in particular allows us to
directly compare it with the index proposed in AMNP. Therefore we start
with a direct 4d discussion of Q¢ based on the target space interpretation of
the twistorial topological string in §.3.2. There are two aspects to the AMNP
work: One is the identification of a wall-crossing invariant constructed out
of the classical hyperKéhler geometry of the circle compactification of 4d
N = 2 supersymmetric theories. The second aspect is to identify it with a
particular 4d index computation. While we find that computation of CFIV
index agrees with the object introduced in AMNP, the definition of the 4d
index we find is distinct from the 4d index of AMNP, even though there are

some formal similarities.
7.1.1. 4d interpretation of Q¢. We consider our 4d N =2 theory
quantized in the space S' x I x R%M), where S' is a circle of length R

viewed as periodic Euclidean time ¢, I}, is a segment of lenght L (we shall
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take L — oo at the end of the computation), and R(34) is the orthogonal
plane on which we switch on the 1Q background. Having non—zero 6 means
that as t — ¢ 4+ R we rotate the 3 4 plane R(34) by an angle proportional
to 6 and make a compensating SU(2)g rotation to preserve half the super-
charges. One also introduces fugacities 6, for the various conserved charges
Ga- Then the fully-refined twistorial CFIV index, before taking any limits,
is

(208) iQ(e,El) — Lhm % TI'Q [(_1)F Jeie(J—Jszx)"riEa 0.qa €_RH ’
—00 2

where Js4 is the generator of rotations in the 3—4 plane and J is the Cartan
generator of SU(2)r which, from the 2d viewpoint, is identified with F'/2,
so that (208) coincides with the standard definition of the 2d CFIV index
[15] for the 2d theory on S' x I, the insertion of the twisting operator
¢0(J=Js) 4132, 0ada jmplementing the reduction from a 8-supercharge theory
to a (2,2) one. The rRHS of Eqn. (208) has an obvious representation in terms
of path integrals of the 4d NV = 2 theory with periodic boundary conditions
in Euclidean time.

The C—limit index is defined by first turning off the %Q background (i.e.
sending €; — 0) and then § — 0

(209  Qc=lim (9 lim, Q(6, el>)

60— 271' e1—0
= lim —QR Tr[(—l)FJew(‘]_J“HiZa 0ada e_RH] .
0—0 27‘(‘L

L— o0

We would like to consider the C-limit CFIV index Q¢ to compare
with the AMNP index Z. As a check, let us compute the one BPS half-
hypermultiplet contribution to the RHS of (208) in the C-limit. We first
note that the hypermultiplet fermions are SU(2)g invariant, and hence do
not contribute to the trace in (208) because of the insertion of the SU(2)gr
generator J. The scalars are in the fundamental of SU(2)z and hence have
J = +£1/2. Then the SU(2)r representation content produces an overall fac-
tor ¢sin(#/2) in the one-particle trace. Therefore the contribution to the RHS
of (208) from one half-hyper of mass M and charges q, is

(210) 1Rs1nL(0/2) 0! 20 bada Tr(ﬂl)[e—RH—iHJM}

RSln(0/2) 7'2 0.da > dt M2t—R2/4t Tr(l)[etA"l_wJM]
L 2\F 372 € )
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(1)

where Try,” stands for the trace over the one-scalar Hilbert space as reg-

ularized b2y %Q background, and —A,, is the Q-regularized version of the
free bosonic ‘Schwinger time’ Hamiltonian —A = p?. From [20, 93] we know
that on a free hyper a %Q background has the same effect as a constant
background electromagnetic field

(211) F o e da® A da?,

plus a compensating SU(2)p—twist of order O(e;) to preserve half-
supersymmetry. If we are interested only in the limit ¢; — 0, we may neglect
the twist, and work simply with the magnetic background (which provides
an effective IR regulation). Hence, in this limit, —A., may be replaced by

1 2 1 2
(212) —A, = —332 + <—i8x3 — 5 1‘4> —+ (—iaﬁx + €1 :c3>

1 o 1 rery? 312 42) €1
_p2+2{ P55 (5) (@2 +aD?) + 5 g

i.e. as a free particle moving in the segment [; times twice the harmonic
oscillator in the 3-4 directions of frequency €;/2 shifted by €; J34/2. Then

1/2 .
(D] A —i0Jsa | _ [ 2 (k+1/2) eltSIH[(k + 1)(0 — iext)]
(213) Tr% [6 ] <47Tt> Lkz>0 sin(0 — ieqt)

1 \1/2 I e—it/2
- <47Tt> 1 —2e 4t cos(f —iert) + e~2at

60 (1>1/2 L
Art 4 sin(0/2)’

where we used the explicit form of the generating function for the Chebyshev
polynomials of the second kind Ujy_;(cos @) = sin(k6)/ sin(6).
Inserting back (213) into (210), we get the one half-hyper contribution

to Q(0)a

_ R2 €i2a 0aga dt 2 2
914 g\(1/2hy) _ BT / —MPt-R? /4t
(214) QO 167 sm(0/2) J, £2°
iza eaQa M
=° R (R,

4m  sin(0/2)
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This 4d result should be compared with the half-hyper contribution to the
0-limit index as predicted by the large-N 2d dual ¢t* geometry. Since one—
particle contributions to the CFIV index are universal, we may compute
it by expanding the SQED one and keeping only the first term. Using the
O—limit ¢t* metric, Eqn. (196), we get for the half-hyper contribution to

Q(0)ol2a duar *°

(1/2:) _ g2 (L /°°d8 )
(215) Q(0), 2d dual 2R8R <2m’ 0 S (10g(X6(5)’Q)>
R S / T ds _MR(s+1/s)/2
4mi qt/2 —q~Y27 OR J, s

e MR K{(MR)
47 sin(0/2)

in full agreement with (214).
From the definition, Eqn. (209), the one half-hyper contribution to Q¢
then is

) R
(216) QU/FM) — 1 ¢ 2" M E(MR),
7r
which is the standard one particle contribution to the CFIV index [1, 15] as
well as the regularization prescription proposed for AMNP index [16] (up to
an extra factor of 27, cfr. Eqn. (220)).

7.1.2. Q¢ for N =2 SQED. Next, we compute CFIV index for SQED
to check its relation with AMNP index. The C-limit consists in taking ¢ — 1
in the #-limit. The C-limit of the metric is3"

217)  logGe % lim ( Z2°gq log G9>

q—1 ™

1 ds _. 1 ds _ . _
EW/&ng(Xe(s))—i— /—e — Lig(Xc(s) 1).

S 472 s

The CFIV index @ of a tt* geometry is the component of the Berry
connection®! in the direction of the RG flow [1, 15]. For the SQED metric

29 For simplicity we take the central charge of the hyper to be real positive, hence
equal M.

30 Recall that log q is formally purely imaginary.

31 Written in the normalized ‘point’ holomorphic gauge [19].
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this is

_ _ - 1. 0 i _ -
(218) Q<a67 Qe, 98 ’ €1, €1, 07 62) - 5 €2 10gG<ae7 Qe, 96 ’ €1, €1, 07 62)-

0éy

Replacing in this formula the general metric with the #-limit one, Eqn. (196),
we get the §-limit CFIV index. In the same vein, replacing G by the C—limit
tt* metric G, Eqn. (217), we get the C-limit CFIV index Q¢

(219) Qlae, e, Oi E2)c = ~ & -2

3 €2 5, e Ge
1 ds /ae  _
-1 Z /ge (; + G, s) log(l — Xe(s))
1 ds ra_.
T /4_65 ( . + e s) log(l—X_e(s))

(here a_o = —ae, X _o(s) = Xe(s)7 1, and ¢, = —£,). This expression should
be compared with the 4d BPS index Zgqrp for N’ = 2 SQED introduced in
ref.[16] (which can also be identified with the TBA free energy [16, 94]).
Comparing Eqn. (219) with Eqn. (11) of ref.[16], and taking into account
the identifications iZ, = 2a, and R = 1/é>, we see that the C-limit 2d index
is related to the 4d one as

(220) Q(aeaa6796;€2)c =2 I(a’6>a6796;€2)SQED'

As we have already argued, even if this relation has been shown for SQED,
we expect it to hold for all 4d A/ = 2 theories.

