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Computational techniques in FJRW

theory with applications to

Landau-Ginzburg mirror symmetry

Amanda Francis

The Landau-Ginzburg A-model, given by FJRW theory, defines
a cohomological field theory, but in most examples is very diffi-
cult to compute, especially when the symmetry group is not max-
imal. We give some methods for finding the A-model structure.
In many cases our methods completely determine the previously
unknown A-model Frobenius manifold structure. In the case where
these Frobenius manifolds are semisimple, this can be shown to
determine the structure of the higher genus potential as well. We
compute the Frobenius manifold structure for 27 of the previously
unknown unimodal and bimodal singularities and corresponding
groups, including 13 cases using a non-maximal symmetry group.
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1. Introduction

Mirror symmetry is a phenomenon from physics that has inspired a lot
of interesting mathematics. In the Landau-Ginzburg setting, we have two
constructions, the A- and B-models, each of which depends on a choice
of a polynomial with a group of symmetries. Both models yield Frobenius
manifolds.

The A-model arising from FJRW theory produces a full cohomological
field theory. From the cohomological field theory we can construct correla-
tors and assemble these into a potential function. This potential function
completely determines the Frobenius manifold and determines much of the
structure of the cohomological field theory as well. Although some of these
correlators have been computed in special cases, in many cases their compu-
tation is quite difficult, especially in the case that the group of symmetries is
not maximal (mirror symmetry predicts that these should correspond to an
orbifolded B-model). We give some computational methods for computing
correlators, including a formula for concave genus-zero, four-point correla-
tors, and show how to extend these results to find other correlator values. In
many cases our methods give enough information to compute the A-model
Frobenius manifold. We give the FJRW Frobenius manifold structure for
27 pairs of polynomials and groups, 13 of which are constructed using a
non-maximal symmetry group.

Conjecture 1.1 (The Landau Ginzburg mirror symmetry conjec-
ture). There exist A- and B-model structures, each constructed from a
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polynomial W and an associated group, G (see discussion following Defini-
tion 2.1), such that the A-model for W and G is isomorphic to the B-model
for W T and GT , where W T and GT are dual to the original polynomial and
group.

Although physics predicted its existence, a mathematical construction
of the A-model was not known until 2007 when Fan, Jarvis, and Ruan,
following the ideas of Witten, proposed a cohomological field theory AW,G

to satisfy Conjecture 1.1 [1–3].
A basis for the vector space of the A-model consists of pairs of a mono-

mial and a group element. When the group element acts nontrivially on each
variable ofW , we call this a narrow element, otherwise, it is called broad. The
structure in the A-model is determined by certain structure constants called
genus-g, k-point correlators, which come from the cohomology of the moduli
space M g,k of genus-g curves with k marked points. The Frobenius algebra
structure is given by the genus-zero, three-point correlators, the Frobenius
manifold structure by the genus-zero, k-point correlators for k ≥ 3, and the
higher genus structure by the genus-g, k-point correlators for all nonnega-
tive integers g and k such that 2g − 2 + k > 0. These correlators are defined
as integrals of certain cohomology classes over M g,k. Finding the values of
these correlators is a difficult PDE problem, which has not been solved in
general. They are difficult to compute, especially when they contain broad
elements, so in many cases we still do not know how to compute even the
A-model Frobenius algebra structure. In most cases we do not know how to
compute the Frobenius manifold or higher genus structures. In this paper
we make progress along these lines.

In 2010, Krawitz [4] proved Conjecture 1.1 at the level of Frobenius alge-
bra for almost every invertible polynomial W and G = Gmax

W , the maximal
symmetry group. It is more difficult to determine the structure in the A-
model when G �= Gmax

W , because of the introduction of broad elements. In
2011 Johnson, Jarvis, Francis and Suggs [5] proved the conjecture at the
Frobenius algebra level for any pair (W,G) of invertible polynomial and
admissible symmetry group with the following property:

Property (∗). Let W be an invertible, nondegenerate, quasihomogeneous
polynomial and let G be an admissible symmetry group for W . We say the
pair (W,G) has Property (∗) if

1) W can be decomposed as W =
∑M

i=1Wi where the Wi are themselves in-
vertible polynomials having no variables in common with any other Wj.
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2) For any element g of G, where some monomial �m ; g� is an element
of HW,G, and for each i ∈ {1, . . . ,M}, g fixes either all of the variables
in Wi or none of them.

Even for W and G satisfying Property (∗), where we know the isomor-
phism class of the the Frobenius algebra, we usually still cannot compute the
entire Frobenius manifold (the genus-zero correlators), nor the higher genus
potential for the cohomological field theory. In fact, computing the full struc-
ture of either model is difficult, and has only been done in a few cases. The
easiest examples of singularities are the so-called “simple” or ADE singular-
ities. Fan, Jarvis, and Ruan computed the full A-model structure for these
in [1]. The next examples come from representatives of the “Elliptic” singu-
larities P8, X9, J10, and their transpose singularities. Shen and Krawitz [6]
calculated the entire A-model for certain polynomial representatives of P8,
XT

9 and JT
10, with maximal symmetry group.

In 2013, Guéré [7] provided an explicit formula for the cohomology
classes Λ when W is an invertible chain type polynomial, and G is the
maximal symmetry group for W .

In 2008, Krawitz, Priddis, Acosta, Bergin, and Rathnakumara [8] worked
out the Frobenius algebra structure for quasihomogeneous polynomial repre-
sentatives of various singularities in Arnol’d’s list of unimodal and bimodal
singularities [9]. We expand on their results, giving the Frobenius manifold
structure for the polynomials on Arnol’d’s list, as well as their transpose
polynomials. In many cases there is more than one admissible symmetry
group for a polynomial.

In this paper we consider all possible symmetry groups for each polyno-
mial. Previously, almost no computations had been done in the case where
the symmetry group is not maximal, because of the introduction of broad
elements. However, this case is particularly interesting because the corre-
sponding transpose symmetry group, used for B side computations, will not
be trivial. Thus mirror symmetry predicts these cases will correspond to
an orbifolded B-model. Much is still unknown about these orbifolded B-
models. Knowing the corresponding A-model structures, though, gives us a
very concrete prediction for what these orbifolded B-models should be.

Much of the work that has been done so far in this area has used a list of
properties (“axioms”) of FJRW theory originally proved in [1] to calculate
the values of correlators in certain cases. Primarily, these axioms have been
used to compute genus-zero three-point correlators, but many of them can
be used to find information about higher genus and higher point correlators.
One such axiom is the concavity axiom. This axiom gives a formula for some
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of the cohomology classes Λ of the cohomological field theory in terms of
the top Chern class of a sum of derived pushforward sheaves.

We use a result of Chiodo [10] to compute the Chern characters of the
individual sheaves in terms of some cohomology classes in the moduli stack of
W -curves Wg,k in genus zero. Then we use various properties of Chern classes
to compute the top Chern class of the sum of the sheaves given the Chern
character of each individual sheaf. Much is known about the cohomology of
M g,k, and not a lot about Wg,k, so we push down the cohomology classes
in Wg,k to certain tautological classes ψi, κa and ΔI over M 0,k. In this way,
we provide a method for expressing Λ as a polynomial in the tautological
classes of M g,k. Correlators can then be computed by integrating Λ over
M g,k, which is equivalent to calculating certain intersection numbers.

Algorithms for computing these numbers are well established, for exam-
ple in [11, 12]. Code in various platforms (for example [11] in Maple and
[13] in Sage) has been written which computes the intersection numbers we
need. I wrote code in Sage which performs each of the steps mentioned above
to find the top Chern class of the sum of the derived pushforward sheaves,
and then uses Johnson’s intersection code [13] to find intersection numbers.
This allows us to compute certain correlator values which were previously
unknown. In particular, in Lemma 3.5, we restate an explicit formula found
in [1] for computing any concave genus-zero four-point correlators, with a
proof not previously given. We also describe how to compute higher point
correlators. To do this, we use a strengthened version of the Reconstruc-
tion Lemma of [1] to find values of non-concave correlators, with an aim
to describe the full Frobenius manifold structure of many pairs (W,G) of
singularities and groups. In many cases, these new methods allow us to
compute Frobenius manifold structures for certain singularities and groups
which were previously unknown.

In 2014, Li, Li, Saito, and Shen [14] computed the entire A-model struc-
ture for the 14 polynomial representatives of exceptional unimodal singular-
ities listed in [9], and their transpose polynomial representatives, with maxi-
mal symmetry group. In fact, for these polynomials and groups, they proved
Conjecture 1.1. But there are also three non-maximal symmetry groups that
appear in this family of polynomials: the minimal symmetry groups for ZT

13,
Q12, and U12. The A-model for the first of these is computed in this paper
(see Section 4.2), for the second, the A-model splits into the tensor product
of two known A-models (see Section 4.1). We do not currently know a way
to compute the A-model structure for U12 with minimal symmetry group
(see Section 4.3).
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There are 51 pairs of invertible polynomials and admissible symmetry
groups corresponding to those listed in [9], whose A-model structure is still
unknown. Of these, 16 pairs have FJRW theories which split into the tensor
products of theories previously computed (see Section 4.1). For 27 of the
remaining pairs, we are able to use our computational methods to find the
full Frobenius manifold structure of the corresponding A-model (see Sec-
tion 4.2), including 13 examples with non-maximal symmetry groups. There
are 8 pairs whose theories we still cannot compute using any known methods
(see Section 4.3).
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2. Background

We begin by reviewing key facts about the construction of the A-models.
This will require the choice of an admissible polynomial and an associated
symmetry group.

2.1. Admissible polynomials and symmetry groups

A polynomialW ∈ C[x1, . . . , xn], whereW =
∑

i ci
∏n

j=1 x
ai,j

j is called quasi-
homogeneous if there exist positive rational numbers qj (called weights) for
each variable xj such that each monomial of W has weighted degree one.
That is, for every i where ci �= 0,

∑
j qjai,j = 1.

A polynomial W ∈ C[x1, . . . , xn] is called nondegenerate if it has an iso-
lated singularity at the origin.

Any polynomial which is both quasihomogeneous and nondegenerate will
be considered admissible for our purposes. We say that an admissible poly-
nomial is invertible if it has the same number of variables and monomials. In
this paper, we focus on computations involving only invertible polynomials.

The central charge ĉ of an admissible polynomial W is given by ĉ =∑
j(1− 2qj).
Next we define the maximal diagonal symmetry group.
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Definition 2.1. LetW be an admissible polynomial. Themaximal diagonal
symmetry group Gmax

W is the group of elements of the form g = (g1, . . . , gn) ∈
(Q/Z)n such that

W (e2πig1x1, e
2πig2x2, . . . , e

2πignxn) = W (x1, x2, . . . , xn).

Remark 2.2. If q1, q2, . . . , qn are the weights of W , then the element J =
(q1, . . . , qn) is an element of Gmax

W .

FJRW theory requires not only a quasihomogeneous, nondegenerate
polynomial W , but also the choice of a subgroup G of Gmax

W which contains
the element J . Such a group is called admissible. We denote 〈J〉 = Gmin

W ,
and any subgroup between Gmin

W and Gmax
W is admissible.

Example 2.3. Consider the polynomial W = W1,0 = x4 + y6. In this case
that there are two admissible symmetry groups:

〈J〉 = 〈(1/4, 1/6)〉, and Gmax
W = 〈(1/4, 0), (0, 1/6)〉.

We shall use W = W1,0 and G = 〈J〉 for the rest of the examples in this
section.

2.2. Vector space construction

We now briefly review the construction of the A-model state space, as a
graded vector space.

We use the notation Ig = {i | g · xi = xi} to denote the set of indices of
those variables fixed by an element g, and Fix(g) to denote the subspace of
Cn which is fixed by g, Fix(g) = {(a1, . . . , an)| such that ai = 0 whenever g ·
xi �= xi}. The notationWg will denote the polynomialW restricted to Fix(g).

For the polynomial W with symmetry group G, the state space HW,G

is defined in terms of Lefschetz thimbles and is equipped with a natural
pairing, 〈•, •〉 : HW,G ×HW,G → C which we will not define here.

Definition 2.4. Let Hg,G be the G-invariants of the middle-dimensional
relative cohomology

Hg,G = Hmid(Fix(g), (W )−1g (∞))G,
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where W−1
g (∞) is a generic smooth fiber of the restriction of W to Fix(g).

The state space is given by

HW,G =

⎛
⎝⊕

g∈G
Hg,G

⎞
⎠ .

Recall the Milnor Ring QW of the polynomial W is C[x1,...,xn]〈
∂W

∂x1
,..., ∂W

∂xn

〉 . It has

a natural residue pairing.

Lemma 2.5 (Wall). Let ω = dx1 ∧ · · · ∧ dxn, then

H0,G = Hmid(Cn, (W )−1(∞)) ∼= Ωn

dW ∧ Ωn−1
∼= QWω.

are isomorphic as GW -spaces, and this isomorphism respects the pairing on
both.

The isomorphism in Lemma 2.5 certainly will hold for the restricted
polynomials Wg as well. This gives us the useful fact

(1) HW,G =
⊕
g∈G

Hg,G
∼=

⊕
g∈G

(Qgωg)
G ,

where ωg = dxi1 ∧ · · · ∧ dxis for ij ∈ Ig.

Notation 1. An element of HW,G is a linear combination of basis ele-
ments. We denote these basis elements by �m ; g�, where m is a monomial in
C[xi1 , . . . , xir ] and {i1, . . . , ir} = Ig. We say that �m ; g� is narrow if Ig = ∅,
and broad otherwise.

The complex degree degC of a basis element α = �m ; (g1, . . . , gn)� is given
by

degC α =
1

2
Ni +

n∑
j=1

(gj − qj),

where Ng is the number of variables in Fix(g).
By fixing an order for the basis, we can create a matrix which contains

all the pairing information. This pairing matrix η is given by

η = [〈αi, αj〉]

where {αi} is a basis for HW,G.
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2.3. The moduli space and basic properties

The FJRW cohomological field theory arises from the construction of certain
cohomology classes on a finite cover of the moduli space of stable curves,
the moduli space of W -orbicurves.

2.3.1. Moduli spaces of curves. The Moduli Space of stable curves of
genus g over C with k marked points M g,k can be thought of as the set of
equivalence classes of (possibly nodal) Riemann surfaces C with k marked
points, p1, . . . pk, where pi �= pj if i �= j. We require an additional stability
condition, that the automorphism group of any such curve be finite. This
means that 2g − 2 + k > 0 for each irreducible component of C, where k
includes the nodal points.

