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Heat kernel measures on random surfaces

Semyon Klevtsov and Steve Zelditch

The heat kernel on the symmetric space of positive definite Her-
mitian matrices is used to endow the spaces of Bergman metrics
of degree k on a Riemann surface M with a family of probability
measures depending on a choice of the background metric. Under
a certain matrix-metric correspondence, each positive definite Her-
mitian matrix corresponds to a Kähler metric on M . The one and
two point functions of the random metric are calculated in a vari-
ety of limits as k and t tend to infinity. In the limit when the time
t goes to infinity the fluctuations of the random metric around the
background metric are the same as the fluctuations of random ze-
ros of holomorphic sections. This is due to the fact that the random
zeros form the boundary of the space of Bergman metrics.

1. Introduction

In a recent series of articles [8, 9], the authors have been investigating a new
approach to defining ‘random surfaces’. The main idea is to define integrals
over the infinite dimensional space K[ω0] of metrics of fixed area 2π in a fixed
conformal class [ω0] on a Riemann surface M as limits

(1)

∫
K[ω0]

F (g)e−S(g)Dg := lim
k→∞

∫
Bk

Fk(g)e
−Sk(g)Dkg

of integrals over finite dimensional spaces Bk of Bergman metrics. Given
a background metric1 ω0 and a choice of a basis {sj(z)} of holomorphic
sections of Lk → M , the spaces Bk can be identified with the non-positively
curved symmetric space PNk

:= SL(Nk,C)/SU(Nk) of positive definite
Hermitian matrices. The general question is to find sequences {dμk =
e−Sk(g)Dkg} of measures on Bk which are independent of the choice of the
basis {sj(z)}, which vary in a simple way under the change of the reference
point ω0 ∈ K[ω0] and have good asymptotic properties as k → ∞. It would

1With some abuse of notation we make no distinction everywhere between the
metric g and the corresponding Kähler form ω, connected as ω = igab̄dz

a ∧ dz̄b̄.
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be particularly interesting to construct a sequence {dμk} which tends to Li-
ouville theory measure on metrics of fixed area

∫
M ω0, although that is not

the aim of the present article.
The sequence of measures we study in this article are the heat kernel

measures

(2) dμt
k(P ) := pk(t, I, P )dV (P ),

where dV (P ) is Haar measure, pk(t, P1, P2) is the heat kernel of the sym-
metric space PNk

and I is the identity matrix. Under the matrix-metric
identification Bk � PNk

the identity matrix corresponds to the background
metric ωφI

and the heat kernel measure (2) is transported to Bk. The mea-
sure is invariant under the action of the unitary group U(Nk). Hence it is
invariant of the choice of the basis of sections used to identify metrics and
matrices. Then (2) is the probability measure on Bk induced by Brownian
motion on PNk

starting at the identity I and continuing up to time t. The
heat kernel measure is almost canonical, the only choices being the time t
and the background metric ωφI

used to make the identification and to start
the Brownian motion. The purpose of this article is to study the behavior of
the heat kernel measure (2) on Bk as k → ∞. The main geometric quantities
we study are the area statistics

(3) XU (ω) =

∫
U
ω

measuring the area of an open set U ⊂ M with respect to the random area
form ω ∈ Bk. We determine the means and variances of these random vari-
ables and their smooth analogues Xf (ω) =

∫
M fω with f ∈ C∞(M) in var-

ious regimes, e. g. when the time t = tk is allowed to vary with k. The cal-
culations are valid for any choice of background metric and the dependence
on the background metric is simple and explicit.

The heat kernel measure (2) is U(Nk)-invariant in the P variable. Such
invariant measures have generic form dμBk

(P ) := FBk
(eλ)dμHaar(P ), where

FBk
(eλ) is a function of the eigenvalues of P . It was shown in [9] that the

eigenvalue density FBk
(eλ) induces a function Fk,2(ν1, ν2) on R2

+, so that
the 2-point correlation function has the form,

(4) K2,k(z1, z2) := Ek φP (z1)φP (z2) = φI(z1)φI(z2) +
1

k2
I2,k(ρ),
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where

(5) ρ(z1, z2) =
|Bk(z1, z2)|2

Bk(z1, z1)Bk(z2, z2)

is an important invariant of the Szegö kernel Bk(z1, z2) of the background
metric, known as the Berezin kernel. Thus, I2,k(z1, z2) is the bi-potential
of the variance of the area forms (or Kähler metrics in higher dimensions)
relative to the exterior tensor product ω0 � ω0,

(6) Var
(
ωφ

)
= E

(
ωφ � ωφ

)−E
(
ωφ

)
�E

(
ωφ

)
= E

(
ωφ � ωφ

)− ω0 � ω0,

in the sense that

(7) Var
(
ωφ

)
=

1

k2
(i∂∂̄)z (i∂∂̄)w I2,k(z, w), .

The general formula for I2,k(ρ) for any U(Nk)-invariant measure is,

I2,k(ρ) =
1

2

∫
R

2
+

∫ π

0
log(ν21 cos

2 β + ν22 sin
2 β)(8)

log
A+

√
A2 −B2

2
F2,k(ν) sinβ dβdν1dν2,

with ⎧⎨
⎩
A = (ν21 cos

2 β + ν22 sin
2 β)ρ+ (ν21 sin

2 β + ν22 cos
2 β)(1− ρ),

B = 2(ν21 − ν22)
√

ρ(1− ρ) cosβ sinβ.

The transform FBk
(eλ) → F2,k(ν) is very difficult to evaluate, and we do

not know how to do so directly even for the heat kernel measure. The first
term of (4) is the potential of ωφI

(z1)ωφI
(z2) where ωφI

is the background
metric, and the second term I2,k(ρ) is the correction to this term, which we
call the variance term. The key point is that I2,k(ρ) is a function only of the
variable ρ. This result defnes a transform

FBk
(eλ) → I2,k(ρ)

from eigenvalue densities to variance terms depending only on ρ. It would
be interesting to know if this transform is invertible in some sense, so that
one can construct U(Nk)-invariant measures with prescribed pair correlation
functions. In this article we calculate I2,k(ρ) when FBk

(eλ) comes from the
heat kernel measure, by a different method (also used in [9]).
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1.1. Main results

In the case of heat kernel measures we calculate the pair correlation function
explicitly not just for Riemann surfaces, but for general projective Kähler
manifolds (see §4.2). The calculations give an explicit formula for the vari-
ance term of the 2 point function I2,k(t, ρ):

∂ρI2,k(t, ρ) =
2t

ρ
− e−t/2√

2πt

√
1− ρ

ρ

∫ ∞

−∞
dλ

e−
1

2t
λ2

coshλ√
coth2 λ− ρ

(9)

log

√
coth2 λ− ρ+

√
1− ρ√

coth2 λ− ρ−√
1− ρ

.

We do not integrate the result because I2,k(t, ρ) is the expected “bi-potential”
and the fluctuations of the metric are obtained by differentiating it. An im-
portant aspect of (9) is that the expression has no k-dependence, except for
the variable ρ (5), which has the form e−kD(z1,z2) where D(z1, z2) is the dias-
tasis (an analog of distance-squared function for Kähler manifolds) between
the points, with respect to the background metric, see §2, Eq. (18).

