ADV. THEOR. MATH. PHYS.
Volume 20, Number 1, 165-192, 2016

The SYZ mirror symmetry and the
BKMP remodeling conjecture

BoHAN FANG, CHIU-CHU MELISSA LIU, AND ZHENGYU ZONG

The Remodeling Conjecture proposed by Bouchard-Klemm-
Marino-Pasquetti (BKMP) relates the A-model open and closed
topological string amplitudes (open and closed Gromov-Witten in-
variants) of a symplectic toric Calabi-Yau 3-fold to Eynard-Orantin
invariants of its mirror curve. The Remodeling Conjecture can be
viewed as a version of all genus open-closed mirror symmetry. The
SYZ conjecture explains mirror symmetry as T-duality. After a
brief review on SYZ mirror symmetry and mirrors of symplectic
toric Calabi-Yau 3-orbifolds, we give a non-technical exposition
of our results on the Remodeling Conjecture for symplectic toric
Calabi-Yau 3-orbifolds. In the end, we apply SYZ mirror symmetry
to obtain the descendent version of the all genus mirror symmetry
for toric Calabi-Yau 3-orbifolds.

1. Introduction
1.1. The SYZ conjecture

Mirror symmetry relates the A-model on a Calabi-Yau n-fold X', defined
by the symplectic structure on X, to the B-model on a mirror Calabi-Yau
n-fold X, defined by the complex structure on X. Strominger-Yau-Zaslow
proposed that Mirror Symmetry is T-duality [110] in the following sense.
There exist 7 : X — B and 7 : X — B, where dimg B = n, such that over
a dense open subset U C B, Y := 7 Y (U) = U and Y := #~1(U) — U are
dual special Lagrangian n-torus fibrations. In the semi-flat case, U = B, Y =
T*B/A as a symplectic manifold and Y =2 TB/AY as a complex manifold,
where A and AV are dual lattices, and for each b € B, 7~ 1(b) = T; B/A and
#~1(b) = T,B/AV. In the general case, there is quantum correction to the
complex structure on Y coming from holomorphic disks in X bounded by
Lagrangian n-tori 7=(b), b € U.
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Mirror symmetry has been extended to certain non-Calabi-Yau mani-
folds. When X is Fano (or more generally semi-Fano), the mirror is a Landau-
Ginzburg model, which can also be constructed by SYZ transformation.

1.2. SYZ mirror symmetry for toric Calabi-Yau 3-folds

Let (X,w) be a symplectic toric Calabi-Yau 3-manifold/orbifold, where w is
the symplectic form. There are two families of mirrors, both of which can
be constructed by the SYZ transformation.

Landau-Ginzburg mirror. The mirror B-model to the toric Calabi-Yau
3-orbifold (X,w) is a 3-dimensional Landau-Ginzburg model on (C*)? given
by the superpotential

W =H(X,Y,q)Z.

The Calabi-Yau condition ensures that W is in this form. The complex
parameter ¢ is related to the Kéhler parameter of X by the mirror map.
The Landau-Ginzburg mirror ((C*)3,W) can be constructed by applying
SYZ transformation to p: X — A C R3, where y is the moment map of the
Hamiltonian U(1)3-action on (X,w), and A = u(X) is the moment polyhe-
dron.

Hori-Vafa mirror. By Hori-Vafa [66], the mirror of (X,2) is a non-
compact Calabi-Yau 3-fold (X, ), where

X ={(u,v, X,)Y):u,veC, X, Y € C"uv=H(X,Y)}

is a hypersurface in C2 x (C*)2, and

du Ndv N — N —

1 dX dY
0 = Res «
Resy <uv —H(X,Y) X 'Y )

is a holomorphic 3-form on X. The Hori-Vafa mirror (X,) can be con-
structed by applying SYZ transformation to the Gross fibration [26, 27].

The two “equivalent” mirrors come with no surprise since as a toric
variety X should have a Landau-Ginzburg mirror, while as a Calabi-Yau
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3-fold Hori-Vafa showed that they both could be reduced to a mirror curve
Cy = {(X,Y) € (C")*: H(X,Y,q) =0} C (C*)*,

In particular

—wdXdYdZ _ —
(1.1) /Fe /fQ Aydx,

where © = —log X, y = —logY, and Lagrangian cycles I' C (C*)3, rcax,
v C Cy are related by a series of dimensional reductions.