7.2. Twistorial Liouville amplitudes

The analysis in Section 6 of the twistorial brane amplitudes for the Gaussian
model applies, with minor modifications, to any theory whose tt* geometry is
Abelian, in particular to the examples in Section 5 and those in Appendix C
which correspond to ADFE Toda amplitudes. Up to an elementary pre—factor,
for all models in this class the brane amplitude is obtained by the following
‘rule of thumb’: one starts from the matrix period integral [ /¢ dX written
as a product of Euler Gamma functions, and replaces each product of I"’s of
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the form32
N
(221) T[T+ 85)
=0
_ Da(o+ (W +3)8.a+ (N +3)B.y + (N + 5)x] 8, 8,2)

Ty(a+38,a+18,y+iz|8,8,7) ’

where I'y is the twistorial double Gamma function, 27y the angle associated
to the coupling av = /€9, and 27z the angle associated to f = €1 /€. Finally,
one has to identity the 't Hooft coupling to be kept fixed while sending
N — oo with the correct physical quantity, and then analytically continue
to arbitrary values of this quantity.

In the particular case of the double Penner model of Section 5.7, the
large-N limit of the brane amplitude gives the twistorial version of the Li-
ouville three—point holomorphic block; indeed, in the asymmetric limit the
amplitude reduces to the period integral which is identified [95] with the
ordinary three—point conformal block of the Liouville.

The correct identification of the physical parameters in may be read
from ref.[95]

(222) (N =18 =5 +ps+ps) mod1,
(223) b=+/-8
(224) f=-bQ modl.

We complete these expressions to twistorial triplets by setting also

(225) (N-1)p= —%(ﬁh + fig + [i3)
(226) (N =)z =~ (51 + 32+ 15)
(227) B=-bQ mod 1.

Moreover, we set [95]
(228) i = —2bay, b = —2bay, i=1,23
where the «; are the external Liouville momenta. We define

(229) Lypol(a,a,y) =Ta(b (—b/2),b(a—b/2),y+x/2| —b*,—b* ).

32 Here and below we take ¢ = 1.
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With these conventions, the ¢t* brane amplitude in (152) may be rewritten
as:

Dypolon+as+a3—Q a1 +ay+as—Qz— (y1 +y2+13)/2)
Fb,B,x(O’ 0, 0)
y Lype(ao 4 az — a1, as + as — a1, (y1 —y2 — y3)/2)
L5 (@ —201,Q — 201,91 — )
Uyp. (01 +as —ag, a1 +as —az, (Y2 — y1 — 43)/2)
[}5..(Q = 202,Q — 2a2,y2 — )
Fb,B,x(Q +az—a1 —a,Q+ag—a; —as, (y1 +y2 —y3)/2 — x)
Uy p..(203, 203, —ys3) :

(230)

X

X

This twistorial amplitude is obtained from the ordinary Liouville 3—point
chiral block Fy, a,.as [95] by replacing each double Gamma factor with the
corresponding twistorial double Gamma function according to the dictionary

(231)  Ty(aioi+cQ) ~ Typ(aii +¢Q,a; @ + ¢ Q, —a;yi/2 — cx),

where the coefficient a; = 0,41, 4+2 and ¢ = 0, £1 are the same as in ref.[95].
In this expression the twistorial parameter ( was absorbed in the couplings.
By construction, the above expression reduces to the usual Liouville 3—point
chiral block Fu, a,,a, in the asymmetric limit. To restore the ¢ dependence
one replaces each factor of (230) with the rule

(232) Fbym(ﬁ,f, y) ~ (elementary factor) Fmbvmm(i{/g, —iCE,y).

The extension of this result to certain 3—point blocks for ADE Toda
theories is described in Appendix C.

7.2.1. The tt* metric: the twistorial Y—function. While the brane
amplitude of the double Penner model is the twistorial extension of the
three—point chiral block, its ¢* metric, which has the form ¥ ¥t (for an
appropriate notion of Hermitian conjugation) should be thought of as the
twistorial extension of the full three—point amplitude.

To write the ¢t* in a nice form, one needs the twistorial extension of the
standard YT—function

1

Ly(2) I (Q — @)
(234) where I'y(z) = To(bz|b,b" ') and Q =b+b !,

(233) Ty(z) =
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which is obviously symmetric under the reflection x < @ — x
(235) Ty(Q — ) = Ty(x).

In the non—twistorial set up, the arguments of the various Tp—functions
entering in the Liouville amplitude are shifted by integral multiples of Q)/2
which may be seen as a shift by kb/2 followed by a shift by kb=!/2 (the
second one being a half-integral shift for the argument of the double Gamma
function).

The twistorial T—function is defined as

(236)  Tppelandng) = exp(}rlm /0 S log\If(Z<s>;q<s>))

where
(237) q(s) = exp[ —27b? /s + i) — 2mb? s}

(238) Z(s) = exp [—?b(a — g) +i¢p — 27rsb<a — g)} :

The shift by £Q/2 of the argument of the classical T—function is enhanced
to the multiple argument shift

(239) (o, &, ) — (a+kb/2,a+kb/2,¢ + kn) k€ Z.

Note that in the asymmetric limit the chiral block (230) becomes a function
of a®Y™ = a4+ ¢/(2mb) only, so that the twistorial shift (239) reproduces
the usual shift a®¥™ — o®¥™ 4+ k@ /2 in this limit. The twistor version of
reflection symmetry (235) is??

(240) Tb,i),@(b - Oé, B - d, 27T - d)) < Tb7l_;79(a, 6[, ¢)7
which is again the (twistor version of) sign flip followed by a shift by Q.

From Section 5.7, the {t* metric of the double Penner model may be
written as (we neglect an elementary factor which may be absorbed in the

33 The two sides of (240) differ by a factor which cancels in the ratios of twistorial
T—functions which express the metric of any Abelian tt* geometry.
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normalization, and omit writing the barred variables)
(241)

Y;5.0(0,0) ﬁ Ty 5020, 2¢)
Ty po(2j 0 — 0,225 05 = 2m) -5 Typa(d; 05 — 206,35 bj — 21)

where the various parameters are related to the LG model couplings as in
Eqns. (222)—(228). This result has the same form as the DOZZ expression
[96] for the Liouville 3-point function with the ordinary Y,—functions re-
placed by their twistorial counterparts using the dictionary (here n;, k are
arbitrary integral coefficients)

G =

(242)  Ty(nii +kQ/2) —= Yy (nici + kb/2,m:0; + kb/2, nigpi + k).

As in the case of the twistorial I'—function, §.5.4.6, the above ‘twistorial
extension map’ preserves the functional identities.

The twistorial Y—function may be written as a product of two twistorial
double Gamma functions, generalizing Eqn. (233) to the twistorial set up.
Of course, the metric of all Abelian ¢t* geometries may be written in terms
of twistorial Y—functions.

Again the extension to Toda 3—point function is straightforward in view
of Appendix C.

8. The C-limit

In this section we consider the C-limit which we first defined in §3.7.4 above,
by first taking the #-limit ¢; — 0 and then taking the further limit 6 —
0. We provide evidence that in this limit the partition function becomes
computable in terms of a pure classical geometric object developed in [9],
which in turn was based on the hyperKéhler geometry studied in [8]. We also
give evidence that, if we take the asymmetric limit of the C-limit, then we
recover the NS limit of the topological string partition function, as claimed
in §3.7.6 above.

8.1. The C—limit amplitude in SQED

Consider again the SQED brane amplitude in the 6—limit, which is given by

WNS(a,06¢) W™ (@, 08/¢)
— + =
(éy €2
1 d(’ <’+C ~
Yomi ), o ¢ g OB HXLa) +o

(243) log ! =
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and define the C-limit amplitude as

0
cC _ 1 v 0
(244) logy™ = gm% (27r log ¢ )

2
- BT 4 R ¢

1 ofdd ¢ +¢
ATl Ay

Liz (Xe(¢) + -+

Here F(a.) is the prepotential of the N' = 2 theory in the electric basis.
On the hyperKéahler manifold M describing SQED compactified on a
circle, let us consider the one—form

(245) 10 = 773 low X () A — dlogv(0)

which is a primitive for the canonical hyperKahler symplectic form

1 dXn(©) , dXe()

(246) U= %0 " X0

= dn(¢).

