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We study 4d N = 2 gauge theories with a co-dimension two full
surface operator, which exhibit a fascinating interplay of super-
symmetric gauge theories, equivariant Gromov-Witten theory and
geometric representation theory. For pure Yang-Mills and N = 2∗

theory, we describe a full surface operator as the 4d gauge theory
coupled to a 2d N = (2, 2) gauge theory. By supersymmetric local-
izations, we present the exact partition functions of both 4d and 2d
theories which satisfy integrable equations. In addition, the form
of the structure constants with a semi-degenerate field in SL(N,R)
WZNWmodel is predicted from one-loop determinants of 4d gauge
theories with a full surface operator via the AGT relation.
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1. Introduction

In [1], a large family of 4d N = 2 superconformal field theories (SCFT),
known as class S theories, has been constructed by compactifying the 6d
N = (2, 0) theory on a Riemann surface. This construction as well as ad-
vances in exact results of supersymmetric partition functions has led to the
celebrated AGT relation [2, 3], which amounts to the statement that the
partition function of a 4d N = 2 SCFT on S4

b [4, 5] can be identified with a
correlation function of 2d Toda CFT on the corresponding Riemann surface.

The AGT relation becomes particularly enriched when we insert a half-
BPS non-local operator called a surface operator [6] supported on S2 ⊂
S4
b . One can characterize a surface operator by specifying the boundary

condition of the gauge field on S2 ⊂ S4
b which breaks the gauge group to the

Levi subgroup L ⊂ G. In this paper, we consider the SU(N) gauge group
so that the Levi subgroup L = S[U(N1)× · · · ×U(NM )] is specified by a
partition N = N1 + · · ·+NM which we denote [N1, . . . , NM ]. Especially, the
surface operator of [1, N − 1]-type is called simple and that of [1, . . . , 1]-type
is denoted full. Moreover, the dynamics on a surface operator is described
by coupling a 2d gauge theory to the 4d bulk theory [7–10].

From the 6d view point, there are two ways to realize a surface operator.
One way is to attach a collection of M2-branes on the M5-branes and we call
it a co-dimension four surface operator. It was argued in [11] that the in-
sertion of a completely degenerate field in Toda CFT realize a co-dimension
four simple surface operator in a 4d gauge theory. Thus, the Nekrasov par-
tition function with the surface operator satisfies the BPZ equation [12].
Recently, the authors of [10] provide a complete microscopic description of a
general co-dimension four surface operator in terms of a 2d N = (2, 2) gauge
theory coupled to the 4d N = 2 gauge theory and identify the corresponding
degenerate operator in Toda CFT labelled by a Young diagram.

On the other hand, the intersection of M5-branes spanning S2 ⊂ S4
b

and wrapping a Riemann surface also gives rise to a surface operator in
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the 4d gauge theory, which we denote a co-dimension two surface opera-
tor. The effect of wrapping the defect on the Riemann surface results in
the change of the symmetry in 2d CFT. For a surface operator of type
�N = [N1, . . . , NM ], it was conjectured [13, 14] that the 2d symmetry is the
W-algebra W (ŝl(N), �N) obtained by the quantum Drinfeld-Sokolov reduc-
tion [15–17] for the embedding ρ �N : sl(2) → sl(N) corresponding to the par-

tition �N . For the 4d gauge theory side, the moduli space of instanton with the
boundary condition of the gauge field on the surface is called affine Laumon
space. It was shown in [18, 19] that the affine Laumon space is equivalent to
instanton moduli space on an orbifold C× (C/ZM ) so that it admits quiver
representations, called chain-saw quivers. Using the quiver representations,
one can demonstrate localization computations of the Nekrasov partition
functions [18, 20]. It was checked in [14, 20–22] [23, §6.1] that the instanton
partition function of the pure Yang-Mills theory with a surface operator of
type �N is equal to the norm of the Gaiotto-Whittaker state in the Verma
module of the W-algebra W (ŝl(N), �N). In particular, for a full surface op-
erator [1, . . . , 1], more extensive checks have been carried out [24–26] for the
correspondence between instanton partition functions and conformal blocks
of the affine Lie algebra ŝl(N). In this paper, we shall provide the con-
tour integral expressions of the Nekrasov partitions functions for the pure
Yang-Mills and the N = 2∗ theory with a surface operator by using the su-
persymmetric non-linear sigma model with the chain-saw quiver as a target.

The Nekrasov partition functions in the presence of a surface operator
encode both 4d and 2d non-perturbative dynamics. Hence, when we turn off
the 4d instanton effect, the Nekrasov partition functions reduce to 2d vortex
partition functions which contains the non-perturbative dynamics on the
support of the surface operator. In fact, when the instanton number is zero,
the chain-saw quivers demote to hand-saw quivers so that the generating
function of equivariant cohomology of the hand-saw quivers becomes the
vortex partition function. On the other hand, a surface operator can also
be described as a coupling of the 4d gauge theory with a 2d theory on
the surface. In particular, the description on a surface operator in the pure
Yang-Mills is given by a coupling of the N = (2, 2) non-linear sigma model
with a flag manifold G/L. In addition, for the N = 2∗ theory, the N =
(2, 2)∗ non-linear sigma model with the cotangent bundle T ∗(G/L) of the
flag manifold depicts the dynamics on the support of the surface operator.
Since their ultra-violet descriptions asN = (2, 2) gauged linear sigma models
are known, one can also compute the vortex partition functions by means of
Higgs branch localizations [27, 28]. Therefore, we will see the correspondence
of vortex partition functions computed by the two methods.
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In this paper, we will also demonstrate explicit calculations for one-loop
determinants when a full surface operator is inserted. The N = 2 partition
functions on S4

b require both the Nekrasov partition functions and one-loop
determinants over the instanton configurations [4, 5]. Since the Nekrasov
partition functions in the presence of a full surface operator can be com-
puted by the orbifold method, it is plausible to expect that the one-loop
determinants with a full surface operator is equivalent to those on the orb-
ifold space C× (C/ZN ). In fact, we show that the one-loop determinants
calculated by using the index theory on C× (C/ZN ) correctly encode both
4d and 2d perturbative contributions.

In the AGT relation, the Nekrasov partition functions correspond to
the conformal blocks while the one-loop determinants is equivalent to the
product of the three-point functions of 2d CFT. When N = 2, the one-loop
determinants of 4d gauge theories with a full surface operator computed by
the orbifold procedure reproduce the structure constant of SL(2,R) WZNW
model determined in [29–31]. Furthermore, using the one-loop determinants
of 4d gauge theories with a full surface operator, we predict the form of the
two-point and three-point functions of SL(N,R) WZNW model.

Let us also mention the algebro-geometric aspect of the AGT relation
with a surface operator. The fundamental idea of algebraic topology is to
extract algebraic objects which encode the information of a given space. Ho-
mology, cohomology groups and fundamental groups can be seen as typical
examples for this idea. This idea has resulted in a great success in mathe-
matics of the 20th century. From the late 80s, inspired by the idea coming
from quantum field theory and string theory, “quantizations” of these in-
variants in algebraic topology have been introduced, which opened up to
the dawn of new geometry and quantum topology. In particular, one of sig-
nificant steps to uncover deeper structures behind “quantization” has been
made by Givental [32–34]. Since Givental’s theory plays an essential role in
this paper, let us briefly review it by using a projective space PN−1 as an
example.

It is well-known that the cohomology ring of PN−1 is isomorphic to

H∗(PN−1) ∼= C[x]/(xN ) .(1)

The cohomology ring relation xN = 0 can be resolved by using equivariant
cohomology. To see that explicitly, let us define the S1-equivariant action
on PN−1 by

(2) λ[z0 : · · · : zN−1] = [λr0z0 : · · · : λrN−1zN−1] ,
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for λ ∈ S1. Then, the S1-equivariant cohomology ring of PN−1 is given by

H∗
S1(PN−1) ∼= C[x, �]/

(
N−1∏
i=0

(x− ri�)

)
,(3)

where � represents the hyperplane class of the base manifold of the universal
S1-bundle

(4) S2∞+1 = ES1 → BS1 = P∞ ,

so that H∗(BS1) = H∗(P∞) = C[�]. Here the hyperplane class � plays a
similar role to the Planck constant so that it resolves the cohomology ring
relation. Moreover, the cohomology ring is quantized based on Gromov-
Witten theory. The quantum cohomology is ordinary cohomology with a
quantum product defined by

Ti ◦ Tj =
∑
k,�

Cijk(t)η
k�T� ,(5)

for a basis Ti of the cohomology group. Here the structure constants
Cijk(t) :=

∂3F0

∂Ti∂Tj∂Tk
is the third derivative of the genus-zero prepotential

depending on the complexified Kähler parameter t and ηij :=
∫
Ti ∪ Tj is

the metric on the cohomology group. In fact, the WDVV equation is equiv-
alent to the associativity of the quantum product, and therefore the quan-
tum product can be thought of as quantum deformation of the cup product
of cohomology. Writing q = et, the quantum cohomology ring of PN−1 is
isomorphic to

QH∗(PN−1) ∼= C[x, q]/(xN − q) .(6)

One of the most intriguing aspects of quantum cohomology is its relation
with differential equations. Actually, Givental’s profound insight perceived
the relation in the equivariant Floer homology of the loop space. Roughly
speaking, the Floer homology is the ∞

2 -dimensional homology theory of
infinite-dimensional manifolds. In this example, it is suitable to consider

the universal covering L̃PN−1 of the loop space LPN−1 := Map(S1,PN−1)
of the projective space. For this space, one can obtain the explicit expression
of the S1-equivariant Floer homology

(7) HF ∗
S1(L̃PN−1) =

⊕
m∈Z

N−1⊕
k=0

C[�] · (x−m�)k ·
∏
j<m

(x− j�)N .
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Remarkably, the S1-equivariant Floer homology HF ∗
S1(L̃PN−1) turns out to

be endowed with D-module structure

D/(pN − q) ,(8)

where we define

(9)
p · J(x, �) = x · J(x, �) ,
q · J(x, �) = J(x− �, �) ,

for J(x, �) ∈ HF ∗
S1(L̃PN−1). From the definition, it is easy to see [p, q] = �q

so that p can be regarded as a differential operator �q d
dq on functions of q.

Therefore, the D-module structure (8) can be rephrased as[(
�q

d

dq

)N − q

]
J(q) = 0 .(10)

Usually, this differential equation is called a quantum (Dubrovin) connec-
tion, which can be considered as a “quantum curve” of the quantum coho-
mology ring. This directly leads to the theory of integrable systems because
D-modules of this kind can be written as flat connections. Furthermore, it
turns out that the solution of the quantum connection (10) is given by the
generating function of the equivariant genus-zero Gromow-Witten invaraints
with gravitational descendants which is called Givental’s J-function of PN−1

J [PN−1] = e
tx

�

∞∑
d=0

etd∏d
j=1(x+ j�)N

.(11)

The precise definition of the J-function of a compact Kähler variety is given
in §2.1.2.

The J-functions are sublated by Braverman and Etingof to geomet-
ric representation theory [35, 36]. In [35], the invariant equivalent to the
J-function of the complete flag variety FlN has been constructed as the
generating function of the equivaraint cohomology of the moduli space of
quasi-maps P1 → FlN . The moduli space of quasi-maps P1 → FlN is called
Laumon space which is indeed described by the hand-saw quivers. Strikingly,
the equivaraint cohomology of the Laumon space turns out to be isomorphic
to the Verma module of the Lie algebra sl(N). Moreover, this relation can be
uplifted to the infinite-dimensional version by using the affine complete flag
variety which can be thought of as a complete flag variety for the loop group.
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In fact, the moduli space of quasi-maps from P1 to the affine complete flag
variety is the affine Laumon space, and its equivariant cohomology receives
the action of the affine Lie algebra ŝl(N). Therefore, this can be naturally
interpreted in the context of the AGT relation with a full surface operator.
From this view point, the Nekrasov partition function of the pure Yang-Mills
with a full surface operator can be considered as the J-function of the affine
complete flag variety. In addition, the geometric representation theoretic as-
pect of the N = 2∗ theory with a full surface operator has been studied by
Negut [37, 38]. In this paper, we just provide a physical interpretation of the
results in [35–38]. Nevertheless, the AGT relation of class S theories with a
surface operator generally provides a rich arena for a vast generalization of
Givental theory, and quantum connections therefore appear as differential
equations of Knizhnik-Zamolodchikov type.

The paper is outlined as follows. In §2, we provide a microscopic de-
scription of a full surface operator and give explicit formulae of the partition
functions of 4d and 2d gauge theory for the pure Yang-Mills and the N = 2∗

theory. Most of the results in this section have already been proven in lit-
erature of mathematics [19, 35–43]. What is mathematically new is that we
conjecture the explicit expression of the J-function of the cotangent bundle
of the complete flag variety by using the supersymmetric partition function
on S2. In addition, we show the evidence that the one-loop determinants
can be computed by the orbifold method. In §3, we predict the form of the
two-point and three-point function of SL(N,R) WZNW model by using the
one-loop determinants of the 4d gauge theory. §4 is devoted to discuss fu-
ture directions. In Appendix A, we derive the contour integral expressions of
Nekrasov partition functions with a general surface operator, and computa-
tions of one-loop determinants by means of the Atiyah-Singer index theory
is given in Appendix B. Finally, the J-function of the cotangent bundle of
a partial flag variety is presented in Appendix C.