1.3. The BKMP remodeling conjecture

It is usually difficult to obtain higher genus invariants of the B-model. A
standard way is to apply the BCOV holomorphic anomaly equations [15].
These equations do not have unique solutions (holomorphic ambiguity). One
needs to fix the boundary conditions via the input from mirror symmetry,
like Gromov-Witten invariants in low degrees in the large radius limit point,
and to utilize the so-called “gap conditions” at the conifold point. To mathe-
matically prove the all genus mirror symmetry under this B-model approach
is currently beyond reach since the A-side theory of BCOV (and the A-side
theory at the conifold point) is still a mystery to mathematicians.

The Eynard-Orantin topological recursion is an algorithm which pro-
duces higher genus invariants for a spectral curve [46]. Applying the Eynard-
Orantin topological recursion to the mirror curve Cj of a symplectic toric
Calabi-Yau 3-orbifold (X,w), we obtain a version of the B-model, related
but not a priori the same as the BCOV theory on the Hori-Vafa mirror
(X,9) of (X,w). The Bouchard-Klemm-Marifio-Pasquetti (BKMP) remod-
eling conjecture [20, 21] says that all genus B-model topological strings on
(X,9Q) are essentially Eynard-Orantin invariants [46] of C,. Using mirror
symmetry, BKMP relates the Eynard-Orantin invariant wg, of the mirror
curve to a generating function Fg/‘,‘/ ;LL of open GW invariants (A-model topo-
logical open string amplitudes) counting holomorphic maps from bordered
Riemann surfaces with ¢ handles and n holes to X with boundaries in an
Aganagic-Vafa Lagrangian brane £. The correspondence between w, , and
F;};’Lﬁ can be extend to the case when n = 0. In this case, wy o is defined to
be the free energy and the A-model potential becomes the closed Gromov-
Witten potential F gX . Therefore, the remodeling conjecture gives us an all
genus open-closed mirror symmetry for toric Calabi-Yau 3-orbifolds. The
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three equivalent B-models mirror to X are illustrated as below.

LG-model ((C*)3, W) CY 3-fold mirror X

\ /

The mirror curve H(X,Y) =
0 (higher genus invariants de-
fined by the E-O recursion)

The BKMP remodeling conjecture was proved for C3 at all genus g
independently by L. Chen [28] and J. Zhou [116] in the n > 0 case (open
string sector), and by Bouchard-Catuneanu-Marchal-Sutkowski [19] in the
n = 0 case (closed string sector). In 2012, Eynard-Orantin provided a proof
of the BKMP remodeling conjecture for all symplectic smooth toric Calabi-
Yau 3-folds [47].

The SYZ T-duality transformation [9, 78, 110] associates a coherent
sheaf F on X to a Lagrangian cycle SYZ(F) C (C*)?. A coherent sheaf on
X is admissible if there exists (F) C C; such that

/ Jwises dXdYdZ _ / S
SYZ(F) XYZ ~¥(F)

and = + fy is bounded below on 7(F). Here f is an integer and z is a neg-
ative real number, so that the integral on the right hand side converges.
The remodeling conjecture has a descendant version: given n admissible
coherent sheaves Fi,...,F, on X, the Laplace transform of w,, along
Y(F1),...,v(Fn) is a generating function of genus g descendant Gromov-
Witten invariants with n insertions k(Fi),...,x(Fy), where x(F;) is the
so-called Gamma class of F;.

In the rest of this paper, we will give a non-technical exposition of our
results on the remodeling conjecture for toric Calabi-Yau 3-orbifolds [51,
52|, which is a version of all genus open-closed mirror symmetry. We will
also discuss the all genus mirror symmetry of free energies and descendant
potentials.

2. Toric Calabi-Yau 3-orbifolds and their mirror curves
2.1. Toric Calabi-Yau 3-orbifolds

A Calabi-Yau 3-fold X is toric if it contains the algebraic torus T = (C*)3
as a Zariski dense open subset, and the action of T on itself extends to
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X. All Calabi-Yau 3-folds are non-compact. There is a rank 2 subtorus
T’ € T which acts trivially on the canonical line bundle of X. We call T’
the Calabi-Yau torus. Then T = T’ x C*. Let T = U(1)? be the maximal
compact subgroup of T'.