Since () is invariant under all symplectomorphisms, under a KS symplec-
tomorphism associated to a BPS state n(¢) may change only by a closed
form. In fact, we claim that 7(¢) is smooth across the BPS rays. Indeed at
the BPS ray /.

(247) log X (¢) — log X (¢) — log(1 — Xc(C))
(249 dlogu€(Q) — dlogvC(Q) — g log(1 — Xe(0)) T

Xe(Q)

The property that 1(¢) is globally holomorphic as a function of ¢ determines
log 1/ (¢) up to a globally defined function on C* which is easily fixed us-
ing the behavior at the North and South poles. Therefore, this property,
together with the prescribed behavior for ( — 0, 0o, may be taken to be the
definition of the brane amplitude in the C-limit. Then, if we are interested
only in the C-limit, we may dispense ourselves of all the intricacies of the
twistorial ¢t* geometry and focus on the simpler hyperholomorphic geome-
try of M. This reinterpretation of the C-limit brane amplitude in terms of
hyperKéhler geometry allows us go beyond the simple A/ = 2 model which
have an Abelian ¢t* geometry, and study the amplitudes of more interesting
4d theories directly in the C-limit.
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The study of the C-limit of brane amplitudes for general 4d N' = 2 from
the viewpoint of hyperKéahler geometry is the main goal of the rest of this
section. We close this introductory section with an elementary comment.
The amplitude log 1 (¢) is fixed by the requirement that its discontinuities
across the BPS rays are the Hamilton—Jacobi generating function for the cor-
responding Kontsevich—Soibelman symplectomorphism. As it is well-known,
the Hamilton—Jacobi function depends on the choice of the contact form. In
SQED there are only electrically charged BPS particles, and it is natural to
choose a one—form 7(¢) proportional to dX.(¢) (up to exact terms). In the
general case, it is more natural to make a choice which is symmetric between
electric and magnetic

dXe(C)
Xe(€)

—log Xc(¢)

(210)  w(O¥ = L (log Xon(€)

872
— dlog y° (¢)™™

de(<)>
Xm(C)

which is also a primitive of the hyperKé&hler symplectic form Q(() =
dw(¢)*¥™. Clearly, the symmetric amplitude 1 ()™ is related to the orig-
inal one by a trivial transformation

(250)  logyC(O™ = logy(() — 5 5 g Xe(¢) log Xin(0)

Across the BPS line ¢, then

(251)  dlogyC (O™ — dlog g€ (M — 4 log(1 — Xe(0))

n #d(logXe(C) log(1 — Xe(C)))

= dlog ° ()™ + ﬁd L(X.(C)),

where L(z) = Lis(2) + 5 log zlog(1 — z) is the Roger dilogarithm. Hence the
symmetric version of the brane amplitude has the form as the RHS of Equa-
tion (244) with the Euler dilogarithms Liy(X,.) replaced by the Rogers
ones L(X,).

8.2. Review on the X,

Let us now briefly review the relevant facts about the hyperKéahler geometry
of M; some of them have been used earlier in this paper, and in the previous
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section in the special case of SQED, but now we want to formulate things
in a way that goes beyond the SQED example.

Being hyperKéhler, M carries in particular a family of holomorphic sym-
plectic structures we, labeled by the twistor parameter ¢ € C*. Around any
generic point of M, for any generic ( € C*, M also carries canonical local
holomorphic coordinates. These coordinates, denoted X (¢), are labeled by
~ in the IR charge lattice I'. Physically, these coordinates can be thought
of as the vevs of IR line defects wrapped on S'. Their analytic properties
as functions of ¢ are somewhat subtle. Asymptotically as { — 0 or { — oo
they behave as

(252) X, ~ cyexp (WRC_IZ,Y +1i60, + WRCZ,Y)

where ¢, is real and independent of ¢. Despite the fact that these asymptotics
are continuous, the actual functions X, ({) are not: rather, they are piecewise
continuous. Their discontinuities occur at the “BPS rays,” defined as the
loci where there exists a BPS state of charge v, and Z,/( is a negative
real number. When ( crosses such a locus in the clockwise direction, the
functions X, jump by the transformation

(253) X;L = X, (1 - XV)Q(V)W’W

where Q(v) is the BPS index counting states of charge 7 (second helicity
supertrace). The asymptotics (252) and jumps (253) are actually sufficient to
characterize X, and even give a useful scheme for computing X, in practice.
Namely, X, (¢) can be written in the form

(254) X5(0) = X5 ()X (¢)
where Xif is given by an explicit formula

(255) X)) = exp [”fz7 +i6, + ngZW]

and the “instanton corrections” X,iynSt are determined by the TBA-like inte-
gral equation

ins 1 / / dCICI+C /
(256) X2"'(¢) = exp —m;mwwm @Fc'—clog(l_x”’(“) :

where the Q(+') are the BPS degeneracies.
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The usefulness of the X, comes partly from the fact that they are
Darboux coordinates. Indeed, suppose we introduce the (multivalued) loga-
rithms

1

(257) $,y = % log X,y.

Then the holomorphic symplectic form on M takes the simple shape

1

9 O —
(258) ¢ 5T

(dx, dx)
or more concretely, choosing a basis {v;} for I' and setting €;; = (v4,7;),
Ti = I‘%,

1
(259) QC = _ﬁ Z Eijd.%'i AN dacj.
i,

8.3. Prequantization and ¥

Now let us restrict attention to theories which in the IR do not have any
continuous flavor symmetries (so e.g. pure N' = 2 super Yang-Mills would
qualify, but not N' = 2 super Yang-Mills coupled to matter.) The inclusion
of flavor symmetries would require a more elaborate formalism.

Under this restriction, the hyperKé&hler moduli space M of the theory
carries a distinguished line bundle V', which is closely related to our inter-
pretation of ¥. We will not review the full explicit construction of V' here;
for that see [9]. For our purposes in this section, we want to emphasize a
feature which was not discussed explicitly there, namely, V is a kind of “pre-
quantum line bundle” for the holomorphic symplectic structures €2¢. Indeed,
V carries a family of holomorphic connections V((), such that the curvature
of V(() is

(260) Fy ) = —27iRQ¢ = 7i{dz,dx).
Moreover, like the holomorphic symplectic structures, the connections V()

can also be put into a simple canonical form: indeed there exist canonical
local sections W of V' such that V(() is represented by the 1-form

(261) A(C) = 7Ti<.1‘, dx} = i Z Gijl'id.l‘j.

i?j
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Said otherwise, we have
(262) V() = 7i(z,dz) .

Equivalently, V(() is represented as

(263) V(¢) =d+n(C),
where
(264) n(¢) = mi(z(¢), dz(¢)) — dlog ¥(C).

Let us now describe ¥ more concretely. For this we must first explain
how V is defined. A function on M can be represented as f(u, ;) where u’
are local coordinates on the Coulomb branch, ¢; are linear coordinates on
the torus fibers of M (with respect to some fixed basis 7v; of I'), and f is
periodic under shifts of the 6; by multiples of 27. Similarly, a section of V'
over M may be represented as a function s(u’,6;) which obeys®!

(265) s(ut,0; + 2m) = €%/ 25(ul 6;).

In other words, we consider s to be an honest periodic section of V if it
is represented by a function with this twisted periodicity. (In particular,
it follows that V is a topologically nontrivial bundle: it admits no global
nonvanishing section, even on a single torus fiber of M.)