We denote the universal curve over M g,k by C
π−→ M g,k.

The dual graph of a curve in M g,k is a graph with a node representing
each irreducible component, an edge for each nodal point, and a half edge
for each mark. Componenents with genus equal to zero are denoted with a
filled-in dot while higher-genus components are denoted by a vertex labeled
with the genus.

Example 2.6. A nodal curve in M 1,3 and its dual graph are shown below.

• • 3

·2
·1·

1

•
1

•
3

2

For each pair of non-negative integers g and k, with 2g − 2 + k > 0, the
FJRW cohomological field theory produces for each k-tuple (α1, . . . , αk) ∈
H ⊗k

W,G a cohomology class ΛW
g,k(α1, α2, . . . , αk) ∈ H∗(M g,k). The definition

of this class can be found in [2].
A genus-g, k-point correlator with insertions α1, . . . , αk ∈ HW,G is defined

by the integral

〈α1, . . . , αk〉g,n =

∫
M g,k

Λg,k (α1, . . . , αk) .

Finding the values of these correlators is a difficult PDE problem, which
has not been solved in general. In spite of this, we can calculate enough of
them to determine the full Frobenius manifold structure in many cases. Fan,
Jarvis and Ruan [1] provide some axioms the Λ classes must satisfy, which,
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in some cases, allow us to determine their values. For example, these axioms
give the following selection rules for non-vanishing correlators.

Axiom 2.7 (FJR). Here we let αi = �mi ; gi�, with gi = (g1i , . . . , g
n
i ).

1) 〈α1, . . . , αk〉g,k =
〈
ασ(1), . . . , ασ(k)

〉
g,k

. For any permutation σ ∈ Sk.

2) 〈α1, . . . , αk〉0,k = 0 unless
∑k

i=1 degC αi = ĉ+ k − 3.

3) 〈α1, . . . , αk〉0,k = 0 unless qj(k − 2)−∑k
i=1 g

j
i ∈ Z for each j = 1, . . . , n

Notice that the last selection rule above gives the following lemma.

Lemma 2.8. The correlator 〈α1, . . . , αk〉0,k = 0 unless gk = (k − 2) · J −∑k−1
i=1 gi, where J ∈ Gmax

W is the element whose entries are the quasihomo-
geneous weights of W .

The following splitting axiom will also be useful for us.

Axiom 2.9 (FJR). if W1 ∈ C[x1, . . . , xr] and W2 ∈ C[xr+1, . . . , xn] are
two admissible polynomials with symmetry groups G1, and G2, respectively,
then

HW1+W2,G1⊕G2
∼= HW1,G1

⊗HW2,G2

where the Λ classes are related by

ΛW1+W2(α1 ⊗ β1, . . . , αk ⊗ βk) = ΛW1(α1, . . . , αk)⊗ ΛW2(β1, . . . , βk).

We omit the rest of the axioms (except the Concavity Axiom, which
we will discuss later), but refer the reader to [1] for the axioms, and [8] for
a detailed explanation of how to use them to find genus-zero, three-point
correlator values.

2.3.2. B-model structure. For the unorbifolded B-model the Frobenius
manifold is given by the Saito Frobenius manifold for a particular choice of
primitive form (see [15]). For the orbifolded B-model the Frobenius manifold
structure is still unknown.

3. Computational methods

Here we give results for computing concave genus-zero correlators and dis-
cuss how to use the reconstruction lemma to find values of other correlators.
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3.1. Using the concavity axiom

We give a formula for Λ as a polynomial in the tautological classes ψi, κa,
and ΔI in H∗(M g,k). We then give a formula for computing concave genus-
zero four-point correlators.

Axiom 3.1 (FJR). Suppose that all αi are narrow insertions of the form
�1 ; g� (See Notation 1). If π∗

⊕n
i=1 Li = 0, then the cohomology class

ΛW
g,k(α1, . . . , αk) can be given in terms of the top Chern class of the derived

pushforward sheaf R1π∗
⊕n

i=1 Li:

ΛW
g,k(α1, . . . , αk)(2)

=
|G|g

deg(st)
PDst∗

(
PD−1

(
(−1)DcD

(
R1π∗

n⊕
i=1

Li

)))

Recall that integration of top dimensional cohomology classes is the same
as pushing them forward to a point, or computing intersection numbers.

In this section we express (−1)DcDR1π∗(L1 ⊕ · · · ⊕LN ) as a polyno-
mial f in terms of pullbacks of ψ, κ, and ΔI classes, then, which gives

〈α1, . . . , αk〉
= p∗

|G|g
deg(st)

PDst∗
(
PD−1 (st∗f(κ1, . . . , κD, ψ1, . . . , ψk, {ΔI}I∈I ))

)
= |G|gp∗ (f(κ1, . . . , κD, ψ1, . . . , ψk, {ΔI}I∈I )) ,

and this allows us to use intersection theory to solve for these numbers.
Recall the following well-known property of chern classes from K-theory.

(3) ct(E ) =
1

ct(−E )
=

1

1− (−ct(−E ))
=

∞∑
i=0

(−ct(−E ))i.

A vector bundle E is concave when R0π∗E = 0, or when

R•π∗E = R0π∗E−R1π∗E = −R1π∗E

Equation 3 gives

ct

(
R1π∗

⊕
i

Li

)
=

∞∑
j=0

(
−ct(R•π∗

⊕
i

Li)

)j

.
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Also, since the total Chern classes are multiplicative, we have,

(4) ck

(
R•π∗

⊕
i

Li

)
=

∑
∑

ij=k

⎛
⎝ n∏

j=1

cij (R
•π∗Lj)

⎞
⎠.

Together Equations 3 and 4 give a formula for finding the ith chern class of
R1π∗

⊕
i Li in terms of the chern classes of the R•π∗Lj .

It is well-known that Chern characters can be expressed in terms of
Chern classes, but it is also possible to express Chern classes in terms of
Chern characters (for example, in [16]). We have

ct(R
•π∗Lk) = exp

( ∞∑
i=1

(i− 1)!(−1)i−1chi(R•π∗Lk)t
i

)
(5)

=

∞∑
j=0

1

j!

( ∞∑
i=1

(i− 1)!(−1)i−1chi(R•π∗Lk)t
i

)j

.

Thus, there exists a polynomial f such that

(6) cD

(
R1π∗

⊕
i

Li

)
= f(ch1(R

•π∗Lk), . . . , chD(R
•π∗Lk)).

In Section 3.2 we will use a result of Chiodo [10] to express chi(R
•π∗Lk)

in terms of tautological cohomology classes on M g,n and this will allow us
to compute the corresponding correlators, but first we need to discuss some
cohomology classes on Wg,n and M g,n and their relations.

3.1.1. Orbicurves. An orbicurve C with marked points p1, . . . , pk is a
stable curve C with orbifold structure at each pi and each node. Near each
marked point pi there is a local group action given by Z/mi for some positive
integer mi. Similarly, near each node p there is again a local group Z/nj

whose action on one branch is inverse to the action on the other branch.
In a neighborhood of pi, C maps to C via the map,


 : C → C,

where if z is the local coordinate on C near pi, and x is the local coordinate
on C near pi, then 
(z) = zr = x.



Computational techniques in FJRW theory 1351

Let KC be the canonical bundle of C. The log-canonical bundle of C is
the line bundle

KC,log = KC ⊗ O(p1)⊗ · · · ⊗ O(pk),

where O(pi) is the holomorphic line bundle of degree one whose sections
may have a simple pole at pi.

The log-canonical bundle of C is defined to be the pullback to C of the
log-canonical bundle of C:

KC ,log = 
∗KC,log.

Given an admissible polynomial W , a W -structure on an orbicurve C is
essentially a choice of n line bundles L1, . . . ,Ln so that for each monomial
of W =

∑
j Mj , with Mj = xaj,11 · · ·xaj,n

n , we have an isomorphism of line
bundles

ϕj : L
⊗aj,1

1 · · ·L ⊗aj,n
n −̃→KC ,log.

Recall that Fan, Jarvis and Ruan [1] defined a stack

WW,g,k = {C , p1, . . . , pk,L1, . . . ,LN , ϕ1 · · ·ϕs}

of stable orbicurves with the additional W -structure, and the canonical mor-
phism,

Wg,k � Mg,k
st

from the stack of W -curves to the stack of stable curves, Mg,k.
Notice that 
∗ will take global sections to global sections, and a straight-

forward computation (see [1] §2.1 ) shows that if L on C such that L ⊗r ∼=
K⊗s

C ,log, then

(
∗L )r = K⊗s
C,log(−(r −mi)p).

Recall that if L is the line bundle associated to the sheaf L and the
action at an orbifold point pi on L is given in local coordinates by (z, v) �→
(ζz, ζmiv), then the action on L will take a generator s of L near pi and
map it to ζ(r−mi)s. Thus, if L r ∼= K⊗s

C ,log on a smooth orbicurve with action
of the local group on L defined by ζmi for mi > 0 at each marked point pi,
then

(
∗L)r = |L|r = ω⊗sC,log ⊗
(⊗

i

O((−mi)pi)

)
.
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Example 3.2. Suppose W and G are as in Example 2.3 with notation as
in Notation 1. If, for a curve in M 0,4 the four marked points correspond to
the A-model elements �1 ; (1/4, 1/2)�, �1 ; (1/4, 1/2)�, �1 ; (1/4, 1/2)�, and
�1 ; (3/4, 5/6)�, then

|Lx|4 = ωC,log ⊗ O((−1)p1)⊗ O((−1)p2)⊗ O((−1)p3)⊗ O((−3)p4)
|Ly|6 = ωC,log ⊗ O((−3)p1)⊗ O((−3)p2)⊗ O((−3)p3)⊗ O((−5)p4)

3.1.2. Some special cohomology classes in M g,k and Wg,k. For
i ∈ {1, . . . , k}, ψi ∈ Hq(M g,k) is the first Chern class of the line bundle
whose fiber at (C, p1, . . . , pk) is the cotangent space to C at pi. In other
words, if πk+1 : M g,k+1 = C→ M g,k is the universal curve, and it is also
the morphism obtained by forgetting the (k + 1)-st marked point, ωπk+1

= ω
is the relative dualizing sheaf, and σi is the section of πk+1 which attaches
a genus-zero, three-pointed curve to C at the point pi, and then labels the
two remaining marked points on the genus-zero curve i and k + 1,

M g,k+1

�

M g,k

πk+1σi

then, L = σ∗(ω) is the cotangent line bundle and its first Chern class is ψi:

ψi = c1(σ
∗(ω)),

Let Di,k+1 be the image of σi in M g,k+1, then we define

K = c1

(
ω

(
k∑

i=1

Di,k+1

))
,

and for a ∈ {1, . . . , 3g − 3 + k},

κa = π∗(Ka+1).

Each partition I � J = {1, . . . , k} and g1 + g2 = g of marks and genus
such that 1 ∈ I, 2g1 − 2 + |I|+ 1 > 0 and 2g2 − 2 + |J |+ 1 > 0, gives an
irreducible boundary divisor, which we label Δg1,I . These boundary divisors
are the nodal curves in M g,k. For example, the boundary divisor Δ1,{1,2} in
M 1,5 and its dual graph are given below.
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•
·1
·2

·3
·4
·5 1

1

3

•
2

4

5

We will use the following well-known lemma for M 0,k for expressing ψ
classes in terms of boundary divisors.

Lemma 3.3.

ψi =
∑
a∈I
b,c/∈I

ΔI .

Now we consider some cohomology classes on Wg,k. Consider the dia-
gram:

Cg,k

πσi

Wg,k
st M g,k

where Cg,k is the universal orbicurve over Wg,k.
The stack Wg,k has cohomology classes ψ̃i, κ̃a and Δ̃I defined in the same

manner as ψi, κa and ΔI in M g,k. They satisfy the following properties (see
§2.3 in [1]).

(7) ψ̃i = st∗(ψi), κ̃a = st∗(κa), rΔ̃I = st∗ΔI .

3.2. Chiodo’s formula

Chiodo’s formula states that for the universal rth root L of ωs
log on the

universal family of pointed orbicurves π : Cg,k → Wg,k(γ1, . . . , γk), with local
group 〈γi〉 of order mi at the ith marked point, we have

ch(R•π∗(L )) =
∑
d≥0

[
Bd+1(s/r)

(d+ 1)!
κd −

k∑
i=1

Bd+1(Θ
γi)

(d+ 1)!
ψd
i

+
1

2

∑
Γcut

rBd+1(Θ
γ+)

(d+ 1)!

̃Γcut∗

( ∑
i+j=d−1
i,j≥0

(−ψ+)
iψj
−

)]
,
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where the second sum is taken over all decorated stable graphs Γcut with one
pair of tails labelled + and −, respectively, so that once the + and − edges
have been glued, we get a single-edged, n-pointed, connected, decorated
graph of genus g and with additional decoration (γ+ and γ−) on the internal
edge. Each such graph Γcut has the two cut edges, decorated with group
elements γ+ and γ−, respectively, and the map 
̃Γcut

is the corresponding

gluing map
(
M

r/s
Γcut,

)
→ M

r/s
g,k (γ1, . . . , γk).

In the genus zero case, a choice of Γcut is the same as a a partition
K �K ′ = {1, . . . , k}. We will sum over all partitions containing the marked
point 1, so we will not need to multiply the last sum by 1

2 .

Also, recall from Equation 7 that Δ̃I = 1
rst

∗ΔI . So,

cht(R
•π∗L ) = st∗

(∑
d≥0

(
Bd+1(s/r)

(d+ 1)!
κd −

n∑
i=1

Bd+1(mi/r)

(d+ 1)!
ψd
i

+
∑
K

Bd+1(γ
K
+ )

(d+ 1)!
(jK)∗(γd−1)

)
td

)
.

We can use Lemma 3.3 to rewrite ψ+ and ψ− in terms of boundary
divisors of M 0,n+

and M 0,n− . This will enable us to easily push down these
classes to M 0,n. This idea comes from [17], and yields the following formulas:

(8)

(jK)∗(ψ+) = 0 if |K| ≤ 2
(jK)∗(ψ+) =

∑
{1,a,b}⊆I⊆K ΔKΔI

+
∑

1∈I⊆K−{a,b}ΔKΔI∪Kc if |K| > 2

(jK)∗(ψ+) = 0 if n− |K| ≤ 2
(jK)∗(ψ+) =

∑
∅�=I⊂Kc

a,b,/∈I
ΔKΔI∪K if n− |K| > 2.