Let M' = Hom(T’,C*) = Z? and N’ = Hom(C*, T') be the character lat-
tice and the cocharacter lattice of T', respectively. Then M’ and N’ are
dual lattices. Let Xs; be a toric Calabi-Yau 3-fold defined by a simpli-
cial fan ¥ C Nj x R, where N := N’ ®z R 2 R? can be identified with
the Lie algebra of Tj. Then Xy has at most quotient singularities. We
assume that Xy is semi-projective, i.e., Xy contains at least one T fixed
point, and Xy is projective over its affinization X := SpecH%(Xx, Oxs, ).
Then the support of the fan ¥ is a strongly convex rational polyhedral
cone 09 C N x R = R3, and X is the affine toric variety defined by the 3-
dimensional cone og. There exists a convex polytope P C Ny, = R? with ver-
tices in the lattice N’ 2 Z2, such that oy is the cone over P x {1} C N x R,
ie. og = {(tx,ty,t) : (z,y) € P,t € [0,00)}. The fan ¥ determines a triangu-
lation of P: the 1-dimensional, 2-dimensional, and 3-dimensional cones in
are in one-to-one correspondence with the vertices, edges, and faces of the
triangulation of P, respectively. This triangulation of P is known as the toric
diagram or the dual graph of the simplicial toric Calabi-Yau 3-fold Xs..

Let ¥(d) be the set of d-dimensional cones in 3, and let p = |3(1)| — 3.
Then Xy, is a GIT quotient

Xy =C3'P ) Gy = (C3*P — Zy) /Gy,

where Gy, is a p-dimensional subgroup of (C*)3*P and Zy, is a Zariski closed
subset of C**? determined by the fan ¥. If Xy is a smooth toric Calabi-
Yau 3-fold then Gy = (C*)? and Gy, acts freely on C3*P — Zsx,. In general
we have (Gx)o = (C*)P, where (Gx)o is the connected component of the
identity, and the stabilizers of the Gy-action on C3*P — Zs; are at most
finite and generically trivial. The stacky quotient

X = [(C**P — Zs) /Gy

is a toric Calabi-Yau 3-orbifold; it is a toric Deligne-Mumford stack in the
sense of Borisov-Chen-Smith [18].
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2.2. Toric crepant resolution and extended Kahler classes

Given a semi-projective simplicial toric Calabi-Yau 3-fold Xy which is not
smooth, there exists a subdivision ¥’ of 3, such that

Xy = (C3+p+s — ZE/)/GEI — Xy = ((C3+p - ZE) X (C*)S)/GZ’

is a crepant toric resolution, where Xy is a smooth toric Calabi-Yau 3-fold,
s=|¥(1)| = [2(1)], and Gy = (C*)P*5. Xy and Xy, are GIT quotients of
the same Gyy-action on C3+PF¢ with respect to different stability conditions.

Let Ky = U(1)P"* be the maximal compact subgroup of Gy = (C*)P+s.
The Gyx-action on C3TPF$ restricts to a Hamiltonian Ky -action on the
Kéhler manifold (C3+7+5 wy = /=1 3715 42, A dz;), with moment map
i C3tPts 5 RPFS. There exist two (open) cones C' and €’ in RP*S such
that

AN K
(@t — Z5) /Gy = X, redl,
~ (€ = Zn) x (C*)) [G: = (€ — Z5) /G = X5, 7€C

C' Cc RPS = H?(Xyx;R) is the Kihler cone of Xy and C' C RPTS is the
extended Kahler cone of Xs;.