Now V¥ is given by a formula

(266) J — st ginst,1ginst,2
where

in R? . R _
(267) U™ = exp [m4 (¢T2U +¢°0) - i (¢Tto+¢0O) |,

with

(268) U= / (Z,d2),
(269) C = (2,0),

34 We are suppressing a “twisting” discussed in [9], which introduces some extra
minus signs into the story, but will play no important role here.
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and

ins Q dgl C/ + C . /
(270) Yinst — exp [ ; 16(72 ZWFC/ e [2L12(X’Y(C )

+ log X (¢") log(1 — XV(C/))]] ’

ins Q(’Y) dC/ C/ + C S /
(271) P2 — exXp [_ Zy: 1672 L{FC/ —¢ |:(10gX'yf(C )

—log X3/(¢)) log(1 — Xv(C’))}] :

As written, ¥ is only a local section of V', because it does not obey the
periodicity (265). Nevertheless we can use it to define a local gauge for V,
and relative to this local gauge, V(() is given by (261).

In this construction it is important that, as ¢ crosses a BPS ray, ¥(()
transforms by

1

272 =
(272) v \Ilexp<27ri

(Lia(X,) + 3 log(X, ) og(1 - X))

Indeed, this transformation law, combined with (253) above, guarantees that
the connection form 7({) is continuous — the jumps of X and ¥ cancel one
another.

A second important property of the construction is that the connections
V(¢) are well behaved in the limit ¢ — 0, c0; this gives a further constraint
on the form of ¥(¢). What “well behaved” means precisely is that the (0,1)¢
part of V({) has a finite limit as ¢ — 0 or { — oo. This property was used
in [9] to build a hyperholomorphic structure on V', i.e.a single unitary con-
nection D in V' such that the curvature Fp is of type (1,1)¢ for all ( € CP.
Indeed, for every ¢, the (0, 1), part of the connection V(¢) agrees with the
(0,1)¢ part of D; this is one way of characterizing D.

Much as with our previous discussion of X, these two properties of
VU — its asymptotics and its jumps at the BPS rays — are sufficient to
determine ¥ completely. They were what motivated the complicated explicit
formula (266) above.
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8.4. Comparing ¥ with ¢¢

Now, in the special case of SQED, we would like to connect ¥ with the
object ¢ which we obtained as the C-limit of the twistorial topological
string. Roughly the relation is that ¥ is the “symmetric” version (¥¢)sy™
which we introduced at the end of §8.1.

Now let us say this more precisely. Given an electric-magnetic splitting,
we can define an unsymmetrized object by

(273) ¥ = Uexp <—i77Rz (C_2U + CQU) — Wi(aze,xm>> .

If there are no magnetically charged states, then a short computation shows
that ¥ can be given more directly as

(274) J — st inst, Finst,2
where

(275) W =exp 17?2((2?1%2?) —{f(clﬁﬂréﬁ/)},
with

(276) W = 2(Z¢,6™),

and

J,inst,1 __ . Q(PY) diclgl""( . /
(277) W™l = exp [ ; 12 e <L12(X'Y(C ))] )

o QO ac’ ¢!
(278) T2 = e [—Z ot | Toclosxi)

—log X3/(¢)) log(1 — Xﬂé'))}] :

In particular, the Rogers dilogarithm which appeared in W™%! has been
replaced by the ordinary Liy in U6l

Now, in the special case of SQED, we would like to compare this un-
symmetrized ¥ with the C-limit amplitude ¢ given in (244). Naively the
two cannot match since U is a function depending on (a,a, 0% 0™) while
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¥© does not involve §™. Nevertheless the two are very similar. Indeed, the
part of U involving F and F, and the instanton terms Ust! match with
corresponding terms in wc. The remaining terms in U can be rewritten in
the form

(279) exp [—]; (§’1<Ze,é7+”> + g<Z€,ém>)] ,

where 07 is the quantum-corrected version of 0™ (called T, /oo 10 [8]),

(250) —emiz ) df,'l 8(1 - X,().

Thus, if we formally set these to zero, HAE = 0, then we get agreement
(281) ¥ =4°.

Since the C-limit of the twistorial topological string arises from the 6-
limit and the associate quantum Riemann-Hilbert problem fixing it is sym-
metric between electric and magentic degrees of freedom, makes us believe
that it should possible also to recover the magnetic angles in the classical
limit making the above equality more general. Moreover we expect this to
extend to arbitrary theories, and not just SQED. Again this is natural be-
cause the classical limit of the quantum Riemann Hilbert problem and what
chracterizes the topological string wave function seem to formally reduce to
the above partition function in the C-limit.

8.5. W as a generating function

In [9] the object ¥ played a sort of auxiliary role; it was key for the con-
struction of D, but it was not given a direct physical interpretation. Now
we want to explain one place where ¥ appears more directly.

We consider the asymmetric limit

(282) R — 0, ¢—0, e = (/R fixed.
and specialize to the subset L C M given by
(283) 0, =0.

Before taking the limit (282), the locus (283) is not geometrically distin-
guished as a subset of the complex manifold M(R,(): in particular it is not
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a complex submanifold. However, after taking this limit, it was proposed in
[89] that L becomes a complex Lagrangian submanifold of the limiting man-
ifold M (€). In this section we will explain that, in the limit (282), log U has
an interpretation as generating function for this Lagrangian submanifold, in
the coordinates z.. (To be precise, we will show this only in some special
theories such as Argyres-Douglas theories and U(1) SQED, where we have
sufficiently good understanding of how the X, behave in the asymmetric
limit; but we believe it should hold more generally.)

Let us say more precisely what we mean by “generating function.” We
must first choose an electric-magnetic splitting. Using this splitting we can
define the unsymmetrized ¥ which appeared in the last section. Our gen-
erating function will be a slightly modified version of log U. Indeed, in the
asymmetric limit log ¥ diverges; fortunately this divergence can be removed
by subtracting a function of R alone; call the result log U9, We will define

(284) W = —2%1 (log gres 4 G)

where G is an e-independent function of the Coulomb branch parameters,
reflecting a kind of “1-loop holomorphic anomaly” for log Ue9. Then what
we will show is that W is a generating function for L, i.e. along L we may
write the x,,, as holomorphic functions of the z.,, and those functions are
given by

ow

285 s = T
(285) T = G

The formula (285) gives evidence that W can be identified with the
Nekrasov-Shatashvili limit W9 of the instanton partition function of the
N = 2 theory. Indeed, it was proposed in [89] that, in theories of class S, in
the R — 0 limit L can be identified with the locus of opers in M(¢€). On the
other hand, it was proposed in [97] (and verified in some examples) that, in
theories of class S[A;1], the generating function of the locus of opers should
be W9 .35 Thus, in theories of class S[A1], we conclude that W = W5 up
to a constant shift, since they are both giving generating functions for the

35The coordinate system used in [97] was not identified there with the coordinate
system (Ze,, Tm,) which we are using here. Rather, it was described in geometric
language, in which it appeared as a complexification of a Fenchel-Nielsen-type co-
ordinate system on a moduli space of flat SL(2)-connections. However, recently
in [98] it has been shown that such complexified Fenchel-Nielsen-type coordinates
do arise as (Ze,,Ty,;) in theories of class S[A;]! (More precisely, if we evaluate
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same locus L in M (e). This is in accord with our general expectations about
twistorial topological strings as we explained in §3.7.6 above.

It is natural to conjecture that the same identification holds for a general
theory, not only for class S[A1]. It would be very interesting to verify this
identification more directly.

8.6. Deriving the generating function

In this section, we explain how the key relation (285) is obtained. The main
player will be the connection 1-form 7(¢) we reviewed above,

(286) 1(¢) = mi(x(¢), dz(¢)) — dlog ¥(¢).

We begin by noting that 7(¢) depends holomorphically on ¢ € C*. As
¢ — 0 or ¢ — oo we can study it explicitly, just because we know the asymp-
totic behavior of , and W. Indeed, we have already written the asymptotics
of z, above in (252), and as for ¥, expanding Yinstl and Winst2 around ¢ = 0
reveals that they do not contribute at leading order: we just get the asymp-
totics of W™, which gives

im R?

(287) U = exp [4C2

U+---].