2. Gauge theory with full surface operator

The surface operator was first introduced as a half-BPS non-local oper-
ator supported on a surface in the N = 4 SCFT by Gukov and Witten
[6]. One way to define a surface operator is to specify a singular behav-
ior of gauge fields on the surface. To describe more precisely, let (z1, z2)
be complex coordinate and the surface operator is supported on the plane
C = {(z1, z2)|z2 = 0}. If (r, θ) is the polar coordinate of z2-plane, the singular
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behavior of gauge fields is prescribed as

Aμdx
μ ∼ diag(α1, . . . , αN )idθ ,(12)

on the place C. Thus, the parameters �α = (α1, . . . , αN ) can be considered
as the monodromies of the abelian gauge fields around the operator. If the
singular date has the structure

(13) �α = (α(1), . . . , α(1)︸ ︷︷ ︸
N1 times

, α(2), . . . , α(2)︸ ︷︷ ︸
N2 times

, . . . , α(M), . . . , α(M)︸ ︷︷ ︸
NM times

) ,

where α(I) > α(I+1), the gauge group is broken to the commutant of �α on
the surface C:

(14) L = S[U(N1)×U(N2)× · · · ×U(NM )] ,

which is called the Levi subgroup. In fact, the subgroup L is the Levi part
of a parabolic subgroup P of the complexified Lie group GC. For instance, if
�α = (α, . . . , α, (N − 1)α), the Levi group is L = SU(N − 1)×U(1), which is
called simple. When all αi are distinct, which is called a full surface operator,
the Levi group is L = U(1)N and the corresponding parabolic group is the
Borel subgroup B of SL(N,C). In addition to the M continuous parameters
α(I), there are “electric parameters” or “2d theta angles” ηI corresponding
to U(1)M ∈ L. These parameters enter into the path integral through the
phase factor exp(iηIm

I) where mI are magnetic fluxes on C

mI =
1

2π

∫
C
F I (I = 1, . . . ,M) ,(15)

where
∑

I m
I = 0.

The other way to describe a surface operator is to couple a 4d N = 2
gauge theory to an N = (2, 2) supersymmetric gauge theory on the sur-
face C [6]. For the surface operator in the pure Yang-Mills, the 2d theory
flows at infrared to the N = (2, 2) supersymmetric non-linear sigma model
(NLSM) with the partial flag variety GC/P as a target. In this description,
the combined parameters �t = 2πi(�η + i�α) are identified with the complexi-
fied Kähler parameters of the NLSM. Furthermore, for the surface operator
in the N = 2∗ theory, the infrared description of the 2d theory is given by an
N = (2, 2) NLSM with the cotangent bundle T ∗(GC/P) of the flag variety.

The instanton configurations F =− ∗F on R4\C with the singularity (12)
are called ramified instantons. The moduli space of the ramified instantons is
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characterized by the Levi subgroup with �N = [N1, . . . , NM ], the instanton
number k and the magnetic fluxes mI so that we denote it by M �N,k,�m.
The corresponding objects in algebraic geometry is actually rank-N torsion-
free sheaves on P1 ×P1 with coordinates (z1, z2), with framing given at
{z1 = ∞} ∪ {z2 = ∞} and with parabolic structure of type P given at {z2 =
0}, called affine Laumon space [18, 19]. The affine Laumon space can be
also regarded as the smooth resolution of the space of quasi-maps from
P1 into affine flag variety [43]. Furthermore, using the equivalence between
a parabolic sheaf on P1 ×P1 of type P and a ZM -equivariant sheaf on
P1 ×P1, the quiver description of M �N,k,�m is given by the ADHM quiver on

the orbifold space C× (C/ZM ). The resulting quiver is called a chain-saw
quiver shown in Figure 1. In this prescription, it is convenient to combine
the instanton number k and the magnetic fluxes mI as follows:

(16) kM = k, kI+1 = kI +mI+1 ,

where the index I is taken modulo M . Thus, we also denote the moduli
space of ramified instantons by M �N,�k

with �k = [k1, . . . , kM ]. To describe the

ADHM construction of M �N,�k
, let VI and WI (I = 1, . . . ,M) vector spaces

of dimension

(17) dimWI = NI , dimVI = kI ,

and we denote AI ∈ Hom (VI , VI), BI ∈ Hom (VI , VI+1), PI ∈ Hom (WI , VI)
and QI ∈ Hom (VI ,WI+1). Then, the ADHM equations are

(18) E(I)
C

:= AI+1BI −BIAI + PI+1QI = 0 .

where the index I is taken modulo M . The moduli space is given by

M �N,�k
= {(AI , BI , PI , QI)|E(I)

C
= 0, stability condition}(19)

/GL(k1,C)⊗ · · · ⊗GL(kM ,C) .

As in the case without a surface operator, the moduli spaceM �N,�k
of ramified

instantons receives the action of the Cartan torus U(1)2 ×U(1)N of the
spacetime and the gauge symmetry. Due the the orbifold operation, one
of the equivariant parameters of U(1)2 acts on the spacetime coordinate
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fractionally as

(20) (z1, z2) → (eiε1z1, e
iε2/Mz2) .

In addition, since there are non-contractible cycles in the asymptotic region
of C× (C/ZM ), the gauge field can have a non-trivial holonomy. The non-
trivial holonomy shifts the equivariant parameters (a1, . . . , aN ) of U(1)N

by

as,I → as,I − I−1
M ε2 , (s = 1, . . . , NI) .(21)

Fixed points under the equivariant action can be labeld by �N -tuple of Young
diagrams. For more detail, we refer the reader to [20]. Subsequently, the
character of the equivariant action at the fixed points yields the Nekrasov
insanton partition function [18, 20]

Zinst[ �N ] =
∑
�k

M∏
I=1

zkI

I Z �N,�k
(ε1, ε2, a,m) ,(22)

where zI are instanton counting fugacity and Z �N,�k
(ε1, ε2, a,m) depends on

the matter content of the theory. In the context of the AGT relation, it
was conjectured [13] that the 2d symmetry is the W-algebra W (ŝl(N), �N)
obtained by the quantum Drinfeld-Sokolov reduction [15–17] for the em-
bedding ρ �N : sl(2) → sl(N) corresponding to the partition �N . In particular,
when a full surface operator is present, it wan first proven in [35, 36] that
the equivariant cohomology of the ramified instanton moduli space M

[1N ],�k

receives the action of the affine Lie algebra ŝl(N). The checks of the cor-
respondence between instanton partition functions of 4d SCFTs and ŝl(N)
conformal blocks have been carried out in [24–26]. For general W -algebras,
it has been checked in [14, 20, 21] that the ramified instanton partition func-
tions of the pure Yang-Mills match with the norm of the Gaiotto-Whittaker
states in the Verma module of the corresponding W -algebra.

By making change of variables

(23)

M∏
I=1

zI = q , zI = etI−tI+1 ,
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· · ·

· · ·

V1

W1

V2

W2

· · ·

· · ·

VN

WN

V1
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· · ·

· · ·

B1

Q1P1

B2

Q2P2

BN−1

QN−1

BN

PN Q1 P1

A1 A2 AN A1

Figure 1: Chain-saw quiver.

the instanton partition function (22) can be re-arranged with (16) as

(24) Zinst[ �N ] =

∞∑
k=0

∑
m∈ΛL

qket·mZ �N,k,�m(ε1, ε2, a,m) ,

If a theory is superconformal, the fugacity of the instanton number k can be
expressed in terms of the complexified gauge coupling τ by q = e2πiτ . For an
asymptotically free theory, it is replaced by the dynamical scale Λ with ap-
propriate mass dimension. The chemical potentials �t for the magnetic fluxes
�m are indeed the 2d complexified Kähler parameters �t = 2πi(�η + i�α). Hence,
when the instanton number is zero k = 0, the partition function encodes only
2d dynamics on the support of the surface operator. Moreover, the k = 0
specialization of the chan-saw quiver in Figure 1 reduces to the hand-saw
quiver [19] in Figure 2, which is equivalent to the smooth resolution of the
space of quasi-maps from P1 into the flag variety, called Laumon space [44].
The finite W -algebra that can be obtained by quantum Drinfeld-Sokolov
reduction of Lie algebra acts on the equivariant cohomology of the Laumon
space [44]. We shall show that the generating function of the equivariant
cohomology of the Laumon space is actually the vortex partition function of
the N = (2, 2) NLSM with the partial flag variety specified by the partition
�N . In particular, the generating function of the equivariant cohomology of
the Laumon space can be identified with the Givental J-function of the flag
variety [35].

In this section, we concentrate on the pure Yang-Mills and the N =
2∗ theory with a full surface operator. For these theories, the Nekrasov
partition functions and the vortex partition functions on the support of the
surface operator obey differential equations. Since they can be interpreted as
quantum connections of Givental J-functions, they are written as integrable
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V1 V2

W2

· · ·

· · ·

VN−2

WN−2

VN−1

WN−1 WN

B1

Q1

B2

Q2P2 PN−2

BN−2

QN−2 PN−1 QN−1

A1 A2 AN−2 AN−1

Figure 2: Hand-saw quiver.

Hamiltonians. The pure Yang-Mills is related to the Toda integrable system
[35, 36, 39, 40] whereas the N = 2∗ theory is connected to the Calogero-
Moser integrable system [37, 38, 43]. When a general surface operator is
placed, we present the partition functions in Appendix A and C.

Since an N = 2 supersymmetric path integral on S4
b localizes on the

(anti-)instanton configurations on the north (south) pole, in order to obtain
full exact partition functions on S4

b , one-loop determinants over the (anti-
)instanton configurations have to be computed in addition to instanton par-
tition functions [4, 5]. When a surface operator is present, the calculations of
one-loop determinants have not been demonstrated although the literature
[14, 18, 20, 21, 24–26] has evaluated instanton partition functions. As in the
case of instanton partition functions, it is natural to expect that the one-loop
determinants can be evaluated by the orbifold method. In this paper, we pro-
pose that one-loop determinants in the existence of a full surface operator
can be obtained by means of the Atiyah-Singer index theorem for transver-
sally elliptic operators on the orbifold space C× (C/ZN ). To support this
statement, we shall show that the one-loop determinants computed by this
method correctly contain both the 4d and 2d perturbative contributions.

2.1. Pure Yang-Mills

2.1.1. Instanton partition function. The pure SU(N) Yang-Mills the-
ory is obtained by wrapping N M5-branes on a two-punctured sphere. Al-
though the instanton partition function of the pure Yang-Mills with a surface
operator is expressed as a character of the equivariant action at the fixed
points of the chain-saw quiver shown in Figure 1 [20], here we yield the
contour integral representation of the U(N) instanton partition function by
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using the supersymmetric NLSM with the chain-saw quiver as a target. Since
the detail is presented in Appendix A, we just give the expression (A.6) for
the U(N) instanton partition function of the N = 2 pure Yang-Mills theory
with a full surface operator

(25) Z pure
inst [1N ] =

∑
�k

( N∏
I=1

zkI

I

)
Z pure

[1N ],�k
,

where

Z pure

[1N ],�k
= ε

−∑N
I=1 kI

1

∮ N∏
I=1

kI∏
s=1

dφ
(I)
s

(φ
(I)
s +aI − (I−1)ε2

N )(φ
(I)
s +aI+1+ε− Iε2

N )
(26)

N∏
I=1

kI∏
s=1

kI∏
t �=s

φ
(I)
st

φ
(I)
st + ε1

N∏
I=1

kI∏
s=1

kI+1∏
t=1

φ
(I)
s − φ

(I+1)
t + ε

φ
(I)
s − φ

(I+1)
t + ε2

N

.

The SU(N) instanton partition function could be obtained by simply drop-
ping the “U(1) factor” [2, 20]. Then, the SU(N) instanton partition function
is dual to the norm of a coherent state, called the Gaiotto-Whittaker state,
of the Verma module of the affine Lie algebra ŝl(N) [20, 25]. Interestingly,
the instanton partition function satisfies the periodic Toda equation [45]

(27)

[
ε21
2

N∑
I=1

(zI∂I − zI+1∂I+1)
2 + ε1

N∑
I=1

uIzI∂I −
N∑
I=1

zI

]
Z pure

inst [1N ] = 0 ,

where we impose the periodic condition zN+I = zI on z and

uI = aI+1 − aI , uI+N = uI + ε2 .(28)

In fact, making the change of variables as in (23)

(29)

N∏
I=1

zI = Λ , zI = etI−tI+1 (I = 1, . . . , N − 1) ,

where Λ can be interpreted as the dynamical scale of the pure Yang-Mills,
one can bring the equation into the more familiar form[

2ε1ε2Λ
∂

∂Λ
+ ε21Δh − 2

(
ΛetN−t1 +

∑
α∈Π

e〈t,α〉
)]

(e
− 〈a,t〉

ε1 Z pure
inst [1N ])(30)

= 〈a, a〉(e−
〈a,t〉
ε1 Z pure

inst [1N ]) ,
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where Π represents the set of simple roots of sl(N) so that
∑

α∈Π e〈t,α〉 =∑N
I=1 e

tI−tI+1 , and the rest of notations is as follows:

(31) Δh =

N−1∑
I=0

∂2

∂t2I
, 〈a, t〉 =

N−1∑
I=1

aItI , 〈a, a〉 =
N∑
I=1

a2I .

This was first derived in the context of geometric representation theory
[35, 36] and later reproduced in the context of the AGT relation [45, 46].

NN − 1· · ·21

4d2d

Figure 3: Quiver diagram of the 2d-4d coupled system for the pure Yang-
Mills in the presence of a full surface operator where we use the hybrid node
as in [10] to denote a 4d gauge group which gauges a 2d flavor symmetry.
The Higgs branch of N = (2, 2) GLSM is the complete flag variety.