The parameter 77 € C' determines a Kéhler form w(r) on the toric Calabi-
Yau 3-orbifold X = [(C3? — Z5,)/Gy]. The p + s parameters 7= (rq,...,
Tp+s) are extended Kéhler parameters of X', where ri,...,r, are Kéhler
parameters of X'. The A-model closed string flat coordinates are complexified
extended Kéhler parameters

Ta=-Te+V—10,, a=1,....,p+s.
2.3. Toric graphs

The action of the Calabi-Yau torus T’ on X restricts to a Hamiltonian Tp-
action on the Kéhler orbifold (X, w(7)), with moment map ' : X — My =
R?. The 1-skeleton X! of the toric Calabi-Yau 3-fold X is the union of 0-
dimensional and 1-dimensional orbits of the T-action on X. I' := p/(X1) C
R? is a planar trivalent graph, which is known as the toric graph of the
symplectic toric Calabi-Yau 3-orbifold (X, w(7)). The toric diagram depends
only on the complex structure on X', where as the toric graph depends also
on the symplectic structure of X.
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2.4. Aganagic-Vafa Lagrangian branes

An Aganagic-Vafa Lagrangian brane in a toric Calabi-Yau 3-orbifold X is a
Lagrangian sub-orbifold of the form

L=[L/Kx) C X = [} (7)/Ky]

where

L= {(zla .. '7Z3+p+8) € ﬁ_l(F) :

3+p+s 3+p+s
Z li1|zi|2 =, Z l?|27,|2 = ¢9, arg(zy - z3+p+s) = 03},
=1 i=1

c1, c2, c3 are constants, and

3+p+s

Y ir=0, a=12
=1

The compact 2-torus Tk = U(1)? acts on £, and /(L) is a point on the toric
graph I' = z/(X!) which is not a vertex. £ intersects a unique 1-dimensional
T orbit [ C X. We have [ = C* x BZ,, for some positive integer m. When
m =1, L= S! x C is smooth; when m > 1, £ is smooth away from £ N[ =
St x BZy,.

2.5. Chen-Ruan orbifold cohomology

Let U = C3*P — Zy, so that X = [U/Gy]. Given v € Gy, let U" = {2 € U :
v-z = z}. The inertia stack of X is

TX = U X,
vEBoOx(X)

where Box(X) = {v € Gy : U" # 0} and X, = [U"/Gs].
We consider cohomology with C-coefficient. As a graded C-vector space,
the Chen-Ruan orbifold cohomology [31] of X is

H{g(X;C) = @ H*(X,;C)[2age(v)], age(v) € {0,1,2}.
vEBoOx(X)
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Let g := |Int(P) N N’| be the number of lattice points in Int(P), the
interior of the polytope P, and let n:=|0P N N’| be the number of lattice
points on JP, the boundary of the polytope P. Then

p=2(1)| - 3 = dim¢ H*(Xx; C),
p+s=|2'(1)-3=|PNN'|-3=dimc H*(Xy;C) = dim¢c H2g(X;C)
=g+n—3,
g = [Int(P) N N'| = dim¢ H*(Xy) = dime Heg (X; C),
x = |¥'(3)| = 2Area(P) = dimc H*(Xsy; C) = dime Hég (X5 C)
=1l+p+s+g=2g—2+n

2.6. The mirror curve

Following the notation in Section 2.5, the convex polytope P C Nj = R?
defines a polarized toric surface (S, L), where S is a toric variety and L is
an ample line bundle. We have

x(S,L) =h°(S,L) = |PNN'| =3 +p+s.
The mirror curve H(X,Y) is given by

HXY)= > amnX"Y", tpmn € C
(m,n)e PNN"’

So H(X,Y) € H((C*)?, O(c+)2) is the restriction of a section s € H(S, L).
The compactified mirror curve is s~1(0) C S.
The element (t1,ta,t3) € (C*)? acts on the section H(X,Y) by

H(X, Y) d tgH(th, tQY).

