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Computational techniques in FJRW
theory with applications to
Landau-Ginzburg mirror symmetry

AMANDA FRANCIS

The Landau-Ginzburg A-model, given by FJRW theory, defines
a cohomological field theory, but in most examples is very diffi-
cult to compute, especially when the symmetry group is not max-
imal. We give some methods for finding the A-model structure.
In many cases our methods completely determine the previously
unknown A-model Frobenius manifold structure. In the case where
these Frobenius manifolds are semisimple, this can be shown to
determine the structure of the higher genus potential as well. We
compute the Frobenius manifold structure for 27 of the previously
unknown unimodal and bimodal singularities and corresponding
groups, including 13 cases using a non-maximal symmetry group.
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1. Introduction

Mirror symmetry is a phenomenon from physics that has inspired a lot
of interesting mathematics. In the Landau-Ginzburg setting, we have two
constructions, the A- and B-models, each of which depends on a choice
of a polynomial with a group of symmetries. Both models yield Frobenius
manifolds.

The A-model arising from FJRW theory produces a full cohomological
field theory. From the cohomological field theory we can construct correla-
tors and assemble these into a potential function. This potential function
completely determines the Frobenius manifold and determines much of the
structure of the cohomological field theory as well. Although some of these
correlators have been computed in special cases, in many cases their compu-
tation is quite difficult, especially in the case that the group of symmetries is
not maximal (mirror symmetry predicts that these should correspond to an
orbifolded B-model). We give some computational methods for computing
correlators, including a formula for concave genus-zero, four-point correla-
tors, and show how to extend these results to find other correlator values. In
many cases our methods give enough information to compute the A-model
Frobenius manifold. We give the FJRW Frobenius manifold structure for
27 pairs of polynomials and groups, 13 of which are constructed using a
non-maximal symmetry group.

Conjecture 1.1 (The Landau Ginzburg mirror symmetry conjec-
ture). There exist A- and B-model structures, each constructed from a
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polynomial W and an associated group, G (see discussion following Defini-
tion 2.1), such that the A-model for W and G is isomorphic to the B-model
for WT' and GT', where WT and GT are dual to the original polynomial and
group.

Although physics predicted its existence, a mathematical construction
of the A-model was not known until 2007 when Fan, Jarvis, and Ruan,
following the ideas of Witten, proposed a cohomological field theory Ay o
to satisfy Conjecture 1.1 [1-3].

A basis for the vector space of the A-model consists of pairs of a mono-
mial and a group element. When the group element acts nontrivially on each
variable of W, we call this a narrow element, otherwise, it is called broad. The
structure in the A-model is determined by certain structure constants called
genus-g, k-point correlators, which come from the cohomology of the moduli
space %g,k of genus-g curves with k marked points. The Frobenius algebra
structure is given by the genus-zero, three-point correlators, the Frobenius
manifold structure by the genus-zero, k-point correlators for k£ > 3, and the
higher genus structure by the genus-g, k-point correlators for all nonnega-
tive integers g and k such that 2g — 2 + k£ > 0. These correlators are defined
as integrals of certain cohomology classes over ngk' Finding the values of
these correlators is a difficult PDE problem, which has not been solved in
general. They are difficult to compute, especially when they contain broad
elements, so in many cases we still do not know how to compute even the
A-model Frobenius algebra structure. In most cases we do not know how to
compute the Frobenius manifold or higher genus structures. In this paper
we make progress along these lines.

In 2010, Krawitz [4] proved Conjecture 1.1 at the level of Frobenius alge-
bra for almost every invertible polynomial W and G = G7**, the maximal
symmetry group. It is more difficult to determine the structure in the A-
model when G # G}, because of the introduction of broad elements. In
2011 Johnson, Jarvis, Francis and Suggs [5] proved the conjecture at the
Frobenius algebra level for any pair (W, G) of invertible polynomial and
admissible symmetry group with the following property:

Property (x). Let W be an invertible, nondegenerate, quasihomogeneous
polynomial and let G be an admissible symmetry group for W. We say the
pair (W, G) has Property (x) if

1) W can be decomposed as W:Zf\ilWi where the W; are themselves in-
vertible polynomials having no variables in common with any other W.
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2) For any element g of G, where some monomial [m ;g] is an element
of Gy, and for eachi € {1,..., M}, g fizes either all of the variables
in Wi or none of them.

Even for W and G satisfying Property (x), where we know the isomor-
phism class of the the Frobenius algebra, we usually still cannot compute the
entire Frobenius manifold (the genus-zero correlators), nor the higher genus
potential for the cohomological field theory. In fact, computing the full struc-
ture of either model is difficult, and has only been done in a few cases. The
easiest examples of singularities are the so-called “simple” or ADFE singular-
ities. Fan, Jarvis, and Ruan computed the full A-model structure for these
in [1]. The next examples come from representatives of the “Elliptic” singu-
larities Pg, Xg, Ji0, and their transpose singularities. Shen and Krawitz [6]
calculated the entire A-model for certain polynomial representatives of Py,
XgT and JlTO, with maximal symmetry group.

In 2013, Guéré [7] provided an explicit formula for the cohomology
classes A when W is an invertible chain type polynomial, and G is the
maximal symmetry group for W.

In 2008, Krawitz, Priddis, Acosta, Bergin, and Rathnakumara [8] worked
out the Frobenius algebra structure for quasihomogeneous polynomial repre-
sentatives of various singularities in Arnol’d’s list of unimodal and bimodal
singularities [9]. We expand on their results, giving the Frobenius manifold
structure for the polynomials on Arnol’d’s list, as well as their transpose
polynomials. In many cases there is more than one admissible symmetry
group for a polynomial.

In this paper we consider all possible symmetry groups for each polyno-
mial. Previously, almost no computations had been done in the case where
the symmetry group is not maximal, because of the introduction of broad
elements. However, this case is particularly interesting because the corre-
sponding transpose symmetry group, used for B side computations, will not
be trivial. Thus mirror symmetry predicts these cases will correspond to
an orbifolded B-model. Much is still unknown about these orbifolded B-
models. Knowing the corresponding A-model structures, though, gives us a
very concrete prediction for what these orbifolded B-models should be.

Much of the work that has been done so far in this area has used a list of
properties (“axioms”) of FJRW theory originally proved in [1] to calculate
the values of correlators in certain cases. Primarily, these axioms have been
used to compute genus-zero three-point correlators, but many of them can
be used to find information about higher genus and higher point correlators.
One such axiom is the concavity axiom. This axiom gives a formula for some
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of the cohomology classes A of the cohomological field theory in terms of
the top Chern class of a sum of derived pushforward sheaves.

We use a result of Chiodo [10] to compute the Chern characters of the
individual sheaves in terms of some cohomology classes in the moduli stack of
W-curves #, . in genus zero. Then we use various properties of Chern classes
to compute the top Chern class of the sum of the sheaves given the Chern
character of each individual sheaf. Much is known about the cohomology of
%97’“ and not a lot about %, so we push down the cohomology classes
in %, 1, to certain tautological classes v;, ko, and Ay over ]O,k- In this way,
we provide a method for expressing A as a polynomial in the tautological
classes of ]g,k. Correlators can then be computed by integrating A over
%97;6, which is equivalent to calculating certain intersection numbers.

Algorithms for computing these numbers are well established, for exam-
ple in [11, 12]. Code in various platforms (for example [11] in Maple and
[13] in Sage) has been written which computes the intersection numbers we
need. I wrote code in Sage which performs each of the steps mentioned above
to find the top Chern class of the sum of the derived pushforward sheaves,
and then uses Johnson’s intersection code [13] to find intersection numbers.
This allows us to compute certain correlator values which were previously
unknown. In particular, in Lemma 3.5, we restate an explicit formula found
in [1] for computing any concave genus-zero four-point correlators, with a
proof not previously given. We also describe how to compute higher point
correlators. To do this, we use a strengthened version of the Reconstruc-
tion Lemma of [1] to find values of non-concave correlators, with an aim
to describe the full Frobenius manifold structure of many pairs (W, G) of
singularities and groups. In many cases, these new methods allow us to
compute Frobenius manifold structures for certain singularities and groups
which were previously unknown.

In 2014, Li, Li, Saito, and Shen [14] computed the entire A-model struc-
ture for the 14 polynomial representatives of exceptional unimodal singular-
ities listed in [9], and their transpose polynomial representatives, with mazi-
mal symmetry group. In fact, for these polynomials and groups, they proved
Conjecture 1.1. But there are also three non-maximal symmetry groups that
appear in this family of polynomials: the minimal symmetry groups for ZlT37
@12, and Ujo. The A-model for the first of these is computed in this paper
(see Section 4.2), for the second, the A-model splits into the tensor product
of two known A-models (see Section 4.1). We do not currently know a way
to compute the A-model structure for Ujo with minimal symmetry group
(see Section 4.3).
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There are 51 pairs of invertible polynomials and admissible symmetry
groups corresponding to those listed in [9], whose A-model structure is still
unknown. Of these, 16 pairs have FJRW theories which split into the tensor
products of theories previously computed (see Section 4.1). For 27 of the
remaining pairs, we are able to use our computational methods to find the
full Frobenius manifold structure of the corresponding A-model (see Sec-
tion 4.2), including 13 examples with non-maximal symmetry groups. There
are 8 pairs whose theories we still cannot compute using any known methods
(see Section 4.3).

Acknowledgements

I would like to thank my advisor Tyler Jarvis for many helpful discussions
that made this work possible. Thank also to those who have worked on the
SAGE code which T used to do these computations, including Drew Johnson,
Scott Mancuso and Rachel Webb. I would also like to thank Rachel Webb

for pointing out some errors in earlier versions of this paper.
2. Background

We begin by reviewing key facts about the construction of the A-models.
This will require the choice of an admissible polynomial and an associated
symmetry group.

2.1. Admissible polynomials and symmetry groups

A polynomial W € Clz1,..., 2], where W =37, ¢; [[_, x?] is called quasi-
homogeneous if there exist positive rational numbers ¢; (called weights) for
each variable z; such that each monomial of W has weighted degree one.
That is, for every ¢ where ¢; # 0, Zj gja;j = 1.

A polynomial W € C[xy, ..., x,] is called nondegenerate if it has an iso-
lated singularity at the origin.

Any polynomial which is both quasihomogeneous and nondegenerate will
be considered admissible for our purposes. We say that an admissible poly-
nomial is tnvertible if it has the same number of variables and monomials. In
this paper, we focus on computations involving only invertible polynomials.

The central charge ¢ of an admissible polynomial W is given by ¢ =
Zj(l - 2q5).

Next we define the maximal diagonal symmetry group.
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Definition 2.1. Let W be an admissible polynomial. The maximal diagonal
symmetry group Gy is the group of elements of the form g = (g1,...,9n) €
(Q/Z)"™ such that

271 271 27ign, _
W (e ™y, e P xg, ... e x,) = W(x1, 22, ..., Tp).

Remark 2.2. If ¢, q9,...,q, are the weights of W, then the element J =
(q1,---,qn) is an element of GJj**.

FJRW theory requires not only a quasihomogeneous, nondegenerate
polynomial W, but also the choice of a subgroup G' of G{j** which contains
the element J. Such a group is called admissible. We denote (J) = Gyj/",

and any subgroup between G%m and G}* is admissible.

Example 2.3. Consider the polynomial W = W7o = 2% + 5. In this case
that there are two admissible symmetry groups:

(J) = ((1/4,1/6)), and Gy#* = ((1/4,0), (0,1/6)).

We shall use W = Wi and G = (J) for the rest of the examples in this
section.