We consider several limits of this joint formula in §4. From the geometric
viewpoint, the most natural scaling of the time variable is tk = ε−2k t so that
the excursion distance of the Brownian motion in PNk

at time tk is essentially
distance t in the Mabuchi metric on K[ω0].

Similarly to [17, 18], we also study the large k asymptotics both in the
unscaled and scaled regimes. The scaling limit is common in related prob-
lems in the physics of N particles where one lets the number N → ∞ and
the volume of the surface V → ∞ such that N

V tends to a limiting density
(see e.g. [14] for a similar scaling in the quantum Hall effect). The natural
length scale for metrics in the Bergman space Bk is 1√

k
. We consider pairs

(z1, z2) ∈ M ×M to be close to the diagonal if d(z1, z2) ≤ log k√
k
, and to be

‘off-diagonal’ if d(z1, z2) ≥ C log k√
k
, where d(z1, z2) is the distance between

points relative to the background metric. In the scaling limit we consider
the asymptotics of I2,k(t, ρ) for pairs of points of the form (z, z + u√

k
) with

|u| ≤ C log k, in which case ρ � e−|u|2 . The scaling asymptotics combined
with the time scaling tk → ∞ has a limit correlation function with a loga-
rithmic singularity along the diagonal z1 = z2 (where ρ = 1). The variance
(i∂∂̄)z1 (i∂∂̄)z2I2,k(t, ρ) of the Kähler metric then has a δ(z1 − z2) singularity
along the diagonal. In fact, the scaling limit correlation function turns out
to be identical to that for zeros of random holomorphic sections determined
in [17] (Lemma 3.7).
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When t ∈ R+ is finite and fixed, then I2,k(t, ρ) is smooth at ρ = 1
(see (38)), and has a convergent expansion (i∂∂̄)z1 (i∂∂̄)z2I2,k(t, ρ) ∼ |z1 −
z2|2 and there exist coefficients an(t) so that

(10) I2,k(t, ρ) =

∞∑
n=0

an(t)ρ
n.

Off the diagonal, ρ → 0 and we can obtain the asymptotics by Taylor ex-
panding the amplitude of the integral (9). The first term 2t

ρ is singular as

ρ → 0. But in §4.3, resp. in §4.4, it is shown that the 2t
ρ ‘singularity’ can-

cels in the sum of the two terms. Hence the variance of the potential is
exponentially decreasing off the diagonal.

1.2. Comparison with [17, 18]

In §4.4 we first let t → ∞ and then let k → ∞. It turns out that in this
limit, the random metrics we obtain are identical with random zero sets of
holomorphic sections of the kth power Lk of the line bundle with Chern class
[ω0]. As explained in §5, as t → ∞ the mass of the heat kernel concentrates
on the ideal boundary of the symmetric space, where the metrics correspond
to the zero sets of holomorphic sections. On a Riemann surface, the random
metrics become normalized sums of delta functions on random point con-
figurations with k points. We verify that the pair correlation function of
random Kähler metrics in Bk in the limit t → ∞ is given by the same for-
mula as in [17] for correlations between zeros of random sections. For large
t (depending on k), the random metric is close to such a point configuration
measure.

We now explain this similarity in more detail so that the notation and
purpose of this article are synchronized with those of [17, 18]. The model
of Gaussian random holomorphic sections and the results are described in
more detail in §5.1. In those articles, the role of the area form (in complex
dimension one) is played by the zero set measure Zs of a random section
s ∈ H0(M,Lk), which defines a “singular metric”. Hence it is not surprising
that there are relations between random smooth metrics and random zero
sets.

In [17, 18], the zero current is given by Zs =
i
π∂∂̄ log |s|2 and, analogously

to (6) the variance current of zeros is defined by,

(11) Var
(
Zsk

)
= E

(
Zsk � Zsk

)−E
(
Zsk

)
�E

(
Zsk

)
.
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In [17], it was shown that the bi-potential I2,k of the variance2 (11) in the
sense of (7) is given by dilogarithm

(12) I2,k(z, w) = −
∫ ρ

0

log(1− s)

s
ds .

In §4.4 we show that the t → ∞ limit of the heat kernel ensemble gives
precisely the same bi-potential, hence the same variance.

For zeros of random holomorphic sections over a Riemann surface, the
area statistic (3) with respect to Zs counts the number of zeros of s in U
and is denoted by NU in [17]. it is shown there that

Var
(NU

)
= −

∫
∂U×∂U

∂̄z1 ∂̄z̄2Qk(z1, z2) .

and that the number variance for zeros has the asymptotics,

Var
(NU

)
= k1/2

[
ν1Vol1(∂U) +O(k−

1

2
+ε)

]
,

where ν1 =
ζ(3/2)
8π3/2 . Thus, the same formula is valid in the limit t → ∞ of

heat kernel random metrics. Similar formulae for variances of XU and Xφ

for random metrics can be derived from the explicit formula (9) for I2,k(t, ρ)
for any t in the heat kernel measure ensembles. The details are lengthy and
will be presented elsewhere.

1.3. Asymptotic central limit theorem

It is shown in [18] that the fluctuations of the smooth linear statistics
Xf in the case of random zeros tend to a Gaussian field with variance
N (0,

√
κ1 ‖∂∂̄f‖2), see §5.2 for more details. This result holds when t = ∞

for heat kernel random metrics. The analogous results for (3) do not seem
to be known at present.

It is very plausible that for general times tk the smooth linear statistics
Xf with respect to the heat kernel measure dμtk

k are also asymptotically
normal, with a related variance. Such an asymptotic central limit theorem
would be a concrete measure of how closely heat kernel random metrics
compare to random singular metrics defined by point processes of random
zero sets, or to those studied in [1, 5, 14, 20], where the fluctuations of linear
statistics of eigenvalues tend to a Gaussian free field. We plan to investigate

2In the notations of [17], I2,k corresponds to 4π2Qk.
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the asymptotic normality of fluctuations of random metrics in future work.
These asymptotic normality results would also give a comparison of heat
kernel random metrics to Liouville random metric. The fluctuations in the
latter case are of the type of Gaussian multiplicative chaos.

1.4. Discussion

Heat kernel random metrics are the metrics obtained by starting at the
background metric ωφI

and following a Brownian motion on PNk
for time t.

The formula (9) reflects the geometry of Brownian motion of the non-
positively curved symmetric space PNk

, which is very different from that of
Euclidean space, see §3 for background. First, due to non-isotropic nature of
the Haar measure, the heat measure is concentrated along the SU(Nk)-orbit
of a distinguished element δNk

, the half-sum of the positive roots. Second,
in the radial direction the heat kernel measure concentrates in a kind of
annulus of radius t around the SU(Nk)-orbit of δNk

, see §3.2. This is why, as
t → ∞, the heat kernel measure becomes supported on the ideal boundary
∂∞PNk

. Its SU(Nk) invariance implies that the boundary measure is the
same as the measure on zero sets of holomorphic sections used in [17].