2.1.2. J-function of complete flag variety. Since the surface operator
is a half-BPS operator, it preserves four supercharges. Moreover, the surface
operator can be also described as a 2d N = (2, 2) supersymmetric gauge
theory coupled to the 4d N = 2 gauge theory. For a full surface operator
in the 4d N = 2 pure Yang-Mills, the 2d N = (2, 2) supersymmetric gauge
theory coupled to the 4d pure Yang-Mills is described by the quiver diagram
above (Figure 3). At UV, the matter content consists of bifundamentals
(1,2)⊕ · · · ⊕ (N− 2,N− 1) and N fundamentals N− 1. The 2d quiver
gauge theory is coupled to the 4d pure Yang-Mills by gauging the flavor
symmetry U(N). Hence, the Coulomb branch parameters ai in the 4d theory
become the twisted masses of the fundamentals in the 2d theory. Since the
Higgs branch of the 2d theory is given by the complete flag variety FlN =
SL(N,C)/B where B is the Borel subgroup of SL(N,C), the 2d theory flows
to the NLSM with the complete flag variety FlN in the infrared. It is worth
mentioning that there is another description for the complete flag variety as
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an increasing sequence of linear subspaces of CN

0 ⊂ C ⊂ C2 ⊂ · · · ⊂ CN−1 ⊂ CN ,(32)

which indeed yields the quiver description. In fact, the description by the
gauged linear sigma model (GLSM) presented in Figure 3 enables us to
compute the exact partition function of the N = (2, 2) quiver gauge theory
on S2 [27, 28]. From the S2 partition functions, one can extract the Givental
J-function of the Higgs branch of the GLSM [47], which plays an important
role in this paper.

Therefore, let us briefly recall the definition of the Givental J-function
of a compact Kähler variety X. Let T0 = 1, T1, . . . , Tm be the basis of the
cohomology group H∗(X,Z), and T1, . . . , Tr be the basis of the second co-
homology group H2(X,Z). We define the matrix gij =

∫
X Ti ∪ Tj , and its

inverse matrix gij = (gij)
−1, which provide the dual basis

(33) T a =

m∑
b=1

gabTb ,

so that
∫
X T i ∪ Tj = δij . We denote byMg,n(X, β) the moduli space of stable

maps from connected genus g curves with n-marked points toX representing
the class β ∈ H2(X,Z). Let L1, . . . ,Ln be the corresponding tautological
line bundles over Mg,n(X, β). For γ1, . . . , γn ∈ H∗(X,Z) and non-negative
integers di, the gravitational correlation function is defined

(34) 〈τd1
γ1, . . . , τdn

γn〉g,β =

∫
[Mg,n(X,β)]vir

n∏
i=1

c1(Li)
di ∪ ev∗(γi) .

The J-function of X is defined by using the psi class ψ = c1(L1)

(35) J(X) = eδ/�

⎛⎝1 +
∑

β∈H2(X,Z)

m∑
a=1

qβ
〈

Ta

�− ψ
, 1

〉
0,β

T a

⎞⎠ ,

where δ =
∑r

i=1 tiTi and qβ = e
∫
β
δ. Thus, it is regarded as a generating func-

tion for once-punctured genus zero Gromov-Witten invariants with gravita-
tional descendants.
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Now, let us compute the partition function of the 2d gauge theory on
S2. The Coulomb branch formula of the partition function is given by

(36)

Z[FlN ] =
1

1! · · · (N − 1)!∑
�B(I)

I=1···N−1

∫ N−1∏
I=1

I∏
s=1

dτ
(I)
s

2πi
e4πξ

(I)τ (I)
s −iθ(I)B(I)

s ZvectorZbifundZfund ,

Zvector =

N−1∏
I=2

I∏
s<t

(
(B

(I)
st )2

4 − (τ
(I)
st )2

)
,

Zbifund =

N−2∏
I=1

I∏
s=1

I+1∏
t=1

Γ

(
τ (I)
s −τ

(I+1)
t −B(I)

s

2 +
B

(I+1)
t

2

)

Γ

(
1−τ

(I)
s +τ

(I+1)
t −B(I)

s

2 +
B

(I+1)
t

2

) ,

Zfund =

N−1∏
s=1

N∏
t=1

Γ

(
τ (N−1)
s −B(N−1)

s

2 −�
−1at

)
Γ

(
1−τ

(N−1)
s −B(N−1)

s

2 +�−1at

) ,

where ξ(I) is the Fayet-Iliopoulos parameter, θ(I) is the theta angle and B
(I)
s

are quantized magnetic fluxes on S2 associated to the gauge group U(I).
In the integrand, the gamma functions have an infinite tower of poles at
negative integers. These towers of poles can be dealt by making changes of
variables

(37) τ (I)s =
B

(I)
s

2
− �(I)s + �−1as − �−1H(I)

s ,

where �
(I)
s are non-negative integers. Defining k

(I)
s = �

(I)
s −B

(I)
s , the summa-

tion can be written as
∑

�B(I)∈Z
∑

��(I)≥0
=
∑

�k(I)≥0

∑
��(I)≥0

so that one can
manipulate the partition function into

Z[FlN ] =
1

1! · · · (N − 1)!
(38)

∑
σ∈SN

∮ N−1∏
I=1

I∏
s=1

−dH
(I)
s

2π�i
(zIzI)

�
−1|H(I)|−�

−1
∑I

t=1 aσ(t)

Z̃1-loop(aσ(i))Z̃v(aσ(i))Z̃av(aσ(i)) ,
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Z̃1-loop = �2�
−1[

∑N−2
I=1 (|H(I+1)|I−|H(I)|(I+1))−N |H(N−1)|]

N−1∏
I=2

I∏
s �=t

γ
(
1− �−1H

(I)
st + �−1ast

)
N−2∏
I=1

I∏
s=1

I+1∏
t=1

γ
(
�−1H

(I+1)
t − �−1H(I)

s + �−1ast

)
N−1∏
s=1

N∏
t=1

γ
(
−�−1H(N−1)

s + �−1ast

)
,

Z̃v =
∑

�k(I)≥0

�−
∑N−2

I=1 (|k(I)|(I+1)−|k(I+1)|I)−N |k(N−1)|

N−1∏
I=1

z
|k(I)|
I

N−1∏
I=2

I∏
s �=t

1
(�−1H

(I)
st −�−1ast)

k
(I)
s −k

(I)
t

N−2∏
I=1

I∏
s=1

I+1∏
t=1

1
(1+�−1H

(I)
s −�−1H

(I+1)
t −�−1ast)

k
(I)
s −k

(I+1)
t

N−1∏
s=1

N∏
t=1

1
(1+�−1H

(N−1)
s −�−1ast)

k
(N−1)
s

,

Z̃av =
∑
��(I)≥0

(−�)−
∑N−2

I=1 (|�(I)|(I+1)−|�(I+1)|I)−N |�(N−1)|

N−1∏
I=1

z
|�(I)|
I

N−1∏
I=2

I∏
s �=t

1
(�−1H

(I)
st −�−1ast)

�
(I)
s −�

(I)
t

N−2∏
I=1

I∏
s=1

I+1∏
t=1

1
(1+�−1H

(I)
s −�−1H

(I+1)
t −�−1ast)

�
(I)
s −�

(I+1)
t

N−1∏
s=1

N∏
t=1

1
(1+�−1H

(N−1)
s −�−1ast)

�
(N−1)
s

,

where zI = e−2πξ(I)+iθ(I)

. (See [47] for more detail.) In addition, here we
define

γ(x) :=
Γ(x)

Γ(1− x)
,(39)
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and the Pochhammer symbol (x)k is defined as

(40) (x)k =

⎧⎪⎨⎪⎩
∏k−1

i=0 (x+ i) for k > 0
1 for k = 0∏k

i=1

1

x− i
for k < 0 .

As shown in [47], the vortex partition function in the massless limit as = 0
is identical with the Givental J-function of the complete flag variety [41]

J [FlN ] =
∑
�k(I)

�−
∑N−2

I=1 (|k(I)|(I+1)−|k(I+1)|I)−N |k(N−1)|(41)

N−1∏
I=1

z
|k(I)|
I

N−1∏
I=2

I∏
s �=t

1
(�−1H

(I)
st )

k
(I)
s −k

(I)
t

N−2∏
I=1

I∏
s=1

I+1∏
t=1

1
(1+�−1H

(I)
s −�−1H

(I+1)
t )

k
(I)
s −k

(I+1)
t

N−1∏
s=1

N∏
t=1

1
(1+�−1H

(N−1)
s −�−1H

(N)
t )

k
(N−1)
s

.

Here we identify H
(I)
s (s = 1, . . . , I) with Chern roots to the duals of the

universal bundles SI :

(42) 0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ SN−1 ⊂ SN = CN ⊗OFlN .

and we add H
(N)
t (t = 1, . . . , N) to the last Pochhammer of Z̃v by hand.

These additional classes are necessary to become an eigenfunction of the
Toda Hamiltonian as we will see below.
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Performing the residue integral in (38), one obtains the Higgs branch
formula

(43)

Z[FlN ] =
1

1! · · · (N − 1)!

∑
σ∈SN

N−1∏
I=1

(zIzI)
−�

−1
∑I

t=1 aσ(t)

Z1-loop(aσ(i))Zv(aσ(i))Zav(aσ(i)) ,

Z1-loop =

N∏
s<t

γ

(
as − at

�

)
,

Zv =
∑
�k(I)

�−
∑N−2

I=1 (|k(I)|(I+1)−|k(I+1)|I)−N |k(N−1)|

N−1∏
I=1

z
|k(I)|
I

N−1∏
I=2

I∏
s �=t

1
(−�−1ast)

k
(I)
s −k

(I)
t

N−2∏
I=1

I∏
s=1

I+1∏
t=1

1
(1−�−1ast)

k
(I)
s −k

(I+1)
t

N−1∏
s=1

N∏
t=1

1
(1−�−1ast)

k
(N−1)
s

,

Zav =
∑
��(I)

(−�)−
∑N−2

I=1 (|�(I)|(I+1)−|�(I+1)|I)−N |�(N−1)|

N−1∏
I=1

z
|�(I)|
I

N−1∏
I=2

I∏
s �=t

1
(−�−1ast)

�
(I)
s −�

(I)
t

N−2∏
I=1

I∏
s=1

I+1∏
t=1

1
(1−�−1ast)

�
(I)
s −�

(I+1)
t

N−1∏
s=1

N∏
t=1

1
(1−�−1ast)

�
(N−1)
s

.

It turns out that the vortex partition function can be obtained from the
instanton partition function by setting the instanton number k = kN = 0

(44) Zv[FlN ](zI , a, �) =
∑

k1,...,kN−1

(
N−1∏
I=1

zkI

I

)
Z pure

[1N ],k1,...,kN−1,kN=0(a, ε1 = �)

where Z pure
[1N ],k1,...,kN−1,kN=0 is independent of ε2. This implies that the 4d

instanton partition function receives the contribution only from 2d dynamics
when k = 0. In other words, the vortex partition function can be regarded as
the generating function of the equivariant cohomology of the Laumon space
[18] which can be described by the hand-saw quiver [19]. Moreover, the left
hand side of (44) has been computed from the N = (2, 2) GLSM description
of the 2d theory coupled to the pure Yang-Mills whereas the description of
the surface operator by the boundary condition of the gauge field has led to
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the right hand side. Thus, the identity (44) proves that the two descriptions
for the surface operator are equivalent [6].

It is straightforward to see from (30) that the vortex partition function
becomes an eigenfunction of the Toda Hamiltonian

(45)

(
�2Δh − 2

∑
α∈Π

e〈t,α〉
)[

e−
〈a,t〉
� Zv[FlN ]

]
= 〈a, a〉

[
e−

〈a,t〉
� Zv[FlN ]

]
,

where we substitute zI = etI−tI+1 . In addition, it is well-known that the
J-function of the complete flag variety becomes an eigenfunction of the

Toda Hamiltonian [48]. To see that, one has to identify H
(I)
s = H

(I+1)
s (s =

1, . . . , I) as the same cohomology class. Then, the J-function becomes equiv-
alent to the generating function Zv[FlN ] of the equivariant cohomology of
the Laumon space by setting Hs = −as.

2.1.3. One-loop determinant. The localization technique enables us to
demonstrate exact evaluations of supersymmetric partition functions by tak-
ing only the quadratic fluctuations over BPS configurations into account. In
the case of N = 2 supersymmetric gauge theories on S4

b , the BPS configura-
tions correspond to the instantons at the north and south pole of S4

b [4, 5].
Then, the quadratic fluctuations over the instanton configurations can be
evaluated by the means of the Atiyah-Singer index theory for transversally
elliptic operators. The minimum explanation is provided in Appendix B.

Since the field content of the N = 2 pure Yang-Mills consists only of
the vector multiplet, the quadratic fluctuations of the theory is captured
just by the one-loop determinant (B.21) of the vector multiplet over the
instanton configurations, which can be obtained by the equivariant indices
of the self-dual (B.19) and anti-self-dual complex

Z pure
1-loop =

∏
α∈Δ

[Γ2 (〈a, α〉|ε1, ε2) Γ2 (〈a, α〉+ ε1 + ε2|ε1, ε2)]−1 ,(46)

=
∏
α∈Δ

Υ(〈a, α〉|ε1, ε2) ,

where Δ represents the set of roots of sl(N). Note that Γ2(x|ε1, ε2) is the
Barnes double Gamma function (B.33) and Υ(x|ε1, ε2) is the Upsilon func-
tion (B.35).