2.2. Vector space construction

We now briefly review the construction of the A-model state space, as a
graded vector space.

We use the notation Iy = {i | g - x; = x;} to denote the set of indices of
those variables fixed by an element g, and Fiz(g) to denote the subspace of
C™ which is fixed by g, Fiz(g) = {(a1,...,a,)| such that a; = 0 whenever g -
x; # x;}. The notation W, will denote the polynomial W restricted to Fiz(g).

For the polynomial W with symmetry group G, the state space Jy,q
is defined in terms of Lefschetz thimbles and is equipped with a natural
pairing, (e, e) : Hy X Sy, — C which we will not define here.

Definition 2.4. Let J7; ¢ be the G-invariants of the middle-dimensional
relative cohomology

Ay = H™(Fiz(g), (W), (00),
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where W, (c0) is a generic smooth fiber of the restriction of W to Fiz(g).
The state space is given by

Hva = | B He

geG

AW ow \°
Oxy """ Oy

Recall the Milnor Ring 2y of the polynomial W is <C[xlx] It has
a natural residue pairing.
Lemma 2.5 (Wall). Letw =dz; A--- Adxy, then

-
AW A QT

I

Hoc = H™C", (W) (c0)) = Iyw.

are isomorphic as Gy -spaces, and this isomorphism respects the pairing on
both.

The isomorphism in Lemma 2.5 certainly will hold for the restricted
polynomials W, as well. This gives us the useful fact

(1) Hive = P Ao = P (24w

geG geG
where wy = dx;, A --- Ndx;, for i; € 1.

Notation 1. An element of J#y, is a linear combination of basis ele-
ments. We denote these basis elements by [m ; g|, where m is a monomial in
Clziy, ... 2] and {i1, ... i} = I, We say that [m;g] is narrow if I, =0,
and broad otherwise.

The complex degree deg of a basis element o« = [m ; (g1, ..., gn)] is given
by

n
dege o = %NZ + Z(gj —qj),
7=1
where N, is the number of variables in Fiz(g).
By fixing an order for the basis, we can create a matrix which contains
all the pairing information. This pairing matriz n is given by

n = [(ai, ;)]

where {a;} is a basis for Sy q.
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2.3. The moduli space and basic properties

The FJRW cohomological field theory arises from the construction of certain
cohomology classes on a finite cover of the moduli space of stable curves,
the moduli space of W-orbicurves.

2.3.1. Moduli spaces of curves. The Moduli Space of stable curves of
genus g over C with k marked points ]97;{ can be thought of as the set of
equivalence classes of (possibly nodal) Riemann surfaces C' with k& marked
points, p1,...px, where p; # p; if © # j. We require an additional stability
condition, that the automorphism group of any such curve be finite. This
means that 2g — 2+ k > 0 for each irreducible component of C, where k
includes the nodal points.

We denote the universal curve over ]g,k by ¢ 5 ]g,k-

The dual graph of a curve in ]g,k is a graph with a node representing
each irreducible component, an edge for each nodal point, and a half edge
for each mark. Componenents with genus equal to zero are denoted with a
filled-in dot while higher-genus components are denoted by a vertex labeled
with the genus.

Example 2.6. A nodal curve in .# 3 and its dual graph are shown below.

1

For each pair of non-negative integers g and k, with 2g — 2 4+ k > 0, the
FJRW cohomological field theory produces for each k-tuple (a1,...,q) €
%”v{?]é a cohomology class Agfk(al,ag, .,ap) € H (A 4);). The definition
of this class can be found in [2].

A genus-g, k-point correlator with insertions av, . .., ap € JGy ¢ is defined

by the integral

(al,...,ak>g7n:/ Ag,k (al,...,ak).
k

g,k

Finding the values of these correlators is a difficult PDE problem, which
has not been solved in general. In spite of this, we can calculate enough of
them to determine the full Frobenius manifold structure in many cases. Fan,
Jarvis and Ruan [1] provide some axioms the A classes must satisfy, which,
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in some cases, allow us to determine their values. For example, these axioms
give the following selection rules for non-vanishing correlators.

Axiom 2.7 (FJR). Here we let a; = [m; ;9:], with g; = (g},...,g").
1) {a1,... 7ak?>g,k; = <aa(1), . ,ag(k)>g,k. For any permutation o € Sj.
2) (a1, ap)gy = 0 unless Zle degray =¢+k — 3.
3) (a1, ap)qy = Ounless g;(k — 2) — Zle gg € Zforeachj=1,...,n
Notice that the last selection rule above gives the following lemma.

Lemma 2.8. The correlator (a1, ...,a)q, =0 unless gy = (k—2)-J —

Zf;ll gi, where J € Gy is the element whose entries are the quasihomo-
geneous weights of W.

The following splitting axiom will also be useful for us.

Axiom 2.9 (FJR). if W; € Clzy,...,z,] and Wy € Clzyy1,...,x,] are
two admissible polynomials with symmetry groups G, and Go, respectively,
then

<%VvlJrVVz,GH@Gz = %leGl ® %W27G2

where the A classes are related by
AW1+W2(a1 X /817 s, O ® Bk) = AWl(ab DR ak) ® AWZ(ﬁl? st Bk)

We omit the rest of the axioms (except the Concavity Axiom, which
we will discuss later), but refer the reader to [1] for the axioms, and [8] for
a detailed explanation of how to use them to find genus-zero, three-point
correlator values.

2.3.2. B-model structure. For the unorbifolded B-model the Frobenius
manifold is given by the Saito Frobenius manifold for a particular choice of
primitive form (see [15]). For the orbifolded B-model the Frobenius manifold
structure is still unknown.

3. Computational methods

Here we give results for computing concave genus-zero correlators and dis-
cuss how to use the reconstruction lemma to find values of other correlators.
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3.1. Using the concavity axiom

We give a formula for A as a polynomial in the tautological classes 1, kq,

and Ay in H*(.# 41). We then give a formula for computing concave genus-
zero four-point correlators.

Axiom 3.1 (FJR). Suppose that all o; are narrow insertions of the form
[1;9] (See Notation 1). If m, @; .2 =0, then the cohomology class
Ag‘fk(al, ..., ) can be given in terms of the top Chern class of the derived
pushforward sheaf R'm, @, %

(2) Ag‘fk(al, . ,Ctk)

el . N o
_d%@ﬂpDﬁ*Qﬂ)1O—qu<R%4§?%>>>

Recall that integration of top dimensional cohomology classes is the same
as pushing them forward to a point, or computing intersection numbers.

In this section we express (—1)PcpR'm (L @ --- ® Ln) as a polyno-
mial f in terms of pullbacks of ¢, k, and Ay classes, then, which gives

<O¢1, e ,Oék>
g
_p*dlz‘st)PDSt* (PD—l (St*f('%b' . 'aHDawla cee 7¢k7 {AI}Ieﬂ)))

= |G‘gp* (f(Hh .- '7"€D7w17 cee 71/}]4:7 {A[}Ieﬂ))a

and this allows us to use intersection theory to solve for these numbers.
Recall the following well-known property of chern classes from K-theory.

[e.9]

B al®) = g = Ty — )

=0

A vector bundle E is concave when R7,E = 0, or when
R*mn.E = R°n,E — R'n,E = —R'm,E
Equation 3 gives

Ct (Rl’]T* @Z) = Z <—Ct(R.7T* @Z)) .

j=0
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Also, since the total Chern classes are multiplicative, we have,

o afrege) 3 (s

Y=k \J=1

Together Equations 3 and 4 give a formula for finding the ith chern class of
Rlrm, D, -Z; in terms of the chern classes of the R*m,.%;.

It is well-known that Chern characters can be expressed in terms of
Chern classes, but it is also possible to express Chern classes in terms of
Chern characters (for example, in [16]). We have

i=1
[e'e} oo !
-y (Z(i - 1>'<—1>“chz~<R°mzk>ti)
7=0 =1

Thus, there exists a polynomial f such that

(6) ¢p (le@zi) = f(ch1(R*7. %), ..., chp(R*T.%%)).

In Section 3.2 we will use a result of Chiodo [10] to express ch;(R*m..Z};)
in terms of tautological cohomology classes on %gm and this will allow us
to compute the corresponding correlators, but first we need to discuss some
cohomology classes on %, ,, and ]g’n and their relations.

3.1.1. Orbicurves. An orbicurve ¥ with marked points py,...,pg is a

stable curve C with orbifold structure at each p; and each node. Near each

marked point p; there is a local group action given by Z/m, for some positive

integer m,;. Similarly, near each node p there is again a local group Z/n;

whose action on one branch is inverse to the action on the other branch.
In a neighborhood of p;, ¥ maps to C' via the map,

0:%6 — C,

where if z is the local coordinate on % near p;, and x is the local coordinate
on C near p;, then o(z) = 2" = z.
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Let K¢ be the canonical bundle of C. The log-canonical bundle of C' is
the line bundle

Kciog=Kc®@O(p1) @+ @ O(py),

where @(p;) is the holomorphic line bundle of degree one whose sections
may have a simple pole at p;.

The log-canonical bundle of ¥ is defined to be the pullback to € of the
log-canonical bundle of C"

K‘K,log = Q* KC,log .

Given an admissible polynomial W, a W-structure on an orbicurve % is
essentially a choice of n line bundles .4, . .., .%, so that for each monomial
of W = Zj M;, with M; = x(fj ! -z, we have an isomorphism of line
bundles

©j: $1®aj’1 .- ’.ﬁﬁi@a"’" — K(ﬁ,log-

Recall that Fan, Jarvis and Ruan [1] defined a stack

Wwa.%k = {(571)17'--,pk;,gl,...,gN’Spl SOS}

of stable orbicurves with the additional W-structure, and the canonical mor-
phism,

st
Vo —— Mgk

from the stack of W-curves to the stack of stable curves, .Z .
Notice that g, will take global sections to global sections, and a straight-
forward computation (see [1] §2.1 ) shows that if .2 on ¢ such that £®" =

®s
K g then

(0:2)" = K&og(—(r — my)p).

Recall that if £ is the line bundle associated to the sheaf £ and the
action at an orbifold point p; on .Z is given in local coordinates by (z,v) —
(Cz,¢™iv), then the action on £ will take a generator s of £ near p; and
map it to ("™ s. Thus, if £ = K?Sl on a smooth orbicurve with action
of the local group on .Z defined by Cm for m; > 0 at each marked point p;,
then

(L) = L] = w5, ® (®ﬁ m,pz>.
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Example 3.2. Suppose W and G are as in Example 2.3 with notation as
in Notation 1. If, for a curve in ]0,4 the four marked points correspond to
the A-model elements [1;(1/4,1/2)], [1:(1/4,1/2)], [1;(1/4,1/2)], and
[1;(3/4,5/6)], then

||t = wetog @ O((—1)p1) @ G((—1)p2) @ G((—1)p3) @ O((—3)pa)
1-21® = weiog @ O((=3)p1) ©@ O((=3)p2) ® O((—=3)p3) ® O((—5)pa)

3.1.2. Some special cohomology classes in %g,k and %y . For

ie{l,....k}, vy € HY(M,}) is the first Chern class of the line bundle
whose fiber at (C,p1,...,px) is the cotangent space to C' at p;. In other
words, if 741 :]g,kﬂ =C— ]ch is the universal curve, and it is also
the morphism obtained by forgetting the (k + 1)-st marked point, wr,,, = w
is the relative dualizing sheaf, and o; is the section of 71 which attaches
a genus-zero, three-pointed curve to C' at the point p;, and then labels the

two remaining marked points on the genus-zero curve ¢ and k + 1,

M g k41

Oi Trkﬂ

]g,k
then, L = 0*(w) is the cotangent line bundle and its first Chern class is 9;:

Yi = c1(0” (W),

Let D; j+1 be the image of o; in ]97“1, then we define

o))

and for a € {1,...,39 — 3+ k},
Ka = me (KO,

Each partition I U J ={1,...,k} and g1 + g2 = g of marks and genus
such that 1 €1, 291 —2+|I|+1>0 and 290 — 2+ |J| + 1> 0, gives an
irreducible boundary divisor, which we label A, 7. These boundary divisors
are the nodal curves in ]g,k- For example, the boundary divisor Ay 11 9y in
]175 and its dual graph are given below.
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I~ 3
@ 4
2 —
5
We will use the following well-known lemma for ]O,k for expressing v
classes in terms of boundary divisors.