Using the formulas in Equation 8 and the polynomial defined in Equa-
tion 6 we can now express Λ as a polynomial in ψ, κ and Δ classes,

ΛW
g,k(α1, . . . , αk)

= (−1)Df
((

B2(s/r)

(2)!
κ1−

n∑
i=1

B2(mi/r)

(2)!
ψi+

∑
K

B2(γ
K
+ )

(2)!
(jK)∗(ψ− − ψ+)

)
,

. . . ,

(
BD+1(s/r)

(D + 1)!
κD−

n∑
i=1

BD+1(mi/r)

(D + 1)!
ψD
i

+
∑
K

BD+1(γ
K
+ )

(D + 1)!
(jK)∗

( ∑
i+j=D−1

(−ψ+)
iψj
−

)))
.
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The following lemma allows us to always choose a γK+ in a way that
makes sense in Chiodo’s formula.

Lemma 3.4. Let B be a degree one boundary graph, with decorations γ11 ,
. . . , γk1

1 for the first node and γ12 , . . . , γ
k2

2 for the second, and genera g1 and
g2, respectively. If a smooth curve with decorations γ11 , . . . , γ

k1

1 , γ12 , . . . , γ
k2

2

and genus g1 + g2 has integer line bundle degree, then it is possible to assign
decorations to the edge of B such that each node will have integral line bundle
degree.

Proof. If the line bundle degree of the smooth curve is integral then:

S0 = J(2(g1 + g2)− 2 + k1 + k2)−
∑
i

γi1 −
∑
j

γj2 ∈ Zn.

Similarly let S1 and S2 be the equivalent sums in Qn, corresponding to the
nodes with decorations γ11 , . . . , γ

k1

1 and γ12 , . . . , γ
k2

2 , respectively. To find γ0
we take

γ0 ≡ J(2g1 − 2 + (k1 + 1))−
∑
i

γi1.

Then, by Lemma 2.8 this will force the S1 to be an integer vector.
Also,

S0 = S1 + γ0 + J(g2 − 2 + (k2 + 1))−
∑
j

γj2 = S1 + S2,

which implies that S2 ∈ Z. �

We have now described the virtual class Λ in the concave case explicitly in
terms of tautological classes on the moduli of stable curves. Now we will
talk about how these can actually be computed. As a special case we have
the following explicit formula for concave genus-zero four-point correlators.

Lemma 3.5. If 〈�1 ; g1� , �1 ; g2� , �1 ; g3� , �1 ; g4�〉 is a genus-zero, four-
point correlator which satisfies parts (2) and (3) of Axiom 2.7, and if it
also satisfies the hypotheses of the concavity axiom, (all insertions are nar-
row, all line bundle degrees are negative, and all line bundle degrees of the
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nodes of the boundary graphs Δ1,2, Δ1,3, and Δ1,4 are all negative), then

〈�1 ; g1� , �1 ; g2� , �1 ; g3� , �1 ; g4�〉

=
1

2

N∑
i=1

(
B2(qi)−

4∑
j=1

B2((gj)i) +

3∑
k=1

B2(γ
j
+)

)

=
1

2

N∑
i=1

(
qi(qi − 1)−

4∑
j=1

θij(θ
i
j − 1) +

3∑
k=1

γj+(γ
j
+ − 1)

)
.

where for each j gj = (θ1j , . . . , θ
n
j ), γ

1
+ ≡ J − g1 − g2, γ

2
+ ≡ J − g1 − g3, and

γ3+ ≡ J − g1 − g4, and B2 is the 2nd Bernoulli polynomial.

Proof.

cht(−R1π∗Li) =
∑
d≥0

(
Bd+1(qi)

(d+ 1)!
κd −

4∑
j=1

Bd+1(θ
i
j)

(d+ 1)!
ψd
j

+ r
∑
K

Bd+1((γ
K
+ )i)

(d+ 1)!
(pK)∗

d−1∑
k=0

(−ψ+)
k(ψ−)d−1−k

)
td,

which means that

ch1(−R1π∗Li) =
B2(qi)

(2)!
κ1 −

4∑
j=1

B2(θ
i
j)

(2)!
ψj + r

∑
K

B2((γ+)K)

(2)!
(pK)∗(1).

Notice that (pK)∗(1M 0,3
) = ΔK , and that for M 0,4, our choices for K ∈

Γcut are just {1, 2}, {1, 3}, and {1, 4}. Numbering these gives:

(γ+)1 = J − g1 − g2, for K = {1, 2},
(γ+)2 = J − g1 − g3, for K = {1, 3}, and
(γ+)3 = J − g1 − g4, for K = {1, 4}.

Since B2(x) = x2 − x+ 1
6 ,

ch1(−R1π∗Li) =
1

2

((
qi(qi − 1) +

1

6

)
κ1 −

4∑
j=1

(
θij(θ

i
j − 1) +

1

6

)
ψj

+ r
∑
K

(
γK+ (γK+ − 1) +

1

6

)
Δ̃K

)
.
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The psi and kappa classes in W0,4 are all pullbacks of the equivalent psi
and kappa classes in M

,0,4, and the ΔI classes are scalar multiples of the
equivalent classes in M

,0,4, as in Equation 7.
So,

ch1(−R1π∗Li) =
1

2
st∗

((
qi(qi − 1)

)
κ1 −

4∑
j=1

(
θij(θ

i
j − 1)

)
ψj

+
∑
K

(
γK+ (γK+ − 1)

)
ΔK

)
.

We use Equation 5 to convert to chern classes,

ct(−R1π∗Li) = exp

( ∞∑
i=1

(−1)i−1(i− 1)!chi(−R1π∗Li)t
i

)

=

∞∑
j=0

1

j!

( ∞∑
i=1

(−1)i−1(i− 1)!cht(−R1π∗Li)ti

)j

.

Which means that c0(−R1π∗Li) = 1 and c1(−R1π∗Li) = ch1(−R1π∗Li),
then, by Equation 4 since D = 1,

c1(−R1π∗ ⊕i Li) =
∑

0≤j1,...jN
j1+···+jN=1

∏
cji(−R1π∗Li)

=

N∑
i=1

c1(−R1π∗Li)

=

N∑
i=1

ch1(−R1π∗Li).

Finally we recall that ct(R
1π∗Li) = −

∑
j(ct(−R1π∗Li))

j , so,

c1(R
1π∗Li) = −c1(−R1π∗Li) = −

N∑
i=1

ch1(−R1π∗Li).
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And, from Equation 2

Λ0,4(α1, . . . , α4) =
1

deg(st)
PDst∗PD−1(−1)1

(
−

N∑
i=1

ch1(−R1π∗Li)

)

=
1

deg(st)
PDst∗PD−1

N∑
i=1

ch1(−R1π∗Li))

=
1

2

((
qi(qi − 1) +

1

6

)
κ1 −

4∑
j=1

(
θij(θ

i
j − 1) +

1

6

)
ψj

+ r
∑
K

(
γK+ (γK+ − 1) +

1

6

)
Δ̃K

)
.

Next, we notice that if p : M 0,4 → (•) is the map sending all of M 0,4 to
a point, then the pushforward of any of the cohomology classes mentioned
above is equal to 1. That is,

p∗κ1 = p∗ψi = p∗ΔK = 1.

So,

〈�1 ; g1� , �1 ; g2� , �1 ; g3� , �1 ; g4�〉

= p∗
1

deg(st)
PDst∗PD−1

N∑
i=1

ch1(−R1π∗Li))

=
1

2
p∗

N∑
i=1

(
(qi(qi − 1))κ1 −

4∑
j=1

(
θij(θ

i
j − 1)

)
ψj +

∑
K

(
γK+ (γK+ − 1)

)
ΔK

)

=
1

2

N∑
i=1

(
qi(qi − 1) + γ1+(γ

1
+ − 1) + γ2+(γ

2
+ − 1) + γ3+(γ

3
+ − 1)

−
4∑

j=1

θij(θ
i
j − 1)

)
.

�

Example 3.6. We will compute the genus-zero four-point correlator

〈�1 ; (1/4, 1/2)� , �1 ; (1/4, 1/2)� , �1 ; (1/4, 1/2)� , �1 ; (3/4, 5/6)�〉0,4
for the A-model HW1,0,〈J〉.
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It is straightforward to verify that it satisfies Axiom 2.7, and that each
of the degree one nodal degenerations of the dual graph are concave. Thus,

〈�1 ; (1/4, 1/2)� , �1 ; (1/4, 1/2)� , �1 ; (1/4, 1/2)� , �1 ; (3/4, 5/6)�〉0,4
=

1

2

((
− 3

16
− 3

16
− 3

16
− 3

16
+

3

16
+

3

16
+

3

16
+

3

16

)

+

(
− 5

36
− 5

36
− 5

36
− 5

36
+

1

4
+

1

4
+

1

4
+

5

36

))

=
1

2

(
0 +

1

3

)
=

1

6

There are ten concave four-point correlators in HW1,0,〈J〉 and 2 which
are not concave. We will see in the next section that we can use the values
of the concave correlators to find other correlator values.

3.3. Using the reconstruction lemma

In this section we show how to use known correlator values to find unknown
correlator values. In some cases our new methods for computing concave
correlators will allow us to compute all genus-zero correlators in the A-
model.

The WDVV equations are a powerful tool which can be derived from
the Composition axiom. Applying these equations to correlators, we get the
following lemma,

Lemma 3.7. [17] Reconstruction Lemma.
Any genus-zero, k-point correlator of the form

〈γ1, . . . , γk−3, α, β, ε � φ〉0,k
where 0 < degC(ε), degC(φ) < ĉ, can be rewritten as

〈γ1, . . . , γk−3, α, β, ε � φ〉
=

∑
I�J=[k−3]

∑
l

cI,J 〈γk∈I , α, ε, δl〉
〈
δ′l, φ, β, γj∈J

〉
−

∑
I�J=[k−3]

J �=∅

∑
l

cI,J 〈γk∈I , α, β, δl〉
〈
δ′l, φ, ε, γj∈J

〉
.
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where the δl are the elements of some basis B and δ′l are the corresponding

elements of the dual basis B′, and cI,J =
∏

nK(ξk)!∏
nI(ξi)!

∏
nJ(ξj)!

. Here nX(ξx) refers

to the number of elements equal to ξx in the tuple X. The product
∏

nX(ξx)!
is taken over all distinct elements ξx in X.

We say that an element α ∈ HW,G is non-primitive if it can be writ-
ten ε � φ = α for some ε and φ in HW,G with 0 < degC ε, degC φ < degC α.
Otherwise, we say that α is primitive.

Corollary 3.8. A genus-zero, four-point correlator containing a non-
primitive insertion can be rewritten:

〈γ, α, β, ε � ψ〉0.4 =
∑
l

〈γ, α, ε, δl〉
〈
δ′l, ψ, β

〉
+
∑
l

〈α, ε, δl〉
〈
δ′l, ψ, β, γ

〉
−
∑
l

〈α, β, δl〉
〈
δ′l, ψ, ε, γ

〉
.

In fact, using the reconstruction lemma, it is possible to write any genus-
zero k-point correlator in terms of the pairing, genus-zero three-point corre-
lators and correlators of the form 〈γ1, . . . , γ′k〉 for k′ ≤ k where γi is primitive
for i ≤ k′ − 2 (see [2]).

We say that a correlator is basic if at most two of the insertions are
non-primitive.

Recall that the central charge of the polynomial W is ĉ =
∑

j(1− 2qj).

Lemma 3.9 ([2]). If degC(α) < ĉ for all classes α, P is the maximum
complex degree of any primitive class, and P < 1, then all the genus-zero
correlators are uniquely determined by the pairing, the genus-zero three-point
correlators, and the basic genus-zero k-point correlators for each k that sat-
isfies

(9) k ≤ 2 +
1 + ĉ

1− P
.

Example 3.10. In the case of HW1,0,〈J〉, the maximal primitive degree is
7/12 and ĉ = 7/6, so the Frobenius manifold structure is determined by the
genus-zero three-point correlators and the basic genus-zero k-point correla-
tors for k ≤ 7.

All of the three-point correlators can be found using the methods de-
scribed in [8]. There are 165 distinct genus-zero three point correlators. The
selection rules show that 158 of them vanish. All of the seven remaining
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correlator values can be found using a pairing axiom found in [1]. There
are ten concave and two nonconcave four-point correlators which satisfy
Axiom 2.7, which might therefore be nonzero. We can use the values of
the concave correlators to find values of the others using Lemma 3.7. For
example, if we let

X = �1 ; (1/4, 1/2)� , Y = �1 ; (1/2, 1/3)� ,
Z = �1 ; (3/4, 1/6)� , and W =

⌈
xy2 ; (0, 0)

⌋
,

then the nonconcave four point correlators are 〈X,W,W,X2〉 and 〈Z,Z,
W,W 〉. Lemma 3.7 gives

〈X,W,W,X2〉 =
∑
δ

2〈X,W,X, δ〉〈δ′,W,X〉 − 〈W,W, δ〉〈δ′, X,X,X〉.

The selection rules, methods in [8], and computations from Example 3.6
reduce this to

〈X,W,W,X2〉 = −〈W,W,1〉〈XY 2, X,X,X〉= − 1

24
· 1
6
= − 1

144
.

To find the value of 〈Z,Z,W,W 〉 we have to look for ways to reconstruct
it using five-point correlators.

〈Y,W,W,XY,XZ〉 = 〈X,Y,W,XZ〉〈X,Z,W,XY 〉
+ 〈X,W,W,X2〉〈Y, Z, Z,XY 〉
− 〈W,XY,XZ〉〈X,X, Y, Z,W 〉
− 〈Y, Y,W,XY 〉〈X,Z,W,XY 〉.