As mentioned above, ‘heat kernel’ random metrics are not like the ran-
dom metrics of Liouville quantum gravity. On a very heuristic level, one may
understand the difference by thinking of SU(Nk)-invariance as a discretiza-
tion of invariance under the group SDiffω0

(M) of symplectic diffeomor-
phisms of the background symplectic form (M,ω0). This is far from the in-
variance group of Liouville theory. It is plausible that the only SDiffω0

(M)-
invariant probability measure on K[ω0] is δω0

.
This concentration of measure phenomenon, that heat kernel random

metrics concentrate on the background, is the same phenomenon that occurs
for random zeros in [17, 18] and for the quantum Hall point process in [14].
Random zero sets of N zeros or random point configurations of N electrons
also concentrate at the background metric as N → ∞. In these cases it is
customary to dilate the space to obtain configurations of constant density.
In the case of random metrics, if one dilates small balls of radius 1√

k
around

a point z0 by the factor
√
k, then the random metrics become metrics on C

and the 2-point correlation function of the limit measure acquires the new
term δ(z − w).
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toral fellowship and the grants NSh-1500.2014.2 and RFBR 15-01-04217. SZ
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2. Bergman metrics

We briefly review the properties of Bergman metrics, referring to [8, 16]
for further background. As above, (M,ω, J) can be any compact Kähler
manifold with integral Kähler form. The Riemannian metric is g(X,Y ) =
ω(JX, Y ). The simplest case is that of a Riemann surface, where a Kähler
class is the same as a conformal class of metrics with fixed area. Instead
of parametrizing metrics g = eug0 by the Liouville field u we parametrize
them by the Kähler potential φ, i.e. ωφ = ω0 + i∂∂̄φ, relative to the reference
Kähler form ω0.

Bergman metrics of degree k are special Kähler metrics induced by holo-
morphic embeddings

ιs(z) = [s1, . . . , sNk
] : M → CP

Nk−1

of M into complex projective space. Here, {sj} is a basis of the space
H0(M,Lk) of holomorphic sections of powers Lk of an ample line bun-
dle L → M with first Chern class c1(L) = [ω0]. Also Nk = dimH0(M,Lk).
Given a reference basis {sj} one obtains all others by applying an element
A ∈ GL(Nk,C) to it sAj =

∑
Ajlsl and induces the embedding

ιsA : M → CP
Nk−1, ιsA = A ◦ ιs.

The associated Bergman metric is then,

(13) ι∗sAωFS =
1

k
i∂∂̄ log

Nk∑
j=1

|sAj(z)|2.

Since U(Nk) is the isometry group of ωFS , the space of metrics is the quotient
symmetric space PNk

= GL(Nk,C)/U(Nk). With no loss of generality one
may restrict to SL(Nk,C) and obtain the quotient SL(Nk,C)/SU(Nk).

We choose a basis of sections {si(z)} = {s1(z), ..., sNk
(z)} of H0(M,Lk)

which is orthonormal with respect to the reference (background) metric hk0
on Lk and the corresponding Kähler metric ω0 = − 1

k i∂∂̄ log hk0 on M

(14)
1

V

∫
M

s̄i(z)sj(z)h
k
0

ωn
0

n!
= δij ,
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where n = dimM . The Bergman kernel of the background metric is the
kernel of the orthogonal projection onto H0(M,Lk) with respect to the inner
product above, and is given by

(15) Bk(z1, z2) =

Nk∑
j=1

sj(z1)s̄j(z2)

Given a positive Hermitian matrix P = Pij the associated Bergman metric
is,

(16) ωab̄(z) =
1

k
∂a∂̄b̄ log s̄i(z)Pijsj(z).

In terms of A ∈ GL(Nk,C) above, P = A†A. We introduce the Bergman
potential as follows

(17) φP =
1

k
log s̄i(z)Pijsj(z) =

1

k
log |〈eΛUs(z), Us(z)〉|2.

A key property is that K[ω0] =
⋃

k Bk, i.e. the full space of metrics in
a fixed Kähler class is the closure of the set of Bergman metrics. Hence
K[ω0] is well approximated by Bk for large k, and there are now many re-
sults showing that it is well approximated in much stronger geometric ways.
This approximation problem was raised by S. T. Yau in [21], see [16] for
background.

2.1. Berezin kernel

The key invariant is the Berezin kernel (5), given in the above notation by

(18) ρ =
|〈s(z1), s(z2)〉|2
|s(z1)|2|s(z2)|2 ,

or in terms of the Bergman kernel

(19) ρ = P 2
k (z1, z2) :=

|Bk(z1, z2)|2
Bk(z1, z1)Bk(z2, z2)

.
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2.2. Matrix-metric correspondence

The matrix-metric correspondence Eq. (16) uses a choice of basis {sj} of
H0(M,Lk). Any natural measure on Bk must be independent of the choice
of this basis. We pause to describe such natural measures.

Any Kähler metric ω = ω0 + i∂∂̄φ in K[ω0] induces an inner product

Hilbk(φ) on H0(M,Lk) by the rule

〈s1, s2〉Hilbk(φ) =

∫
M

s̄1(z̄)s2(z)h
kω

n

n!
.

Given a background inner product G0 = Hilbk(φ0), any other inner product
has the form 〈s1, s2〉G = 〈PGs1, s2〉G0

where PG is a positive Hermitian oper-
ator on H0(M,Lk) with respect to G0. It has a well-defined polar decompo-
sition eΛU where U ∈ U(G0) is unitary with respect to G0. Its eigenvalues
are encoded by the diagonal matrix ΛG and its eigenvectors are encoded
by U .

In making calculations, we need to parametrize such positive Hermitian
operators by positive Hermitian matrices, which requires a choice of a G0-
orthonormal basis of H0(M,Lk). Any measure intrinsically defined on the
space of positive Hermitian operators will be independent of the choice of
basis. Haar measure and the heat kernel are examples of such measures.

3. Heat kernel

In this section we review the heat kernel on PN
3. Bergman metrics are

unchanged if the positive Hermitian matrix P is multiplied by a scalar, so we
may normalize P so that detP = 1. Then PN = G/K where G = SL(N,C)
and K = SU(N). We denote by k the Lie algebra of the maximal compact
subgroup K ⊂ G and let g = k⊕ p. Let a be a maximal abelian subspace
of p and let � = dim a. The set of positive roots is denoted by R+. The
roots are ei − ej , and the positive roots satisfy i < j and have multiplicity
one. For SL(N,C)/SU(N) the half sum of the positive roots is the element
δN = (−N−1

2 ,−N−3
2 , . . . , N−12 ). For background, see [12, 13].

We refer to the matrix decomposition P = U †eΛU for Λ = diag(λ1, . . . ,
λN ), and U ∈ U(N) as ‘polar coordinates’ on PN , where real numbers λj ∈
(−∞,+∞) correspond to the Cartan elements of SL(N,C).