Lemma 3.3.

vi= > Ar

ael
b,egl

Now we consider some cohomology classes on % . Consider the dia-
gram:

cg,k

Wyge —L

where €, ;, is the universal orbicurve over % ;,

The stack Wy i has cohomology classes i, Ra and A defined in the same
manner as 1;, ko and Ay in A4 4.k~ They satisfy the following properties (see
§2.3 in [1]).

(7) 1;2 = st*(¢i), Faq = st"(Ka), rA; = st*Aj.
3.2. Chiodo’s formula
Chiodo’s formula states that for the universal rth root . of wy . on the

universal family of pointed orbicurves 7 : &g, — # (71, ..., 7), with local
group (7;) of order m; at the ith marked point, we have

. _ Bati(s/r) e Bi1(07)
ch(R*m (L)) = dzzo Wﬁd - ; mwg

rByi1(07+) o
e e T o)
i+j=d—1
$5>0
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where the second sum is taken over all decorated stable graphs I'.,,; with one
pair of tails labelled + and —, respectively, so that once the + and — edges
have been glued, we get a single-edged, n-pointed, connected, decorated
graph of genus ¢g and with additional decoration (4 and v_) on the internal
edge. Each such graph I'.,; has the two cut edges, decorated with group

elements 4 and ~_, respectively, and the map or,, is the corresponding
47./

> — %gj:(’yl,.. . ,’yk).

In the genus zero case, a choice of I'.,; is the same as a a partition
KUK ={1,...,k}. We will sum over all partitions containing the marked
point 1, so we W111 not need to multlply the last sum by 1 5

Also, recall from Equation 7 that A = st*A 1. So,

cut

gluing map (./// F/

cuty

. o Basi(s/r) N~ Ban(mi/r)
chy(R°mZ) = st (;)( (d+ 1) " Z; EE

2 Bﬁ;; ol >*<vd_1>>td>.

We can use Lemma 3.3 to rewrite ¢4 and ¢_ in terms of boundary
divisors ofjl o,n, and .#,,_. This will enable us to easily push down these
classes to .# . This idea comes from [17], and yields the following formulas:

(Jr)«(by) =0 if K| <2
(K )«(¥4) = Z{l,a,b}glg[( ArgAr

(8) + 2 terck—{ap} Ak Druge if |K[> 2
(JK)«(b4) =0 if n—|K| <2
(K )«(4) = Z@;éicgc A Aok if n—|K|> 2.

Using the formulas in Equation 8 and the polynomial defined in Equa-
tion 6 we can now express A as a polynomial in v, x and A classes,

Ayk(al,... )
— (- )f<<32 /), ZBQ(’;W " w_—zm),
i=1
B s/r “. B m;/r
.,<5;1§1/)!>@ - o) ”wi

B
R RS
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The following lemma allows us to always choose a vf in a way that
makes sense in Chiodo’s formula.

Lemma 3.4. Let B be a degree one boundary graph, with decorations 71,

.. ,’yfl for the first node and ¥4, . .. ,752 for the second, and genera g1 and
ga, respectively. If a smooth curve with decorations vi,. .. ,'yfl,fy%, . ,752
and genus g1 + g2 has integer line bundle degree, then it is possible to assign
decorations to the edge of B such that each node will have integral line bundle
degree.

Proof. If the line bundle degree of the smooth curve is integral then:

So = J(2(g1 +92)—2+k1+k2)—27§—2’y§ ez

Similarly let S7 and Sy be the equivalent sums in Q", corresponding to the
nodes with decorations 71, ... ,fﬁl and 73, ... ,752, respectively. To find ~g
we take

Y =J2g1—2+ (k1 + 1)) Z'yl

Then, by Lemma 2.8 this will force the Sy to be an integer vector.
Also,

So=S1+v%+J(g2—2+ (k2 +1)) 272 Sy + So,

which implies that Sy € Z. O

We have now described the virtual class A in the concave case explicitly in
terms of tautological classes on the moduli of stable curves. Now we will
talk about how these can actually be computed. As a special case we have
the following explicit formula for concave genus-zero four-point correlators.

Lemma 3.5. If ([1;01],[1;92],[1593],[1;94]) is a genus-zero, four-
point correlator which satisfies parts (2) and (3) of Axiom 2.7, and if it
also satisfies the hypotheses of the concavity axiom, (all insertions are nar-
row, all line bundle degrees are negative, and all line bundle degrees of the
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nodes of the boundary graphs A2, Ay 3, and Ay 4 are all negative), then
[L501], 11592, [1;93],11594])

(
1 N 4 3 '
:2Z<B2 Qz ZBZ gj ZB (’Yi))
k=1

1 Z? o 3.
22< 1)—§:93(0§—1)+27’+(71—1)>.
=1 J=1 k=1

where for each j g; = (0}, e ,0?), ’yi =J—-g1— g2, ’Yi =J—g1—9g3, and
fyi =J — g1 — g4, and Bs is the 2nd Bernoulli polynomial.

Proof.

. Ba1 (6]
chy(—R'maly) = ;} (Ww - Z (jz++1(1))w§l

d—1
i ZBdJrl ’Y+ d 1k | 4d
(d+1)! )- k_o ’

which means that

B2(9’)¢] Z BQ((V—:)K) (pK)*(l)

_ Ba(ai)
Chl(—Rlﬂ*ﬁi) = 2 K1 — Z ( ) - (2)

@

Notice that (pi)«(177, ) = Ak, and that for M 4, our choices for K €
[ewt are just {1,2}, {1,3}, and {1,4}. Numbering these gives:

(V) =J—g1—g2, for K={1,2},
(V+)2=J —g1—gs, for K={1,3}, and
(v+)3=J —g1 —ga, for K ={1,4}.

: _ .2 1
Since Ba(x) = 2° —x + g,

chi(—R'm.L;) = ;((gi(qi —1)+ é) K1 — 24: <9§(9§ - 1)+ é)?/}j
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The psi and kappa classes in W4 are all pullbacks of the equivalent psi
and kappa classes in .# o4, and the Ay classes are scalar multiples of the
equivalent classes in .# ¢4, as in Equation 7.

So,
chi(—R'm.L;) = 552&* <(qi(qi — 1))I<L1 — Z (9;(0; - 1))1/1]'
=1
+> (O - 1))AK>-

K

We use Equation 5 to convert to chern classes,

ct(—R'm.L;) = exp <§:(—1)i_1(i - 1)!chi(—R17r*£i)ti>

i=1
- z_(:); (;(_1)i_1(i — 1)!Cht(_R17T*Ei)ti> '

Which means that co(—R'7.L;) =1 and ci(—R'7m.L;) = chi(—R'7.L;),
then, by Equation 4 since D =1,

Cl(—Rlﬂ’* D; ﬁz) = Z H Cji(—Rl’?T*ACi)

Finally we recall that c;(R'm.L;) = — Zj(ct(—le*ﬁi))j, S0,

N
ci(R'm. L;) = —c1(—R'm.L;) = — ZC/H(—Rlﬂ'*Ei).
=1
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And, from Equation 2

A0’4(Oé1, ey OZ4)

N
——PDst,PD"}(— )1<— Zchl(—leﬁi)>

deg(st) pt
N
1
= deg (St)PDst .PD~ ;chl —R'Y7,L;))
1 1 LV 1
- 2<<qi<qi . 6)m -3 (e;-w;- - 6)%—
Y (el - 1)+é)A}<).
K

Next, we notice that if p : .#Z 4 — () is the map sending all of .# 4 to
a point, then the pushforward of any of the cohomology classes mentioned
above is equal to 1. That is,

i1 = pst; = pAg = 1.
So,

(I591)5 (15920, [1593),[1594])

N
_ 1 -1 Pl p
7p*deg(st)PDst*PD izlchl( R'7.L;))
1 N 4
:2]7*2((%((]2‘—1)):%1—2(91( 0! ¢]+Z (B —1))AK>
=1 j=1
1 N
=52 <% DAy =D +20F =) +4303 - 1)
=1

— Z 0L (0% — 1)).
j=1

Example 3.6. We will compute the genus-zero four-point correlator

<[1 ) (1/4’ 1/2)J ’ “ ) (1/47 1/2)J ’ “ ) (1/47 1/2)J ’ “ ) (3/47 5/6)J>0,4
for the A-model Fy, | (7).
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It is straightforward to verify that it satisfies Axiom 2.7, and that each
of the degree one nodal degenerations of the dual graph are concave. Thus,

<“ ; (1/47 1/2)J ) [1 ; (1/47 1/2” ) [1 ) (1/47 1/2)J ’ [1 ) (3/47 5/6)J>0,4

_ (.3 3 3 3 3 3 3 3
2 16 16 16 16 16 16 16 16

(3 5 5 5 1,11 5
36 36 36 36 4 4 4 36

There are ten concave four-point correlators in #y, (;, and 2 which
are not concave. We will see in the next section that we can use the values
of the concave correlators to find other correlator values.

3.3. Using the reconstruction lemma

In this section we show how to use known correlator values to find unknown
correlator values. In some cases our new methods for computing concave
correlators will allow us to compute all genus-zero correlators in the A-
model.

The WDVYV equations are a powerful tool which can be derived from
the Composition axiom. Applying these equations to correlators, we get the
following lemma,

Lemma 3.7. [17] Reconstruction Lemma.
Any genus-zero, k-point correlator of the form

<"Yly- .. 7’Yk737a7576*¢>07k

where 0 < degc(€), dege (@) < ¢, can be rewritten as

<’Ylv~ ~'77k—3,a7ﬁ76*¢>
= Z EC],J <’}/k€[,04,€,(5l> <527¢7ﬁafyj€‘]>

IuJ=[k-3] 1

- Z ZCI,J <7k6]7a,575l> <62>¢3 6’7j€J>'
1UJ=[k—3]
JAD
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where the 0; are the elements of some basis 2 and 0] are the corresponding
elements of the dual basis #', and ¢y, = % Here nx (&) refers
to the number of elements equal to & in the tuple X. The product [[nx(&)!

18 taken over all distinct elements &, in X.

We say that an element o € Sy, is non-primitive if it can be writ-
ten €x ¢ = o for some € and ¢ in Sy with 0 < degc €, dege ¢ < degc .
Otherwise, we say that « is primitive.

Corollary 3.8. A genus-zero, four-point correlator containing a non-
primitive insertion can be rewritten:

<%a,57€*¢>0,4 = Z <’Yaa7€76l> <6l/”¢’ﬂ> + Z <a7656l> <627¢757’7>
l l

- Z <Oé,,8,(5l> <627¢7677> .

l

In fact, using the reconstruction lemma, it is possible to write any genus-
zero k-point correlator in terms of the pairing, genus-zero three-point corre-
lators and correlators of the form (71, ..., ;) for & < k where ~; is primitive
for i <k’ — 2 (see [2]).