Since the instanton partition function in the presence of a surface oper-
ator have been computed by the orbifold operation, it is natural to expect
that the one-loop computation can be obtained by the index theorem on
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C× (C/ZN ). As in the case of the instanton partition function, the equiv-
ariant parameters are shifted by

(47) ε2 → ε2
N

, ai → ai − i− 1

N
ε2 ,

due to the orbifold operation. This re-parametrization alters the one-loop
determinant ∏

α∈Δ
Γ2 (〈a, α〉|ε1, ε2) Γ2 (〈a, α〉+ ε1 + ε2|ε1, ε2)(48)

→
N∏

i,j=1,i �=j

Γ2

(
ai − aj +

j−i
N ε2|ε1, ε2N

)
Γ2

(
ai − aj + ε1 +

1+j−i
N ε2|ε1, ε2N

)
.

To get its ZN -invariant part, we average over the finite group ZN as in (B.30),
leaving the one-loop determinant in the existence of the full surface operator

Z pure
1-loop[1

N ] =

N∏
i,j=1,i �=j

[
Γ2(ai − aj +

⌈
j−i
N

⌉
ε2|ε1, ε2)(49)

Γ2(ai − aj + ε1 +
⌈
1+j−i

N

⌉
ε2|ε1, ε2)

]−1

=

N∏
i,j=1,i �=j

Υ
(
ai − aj +

⌈
j−i
N

⌉
ε2|ε1, ε2

)
,

where �x� denotes the smallest integer ≥ x.
As we have seen in the previous sections, the instanton partition function

contains both 4d and 2d dynamics, and the 2d vortex partition function is
left when the 4d non-perturbative effect is switched off. This should be true
for the perturbative contributions. Namely, if the 4d contribution Z pure

1-loop

is subtracted from the one-loop determinant Z pure
1-loop[1

N ], only the 2d effect
Z1-loop[FlN ] should be evident [28, §6]. In fact, using the shift relation (B.38)
of the Upsilon function, one can see that the ratio of Z pure

1-loop[1
N ] to Z1-loop

is independent of ε2, and we have

Z pure
1-loop[1

N ]

Z pure
1-loop

(a, ε1 = �) =
∏

α∈Δ+

�
〈a,α〉

�
−1γ

(〈a, α〉
�

)
(50)

“ = ”Z1-loop[FlN ](a, �)
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where “ = ” means the equality up to a constant.1 This supports the validity
of the orbifold method even in the one-loop computations.

2.2. N = 2∗ theory

2.2.1. Instanton partition function. The N = 2∗ theory is the defor-
mation of the N = 4 SCFT by adding the mass μadj to the hypermultiplet
in the adjoint representation. From the 6d perspective, the SU(N) N = 2∗

theory is obtained by wrapping N M5-branes on a once-punctured torus.
Because the standard ADHM description of the N = 2∗ theory [49] can be
generalized to the orbifold space C× (C/ZN ), one can write the contour in-
tegral representation of the U(N) instanton partition function of the N = 2∗

theory with a full surface operator:

(51) Z N=2∗
inst [1N ] =

∑
�k

( N∏
I=1

zkI

I

)
Z N=2∗

[1N ],�k
,

where

Z N=2∗

[1N ],�k
=

[
ε1 − μadj

ε1μadj

]∑N
I=1 kI

(52)

∮ N∏
I=1

kI∏
s=1

dφ(I)
s

(φ
(I)
s + aI − (I−1)ε2

N + μadj)(φ
(I)
s + aI+1 + ε− Iε2

N − μadj)

(φ
(I)
s + aI − (I−1)ε2

N )(φ
(I)
s + aI+1 + ε− Iε2

N )
N∏
I=1

kI∏
s=1

kI∏
t �=s

φ
(I)
st (φ

(I)
st + ε1 − μadj)

(φ
(I)
st + μadj)(φ

(I)
st + ε1)

N∏
I=1

kI∏
s=1

kI+1∏
t=1

(φ
(I)
s − φ

(I+1)
t + ε)(φ

(I)
s − φ

(I+1)
t + ε2

N − μadj)

(φ
(I)
s − φ

(I+1)
t + ε2

N )(φ
(I)
s − φ

(I+1)
t + ε− μadj)

.

It was proven in [38] that, by multiplying an appropriate factor, the in-
stanton partition function Z N=2∗

inst [1N ] becomes an eigenfunction of a non-
stationary deformation of the trigonometric Calogero-Moser Hamiltonian.
To avoid repetition, we refer the reader to [38] for the explicit expression
of the differential equation. Instead, let us mention the connection to the
Knizhnik-Zamolodchikov-Bernard (KZB) equation [50–52].

1The author would like to thank Hee-Cheol Kim for suggesting this approach.
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In the AGT relation, the partition function of the N = 2∗ theory is dual
to the one-point correlation function on a torus. When a full surface operator
is present, the instanton partition function of the N = 2∗ theory is the one-
point ŝl(N) conformal blocks on a torus. More precisely, the corresponding
conformal block is a semi-degenerate field VκωN−1

(x; q) on a torus with the
K operator [24, 25, 38]

(53) FK(x; q) := TrVj
K(x; q)VκωN−1

(x; q) ,

where Vj is the Verma module of the affine Lie algebra ŝl(N) with the high-
est weight j. Note that the semi-degenerate field VκωN−1

(x; q) labelled by
the momentum proportional to the fundamental weight ωN−1 depends on
the isospin variables xi (i = 1, . . . , N − 1) and the world-sheet variable q.
We refer the reader to [24, 25] for the explicit expression of the K opera-
tor. Writing the instanton partition function in terms of q = e2πiτ and ti
(i = 1, . . . , N − 1) via (23), it is conjectured that it matches with the ŝl(N)
conformal block up to the U(1) factor

(54)

∞∏
i=1

(1− qi)
−μadj(Nε1+ε2−Nμadj)

ε1ε2
+1

Z N=2∗
inst [1N ] = FK(x� = et1−t�+1 ; q)

Here, the parameters are identified by

(55)
a

ε1
= j + ρ ,

μadj

ε1
= − κ

N
, −ε2

ε1
= k +N ,

where ρ is the Weyl vector and k is the level. We further conjecture that, for
the once-punctured conformal block on a torus, the effect of the insertion of
the K operator results in the prefactor so that the ordinary conformal block
F (x; q) := TrVj

VκωN−1
(x; q) is proportional to FK(x; q)

F (x� = et1−t�+1 ; q) = f(t, q)
κ

N FK(x� = et1−t�+1 ; q) .(56)

When N = 2, the explicit expression of the prefactor is found by computer
analysis, which is f(t, q) = 1− et1−t2 − qet2−t1 [24, (4.20)]. We expect that
this relation holds for higher rank gauge groups. Then, taking into account
this prefactor and the U(1) factor, we can define the function

Y (t, q, a, μadj, ε1, ε2)(57)

:= e
− 〈a,t〉

ε1 f(t, q)
−μadj

ε1
+1

∞∏
i=1

(1− qi)
−μadj(Nε1+ε2−Nμadj)

ε1ε2
+1

Z N=2∗
inst [1N ]
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so that it should satisfy the KZB equation

[
2ε1ε2q

∂

∂q
+ ε21Δh + 2μadj(μadj − ε1)

∑
α∈Δ+

( 1

4π2
℘(〈t, α〉; τ) + 1

12

)]
Y

(58)

= 〈a, a〉Y .

Note that the Weierstrass elliptic function ℘(u; τ) can be expressed as [53,
§8.5]

(59)
1

4π2
℘(u; τ) = T2(u; τ)− 1

12
E2(τ) ,

where E2(τ) is the Eisenstein series

(60) E2(τ) = 1− 2

3

∞∑
n=1

nqn

1− qn
,

and we define

(61) T2(u; τ) := −
∑
�∈Z

q� eu

(1− q� eu)2
.

Since the solution (57) of the KZB equation should reduce to the eigenfunc-
tion (69) of the trigonometric Calogero-Moser Hamiltonian at q = 0, the
q = 0 specialization of the prefactor is

(62) f(t, q = 0) =
∏

α∈Δ+

(1− e〈t,α〉) .

When N = 2, the prefactor is subject to this condition. Nevertheless, it is
crucial to find the explicit expression of the prefactor f(t, q) for a higher
rank gauge group. Moreover, due to the insertion of the K operator, it is
not obvious that the instanton partition functions of class S theories gener-
ally satisfy the KZ equations [50]. Therefore, it is valuable to gain a better
understanding of the meaning of the K operator.

2.2.2. J-function of cotangent bundle of complete flag variety.
Since the N = 2∗ theory is a mass deformation of the N = 4 SCFT, the
dynamics on the support of surface operator is also described by a deforma-
tion of an N = (4, 4) supersymmetric gauge theory specified by the quiver
diagram (Figure 4) where the matter content is given as follows:
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NN − 1· · ·21

4d2d

Figure 4: Quiver diagram of the 2d-4d coupled system for the N = 2∗ theory
in the presence of a full surface operator. The Higgs branch of theN = (2, 2)∗

GLSM is the cotangent bundle of the complete flag variety.

• bifundamentalsQ(I) ∈ (I, I + 1), Q̃(I) ∈ (I, I + 1) (I ∈ 1, . . . , N − 2)

• one adjoint Φ(I) for each gauge group U(I) (I ∈ 1, . . . , N − 1)

• N fundamentals Q(N−1) and N antifundamentals Q̃(N−1) of U(N − 1)

The theory is the deformation of the N = (4, 4) supersymmetric gauge the-
ory with the superpotential

(63) W =

N−1∑
I=1

Tr Q̃(I)Φ(I)Q(I) +

N−2∑
I=1

Tr Q(I)Φ(I+1)Q̃(I) ,

by turning on the twisted mass m of Q̃(I) and Φ(I) (I = 1, . . . , N − 1). Note
that the R-charges of Φ(I) are two and those of Q(I) and Q̃(I) are zero. The
infrared dynamics of this theory is described by the hyper-Kähler NLSM
with the contangent bundle T ∗FlN of the complete flag variety [6]. Let us
first compute the exact partition function of this theory without turning
on the twisted masses coming from the Coulomb branch parameters. The
Coulomb branch formula of the partition function is given by

Z[T ∗FlN ] =
1

1! · · · (N − 1)!

×
∑
�B(I)

I=1···N−1

∫ N−1∏
I=1

I∏
s=1

dτ
(I)
s

2πi
e4πξ

(I)τ (I)
s −iθ(I)B(I)

s

ZvectZadjZbifundZfund-anti ,

Zvect =

N−1∏
I=2

I∏
s<t

(
(B

(I)
st )2

4
− (τ

(I)
st )2

)
,
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Zbifund =

N−2∏
I=1

I∏
s=1

I+1∏
t=1

Γ

(
τ (I)
s −τ

(I+1)
t −B(I)

s

2 +
B

(I+1)
t

2

)

Γ

(
1−τ

(I)
s +τ

(I+1)
t −B(I)

s

2 +
B

(I+1)
t

2

)(64)

Γ

(
−τ (I)

s +τ
(I+1)
t +

B(I)
s

2 −B
(I+1)
t

2 −�
−1m

)

Γ

(
1+τ

(I)
s −τ

(I+1)
t +

B(I)
s

2 −B
(I+1)
t

2 +�−1m

) ,

Zfund-anti =

N−1∏
s=1

⎡⎣ Γ

(
τ (N−1)
s −B(N−1)

s

2

)
Γ

(
−τ (N−1)

s +
B(N−1)

s

2 −�
−1m

)
Γ

(
1−τ

(N−1)
s −B(N−1)

s

2

)
Γ

(
1+τ

(N−1)
s +

B(N−1)
s

2 +�−1m

)
⎤⎦N

,

Zadj =

N−1∏
I=2

I∏
s �=t

Γ

(
1+τ

(I)
st −B

(I)
st

2 +�
−1m

)

Γ

(
−τ

(I)
st −B

(I)
st

2 −�−1m

) .

Defining

(65) τ (I)s =
B

(I)
s

2
− �(I)s − �−1H(I)

s ,

the same manipulation as in (38) yields

Z[T ∗FlN ] =
1

1! · · · (N − 1)!∮ N−1∏
I=1

I∏
s=1

−dH
(I)
s

2π�i
(zIzI)

�
−1|H(I)|Z̃1-loopZ̃vZ̃av

Z̃1-loop =

N−1∏
I=2

I∏
s �=t

γ
(
1− �−1H

(I)
st

)
γ
(
1 + �−1H

(I)
st + �−1m

)
,(66)

N−2∏
I=1

I∏
s=1

I+1∏
t=1

γ
(
−�−1H(I)

s + �−1H
(I+1)
t

)
γ
(
�−1H(I)

s − �−1H
(I+1)
t − �−1m

)
,

N−1∏
s=1

[
γ
(
−�−1H(N−1)

s

)
γ
(
�−1H(N−1)

s − �−1m
)]N

,
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Z̃v =
∑
�k(I)

N−1∏
I=1

z
|k(I)|
I

N−1∏
I=2

I∏
s �=t

(1+�
−1H

(I)
st +�

−1m)
k
(I)
s −k

(I)
t

(�−1H
(I)
st )

k
(I)
s −k

(I)
t

N−2∏
I=1

I∏
s=1

I+1∏
t=1

(�−1H(I)
s −�

−1H
(I+1)
t −�

−1m)
k
(I)
s −k

(I+1)
t

(1+�−1H
(I)
s −�−1H

(I+1)
t )

k
(I)
s −k

(I+1)
t

N−1∏
s=1

[
(�−1H(N−1)

s −�
−1m)

k
(N−1)
s

(1+�−1H
(N−1)
s )

k
(N−1)
s

]N
,

Z̃av =
∑
��(I)

N−1∏
I=1

z
|�(I)|
I

N−1∏
I=2

I∏
s �=t

(1+�
−1H

(I)
st +�

−1m)
�
(I)
s −�

(I)
t

(�−1H
(I)
st )

�
(I)
s −�

(I)
t

N−2∏
I=1

I∏
s=1

I+1∏
t=1

(�−1H(I)
s −�

−1H
(I+1)
t −�

−1m)
�
(I)
s −�

(I+1)
t

(1+�−1H
(I)
s −�−1H

(I+1)
t )

�
(I)
s −�

(I+1)
t

N−1∏
s=1

[
(�−1H(N−1)

s −�
−1m)

�
(N−1)
s

(1+�−1H
(N−1)
s )

�
(N−1)
s

]N
.