Combining (252) and (287) we get directly

iTR?
2

(288) n= (Z,dZ) + -

and similarly expanding around ¢ = oo we can complete this expansion to

imR? iTR2C2 _
(289) U——TCQ<Z;dZ>+"'— 5 (Z,dZ),

where - - - represents terms of order 1/¢, 1, and ¢. These terms can be written
out as well, but they are considerably more complicated, involving the BPS
degeneracies €)(y) and integrals over the BPS rays /..

When we restrict to L, n(¢) simplifies: we obtain an extra symmetry
¢ — —(¢ which implies the terms of order 1/¢ and ¢ drop out, so that we

(e, , Tm,;) on the distinguished “real” locus of the Coulomb branch, where the pe-
riods a;/¢ are real and negative, then on this locus they agree with complexified
Fenchel-Nielsen-type coordinates.)
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have

: R2 : R2 2 B
(290) 1=~ (2:42) +m - TE(Z2,42),

for some 1-form 7. In the limit (282), the expansion further simplifies, to

im
2¢2

(291) 1) = —55(2.42) + lim 1y

so long as limp_, 19 exists. We expect that this limit does indeed exist and
moreover it is a closed form, so that locally we can write

292 li =
(292) lim 9o = dG

for some function G; in what follows we assume this is true. In Appendix A
below we show that (292) does hold at least for Argyres-Douglas theories and
for U(1) SQED, and incidentally that for U(1) SQED we have the explicit
formula

(293) G = —ﬁ log(a/a).

Now combining (286) and (291) we have

(294) Ao W(¢) = mi(a(C), dr() + 15{72,42) — dG.

Using the definition of U and rearranging, this becomes

(205) a <log () - U+ G) = mi(2(C), d(C))

This is essentially the result we want. To put it in precisely the shape (285)
we need to make a further slight adjustment. The right side of (295) can be
written explicitly in coordinates as

(296) mi(ze,dxy,, — T, dxe,)

Thus adding —7id(ze,zy,,) to both sides we obtain

297 d (log U(C) — Tize,xm, — U + G ) = —27izm. de,
iIm T 50 e
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The right side is just —27iWW according to (284), so finally

(298) dW = zp,,dze,

matching the desired (285).

9. Concluding remarks

Studying the vacuum geometry for 4d A = 2 theories on %Q background
seems to have unified a number of topics: Topological strings, hyperKéhler
geometries associated to them and their quantization, wall-crossing phe-
nomenon and BPS states, etc. It is clear that this is just the beginning of
the exploration of this vast topic, as the twistorial topological string seems
to be a rather rich object. Related to this richness, is the complication for
explicit computations. In this paper we have managed to solve exactly some
theories which admit only electric BPS states. Moreover we have proposed
methods to compute them in the #-limit using a quantum Riemann-Hilbert
problem.

There are many directions which are naturally suggested by this work.
First of all, there are a few conjectures in this paper that would be nice to
prove. These include a proof from first principles that the #-limit is indeed a
solution to the quantum Riemann-Hilbert problem. The proof that AMNP
index is the same as the CFIV index. Also a better understanding of how
both electric and magnetic angles arise in the C-limit would be highly de-
sirable. It would also be nice to find which 2d system does the twistorial
version of AGT (for which we only have computed the three point Liouville
amplitude) relate to.

On another front, this work suggests that one should perhaps study more
general pair of D-brane geometries for N’ = 2 theories on 72 x I, generalizing
the twistorial topological string where the two D-branes were more or less
fixed. This is very natural from the point of view of a 4d tt*. Also it would
be interesting to explore what would happen if the length of the interval I
is kept finite instead of it being infinite.

Clearly a lot more work remains to be done. We hope to have conveyed
the intrinsic elegance of twistorial topological strings in its ability to unify
a number of different areas.
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Appendix A. On the R — 0 limit of the connection

Here we tie up a loose end from Section 8.6: why does limp_,g 19 exist, and
why is it a closed form?

First, np can be written explicitly, by beginning from the definition (286)
of n and expanding the quantities z({), ¥(¢) that appear there around ¢ = 0,
then computing the term of order ¢°. This leads to the result

irR? = >
(A1) mo=———((2,d2) + (2,42))
— g ;Q('y) /g7 df (Zg — ZyC) dlog(1 — X’Y(C))] .

The first part evidently vanishes as R — 0, but to understand how the second
part behaves, we need to know something about the behavior of the functions
X+(¢) in that limit.

As we have already remarked, these functions are determined by the
TBA-like integral equations (256). The limit R — 0 is the high temperature
limit in the TBA language. We have not studied the R — 0 behavior of the
X, in a general N = 2 theory; here we will restrict attention to a particular
class of simple examples, studied in [99, 100], which correspond to taking
our N/ = 2 theory to be an Argyres-Douglas theory. In these theories, as we
take R — 0, the functions X, restricted to the rays £, develop a simple and
well-known characteristic profile. We illustrate that profile in Figure Al.

The plateau visible in the middle of the figure reflects the fact that the
X, become approximately constant, independent of ¢ and also independent
of the Coulomb branch moduli, over a region running from |(| ~ R to |(| ~
1/R. To either side of this plateau we see a characteristic “kink” shape: in
the limit R — 0, the kink on the left depends on ¢ and R only through the
combination ¢ = /R, while the one on the right depends only on ¢ = (R.
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0.15

Figure Al. The instanton corrections X} inSt evaluated along the ray /,,, at
a point in the weak coupling region of the Argyres—Douglas (A1, Ay) theory,
where we took R=10"%, Z,, =1—-1, Z,, =1+ 3, 0,, = 6, = 0. The left
figure gives Relog X"'(¢) and the rlght is Im log X1't(t), where t = log|(|.
To obtain these figures we solved the integral equation by iteration, begin-
ning with X = X*f, and taking 10 iterations; previous iterations are shown
as light curves on the graph. At ¢ =0, we get X, ~ —0.61805, while the

expected plateau value in this example is 1—‘[ ~ —0.61803.

The left kink X (€) depends holomorphically on the Coulomb branch moduli,
while the right kink depends antiholomorphically on them. Thus 7y in (A.1)
splits into two parts: the (1,0) part receives contributions only from the left
kink, while the conjugate (0, 1) part comes from the right kink. Thus we get

1
A2 li = ——
(A-2) fmmo = — g Re

Zﬂm/e 92y 4 1og(1 — X, (e))

€ €
"r

The convergence of this integral now follows from the behavior of X, (€) at
small and large e: at large €, X, (€) approaches a constant, so that dlog(1 —
X, (€)) vanishes; at small €, we have X, (€) ~ exp(nZ,/€), which is exponen-
tially decaying as e — 0 along /., hence so is log(1 — X (e€)).

Finally we would like to see that 7 is also closed in this limit. For this
we return to the definition (286). Using this definition we can write

(A3) o= 74 » 1(1? (ri((C), dz(C)) — dlog ¥(C))

(A1) dno = i fqzl Ta(0).da()
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We have already recalled that, as R — 0, the functions X,(¢) become ap-
proximately constant along ¢, in a neighborhood of |{| = 1. To show that
dng vanishes as R — 0 we need to know more: we need to know that this
behavior extends away from the ray £,. Fortunately, it appears (again by
numerical experimentation) that this is indeed true: as R — 0, the X (¢) be-
come piecewise constant on a full annulus around [{| = 1 (only “piecewise”
because X (() is discontinuous as a function of { when ¢ crosses some of the
rays {,/). In particular, since this constant is independent of the Coulomb
branch moduli, dz(¢) approaches 0 in this limit. It follows that limpg_,o 7o is
closed as desired. (This is essentially the statement that as R — 0 the locus
L becomes Lagrangian as a subspace of M(¢), and our argument here is
essentially the same as one given in [89].)

We now consider one example where the whole story just described be-
comes completely explicit: we take our N = 2 theory to be the U(1) gauge
theory coupled to 1 hypermultiplet with charge 1. In this theory the charge
lattice is spanned by generators e, v, (“electric” and “magnetic” respec-
tively), with (7e,vm) = 1. The central charges, as functions of the Coulomb
branch modulus a, are

1
(A5) Z'Ye = a? Z’Ym - %(a 1Og(a/A) - a)?

and the BPS counts are

(A.6) O(y) = {1 o= e

0 otherwise.