We say that a correlator is basic if at most two of the insertions are
non-primitive.

Recall that the central charge of the polynomial W is ¢ = Zj(l — 2q;).

Lemma 3.9 ([2]). If dege() < ¢ for all classes o, P is the mazimum
complex degree of any primitive class, and P < 1, then all the genus-zero
correlators are uniquely determined by the pairing, the genus-zero three-point
correlators, and the basic genus-zero k-point correlators for each k that sat-
isfies

1+¢

9) k§2+1_P.
Example 3.10. In the case of Hy, (j), the maximal primitive degree is
7/12 and ¢ = 7/6, so the Frobenius manifold structure is determined by the
genus-zero three-point correlators and the basic genus-zero k-point correla-
tors for £ < 7.

All of the three-point correlators can be found using the methods de-
scribed in [8]. There are 165 distinct genus-zero three point correlators. The
selection rules show that 158 of them vanish. All of the seven remaining
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correlator values can be found using a pairing axiom found in [1]. There
are ten concave and two nonconcave four-point correlators which satisfy
Axiom 2.7, which might therefore be nonzero. We can use the values of
the concave correlators to find values of the others using Lemma 3.7. For
example, if we let

X =[1;(1/4,1/2)], Y =[1;(1/2,1/3)],
Z=1[1;(3/4,1/6)], and W = [2y?;(0,0)],

then the nonconcave four point correlators are (X, W, W, X?) and (Z, Z,
W, W). Lemma 3.7 gives

(X, W, W, X2) = " 2(X, W, X, 6)(6', W, X) — (W, W, 8)(¢, X, X, X).
é

The selection rules, methods in [8], and computations from Example 3.6
reduce this to

(X, W, W, X?) = (W, W,1(XY? X, X, X)= —

To find the value of (Z, Z, W, W) we have to look for ways to reconstruct
it using five-point correlators.

YW, W, XY, XZ)=(X,Y,W,XZ\X,Z,W,XY)
+ (X, W, W, XY, Z, Z,XY)
— (W, XY, XZ\(X,X,Y,Z,W)
— (Y)Y, W, XY )(X,Z, W, XY).

The correlators (X, Z, W, XY) and (W, XY, XZ) are both equal to zero,
which can be shown using the methods in [8]. The correlators (Y, Z, Z, XY'),
and (X, W, W, X2) are both concave. Using Lemma 3.5, it is a straightfor-
ward calculation to find their values, which are é and i, respectively. So we
have

(10) (Y, W,W, XY, XZ) = (X,W,W,X*\(Y, Z, Z,XY)
L1 1
144 4 576
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We can reconstruct this same correlator in a different way:

(1) (WY, XY, W, XZ) = (X,Y, W, XZ)(Y, Z, W, X?)
+ (XY, X%, XYWZ, Z,W,W)
— (W, XY, XZ\X,X,Y,Z, W)
—(V,Y,W,XYNX,Z, W,XY)

= (XY, X2, XYWZ,Z,W,W) = é<z, Z, W, W).

Together, Equations 10 and 11 tell us that (Z, Z, W, W) = —9—16.

To compute the full Frobenius manifold structure of Fy, (5, we still
need to find the values of all basic five, six, and seven-point correlators.
There are fifteen basic five-point correlators, seven of which are not concave.
There are five basic six-point correlators, three of which are not concave,
and there is one basic seven-point correlator, which is not concave. All of
these correlators can be computed using the methods established here. Their
values are given in Section 4.2.

Remark 3.11. In certain examples, if we use Lemma 3.7 together with the
computed values of concave genus-zero higher point correlators, we can find
values of previously unknown three-point correlators. This allows us to find
even Frobenius algebra structures that were previously unknown.

4. Summary of computations

We compute the FJRW theories with all possible admissible symmetry
groups coming from the quasihomogeneous polynomial representatives cor-
responding to an isolated singularity in Arnol’d’s [9] list of singularities.
Recall that there are potentially several polynomial representatives corre-
sponding to a singularity. We note here that the polynomial representatives
of X9 and Jip which appear in this list of singularities [9] were not consid-
ered in [6] for any choice of symmetry group. The non-maximal symmetry
groups for Pg, also, have not yet been treated.

4.1. FJRW theories which split into known
tensor products

Recall that if a polynomial W can be written W = Wy + W, where W; €
Clxi, ...,z and Wy € C[zi41,...,xy), and if G can be written G = G1 &
G2, where for each i, GG; is an admissible symmetry group for W;, then then
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the A-model associated to the pair (W, G) splits into the tensor product of
the A-models for the pairs (W1, G1) and (Wa, G2).

The ADE singularities (except for D) with all possible symmetry groups
were computed in [1]. The Dy case was done in [17]. For the following pairs
of polynomial and group, the A-model structure splits into a product of
known FJRW theories. We use the notation 24y, to denote the full FJRW
theory associated to the pair (W, G). Symmetry groups which are maximal
are denoted with the subscript mazx.

w G dimension A-models
Xg =2t +¢? ((1/4,0), (0, 1/4)) max 9 Ay g @ Aay g
Jig = + 48 ((1/3,0),(0,1/6)) ma 10 Ay g @ Au, g
Q2 =2 +9° +y22 | ((1/3,0,0),(0,1/5,2/5)) 12 Ay g @ Ay g
Jzo =23 +19° ((1/3,0),(0,1/9)) mazx 16 A, @ Aag g
Wig=a2'+¢° | ((1/4,0),(0,1/6))max 15 Apyg @ Apg g
Fig = $3+y10 <(1/3,0),(0,1/10)>ma$ 18 P(Z/A27J®$27A9,J
E20 = xg + yll <(1/37 O), (07 1/11)>ma:v 20 vQ{Ag,J & %Am,J
Ui =23+ 222 +y° | ((1/3,0,5/6),(0,1/5,0))maz 20 Ap, Gmas @ Ha, ]
Uig = 2° + 222 +° | ((1/3,0,1/3),(0,1/5,0)) 16 A, g ® D, g
Uly =232+ 22 +9° | ((1/6,0,1/2),(0,1/5,0))maz 16 Apr g © DA,
Wig=a*+y" | ((1/4,0),(0,1/7))maz 18 Ap, @ Ay g
Qs =2 +yz2+y" | ((1/3,0,0),(0,1/7,13/14)) ymas 26 A, g ® A, Gmas
Q16 = ? +yz2 +y7 <(1/37070)7(071/77 3/7)> 16 JZ{Az,J®JZ{D8,J
To =23 4+ 22+ 972 | ((1/3,0,0),(0,1/14,1/2))max 16 A, 5 @ Apr g
Q15 = z® + yZZ + yS <(1/37 0, 0)7 (07 1/87 7/16)>ma$ 18 %ALJ ® %DQJ

4.2. Previously unknown FJRW theories we
can compute

Recall that in Lemma 3.9 we saw that the Frobenius manifold structure
can be found from the genus-zero three-point correlators, together with the
genus-zero k-point correlators for k as in Equation 9. The value of k£ depends
on the central charge ¢ of the polynomial and on the maximum degree P
of any primitive element in the state space. The value of k is given for each
of the A-models below, together with all necessary correlators. Correlators
marked with a * must be found using the Reconstruction Lemma. Unmarked
k-point correlators for & > 3 can be found using the concavity axiom.
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Py =23 +9° + 23,
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G={y=

(1/37 0, 2/3)7 V2 = (0 1/37 2/3>>

3 pt correlators

k<6, X =ep,Y =xyzeg. P=1/2,6=1
Relations: X?

=Y?=0;dim=4
4 pt correlators

(1,1, XY) =1/27
(1,X,Y)=1/27

None.

6 pt correlators

5pt correlators

(X, X,)Y,)Y, XY, XY), =0
None.

[ Ps=a23+y3+23, G=(J=(1/3,1/3,1/3)) |
E<6,X =ey,Y =zyzeg. P=1/2,¢=1
Relations: X? =Y? =0; dim = 4

4 pt correlators
3 pt correlators

1,1, XY) =1/27
(1,X,Y) =1/27

None.

6 pt correlators
None.

5pt correlators

None.

Xo=a'+y', G=(J=(1/41/4).y=(0,1/2)) |
k<6, X =ayeq,Y =ejpy, Z =€27, W =e€3544. P=1/2,6=1
Relations: 16X2 =YW =22, X3 =23 =Y?=W? =0. dim =6
3 pt correlators 5 pt correlators 6 pt correlators
1,1,7%) =1 Y.Y,Y,Y,Z%) =1 (VY Y,W,W? W2>fo
(1, YW>= (Y, Y, W,W, Z?) =0 Y.Y,Z,Z,W* W2 = &
1,2,7) = Y, 2,2, W,W?) = L (Y, W, W,W,W? W?) =0
(1,X,X) = <Z,Z,Z,Z,W2>:i6 (Z,Z, W W, W2, W?) =L
(W, W, W, W, W?) = ¢ (X, X,V Y, W2 W?), = -5
4 pt correlators (X, X, X, X, W%, = 05 (X, X, Z,Z,W?, W%, = —=5
(Y,)Y,Z,Z)=1/4 (X,X,2,Z,W?), = —iﬁ
Y, W, W, W) =
(Z,Z,W,W) =1/4
(X, X,Y,Y), = —1/64
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Xo=a'+y7,

G=(J=(1/4,1/4))

k<6, X =12, Y = xyey, Z = 2%eg, W =e95. P=1/2,6=1
Relations: 16XZ =16Y2 =W?, X2 =2°=Y?=W?=0. dim =6

3 pt correlators

5 pt correlators

6 pt correlators

1,1,w% =1 WWwww? =% (X, X, Y, W, W2 W?2), = —¢
1, Ww,w)=1 (X, X, X, X,W?), = 32d° Y, Z,Z,W W2 W?), = o=t
<17X7Z>:$ <X7XaZ7Z>W2>*:O

<17Y~,Y>:E <X>Y7Y727W2>*:7@

4 pt correlators

<szaZ7W>* = 7@

(X, 2, W, W, W?2),

(Y,Y,Y,Y,W?)
WKWWW%:7@

<Z7 Zv Z7 Z7 W2>* = 13421772842

zﬁ
* 409G

I Jio = 2° + 4°,

G=(J=(1/3,1/6))

|

k<6, X =y, Y =ayeo, Z = eg;, W =e95. P=1/2,¢6=1
Relations: 18XY = ZW, X2 =Y?=22=W? =1, dim =6

3 pt correlators

5 pt correlators

(1,1, ZW) =1
(1,Z,W) =1
@Xﬂv:%

4 pt correlators

(Z,2,.Z,W) = 1/6
(W, W, W, W) =1/3
(X, X, X, W), =a#0
(X,Y,2,2), =

1
i
(Y.Y.Y, W), = — 155

" 104,976a

Y,Y,)Y)Y,ZW) = ¢
Y, 2,2,2,ZW) = &

a
(XY, W, W, ZW), = — b
_ 1
Y. Y.Y,Z,ZW), = 314,928a

6 pt correlators

(Z,Z,W,W,ZW,ZW) = 2

1
<XaXaYaYaZW>ZW>* = 17,496
(XY, Z,W,ZW,ZW ), = 1o
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[ ZE =23 +xyt, G =(J=(1/3,1/9)) |

k<6, X =e4,Y =e25,Z =y’eo, W = xy’eq. P =5/9,¢=10/9.
Relations: X2V = —622 = 18W2, X3 =Y?2 = Z3 = W3 =0, dim = 8.
3 pt correlators 4 pt correlators