The correlators 〈X,Z,W,XY 〉 and 〈W,XY,XZ〉 are both equal to zero,
which can be shown using the methods in [8]. The correlators 〈Y, Z, Z,XY 〉,
and 〈X,W,W,X2〉 are both concave. Using Lemma 3.5, it is a straightfor-
ward calculation to find their values, which are 1

6 and 1
4 , respectively. So we

have

〈Y,W,W,XY,XZ〉 = 〈X,W,W,X2〉〈Y, Z, Z,XY 〉(10)

= − 1

144
· 1
4
= − 1

576
.
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We can reconstruct this same correlator in a different way:

〈W,Y,XY,W,XZ〉 = 〈X,Y,W,XZ〉〈Y, Z,W,X2〉(11)

+ 〈X,Y,X2, XY 〉〈Z,Z,W,W 〉
− 〈W,XY,XZ〉〈X,X, Y, Z,W 〉
− 〈Y, Y,W,XY 〉〈X,Z,W,XY 〉

= 〈X,Y,X2, XY 〉〈Z,Z,W,W 〉 = 1

6
〈Z,Z,W,W 〉.

Together, Equations 10 and 11 tell us that 〈Z,Z,W,W 〉 = − 1
96 .

To compute the full Frobenius manifold structure of HW1,0,〈J〉, we still
need to find the values of all basic five, six, and seven-point correlators.
There are fifteen basic five-point correlators, seven of which are not concave.
There are five basic six-point correlators, three of which are not concave,
and there is one basic seven-point correlator, which is not concave. All of
these correlators can be computed using the methods established here. Their
values are given in Section 4.2.

Remark 3.11. In certain examples, if we use Lemma 3.7 together with the
computed values of concave genus-zero higher point correlators, we can find
values of previously unknown three-point correlators. This allows us to find
even Frobenius algebra structures that were previously unknown.

4. Summary of computations

We compute the FJRW theories with all possible admissible symmetry
groups coming from the quasihomogeneous polynomial representatives cor-
responding to an isolated singularity in Arnol’d’s [9] list of singularities.
Recall that there are potentially several polynomial representatives corre-
sponding to a singularity. We note here that the polynomial representatives
of X9 and J10 which appear in this list of singularities [9] were not consid-
ered in [6] for any choice of symmetry group. The non-maximal symmetry
groups for P8, also, have not yet been treated.

4.1. FJRW theories which split into known
tensor products

Recall that if a polynomial W can be written W = W1 +W2, where W1 ∈
C[x1, . . . , xl] and W2 ∈ C[xl+1, . . . , xn], and if G can be written G = G1 ⊕
G2, where for each i, Gi is an admissible symmetry group for Wi, then then
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the A-model associated to the pair (W,G) splits into the tensor product of
the A-models for the pairs (W1, G1) and (W2, G2).

The ADE singularities (except forD4) with all possible symmetry groups
were computed in [1]. The D4 case was done in [17]. For the following pairs
of polynomial and group, the A-model structure splits into a product of
known FJRW theories. We use the notation AW,G to denote the full FJRW
theory associated to the pair (W,G). Symmetry groups which are maximal
are denoted with the subscript max.

W G dimension A-models

X9 = x4 + y4 〈(1/4, 0), (0, 1/4)〉max 9 AA3,J ⊗AA3,J

J10 = x3 + y6 〈(1/3, 0), (0, 1/6)〉max 10 AA2,J ⊗AA5,J

Q12 = x3 + y5 + yz2 〈(1/3, 0, 0), (0, 1/5, 2/5)〉 12 AA2,J ⊗AD6,J

J3,0 = x3 + y9 〈(1/3, 0), (0, 1/9)〉max 16 AA2,J ⊗AA8,J

W1,0 = x4 + y6 〈(1/4, 0), (0, 1/6)〉max 15 AA3,J ⊗AA5,J

E18 = x3 + y10 〈(1/3, 0), (0, 1/10)〉max 18 AA2,J ⊗AA9,J

E20 = x3 + y11 〈(1/3, 0), (0, 1/11)〉max 20 AA2,J ⊗AA10,J

U16 = x3 + xz2 + y5 〈(1/3, 0, 5/6), (0, 1/5, 0)〉max 20 AD4,Gmax ⊗AA4,J

U16 = x3 + xz2 + y5 〈(1/3, 0, 1/3), (0, 1/5, 0)〉 16 AD4,J ⊗AA4,J

UT
16 = x3z + z2 + y5 〈(1/6, 0, 1/2), (0, 1/5, 0)〉max 16 ADT

4 ,J ⊗AA4,J

W18 = x4 + y7 〈(1/4, 0), (0, 1/7)〉max 18 AA3,J ⊗AA6,J

Q16 = x3 + yz2 + y7 〈(1/3, 0, 0), (0, 1/7, 13/14)〉max 26 AA2,J ⊗AD8,Gmax

Q16 = x3 + yz2 + y7 〈(1/3, 0, 0), (0, 1/7, 3/7)〉 16 AA2,J ⊗AD8,J

QT
16 = x3 + z2 + y7z 〈(1/3, 0, 0), (0, 1/14, 1/2)〉max 16 AA2,J ⊗ADT

8 ,J

Q18 = x3 + yz2 + y8 〈(1/3, 0, 0), (0, 1/8, 7/16)〉max 18 AA2,J ⊗AD9,J

4.2. Previously unknown FJRW theories we
can compute

Recall that in Lemma 3.9 we saw that the Frobenius manifold structure
can be found from the genus-zero three-point correlators, together with the
genus-zero k-point correlators for k as in Equation 9. The value of k depends
on the central charge ĉ of the polynomial and on the maximum degree P
of any primitive element in the state space. The value of k is given for each
of the A-models below, together with all necessary correlators. Correlators
marked with a ∗ must be found using the Reconstruction Lemma. Unmarked
k-point correlators for k > 3 can be found using the concavity axiom.
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P8 = x3 + y3 + z3, G = 〈γ = (1/3, 0, 2/3), γ2 = (0, 1/3, 2/3)〉
k ≤ 6, X = e0, Y = xyze0. P = 1/2, ĉ = 1

Relations: X2 = Y 2 = 0; dim = 4

3 pt correlators

〈1,1, XY 〉 = 1/27
〈1, X, Y 〉 = 1/27

4 pt correlators

None.

5pt correlators

None.

6 pt correlators

〈X,X, Y, Y,XY,XY 〉∗ = 0

P8 = x3 + y3 + z3, G = 〈J = (1/3, 1/3, 1/3)〉
k ≤ 6, X = e0, Y = xyze0. P = 1/2, ĉ = 1

Relations: X2 = Y 2 = 0; dim = 4

3 pt correlators

〈1,1, XY 〉 = 1/27
〈1, X, Y 〉 = 1/27

4 pt correlators

None.

5pt correlators

None.

6 pt correlators

None.

X9 = x4 + y4, G = 〈J = (1/4, 1/4), γ = (0, 1/2)〉
k ≤ 6, X = xye0, Y = eJ+γ , Z = e2J ,W = e3J+γ . P = 1/2, ĉ = 1
Relations: 16X2 = YW = Z2, X3 = Z3 = Y 2 = W 2 = 0. dim = 6

3 pt correlators

〈1,1, Z2〉 = 1
〈1, Y,W 〉 = 1
〈1, Z, Z〉 = 1
〈1, X,X〉 = 1

16

4 pt correlators

〈Y, Y, Y,W 〉 = 0
〈Y, Y, Z, Z〉 = 1/4
〈Y,W,W,W 〉 = 0
〈Z,Z,W,W 〉 = 1/4
〈X,X, Y, Y 〉∗ = −1/64

5 pt correlators

〈Y, Y, Y, Y, Z2〉 = 1
8

〈Y, Y,W,W,Z2〉 = 0
〈Y, Z, Z,W,W 2〉 = 1

16
〈Z,Z, Z, Z,W 2〉 = 1

16
〈W,W,W,W,W 2〉 = 1

8
〈X,X,X,X,W 2〉∗ = 1

4096
〈X,X, Y,W,W 2〉∗ = 1

256
〈X,X,Z, Z,W 2〉∗ = − 1

256

6 pt correlators

〈Y, Y, Y,W,W 2,W 2〉 = 0
〈Y, Y, Z, Z,W 2,W 2〉 = 1

32
〈Y,W,W,W,W 2,W 2〉 = 0
〈Z,Z,W,W,W 2,W 2〉 = 1

32
〈X,X, Y, Y,W 2,W 2〉∗ = − 1

512
〈X,X,Z, Z,W 2,W 2〉∗ = − 1

512
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X9 = x4 + y4, G = 〈J = (1/4, 1/4)〉
k ≤ 6, X = y2e0, Y = xye0, Z = x2e0,W = e2J . P = 1/2, ĉ = 1

Relations: 16XZ = 16Y 2 = W 2, X2 = Z2 = Y 3 = W 3 = 0. dim = 6

3 pt correlators

〈1,1,W 2〉 = 1
〈1,W,W 〉 = 1
〈1, X, Z〉 = 1

16
〈1, Y, Y 〉 = 1

16

4 pt correlators

〈X,X, Y,W 〉∗ = a �= 0
〈Y, Z, Z,W 〉∗ = − 1

8192a

5 pt correlators

〈W,W,W,W,W 2〉 = 1
16

〈X,X,X,X,W 2〉∗ = 32a2

〈X,X,Z, Z,W 2〉∗ = 0
〈X,Y, Y, Z,W 2〉∗ = − 1

4096
〈X,Z,W,W,W 2〉∗ = − 1

256
〈Y, Y, Y, Y,W 2〉∗ = 1

4096
〈Y, Y,W,W,W 2〉∗ = − 1

256
〈Z,Z, Z, Z,W 2〉∗ = 1

134217728a2

6 pt correlators

〈X,X, Y,W,W 2,W 2〉∗ = −a
8

〈Y, Z, Z,W,W 2,W 2〉∗ = 1
65536a

J10 = x3 + y6, G = 〈J = (1/3, 1/6)〉
k ≤ 6, X = y3e0, Y = xye0, Z = e4J ,W = e2J . P = 1/2, ĉ = 1
Relations: 18XY = ZW,X2 = Y 2 = Z2 = W 2 = 1, dim = 6

3 pt correlators

〈1,1, ZW 〉 = 1
〈1, Z,W 〉 = 1
〈1, X, Y 〉 = 1

18

4 pt correlators

〈Z,Z, Z,W 〉 = 1/6
〈W,W,W,W 〉 = 1/3
〈X,X,X,W 〉∗ = a �= 0
〈X,Y, Z, Z〉∗ = − 1

108
〈Y, Y, Y,W 〉∗ = − 1

104,976a

5 pt correlators

〈Y, Y, Y, Y, ZW 〉 = 1
9

〈Y, Z, Z, Z, ZW 〉 = 1
18

〈X,X,X,Z, ZW 〉∗ = −a
3

〈X,Y,W,W,ZW 〉∗ = − 1
324

〈Y, Y, Y, Z, ZW 〉∗ = 1
314,928a

6 pt correlators

〈Z,Z,W,W,ZW,ZW 〉 = 1
54

〈X,X, Y, Y, ZW,ZW 〉∗ = 1
17,496

〈X,Y, Z,W,ZW,ZW 〉∗ = 1
1944
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ZT
13 = x3 + xy4, G = 〈J = (1/3, 1/9)〉

k ≤ 6, X = e4J , Y = e2J , Z = y5e0,W = xy2e0. P = 5/9, ĉ = 10/9.
Relations: X2Y = −6Z2 = 18W 2, X3 = Y 2 = Z3 = W 3 = 0, dim = 8.

3 pt correlators

〈1,1, X2Y 〉 = 1 〈1, X,XY 〉 = 1
〈1, Y,X2〉 = 1 〈X,X, Y 〉 = 1
〈1, Z, Z〉 = −1/6 〈1,W,W 〉 = 1/18

5 pt correlators

〈X,Y, Y,XY,X2Y 〉 = 1/27
〈X,X,Z,XY,X2Y 〉 = 1/27
〈X,Y, Z,X2, X2Y 〉∗ = 0
〈X,Z,Z, Z,X2Y 〉∗ = 0

〈X,Z,W,W,X2Y 〉∗ = −2a/9
〈Y, Y, Y,X2, X2Y 〉∗ = −a/162
〈Y, Y, Z, Z,X2Y 〉∗ = 1/162
〈Y, Y,W,W,X2Y 〉∗ = −1/486
〈Y, Z, Z,XY,XY 〉∗ = 1/162
〈Y,W,W,XY,XY 〉∗ = −1/486
〈Z,Z, Z,X2, XY 〉∗ = −2a/9
〈Z,W,W,X2, XY 〉∗ = −a/162

4 pt correlators

〈X,X,X,X2Y 〉 = 1/9
〈X,X,X2, XY 〉 = 2/9
〈X,Y,X2, X2〉 = 1/9
〈Y, Y, Y,XY 〉 = 1/3
〈X,Y, Z,XY 〉∗ = 0
〈X,Z,Z,X2〉∗ = 1/54

〈X,W,W,X2〉∗ = −1/162
〈Y, Y, Z,X2〉∗ = 0

〈X,Z,Z, Z〉∗ = a = ±1/9
〈X,Z,W,W 〉∗ = a/36

6 pt correlators

〈X,Y, Z, Z,X2Y,X2Y 〉∗ = −1/1458
〈X,Y,W,W,X2Y,X2Y 〉∗ = 1/4374

〈Y, Y, Y, Z,X2Y,X2Y 〉∗ = 0
〈Z,Z, Z, Z,XY,X2Y 〉∗ = 1/2916

〈Z,Z,W,W,XY,X2Y 〉∗ = −1/26244
〈W,W,W,W,XY,X2Y 〉∗ = 1/26244

J3,0 = x3 + y9, G = 〈J = (1/3, 1/9)〉
k ≤ 6, X = e4J , Y = e2J , Z = y5e0,W = xy2e0. P = 5/9, ĉ = 10/9.

Relations: 27ZW = X2Y , ab = −1/531441, X3 = Y 2 = Z2 = W 2 = 0, dim = 8.