Then (A.1) specializes to

in R2

(A.7) ny = ((2,dZ) +(Z,dZ)) + ni

where

- R d _
(A8) gt = /Z & (a — a() dlog(1 4 e™fa/CHmhacy

8 e, C\C
(A.9) _/é dCC <Z _ aC) dlog(1 +e—7rRa/C-7rR&C> :

—Ye
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and after taking ( — —( in the second integral this becomes

(A10) gt = dC(—aC)dlog(lJre”Ra/CerRac)

C4m ¢ \¢
R%da d¢ <CL — > 1 n mRn(a/{+ac)
A1l = i - -1 — c.c.
(A1) 4/4%<<“C<,§”6 o
2
(A.12) = R2da Z(—l)”d(Kg(Qﬂ'RnM) — Ko(2mRnlal)) — c.c.
n>1
Rad
(A.13) = 2:\a(|l Z K1 (2mRnlal) — c.c.

In the limit R — 0, using Ki(x) ~ 1/z + O(1), this gives finally

(A.14) lim 79 = da Z (=" c.c.

1 (da da
Al — = _==.
( 5) 48(@ d)

In particular, this limit exists and is a closed form, as we expected. The
function G appearing in (292) can thus be taken to be

(A.16) G = —é log(a/a).

Note that G exists only locally, or said otherwise, it suffers from an ambiguity
by shifts in 57Z.

Appendix B. Solving the g-TBA equation for
Argyres-Douglas models

At the face of it, Eqn. (32) looks quite formidable. However in some very
simple cases we may guess its solution. The guessing is based on uniqueness:
any operator—valued piecewise holomorphic function with the right asymp-
totics and discontinuities should be the solution to the integral equation. In
this appendix we argue that, in some special cases, to get the solution of the
quantum TBA equations it suffices to solve their classical counterpart [8].
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For simplicity, we focus on an Argyres—Douglas model of type g € ADFE
in the minimal BPS chamber3® whose BPS spectrum consists of just r =
rank g hypermultiplets [47]. We write I' = @;_, Za; for the charge lattice
(isomorphic to the root lattice of g); its simple-root generators {c;}]_, are
the charge vectors of the minimal chamber BPS hypermultiplets, and their
Dirac pairing B;j = (o4, ;) p is the exchange matrix of the corresponding
ADE Dynkin quiver Qg4 [47]. The datum Q)4 defines a quantum torus algebra
Tr [11]

(B.17) X, Xy = () /2 Xy
(B.18) Xy Xy = g2 X0 X,
(B.19) v,y el, qg=¢% #eR,

whose generators X1, may be represented as unitary Weyl operators

(B.QO) X:l:oa,i = eiwi, where [éz, é]] = —i6 Bij.
Eqns. (B.17)(B.20) imply that X, is unitary for all v € T,

1 def

(B.21) X =X; 4 =qh

=4q

To any function f on the classical torus (S*)”

(B.22) F=) fe™®  fm) €C,

n;EL"
there is an associated quantum torus element fe Tr namely

(B.23) F=>" i) Xna,

n;EL"

36 The analysis may extended to more general situations. In particular, the con-
dition of BPS minimalily may be relaxed; the actual spectral condition depends on
the orientation of the Dynkin quiver Q4. It suffices that all subquivers which are
supports of stable BPS states are A, quivers with the linear orientation. For the
region in parameter space covered by the linear A4,, quiver [101], all BPS chambers
satisfy the condition. In particular for the As Argyres—Douglas model any BPS
chamber will do. Having solved the quantum TBA problem in one chamber, one
may, in principle, recover the solution in all chambers by the appropriate quantum
KS jumps.
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obtained by replacing e’ — e in its Fourier expansion and taking the
operator normal order

(B.24) (0 XX ) o = Koot
product
Let
(B25) Xai (aj’ 9]7 C) = Z XOéi (aja g C) einjejy
n; GZT
(B.26) Xo,(aj,n5;C) ~ eftas/c+Ra:¢ H(Snjuéij as R — oo,

J

be the Fourier expansion of the solutions to the classical TBA equations of
ref.[8] with {a;} in some domain of the Coulomb branch which belongs to
the above minimal BPS chamber.

We claim that in this minimal case the solution to the quantum TBA
equation (32) is just given by the associated quantum torus elements®”

(B27) )/Eai(aj;C) = Z Xai(aj,nj;C) anaj'

n; ezr
To justify the claim we have to show four facts:

i) Xa. (aj;¢) has the correct quantum KS jumps at all BPS rays (4.,;

ii) the X,, (a;;¢)’s satisty the equal-¢ canonical commutation relations
(B.25) Xa.(:€) Ko, (a:€) = ¢ Ko, (a;€) X (0 0);

i11) the )?ai (a;; C) satisfy the correct (quantum) reality condition
(B.29) Xa,(a5; =1/Q)F = X0, (a;50);

i) X’ai (aj;¢) has the correct asymptotics as R — oc.

Fact 4v) holds by construction: we chose the boundary condition of the
quantum TBA problem to reproduce the right behavior as R — oo. For fact

37 For convenience, we flip the overall sign of the quantum operator )?ai (¢) with
respect to the conventions used in Section 4.
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i11), notice that the reality condition on the classical GMN line operators
Xa,(aj,05;¢) [8] implies for their Fourier coefficients

(B3O) X—Oéi(ajv g3 C) = Xai(aj7 —nNy; _1/5)*7

while from Eqns. (B.21)(B.27)

(B.31) X, (a;;-1/0)f = Y Xa,(aj,n5:—1/0)" X_nja,

n;EL"

= Z X—ai(ajv _nj7<) X—TL]'OK_;‘ = )?—Oéi<aj;<:)'

n; S/

Note that the normal order prescription is essential for the quantum reality
condition.

To argue fact ii), consider the space M of coordinates (aj,a;, ;) en-
dowed with the (degenerate) Poisson bracket

(B.32) 105,05 }pp = —Bij:
(B.33) {ai,. .. tpg = {ai,. .. Jpp = 0.
The classical GMN lines X, (a; () satisfy
(B.34) {log X, (a;¢),log Xa, (a; C)}PB = Bj;.
Indeed, this equality is consistent with both the R — co asymptotics and
the KS jumps.
The 6-limit operator algebra C(a;,a;) ® Tr is just the algebra of func-

tions on M equipped with the Moyal product * induced by the Poisson
bracket (B.32)(B.33) [102]. Indeed

(B.35) Fg=h <= h=fxg.
In this language, the normal product is just the ordinary product of functions

(B.36) (fg) nnnnn =Fg.

product

Then Eqn. (B.34) yields

(B.37) [log Xa,(a:¢),log Xa,(a;:¢)] = Bij,
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which implies fact 1)

(B.38) X (a50) Xa, (a:0) = ¢ X, (a:¢) Xa,(a:€),

and, more generally, the equal-(¢ product rule
(B.39) X, (a; Q) Xy (a;¢) = ¢ X (a5 )

It remains to show fact i), that is, to compare the KS jumps of the
classical functions X,,(¢) and of the quantum operators X,,(¢). Here is
where we use our special assumptions that Qg is an ADE Dynkin quiver
and the BPS spectrum is minimal. These assumptions entail that the charges
of the stable BPS states are +«j, while |B;;| <1 for all ¢,j. Under these
conditions, the classical KS symplectomorphism [44] at the BPS ray /1,
associated to a hypermultiplet of charge +a; is

(B.40) Xo,(a:¢) — (1+ Xz, (0;0)) ™ Xa,(a: (),
while the quantum jump is
(B.A1) Xo(a:¢) — (1+¢*P9/2 Xia (a:Q)) ™7 Ko (a:0).