3In this section we adopt shorthand notation N = Nk.
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The CK (Cartan-Killing) metric is given by

(20) ds2 = Tr(P−1dP )2

for P ∈ GL(N,C)/U(N). This metric is bi-invariant under the action of
GL(N,C).

The associated volume form dV on the symmetric space SL(N,C)/
SU(N) of positive Hermitian matrices with detP = 1 is the bi-invariant
Haar measure,

(21) dV = δ

⎛
⎝ N∑

j=1

λj

⎞
⎠Δ2(eλ)

N∏
j=1

dλj · [dU ]

[dUU(1)N ]
,

where [dU ] is the standard Haar measure on unitary group.

3.1. Heat kernel measure on SL(N,C)/SU(N)

Following Gangolli [10] (Proposition 3.2; see also [3], section 2), the heat ker-
nel on SL(N,C)/SU(N) with respect to the standard CK (Cartan-Killing)
metric is given in ‘polar coordinates’ (λ, U) on PN by

(22) dμt = gt(λ)dV = C(t,N)
Δ(λ)

Δ(eλ)
e−

1

4t

∑N
j=1 λ

2
jdV.

Here, Δ(λ) =
∏

i<j(λj − λi) is the standard Vandermonde determinant.
The normalization constant C(t,N) in (22) is fixed by the condition that

μt is the probability measure
∫
dμt = 1,

(23) C(t,N) =

√
N

2π(
√
4πt)N2−1 e

− t

12
N(N2−1).

In deriving this we use the volume of the unitary group

VolU(N) = (2π)N(N+1)/2/

N∏
j=1

j!,

see e.g. [15]. The factor e−
t

12
N(N2−1) is e−t‖δN‖2 and arises because ‖δN‖2 is

the bottom of the spectrum of the Laplacian. Putting (21) and (23) together,
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we get the following expression

dμt =

√
N

2π(
√
4πt)N2−1 e

− t

12
N(N2−1)δ

⎛
⎝ N∑

j=1

λj

⎞
⎠Δ(λ)(24)

Δ(eλ)e−
1

4t

∑N
j=1 λ

2
j

N∏
j=1

dλj · [dU ]

[dUU(1)N ]

for the heat kernel measure on SL(N,C)/SU(N) with respect to the CK
metric.

3.2. Geometry of the heat kernel and Brownian motion

In [2] it is proved that the mass of the heat kernel concentrates along the ex-
ponential image of the U(N)-orbit of the δN -axis in a small annulus centered
at 2|δN |t.

If we write H = diag(λ), then the Gaussian factor t−(N2−1)/2e−
‖H‖2

4t is
similar to the heat kernel of Euclidean space. But this Gaussian factor
must compete with the exponential volume growth factor Δ(eλ) and the
factor e−

t

12
N(N2−1) due to the existence of a spectral gap for Δ. The well-

known factor Δ(λ) pushes the eigenvalues of logP apart. The factor J(H)

is bounded by e2〈δN ,�λ〉 and a simplified expression for the heat kernel is

e−t|δN |
2+〈λ,ρN 〉− |λ|2

2t . The maximum of the exponent occurs when �λ = 2tδN .
Following [2], let γ(t) be a positive function with

√
tγ(t) → ∞ as t → ∞,

and let R(t) be a positive function such that R(t)/
√
t → ∞. Consider the

annulus

A(2|δN |t−R(t), 2|δN |t+R(t))

:= {H : 2|δN |t−R(t) ≤ |H| ≤ 2|δN |t+R(t)} ⊂ a

and consider the solid cone

Γ(t) = solid cone around the δN axis of angle γ(t),

and let

Ω(t) = A(2|δN |t−R(t), 2|ρ|t+R(t)) ∩ Γ(t).

Then, according to Theorem 1 of [2],

(25)

∫
U(N) expΩ(t)U(N)

dμt → 1, t → ∞.
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A Brownian motion proof of this result is given in [4]. It shows that as
t → ∞ the mass of μt moves off to a component of the ideal boundary (at
infinity) of PN . In §5 we discuss this boundary.

3.3. Scaling and dilation

In the large k limit, the symmetric space metric on Bk, when properly scaled,
tends to the Mabuchi metric gM on K[ω0] (see [6]). The Mabuchi distance
function is induced by the Riemannian metric on K[ω0] defined by ‖δφ‖2φ0

=∫
M (δφ)2ωn

φ/n! where ωφ = ω0 + i∂∂̄φ. We refer to [16] for background. For

all k, Bk ⊂ K[ω0]. If we rescale the CK metric gCK,k (20) as gk = ε2kgCK,k,

with εk = k−1N−1/2
k , then gk → gM on TBk. Thus, a ball of radius one with

respect to the usual CK metric gCK,k has radius approximately εk with
respect to the Mabuchi distance. It is obviously desirable to consider the
heat kernel measures for this rescaled sequence of metrics.

If we rescale the CK metric to gk = ε2kgCK,k the corresponding Laplacian
scales as Δgk → ε−2k ΔgCK,k

. It follows that the heat operator scales as

exp tΔgk = exp tε−2k ΔgCK,k
.

In effect, it is only the time that is rescaled and the rescaled heat kernel is
pk(ε

−2
k t, I, P ).

4. One and two point correlation functions of random
metrics

In this section, we calculate the one and two point functions of the random
Kähler potential; in the introduction, the latter was stated to be (9). We
use the notation E = Ek for the expectation, which at the beginning could
be with respect to any U(Nk)-invariant measure and then specializes to the
heat kernel measures. For simplicity of notation we often abbreviate Nk by
N and drop the explicit k-dependence.

As mentioned in the introduction, the one and two-point functions are
the data required to study the mean and variance of the area random vari-
ables XU . Evidently,

EkXU =

∫
U
Ek ω,

Var(XU ) =

∫
U×U

Ek [ω(z1)ω(z2)]−
∫
U×U

Ek[ω(z1)]Ek [ω(z2)].

The integrands are the one- and two-point correlation functions.
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4.1. One point function of the Kähler potential

The argument here follows [9]. Using the integral representation of the log-
arithm

(26) logα =
1

τ
+ γ −

∫ ∞

0
xτ−1e−αxdx+O(τ),

where γ is the Euler constant, we can rewrite the expectation value of the
Kähler potential φP (17) relative to the Kähler potential φI of the back-
ground Bergman metric as

Ek[φP (z)− φI(z)](27)

= Ek

[
1

k
log

s̄(z)U †eΛUs(z)

|s(z)|2
]

=
1

k
lim
τ→0

1

τ
+ γ −

∫ ∞

0
xτ−1dx

∫
PN

e−Tr e
ΛUΨU†

dμt,

where introduced the matrix Ψjl = xsj(z)s̄l(z)/|s(z)|2. The integration over
the unitary group can be carried out using Harish-Chandra-Itzykson-Zuber
formula, see e. g. [15, 22] for background. Namely, for any two Hermitian
matrices A and B with eigenvalues aj and bj∫

U(N)

[dU ]

VolU(N)
exp

(
μTrAUBU †

)
(28)

=

⎛
⎝N−1∏

p=1

p!