3 pt correlators

〈1,1, X2Y 〉 = 1 〈1, X,XY 〉 = 1
〈1, Y,X2〉 = 1 〈1, Z,W 〉 = 1/27
〈X,X, Y 〉 = 1

4 pt correlators

〈X,X,X,X2Y 〉 = 1/9
〈X,X,X2, XY 〉 = 2/9
〈X,Y,X2, X2〉 = 1/9

〈X,Z,W,X2〉∗ = −1/243
〈Y, Y, Y,XY 〉 = 1/3
〈Y, Z, Z, Z〉 = a
〈Y,W,W,W 〉 = b

5 pt correlators

〈X,Y, Y,XY,X2Y 〉 = 1/27
〈X,Z,Z, Z,X2Y 〉∗ = −2a/9
〈X,W,W,W,X2Y 〉∗ = −2b/9
〈Y, Y, Y,X2, X2Y 〉 = 1/27
〈Y, Y, Z,W,X2Y 〉∗ = −1/729
〈Y, Z,W,XY,XY 〉∗ = −1/729
〈Z,Z, Z,X2, XY 〉∗ = −2a/9
〈W,W,W,X2, XY 〉∗ = −2b/9

6 pt correlators

〈X,Y, Z,W,X2Y,X2Y 〉∗ = 1/6561
〈Z,Z,W,W,XY,X2Y 〉∗ = 4/177147
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Z1,0 = x3y + y7, Gmax = 〈γ = (1/21, 6/7)〉
k ≤ 5, X = e5γ , Y = e13γ . P = 1/3, ĉ = 8/7.

Relations: X7 = −3Y 2, X13 = Y 3 = 0, dim = 19.

3 pt correlators

〈1,1, X5Y 2〉 = 1 〈1, X,X4Y 2〉 = 1
〈1, X2, X3Y 2〉 = 1 〈1, X3, X2Y 2〉 = 1
〈1, Y,X5Y 〉 = 1 〈1, X4, XY 2〉 = 1
〈1, XY,X4Y 〉 = 1 〈1, X5, Y 2〉 = 1
〈1, X2Y,X3Y 〉 = 1 〈1, X6, X6〉 = −3
〈X,X,X3Y 2〉 = 1 〈X,X2, X2Y 2〉 = 1
〈X,X3, XY 2〉 = 1 〈X,Y,X4Y 〉 = 1
〈X,X4, Y 2〉 = 1 〈X,XY,X3Y 〉 = 1
〈X,XY,X2Y 〉 = 1 〈X,X5, X6〉 = −3
〈X,X2Y,X2Y 〉 = 1 〈X2, X2, XY 2〉 = 1
〈X2, X3, Y 2〉 = 1 〈X2, Y,X3Y 〉 = 1
〈X2, X4, X6〉 = −3 〈X2, XY,X2Y 〉 = 1
〈X2, X5, X5〉∗ = −3 〈X3, X3, X6〉 = −3
〈X3, Y,X2Y 〉 = 1 〈X3, X4, X5〉∗ = −3
〈X3, XY,XY 〉 = 1 〈Y, Y,X5〉 = 1
〈Y,X4, XY 〉 = 1 〈X4, X4, X4〉∗ = −3

4 pt correlators

〈X,X,X5Y,X5Y 2〉 = 1/7
〈X,Y,X6, X5Y 2〉∗ = 1/7
〈X,Y, Y 2, X4Y 2〉 = −1/21
〈X,Y,XY 2, X3Y 2〉 = −1/21
〈X,Y,X2Y 2, X2Y 2〉 = −1/21

〈Y, Y, Y,X5Y 2〉 = 2/7
〈Y, Y,XY,X4Y 2〉 = 5/21
〈Y, Y,X2Y,X3Y 2〉 = 4/21
〈Y, Y,X3Y,X2Y 2〉 = 1/7
〈Y, Y,X4Y,XY 2〉 = 2/21
〈Y, Y, Y 2, X5Y 〉 = 1/21

5 pt correlators

None
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Z1,0 = x3y + y7, G = 〈J = (2/7, 1/7)〉
k ≤ 7, X = e4J , Y = e2J , Z = y4e0,W = xy2e0. P = 4/7, ĉ = 8/7.

Relations: X3 = −3Y 2, 21ZW = XY 2, a �= 0, X5 = Y 3 = Z2 = W 2 = 0, dim = 9.

3 pt correlators

〈1,1, XY 2〉 = 1 〈1, X, Y 2〉 = 1
〈1, Y,XY 〉 = 1 〈1, Z,W 〉 = 1/21
〈1, X2, X2〉 = −3 〈X,Y, Y 〉 = 1
〈X,X,X2〉 = −3

4 pt correlators

〈X,X, Y,XY 2〉 = 1/7
〈X,X,XY, Y 2〉 = 2/7
〈X,Y,XY,XY 〉 = 1/7
〈X,Y,X2, Y 2〉∗ = 3/7

〈X,Z,W,XY 〉∗ = −1/147
〈Y, Y, Y, Y 2〉 = 1/7
〈Y, Y,X2, XY 〉∗ = 0
〈Y, Z, Z, Z〉∗ = a

〈Y, Z,W,X2〉∗ = −1/147
〈Y,W,W,W 〉∗ = −1/(194, 481a)

5 pt correlators

〈X,X,X,XY 2, XY 2〉 = 2/49
〈X,Y, Y, Y 2, XY 2〉 = 0

〈X,Z,Z, Z,XY 2〉∗ = −2a/7
〈X,Z,W,X2, XY 2〉∗ = 1/3087
〈X,Z,W, Y 2, Y 2〉∗ = 1/1029
〈X,W,W,W,XY 2〉∗ = −2l/7
〈Y, Y, Y,XY,XY 2〉 = 2/49

〈Y, Y, Z,W,XY 2〉∗ = −2/1029
〈Y, Z,W,XY, Y 2〉∗ = −1/1029
〈Z,Z,X,X2, Y 2〉∗ = −2a/7
〈Z,Z, Z,XY,XY 〉∗ = −2a/7
〈Z,Z,W,W, Y 2〉∗ = −2/64827

〈W,W,W,X2, Y 2〉∗ = −2/(1361367k)
〈W,W,W,XY,XY 〉∗ = −2l/7

6 pt correlators

〈X,Y, Z,W,XY 2, XY 2〉∗ = 5/7203
〈Y, Z, Z, Z, Y 2, XY 2〉∗ = 6a/49
〈Y,W,W,W, Y 2, XY 2〉∗ = 6a/49

〈Z,Z,W,W,XY,XY 2〉∗ = 4/151263

7 pt correlators

None
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W1,0 = x4 + y6, G = 〈J = (1/4, 1/6)〉
k ≤ 7, X = e9J , Y = e2J , Z = e7J ,W = xy2e0. P = 7/12, ĉ = 7/6.

Relations: XZ = Y 2, X2Z = 24W 2, X3 = Y 3 = Z2 = W 3 = 0, dim = 9.

3 pt correlators

〈1,1, XY 2〉 = 1 〈1, X, Y 2〉 = 1
〈1, Y,XY 〉 = 1 〈1, Z,X2〉 = 1
〈1,W,W 〉 = 1/24 〈X,X,Z〉 = 1
〈X,Y, Y 〉 = 1

5 pt correlators

〈X,X,Z,XZ,X2Z〉 = 0
〈X,Y, Y, Y 2, XY 2〉 = 1/24
〈X,Y, Z,XY,XY 2〉 = 1/24
〈X,Z,Z,X2, X2Z〉 = 0

〈X,Z,W,W,X2Z〉∗ = 1/576
〈X,W,W,XZ,XZ〉∗ = 0
〈Y, Y, Y,XY,XY 2〉 = 1/24
〈Y, Y, Z,X2, X2Z〉 = 1/24

〈Y, Y,W,W,XY 2〉∗ = −1/576
〈Y,W,W,XY, Y 2〉∗ = −1/576
〈Z,Z, Z, Z,X2Z〉 = 1/8
〈Z,Z, Z,XZ,XZ〉 = 1/8

〈Z,W,W,X2, XZ〉∗ = 1/576
〈Z,W,W,XY,XY 〉∗ = 0

〈W,W,W,W,XZ〉∗ = 1/13824

7 pt correlators

〈Z,W,W,W,W,X2Z,X2Z〉∗ = 1/55296

4 pt correlators

〈X,X,X,XY 2〉 = 1/6
〈X,X,X2, Y 2〉 = 1/6
〈X,X,XY,XY 〉 = 1/3
〈X,Y,X2, XY 〉 = 1/6
〈X,Z,Z,XZ〉 = 0
〈X,Z,X2, X2〉 = 0

〈X,W,W,X2〉∗ = −1/144
〈Y, Y, Z, Y 2〉 = 1/4
〈Y, Y,X2, X2〉 = 1/6
〈Y, Z, Z,XY 〉 = 1/4
〈Z,Z, Z,X2〉 = 0

〈Z,Z,W,W 〉∗ = −1/96

6 pt correlators

〈X,Z,Z, Z,X2Z,X2Z〉 = 0
〈X,X,W,W,X2Z,X2Z〉∗ = −1/1728
〈Y, Y, Z, Z,XY 2, XY 2〉 = 1/24

〈Z,Z,W,W,XZ,X2Z〉∗ = −1/1152
〈W,W,W,W,X2, X2Z〉∗ = −1/27648

Q2,0 = x3 + xy4 + yz2, Gmax = 〈γ = (1/3, 11/12, 1/24)〉
k ≤ 5, X = e7γ , Y = e11γ . P = 7/24, ĉ = 7/6.
Relations: 2X7 = Y 3, X8 = Y 4 = 0 , dim = 17.

3 pt correlators

〈1,1, X7Y 〉 = −2 〈1, X,X7Y 〉 = −2
〈1, X2, X6Y 〉 = −2 〈1, Y,X7〉 = −2
〈1, X3, X5Y 〉 = −2 〈1, XY,X6〉 = −2
〈1, X4, X3Y 〉 = −2 〈1, X2Y,X5〉 = −2
〈1, Y 3, Y 3〉 = −4 〈X,X,X5Y 〉 = −2
〈X,X2, X4Y 〉 = −2 〈X,Y,X6〉 = −2
〈X,X3, X3Y 〉∗ = −2 〈X,XY,X5〉 = −2
〈X,X4, X2Y 〉 = −2 〈X2, Y,X5〉 = −2
〈X2, X2, X3Y 〉∗ = −2 〈X2, XY,X4〉 = −2
〈X2, X3, X2Y 〉∗ = −2 〈Y,X3, X4〉 = −2
〈Y, Y, Y 2〉 = −4 〈X3, X3, XY 〉∗ = −2

4 pt correlators

〈X,X,X6, X7Y 〉 = 2/3
〈X,X,X7, X6Y 〉 = 1/3
〈X,Y,X7, X7〉 = −1/3
〈X,Y, Y 2, Y 3〉∗ = −4/3
〈Y, Y,XY,X7Y 〉 = −2/3
〈Y, Y,X2Y,X6Y 〉 = −2/3
〈Y, Y,X3Y,X5Y 〉 = −2/3
〈Y, Y,X4Y,X4Y 〉∗ = −2/3

5 pt correlators

None
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Q2,0 = x3 + xy4 + yz2, G = 〈J = (1/3, 1/6, 5/12)〉
k ≤ 7, X = e10J , Y = e8J , Z = y3e6J ,W = xye6J . P = 7/12, ĉ = 7/6.

Relations: X3Y = 8Z2 = −24W 2, X4 = Y 2 = Z3 = W 3 = 0 a = ±1, dim = 10.

3 pt correlators

〈1,1, X3Y 〉 = −2 〈1, X,X2Y 〉 = −2
〈1, Y,X3〉 = −2 〈1, X2, XY 〉 = 1
〈1, Z, Z〉 = −1/4 〈1,W,W 〉 = 1/12
〈X,X,XY 〉∗ = −2 〈X,Y,X2〉 = 1

5 pt correlators

〈X,X,Z,X2Y,X3Y 〉∗ = 0
〈X,Y, Y,X2Y,X3Y 〉 = 2/9
〈X,Y, Z,X3, X3Y 〉∗ = 0
〈X,Z,Z, Z,X3Y 〉∗ = a/72
〈X,Z,W,W,X3Y 〉∗ = a/216
〈Y, Y, Y,X3, X3Y 〉 = 2/9
〈Y, Y, Z, Z,X3Y 〉∗ = −1/36
〈Y, Y,W,W,X3Y 〉∗ = 1/108
〈Y, Z, Z,XY,X2Y 〉∗ = −1/36
〈Y,W,W,XY,X2Y 〉∗ = −1/36
〈X2, Z, Z, Z,X2Y 〉∗ = a/72
〈X2, Z,W,W,X2Y 〉∗ = a/216
〈Z,Z, Z,XY,X3〉∗ = a/72
〈Z,W,W,XY,X3〉∗ = a/216

7 pt correlators

〈X2, Z, Z, Z, Z,X3Y,X3Y 〉∗ = −1/216
〈X2, Z, Z,W,W,X3Y,X3Y 〉∗ = 1/1944
〈X2,W,W,W,W,X3Y,X3Y 〉∗ = −1/1944

4 pt correlators

〈X,X,X2, X3Y 〉∗ = 2/3
〈X,X,X3, X2Y 〉∗ = 4/3
〈X,Y, Z,X2Y 〉∗ = 0
〈X,Y,X3, X3〉 = 2/3
〈X,Z,Z,X3〉∗ = −1/12
〈X,Z,XY,XY 〉∗ = 0
〈X,W,W,X3〉∗ = 1/36
〈Y, Y, Y,X2Y 〉 = −2/3
〈Y, Y, Z,X3〉∗ = 0

〈Y, Y,XY,XY 〉∗ = −2/3
〈Y,X2, Z,XY 〉∗ = 0
〈Y, Z, Z, Z〉∗ = a/48
〈Y, Z,W,W 〉∗ = a/144
〈X2, X2, Z, Z〉∗ = 1/12
〈X2, X2,W,W 〉∗ = 1/36

6 pt correlators

〈X,Y, Z, Z,X3Y,X3Y 〉∗ = −1/108
〈X,Y,W,W,X3Y,X3Y 〉∗ = 1/324
〈Y, Y, Y, Z,X3Y,X3Y 〉∗ = 0

〈Z,Z, Z, Z,XY,X3Y 〉∗ = −1/288
〈Z,Z, Z, Z,X2Y,X2Y 〉∗ = −1/288
〈Z,Z,W,W,XY,X3Y 〉∗ = 1/2592
〈Z,Z,W,W,X2Y,X2Y 〉∗ = 1/2592
〈W,W,W,W,XY,X3Y 〉∗ = −1/2592
〈W,W,W,W,X2Y,X2Y 〉∗ = −1/2592
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QT
2,0 = x3y + y4z + z2, Gmax = 〈J = (7/24, 1/8, 1/2)〉

k ≤ 5, X = e11J , Y = e9J , Z = y3e8J . P = 5/12, ĉ = 7/6.
Relations: X4 = −3Y 2, aX3Y = Z2, X8 = Y 3 = Z3 = 0, a �= 0, dim = 14.