_ To complete the argument, we have to show that for the operators
Xa,(a;¢) defined in Eqn. (B.27), the validity of the classical formula (B.40)
implies the validity of the quantum one (B.41). Since £B;; = 1,0, —1, we
have to consider two cases £B;; = +1 and £B;; = —1. In the +1 case, using
Eqn. (B.39) the quantum KS formula (B.41) may be rewritten as

~

(B.42) Xon(a;¢) — Xa,(a;¢) + Xta,+a,(a;0)

which is precisely the quantum torus operator corresponding to the RHS
of Eqn. (B.40) under the classical/quantum torus correspondence f +— f,
Eqns. (B.22)(B.23). In the —1 case

(B.43) Xoi(a:0) — D> (=1)Fq % X, (a5 O)F X, (a:¢)
k=0
= kon +ka;s
k=0

which again is the image of the RHS of Eqn. (B.40) under the correspondence

f=f
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Appendix C. B—deformed quiver matrix LG models
(exact twistorial ADE Toda amplitudes)

We saw in Section 5.5 that the tt* equations become linear whenever the
vacuum bundle H over the coupling constant space K has rank one. In this
case the tt* solution is captured by a pluri-harmonic function log G+ which
may be singular only at loci in IC where a new massless sector blows up. This
makes possible to construct the tt* geometry explicitly by the techniques il-
lustrated in §.5.5. In view of this fact, one is lead to ask whether there are
other Abelian four—supercharge models, besides the ones discussed in §.5.5,
which are physically natural, in the sense that their large—N limit is dual to
the topological string in some geometry. In this appendix we consider a class
of LG models which may be though of as describing the twistorial extension
of a f—deformed version of the quiver matrix models studied in ref.[23]. As
discussed in ref.[29], the large N limit of such quiver matrix models describe
the holomorphic blocks of the Toda conformal field theory. Then the results
of the present appendix (besides shedding light on some important mathe-
matical conjectures [103]) may be seen as the ezact twistorial extension of
some special three—point amplitudes of ADE Toda conformal field theories,
generalizing the Liouville case discussed in Section 7. As already mentioned
in §.5.5, the class & 4d theories associated to these special models via the
AGT correspondence have no non—trivial magnetic charges.

C.1. The models

The relevant LG models are labelled by a Lie algebra g which, for simplicity,
we take to be simply—laced, g = ADE, of rank r. To the /~th node of the
Dynkin graph I'y of g we associate the following data: i) a positive integer
Ny, i) a rational differential W;(2) dz, and 444) N, chiral superfields denoted
as Xy, 10 =1,2,...,N;,. We consider the superpotential

(C.44) Weesr,) ZZWg Xo4,) +BZ > log(Xpi, — Xey,)?
(=1 1i,=1 =1 1<i,<je <Ny
N, Ny

_ﬁzzzlog XZ'LZ Xf’jz/)

€Ly ieg=1jy=1

where ) (¢ ¢y IN€ANSs sum over unordered pairs of nodes ¢, ¢’ € I'y which are
connected by a link in I'g. The quiver matrix models of [23, 29] correspond
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to the period integrals

(C.45) / eW‘ dVX,
B=1

where N =%, Ny. The ruS of (C.44) is invariant under the product of
permutation groups

(C.46) GNl XGNZX---XC‘BNTEGN,

and we identify the field configurations in the same orbit of &x. Then, as
in Section 5.5, the actual chiral superfields are the elementary symmetric
functions {egx, }, £ =1,...,7r, ke =1,...,N;. In particular, for g = A; we
get back the models studied in Section 5.5.

We assume the rational differentials to be generic, that is, W)(2) dz has
only simple poles in P! (including the point at infinity). The higher pole
models may be obtained from the generic ones by confluence of ordinary
singularities. Then

Ny )\ "
(C.47) Wi(z)dz =" ﬁ dz.
a=1 @

The model further simplifies if we assume the position of the poles to be
independent of /, that is, ny = n and 2, = 24, the residues )\, still being
general complex numbers. Notice that in the most relevant case (for our
present purposes), i.e. n = 2, this assumption is not at all a limitation of
generality, since by field redefinitions we may alway make 21 = 0 and zp2 =
1. Moreover, the above simplifying assumption automatically holds for LG
models describing n—point functions of Toda systems.

Granted this assumption, the residues Ay, of the one—form W/(z) dz are
most naturally seen as n complex weights A, of the Lie algebra g under the
identification

(CA8)  au(Ay) = Aga,

where ay is the simple root associated to the /~th node of I'y. To each weight
A, there is associated an irreducible highest weight representation Lp, of
g. Then we think of the rational differential (C.47) as being specified by the
collection of highest weight representations {La,, La,, - ,La,} of g, La,
being attached to the puncture z, € C for a =1,2,...,n.
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As always, the chiral ring R is defined by a set of relations which coincide
with the classical vacuum equations

(C.49) AW = 0.

Our first task is to solve these equations for W as in (C.44). The second task
is to classify the models in which the solution is unique up to the action of
the group (C.46), which are the ‘Abelian’ models we look for. Then their
exact tt* geometry is given by the formulae of Section 5.5.

C.2. The Gaudin model, the Mukhin—Varchenko conjectures,
and tt*

To solve the vacuum equations (C.49) one notices that, with the restric-
tion discussed after Eqn. (C.47), they have an alternative interpretation
as the Bethe ansatz equations for an integrable model, the Gaudin model
with Lie algebra g [103-109] arising from the hypergeometric solutions of
the Knizhnik—Zamolodchikov equations [110, 111]. The hypergeometric so-
lutions corresponding to the quiver LG model specified by the dimension vec-
tor N = (N1, Na, ..., N,) and the highest weight representations {La, }7_,
live in the subspace

(C.50) Sing<®zzl LAG;N) CLa, ®La,® - ®La,,

of singular vectors (vectors annihilated by the Chevalley generators ey) of
weight

(C.51) iA“ —iNg ay.
a=1 /=1

For g = A, it is known [112] that the vacuum/Bethe ansatz equations
(C.49) may be recast in the form of a linear ODE of order (r + 1) generalizing
the Heine—Stieltjes second order equation for the A; case (cfr.§§.5.2, 5.3). In
particular, the model (C.44) with g = A, and differentials (C.47) has Witten
index®® m not greater than [112, 113]

(C.52) dim Sing <®”_1 La.; N) B qim 2 (n_ )~ D[],

where n_ is the nilpotent Lie subalgebra of sl of lower triangular ma-
trices, U(n_) its universal enveloping algebra, U (n_)2=1 its (n — 1)-fold

38 Vacuum configurations in the same Sy, x - -+ x Gy, orbit are identified.
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tensor power, which is endowed with a natural Z"-grading given by the sl
weight, (---)[IN] stands for the degree N subspace, and ®= means that the
equality holds for generic weights A,.

For general g, it is easy to see that n > 2 implies m > 1. Hence for our
purposes (that is, to find interesting m = 1 models) we may limit ourselves
to n = 2. In [103] Mukhin and Varchenko state three deep and surprising
conjectures for this case that we quote verbatim:

Conjecture 2. If the space Sing(La, ® La,; N) is one—dimensional, then
the corresponding superpotential YW has exactly one critical point modulo
6]\[1 X - X GNT-

Conjecture 1. If the space Sing(La, ® La,; N) is one—dimensional, then
there exist a N—chain A such that the period integral fA eV dN X can be
computed explicitly and it is equal to an alternating product of Fuler I'—
functions up to a rational number independent of Ay and 3.

In particular if dim Sing(La, ® La,; N) = 1 the Bethe equations for the
Gaudin model have a unique solution with Bethe vector X.

Conjecture 3. If dimSing(La, ® La,; N) =1, the length of the unique
Bethe vector X is given by the Hessian of the superpotential at its (unique)
critical point.

The conjectures reduce for g = Aj to the standard Selberg integral. They
are proven for g = A, [84, 114, 115] and in some special cases for other Lie
algebras [84].