1,1,X%Y)=1 (1,X,XY)=1 (X, X, X,X?Y)=1/9
(1L,Y, X% =1 (X, X,Y)=1 (X, X, X2 XY)=2/9
(1,2,Z) =-1/6 (1,W,W) =1/18 (X,Y, X%, X% =1/9
(Y,Y,Y,XY)=1/3

5 pt correlators

(X,Y,Y, XY, X?Y) =1/27
(X, X,Z, XY, X?Y) =1/27
(X,Y,Z,X%,X%Y), =0
(X,2,2,2,X%*Y), =0
(X, Z,W,W,X?Y), = —2a/9
(Y,Y,Y, X2 X%Y), = —a/162
(Y,Y,Z,Z,X?Y), = 1/162
(Y, Y,W,W, X2Y), = —1/486
(Y, Z,Z,XY,XY), = 1/162
(Y, W,W, XY, XY), = —1/486
(Z,2,7,X? XY), = —2a/9
(Z,W,W, X% XY), = —a/162

(X,Y,Z,XY), =0
(X,Z,7,X?), =1/54
(X, W, W, X?), = —1/162
Y,Y,Z,X%,.=0
(X,Z2,2,7) =a==+1/9
(X, Z,W,W), =a/36
6 pt correlators
(X,Y,Z,Z, XY, X?Y), = —1/1458
(X,Y,W, W, X2Y, X%Y), = 1/4374
(Y,Y,Y,Z, X%, X?Y), =0
(Z,2,7Z,Z, XY, X?Y), = 1/2916
(Z,Z,W,W, XY, X?Y), = —1/26244
(W, W, W, W, XY, X%Y), = 1/26244

J30 =23 + 17,

G=(J=1(1/3,1/9))

k<6, X =cy47,Y =e27,Z =y e, W = zy’eg. P =5/9,¢=10/9.
Relations: 27ZW = X2V, ab = —1/531441, X3 =Y? = 72 = W? = 0, dim = 8.

3 pt correlators

5 pt correlators

4 pt correlators

1,1,X%Y)=1 (1,X,XY)=1
1,Y,X>)=1 (1,Z,W)=1/27
(X,X,Y)=1

(X,Y,Y, XY, X?Y) =1/27
(X,2,72,7Z,X?Y), = —2a/9
(X, W, W, W, X2Y), = —2b/9
(Y,Y,Y, X% X%Y) =1/27
(Y, Y, Z, W, X?Y), = —1/729

(X, X, X, X%)=1/9
(X, X, X2 XY)=2/9
(X,Y, X2, X% =1/9
(X,Z,W,X?), =—1/243
(Y,Y,Y,XY)=1/3
(Y,2,2,7) =a
(YW, W, W) = b

Y, Z,W, XY, XY), =—1/729
(Z2,2,72, X%, XY), = —2a/9
(W, W, W, X2, XY), =—2b/9
6 pt correlators
(XY, Z,W, X?Y, X?Y), = 1/6561
(Z,Z, W, W, XY, X%Y), = 4/177147
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Zig=2y+y',

G™e® = (y = (1/21,6/7))

k<5 X =es5,Y =e€13y. P=1/3,6=8/7.
Relations: X7 = —3Y2, X3 = Y3 =0, dim = 19.

3 pt correlators

(1,1, X°Y%) =1
(1, X%, X3Y%) =1
(1,Y, X°Y) =1
(1, XY, X*Y) =1
(1, X%y, X3Y) =1
(X, X, X3v% =1
(X, X3, XY?) =1
(X, X4 y% =1
(X, XY, X?%) =1
(X, X%, X?%Y) =1
(X2, X3 Y% =1
(X%, X4 X% = -3
(X% X5 X%, =-3
(X3Y,X?Y) =1
(X3 XY, XY)=1
(Y, X4, XY) =1

1, X, XY?) =1
(1, X3, X2Y%) =1
(1, X% XY? =1
(1,X°,Y?) =1
(1, X% X6) = -3
(X, X2, X?Y?) =1
(X,Y,X%Y) =1
(X, XY, X3Y) =1
(X, X5 X6) =-3
(X2, X2, XY? =1
(X2Y,X3Y) =1
(X2, XY, X%Y) =1
(X3, X3, X% = -3
<X37X47X5>* =-3
(Y,Y,X%) =1
<X47X43X4>* =-3

4 pt correlators

(X, X, X°Y, X°Y?) =1/7
(X,Y, X% X°Y?), =1/7
(X,Y, Y2, X4Y?) = —1/21
(X,Y,XY? X3Y?) = —1/21
(X,Y,X?Y?% X2Y?%) = —1/21
(Y,Y,Y, X°Y?) =2/7
(Y, Y, XY, X*Y?) =5/21
(Y,Y, X2y, X3Y?) = 4/21
(Y,Y, X3Y, X%Y?) = 1/7
(Y)Y, XY, XY?) =2/21
(Y,Y, Y2, X°Y) =1/21

5 pt correlators

None
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Amanda Francis

Zipg=2y+y, G=({J=(2/7,1/7)

E<T7, X =e4s,Y =e2s,Z =y'eg, W = xy?eq. P =4/7,¢6=8/7.
Relations: X3 = —3Y2, 21ZW = XY2, 0 #0, X° =Y3 =22 =W? =0, dim = 9.

5 pt correlators

(X, X, X, XY?2 XY? =2/49
(X,Y,Y,Y2, XY?) =0

3 pt correlators (X,2,2,7,XY?), = —2a/7
1,1,XY% =1 (1,X, YY) =1 (X,Z,W, X% XY?), =1/3087
(LY, XY)=1 (1,Z,W)=1/21 (X,Z,W, Y2 Y?), =1/1029

(1,X2 X =-3 (X,,Y)=1 (X, W,W,W, XY?), = —2l/7
(X, X,X?) =-3 (Y,Y,)Y,XY,XY?) =2/49

(Y,Y,Z,W,XY?), = —2/1029
(Y, Z,W,XY,Y?), = —1/1029

4 pt correlators (Z,7,X,X%Y?), = —2a/7

(X, X,Y,XY?) =1/7 (2,7, 7, XY, XY), = —2a/7
(X, X,XY,Y?) =2/7 (Z,Z,W,W,Y?), = —2/64827
(X,Y,XY,XY)=1/7 (W, W, W, X2 Y?%), = —2/(1361367k)

(X,Y, X% Y?), =3/7
(X, Z,W,XY), = —1/147
(Y,Y,Y,Y?) =1/7
(Y,Y, X2, XY), =0
Y, 2,2, Z) = a
(Y, Z, W, X?), =—1/147
(Y, W, W, W), = —1/(194, 481a)

(W.W.W,XY,XY). = -2/

6 pt correlators
(X,Y, Z,W,XY? XY?), =5/7203
(Y, Z,2,2,Y? XY?), = 6a/49
(Y, W, W, W,Y?, XY?), = 6a/49
(Z,Z,W,W, XY, XY?), =4/151263

7 pt correlators
None
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WLO - $4 + y67

G=(J=(1/41/6)

k S 7, X:€9J,Y:€2J,Z:€7J,W:$y260. P:7/12,é: 7/6.
Relations: XZ =Y?2, X27 =24W?2 X3 =Y3 =22 =W3 =0, dim = 9.

3 pt correlators

(1,1, XY =1 (1,X,Y?) =1
(LY, XY)=1 (1,Z,X* =1

AW, W)=1/24 (X,X,Z)=1
(X,V,Y)=1

5 pt correlators

4 pt correlators

(X, X,X,XY?%) =1/6
(X, X,X2Y?% =1/6
(X, X,XY,XY)=1/3
(X,Y, X% XY)=1/6

(X,X,2,X7,X?7Z) =0
(X)Y,Y, Y2, XY?) =1/24
(X,Y,Z,XY,XY?) =1/24

(X,2,2,X%,X%Z)=0

(X, Z,W,W,X?7), =1/576

(X, W,W,XZ,XZ), =0
(Y,Y,Y, XY, XY?) =1/24
(Y,Y,Z,X? X27) =1/24

(Y, Y,W,W, XY?), = —1/576
(Y, W,W, XY, Y%, = —1/576
(2,2,2,2,X*Z) =1/8
(2,2,2,X7Z,XZ) =1/8
(Z,W,W, X2 XZ), =1/576
(Z,W,W,XY,XY), =0
(W, W, W, W, XZ), =1/13824

(X,2,2,XZ)=0
(X,Z,X%,X% =0
(X, W, W, X?%), = —1/144
(Y,Y,Z,Y?) =1/4
(Y)Y, X2, X?) =1/6
(Y, Z,Z,XY)=1/4
(Z,2,72,X?) =0
(Z,Z,W,W), = —1/96

6 pt correlators

(X,2,2,2,X*Z,X*7Z) =0
(X, X, W, W, X272 X2Z), = —1/1728
(Y,Y,Z,Z,XY? XY?) =1/24
(Z,Z,W,W,XZ,X*Z), = —1/1152
(W, W, W, W, X% X%Z), = —1/27648

7 pt correlators

(Z, W, W, W, W, X?Z,X*Z), = 1/55296

Qa0 = 2° + zy* + y22,

G = (y = (1/3,11/12,1/24))

k S 57 X = 677,Y = €11y- P= 7/24,6 == 7/6
Relations: 2X7 =Y3, X8 =Y4 =0, dim = 17.

3 pt correlators

4 pt correlators

(1,1, X7Y) = -2
(1,X%2 X6y) = -2
(1, X3, X°7) = -2
(1, X4 X3Y) = -2

(1,Y3Y3) = -4
(X, X2, XY%Y) = -2
(X, X3, X3Y), = -2
(X, X4, X%Y) = -2

(X2, X2 X%), = -2
(X%, X3, X%), = -2
(Y,Y,Y?) = —4

(1,Y,X7)
(1, X%y, X°

(X,Y,X6)
(X, XY, X5

1, X,X7Y) = -2
(1, XY, X5 = -2
(X, X, X°Y) = -2
(X2Y,X°) = -2
(X2, XY, X*) = -2

(Y, X3, X4 = -2
(X3, X3, XY), = -2

(X, X, X5 XY)=2/3
=2 (X, X, X", X%Y) =1/3
(X, Y, X", X"y =-1/3
)= -2 (X,Y, Y2 Y3), = —4/3

Y)Y, XY, X"Y) = -2/3

(Y)Y, X?Y,X5Y) = —-2/3
(Y,Y, X3, X%) = -2/3
(V,Y, X4, X*Y), = —2/3

=2
)= —2

5 pt correlators

None
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Amanda Francis

[ Qa0 = 23 + zyt + y22,

G = (J = (1/3,1/6,5/12))

3 pt correlators

E<7, X =ec10,Y =ess, Z =yPces, W = xyesy. P =7/12,é=T7/6.
Relations: X?Y =822 = —24W?2 X4 =Y2 =23 =W3=0a = +1, dim = 10