3 pt correlators

〈1,1, X3Y 2〉 = 1 〈1, X,X2Y 2〉 = 1
〈1, X2, XY 2〉 = 1 〈1, Y,X3Y 〉 = 1
〈1, X3, Y 2〉 = 1 〈1, XY,X2Y 〉 = a
〈1, Z, Y Z〉 = 1 〈X,X,XY 2〉 = 1
〈X,X2, Y 2〉 = 1 〈X,Y,X2Y 〉 = 1
〈X,XY,XY 〉 = 1 〈X,X3, X3〉∗ = −3
〈X2, Y,XY 〉 = 1 〈X2, X2, X3〉∗ = −3
〈Y, Z, Z〉∗ = a

5 pt correlators

〈X,Y, Y,X3Y 2, X3Y 2〉∗ = −1/96
〈Y, Z, Z,XY 2, X3Y 2〉∗ = −a/96
〈Y, Z, Z,X2Y 2, X2Y 2〉∗ = −a/96

4 pt correlators

〈X,X,X2Y,X3Y 2〉 = 1/8
〈X,X,X3Y,X2Y 2〉 = 1/8
〈X,Y, Y 2, X2Y 2〉 = −1/12
〈X,Y,X3Y,X3Y 〉 = 0

〈X,Y,XY 2, XY 2〉 = −1/12
〈X,Y,X3, X3Y 2〉∗ = 1/8
〈X,Z,Z,X3Y 2〉∗ = −a/8
〈X,Z, Y Z,X3Y 〉∗ = −a/8
〈X2, Z, Z,X2Y 2〉∗ = −a/8
〈Y, Y, Y,X3Y 2〉 = 7/24
〈Y, Y,XY,X2Y 2〉 = 5/24
〈Y, Y,X2Y,XY 2〉 = 1/8
〈Y, Y, Y 2, X3Y 〉 = 1/24
〈Y, Y, Y Z, Y Z〉∗ = a/4
〈Y, Z, Y 2, Y Z〉∗ = −a/24
〈Z,Z,X3, XY 2〉∗ = −a/8
〈Z,Z,XY,X3Y 〉∗ = −a/8
〈Z,Z,X2Y,X2Y 〉∗ = −a/8
〈Z,Z, Y 2, Y 2〉∗ = a/24

S1,0 = x2y + y2z + z5, Gmax = 〈γ = (1/20, 9/10, 1/5)〉
k ≤ 4, X = e7γ , Y = eγ . P = 1/4, ĉ = 6/5.

Relations: X5 = Y 3, X9 = Y 4 = 0, dim = 17.

3 pt correlators

〈1,1, X3Y 3〉 = −2 〈1, X,X2Y 3〉 = −2
〈1, Y,X3Y 2〉 = −2 〈1, X2, XY 3〉 = −2
〈1, XY,X2Y 2〉 = −2 〈1, X3, Y 3〉 = −2
〈1, Y 2, X3Y 〉 = −2 〈1, X2Y,XY 2〉 = −2
〈1, X4, X4〉 = −2 〈X,X,XY 3〉 = −2
〈X,Y,X2Y 2〉 = −2 〈X,X2, Y 3〉 = −2
〈X,XY,XY 2〉 = −2 〈X,Y 2X2Y 〉 = −2
〈X,X3, X4〉 = −2 〈Y, Y,X3Y 〉∗ = −2
〈Y,X2, XY 2〉 = −2 〈Y,XY,X2Y 〉∗ = −2
〈Y,X3, Y 2〉 = −2 〈X2, X2, X4〉∗ = −2
〈X2, XY, Y 2〉 = −2 〈X2, X3, X3〉∗ = −2
〈XY,XY,XY 〉 = −2

4 pt correlators

〈X,X,X3Y,X3Y 3〉 = −2/5
〈X,X,X3Y 2, X3Y 2〉 = −2/5
〈X,Y,X4, X3Y 3〉 = −2/5
〈X,Y, Y 3, X2Y 3〉∗ = −2/5
〈X,Y,XY 3, XY 3〉∗ = 1/5
〈Y, Y, Y 2, X3Y 3〉∗ = 8/5
〈Y, Y,XY 2, X2Y 3〉∗ = 6/5
〈Y, Y, Y 3, X3Y 2〉∗ = −2/5
〈Y, Y,X2Y 2, XY 3〉∗ = 4/5
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S1,0 = x2y + y2z + z5, G = 〈J = (3/10, 2/5, 1/5)〉
k ≤ 7, X = e2J , Y = e7J , Z = e6J ,W = z2e5J . P = 3/5, ĉ = 6/5.

Relations: 2XZ = aY 2, X3 = 2aY Z,XY Z = 10W 2, X5 = Y 4 = Z2 = 0, a �= 0, dim = 10.

3 pt correlators

〈1,1, XY Z〉 = 1 〈1, X, Y Z〉 = 1
〈1, Y,XZ〉 = 1 〈1, Z,XY 〉 = 1
〈1,W,W 〉 = 1/10 〈1, X2, X2〉 = 2a
〈X,Y, Z〉 = 1 〈X,X,X2〉∗ = 2a
〈Y, Y, Y 〉∗ = 2/a

5 pt correlators

〈X,X,Z, Y Z,XY Z〉 = 1/25
〈X,Y, Y, Y Z,XY Z〉∗ = 0

〈X,Y, Z,XZ,XY Z〉 = −1/50
〈X,Z,Z,XY,XY Z〉 = 0

〈X,Z,W,W,XY Z〉∗ = −3/500
〈X,W,W,XZ, Y Z〉∗ = −1/500
〈Y, Y, Y,XZ,XY Z〉∗ = −2/(25a)
〈Y, Y, Z,XY,XY Z〉∗ = −2/(25a)
〈Y, Y,W,W,XY Z〉∗ = 1/(125a)
〈Y, Z, Z,X2, XY Z〉∗ = 0

〈Y, Z, Z, Y Z, Y Z〉∗ = 1/(25a)
〈Y,W,W,XY, Y Z〉∗ = 1/(250a)
〈Y,W,W,XZ,XZ〉∗ = 1/250
〈Z,Z, Z, Z,XY Z〉 = 3/25
〈Z,Z, Z,XZ, Y Z〉 = 2/25

〈Z,W,W,X2, Y Z〉∗ = −1/125
〈Z,W,W,XY,XZ〉∗ = −1/500
〈W,W,W,W,XZ〉∗ = −1/5000

7 pt correlators

〈Y,W,W,W,W,XY Z,XY Z〉 = −3/(62500a)

4 pt correlators

〈X,X, Y,XY 2〉 = 1/5
〈X,X,XY, Y Z〉 = 1/5
〈X,X,XZ,XZ〉∗ = a/5
〈X,Y,X2, Y Z〉∗ = 2/5
〈X,Y,XY,XZ〉 = 1/5
〈X,Z,Z, Y Z〉 = 1/10
〈X,Z,X2, XZ〉∗ = a/5
〈X,Z,XY,XY 〉 = 0

〈X,W,W,XY 〉 = −1/50
〈Y, Y, Z, Y Z〉∗ = −1/(5a)
〈Y, Y,X2, XZ〉∗ = 0

〈Y, Y,XY,XY 〉∗ = 2/(5a)
〈Y, Z, Z,XZ〉 = −1/5
〈Y, Z,X2, XY 〉∗ = 0

〈Y,W,W,X2〉∗ = −1/50
〈Z,Z, Z,XY 〉 = −1/10
〈Z,Z,W,W 〉∗ = 1/50
〈Z,Z,X2, X2〉∗ = 2/5

6 pt correlators

〈X,Z,Z, Z,XY Z,XY Z〉 = 0
〈X,X,Z, Z,XY Z,XY Z〉∗ = 1/625
〈Y, Y, Z, Z,XY Z,XY Z〉∗ = 4/(125a)
〈Y, Z,W,W, Y Z,XY Z〉∗ = 1/(2500a)
〈Z,Z,W,W,XZ,XY Z〉∗ = −3/2500
〈W,W,W,W,X2, XY Z〉∗ = −9/25000
〈W,W,W,W, Y Z, Y Z〉∗ = 3/(12500a)
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E19 = x3 + xy7, Gmax = 〈J = (1/3, 2/21)〉
k ≤ 5, X = e13J , Y = e11J . P = 2/7, ĉ = 8/7.

Relations: −7X6 = Y 3, X7 = Y 5 = 0, dim = 15.

3 pt correlators

〈1,1, X6Y 〉 = 1 〈1, X,X5Y 〉 = 1
〈1, Y,X6〉 = 1 〈1, X2, X4Y 〉 = 1
〈1, XY,X5〉 = 1 〈1, X3, X3Y 〉 = 1
〈1, X2Y,X4〉 = 1 〈1, Y 2, Y 2〉 = −7
〈X,X,X4Y 〉 = 1 〈X,Y,X5〉 = 1
〈X,X2, X3Y 〉 = 1 〈X,XY,X4〉 = 1
〈X,X3, X2Y 〉 = 1 〈X2, X2, Y 2〉 = 1
〈X2, Y,X2Y 〉 = 1 〈X2, XY,XY 〉 = 1
〈X3, Y,XY 〉 = 1 〈Y,X2, X4〉 = 1
〈Y,X3, X3〉 = 1 〈Y, Y, Y 2〉 = −7
〈X2, X2, X2Y 〉 = 1 〈X2, XY,X3〉 = 1

4 pt correlators

〈X,X,X5, X6Y 〉 = 2/21
〈X,X,X6, X5Y 〉 = 1/21
〈X,Y,X6, X6〉 = −1/21
〈X,Y, Y 2, X6Y 〉∗ = 1/3
〈Y, Y,XY,X6Y 〉 = 1/3
〈Y, Y,X2Y,X5Y 〉 = 1/3
〈Y, Y,X3Y,X4Y 〉 = 1/3

5 pt correlators

None

ZT
17 = x3 + xy8, Gmax = 〈γ = (2/3, 1/24)〉

k ≤ 5, X = e5γ , Y = eγ . P = 7/24, ĉ = 7/6.
Relations: −8X7 = Y 3, X8 = XY 2 = Y 4 = 0, dim = 17.

3 pt correlators

〈1,1, X7Y 〉 = 1 〈1, X,X6Y 〉 = 1
〈1, X2, X5Y 〉 = 1 〈1, Y,X7〉 = 1
〈1, X3, X4Y 〉 = 1 〈1, XY,X6〉 = 1
〈1, X4, X3Y 〉 = 1 〈1, X2Y,X5〉 = 1
〈1, Y 2, Y 2〉 = −8 〈X,X,X5Y 〉 = 1
〈X,X2, X4Y 〉 = 1 〈X,Y,X6〉 = 1
〈X,X3, X3Y 〉 = 1 〈X,XY,X5〉 = 1
〈X,X4, X2Y 〉 = 1 〈X2, X2, X3Y 〉 = 1
〈X2, Y,X5〉 = 1 〈X2, X3, X2Y 〉 = 1
〈X2, XY,X4〉 = 1 〈X3, Y,XY 〉 = 1
〈Y,X3, X4〉 = 1 〈Y, Y, Y 2〉 = ±1
〈X3, X3, XY 〉 = 1

4 pt correlators

〈X,X,X6, X7Y 〉 = 1/12
〈X,X,X7, X6Y 〉 = 1/24
〈X,Y,X7, X7〉 = −1/24
〈X,Y, Y 2, X7Y 〉∗ = 1/3
〈Y, Y,XY,X7Y 〉 = 1/3
〈Y, Y,X2Y,X6Y 〉 = 1/3
〈Y, Y,X3Y,X5Y 〉 = 1/3
〈Y, Y,X4Y,X4Y 〉 = 1/3

5 pt correlators

None
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ZT
17 = x3 + xy8, G = 〈J = (1/3, 1/12)〉

k ≤ 7, X = e4J , Y = e2J , Z = y7e0,W = xy3e0. P = 7/12, ĉ = 7/6.
Relations: X3Y = −8Z2 = 24W 2, X4 = Y 2Z3 = W 3, a, b �= 0 , dim = 10.

3 pt correlators

〈1,1, X3Y 〉 = 1 〈1, X,X2Y 〉 = 1
〈1, Y,X3〉 = 1 〈1, X2, XY 〉 = 1
〈1, Z, Z〉 = −1/8 〈1,W,W 〉 = 1/24
〈X,X,XY 〉 = 1 〈X,Y,X2〉 = 1

4 pt correlators

〈X,X,X2, X3Y 〉 = 1/12
〈X,X,X3, X2Y 〉 = 1/6
〈X,Y,X3, X3〉 = 1/12
〈X,Y, Z,X2Y 〉∗ = 0
〈X,Z,Z,X3〉∗ = 1/96
〈X,Z,XY,XY 〉∗ = 0

〈X,W,W,X3〉∗ = −1/288
〈Y, Y, Y,X2Y 〉 = 1/3
〈Y, Y,XY,XY 〉 = 1/3
〈Y, Y, Z,X3〉∗ = 0
〈Y,X2, Z,XY 〉∗ = 0

〈Y, Z, Z, Z〉∗ = a = ±1/192
〈Y, Z,W,W 〉∗ = b = ±1/576
〈X2, X2, Z, Z〉∗ = 1/96

〈X2, X2,W,W 〉∗ = −1/288

7 pt correlators

None

5 pt correlators

〈X,Y, Y,X2Y,X3Y 〉 = 1/36
〈X,X,Z,X2Y,X3Y 〉∗ = 0
〈X,Y, Z,X3, X3Y 〉∗ = 0
〈X,Z,Z, Z,X3Y 〉∗ = −a/6
〈X,Z,W,W,X3Y 〉∗ = −b/6
〈Y, Y, Y,X3, X3Y 〉 = 1/36
〈Y, Y, Z, Z,X3Y 〉∗ = 1/288
〈Y, Y,W,W,X3Y 〉∗ = −1/864
〈Y, Z, Z,XY,X2Y 〉∗ = 1/288
〈Y,W,W,XY,X2Y 〉∗ = −1/864
〈X2, Z, Z, Z,X2Y 〉∗ = −a/6
〈X2, Z,W,W,X2Y 〉∗ = −b/6
〈Z,Z, Z,XY,X3〉∗ = −a/6
〈Z,W,W,XY,X3〉∗ = −b/6

6 pt correlators

〈X,Y, Z, Z,X3Y,X3Y 〉∗ = −1/3456
〈X,Y,W,W,X3Y,X3Y 〉∗ = 1/10368

〈Y, Y, Y, Z,X3Y,X3Y 〉∗ = 0
〈Z,Z, Z, Z,XY,X3Y 〉∗ = 1/9216
〈Z,Z, Z, Z,X2Y,X2Y 〉∗ = 1/9216
〈Z,Z,W,W,XY,X3Y 〉∗ = −1/82944
〈Z,Z,W,W,X2Y,X2Y 〉∗ = −1/82944
〈W,W,W,W,XY,X3Y 〉 = 1/82944
〈W,W,W,W,X2Y,X2Y 〉 = 1/82944
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Z19 = x3y + y9, Gmax = 〈J = (8/27, 1/9)〉
k ≤ 5, X = e11J , Y = e19J . P = 1/3, ĉ = 32/27.
Relations: X9 = −3Y 2, X16 = Y 3 = 0, dim = 25.