In their paper [103] Mukhin and Varchenko do not give any motivation
for their conjectures, except for presenting a few explicit examples of their
validity. From the tt* viewpoint, however, the reason why they should be
true is pretty clear: if

dim Sing(La, ® La,; N)

is (typically) equal to the Witten index of the associated quiver (2,2) LG
model, when it is equal 1 the corresponding tt* geometry is Abelian, hence
encoded in a pluri-harmonic function H = log G- of the periods Ay, Ao =
B and their corresponding vacuum angles ¢, 4, and ¢g = 0

0? 0? I,J=0or (¢,a)
C53) [ ——+4n’——— |H =0, ' ’
(C:53) <8)\18)\J+ U aqs]aqu) {5:1,2,...,7», a=1,2,....n.
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As A1 — oo the function H goes to zero in almost all directions. H is singular
only at loci in the coupling space where a 2d BPS soliton becomes massless.
Then the function H is obtained by the techniques of §.5.5

(C.54) H(Ar, ¢1) = qu Cor A, s r Ar, s g 61)

where h(y, f1,0) is the logarithm of the Abelian ¢t* metric for the basic
charge distribution dz(z) — 1, that is,
(C.55)

1 *“d L
h(:uvﬂa 27rx) = ; Im/o ?8 log (1 _ 6727r(#/871x+/18))’ Rep > 0,

and /41, gs are integers corresponding to the charges and multiplicities of
the 2d BPS particles; the corresponding magnetic function (cfr. §.5.5) is

(C.56) F(z]) = qu log(l _ e 2l zz).

The integers £, 1, ¢s may be computed from WV by any one of the four meth-
ods described in §.5.5. By the ‘thumb rule’ of Section 5.5, the corresponding
twistorial brane amplitude reads

(C.57) (A1, 07,Q) = [[T(i o Ar/C il s M G s 61.C)"

where I'(u, i, 0) is the twistorial Gamma function. Taking the asymmetric
limit, the LHS reduces to the period integral [, e dV X (up trivial factors)
while the RHS becomes a product of I'-functions (again up to trivial fac-
tors). This is the statement of Conjecture 1 which is essentially proven by
Abelian tt* geometry.

In fact, mathematicians look for a refinement of Conjecture 1 in which
both the chain of integration A and the specific form of the product of I'-
functions (that is, the integers ¢, ¢5 ) are given. In particular, the chain A
is typically rather involved, see refs.[84, 114, 115], and one is interested in
its a priori characterization. tt* geometry yields the required refinement:

Conjecture 1*. If dimSing(La, ® La,; IN) =1 one has
W) Ny _ \1e
(C.58) K[ e dVX = T]T(lss (Ar + 1)
A S

where
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e the chain A is the support of the unique D-brane (or, in the other
Stokes sector [2], of the unique Neumann brane);

o the integers qs and ls ;1 may be computed by any one of the four methods
described in §.5.5.1;

e the integral shifts Jr’s may be fized by studying the discontinuities of
the brane amplitude as a function of the vacuum angles Oy;

e the rational number k is a mere statistical factor.

Conjecture 2 may also be understood physically in terms of the class S[g]
4d N' = 2 which is associated to the given model by the AGT correspondence
[13, 14]. As in the g = A; case discussed in Section 5.5, the condition m = 1
is expected to be equivalent to the statement that the corresponding 4d class
Slg] theory is free (which, in particular, means that there are no non—trivial
magnetic charges).

Conjecture 3 also looks quite suggestive from the tt* perspective. For the
general case, specified by a Lie algebra g, a dimension vector IN, and a
collection of highest weight representations La,,- -, La,, the solutions of
the Gaudin model Bethe ansatz equations define the chiral ring R. R is a
commutative Frobenius C—algebra with dimension equal to the number m of
solutions to the Bethe equation. Each solution defines a Bethe vector X (@)
(e =1,...,m) and on the space of such vector we have a natural symmetric
bilinear form B(-,-) induced by the Shapovalov form [103]. On the other
hand, R, being Frobenius, is also equipped with a natural non—degenerate
symmetric bilinear form (-, ) (i.e.the TFT 2—point function). B(-,-) and (-, -)
are symmetric bilinear forms on the same space, C", and are determined
by the same set of equations, namely the Gaudin model Bethe ansatz ones.
It is natural to guess that they are one and the same. To compare them
explicitly we need to fix basis. For generic couplings, R is semisimple, and
a natural basis is given by a complete system of orthogonal idempotents>’
eq (=1,2,...,m)

(C.59) ea €3 = 0af €as

(this is called the ‘point basis’ in [1, 19]). Note that there is a natural one-
to—one correspondence between classical vacua, i.e. Bethe vectors X, and

39 Since we identify configurations in the same orbit of Sn =[], Sy, , our chiral
ring is actually R®~, where R is the usual chiral ring of the LG model, and the
indecomposable idempotents e, € R are averages over the orbits of G of the
indecomposable idempotents of R.
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idempotents e,. Another canonical basis is the dual point basis, {e*} defined
by

(C.60) (e“, eg) = 0%g.
It is well known that

(C.61) (e, eP) = 6% det(AOW)|

[e%
where in the RHS we have the Hessian of W evaluated at the a—th critical
point. For m =1 this gives back Conjecture 3 provided we identify the
Shapovalov form on the Bethe vectors with the TFT 2—point function in the
dual point basis. This suggests the following extension

Conjecture 3*. In general,

(C.62) B(X@ xB)) = 5% det(doW)

e
In fact, for g = A, Eqn. (C.62) is a proven theorem [107]; in fact, in this
case one also proves the stronger statement (also physically expected) that

the (2,2) chiral ring R is isomorphic to the Bethe algebra of the associated
Gaudin model [116, 117].

C.3. Explicit tt* amplitudes for the A, quiver matrix LG models

For g = A, the Mukhin—Varchenko conjectures have been proven [84, 114,
115]. The detailed form of the result may be used to determine explicitly
the magnetic function F'(z) of the corresponding Abelian ¢t* geometry, from
which we may read the exact twistorial amplitudes for the SU(r + 1) Toda
field theory.

For g = A, Conjecture 1 becomes the following

Theorem [84, 114, 115]|. Consider the quiver LG model with g = A, and
n = 2 with®

(063) ﬂAl = (0,0,...,O,gr—l), BAQ = (7]1 —1,772—1,...,17,«—1),

40 The simple roots ay of A, are numbered in the natural order.
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&ty €EC,and 0 < Ny < Noy < --- < N,.. Then there is a chain A so
that

- (& + (i = Neyr — 1)B) T(i)
(C.64) WErmeB) gN x =
K 1l )

. H ﬁil (77£++77€/+(’L+£*€,*1)B)
1<i<e<r i=1 D& +mne+-+nv+(@+L—0+ Ny — Npjq —2)B)
where
1 C#r
C.65 =
(C.65) & {& (=r,

and the various parameters are chosen so that the integral is convergent (i.e.
we are in the ‘right’ Stokes sector [2]).

The chain A is explicitly known but rather involved, see [84, 114, 115].

In view of Eqn. (C.64), the the techniques of §.5.5.1 yield for the twisto-
rial brane amplitude for these models the expression obtained by replacing
in the product in the rRHS of (C.64) each I'-function factor of the form

(66) T(Zﬁaeﬁﬁ-zebmwwﬂ)

with a twistorial Gamma function factor of the corresponding arguments*!

(67) F(Zgae &=+, be(me—1) + B, Zeae¢z+nge¢e+c9)7

where Yy, ¢y and 6 are the angles associated, respectively, to the couplings
&, me and B. In view of (C.65), one has ¥, = 0 for £ < r.

Then, to get the twistorial Toda amplitudes one performs the products of
twistorial Gamma functions corresponding to the RHS of (C.64) in terms of
ratios of twistorial double Gamma functions (compare with Eqn. (160)). The
arguments of the twistorial Gamma functions are the 't Hooft parameters to
be kept fixed as N — co. One analytically continues to arbitrary values of
those parameters, and writes them in term of Toda quantities using the AGT
correspondence as dictionary. The resulting objects are the explicit twistorial
extensions of the corresponding Toda 3—point holomorphic blocks.

41 For simplicity, we omit writing the barred variables in the argument.
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