⎞
⎠μ−N(N−1)/2det

(
eμajbl

)
1≤j,l≤N

Δ(a)Δ(b)
.

It is not hard to check that this expression is well defined even if some of the
eigenvalues coincide. This is the case for the matrix Ψ which has N − 1 zero
eigenvalues and one non-zero eigenvalue equal to x. Hence the integral on
the right hand side of (27) is z-independent and we immediately conclude
that the expectation value of the Bergman metric is equal to the background
Bergman metric

Ek[ωab̄] = ωφI ,ab̄

In fact, this is true for any eigenvalue-type measure [9], since the HCIZ
integral depends on eigenvalues only. Note, that so far no assumptions on
k have been made in this calculation. Considering now the limit of k large,
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we invoke the Bergman kernel expansion [9] to show that the background
Bergman metric ωφI

tends to the reference Kähler metric,

ωφI ,ab̄ = ω0 ab̄ +O(1/k).

Now we would like to consider the variance of XU from its mean ω0(U).

4.2. The two point function

In this section we prove the formula (9) for the two point function, and then
discuss its asymptotics in various regimes. In the terminology of [17] we are
finding a ‘bi-potential’ for the variance. Although the calculations of this
bi-potential are completely different from the case of random holomorphic
sections in [17], the final formulae are somewhat similar and when t → ∞
they are identical.

Recall that the two-point function (4) of the Kähler potential is the sum
of the background term φI(z)φI(w) plus the variance term I2,k(ρ). Instead
of using the formula (8) for this term, we take the approach of writing

K2,k(z, w)− φI(z)φI(w)(29)

=
1

k2
Ek

[
log

s̄(z1)U
†eΛUs(z1)

|s(z1)|2 log
s̄(z2)U

†eΛUs(z2)

|s(z2)|2
]

=
1

k2
lim

τ1,τ2→0

(
I2,k(t, ρ, τ1, τ2) + ρ-independent terms

)

where we do not write down the ρ-independent terms, since ultimately we
are interested in the dependence of the correlation function on coordinates,
which enter only through ρ(z1, z2). Here

I2,k(t, ρ, τ1, τ2) =

∫∫ ∞

0
xτ1−11 xτ2−12 dx1dx2

∫
PN

e−Tr e
ΛUΦU†

dμt.(30)

and we introduced the matrix Φjl = x1
sj(z1)s̄l(z1)
|s(z1)|2 + x2

sj(z2)s̄l(z2)
|s(z2)|2 . It has rank

2 with two non-zero eigenvalues given by

φ1,2 =
1

2

(
x1 + x2 ±

√
(1− ρ)(x1 − x2)2 + ρ(x1 + x2)2

)
.
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Applying the HCIZ formula (28) to the unitary integration in Eq. (30) we
obtain

(−1)N(N−1)/2 N !(N − 1)!

(φ1φ2)N−2(φ1 − φ2)

e−φ1eλ1−φ2eλ2∏N
j=2(e

λ1 − eλj )
∏N

l=3(e
λ2 − eλl)

where we used the fact that the integration measure is symmetric in eigen-
values λ’s.

Now we use the explicit form of the heat kernel measures μt (24). The in-
tegral I2,k(t, ρ, τ1, τ2) in Eq.(29) with this eigenvalue measure can be written
as

I2,k(t, ρ, τ1, τ2) = (−1)N(N−1)/2C(t,N)
VolU(N)

(2π)N
N !(N − 1)!∫∫ ∞

0

xτ1−11 xτ2−12 dx1dx2
(φ1φ2)N−2(φ1 − φ2)∫ ∞

−∞
dy

∫ N∏
j=1

dλj Δ(λ)Δ12(e
λ)

exp

⎛
⎝− 1

4t

N∑
j=1

λ2
j + iy

N∑
j=1

λj − φ1e
λ1 − φ2e

λ2

⎞
⎠ ,

where we defined the partial Vandermonde determinant Δ12(e
λ) =∏

3≤j<l≤N (eλj − eλl), which excludes the first two eigenvalues eλ1 and eλ2 .
The y-integration enforces the delta-function constraint in the measure (24).

Using antisymmetry of Δ(λ) under exchange of two eigenvalues, Δ12(e
λ)

can be replaced by (−1)1+N(N−1)/2(N − 2)! e
∑N

l=3(l−3)λl inside the integral,
which leads to the further simplification

I2,k(t, ρ, τ1, τ2)(31)

= − VolU(N)

(2π)N
C(t,N)N !(N − 1)!(N − 2)!∫∫ ∞

0

xτ1−11 xτ2−12 dx1dx2
(φ1φ2)N−2(φ1 − φ2)

·
∫ ∞

−∞
dy

∫ N∏
j=1

dλj Δ(λ)e
∑N

j=1

(
− 1

4t
λ2
j+iyλj

)
+
∑N

l=3(l−3)λl−φ1eλ1−φ2eλ2

,

Thus after the HCIZ integration we got rid of most difficult factor Δ(eλ) and
left with a Gaussian integral with a polynomial amplitude, except for the
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terms φ1e
λ1+φ2e

λ2 in the exponent. Note that the k-dependence is entirely
in the variable ρ inside φ1, φ2.

The next step is to calculate the integrals in the last line of (31),

I2,k(t, φ1, φ2) :=

∫ ∞

−∞
dy

∫ N∏
j=1

dλj Δ(λ)(32)

e
∑N

j=1

(
− 1

4t
λ2
j+iyλj

)
+
∑N

l=3(l−3)λl−φ1eλ1−φ2eλ2

.

Our strategy is to Taylor-expand the exponent of (32) in powers of eλ,

e−φ1eλ1−φ2eλ2
=

∞∑
m,n=0

(−φ1)
n(−φ2)

m

n!m!
enλ1+mλ2 ,

then perform gaussian integration in λ term-by-term, and finally re-sum the
resulting series, i. e. un-do the Taylor expansion. We use the identity

N∏
j=1

(∫ ∞

−∞
dλj

)
Δ(λ) e

∑N
j=1(− 1

4t
λ2
j+μjλj)(33)

= (2π)N/2(2t)N
2/2Δ(μ) et

∑N
j=1 μ

2
j

to compute the eigenvalue integral and get

I2,k(t, φ1, φ2) =

∞∑
n,m=0

(n−m)

n!m!
(−φ1)

n(−φ2)
m

N−3∏
l=0

(n− l)(m− l)(34)

∫ ∞

−∞
dy et(n+iy)2+t(m+iy)2+t

∑N−3
l=0 (l+iy)2 .