(1,1, X3Y) = -2

4 pt correlators

(1, X, X?%Y) = -2
(1, X2, XY) =1
1,2,Z)=-1/4 (A, W,W)=1/12
(X, X, XY).=-2 (XY, X?) =1

5 pt correlators

(1,Y,X3) = -2

(X, X, X2, X%), =2/3
(X, X, X3, X?Y). =4/3
(X,Y,Z,X?Y). =0
(X,Y, X3 X3 =2/3

(X, X,Z, X%, X3 ), =0
(X,Y,Y, X?Y, X3Y) = 2/9
(X,Y, 7, X3,_X3Y>* =0
(X,Z, 2,7, X3Y ), = a/72
(X, Z,W, W, X3Y), = a/216
(Y,Y,Y, X3 X3Y) =2/9
(Y)Y, Z,Z, X3Y ), = —1/36
(Y, Y, W, W, X3Y), = 1/108
(Y, Z,Z, XY, X?Y), = —1/36
(Y, W, W, XY, X%Y), = —1/36
(X2, 2,7, 7, X?Y), = a/72
(X2, 2, W, W, X?Y), = a/216
(Z,2,Z,XY, X%, =a/72
(Z, W, W, XY, X3), = a/216
7 pt correlators
(X2,72,2,7Z,7Z,X3Y,X%Y), = —1/216
(X2, 2,2, W,W, X3V, X3Y), = 1/1944
(X2, W, W, W, W, X3Y, X3Y), = —1/1944

(X,2,72,X3), = —1/12
(X, Z,XY,XY), =0
(X, W, W, X3), =1/36
(Y,Y,Y, X?Y) = -2/3
Y, V,Z, X%, =0
(V,Y, XY, XY), = —2/3
(Y, X2, Z,XY). =0
(Y, 2,7, 7). = a/48
(Y, Z, W, W), = a/144
(X2, X% 2,7) =1/12
(X2, X2 W, W), =1/36
6 pt correlators

(X,Y,Z,Z, X3V, X3Y),. = —1/108
(XY, W, W, X3Y, X3Y), = 1/324
(Y,Y,Y, Z, X3V, X3Y), =0
(Z2,2,2,Z, XY, X3Y), = —1/288
(Z,2,7,7, X%, X?Y), = —1/288
(Z,Z, W, W, XY, X3Y), = 1/2592
(Z, 2, W, W, X2Y, X2Y), = 1/2592
(W, W, W, W, XY, X3Y), = —1/2592

(W, W, W, W, X?Y, X?Y)

, = —1/2592
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1371

Qoo ="y +y'z+2°,

Gmax:<J:

(7/24,1/8,1/2))

k<5 X =-es,Y =eyy,Z =yes;. P=5/12,¢ =T/6.

Relations: X% = —3Y?2 aX3Y = 72, X8 =

Y3=27%2=0,a+#0, dim = 14.

3 pt correlators

4 pt correlators

(X, X, X%Y,X3Y?%) =1/8

(X, X, XY, X?Y?%) =1/8

(X,Y, Y2, X2Y?%) = —1/12
(X,Y,X3Y,X3Y) =0

(1,1, X3v%) =1 (1,X,X%Y?) =1
(1, X2 XY =1 (1,Y,X3%) =1

1, X3,V =1 (1,XY,X*)=a

1,2,YZ)=1 (X, X,XY?) = 1
(X, X2 7% =1 (X,Y,X%) =
(X, XY, XY)=1 (X, X3 X3, = —3
(X2, XY)=1 (X2, X% X3), =

Y, Z,Z). =a
5 pt correlators

(X,Y,XY? XY?) = —-1/12
(X,Y, X3 X3Y?%), =1/8
(X,2,7,X3Y?), = —a/8
(X,Z2,YZ,X3Y), = —a/8
(X%, 2,2, X*Y?), = —a/8

(Y,Y,Y,X3Y?) =7/24
(Y,Y, XY, X?Y?) =5/24
(Y)Y, X?Y, XY?) =1/8
VY, Y2, X3) =1/24

(X,Y,Y, X3VZ2 X3Y?), = —1/96
Y, Z,2,XY2, X3Y?), = —a/96
Y, Z,2,X2Y?, X2Y?), = —a/96

Y,Y,YZYZ), =a/4
Y, Z, Y2 YZ), = —a/24
(Z,2,X3,XY?), = —a/8
(Z,2,XY,X3Y), = —a/8
(Z,7,X2Y, X2Y), = —a/8

(Z,Z,Y2Y?), =a/24

S0 =2’y +y’2+2°,

G = (v = (1/20,9/10,1/5))

k<4, X =e7,Y =¢,.
Relations: X° = Y3, X?

P=1/4,¢6=6/5.
=Y*=0, dim = 17.

3 pt correlators

(1,1, X3%3) = -2 (1,X,X%YV3) = -2
(1,7, X3v?) = -2 (1, X2 L XY3) = -2
(1, XY, X?Y?) = -2 <1,X3,Y3> -2
(1,2, X3Y) = -2 (1,X%V,XY?) = -2

1,X4 XY =-2 (X, X,XV3 =—
(XY, X2Y2) = —2 (X, X2Y3) = -2
(X, XY, XY?) = 2 (X,V2X?Y) = 2
(X, X3, XY =-2  (V,Y,X%), =

(Y, X2 XY%) = -2 (Y, XY,X%Y), =

YV, X3y?) = -2 (X2 X2 X%, = —2
(X2, XY, Y% =—-2 (X2 X3 X3), =—2

(XY, XY,XY) = —

4 pt correlators

(X, X, X3, X3Y3) = —2/5
(X, X, X372, X3Y?) = -2/5
(XY, X4 X373 = -2/5
(X,Y, Y3, X2Y3), = -2/5
(X,Y,XY3 XY3),=1/5
(Y,Y, Y2 X3Y3), =8/5
(Y,Y,XY? X%Y3), =6/5
(V,Y, Y3 X3Y?), = —2/5
(Y,Y,X?Y2, XY3), =4/5
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Amanda Francis

SI,O = J72y + y2Z + 25’ G= <J = (3/10 2/57 1/5)>

kS7,X=€2J,Y=67J,Z=66J,W22265J.P=3/5,é=6/5.

Relations: 2XZ = aY?, X3 =2aY Z, XY Z = 10W? X> =Y*=2%2=0, a # 0, dim = 10.

3 pt correlators

4 pt correlators

1,1,XYZ)=1 (1,X,YZ)=1
(1,Y,XZ) =1 (1,Z,XY) =1
(1L, W,W)=1/10 (1,X% X?)=2a
(X,v,2) =1 (X, X, X%, =2a
Y,Y,Y) =2/a
5 pt correlators

(X, X, Z2,YZ,XYZ)=1/25
(X, Y)Y, YZ XYZ), =0
(X,Y,Z,XZ, XY Z)=-1/50
(X,2,Z,XY,XYZ)=0
(X, Z,W,W, XY Z), = —3/500
(X, W,2W,XZ,YZ), =—-1/500
Y\ Y)Y, XZ XY Z).=—-2/(25a)
Y, Z, XY, XYZ), =—2/(25a)
Y YW, W,XYZ), =1/(125a)
(Y, 2,2, X%, XY Z) =0
Y, Z,Z2,YZ,YZ), =1/(25a)
(YW, W, XY, YZ), =1/(250a)
Y WW,XZ, XZ), =1/250
(Z,2,Z,Z, XY Z) = 3/25
(2,2,2,XZ,YZ)=2/25
(Z, W, W, X2 YZ), =—1/125
(Z,W,W, XY, XZ), =—-1/500
(W, W, W, W, XZ), =—1/5000
7 pt correlators

(X, X,Y,XY?%) =1/5
(X,X,XY,YZ)=1/5
(X, X,XZ,XZ). =a/5
(X,Y,X%2YZ).,=2/5
(X,Y,XY,XZ)=1/5
(X,2,2,YZ)=1/10
(X,Z,X*XZ). =a/5
(X,Z,XY,XY) =0
(X, W,W,XY) =—1/50
(Y.Y,Z,YZ), = ~1/(5a)
(Y)Y, X2, XZ), =0
(Y)Y, XY, XY), =2/(5a)
Y, 2,2, XZ) = —-1/5
Y, Z,X? XY), =0
(Y, W, W, X?), = —1/50
(Z2,Z,Z,XY) = —-1/10
(Z,Z,W,W), =1/50
(Z,72,X%, X%, =2/5
6 pt correlators

Y, W,W,W,W, XY Z,XYZ) = —3/(625000)

(X,2,2,Z,XYZ,XYZ) =0
(X,X,2,2,XYZ,XYZ), =1/625
Y,Y,2,2,XYZ,XY Z), = 4/(125a)
Y, Z2,W,W,Y Z,XY Z), = 1/(2500a)
(Z,Z,W,W,XZ,XY Z), = —3/2500
(W, W, W, W, X2, XY Z), = —9/25000
(W, W, W, W,Y Z,Y Z), = 3/(12500a)
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Eig = 23 + zy7,

Gmar = (] = (1/3,2/21))

k<5 X =e35,Y =e115. P=2/7,6=8/T7.
Relations: —7X% =Y3 X7 =Y =0, dim = 15.

3 pt correlators

(1,1,X5) =1
(1,Y,X% =1
(1, XY, X% =1
(1, X%y, X% =1
(X, X, X)) =1
(X, X2, X3Y) =1
(X, X3, X%Y) =1
(X2, X%Y) =1
(X3)Y,XY) =1
(v, X3, X3 =1
(X%, X2, X?%7) =1

(1,X,X°Y) =1
(1, X2, X4%Y) =1
(1, X3, X3Y) =1
(1,2, V%) = -7
(X,Y, X% =1
(X, XY, X4 =1
(X2, X2 v?%) =1
(X2, XY, XY)=1
v, X2, X4 =1
(Y,Y,Y?) = -7
(X2, XY, X3 =1

4 pt correlators

(X, X,X° X)) =2/21
(X, X, X6 X%) =1/21
(X,Y, X% X6) = —1/21
(X,Y, Y% X%Y), =1/3
(Y)Y, XY, XY) =1/3
(Y, Y, X%Y,X%Y) =1/3
(Y, Y, X3V, X%Y) =1/3

5 pt correlators

None

Zﬂ =2 + 217,

Gmaw — (4 = (2/3,1/24))

k<5 X =es5,Y =€y P=7/24,¢=17/6.
Relations: —8X7 = Y3, X% = XY?2 =Y* =0, dim = 17.