From the expression Z̃v, we conjecture the J-function of the cotangent bun-
dle T ∗FlN of the complete flag variety as 2

J [T ∗FlN ] =
∑
�k(I)

N−1∏
I=1

z
|k(I)|
I

N−1∏
I=2

I∏
s �=t

(1+�
−1H

(I)
st +�

−1m)
k
(I)
s −k

(I)
t

(�−1H
(I)
st )

k
(I)
s −k

(I)
t

(67)

N−2∏
I=1

I∏
s=1

I+1∏
t=1

(�−1H(I)
s −�

−1H
(I+1)
t −�

−1m)
k
(I)
s −k

(I+1)
t

(1+�−1H
(I)
s −�−1H

(I+1)
t )

k
(I)
s −k

(I+1)
t

N−1∏
s=1

N∏
t=1

(�−1H(N−1)
s −�

−1H
(N)
t −�

−1m)
k
(N−1)
s

(1+�−1H
(N−1)
s −�−1H

(N)
t )

k
(N−1)
s

.

It is worth mentioning that the definition given in §2.1.2 is not appropriate
for the J-function of the cotangent bundle of a flag variety. It appears that
one has to introduce the equivariant parameter m of the fiber direction
somehow to its definition. The J-function of the cotangent bundle of a partial
flag variety are given in Appendix C.

2After posting this paper on arXiv, Bumsig Kim informed that the formula (67)
follows as a special case of Theorem 6.1.2 in [54], using the quantum Lefschetz
theorem [55] and (41).
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Incorporating the twisted mass as and performing the residue integral,
one can write the Higgs branch formula

Z[T ∗FlN ] =
1

1! · · · (N − 1)!∑
σ∈SN

N−1∏
I=1

(zIzI)
−�

−1
∑I

t=1 aσ(t)Z1-loop(aσ(i))Zv(aσ(i))Zav(aσ(i)) ,

Z1-loop =

N∏
s<t

γ

(
as − at

�

)
γ

(
at − as −m

�

)
,

Zv =
∑
�k(I)

N−1∏
I=1

z
|k(I)|
I

N−1∏
I=2

I∏
s �=t

(1−�
−1ast+�

−1m)
k
(I)
s −k

(I)
t

(−�−1ast)
k
(I)
s −k

(I)
t

N−2∏
I=1

I∏
s=1

I+1∏
t=1

(−�
−1ast−�

−1m)
k
(I)
s −k

(I+1)
t

(1−�−1ast)
k
(I)
s −k

(I+1)
t

N−1∏
s=1

N∏
t=1

(−�
−1ast−�

−1m)
k
(N−1)
s

(1−�−1ast)
k
(N−1)
s

,

Zav =
∑
��(I)

N−1∏
I=1

z
|�(I)|
I

N−1∏
I=2

I∏
s �=t

(1−�
−1ast+�

−1m)
�
(I)
s −�

(I)
t

(−�−1ast)
�
(I)
s −�

(I)
t

N−2∏
I=1

I∏
s=1

I+1∏
t=1

(−�
−1ast−�

−1m)
�
(I)
s −�

(I+1)
t

(1−�−1ast)
�
(I)
s −�

(I+1)
t

N−1∏
s=1

N∏
t=1

(−�
−1ast−�

−1m)
�
(N−1)
s

(1−�−1ast)
�
(N−1)
s

.

As in the case of the pure Yang-Mills, the vortex partition function can be
obtained by setting the instanton number k = kN = 0

Zv[T
∗FlN ](zI , ai,m, �)(68)

=
∑

k1,...,kN−1

(
N−1∏
I=1

zkI

I

)
Z N=2∗

[1N ],k1,...,kN−1,kN=0(ai, μadj = m+ �, ε1 = �) .

Multiplying the following factor to the vortex partition function

(69) Y (t, a,m, �) = e−
〈a,t〉
�

∏
α∈Δ+

(1− e〈t,α〉)−
m

� Zv[T
∗FlN ] ,

it becomes an eigenfunction of the trigonometric Calogero-Moser Hamilto-
nian [37, 43]

(70)

[
�2Δh − 2m(m+ �)

∑
α∈Δ+

1

(e〈t,α〉/2 − e−〈t,α〉/2)2

]
Y = 〈a, a〉Y ,
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where Δ+ represents the set of positive roots of sl(N). It is easy to see
from (59) that the potential of the trigonometric Calogero-Moser Hamilto-
nian (70) can be obtained by taking q → 0 limit of the potential of the elliptic
Calogero-Moser Hamiltonian (58). Furthermore, the monodromy matrices of
this differential equation satisfy the affine Hecke algebra [43]. This algebra
admits a natural physical interpretation as the action of the loop operators
on a full surface operator [6, 56].

2.2.3. Twisted chiral ring. Let us study the twisted chiral ring in the
Landau-Ginzburg (LG) model mirror dual to the NLSM with T ∗FlN .3 When
the FI parameter is negative infinity, the effective theory of the GLSM is
described by the LG model. Moreover, the LG model also provides the mir-
ror description of the NLSM. Since the detail prescription to write the S2

partition function in terms of the LG model is presented in [57], we just use
the essential points of the prescriptoin. To bring the partition function (64)
into the LG description, let us define

(71) Σ(I)
s = σ(I)

s − i
B

(I)
s

2r
,

which become the twisted chiral multiplet corresponding to the I-th vector
multiplet for U(I). In addition, every ratio of Gamma functions can be
replaced by

(72)
Γ(−irΣ)

Γ(1 + irΣ)
=

∫
d2Y

2π
exp

{
− e−Y + irΣY + e−Y + irΣY

}
,

where Y , Y represent the twisted chiral fields for the matter sector of the
LG model. To study the Coulomb branch of this theory in the infrared,
we integrate out the twisted chiral fields Y , Y . Performing a semiclassical
approximation of (72)

(73) Y = − ln(−irΣ) , Y = − ln(irΣ) ,

we are left with

(74)
Γ(−irΣ)

Γ(1 + irΣ)
∼ exp

{
�(−irΣ)− 1

2
ln(−irΣ)−�(irΣ)− 1

2
ln(irΣ)

}
,

3The twisted chiral rings of the flag varieties has been investigated in [9] with a
different approach.
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where �(x) = x(lnx− 1). This approximation can be also understood as
the large radius limit r → ∞ [27, 58]. Using this prescription, we can write

(75) Z[T ∗FlN ] ∼ 1

1! · · · (N − 1)!

∫ N−1∏
I=1

I∏
s=1

d2(rΣ
(I)
s )

2π

∣∣∣Q(Σ)
1

2 e−W̃eff(Σ)
∣∣∣2 ,

where the logarithmic terms in (74) give the measure

Q(Σ) =

N−1∏
I=2

I∏
s,t=1
s �=t

(−irΣ(I)
s + irΣ

(I)
t )(−irΣ(I)

s + irΣ
(I)
t + irm̂)

(76)

N−2∏
I=1

I∏
s=1

I+1∏
u=1

(−irΣ(I)
s + irΣ(I+1)

u )−1(irΣ(I)
s − irΣ(I+1)

u − irm̂)−1

N−1∏
s=1

(−irΣ(N−1)
s )−1(irΣ(N−1)

s − irm̂)−1 ,

and W̃eff(Σ) is the effective twisted superpotential of the mirror LG model
in the Coulomb branch

W̃eff(Σ) =

N−1∑
I=1

I∑
s=1

(−2πξ(I) + iθ(I))(irΣ(I)
s )(77)

+

N−1∑
I=2

I∑
s �=t

�(−irΣ(I)
s + irΣ

(I)
t + irm̂)

+

N−2∑
I=1

I∑
s=1

I+1∑
u=1

[
�(−irΣ(I)

s + irΣ(I+1)
u )

+�(irΣ(I)
s − irΣ(I+1)

u − irm̂)
]

+

N−1∑
s=1

[
�(−irΣ(N−1)

s ) +�(irΣ(N−1)
s − irm̂)

]
.

Here we redefine the twisted mass by m = im̂. Then, the twisted chiral ring
is given by the equation of supersymmetric vacua [59, 60]

exp

(
∂W̃eff

∂(irΣ
(I)
s )

)
= 1 .(78)
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Plugging (77) into (78), we obtain the following set of equations: for I = 1,

(79)

2∏
t=1

Σ
(1)
s − Σ

(2)
t

Σ
(1)
s − Σ

(2)
t − m̂

= e−2πξ(1)+iθ(1)

,

for 1 < I < N − 1,

I∏
t �=s

Σ
(I)
s − Σ

(I)
t − m̂

Σ
(I)
s − Σ

(I)
t + m̂

I−1∏
t=1

Σ
(I)
s − Σ

(I−1)
t + m̂

Σ
(I)
s − Σ

(I−1)
t

I+1∏
t=1

Σ
(I)
s − Σ

(I+1)
t

Σ
(I)
s − Σ

(I+1)
t − m̂

(80)

= ±e−2πξ(I)+iθ(I)

,

for I = N − 1,

N−1∏
t �=s

Σ
(N−1)
s − Σ

(N−1)
t − m̂

Σ
(N−1)
s − Σ

(N−1)
t + m̂

N−2∏
t=1

Σ
(N−1)
s − Σ

(N−2)
t + m̂

Σ
(N−1)
s − Σ

(N−2)
t

(81)

= ±e−2πξ(N−1)+iθ(N−1)

[
Σ
(N−1)
s − m̂

Σ
(N−1)
s

]N
.

These equations are called nested Bethe ansatz equations [61, 62] for sl(N)
spin chain. For the cotangent bundle T ∗Gr(r,N) of a Grassmannian, the
vacuum equation (78) provides the Bethe ansatz equation of an inhomoge-
neous XXX 1

2
spin chain [59, 60]. Motivated by this physical insight, it was

proven in [63] that the algebra of quantum multiplication in the equivari-
ant quantum cohomology QH∗

T (
∐

r T
∗Gr(r,N)) is isomorphic to the max-

imal commutative subalgebra Bq, so-called Baxter subalgebra, of Yangain
Y (sl(2)). Since (80) is the Bethe ansatz equation for sl(N) spin chain, it is
natural to expect that the algebra of quantum multiplication on the equiv-
ariant quantum cohomology QH∗

T (
∐

�d
T ∗Fl(�d)) is isomorphic to the Baxter

subalgebra of Y (sl(N)) [64]. (See Appendix C for the definition of a partial
flag variety Fl(�d).) In addition, similar Bethe ansatz equations have been
obtained in the system of multiple M2-branes ending on M5-branes [65]. It
would be interesting to investigate whether there is a duality between the
two systems.

2.2.4. One-loop determinant. The quadratic fluctuations in the N =
2∗ theory receive the contributions from both the vector multiplet and the
hypermultiplet in the adjoint representation. Particularly, the one-loop de-
terminant (B.25) of the hypermultiplet in the adjoint representation can
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be read off from the index of the Dirac complex tensored with the adjoint
bundle. Thus, the one-loop determinant of the N = 2∗ theory is expressed
as

Z N=2∗
1-loop(82)

=
∏
α∈Δ

Γ2

(〈a, α〉+madj +
ε1+ε2

2 |ε1, ε2
)
Γ2

(〈a, α〉 −madj +
ε1+ε2

2 |ε1, ε2
)

Γ2 (〈a, α〉|ε1, ε2) Γ2 (〈a, α〉+ ε1 + ε2|ε1, ε2) .

Actually, the mass parameter of the hypermultiplet in the instanton parti-
tion function is given by μadj = madj +

ε1+ε2
2 , and then we can re-write the

one-loop determinant with μadj in terms of the Upsilon functions:

(83) Z N=2∗
1-loop =

∏
α∈Δ

Υ(〈a, α〉|ε1, ε2)
Υ (〈a, α〉+ μadj|ε1, ε2) .

With the insertion of a full surface operator, the one-loop determinant
can be computed by the same way as in §2.1.3. After shifting the equivariant
parameters (47) and taking the ZN -invariant part (B.30), we get

Z N=2∗
1-loop [1N ](84)

=

N∏
i,j=1,i �=j

Γ2

(
ai−aj+μadj+

⌈
j−i
N

⌉
ε2|ε1,ε2

)
Γ2

(
ai−aj−μadj+ε1+

⌈
1+j−i

N

⌉
ε2|ε1,ε2

)
Γ2

(
ai−aj+

⌈
j−i
N

⌉
ε2|ε1,ε2

)
Γ2

(
ai−aj+ε1+

⌈
1+j−i

N

⌉
ε2|ε1,ε2

)

=

N∏
i,j=1,i �=j

Υ
(
ai − aj +

⌈
j−i
N

⌉
ε2|ε1, ε2

)
Υ
(
ai − aj + μadj +

⌈
j−i
N

⌉
ε2|ε1, ε2

) .