Due to the factor
∏N−3

l=0 (n− l)(m− l), all terms with m,n < N − 2 have
coefficient zero, so we can shift summation indices n → n− (N − 2), m →
m− (N − 2). Integrating over y in (34) and plugging the result back to (31)
we obtain

I2,k(t, ρ, τ1, τ2)(35)

= −e−t(N−1)
2/N

∫∫ ∞

0

xτ1−11 xτ2−12 dx1dx2
φ1 − φ2

(φ1∂φ1
− φ2∂φ2

)

∞∑
n,m=0

(−φ1)
n(−φ2)

m

n!m!
e

t

2

N−2

N
(n+m)2+ t

2
(n−m)2+t (N−1)(N−2)

N
(n+m).
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Now we can re-sum the series using the identity

1

2πt

∫ ∞

−∞
dλ1dλ2 e

− 1

2t
(λ2

1+λ2
2)−φ1eaλ1+λ2−φ2eaλ1−λ2

=

∞∑
n,m=0

(−φ1)
n(−φ2)

m

n!m!
e

t

2
a2(n+m)2+ t

2
(n−m)2

Replacing the series in (35) by the integral, and changing variables x1 →
e−aλ1−t (N−1)(N−2)

N x1, x2 → e−aλ1−t (N−1)(N−2)

N x2 makes it possible to carry out
the gaussian integration in λ1, giving

I2,k(t, ρ, τ1, τ2) =− e−t/2√
2πt

∫∫ ∞

0

xτ1−11 xτ2−12 dx1dx2
φ1 − φ2

(φ1∂φ1
− φ2∂φ2

)

∫ ∞

−∞
dλ e−

1

2t
λ2−φ1eλ−φ2e−λ

Interestingly, the factor e−t|δN |2 coming from the spectral gap has now disap-
peared from the formula. It follows from the integral representation Eq. (26),
that the singular in τ1,2 terms in (29) are ρ-independent. Therefore after tak-
ing the derivative of I2,k(t, ρ, τ1, τ2) with respect to ρ, we can set τ1 = τ2 = 0.
Since the measures μt depend on t we henceforth denote the corresponding
term in the two point function by I2,k(t, ρ). Using

∂ρφ1,2 = ± x1x2
φ1 − φ2

, ∂ρ
1

φ1 − φ2
= − 2x1x2

(φ1 − φ2)3

we get

∂ρI2,k(t, ρ) =
2e−t/2√

2πt

∫∫ ∞

0
dx1dx2

∫ ∞

−∞
dλ e−

1

2t
λ2−φ1eλ−φ2e−λ

sinhλ

(φ1 − φ2)3
(
φ1 + φ2 + (φ1 − φ2)(φ1e

λ − φ2e
−λ)

)
Now we introduce new coordinates (r, θ) as

r cos θ =
√
ρ (x1 + x2), r sin θ =

√
1− ρ (x2 − x1),

with the range

r ∈ [0,∞), θ ∈ [−α,+α] where cosα =
√
ρ.
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In terms of r and θ the integrals can be written as

∂ρI2,k(t, ρ) =− e−t/2√
2πt

1√
ρ(1− ρ)∫ ∞

0
rdr

∫ α

−α
dθ

∫ ∞

−∞
dλ e

− 1

2t
λ2−r

(
cos θ√

ρ
coshλ+sinhλ

)
[
cos θ

r2
√
ρ
+

1

2r

(
cos θ +

√
ρ√

ρ
eλ − cos θ −√

ρ√
ρ

e−λ
)]

sinhλ.

Introducing new variable x
√
ρ = cos θ and rearranging exponents, we get

∂ρI2,k(t, ρ) =− e−t/2√
2πt

1√
1− ρ

∫ ∞

0
rdr

∫ 1/
√
ρ

1

dx√
1− ρx2

∫ ∞

−∞
dλ e−

1

2t
λ2+λ

e−rx coshλ

[
x

r2

(
e−r sinhλ − er sinhλ

)

+
sinhλ

r

(
(x+ 1)e−r sinhλ + (x− 1)er sinhλ

)]
.

Integrating over r we obtain

∂ρI2,k(t, ρ) =− e−t/2√
2πt

1√
1− ρ

∫ 1/
√
ρ

1

dx√
1− ρx2

∫ ∞

−∞
dλ e−

1

2t
λ2+λ

[
x log

(
x coshλ− sinhλ

x coshλ+ sinhλ

)
+ 2 sinhλ

x2 coshλ− sinhλ

x2 cosh2 λ− sinh2 λ

]
.

After integrating the log term by parts, we can perform the x integration

∂ρI2,k(t, ρ) =
2t

ρ
− 2e−t/2√

2πt

√
1− ρ

ρ

∫ ∞

−∞
dλ(36)

∫ 1/
√
ρ

1

dx√
1− ρx2

· e
− 1

2t
λ2

coshλ sinh2 λ

x2 cosh2 λ− sinh2 λ

=
2t

ρ
− e−t/2√

2πt

√
1− ρ

ρ

∫ ∞

−∞
dλ e−

1

2t
λ2 coshλ√

coth2 λ− ρ

log

√
coth2 λ− ρ+

√
1− ρ√

coth2 λ− ρ−√
1− ρ

.

This completes the calculation of (9).
An important application of these asymptotics is to calculate the vari-

ances of the linear statistics XU (3) and its smooth analogue Xf . This can
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be done precisely as in Section 4 of [17] and Section 3 of [18], but substitut-
ing the formula for I2,k(t, ρ) for Qk. The details are rather lengthy and will
be presented elsewhere.

The remainder of the article is devoted to the asymptotics of I2,k(t, ρ) as
k → ∞ with various relations between t and k. To understand the various
regimes, it should be recalled that the metric rescaling in §3.3 is necessary
to ensure that balls in the Cartan-Killing metric on Bk maintain their size
with respect to the limiting Mabuchi metric on K[ω0]. Without rescaling,
the Brownian motion relative to the CK metric is probing metrics only at
distance dk = ε2kt from the initial background metric with respect to the
limiting metric.

In all of the regimes, the key to finding the scaling asymptotics is to
work out the behavior of

(37) A(t, ρ) :=
1√

coth2 t− ρ
log

√
coth2 t− ρ+

√
1− ρ√

coth2 t− ρ−√
1− ρ

as k → ∞, where t may depend on k. As will be seen below, the factors of
(
√
2πt)−1e−t/2 in front of the integral are always cancelled, leaving the pref-

actor
√
1−ρ
ρ . By (43), for pairs (z, z + u√

k
), we have ρ → e−|u|2 , and Ak(t, ρ)

has a limit, which depends on whether or not we also send t → ∞.

4.3. The limit as k → ∞ for fixed t

This regime corresponds to letting the Brownian motion with respect to the
Cartan-Killing metric evolve for a time t, and as discussed in §3.3 the ball
of radius t in gCK,k metric is shrinking in size with respect to the Mabuchi
metric and has dk-radius equal to εkt.