Modulo this action, the mirror curve is parametrized by p + s elements ¢ =
(q1,---,qp+s) € (C*)PT5. For generic g, the mirror curve Cy is a Riemann
surface of genus g with n punctures, and the compactified mirror curve éq
is a smooth hypersurface in the toric surface S. The Euler characteristic of
Cy is

X(Cq) =2 —2g —n=—dime¢ H*(X;C) = —x(X).
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2.7. Framings

The framing f € Z specifies a 1-dimensional subgroup
Ty = ker(f) C T,

where the character f = w} — fwh € M’ = Hom(N’,Z). It induces a surjec-
tive group homomorphism

(T') = (C*)? — (Ty)V =C*, (X,Y)— XY7
Other than several finite number of choices of f, the function
X:=xv/.c,-»cC
is holomorphic Morse, i.e. it has simple ramification points. We have
|Crit(X)| = —x(C,) = 2g — 2+ n = dim¢ Hiz(X;C).
Around each ramification point pg € Crit(X), one writes
& = 2(po) + (5,

where (p is the local coordinate around py. We denote @P° = Z(pg). It depends
on the complex parameter ¢, and is a canonical coordinate of the B-model.
For any p in the neighborhood of pg we define p by

Co(p) = —Co(D)-
We also define a multi-valued holomorphic 1-form on Cj

X
P = longA .
X

3. Gromov-Witten invariants of Toric Calabi-Yau 3-orbifolds

3.1. Open Gromov-Witten invariants and A-model open
potentials

Let £ be an Aganagic-Vafa Lagrangian brane in a toric Calabi-Yau 3-orbifold
X. Then £ is homotopic to S x BZ,,, so

Hi(L:Z) = m1(L) = Z X L.
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Open GW invariants of (X, £) count holomorphic maps

u E,xl,...,xgﬁE:HRj —)(X,,C)
j=1

where ¥ is a bordered Riemann surface with stacky points x; = BZ,, and
Rj = S! are connected components of 9%. These invariants depend on the
following data:

1) the topological type (g,n) of the coarse moduli of the domain, where
g is the genus of ¥ and n is the number of connected components of
o,

2) the degree f' = u.[X] € Ho(X, L;Z),

3) the winding numbers p1, ..., 4y € Z and the monodromies k1, ..., k, €
L, where (pj,k;) = u[R;] € Hi(L;Z) = 7 X Ly,

4) the framing f € Z of L.

We call the pair (£, f) a framed Aganagic-Vafa Lagrangian brane. We write
g=((p1,k1),. .., (pn,kn)). Let Mg (X,L |, i) be the moduli space
parametrizing maps described above, and let M (X, L | 8, i) be the par-
tial compactification: we allow the domain > to have nodal singularities,
and an orbifold/stacky point on 3 is either a marked point z; or a node; we
require the map u to be stable in the sense that its automorphism group is fi-
nite. Evaluation at the i-th marked point x; gives a map ev; : M(g,n)7g(.)f‘ L
B0 —IX.
Given v1,...,v € HéR,T,(X;C), we define

4 *
Ty ey ) ED) = / iy evivi
L 7/87ﬂ T —_ T X , 1
P W el e e (NYE) |
€ CoXiz 541

where v is the generator of H*(B(T)r;Z) = H*(BU(1); Z) = Z.
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For 7 = Y P73 1,e, € HZp(X;C), we define generating functions

of open Gromov-Witten invariants as follows.

F Sz, Zy,T)
< Z>X7(£’f)

S 3 T g,ﬁ,(ul,gk!l)-~- (i k)

B 0>0 (11 k) ELX Ly

& (20 (~(-1) 7)1, ) € Heg (BZns €)%
where H¢g (BZp,; C) = @] 'C1, .

3.2. Primary closed Gromov-Witten invariants and
A-model free energies

We define genus g, degree 8 primary closed Gromov-Witten invariants:

[T, eviT
<Tf>;f5=/ =i eC.
) —_ ! vir , (N VIr
o e e (N |

g,

This closed Gromov-Witten invariant can be viewed as the case when n = 0
i.e. there is no boundary on the domain curve. The A-model genus g free
energy F gX is a generating function of primary genus g closed Gromov-Witten
invariants.

<T£>X
Frr) = Y —28

|
B,£>0 e

The BKMP remodeling conjecture builds the mirror symmetry for the
open Gromov-Witten potentials Fgﬁ(ﬁ’f)(Zl, evyZn,T) as well as free ener-
gies F gX (1).