3 pt correlators

(1,1,X7Y) =1 1,X,X%) =1
(1, X2, X°Y) =1 (1,Y, X"y =1
(1, X3, XY)=1 (1,XY, X% =1
(1L, X4 X3%)=1 (1,X%, X% =1

(1,Y2,Y?) = -8
(X, X2, X)) =1
(X, X3, X3%) =1
(X, X4 X?2Y) =1

(X2Y,X%) =1
(X2, XY, X% =1
(v, X%, X4 =1

(X3, X3, XY) =1

(X, X,X%) =1
(X,Y, X% =1
(X, XY, X% =1
(X2, X2, X3Y7) =1
(X2, X3, X%Y) =1
(X3Y,XY)=1
(Y,Y,Y?) = +1

4 pt correlators

(X, X, X5 XTY) =1/12
(X, X, X7, X%V) =1/24
(X, X", XT) = —1/24
(X,V, Y2, XY), =1/3
Y,Y, XY, XY)=1/3
(Y,Y, X%V, X%V) =1/3
(Y)Y, X3V, X°Y) =1/3
(Y,Y, XY, X*Y) =1/3

5 pt correlators

None




Amanda Francis

1374
H Zh=o tay, G=(J=(1/31/12)) H
k<7, X =e45,Y =e2),Z =y eq, W = xy’eq. P=7/12,6 =T/6.
Relations: X?Y = —87% = 24W2 X' = Y22% = W?, a,b # 0, dim = 10.
5 pt correlators
X,Y,Y, X%V, X3Y) =1/36
3 pt correlators (X, Y)Y, )
<1a 17X3Y) =1 <1,X, X2Y> =1 <X’ X’ Z’ XQBY’ )23Y>* =0
AV XY <1 (X Xy -1 S0
<LZ&Z>:_1/8 <17VV7W>:1/24 1 T oh 3 *
(X, X,XY)=1 (X,Y,X?)=1 (X, Z,W,W,X%), = ~b/6
o s (Y.Y.Y, X3, X3Y) = 1/36

4 pt correlators

(X, X, X2, X%Y) =1/12
<X7X7X37X2Y> :1/6
<X7Y,X3,X3> - 1/].2
<X7Y7Z7X2Y>* =0
<X7Z72:X3>* = 1/96
(X,Z,XY,XY), =0
(X, W, W, X3), =—1/288
(Y,Y,Y,X?Y) =1/3
(Y)Y, XY, XY)=1/3
<Y7Y727X3>* =0
(Y, X% Z,XY ). =0
(Y, 2,2,Z) = a==+1/192
(Y, Z,W,W), =b=+1/576
<X2,X27ZaZ>*:1/96
(X2, X2 W, W), = —1/288

(Y)Y, Z,Z,X3Y), = 1/288
(Y)Y, W, W, X?Y), = —1/864
(Y, 2,2, XY, X?Y), = 1/288
Y, W, W, XY, X2Y), = —1/864
(X2, 7,2,2,X%Y), = —a/6
(X2, Z, W, W, X2Y), = —b/6

(2,2,2,XY,X3), = —a/6

(Z,W,W, XY, X3), =—b/6

6 pt correlators

7 pt correlators

None

(XY, Z,Z, X3V, X3Y), = —1/3456
(X, Y, W, W, X3Y, X3Y), = 1/10368
(Y,Y,Y, 2, X3, X3Y), = 0
(Z,2,Z,2,XY,X3Y), =1/9216
(Z,2,7, 7, X2Y, X2Y ), = 1/9216
(Z2,2,W,W, XY, X%Y), = —1/82944
(Z,2,W,W,X?Y, X?Y), = —1/82944
(W, W, W, W, XY, X3Y) = 1/82944
(W, W, W, W, X2Y, X?Y) = 1/82944
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Zig = 23y + 47,

GmllI — <J —

(8/27,1/9))

k<5 X=ens,Y =eyy. P=1/3,¢=232/27.

Relations: X9 =

_3y2 Xl()’

=Y3 =0, dim = 25.

3 pt correlators

4 pt correlators

(1,1, X7Y?) =1
(1, X2, X°Y?) =1
(1, X4, X37?) =1
(1, X°, X2Y?) =1
(1,X5 Xy?) =1
(1, X" v% =1
(1, X8 X8 = -3
(X, X2, X%7?%) =1
(X, X%, X?v?%) =1
(X, X5, XY%) =1
(X,X0,v?) =1
(X, X7, X8) = -3
(X2, X2, X3%?) =1
(X2, X4 XY?) =1
(X2, X% v =1
<X2aX67X8> =-3
<X27X77X7>* =-3
(X3, X4 v%) =1
(X3, X%, X8) = —
(X3, X6 XT), =3
(X4 X% X8 = -3
(X4 X5 X, =-3
(X4, X6 X0, = —3
(Y, X°, X?Y) =
(X, X5 , X0, = 3

1,X,X%Y?) =1
(1, X3 X4?) =
(1,Y,X'Y?) =1
(1, XY, X%Y) =1
(1, X%y, X°Y) =1
(1, X3y, X)) =1
(X, X,X°Y?) =1
(X, X3, X37?%) =1
(X,Y,X5Y) =1
(X, XY, X%) = 1
(X, X?Y, X% =
(X, X3Y XYy =
(X2, X3, X%?) = 1
(X2Y,X°7) =1
(X2, XY, XY) =1

(X2, X2, X3Y) =1

(X3, X3, XY?) =1
(X3Y, X)) =1
(X3, XY, X%Y) =1

(X3, X2V, X2Y) =1

(X4 Y, X3Y) =1
(X4, XY, X2%Y) =1
Y, Y, X"y =1
(Y, XY, X6) =1
(X5, XY, XY) =1

5 pt correlators

(X XH X1 X2 XTY?) =4/81
(X3, X4 X4 XTY? XTY?), =2/81

(X, X, XY, XY%) =1/9
(X, X2 X0y, XTY?2) =1/9
(X, X2 X7y, X5y2) = 1/9
(X, X3, X5V, X7Y?2) = 1/9
(X, X3, X0y, X6Y2) = 1/9
(X, X3 XTY, X5Y2) = 1/9
( )
( )
( )

)=

X, X4 XY, XTY?) = 1/9
X, X4, XY, X0Y2) = 1/9
X, X4, X0V, X5Y2) = 1/9
(X, X4 XY, X4Y?) = 1/9

(X2, X2, X5V, XTY?) = 1/9
(X2, X2, X0V, X6Y2) = 2/9
(X2, X2 XTY, X5Y2) = 1/9
(X2, X3, X4y, X7Y?2) = 1/9
(X2, X3, X5Y, X6y2) = 2/9
(X2 X3, X0V, X3V = 2/9
(X2, X3 X7y, X4Y?2) = 1/9
(X2, X4 X3Y,X7Y?2) =1/9
(X2, X4 X1y, X5y2) = 2/9
(X2, X* XY, X5Y2) = 2/9
(X2, X4 X0y, X4Y2) = 2/9
(X2, X4 XTY, X3Y2) = 1/9
(X3, X3, X3Y, X7Y?2) = 1/9
(X3, X3, X1y, X6Y2) = 2/9
(X3, X3, X5Y, X°Y?) =1/3
(X3, X3, XY, X4v2) = 2/9
(X3, X3, X7y, X3Y2) = 1/9
(X3, X4 X2y, X7Y2) = 1/9
(X3, X4, X3Y, X6Y2) = 2/9
(X3, X4 XY, X5Y?2) = 1/3
(X3, X4 XY, X4v?2) = 1/3
(X3, X4 X0y, X3y2) =2/9
(X3, X4, XTY, X2Y2) = 1/9

(X4 X4 XY, XTY?) = 1/9
(X4, X4 X2y, X5Y2) =2/9
(X4, X4 X3Y, X5Y2) = 1/3
(X4 X4 XY, X4Y2) = 4/9
(X4, X4, X5Y, X3Y2) =

(X4, X4 X0y, X2Y2) = 2/9
(X4 X4 XTY, XY?) =1/9
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Z% = 2% + 2y,

Gmax — <J —

(1/3,2/27))

k<5 X =es,Y =eny. P=8/27,¢=32/27.

Relations: —9X8 =

=Y3 X9 =

Y5—O dim = 19.

3 pt correlators

(1,1, X%Y) =1 (1, X, XY)=1
(1, X2, X%) =1 (1,Y,X8) =1
(1, X3, X°Y)=1 (1,XY,X") =1
(1, X4 Xx%YV)y=1 (1,X%,X% =1
(1, X° X3Y) = (1,Y2)Y?) = 9
(X, X, X%V)=1 (X,X%2,X°)=

(X, v, X" =1 (X, X2 X%) =
(X, XY, X)) =1 (X, X3 X%) =
(X, X2, X%) =1 (X, X* X3) =
(X%, X2, X4%Y) =1 <X2,Y, X6) =
(X2, X3, X3Y) =1 (X% XY, X5 = 1
(X2 X4 X2Y)y=1 (Y, Y,Y%) =-9

(VX3 X% =1 (v,X4,x%) =1

(X3, X3, X2Y) =1

(X3, XY, X4 =1

4 pt correlators

(X, X, X", X8Y) =2/27
(X, X, X% XTY) =1/27
(XY, X8 X8) = —1/27
(X,Y, Y% X8, =1/3
(Y,Y, XY, X%) =1/3
YV, X2V, X'Y) =1/3
(Y, Y, X3Y, X%V) =1/3
(Y)Y, XY, X°Y) =1/3
5 pt correlators

None

Wiz = 2% + Xy°,

Gmax — <J —

(1/4,3/20))

k<4, X =eyu;,Y =egy. P=1/5,6=6/5.

Relations: X4 = —5Y4 X7 =

Y?® =0, dim = 16.

3 pt correlators

(1,1, X%2vy% =1 1, X, XY% =1

(1,Y, X273 =1
(1, XY, XY3) =1
(1, X273 =1

(1, X274 =1

(1,2, X%Y?) =1
(1,XY? XY?%) =1

(1,X3,X3) = -5 (X, X, Y4 =1
(X, XY? =1 (X, X% X% =-5
(X, XY, Y3 =1 (X, Y2 XY?) =1
VY, X?v?%) =1 Y, X2 Y3 =1
VXY, XY?) =1 (VY2 X?Y)=1
(X2y2y)=1 (X%, X% X%,=-5

(XY, XY, Y2 =1

4 pt correlators

(X, X, X%, XYY = 1/4
(X, X, X?%Y? X2Y3) =1/4
(X,Y, X3 X274, =1/4
(X,Y, Y4 XY*) = ~1/20
(Y, Y, Y3 X2Y*4) =3/20
(V,Y,XY3 XY% =1/10
(Y,Y, Y4 X2Y3) =1/20
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Wk =a'y+4°, G™* = (y=(1/20,4/5))

k S 4, X 263,\/,Y:€97. pP= 1/4,6:6/5
Relations: X° = —4Y3 X8 = Y* =0, dim = 17.

3 pt correlators

33\ 2v 3\
(1,1, X°Y°) =1 (1L, X, X°Y") =1 4 pt correlators

(1,Y,X3v?%) =1 (1, X2 XY3) =1
(1, XY, X?Y?) =1 (1, X373 =1
1,Y2X3Y)=1 (1,X%,XY? =1
(1, X4 X =4 (X,X,XY? =1
(X,Y,X?Y?) =1 (X, X273 =1
(X, XY, XY? =1 (X, X3 X% =4
(X, Y2, X%) =1 VY, X3%) =1
YV, X2, XY%H =1 (Y, XY, X?%)=1

(Y, X3 Y% =1 (X2, XY,Y%) =1
(X2, X2 XY = -4 (X%, X3 X3),=—-4
(XY, XY,XY)=1

(X, X, X3, X3Y3) =1/5
(X, X, X372, X3Y?%) =1/5
(X,Y, X* X373, =1/5
(X,Y, Y3, X?Y3) =1/20
(X,Y, XY3 XY3) = ~1/20
Y, Y, Y2, X3V3) =1/5
(Y)Y, XY?% X%Y3) = 3/20
(V,Y, V3 X3Y?%) =1/20
VY, X2Y?% XY?3) =1/20
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Wk =2y +4°, G =(y=(1/10,3/5))

k<7, X=c¢y,Y =cay,Z =ery, W=ay?c0. P=3/5,¢6=6/5.
Relations: XZ = Y2, X3 = —4YZ, XY Z = 20W?, X5 = Y5 = 22 = W3 = 0, dim = 10.