This one loop determinant encodes both 4d and 2d quadratic fluctuations.
Indeed, if we subtract the 4d contribution Z N=2∗

1-loop from Z N=2∗
1-loop [1N ], then

we obtain the 1-loop determinant Z1-loop[T
∗FlN ] of the 2d theory on the

surface operator:

Z N=2∗
1-loop [1N ]

Z N=2∗
1-loop

(ai, μadj = m+ �, ε1 = �)(85)

=
∏

α∈Δ+

�−m−�γ

(〈a, α〉
�

)
γ

(−〈a, α〉 −m

�

)
“ = ”Z1-loop[T

∗FlN ](a,m, �) ,

where “ = ” means the equality up to a constant. Here we use the same
change of the mass parameter as in (68).
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3. Correlation functions of SL(N,R) WZNW model
from gauge theory

In a CFT, two-point and three-point functions encode the information about
the dynamics of the CFT although the conformal blocks are universal since
they are determined by algebras. In the AGT relation, the instanton parti-
tion functions coincide with the conformal blocks of the WN/Virasoro alge-
bra, while the one-loop determinants of gauge theory reproduce the product
of the three-point functions (the structure constants) of the Toda/Liouviile
theory [66–68]. When a full surface operator is inserted, various checks have
been carried out for the equivalence between SU(N) ramified instanton par-
tition functions and ŝl(N) conformal blocks [20, 24–26]. The natural can-
didate for the corresponding part of the one-loop determinants with a full
surface operator is the three-point function of SL(N,R) WZNW model. In
§2.1.3 and §2.2.4, we have seen the utilities of the orbifold method in the
one-loop computations when a full surface operator is present. In this sec-
tion, we will see that the one-loop determinants of SU(2) gauge theories
computed by the orbifold method indeed reproduce the three-point function
of SL(2,R) WZNW model derived in [29–31]. Since the three-point func-
tion of SL(N,R) WZNW model has not been determined yet, we predict
the forms of two-point and three-point function with a semi-degenerate field
of SL(N,R) WZNW model by using the one-loop determinants with a full
surface operator.

Let us first review the correspondence between a one-loop determinant
of a 4d gauge theory without a surface operator and a product of three-point
functions of Toda CFT. To this end, we consider the one-loop determinant
of the SU(N) SCFT with NF = 2N . i.e. N fundamentals of mass mi and N
anti-fundamentals of m̃i. The dual correlation function in Toda CFT is the
four point function 〈Vβ1

VκωN−1
Vκ̃ωN−1

V
β̃1
〉 [3, §3] with two semi-degenerate

fields. Making use of the one-loop determinants (B.27) with redefinitions of
the mass parameters

(86) μi = −mi +
ε1 + ε2

2
, μ̃i = −m̃i − ε1 + ε2

2
,

the one-loop determinant of the SU(N) SCFT with NF = 2N can be ex-
pressed by the product of the Upsilon function

(87) Z NF=2N
1-loop =

∏
α∈Δ+ Υ(〈a, α〉|ε1, ε2)Υ(−〈a, α〉|ε1, ε2)∏

i,j Υ(〈a, hi〉+ μj |ε1, ε2)Υ(−〈a, hi〉 − μ̃j |ε1, ε2) ,
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where hi (i = 1, . . . , N) are the weights of the fundamental representation.
On the other hand, the corresponding part of the correlation function in
Toda CFT can be determined by the conformal symmetry andWN -symmetry
[68]. For example, the reflection amplitude in the two point function of pri-
mary fields is expressed as

(88)

〈Vβ(z1)Vβ∗(z2)〉 = R−1(β)

|z12|4Δ(β)
,

R(β) = (πμγ(b2))
2〈Q−β,α〉

b

∏
α∈Δ+

Γ(1+b〈β−Q,α〉)Γ(b−1〈β−Q,α〉)
Γ(1−b〈β−Q,α〉)Γ(−b−1〈β−Q,α〉) ,

where z12 = z1 − z2, the conformal dimension is given by Δ(β) = 〈2Q−
β, β〉/2, and the conjugated vector parameter β∗ is defined in terms of simple
roots (α1, . . . , αN−1) ∈ Π of sl(N)

(89) (β, αk) = (β∗, αN−k) .

In addition, since the conformal symmetry fixes the form of the three-point
functions of primaries

〈Vβ1
(z1)Vβ2

(z2)Vβ3
(z3)〉 = C(β1, β2, β3)

|z12|2Δ3
12 |z13|2Δ2

13 |z23|2Δ1
23

,

where Δk
ij = Δ(βi) + Δ(βj)−Δ(βk), it amounts to specifying the structure

coefficient C(β1, β2, β3). Although the general structure coefficient in Toda
CFT is not known yet, the structure coefficient of the three-point function
〈Vβ1

VκωN−1
Vβ2

〉 of Toda CFT with a semi-degenerate field VκωN−1
[68] is

given by

C(β1,κωN−1, β2)(90)

=
[
πμγ(b2)b2−2b2

] 〈2Q−∑
βi,ρ〉

b

(Υb(b))
N−1Υb(κ)

∏
α∈Δ+ Υb

(〈Q− β1, α〉
)
Υb

(〈Q− β2, α〉
)∏

ij Υb

(
κ

N + 〈β1 −Q, hi〉+ 〈β2 −Q, hj〉
) ,

where we use the short-hand notation of the Upsilon function for Toda CFT

(91) Υb(x) = Υ(x|b, b−1) .

Using the shift relation (B.38) of the Upsilon function, one can convince
oneself that the reflection amplitude (88) can be obtained from the structure
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coefficient (90) in the following way:

(92) R−1(β) = C(β, 0, β∗) .

Therefore, the relevant part in the correlation function of Toda CFT can be
expressed as

C(β1,κωN−1, β)R(β)C(β∗, κ̃ωN−1, β̃1)(93)

= A

∏
α∈Δ+ Υb

(
〈Q−β,α〉

)
Υb

(
〈β−Q,α〉

)
∏

ij Υb

(
κ

N
+〈β1−Q,hi〉+〈β−Q,hj〉

)
Υb

(
κ̃

N
−〈β−Q,hi〉+〈β̃1−Q,hj〉

) .
where we confine the unnecessary part to the coefficient A. Then, it is easy
to see the correspondence between (87) and (93) upon the identification of
the parameters

(94) a = β −Q , μi =
κ

N
+ 〈β1 −Q, hi〉 , μ̃i = − κ̃

N
− 〈β̃1 −Q, hj〉 .

The natural candidate of the 2d CFT dual to N = 2 class S theories
with a full surface operator is SL(N,R) WZNW model. So far, the two-
point and three-point function of SL(2,R) WZNW model are known [29–31].
The primary field Vj(x; z) of SL(2,R) WZNW model specified by a highest

weight j of the affine Lie algebra ŝl(2) depends on the isospin coordinate
x and the worldsheet coordinate z. Then, the two-point function takes the
form

(95) 〈Vj(x1; z1)Vj(x2; z2)〉 = B(j)
|x12|4j

|z12|4Δ(j)

where Δ(j) = j(j+1)
2(k+2) is the conformal dimension of the primary field and the

reflection amplitude B(j) is given by

(96) B(j) = −k + 2

π

ν1+2j
2

γ
(
2j+1
k+2

) , ν2 = π
Γ
(
1 + 1

k+2

)
Γ
(
1− 1

k+2

) .

In addition, the conformal invariance and the affine symmetry determine
the three-point function
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〈Vj1(x1; z1)Vj2(x2; z2)Vj3(x3; z3)〉(97)

= D(j1, j2, j3)
|x12|2j312 |x13|2j213 |x23|2j123
|z12|2Δ3

12 |z13|2Δ2
13 |z23|2Δ1

23

where the structure coefficient D(j1, j2, j3) is given by

D(j3, j2, j1)(98)

= − ν
j1+j2+j3+1
2 Υ̃k+2(1)Υ̃k+2(−2j1−1)Υ̃k+2(−2j2−1)Υ̃k+2(−2j3−1)

2π2γ

(
k+1
k+2

)
Υ̃k+2(−j1−j2−j3−1)Υ̃k+2(j3−j1−j2)Υ̃k+2(j2−j1−j3)Υ̃k+2(j1−j2−j3)

.

Here we use the short-hand notation of the Upsilon function for SL(N,R)
WZNW model

(99) Υ̃k+N (x) = Υ(x|1,−k −N) .

As in (92), the reflection amplitude can be obtained from the structure
coefficient via

(100) B(j) = D(j, 0, j) .

Yet, the two-point and three-point function in SL(N,R) WZNW model
are not available even with a semi-degenerate field. It was pointed out in
[25] that, although the primary field Vj(x, z) of SL(N,R) WZNW model is
dependent of N(N − 1)/2 isospin variables in general, it suffices to consider
only N − 1 isospin variables xi (i = 1, . . . , N − 1) when we deal with the
three-point function with a semi-degenerate field. Note that the primary field
Vj(�x, z) labelled by a highest weight j of ŝl(N) has its conformal dimension

Δ(j) = 〈j,j+2ρ〉
2(k+N) . Besides, the conformal invariance and the affine symmetry

constrain the form of the three-point function with a semi-degenerate field
[25, (4.18)]

〈Vj1(x
(1); z1)Vj2=κωN−1

(x(2); z2)Vj3(x
(3); z3)〉(101)

=
D(j1, κωN−1, j3)

|z12|2Δ3
12 |z13|2Δ2

13 |z23|2Δ1
23

N−1∏
i=1

|x(12)i |2〈j312,hi〉|x(13)i |2〈j213,hi〉|x(23)i |2〈j123,hi〉,

where we define 〈jmk�, hi〉 = 〈jk + j� − jm, hi〉. In the following, let us pre-
dict the form of the two-point and three-point function in SL(N,R) WZNW
model by making use of the one-loop determinant of the SU(N) SCFT with
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NF = 2N in the existence of a full surface operator. Since we have derived
the one-loop determinant (49) of the vector multiplet, we need to determine
the one-loop determinant of the hypermultiplet in the (anti-)fundamental
representation. As the Coulomb branch parameters are shifted by the holon-
omy (47), we shift the mass parameters due to the orbifold method

(102) μi → μi +
N − i

N
ε2 , μ̃i → μ̃i +

i− 1

N
ε2 .

As a result, the one-loop determinant of the hypermultiplet in the funda-
mental representation is modified as

N∏
i,j=1

Γ2 (ai + μj |ε1, ε2) Γ2 (−ai − μj + ε1 + ε2|ε1, ε2)(103)

→
N∏

i,j=1

Γ2

(
ai + μj +

N−i−j+1
N ε2|ε1, ε2N

)
Γ2

(
−ai − μj + ε1 +

i+j−N
N ε2|ε1, ε2N

)
.

Averaging over the finite group ZN as in (B.30), in the presence of a full
surface operator, the one-loop determinant of hypermultiplet in the funda-
mental representation can be written as

(104) Z hm,fund
1-loop [1N ] = Υ

(
ai + μj +

⌈
N−i−j+1

N

⌉
ε2|ε1, ε2

)
.

After performing the same manipulation for the anti-fundamental represen-
tation, the one-loop determinant of the the SU(N) SCFT with NF = 2N in
the presence of a full surface operator can be written as

Z NF=2N
1-loop [1N ](105)

=
∏

α∈Δ+ Υ(〈a,α〉+ε2|ε1,ε2)Υ(−〈a,α〉|ε1,ε2)∏
p,q Υ

(
〈a,hp〉+μq+

⌈
N−p−q+1

N

⌉
ε2|ε1,ε2

)
Υ(−〈a,hp〉−μ̃q+

⌈
p−q
N

⌉
ε2|ε1,ε2)

.

When the correspondence between the instanton partition function of the the
SU(N) SCFT with NF = 2N and the ŝl(N) conformal block part of the four
point function 〈Vj1VκωN−1

Vκ̃ωN−1
Vj̃1

〉 was checked in [25], the parameters
between the 4d gauge theory and SL(N,R) WZNW model are identified
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with4

(106)

a

ε1
= j + ρ , −ε2

ε1
= k +N ,

μi

ε1
= − κ

N
+ 〈j1 + ρ, hi〉 , μ̃i

ε1
=

κ̃

N
− 〈j̃1 + ρ, hi〉 .

Using this identification, one can easily deduce the form of three-point func-
tion

D(j1,κωN−1, j3)(107)

= A1
(Υ̃k+N (1))

N−1
Υ̃k+N (−κ−1)

∏
α∈Δ+ Υ̃k+N (−〈j1+ρ,α〉)Υ̃k+N (−〈j3+ρ,α〉)∏N

p,q=1 Υ̃k+N

(
−κ

N
+〈j1+ρ,hq〉+〈j3+ρ,hp〉−

⌈
N−p−q+1

N

⌉
(k+N)

) .

Subsequently, the form of reflection coefficient can be obtained from the
three-point function

(108) B(j) = D(j, 0, j∗) =
A2∏

α∈Δ+ γ
( 〈2j+ρ,α〉

k+N

) .