3 pt correlators

〈1,1, X7Y 2〉 = 1 〈1, X,X6Y 2〉 = 1
〈1, X2, X5Y 2〉 = 1 〈1, X3, X4Y 2〉 = 1
〈1, X4, X3Y 2〉 = 1 〈1, Y,X7Y 2〉 = 1
〈1, X5, X2Y 2〉 = 1 〈1, XY,X6Y 〉 = 1
〈1, X6, XY 2〉 = 1 〈1, X2Y,X5Y 〉 = 1
〈1, X7, Y 2〉 = 1 〈1, X3Y,X4Y 〉 = 1
〈1, X8, X8〉 = −3 〈X,X,X5Y 2〉 = 1
〈X,X2, X4Y 2〉 = 1 〈X,X3, X3Y 2〉 = 1
〈X,X4, X2Y 2〉 = 1 〈X,Y,X6Y 〉 = 1
〈X,X5, XY 2〉 = 1 〈X,XY,X5Y 〉 = 1
〈X,X6, Y 2〉 = 1 〈X,X2Y,X4Y 〉 = 1
〈X,X7, X8〉 = −3 〈X,X3Y,X4Y 〉 = 1
〈X2, X2, X3Y 2〉 = 1 〈X2, X3, X2Y 2〉 = 1
〈X2, X4, XY 2〉 = 1 〈X2, Y,X5Y 〉 = 1
〈X2, X5, Y 2〉 = 1 〈X2, XY,X4Y 〉 = 1
〈X2, X6, X8〉 = −3 〈X2, X2Y,X3Y 〉 = 1
〈X2, X7, X7〉∗ = −3 〈X3, X3, XY 2〉 = 1
〈X3, X4, Y 2〉 = 1 〈X3, Y,X4Y 〉 = 1
〈X3, X5, X8〉 = −3 〈X3, XY,X3Y 〉 = 1
〈X3, X6, X7〉∗ = −3 〈X3, X2Y,X2Y 〉 = 1
〈X4, X4, X8〉 = −3 〈X4, Y,X3Y 〉 = 1
〈X4, X5, X7〉∗ = −3 〈X4, XY,X2Y 〉 = 1
〈X4, X6, X6〉∗ = −3 〈Y, Y,X7〉 = 1
〈Y,X5, X2Y 〉 = 1 〈Y,XY,X6〉 = 1
〈X5, X5, X6〉∗ = −3 〈X5, XY,XY 〉 = 1

5 pt correlators

〈X4, X4, X4, X6Y 2, X7Y 2〉 = 4/81
〈X3, X4, X4, X7Y 2, X7Y 2〉∗ = 2/81

4 pt correlators

〈X,X,X7Y,X7Y 2〉 = 1/9
〈X,X2, X6Y,X7Y 2〉 = 1/9
〈X,X2, X7Y,X6Y 2〉 = 1/9
〈X,X3, X5Y,X7Y 2〉 = 1/9
〈X,X3, X6Y,X6Y 2〉 = 1/9
〈X,X3, X7Y,X5Y 2〉 = 1/9
〈X,X4, X4Y,X7Y 2〉 = 1/9
〈X,X4, X5Y,X6Y 2〉 = 1/9
〈X,X4, X6Y,X5Y 2〉 = 1/9
〈X,X4, X7Y,X4Y 2〉 = 1/9
〈X2, X2, X5Y,X7Y 2〉 = 1/9
〈X2, X2, X6Y,X6Y 2〉 = 2/9
〈X2, X2, X7Y,X5Y 2〉 = 1/9
〈X2, X3, X4Y,X7Y 2〉 = 1/9
〈X2, X3, X5Y,X6Y 2〉 = 2/9
〈X2, X3, X6Y,X5Y 2〉 = 2/9
〈X2, X3, X7Y,X4Y 2〉 = 1/9
〈X2, X4, X3Y,X7Y 2〉 = 1/9
〈X2, X4, X4Y,X6Y 2〉 = 2/9
〈X2, X4, X5Y,X5Y 2〉 = 2/9
〈X2, X4, X6Y,X4Y 2〉 = 2/9
〈X2, X4, X7Y,X3Y 2〉 = 1/9
〈X3, X3, X3Y,X7Y 2〉 = 1/9
〈X3, X3, X4Y,X6Y 2〉 = 2/9
〈X3, X3, X5Y,X5Y 2〉 = 1/3
〈X3, X3, X6Y,X4Y 2〉 = 2/9
〈X3, X3, X7Y,X3Y 2〉 = 1/9
〈X3, X4, X2Y,X7Y 2〉 = 1/9
〈X3, X4, X3Y,X6Y 2〉 = 2/9
〈X3, X4, X4Y,X5Y 2〉 = 1/3
〈X3, X4, X5Y,X4Y 2〉 = 1/3
〈X3, X4, X6Y,X3Y 2〉 = 2/9
〈X3, X4, X7Y,X2Y 2〉 = 1/9
〈X4, X4, XY,X7Y 2〉 = 1/9
〈X4, X4, X2Y,X6Y 2〉 = 2/9
〈X4, X4, X3Y,X5Y 2〉 = 1/3
〈X4, X4, X4Y,X4Y 2〉 = 4/9
〈X4, X4, X5Y,X3Y 2〉 = 1/3
〈X4, X4, X6Y,X2Y 2〉 = 2/9
〈X4, X4, X7Y,XY 2〉 = 1/9
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ZT
19 = x3 + xy9, Gmax = 〈J = (1/3, 2/27)〉

k ≤ 5, X = e16J , Y = e14J . P = 8/27, ĉ = 32/27.
Relations: −9X8 = Y 3, X9 = Y 5 = 0, dim = 19.

3 pt correlators

〈1,1, X8Y 〉 = 1 〈1, X,X7Y 〉 = 1
〈1, X2, X6Y 〉 = 1 〈1, Y,X8〉 = 1
〈1, X3, X5Y 〉 = 1 〈1, XY,X7〉 = 1
〈1, X4, X4Y 〉 = 1 〈1, X2Y,X6〉 = 1
〈1, X5, X3Y 〉 = 1 〈1, Y 2, Y 2〉 = −9
〈X,X,X6Y 〉 = 1 〈X,X2, X5Y 〉 = 1
〈X,Y,X7〉 = 1 〈X,X2, X5Y 〉 = 1

〈X,XY,X6Y 〉 = 1 〈X,X3, X4Y 〉 = 1
〈X,X2Y,X5〉 = 1 〈X,X4, X3Y 〉 = 1
〈X2, X2, X4Y 〉 = 1 〈X2, Y,X6〉 = 1
〈X2, X3, X3Y 〉 = 1 〈X2, XY,X5〉 = 1
〈X2, X4, X2Y 〉 = 1 〈Y, Y, Y 2〉 = −9
〈Y,X3, X5〉 = 1 〈Y,X4, X4〉 = 1
〈X3, X3, X2Y 〉 = 1 〈X3, XY,X4〉 = 1

4 pt correlators

〈X,X,X7, X8Y 〉 = 2/27
〈X,X,X8, X7Y 〉 = 1/27
〈X,Y,X8, X8〉 = −1/27
〈X,Y, Y 2, X8Y 〉∗ = 1/3
〈Y, Y,XY,X8Y 〉 = 1/3
〈Y, Y,X2Y,X7Y 〉 = 1/3
〈Y, Y,X3Y,X6Y 〉 = 1/3
〈Y, Y,X4Y,X5Y 〉 = 1/3

5 pt correlators

None

W17 = x4 +Xy5, Gmax = 〈J = (1/4, 3/20)〉
k ≤ 4, X = e14J , Y = e9J . P = 1/5, ĉ = 6/5.

Relations: X4 = −5Y 4, X7 = Y 5 = 0, dim = 16.

3 pt correlators

〈1,1, X2Y 4〉 = 1 〈1, X,XY 4〉 = 1
〈1, Y,X2Y 3〉 = 1 〈1, X2, Y 4〉 = 1
〈1, XY,XY 3〉 = 1 〈1, Y 2, X2Y 2〉 = 1
〈1, X2Y, Y 3〉 = 1 〈1, XY 2, XY 2〉 = 1
〈1, X3, X3〉 = −5 〈X,X, Y 4〉 = 1
〈X,Y,XY 3〉 = 1 〈X,X2, X3〉 = −5
〈X,XY, Y 3〉 = 1 〈X,Y 2, XY 2〉 = 1
〈Y, Y,X2Y 2〉 = 1 〈Y,X2, Y 3〉 = 1
〈Y,XY,XY 2〉 = 1 〈Y, Y 2, X2Y 〉 = 1
〈X2, Y 2, Y 〉 = 1 〈X2, X2, X2〉∗ = −5
〈XY,XY, Y 2〉 = 1

4 pt correlators

〈X,X,X2Y,X2Y 4〉 = 1/4
〈X,X,X2Y 2, X2Y 3〉 = 1/4
〈X,Y,X3, X2Y 4〉∗ = 1/4
〈X,Y, Y 4, XY 4〉 = −1/20
〈Y, Y, Y 3, X2Y 4〉 = 3/20
〈Y, Y,XY 3, XY 4〉 = 1/10
〈Y, Y, Y 4, X2Y 3〉 = 1/20
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W T
17 = x4y + y5, Gmax = 〈γ = (1/20, 4/5)〉

k ≤ 4, X = e3γ , Y = e9γ . P = 1/4, ĉ = 6/5.
Relations: X5 = −4Y 3, X8 = Y 4 = 0, dim = 17.

3 pt correlators

〈1,1, X3Y 3〉 = 1 〈1, X,X2Y 3〉 = 1
〈1, Y,X3Y 2〉 = 1 〈1, X2, XY 3〉 = 1
〈1, XY,X2Y 2〉 = 1 〈1, X3, Y 3〉 = 1
〈1, Y 2, X3Y 〉 = 1 〈1, X2Y,XY 2〉 = 1
〈1, X4, X4〉 = −4 〈X,X,XY 3〉 = 1
〈X,Y,X2Y 2〉 = 1 〈X,X2, Y 3〉 = 1
〈X,XY,XY 2〉 = 1 〈X,X3, X4〉 = −4
〈X,Y 2, X2Y 〉 = 1 〈Y, Y,X3Y 〉 = 1
〈Y,X2, XY 2〉 = 1 〈Y,XY,X2Y 〉 = 1
〈Y,X3, Y 2〉 = 1 〈X2, XY, Y 2〉 = 1

〈X2, X2, X4〉 = −4 〈X2, X3, X3〉∗ = −4
〈XY,XY,XY 〉 = 1

4 pt correlators

〈X,X,X3Y,X3Y 3〉 = 1/5
〈X,X,X3Y 2, X3Y 2〉 = 1/5
〈X,Y,X4, X3Y 3〉∗ = 1/5
〈X,Y, Y 3, X2Y 3〉 = 1/20
〈X,Y,XY 3, XY 3〉 = −1/20
〈Y, Y, Y 2, X3Y 3〉 = 1/5
〈Y, Y,XY 2, X2Y 3〉 = 3/20
〈Y, Y, Y 3, X3Y 2〉 = 1/20
〈Y, Y,X2Y 2, XY 3〉 = 1/20
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W T
17 = x4y + y5, G = 〈γ = (1/10, 3/5)〉

k ≤ 7, X = eγ , Y = e4γ , Z = e7γ ,W = xy2e0. P = 3/5, ĉ = 6/5.
Relations: XZ = Y 2, X3 = −4Y Z,XY Z = 20W 2, X5 = Y 5 = Z2 = W 3 = 0, dim = 10.

3 pt correlators

〈1,1, XY Z〉 = 1 〈1, X, Y Z〉 = 1
〈1, Y,XZ〉 = 1 〈1, Z,XY 〉 = 1
〈1,W,W 〉 = 1/20 〈1, X2, X2〉 = −4
〈X,X,X2〉 = −4 〈X,Y, Z〉 = 1
〈Y, Y, Y 〉 = 1

5 pt correlators

〈X,X,Z, Y Z,XY Z〉 = −1/25
〈X,Y, Y, Y Z,XY Z〉 = 0

〈X,Y, Z,XZ,XY Z〉 = 1/50
〈X,Z,Z,XY,XY Z〉 = 0

〈X,Z,W,W,XY Z〉∗ = 3/1000
〈X,W,W,XZ, Y Z〉∗ = 1/1000
〈Y, Y, Y,XZ,XY Z〉 = 1/25
〈Y, Y, Z,XY,XY Z〉 = 1/25
〈Y, Y,W,W,XY Z〉∗ = −1/500
〈Y, Z, Z, Y Z, Y Z〉 = 1/50
〈Y, Z, Z,X2, XY Z〉∗ = 0

〈Y,W,W,XY, Y Z〉∗ = −1/1000
〈Y,W,W,XZ,XZ〉∗ = −1/500
〈Z,Z, Z, Z,XY Z〉 = 3/25
〈Z,Z, Z,XZ, Y Z〉 = 2/25
〈Z,W,W,X2, XZ〉∗ = 1/250
〈Z,W,W,XY,XZ〉∗ = 1/1000
〈W,W,W,W,XY Z〉∗ = 1/20000

7 pt correlators

〈Y,W,W,W,W,XY Z,XY Z〉∗ = −3/500000
〈Z,Z,W,W,W,XY Z,XY Z〉∗ = 0

4 pt correlators

〈X,X, Y,XY Z〉 = 1/5
〈X,X,XY, Y Z〉 = 1/5
〈X,X,XZ,XZ〉 = 2/5
〈X,Y,XY,XZ〉 = 1/5
〈X,Y,X2, Y Z〉∗ = 2/5
〈X,Z,Z, Y Z〉 = 1/5
〈X,Z,XY,XY 〉 = 0
〈X,Z,X2, XZ〉∗ = 2/5

〈X,W,W,XY 〉∗ = −1/100
〈Y, Y, Z, Y Z〉 = 1/10
〈Y, Y,XY,XY 〉 = 1/5
〈Y, Y,X2, XZ〉∗ = 0
〈Y, Z, Z,XZ〉 = 1/5
〈Y, Z,X2, XY 〉∗ = 0

〈Y,W,W,X2〉∗ = −1/100
〈Z,Z, Z,XY 〉 = 1/10
〈Z,Z,W,W 〉∗ = −1/100
〈Z,Z,X2, X2〉∗ = 4/5

6 pt correlators

〈X,X,W,W,XY Z,XY Z〉∗ = −1/1250
〈X,Z,Z, Z,XY Z,XY Z〉 = 0

〈Y, Y, Z, Z,XY Z,XY Z〉 = 2/125
〈Y, Z,W,W, Y Z,XY Z〉∗ = 1/10000
〈Z,Z,W,W,XZ,XY Z〉∗ = −3/5000
〈W,W,W,W,X2, XY Z〉∗ = −9/100000
〈W,W,W,W, Y Z, Y Z〉∗ = 3/100000
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Q17 = x3 + xy5 + yz2, Gmax = 〈J = (1/3, 2/15, 13/30)〉
k ≤ 5, X = e10J , Y = e8J . P = 3/10, ĉ = 6/5.