3 pt correlators

(1,1,XYZ) =1 (1,X,YZ)=1
1,,XZ)=1 (1,2, XY)=1
(1L, W,W)=1/20 (1,X2% X% =4
(X, X, X% =4 (X,Y,2)=1

Y, ,Y)=1
5 pt correlators

4 pt correlators

(X,X,Z,YZ,XYZ) = —1/25
(X,Y,Y,YZ,XYZ) =0
(X,Y,Z,XZ, XY Z) =1/50
(X,2,2,XY,XYZ)=0
(X, Z,W,W, XY Z), = 3/1000
(X, W,W,XZ,Y Z), = 1/1000
Y,Y,Y,XZ,XYZ)=1/25
.Y, Z,XY,XYZ) =1/25
Y,Y,W,W, XY Z), = —1/500
Y, 2,2,YZ,YZ) =1/50
Y, 2,2, X2, XY Z), =0
Y, W, W, XY,YZ), = —1/1000
Y, W,W,XZ,XZ), = —1/500

(X,X,Y,XYZ)=1/5
(X,X,XY,YZ)=1/5
(X,X,XZ,XZ)=2/5
(X,Y,XY,XZ)=1/5
(X,Y,X2YZ),=2/5
(X,2,2,YZ)=1/5
(X,Z,XY,XY) =0
(X,Z,X? XZ), =2/5
(X, W,W,XY), = —1/100
(Y,Y,Z,YZ)=1/10
(V,Y,XY,XY)=1/5
(V,Y, X% XZ), =0
(Y,Z2,2,XZ) =1/5
(Y, Z, X%, XY), =0
(Y, W, W, X?), = —1/100
(Z,Z,Z,XY) =1/10
(Z,Z,W, W), = —1/100
(Z,Z,X% X%, =4/5

6 pt correlators

(Z,72,2,Z,XYZ) = 3/25
(2,2, 2, XZ,YZ) = 2/25
(Z, W, W, X% XZ), =1/250
(Z,W,W,XY,XZ), =1/1000
(W, W, W, W, XY Z), = 1/20000

7 pt correlators

Y, W, W, W, W, XY Z, XY Z), = —3/500000

(Z,2,W,W,W,XYZ,XYZ), =0

(X, X, W,W,XYZ,XYZ), = —1/1250
(X,2,2,2,XYZ,XYZ)=0
Y,Y,Z2,Z,XYZ,XYZ) =2/125
(Y, Z,W,W,YZ, XY Z), = 1/10000
(Z,Z,W,W,XZ, XY Z), = —3/5000
(W, W, W, W, X2 XY Z), = —9/100000
(W, W,W,W,Y Z,Y Z), = 3/100000
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Q7 = 23 +ay° +y22, G = (J = (1/3,2/15,13/30))

k<5 X =e1s,Y =egy. P=3/10,¢=6/5.
Relations: 5X? = 2Y?3 | X190 = y4 =0, dim = 21.

3 pt correlators

(1,1, X%Y) = —2 (1, X,X%Y) = -2

(X, X2, X6Y) = —2
(X, X3, X5Y) = —2
(X, X*, X4Y), = —2
(X, X2Y, X%) = —2
<X27 KX7> =-2
(X2, XY, X6) = —2
(X2, X2V, X°) = -2
<K X37X6> =-2
(X3, X3X3Y), = —2
(X3, X4X2Y) = -2

(1,Y,X%) = -2
(1,XY, X8 = -2
(1, X° X4Y) = -2
(1, X3y, X6
(X, X, XY

(X,Y,X8) = -2
(X, XY, X7y = -2
(X, X5, X3Y) = -2

(X%, X2 X57) = -2
(X2, X3 X4Y), = -2
(X2, X4 X3Y), = -2
<Y7K Y2>* = -
(Y, X47X5> =-2
(X3, XY X5), =2
(XY, XX, = -2

)= 2
)= 2

4 pt correlators

(X, X, X5, X9) =8/15
(X, X, X% X8Y) =4/15
(X,Y, Y2, X7), =2/3
(X,Y, X9, X% = —4/15
(Y,Y,XY,X) = —2/3

(Y,Y, X2V, X8Y) = —2/3
(Y,Y, X3V, X7Y) = —2/3
(Y,Y, X4V, X5Y) = —2/3
(Y,Y, X5V, X5Y) = —2/3

5 pt correlators

None
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QT =%y + v’z + 22,

Gmaw = (v = (1/30,9/10,1/2))

k<5, X =er,Y =ei9y,Z = ylerpy. P=1/3,6=6/5.
Relations: X° = —3Y?2 aX?Y =22, X0 =V3 =23 =0, a # 0, dim = 17.

3 pt correlators

(1,1, Xv?) =1 (1,X,X3%Y?) =1
(1, X%, X2y?) =1 (1,Y, X*Y) =1
(1, X3, XY?) =1 (1, XY, X%Y) =1

1,X4v2) =1 (1,X2Y,X%V) =1
(1,2,YZ)=a (X, X, X2Y?%) =1
(X,X2,XY%) =1 (X,Y,X3Y)=1
(X, X3y =1  (X,XY,X%Y)=1
(X, X4 X4, =-3 (X2 X2Y%) =1
(X2V,X%Y)=1 (X% X3, X%, =-3
(X2, XY,XY) =1 Y,Y, X4 =1
Y, X3, XY) =1 Y,Z,Z)s = a

(X3 X3 X3), = -3

5 pt correlators

(X,Y,Y, X*V? X1Y?) = —1/150
(Y, Z,Z,XY? X1Y?) = —a/150
(Y, Z,Z,X?Y? X3Y?) = —a/150

4 pt correlators

(X, X, X3, X%Y?) =1/10
(X, X, X%, X3Y?) =1/10
(X,Y, Y2 X3Y?) = —1/15
(X,Y,XY? X?Y?%) = —-1/15
(X,Y, XY, X*Y) =0
(X,Y, X4 X4Y?), =1/10
(X,Z,7,X*Y?), = —a/10
(X,2,YZ,X*Y), = —a/10
(X2,2,7,X3Y?), = —a/10
(Y,Y,Y,X*Y?) =3/10
(Y, Y, XY, X3Y?) =17/30
(Y,Y, X%V, X%Y?) =1/6
(Y, Y, Y2, X*Y) = 1/30
(Y, Y, X3V, XY?) =1/10
Y,Y,YZ,YZ).=a/3
Y, Z,Y2 Y Z). = a/30
(X3, Y2 X*Y), = —a/10
(Z,Z,XY, X% ), = —a/10
(Z,Z,X*, XY?), = —a/10
(Z,2,X%Y,X3Y), = —a/10
(Z,2,Y%Y?), =a/30
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Si6 = 2%y + 22* + 7z,

Gmal‘ — < J —

(5/17,7/17,3/17))

k§57X:68J Y—€7J,Z—P6JP 7/17?’—21/17

Relations: —2X7Z =Y?2 X4 =

—2Y 7, —4X3Y = 72,

X4=Y3=23%=0, dim = 16.

3 pt correlators

4 pt correlators

1,1, XY Z) =
1XX2YZ)_1
1,Y,X32) =1
1,X2XYZ) =1
1ZX3Y>_1
1,XY,X2%27) =1
X3 YZ) =1
1XZX2Y>71
X, X,XYZ)=1

XV, X2Z) =1
XZXQY)—I
X, XY, XZ) =
X, X3,Y3), 7—2
Y. X2, XZ) = 1
YZX5>71

Y,Y, X2Y), = —2
Y, XY, XY), = -2
X2 Z,XY) =1

X2, X2, X3), = -2

(
(
(
(
(
(
(1
(
(
(
(X, X2,YZ) =1
(
(
(
(
(
(
(
(
(
(2,2,2), = —4

(X, X, X?Y, X3 Z) = 3/17
(X, X, X3Y,X?Y Z) =1/17
(X, X,X32,X37), = —2/17
(X, Y, YZ, X?>YZ)=—2/17
(X,Y,X3Y,X37) =1/17
(X,Y,XYZ,XYZ)=—-2/17
(X,Y, X3, X3Y Z), = 3/17
(X,2,XZ,X?YZ) =1/17
(X,2,YZ,X32Z) =1/17
(X,72,X%Z,XYZ) =1/17
(X, 7, X3, X3Y) = —2/17
(X, 7,2, X3Y 7). = 5/17
(Y,Y,Z,X3Y Z), = 7/17
(Y)Y, XZ,X?>Y Z), = 5/17

(Y,Y,)YZ,X3Z), = 1/17
(Y, Y, X?Z, XY Z), = 3/17
(Y,Y, X3Y, X3Y), = —2/17
(Y, Z,XZ, X*Y) = —4/17
(Y, Z,Y Z,X*Y) =1/17

(Y, Z, X7, X1Y) = —4/17
(Y, Z, XY, X*Y), =5/17
(Y, Z, XY, X*Y), = 3/17
(X%, 2,2, X*>Y 7)., = 6/17
(Z,2,XY,X37), = 1/17
(2,2, X3, XY Z), =T/17
(2,2, X7, X3 ), = 3/17
(Z,7,X3Y,X?7Z), = 2/17
(Z,2,YZ,YZ), = —4/17

5 pt correlators

(X, X, 72, X% Z

X3Y Z), = —4/289

(XYY, X3 Z XY Z), = 8/289

(Y, 2,2, XY Z,X3Y Z), = —4/289

(Y, 2,2, X*YZ,X*Y 7)., = —8/289
(Z,2,2,X*Z,X3Y Z), = 20/289

(Z,2,7,X37Z,X*Y Z), = 12/289

Si7 = 2%y +y°2 + 25,

Gmaac — <J —

(7/24,5/12,1/6))

k’<5 X—F&],Y—F7J P:1/4,é:5/4

Relations: X6 =¥3 X' =v* =0, dim = 21.

A1, X0 = 3 I;t correlazcl)rsX X9 = 2 4 pt4correllgt0rs

LY.XYH =2 (LX%X%) =2 NN INSER A
(1, XY, X%V?) =2 (1,X3 X7) =2 XX, X yoxg ) = 1/(3k)
(LXY,X°Y%) = 2 (1,X% X%) = 2 XY XX e =13
1Y% XY)=-2 (1, XV, XV?) =— (XY, XX =13

<17X57X5>:_ <X7X7X8>:_ <AX’Y’AXQ’)(10>:71/3

(XY, X%Y) = — (X, X%, X7) = 2 (YY1 X =513
(X, XY, X2Y?) = — (X, X3 X6) = — (Y, X5, X ) = -1/3
(X, X%, XY%) = -2 (X,Y%X%)=— FY, X XY h=1/3

<X7 X47X5> == <Y7 Y> X4Y>* =2 ;Yi/Y’Y')Z( §4i/X >_*1: 18
(Y, X% X%v?%) =2 (Y, XY, X%), =2 Y VLX) =1/

(Y, X3 XY?) = -2

(V, X4 Y?) = -2

(X2, XY, XY?) = -2

-2
2
2

(X2, X?YY?) =
(XY, X%,7?) = —

(X3, X3, X%, =—

(Y, Y, X", X3Y?%), = —1/3

5 pt correlators

(Y, X%Y, X?Y), = —2
(X2 X2 L X0 = -2
(X2, X3, X% = -2
(XQ,X47X4) -2

(XY, XY, X2%Y), = —2

None
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4.3. FJRW theories which we still cannot compute

Unfortunately, there are some A-models which we are still unable to com-
pute. In these examples, there are not enough relations between concave
correlators (whose values we can compute) and other correlators (whose
values we can only find using the Reconstruction Lemma).

w G dimension

Ps=x3+y> + 23 ((1/3,0,0),(0,1/3,1/3)) 8
Uio :x3+y3+z4 (J) 12
SIT’O =22+ 222+ 92 | (J)mas 14
Zi7 = $3y + y8 <J>max 22
Z18 = xgy + 56y6 <J>max 18
Wi =2ty +¢° (J) 8
QL =y + oz + 22 | (J) 7
5’?7 =22+ o2 4 2% | GMor 17
ST =2 + %2+ 22z | (J) 7

Remark 4.1. The code which we used to make our computations is avail-
able by email request from the author. We made the computations in SAGE
[18]. The SAGE computations depend on code written by Drew Johnson
[13] for computing intersection numbers of classes on ]1 gn-
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