In fact, the relevant part of the four-point correlation function of SL(N,R)
WZNW model can be written as

D(j1,κωN−1, j)D(j∗, κ̃ωN−1, j̃1)

B(j)
(109)

= A3

∏
α∈Δ+

Υ̃k+N

(〈j + ρ, α〉 − (k +N)
)
Υ̃k+N

(− 〈j + ρ, α〉)
∏
p,q

[
Υ̃k+N

(− κ

N +〈j1+ρ, hp〉+〈j+ρ, hq〉−
⌈
N−p−q+1

N

⌉
(k+N)

)
Υ̃k+N

(− κ̃

N −〈j+ρ, hp〉+〈j̃1+ρ, hq〉−
⌈p−q

N

⌉
(k +N)

)]−1

,

which is equivalent to (105) upon the identification (106) of the parameters.
Furthermore, the corresponding part of the one-point correlation function

4Here we scale the momenta j and κ by two and there are trivial sign differences
from [25] due to the notation change.
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on a torus is equal to

D(j,κωN−1, j
∗)

B(j)
(110)

= A4

∏
α∈Δ+

Υ̃k+N

(〈j+ρ, α〉−(k+N)
)
Υ̃k+N

(−〈j+ρ, α〉)
Υ̃k+N

(− κ

N +〈j+ρ, α〉−(k+N)
)
Υ̃k+N

(− κ

N −〈j+ρ, α〉) .

By the identification (55) of the parameters, this corresponds to the one-loop
determinant (84) of the N = 2∗ theory. When N = 2, it is easy to see that
(107) and (108) reduce to (98) and (96), respectively. This confirms that,
when a full surface operator is inserted, a one-loop determinant of an SU(2)
N = 2 gauge theory coincides with a product of the three-point functions
of SL(2,R) WZNW model. Nonetheless, the one-loop determinant of the
4d gauge theory cannot determine the coefficients A1 and A2 so that it is
important to obtain these coefficients by studying SL(N,R) WZNW model
directly.

4. Discussions

The study of the AGT relation with a surface operator that we have im-
plemented raises several questions. An obvious direction for future work is
to study the correlation functions of SL(N,R) WZNW model. Although the
gauge theory side has been investigated to some extent, SL(N,R) WZNW
model has not been explored at all. In particular, the immediate problem left
in this paper is to determine the coefficients A1 in (107) and A2 in (108) of
SL(N,R) WZNWmodel as well as the prefactor f(t, q) in (56). It is desirable
to obtain a better comprehension of the effect of the K operator.

In this paper, we study only the pure Yang-Mills and the N = 2∗ theory
with a surface operator. The extensive study is needed to provide more
complete microscopic descriptions of co-dimension two surface operators in
terms of an N = (2, 2) GLSM coupled to a 4d N = 2 theory as done for
co-dimension four surface operators [10]. Since the AGT relation tells us
that an instanton partition function with a full surface operator obeys a KZ
equation, the quantum connection for the Higgs branch of the 2d theory
on the support of the surface operator can be obtained by a certain limit
of the KZ equation. For example, in the case of the SU(N) SCFT with
NF = 2N , the J-function of the Higgs branch of the 2d theory should become
an eigenfunction of the Painlevé VI Hamiltonian [45].

It is intriguing to study K-theoretic J-functions [40] in terms of N = 2
gauge theories on S1 × S2. K-theoretic vortex partition functions (a.k.a.
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holomorphic blocks) [69–71] should compute K-theoretic J-functions of the
Higgs branches of 3d N = 2 gauge theories. It is well-known that the K-
theoretic J-function of the complete flag variety becomes an eigenfunction of
the q-difference Toda operator [40]. Recently, it is shown that the K-theoretic
J-function of the cotangent bundle of the complete flag variety is actually
an eigenfunction of a certain Macdonald difference operator [72]. Hence,
it is important to extend these results to the infinite-dimensional version,
namely, to find q-difference operators of the 5d instanton partition functions
with a full surface operator, which should be linked to q-KZ equations [73,
§4.2]. Besides, it is pointed out in [74] that the algebra of Wilson loops in
3d N = 2 gauge theory with Chern-Simons term is related to equivariant
quantum K-theory of the tautological bundle of a Grassmannian. Further
study is required to examine this relationship in order to clarify it.

Another important problem concerns the relation between co-dimension
two and four surface operators. The Liouville correlation functions with
appropriate number of degenerate field insertions correspond to SL(2,R)
WZNW correlation functions [75, 76], which can be thought of the corre-
spondence between co-dimension two and four surface operators in SU(2)
gauge theories. Nevertheless, the relation in higher rank gauge theories is
not understood at all. Since the W -algebras are complicated, it would be
more amenable to examine the relation by using the microscopic description
of surface operators by a coupling of the 4d theories to 2d gauge theories.
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Appendix A. Instanton partition function with
surface operator

In this appendix, we provide contour integral expressions for the Nekrasov
instanton partition function of the chain-saw quiver by making use of the
S2 partition functions as done in [77]. The result in this appendix has been
obtained with Antonio Sciarappa and Junya Yagi.

A D-brane engineering of the N = 2 U(N) pure Yang-Mills is provided
by a stack of fractional N D3-branes at the singular point of the orbifold
geometry C2/Z2. The non-perturbative instanton contributions are indeed
encoded by D(-1)-branes [78]. In particular, the open string sectors of the
D(-1)-D3 system provides the ADHM description of the instanton moduli
space where the ADHM constraints are provided by the D-term and F-term
equations. Hence, the Nekrasov partition function can indeed be computed
from the D(-1)-branes point of view as a supersymmetric matrix integral
[49, 79].

A more sophisticated description of the construction has been given by
resolving the orbifold geometry C2/Z2 to T ∗S2. More specifically, the N = 2
U(N) pure Yang-Mills is now engineered by N space-time filling D5-branes
wrapped on S2 ⊂ T ∗S2 in Type IIB background C2 × T ∗S2 × C. Now the
instanton contributions are encoded by D1-branes wrapped on S2 ⊂ T ∗S2.
From the D1-branes perspective, the D1-D5 system is described by an N =
(2, 2) GLSM on S2 which flows to the NLSM with the instanton moduli
space. In fact, the exact partition function of this GLSM computed in [77]
captures the S2-finite size corrections to the Nekrasov partition function.
Furthermore, it was shown that these corrections encode the equivariant
quantum cohomology of the instanton moduli space in terms of Givental
J-functions. The ordinary instanton partition function can be obtained by
taking the zero radius limit of S2.

Although the instanton partition function can be obtained by the D(-
1)-D3 system, the D1-D5 system contains richer information. Hence, we
shall compute the Nekrasov partition function of the affine Laumon space
by using the GLSM description. We consider Type IIB background on C×
(C/ZM )× T ∗S2 × R2 with the D1-branes wrapping S2 and spacetime filling
D5-branes wrapped on S2. To illustrate the GSLM description of the D1-D5
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system, let us briefly recall the chain-saw quiver. The chan-saw quiver M �N,�k

is labelled by �N = [N1, N2, . . . , NM ] and �k = [k1, . . . , kM ] where the vector
spaces V and W are decomposed according to the representation under the
ZM action,

(A.1) W =

M⊕
I=1

WI , V =

M⊕
I=1

VI ,

with

(A.2) dimWI = NI , dimVI = kI .

In the language of branes, WI and VI are the Chan-Paton spaces of D5-
and D1-branes which give rise to U(kI) gauge symmetry and U(NI) fla-
vor symmetry in the GLSM. Hence, in the chain-saw quiver (Figure 1), the
linear maps AI ∈ Hom(VI , VI) and BI ∈ Hom(VI , VI+1) are realized from
D1-D1 open strings, PI ∈ Hom(WI , VI) from D1-D5 open strings and QI ∈
Hom(VI ,WI+1) from D5-D1 open strings. The superpotential of this model
is given by W =

∑
I TrVI

{χI(AI+1BI −BIAI + PI+1QI)} that yields the
ADHM equations (18). Here the indices I are taken to be modulo M . In
addition, the equivariant parameters of the torus action U(1)2 ×U(1)N be-
come the twisted masses of the chiral fields. Since the chiral fields AI and
BI are transformed as the coordinate z1 and z2 (20) respectively under the
spacetime rotation U(1)2, their twisted masses are given by −ε1 and − ε2

M . It
follows from the fact that the superpotential W is trivial under the equivari-
ant action that the chiral fields has the twisted mass ε = ε1 +

ε2
M . Because the

weight of the equivariant action on WI is given by the Cartan torus U(1)N of
SU(N) with the holonomy shift (21), the chiral fields PI and QI−1 possess

the twisted mass M
(s)
PI

:= −as,I +
Iε2
M and M

(s)
QI−1

:= as,I − Iε2
M − ε, respec-

tively. All in all, the data about the GLSM is summarized in Table A1.

χI AI BI PI QI−1

D-brane sector D1/D1 D1/D1 D1/D1 D1/D5 D5/D1

gauge (kI,kI+1) Adj (kI,kI+1) kI kI−1

flavor 1 1 1 NI NI

twisted mass ε = ε1 +
ε2
M −ε1 − ε2

M −as,I +
Iε2
M as,I − Iε2

M − ε

R-charge 2 0 0 0 0

Table A1: Data of GLSM for chain-saw quiver.
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With these data, it is straightforward to write the Coulomb branch rep-
resentation of the S2 partition function of the GLSM

(A.3)

Z[ �N,�k; a, ε1, ε2] =
1

k1! · · · kM !∑
�B(I)∈ZkI

I=1,...,M

∫ M∏
I=1

kI∏
s=1

d(rσ
(I)
s )

2π
e−4πirξ̂Iσ(I)

s −iθ̂IB(I)
s

M∏
I=1

kI∏
s<t

[
(rσ

(I)
st )2 +

(B
(I)
st )2

4

]
ZχI

ZAI
ZBI

ZPI
ZQI

,

ZχI
=

M∏
I=1

kI∏
s=1

kI+1∏
t=1

Γ

(
1−irσ(I)

s +irσ
(I+1)
t −irε−B

(I)
s
2

+
B

(I+1)
t
2

)
Γ

(
irσ

(I)
s −irσ

(I+1)
t +irε−B

(I)
s
2

+
B

(I+1)
t
2

)

ZAI
=

M∏
I=1

kI∏
s,t=1

Γ

(
−irσ

(I)
st +irε1−B

(I)
st
2

)
Γ

(
1+irσ

(I)
st −irε1−B

(I)
st
2

)

ZBI
=

M∏
I=1

kI∏
s=1

kI+1∏
t=1

Γ

(
irσ(I)

s −irσ
(I+1)
t +ir

ε2
M

+
B

(I)
s
2

−B
(I+1)
t
2

)
Γ

(
1−irσ

(I)
s +irσ

(I+1)
t −ir

ε2
M

+
B

(I)
s
2

−B
(I+1)
t
2

)

ZPI
=

M∏
I=1

kI∏
s=1

NI∏
j=1

Γ

(
−irσ(I)

s −irM
(j)
PI

−B
(I)
s
2

)
Γ

(
1+irσ

(I)
s +irM

(j)
PI

−B
(I)
s
2

)

ZQI
=

M∏
I=1

kI∏
s=1

NI+1∏
j=1

Γ

(
irσ(I)

s −irM
(j)
QI

+
B

(I)
s
2

)
Γ

(
1−irσ

(I)
s +irM

(j)
QI

+
B

(I)
s
2

) .

Writing

(A.4) irσ(I)
s = −B

(I)
s

2
+ d(I)s − irφ(I)

s

we obtain the corresponding Higgs branch formula

Z[ �N,�k; a, ε1, ε2](A.5)

=
1

k1! · · · kM !∮ M∏
I=1

kI∏
s=1

d(irφ
(I)
s )

2πi
(zIzI)

−irφ(I)
s r−2ir(NI−NI+1)φ(I)

s Z̃1-loopZ̃vZ̃av ,
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Z̃1-loop =
(

Γ(irε1)
Γ(1−irε1)

)∑
I kI

M∏
I=1

kI∏
s=1

kI∏
t �=s

(irφ(I)
s − irφ

(I)
t ) Γ(irφ(I)

s −irφ
(I)
t +irε1)

Γ(1−irφ
(I)
s +irφ

(I)
t −irε1)

M∏
I=1

kI∏
s=1

kI+1∏
t=1

Γ(−irφ(I)
s +irφ

(I+1)
t +ir

ε2
M )

Γ(1+irφ
(I)
s −irφ

(I+1)
t −ir

ε2
M )

Γ(1+irφ(I)
s −irφ

(I+1)
t −irε)

Γ(−irφ
(I)
s +irφ

(I+1)
t +irε)

M∏
I=1

kI∏
s=1

⎡⎣NI∏
j=1

Γ(irφ(I)
s −irM

(j)
PI
)

Γ(1−irφ
(I)
s +irM

(j)
PI
)

NI+1∏
j=1

Γ(−irφ(I)
s −irM

(j)
QI
)

Γ(1+irφ
(I)
s +irM

(j)
QI
)

⎤⎦ ,

Z̃v =
∑
{�d}

M∏
I=1

kI∏
s=1

[
r(NI−NI+1)(−1)NI+1zI

]d(I)
s

M∏
I=1

kI∏
s<t

d
(I)
t −d(I)

s −irφ
(I)
t +irφ(I)

s

−irφ
(I)
t +irφ

(I)
s

kI∏
s �=t

(irφ(I)
s − irφ

(I)
t + irε1)d(I)

t −d
(I)
s

M∏
I=1

kI∏
s=1

kI+1∏
t=1

1
(1+irφ

(I)
s −irφ

(I+1)
t −ir

ε2
M

)
d
(I+1)
t −d

(I)
s

1
(−irφ

(I)
s +irφ

(I+1)
t +irε)

d
(I)
s −d

(I+1)
t

M∏
I=1

kI∏
s=1

∏NI+1
j=1 (−irφ(I)

s −irM
(j)
QI

)
d
(I)
s∏NI

j=1(1−irφ
(I)
s +irM

(j)
PI

)
d
(I)
s

,

Z̃av =
∑
{ �̃d}

M∏
I=1

kI∏
s=1

[
r(NI−NI+1)(−1)NI+1zI

]d̃(I)
s

M∏
I=1

kI∏
s<t

d̃
(I)
t −d̃(I)

s −irφ
(I)
t +irφ(I)

s

−irφ
(I)
t +irφ

(I)
s

kI∏
s �=t

(irφ(I)
s − irφ

(I)
t + irε1)d̃(I)

t −d̃
(I)
s

M∏
I=1

kI∏
s=1

kI+1∏
t=1

1
(1+irφ

(I)
s −irφ

(I+1)
t −ir

ε2
M

)
d̃
(I+1)
t −d̃

(I)
s

1
(−irφ

(I)
s +irφ

(I+1)
t +irε)

d̃
(I)
s −d̃

(I+1)
t

M∏
I=1

kI∏
s=1

∏NI+1
j=1 (−irφ(I)

s −irM
(j)
QI

)
d̃
(I)
s∏NI

j=1(1−irφ
(I)
s +irM

(j)
PI

)
d̃
(I)
s

.