The asymptotics in this regime could in principle be derived from the
formula (8) of [9]. But more explicitly, we note that ρ → 0 as k → ∞ off the
diagonal. Expanding at small ρ, we get

1√
2πt

e−t/2
∫ ∞

−∞
dλ e−

1

2t
λ2 coshλ√

coth2 λ− ρ
(38)

log

√
coth2 λ− ρ+

√
1− ρ√

coth2 λ− ρ−√
1− ρ

= 2t+O(ρ),

and the first term here cancels the first term in (36). Thus in the regime
when we hold (z1, z2) fixed then ρ → 0, we get

I2,k(t, ρ) � a0(t) + a1(t)ρ+ · · · ,
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where a0, a1, ... are constants independent of ρ. To obtain the 2-point cor-
relation function of the Kähler metric, we then take four more derivatives.
The constant a0 does not contribute to the answer and we see that the two
point correlation function is the free background term ωφI

(z1)ωφI
(z2) plus

a term exponentially decaying off the diagonal like C2(t)e
−kDI(z1,z2).

4.4. The limit as t → ∞ for fixed k

Now we apply steepest descent to the second integral as t → ∞, and keeping
k,Nk fixed. We obtain

∂ρI2,k(∞, ρ) := lim
t→∞ ∂ρI2,k(t, ρ) = lim

t→∞
2t

ρ
− 1

ρ

(
2t+ log(1− ρ) +O(1/t)

)
= − log(1− ρ)

ρ
.

Thus we have,

(39) I2,k(∞, ρ) = Li2(ρ).

As mentioned above, this is the same formula as (12). In the scaling limit
around the diagonal with pairs of points of the form (z, z + u√

k
) we have

ρ � e−|u|2 . In the next section we connect this limit with the correlations
between zeros of Gaussian random holomorphic sections, see (55) for a more
precise statement.

4.5. The metric scaling limit with t → tε−2
k

The goal now is to evaluate I2,k(ε
−2
k t, ρ) asympotically as k → ∞. This scal-

ing keeps the dk-balls of uniform size as k → ∞ with respect to the limit
Mabuchi metric. Thus, as k changes the Brownian motion with respect to
gk probes distances of size t from the initial metric ω0 for all k.

In order to apply steepest descent for λ ∈ [0,∞] we change variables
λ → ε−2k λ in (36) so that the exponent becomes

ε−2k

(
−λ2

2t
+ λ

)
.

The saddle point occurs at λ = t, and the critical value of the exponent is
t
2 . The prefactor e−t/2 in front of the integral, with t → ε2kt again cancels
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the critical value of the phase and the singular term. The integrand in (36)
at the saddle point is asymptotic to

1√
coth2(ε−2k t)− ρ

log

√
coth2(ε−2k t)− ρ+

√
1− ρ√

coth2(ε−2k t)− ρ−√
1− ρ

(40)

� 2ε−2k t√
1− ρ

+
1√
1− ρ

log(1− ρ) + · · · ,

so

∂ρI2,k(ε
−2
k t, ρ) � − log(1− ρ)

ρ
,

exactly as in (39).

4.6. Spatial scaling

In this section, we consider the scaling asymptotics of I2,k(ρ) discussed in
§1.1. The only new element in the calculation is the scaling asymptotics of
the Berezin kernel ρ. The calculation of I2,k(ρ) above does not change.

The main input into the scaling asymptotics is the following facts about
the Berezin kernel (see [17, 18] for background and references). Off the di-
agonal one has

(41) ρ � e−kDI(z1,z2),

where the Calabi diastasis function is given by

(42) DI(z1, z2) = φI(z1, z1) + φI(z2, z2)− φI(z1, z2)− φI(z2, z1).

Here φI(z, z̄) is the Kähler potential (17) of the background Bergman metric
ωφI

, corresponding to the identity matrix P = I, and φI(z1, z2) is its off-
diagonal analytic extension.

The Berezin kernel has a scaling limit on the ‘near-diagonal’ where the
distance d(z1, z2) between z1 and z2 satisfies an upper bound d(z1, z2) ≤
b
(
log k
k

)1/2
(b ∈ R+). By comparison, ρ → 0 rapidly on the ‘far off-diagonal’

where d(z1, z2) ≥ b
(
log k
k

)1/2
, in the sense that for all b, R > 0,

∇jPk(z1, z2) = O(k−R) uniformly for d(z1, z2) ≥ b

√
log k

k
.

Here, ∇j stands for the j-th covariant derivative.
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The scaling asymptotics of this kernel near the diagonal may be de-
scribed as follows. Let z ∈ M . Then

(43) Pk

(
z + u√

k
, z + v√

k

)
= e−

1

2
|u−v|2 [1 +Rk(u, v)] ,

where

|Rk(u, v)| ≤ C2

2 |u− v|2k−1/2+ε , |∇Rk(u)| ≤ C2 |u− v| k−1/2+ε ,

|∇jRk(u, v)| ≤ Cj k
−1/2+ε j ≥ 2 ,

for |u|+ |v| < b
√
log k.

It follows that the scaling asymptotics of the variance term for random
metrics is given by

(44) I2,k
(
ε−2k t, Pk(z, z + u/

√
k)
) � Li2(e

−|u|2),

just as in the limit as t → ∞ first, considered in §4.4.

4.7. Energy entropy scaling

Another natural scaling comes directly from the density (24). We separate
out the ‘action’ from the ‘amplitude’ and express it in terms of the empirical
measures dμλ = 1

Nk

∑Nk

j=1 δλj
of the eigenvalues of Λ

Δ(λ)Δ(eλ)e−
1

4t

∑N
j=1 λ

2
j(45)

= eN
2
k(

∫
M

∫
M

log |x−y|dμλ(x)dμλ(y)+(
∫
M

∫
M

log |ex−ey|dμλ(x)dμλ(y)))+Nk
2t

∫
M

x2dμλ .

To give all terms the same order in Nk we need to rescale the time to
t → t/Nk. Then the scaled measures μk satisfy a large deviations principle
with the rate function given by the exponent of (45).

5. The geodesic boundary of Bk and configurations of zeros

In this section, we explain how the result of §4.4 is essentially the same as
the theory of zeros of random holomorphic sections. As t → ∞, the mass of
the heat kernel gets concentrated on a part of the boundary of PNk

corre-
sponding to ‘singular metrics’ given by zero sets of holomorphic sections.

Symmetric spaces of non-compact type have several different notions of
boundary and several types of compactifications. For background we refer
to [11]. The boundary relevant to the heat kernel measures and their t → ∞
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limit is best stated in terms of the Bergman metrics themselves and their
limits along geodesic rays of PNk

.

Definition 1. The weak* compactification of Bk is Bk ∪ ∂Bk where ∂Bk is
the set of limit points (i.e. endpoints) of the Bergman metrics along Bergman
geodesic rays ωk(s).

In fact, the only relevant boundary points are the ones arising from the
geodesic ray starting at the balanced metric xk � 0 and with initial velocity
in the direction of δN , together with the endpoints of the U(Nk)-orbit of
this ray.

A geodesic ray in the space of Bergman potentials is a one-parameter
family of metrics whose potentials have the form,

βt =
1

k
log

∑
j

etλj |sUj (z)|2,

where in SL(Nk,C)/SU(Nk) the ray starts at the origin and has initial
vector (U,Λ). We note that

1

k
log

∑
j

etλj |sUj (z)|2(46)

=
tλmax

k
+

1

k
log

⎛
⎝|sUmax(z)|2 +

∑
j 
=max

et(λj−λmax)|sUj (z)|2
⎞
⎠ .