3.3. Descendant closed Gromov-Witten invariants

Given 71, ..., 7, we define a generating function of genus g, n-point descen-
dant closed Gromov-Witten invariants:

X X
<< " Tn >> ¥ 1< g T 7_£>
21—1/11’ 7Zn_wn g,n 2! 21—%’ ’Zn_q/}n’ 97,3’

B0
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where ¢; = ¢1(L;) and L; — ﬂgynM(X , B) is line bundle whose fiber at mod-
uli point [u: (C,x1,...,2,4e) — X] is the cotangent line T} C at the i-th
marked point to (the coarse moduli space of) the domain curve.

We will state an extension of the remodeling conjecture to higher genus

. . Y1 Tn
descendent potentials << Pt R »g,n'

4. Eynard-Orantin invariants of the mirror curve
4.1. Fundamental normalized differential of the second kind

In this subsection, we recall the definition of the fundamental normalized
differential of the second kind B(p1, p2) (see e.g. [53]) for a general compact
Riemann surface C.

Let C be a compact Riemann surface of genus g. When g > 0, let Ay, By,
..., Ag, By be a symplectic basis of (H;(C;C),-):

Ai-Aj=B;-Bj=0, A -Bj=—-Bj-A =0d;

where - is the intersection pairing. For our purpose, we need to consider
H1(C; C) instead of the integral first homology group Hi(C;Z). We assume
that the Lagrangian subspace @f_; CA; of Hy(C;C) is transversal to the
Lagrangian subspace

HYW(©): = {y € Hi(T;C) : (0,7) =0 V0 e HYO(C)}

where ( , ): H(C;C) x H(C;C) is the natural pairing; this assumption
holds when Ai,..., Ay € Hi(C;R).

The fundamental normalized differential of the second kind B(p1, p2) on
C is characterized by the following properties:

1) B(p1,p2) is a bilinear symmetric meromorphic differential on C, x C,,.

2) B(p1,p2) is holomorphic everywhere except for a double pole along the
diagonal. If p1, ps have local coordinates z1, zo in an open neighborhood
Uofpe éq then

1
B(pl,pQ) = ( 2 + a(21,22)> d21d22

(21 — 22)

where a(z1, 2z2) is holomorphic on U x U and symmetric in 21, 2o.
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In fact, we do not need a particular choice of A-cycles. We just need to
specify a Lagrangian subspace of (H;(C; C), -) transversal to the Lagrangian
subspace H'0(C;C)* c H{(C;C) such that the period of B(pi,ps) along
any element in this subspace is zero.

The fundamental differential B(p1,p2) also satisfies the following prop-
erties:

(4) If f is a meromorphic function on C then
df (p1) = Resp,—p, B(p1, p2) f (p2)-

(5) / B(p1,p2) = 27V —1w;(p2), where w; is the unique holomorphic
p1€EB -
1-form on C such that fAV wi = 0jj.

4.2. Choice of A-cycles on the compactified mirror curve

The mirror theorem for semi-projective toric orbifolds [33] relates the 1-
primary 1-descendant function (the J-function)

e

to certain hypergeometric I-function I (g, z) under the mirror map

logqa + ha(q), a=1,...,p
Ta =
27‘(’\/ G(l+ho(q)), a=p+1,....,p+s.

which as the prescribed leading term behavior (all h,(q) are power series
in q).

It is a well-known fact that these mirror maps are given by such pe-
riod integrals where 4, € H;(Cy; C). The inclusion C, < C, induces a sur-
jective group homomorphism Hi(C,; C) = C?~1 — H,(C,) = C?9 where
the kernel is generated by the n loops around the n points in Cy \ Cy; each
of these n loops is contractible in Cy, and the sum of these n loops is ho-
mologous to zero in C,. The images of A, € H1(Cy;C) in Hy(Cy;C) span
a Lagrangian subspace L4 C H; (6(]; C) transversal to the Lagrangian sub-
space H'9(C,)*+ C H1(Cy; C). We use the Lagrangian subspace L4 to define
our fundamental normalized differential of the second kind B(p1,p2) for the
purpose of constructing higher genus B-model invariants.
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4.3. The Eynard-Orantin topological recursion

We use the fundamental differential B prescribed above to run the Eynard-
Orantin topological recursion. It starts with two initial data (unstable cases)

wo1 =0, wo2=B.