Relations: 5X9 = 2Y 3 , X10 = Y 4 = 0, dim = 21.

3 pt correlators

〈1,1, X9Y 〉 = −2 〈1, X,X8Y 〉 = −2
〈1, X2, X7Y 〉 = −2 〈1, Y,X9〉 = −2
〈1, X3, X6Y 〉 = −2 〈1, XY,X8〉 = −2
〈1, X4, X5Y 〉 = −2 〈1, X5, X4Y 〉 = −2
〈1, X2Y,X7〉 = −2 〈1, X3Y,X6〉 = −2
〈1, Y 2, Y 2〉 = −5 〈X,X,X7Y 〉 = −2
〈X,X2, X6Y 〉 = −2 〈X,Y,X8〉 = −2
〈X,X3, X5Y 〉 = −2 〈X,XY,X7〉 = −2
〈X,X4, X4Y 〉∗ = −2 〈X,X5, X3Y 〉 = −2
〈X,X2Y,X6〉 = −2 〈X2, X2, X5Y 〉 = −2
〈X2, Y,X7〉 = −2 〈X2, X3, X4Y 〉∗ = −2
〈X2, XY,X6〉 = −2 〈X2, X4, X3Y 〉∗ = −2
〈X2, X2Y,X5〉 = −2 〈Y, Y, Y 2〉∗ = −5
〈Y,X3, X6〉 = −2 〈Y,X4, X5〉 = −2
〈X3, X3X3Y 〉∗ = −2 〈X3, XY X5〉∗ = −2
〈X3, X4X2Y 〉 = −2 〈XY,X4X4〉∗ = −2

4 pt correlators

〈X,X,X8, X9Y 〉 = 8/15
〈X,X,X9, X8Y 〉 = 4/15
〈X,Y, Y 2, X9Y 〉∗ = 2/3
〈X,Y,X9, X9〉 = −4/15
〈Y, Y,XY,X9Y 〉 = −2/3
〈Y, Y,X2Y,X8Y 〉 = −2/3
〈Y, Y,X3Y,X7Y 〉 = −2/3
〈Y, Y,X4Y,X6Y 〉 = −2/3
〈Y, Y,X5Y,X5Y 〉 = −2/3

5 pt correlators

None
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QT
17 = x3y + y5z + z2, Gmax = 〈γ = (1/30, 9/10, 1/2)〉

k ≤ 5, X = e7γ , Y = e19γ , Z = y4e10γ . P = 1/3, ĉ = 6/5.
Relations: X5 = −3Y 2, aX4Y = Z2, X10 = Y 3 = Z3 = 0, a �= 0, dim = 17.

3 pt correlators

〈1,1, X4Y 2〉 = 1 〈1, X,X3Y 2〉 = 1
〈1, X2, X2Y 2〉 = 1 〈1, Y,X4Y 〉 = 1
〈1, X3, XY 2〉 = 1 〈1, XY,X3Y 〉 = 1
〈1, X4, Y 2〉 = 1 〈1, X2Y,X2Y 〉 = 1
〈1, Z, Y Z〉 = a 〈X,X,X2Y 2〉 = 1
〈X,X2, XY 2〉 = 1 〈X,Y,X3Y 〉 = 1
〈X,X3, Y 2〉 = 1 〈X,XY,X2Y 〉 = 1
〈X,X4, X4〉∗ = −3 〈X2, X2, Y 2〉 = 1
〈X2, Y,X2Y 〉 = 1 〈X2, X3, X4〉∗ = −3
〈X2, XY,XY 〉 = 1 〈Y, Y,X4〉 = 1
〈Y,X3, XY 〉 = 1 〈Y, Z, Z〉∗ = a
〈X3, X3, X3〉∗ = −3

5 pt correlators

〈X,Y, Y,X4Y 2, X4Y 2〉 = −1/150
〈Y, Z, Z,XY 2, X4Y 2〉 = −a/150
〈Y, Z, Z,X2Y 2, X3Y 2〉 = −a/150

4 pt correlators

〈X,X,X3Y,X4Y 2〉 = 1/10
〈X,X,X4Y,X3Y 2〉 = 1/10
〈X,Y, Y 2, X3Y 2〉 = −1/15
〈X,Y,XY 2, X2Y 2〉 = −1/15
〈X,Y,X4Y,X4Y 〉 = 0

〈X,Y,X4, X4Y 2〉∗ = 1/10
〈X,Z,Z,X4Y 2〉∗ = −a/10
〈X,Z, Y Z,X4Y 〉∗ = −a/10
〈X2, Z, Z,X3Y 2〉∗ = −a/10
〈Y, Y, Y,X4Y 2〉 = 3/10
〈Y, Y,XY,X3Y 2〉 = 7/30
〈Y, Y,X2Y,X2Y 2〉 = 1/6
〈Y, Y, Y 2, X4Y 〉 = 1/30
〈Y, Y,X3Y,XY 2〉 = 1/10
〈Y, Y, Y Z, Y Z〉∗ = a/3
〈Y, Z, Y 2, Y Z〉∗ = a/30

〈X3, Y, Y 2, X4Y 〉∗ = −a/10
〈Z,Z,XY,X4Y 〉∗ = −a/10
〈Z,Z,X4, XY 2〉∗ = −a/10
〈Z,Z,X2Y,X3Y 〉∗ = −a/10
〈Z,Z, Y 2, Y 2〉∗ = a/30
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S16 = x2y + xz4 + y2z, Gmax = 〈J = (5/17, 7/17, 3/17)〉
k ≤ 5, X = e8J , Y = e7J , Z = e6J . P = 7/17, ĉ = 21/17.

Relations: −2XZ = Y 2, X4 = −2Y Z,−4X3Y = Z2, X4 = Y 3 = Z3 = 0, dim = 16.

3 pt correlators

〈1,1, X3Y Z〉 = 1
〈1, X,X2Y Z〉 = 1
〈1, Y,X3Z〉 = 1
〈1, X2, XY Z〉 = 1
〈1, Z,X3Y 〉 = 1
〈1, XY,X2Z〉 = 1
〈1, X3, Y Z〉 = 1
〈1, XZ,X2Y 〉 = 1
〈X,X,XY Z〉 = 1
〈X,Y,X2Z〉 = 1
〈X,X2, Y Z〉 = 1
〈X,ZX2Y 〉 = 1
〈X,XY,XZ〉 = 1
〈X,X3, Y 3〉∗ = −2
〈Y,X2, XZ〉 = 1
〈Y, Z,X3〉 = 1
〈Y, Y,X2Y 〉∗ = −2
〈Y,XY,XY 〉∗ = −2
〈X2, Z,XY 〉 = 1
〈X2, X2, X3〉∗ = −2
〈Z,Z, Z〉∗ = −4

4 pt correlators

〈X,X,X2Y,X3Y Z〉 = 3/17
〈X,X,X3Y,X2Y Z〉 = 1/17
〈X,X,X3Z,X3Z〉∗ = −2/17
〈X,Y, Y Z,X2Y Z〉 = −2/17
〈X,Y,X3Y,X3Z〉 = 1/17
〈X,Y,XY Z,XY Z〉 = −2/17
〈X,Y,X3, X3Y Z〉∗ = 3/17
〈X,Z,XZ,X2Y Z〉 = 1/17
〈X,Z, Y Z,X3Z〉 = 1/17
〈X,Z,X2Z,XY Z〉 = 1/17
〈X,Z,X3Y,X3Y 〉 = −2/17
〈X,Z,Z,X3Y Z〉∗ = 5/17
〈Y, Y, Z,X3Y Z〉∗ = 7/17
〈Y, Y,XZ,X2Y Z〉∗ = 5/17

〈Y, Y, Y Z,X3Z〉∗ = 1/17
〈Y, Y,X2Z,XY Z〉∗ = 3/17
〈Y, Y,X3Y,X3Y 〉∗ = −2/17
〈Y, Z,XZ,X4Y 〉 = −4/17
〈Y, Z, Y Z,X4Y 〉 = 1/17
〈Y, Z,X2Z,X4Y 〉 = −4/17
〈Y, Z,XY,X4Y 〉∗ = 5/17
〈Y, Z,X2Y,X4Y 〉∗ = 3/17
〈X2, Z, Z,X2Y Z〉∗ = 6/17
〈Z,Z,XY,X3Z〉∗ = 1/17
〈Z,Z,X3, XY Z〉∗ = 7/17
〈Z,Z,XZ,X3Y 〉∗ = 3/17
〈Z,Z,X2Y,X2Z〉∗ = 2/17
〈Z,Z, Y Z, Y Z〉∗ = −4/17

5 pt correlators

〈X,X,Z,X3Y Z,X3Y Z〉∗ = −4/289
〈X,Y, Y,X3Y Z,X3Y Z〉∗ = 8/289
〈Y, Z, Z,XY Z,X3Y Z〉∗ = −4/289
〈Y, Z, Z,X2Y Z,X2Y Z〉∗ = −8/289
〈Z,Z, Z,X2Z,X3Y Z〉∗ = 20/289
〈Z,Z, Z,X3Z,X2Y Z〉∗ = 12/289

S17 = x2y + y2z + z6, Gmax = 〈J = (7/24, 5/12, 1/6)〉
k ≤ 5, X = e8J , Y = e7J . P = 1/4, ĉ = 5/4.

Relations: X6 = Y 3, X11 = Y 4 = 0, dim = 21.

3 pt correlators

〈1,1, X10〉 = −2 〈1, X,X9〉 = −2
〈1, Y,X4Y 2〉 = −2 〈1, X2, X8〉 = −2
〈1, XY,X3Y 2〉 = −2 〈1, X3, X7〉 = −2
〈1, X2Y,X2Y 2〉 = −2 〈1, X4, X6〉 = −2
〈1, Y 2, X4Y 〉 = −2 〈1, X3Y,XY 2〉 = −2
〈1, X5, X5〉 = −2 〈X,X,X8〉 = −2
〈X,Y,X3Y 〉 = −2 〈X,X2, X7〉 = −2
〈X,XY,X2Y 2〉 = −2 〈X,X3, X6〉 = −2
〈X,X2Y,XY 2〉 = −2 〈X,Y 2, X3Y 〉 = −2
〈X,X4, X5〉 = −2 〈Y, Y,X4Y 〉∗ = −2
〈Y,X2, X2Y 2〉 = −2 〈Y,XY,X3Y 〉∗ = −2
〈Y,X3, XY 2〉 = −2 〈Y,X2Y,X2Y 〉∗ = −2
〈Y,X4, Y 2〉 = −2 〈X2, X2, X6〉 = −2

〈X2, XY,XY 2〉 = −2 〈X2, X3, X5〉 = −2
〈X2, X2Y, Y 2〉 = −2 〈X2, X4, X4〉∗ = −2
〈XY,X3, Y 2〉 = −2 〈XY,XY,X2Y 〉∗ = −2
〈X3, X3, X4〉∗ = −2

4 pt correlators

〈X,X,X4Y,X10〉 = −1/3
〈X,X,X3Y 2, X3Y 2〉∗ = 1/(3k)
〈X,Y,X5, X10〉∗ = −1/3
〈X,Y,X6, X9〉 = −1/3
〈X,Y,X7, X8〉 = −1/3
〈Y, Y, Y 2, X10〉∗ = 5/3
〈Y, Y,XY 2, X9〉∗ = −1/3
〈Y, Y,X6, X3Y 2〉∗ = 1/3
〈Y, Y,X2Y 2, X8〉∗ = 1
〈Y, Y, Y 2, X4Y 〉∗ = 1/18
〈Y, Y,X7, X3Y 2〉∗ = −1/3

5 pt correlators

None
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4.3. FJRW theories which we still cannot compute

Unfortunately, there are some A-models which we are still unable to com-
pute. In these examples, there are not enough relations between concave
correlators (whose values we can compute) and other correlators (whose
values we can only find using the Reconstruction Lemma).

W G dimension

P8 = x3 + y3 + z3 〈(1/3, 0, 0), (0, 1/3, 1/3)〉 8
U12 = x3 + y3 + z4 〈J〉 12

ST
1,0 = x2 + xz2 + y5z 〈J〉max 14

Z17 = x3y + y8 〈J〉max 22
Z18 = x3y + xy6 〈J〉max 18
W T

17 = x4y + y5 〈J〉 8
QT

17 = x3y + y5z + z2 〈J〉 7
ST
17 = x2 + y6z + z2x Gmax 17

ST
17 = x2 + y6z + z2x 〈J〉 7

Remark 4.1. The code which we used to make our computations is avail-
able by email request from the author. We made the computations in SAGE
[18]. The SAGE computations depend on code written by Drew Johnson
[13] for computing intersection numbers of classes on M

,g,n.
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