Here, λmax is the largest of the λj and sUmax is the corresponding section.
Clearly,

1

k
log

∑
j

etλj |sUj (z)|2 − sup
M

1

k
log

∑
j

etλj |sUj (z)|2(47)

=
1

k
log

⎛
⎝|sUmax(z)|2 +

∑
λj 
=max

et(λj−λmax)|sUj (z)|2
⎞
⎠

− sup
M

1

k
log

⎛
⎝|sUmax(z)|2 +

∑
λj 
=max

et(λj−λmax)|sUj (z)|2
⎞
⎠ .

This family of potentials is bounded above by 0 and is pre-compact in Lp(M)
for all 1 ≤ p < ∞. The sup in the second term is itself bounded above by
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log k
k and therefore we may remove the sup without changing the limit (i.e.

the sup was only needed to get rid of the tλmax

k term). We then observe that
for any Bergman geodesic ray,

lim
t→∞

∥∥∥∥∥1k log

(
|sUmax(z)|2 +

∑
λj 
=max

et(λj−λmax)|sUj (z)|2
)

(48)

− 1

k
log |smax(z)|2

∥∥∥∥∥
L1(M)

→ 0.

Indeed,

(49) Ft(z) :=

⎛
⎝|sUmax(z)|2 +

∑
λj 
=max

et(λj−λmax)|sUj (z)|2
⎞
⎠

is monotonically decreasing to |sUmax(z)|2 for each z. Therefore its logarithm
monotonically decreases to log |sUmax(z)|2. If we subtract 1

k log |smax(z)|2 then
the difference is always ≥ 0 and we may remove the absolute values, and
then apply the monotone convergence theorem to take the limit under the
integration sign. But the limit equals zero almost everywhere since each term
tends to zero, proving (48).

We now consider the (1, 0) forms obtained by taking ∂ of the potentials.
Taking ∂ kills the tλmax

k term, and gives,

1

k
∂ log

∑
j

etλj |sUj (z)|2(50)

=
1

k
∂ log

⎛
⎝|sUmax(z)|2 +

∑
λj 
=max

et(λj−λmax)|sUj (z)|2
⎞
⎠ .

Proposition 5.1. The weak limits of Bergman metrics along geodesic rays
are generically given by the normalized zero distributions of holomorphic
sections of Lk, i.e. as t → ∞,

1

k
∂∂̄ log

∑
j

etλj |sUj (z)|2 →
1

k
∂∂̄ log |s|2.

If the highest weight has multiplicity r, then the limit is 1
k∂∂̄ log

∑r
j=1 |sj |2

where 1 ≤ r ≤ n and {sj}rj=1 is any set of sections in H0(M,Lk).



160 S. Klevtsov and S. Zelditch

Proof. We take ∂∂̄ of the two terms of (48) to obtain,

(51)
1

k
∂∂̄ log

∑
j

etλj |sUj (z)|2 →
1

k
∂∂̄ log |sUmax(z)|2

in the sense of distributions. That is, if we integrate against a smooth (n−
1, n− 1) form ψ (i.e. a smooth function if the dimension of M equals one),
then

∫
M

ψ ∧ 1

k
∂∂̄ log

⎛
⎝|sUmax(z)|2 +

∑
j 
=max

et(λj−λmax)|sUj (z)|2
⎞
⎠

=

∫
M

∂∂̄ψ ∧ 1

k
log

⎛
⎝|sUmax(z)|2 +

∑
λj 
=max

et(λj−λmax)|sUj (z)|2
⎞
⎠

and by (48) the right side tends
∫
M ∂∂̄ψ ∧ 1

k log |sUmax(z)|2.
Multiplicity r means that λmax has multiplicity r, and then one sums

over the associated sections sj . �

A key point for this article is that each of the weights in δN is distinct.
Hence r = 1 in that direction, and therefore the boundary points in the
direction δN and its U(N)-translates all consist of δ-functions 1

k∂∂̄ log |s(z)|2
of holomorphic sections of Lk. Every section arises in the U(Nk)-orbit.

5.1. Relation to zeros of holomorphic sections

In [17], the authors found a bi-potential QN ∈ L1(M ×M) for the pair cor-
relation function of zeros of Gaussian random holomorphic sections

(52) dγ(s) =
1

πm
e−|c|

2

dc , s =

n∑
j=1

cjsj ,

on Lk, where {sj} is an orthonormal basis and dc is 2n-dimensional Lebesgue
measure. This Gaussian is characterized by the property that the 2n real
variables Re cj , Im cj (j = 1, . . . , n) are independent Gaussian random vari-
ables with mean 0 and variance 1

2 ; i.e.,

Ecj = 0, Ecjck = 0, Ecj c̄k = δjk .
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The current of integration Zs over the zeros of one section is given by
the Poincaré-Lelong formula

(53) Zs =

√−1

π
∂∂̄ log |f | =

√−1

π
∂∂̄ log

∥∥sN∥∥
h
+ φI(z) ,

As mentioned above, the limit as t → ∞ of random Bergman metrics along
the rays above must be random singular metrics, and we claim that the
limit ensemble is equivalent to the Gaussian one. Indeed, the limit measure
is U(Nk)-invariant and there exists just one such measure up to equiva-
lence, namely the Gaussian measure above. This explains why the bipoten-
tial 4π2Qk of [17] is the same as the t → ∞ limit of the two-point function
I2,k(ρ) of the heat kernel ensemble in §4.4, corrobrating that this limit en-
semble is that of random zeros of sections.

5.2. Smooth linear statistics and asymptotic normality

Similar to the area random variable XU but easier to work with, is the
smooth linear statistic

(54) Xf (ω) =

∫
M

fω,

where f ∈ C∞(M) is a smooth test function. It has a much smaller variance
than XU since the effect of ‘zeros along the boundary’ is smoothed out. In
[18] it is proved that

(55) Var
(
Xf

)
= k−1

[
ζ(3)

16π
‖Δf‖22 +O(k−

1

2
+ε)

]
.

It was proved by Sodin-Tsirelson [19] in certain cases and then [17] for
the present setting that the random variables Xk

f obey an asymptotic central
limit theorem. Namely, if we normalize Xf to have mean zero and variance
one, then

(56)
Xf −E(Xf )√

Var(Xf )

tends in distribution to the standard Gaussian distribution N (0, 1) as k →
∞. That is,

k1/2
(
Xf − k

π

∫
M

fωφ

)
→ N (0,

√
κ1 ‖∂∂̄f‖2)
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in the weak sense of convergence of distributions as k → ∞, where κ1 is a
certain positive universal constant and N (0, σ) denotes the (real) Gaussian
distribution of mean zero and variance σ2.

The same results hold in the limiting case of the heat kernel measures
when t → ∞. It would be interesting to investigate the analogous variance
and asymptotic normality results for heat kernel measures in the other
regimes as k → ∞, t → ∞. The formulae of this article combined with the
techniques of [17, 18] make this possible.
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