The stable cases (29 —2+n > 0) are defined recursively by the Eynard-
Orantin topological recursion:

wg n(ph cee 7pn)

J&, B(pn, €)
= Res OP— Wg—1 1p7ﬁ7p17"‘7p —1
2 Reson gl — gy | <ot )
pOGCrlt( )
+ > Way | 1141 (s P1)Wg, |.7141 (D5 pJ)) :
g1+g2=g

IuJ={1,....,n—1}

The resulting wgn for 29 —2+n > 0 is a symmetric meromorphic form on
(Cg)™. They are holomorphic on (C, \ Crit(X))" and satisfy the following
properties:

1) For any j € {1,...,n} and any pg € Crit(X),
ReSpj_>p0QJ97n(p17 U 7pn) - 0

2) For any j € {1,...,n} and any i € {1,...,g},

/ Wgn(P1,...,pn) = 0.
p;€A;

4.4. B-model open potentials

For ¢ € Zy, = 7Z/mZ, let

._\

m—
2n/—=1kE /
€

k=0

1
m

Then {1, : £ =0,1...,m — 1} is a canonical basis of H¢y(BZy,;C).
Recall that £ intersects a unique 1-dimensional orbit [ of the T-action
on X. We assume that the closure [ of [ in X is non-compact, so that L is
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an “outer” brane. Then the 2-dimensional cone associated to [ corresponds
an edge e on the boundary of the polytope P, and |eN N’| =m + 1. Let
D C S be the torus invariant divisor associated to the edge e. For generic
q, the compactified mirror curve 6q intersects D transversally at m points
DOy -« -y Pm—1. For £ € {0,1,...,m — 1}, there exist open neighborhoods Uy
of P in the compactified mirror curve C, and U of 0 in P! = C* U {0, o}
such that X|y, : Uy — U is blholomorphlc. Let pp := (X|p,) ™' : U —= Up. We
define B-model topological open string partition functions as follows.

1) disk invariants

R x):= 3 [ ((os¥(ux) ~tog v ) 5 ) e

LELm,

which take values in H¢ g (BZy,; C).

2) annulus invariants

Fyo(q; X1, Xo)
X, X
1 2 dX!dX!
= > / / <,0e1><%) wo,2 — (X,IX,Q) >W1®Wz

Ly o€

which take values in Hy (BZ,; C)®?
3) 29— 2+n>0

an anlu"'v
Xl n
= Z / / (pe, X - X pp, ) wgnte, @ -+ 1y,
€T
which take values in HEp (BZy,; C)®"
Each of the m™ components of Fgm(q; X1,...,X,) is a power series in
qi,---sqp+s, X1,-..,X, which converges in an open neighborhood of the
origin.

4.5. B-model free energies

For g > 2, the B-model free energy is defined as

. 1 ~

Fy(q) = 29 — 2 Z Respp,wg,1(p)2(p),
poeCritX
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where

dd = .

Notice that the function ® locally defined around each critical point of X
has some ambiguities, since ® is multi-valued, and ® is determined by ® up
to a constant. However, the residue is well-defined since is does not depend
on these ambuities.

For g = 1, the free energy is defined up to a constant

y 1 1
Fl(q)z—ilogTB—ﬂ Alogh’l’o.
pOGCritX

Here the Bergmann 7-function 75 is defined up to a constant by

When g = 0, the prepotential Fj is characterized by

OFy _ / B(p).
87'(1 pEB,

Notice that since ® is a multi-valued differential form, and it satisfies the
following

d
0®(p) :/ wo,2(P,p/)-
67_(1 p'EB,

The prepotential Fy defined this way is only determined up to a quadratic

polynomial in 7.

5. All genus open-closed mirror symmetry

In this section, (£, f) is an outer Aganagic-Vafa Lagrangian brane in X, so
that the closure of [ = C* x BZ,, contains a unique T fixed point. Let G
be the stabilizer of this fixed point. Then G is a finite abelian group which
contains Z,, as a subgroup. When X is smooth, we have m =1 and G is
trivial.
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5.1. All genus open-closed mirror symmetry:
the remodeling conjecture

Conjecture 1 (Bouchard-Klemm-Marino-Pasqetti [20, 21]).
Fon(; X1, Xp) = (1) G ES D (13 24, .., Z0)

where (q, X;) and (T,Z;) are related by the open-closed mirror map:

logqq + ha(q), a=1...,p
G+ he(q)), a=p+1,....p+s

o= 27r\/ )
log Z; = log X; + ho(q)

where ho(q), h1(q), ..., hpts(q) are explicit power series in q convergent in a
neighborhood of the origin in CPT5. Notice that when n = 0, this is a state-
ment about closed Gromouv- Witten mirror symmetry (and the right-hand side
does not depend on (L, f)). When (g,n) = (1,0) and (0,0), the statement is
valid up to a constant and a quadratic polynomial in 74, respectively.

Indeed, the above statement is more general than the original conjecture
in [20, 21], where they conjecture about non-gerby branes (the m =1 case).

Conjecture 1 was proved when X = C? independently by L. Chen [28]
and J. Zhou [116]. In 2012, Eynard-Orantin provided a proof of the BKMP
remodeling conjecture for all symplectic smooth toric Calabi-Yau 3-folds
[47]. In the orbifold case, the authors prove Conjecture 1 first for affine toric
Calabi-Yau 3-orbifolds [51] and later for all semi-projective toric Calabi-Yau
3-orbifolds [52].

We now give a brief outline of the proof of Conjecture 1 in [52]. Given-
tal proved a quantization formula for total descendant potential of equiv-
ariant GW theory of GKM manifolds [57-59]. (See also the book by Lee-
Pandharipande [77].) The third author generalized this formula to GKM
orbifolds [120]. The quantization formula is equivalent to a graph sum for-
mula of the total descendant potential, which implies a graph sum formula

FXED = Y wa(l)
g,n =\
]
g,n
where G, is a certain set of decorated stable graphs. The unique solution
{wg,n} to the Eynard-Orantin topological recursion can be expressed as a
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sum over graphs [43-45, 70]. We expand the graph sum formula in [43,
Theorem 3.7] (which is equivalent to [44, Theorem 5.1]) at punctures {py :
¢ € Zp,}, and obtain a graph sum formula

F= Y el
T [ Auy(D)]
T'eGy,n

Finally, we use the genus-zero mirror theorem for smooth toric DM stacks
[33] to prove
wp(T) = (1) |G wa(T)

for all decorated graphs r.
5.2. Descendant version of the all genus mirror symmetry

Iritani [68] studies the oscillatory integral and shows the following

To_([EE)
/SYZ(]-')e Q_<<Z_¢>>0,1’

where F is a T s-equivariant coherent sheaf on X'. Here the SYZ is the SYZ T-
dual functor, which takes a T s-equivariant coherent sheaf on & and produces
a Lagrangian brane in (C*)2.! The equivariantly perturbed superpotential W
is given by

W=W-—logX — flogY.

Let (Ty)r = U(1) be the maximal torus of T; = C*, and let pu(g,y, : X —
R be the moment map of the Hamiltonian (T ¢)r-action on (X, w). We say a
T -equivariant coherent sheaf 7 on X is admissible if (i) pr,), (supp(F)) C
R is bounded below, and (ii) the Lagrangian brane SYZ(F) reduces to a
cycle v(F) on the mirror curve Cy, while the oscillatory integral could be

done on the curve
/ L 4XdYdZ / eZyda
SYZ(L) XYZ +(F) '

Condition (i) implies that Z is bounded below on (F), so the integral on
the RHS converges when z € (—00,0).

ritani [68] does not explicitly states this identity under the SYZ transform, but
instead he matches the cases F = Oy and a skyscraper sheaf. He then applies the
monodromy to Oy to obtain other line bundles on X. These sheaves generate the
K-theory group.
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Using this result and combining with the remodeling conjecture, we have

Theorem 2 (Descendant version of the all genus mirror symmetry

for X).
[ e, () ) )
ALa)xex (L) R\ B R T

To obtain this theorem, one observes that when integrating w, , we are
simply integrating the leaf terms of w4 (L), since only leaf terms are forms
while all other graph component contributions are scalars. The genus 0 oscil-
latory integral theorem from [68] turns these leafs into genus 0 descendants,
and the graph becomes precisely the graph for higher genus descendant po-

tentials.
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