Note that Z̃v can be interpreted as the J-function of the affine Laumon
space. In the zero radius limit r → 0, the partition function receives the
contribution only from Z̃1-loop, leaving the generating function of the equiv-
ariant cohomology of the chain-saw quiver M �N,�k
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Z pure
�N,�k

=

M∏
I=1

1

kI !(2πiε1)kI
(A.6)

∮ M∏
I=1

kI∏
s=1

dφ
(I)
s∏NI

j=1(φ
(I)
s −M

(j)
PI

)
∏NI+1

j=1 (φ
(I)
s +M

(j)
QI

)

M∏
I=1

kI∏
s=1

kI∏
t �=s

φ
(I)
st

φ
(I)
st + ε1

M∏
I=1

kI∏
s=1

kI+1∏
t=1

φ
(I)
s − φ

(I+1)
t + ε

φ
(I)
s − φ

(I+1)
t + ε2

M

.

The poles of this contour integral are classified by the N -tuple of Young di-
agram �Y = (Y s,I) (I = 1, . . . ,M, s = 1, . . . , NI) where

∑
s |Y s,I | = kI . We

verify that the residues match with the result [20, Mathematica file] in var-
ious values of ( �N,�k).

Furthermore, since the N = 4 ADHM data is given [49, §2.1] [80, X.3.1],
one can derive the instanton partition function with the surface operator for
the N = 2∗ theory in a similar manner. For brevity, we just present the final
result:

Z N=2∗
�N,�k

(A.7)

=

M∏
I=1

(ε1 − μadj)
kI

kI !(2πiε1μadj)kI∮ M∏
I=1

kI∏
s=1

dφ(I)
s

∏NI

j=1(φ
(I)
s −M

(j)
PI

+ μadj)
∏NI+1

j=1 (φ
(I)
s +M

(j)
QI

− μadj)∏NI

j=1(φ
(I)
s −M

(j)
PI

)
∏NI+1

j=1 (φ
(I)
s +M

(j)
QI

)

M∏
I=1

kI∏
s=1

kI∏
t �=s

φ
(I)
st (φ

(I)
st + ε1 − μadj)

(φ
(I)
st + μadj)(φ

(I)
st + ε1)

M∏
I=1

kI∏
s=1

kI+1∏
t=1

(φ
(I)
s − φ

(I+1)
t + ε)(φ

(I)
s − φ

(I+1)
t + ε2

M − μadj)

(φ
(I)
s − φ

(I+1)
t + ε2

M )(φ
(I)
s − φ

(I+1)
t + ε− μadj)

.

Let us conclude this appendix by mentioning a relation between quantum
cohomology of the affine Laumon space and quantum integrable system. It
was found in [58] that there is the relation between the gl(N) intermediate
long wave integrable system and the quantum cohomology of the ADHM
instanton moduli space. More precisely, the authors of [58] shows that the
effective twisted superpotential in the Landau-Ginzburg mirror of the GLSM
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with the standard ADHM instanton moduli space coincides with the Yang-
Yang potential of the gl(N) intermediate long wave integrable system [81].

Thus, to see quantum integrable structure behind the quantum coho-
mology of the affine Laumon space, we can perform the same analysis done
in §2.2.3. By defining

(A.8) Σ(I)
s ≡ σ(I)

s − i
B

(I)
s

2r
,

we can obtain the effective twisted superpotential of the Landau-Ginzburg
mirror of the chain-saw quiver by taking the large radius limit of (A.3):

(A.9) Z[ �N,�k; a, ε1, ε2] ∼ 1

k1! · · · kM !

∫ M∏
I=1

kI∏
s=1

d2Σ
(I)
s

2π

∣∣∣Q(Σ)
1

2 e−W̃eff

∣∣∣2 ,

where the measure is written as

(A.10) Q =

M∏
I=1

kI∏
s,t=1
s �=t

kI+1∏
u=1

NI∏
j=1

NI+1∏
�=1

(Σ
(I)
st )(Σ(I)

s −Σ(I+1)
u +ε)

(Σ
(I)
st −ε1)(Σ

(I)
s −Σ

(I+1)
u +

ε2
M )(Σ

(I)
s +M

(j)
PI

)(Σ
(I)
s −M

(�)
QI

)
,

and the effective twisted superpotential is given by

W̃eff =

M∑
I=1

kI∑
s=1

[
− (2πξ(I) − iθ(I))(irΣ(I)

s )(A.11)

+

kI+1∑
u=1

−�
(
ir(Σ(I)

s − Σ(I+1)
u + ε)

)
+�

(
ir(Σ(I)

s − Σ(I+1)
u + ε2

M )
)

+

kI∑
t=1

�
(
−ir(Σ

(I)
st − ε1)

)
+

NI∑
j=1

�
(
−ir(Σ(I)

s +M
(j)
PI

)
)

+

NI+1∑
(�=1

�
(
ir(Σ(I)

s −M
�)
QI

)
)]

.

It would be interesting to find the quantum integrable system whose Yang-
Yang potential coincides with (A.11). For instance, in the case of N = 2 and
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[1, 1] partition, the vacuum equation

(A.12) exp

(
∂W̃eff

∂(irΣ
(I)
s )

)
= 1 ,

leads to the Bethe equation

(A.13)

k1∏
t �=s

(Σ
(1)
s − Σ

(1)
t − ε1)

(Σ
(1)
s − Σ

(1)
t + ε1)

k2∏
t=1

(Σ
(1)
s − Σ

(2)
t − ε2

2 )(Σ
(1)
s − Σ

(2)
t + ε)

(Σ
(1)
s − Σ

(2)
t + ε2

2 )(Σ
(1)
s − Σ

(2)
t − ε)

= ±e−2πξ(1)+iθ(1) (Σ
(1)
s −MQ1

)

(Σ
(1)
s +MP1

)
k2∏
t �=s

(Σ
(2)
s − Σ

(2)
t − ε1)

(Σ
(2)
s − Σ

(2)
t + ε1)

k1∏
t=1

(Σ
(2)
s − Σ

(1)
t − ε2

2 )(Σ
(2)
s − Σ

(1)
t + ε)

(Σ
(2)
s − Σ

(1)
t + ε2

2 )(Σ
(2)
s − Σ

(1)
t − ε)

= ±e−2πξ(2)+iθ(2) (Σ
(2)
s −MQ2

)

(Σ
(2)
s +MP2

)
.

This can be interpreted as the spin version of the Bethe ansatz equation for
the intermediate long wave integrable system [58, 81].

Appendix B. One-loop determinants

In this appendix, we shall elaborate the computation of one-loop determi-
nants on the orbifold space C× (C/ZN ). We start with a brief review of the
one-loop computations using the Atiyah-Singer equivariant index theorem.
For more detail, we refer the reader to [4, 5, 82].

The exact partition functions of N = 2 supersymmetric Yang-Mills the-
ories on S4

b can be evaluated by applying supersymmetric localization. The
value of an infinite-dimensional functional integral is invariant under the
deformation S → S + tQ̂V̂ of the action S by a Q̂-exact term where Q̂ =
Q+QBRST is the combination of a supercharge and a BRST operator and
V̂ = V + Vghost is the combination of V = (Ψ, QΨ) and the gauge fixing

term Vghost. In the limit of t → ∞, the term tQ̂V̂ dominates in the infinite-
dimensional functional integral, which renders the one-loop approximation
at the BPS configurations Q̂V̂ = 0:

(B.14) Z =

∫
Q̂V̂=0

Z1-loop , Z1-loop =

[
detKfermion

detKboson

] 1

2

,
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where Kboson and Kfermion are the kinetic operators of

(B.15) Q̂V̂ = (Xboson,KbosonXboson) + (Xfermion,KfermionXfermion) .

In this one-loop determinant, there occurs the cancellation between the
bosonic and the fermionic fluctuations when they are paired by the su-
percharge Q. Hence it receives the contribution only from the kernel and
cokernel spaces of the transversal elliptic operator D that is the quadratic
operator in V̂ so that

(B.16) Z1-loop =

[
detCokerD R
detKerD R

] 1

2

,

where Q̂2 = R is the generator of the product SO(4)× SU(N)×GF of the
spacetime, guage and flavor symmetry. Therefore, the one-loop determinants
can be obtained by the product of weights for the group action R on the
kernel and cokernel spaces of D. This is encoded in the R-equivariant index

(B.17) indD = trKerDe
R − trCokerDe

R ,

which can then be calculated from the equivariant Atiyah-Singer index the-
orem [83]. Since the index indD is expressed as the sum over weights, we
can convert the index into the determinant via

(B.18)
∑
j

cje
wj(ε1,ε2,a,mf ) →

∏
j

wj(ε1, ε2, a,mf )
cj ,

where (ε1, ε2, a,mf ) denote the equivariant parameters for SO(4)× SU(N)×
GF.

For N = 2 supersymmetric gauge theories S4
b , the critical points Q̂V̂ = 0

consist of self-dual connections F+ = 0 at the north pole and anti-self-dual
connections F− = 0 at the south pole so that we consider the equivariant
index around these configurations [4]. Let us first compute the index for the
vector multiplet. Near the north pole, the operator Dvm for the vector mu-
tiplet is actually the complex of vector bundles associated with linearization
of the self-dual equation F+ = 0 on R4

(B.19) DSD : Ω0 d→ Ω1 d+→ Ω2+ .

where d+ is the composition of the de Rham differential and self-dual pro-
jection operator. Then, tensoring the adjoint representation of the gauge
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group with this complex, the U(1)2 ×U(1)N -equivariant index for the vec-
tor multiplet can be computed by the Atiyah-Singer index theorem [83] in
a simple way

(B.20) ind(Dvm)(ε1, ε2, a) =
(1 + eiε1+iε2)

(1− eiε1)(1− eiε2)

∑
w∈adj

ei〈a,w〉 .

where w is a weight of the adjoint representation of SU(N). At the south
pole, we expand (B.20) in terms of negative powers of eiε1 and eiε2 , which
results in the sign change (ε1, ε2) → (−ε1,−ε2). This can be absorbed into
the reflection of weights w → −w. Hence, it gives rise to the identical contri-
bution to the one-loop determinant. Then, using (B.18), one can write the
one-loop determinant of the vector multiplet

(B.21) Z vm
1-loop =

∏
α∈Δ

[Γ2 (〈a, α〉|ε1, ε2) Γ2 (〈a, α〉+ ε1 + ε2|ε1, ε2)]−1 ,

where the Barnes double Gamma function Γ2(x|ε1, ε2) can be considered as
the regularized infinite product

(B.22) Γ2(x|ε1, ε2) ∝
∞∏

n,m=0

(x+mε1 + nε2)
−1 .

The precise definition of the Barnes double Gamma function Γ2(x|ε1, ε2) is
given in the end of this section.

Next, we shall evaluate the hypermultiplet contribution to the one-loop
determinant. The transversal elliptic operator Dhm for a hypermultiplet
is the Dirac operator DDirac that maps the spinor bundle S+ of positive-
chirality to the spinor bundle S− of negative-chirality

(B.23) DDirac : S
+ → S− .

An equivariant index for a hypermultiplet depends on the representation
of the gauge group. For a hypermultiplet in the adjoint representation, the
Dirac complex is tensored with the adjoint bundle on which the GF = SU(2)
flavor symmetry acts on. Therefore the U(1)2 × SU(N)×GF equivariant
index is given by

indDhm
adj(ε1, ε2, a,madj)(B.24)

= − e
1

2
(iε1+iε2)

(1− eiε1)(1− eiε2)
(eimadj + e−imadj)

∑
w∈adj

ei〈a,w〉 .
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where madj is the equivariant parameter of the SU(2) flavor symmetry. Since
the contribution from the south pole is the same as that from the north pole,
the one-loop determinant of a hypermultiplet in the adjoint representation
is given by

Z hm, adj
1-loop =

∏
α∈Δ

Γ2

(〈a, α〉+madj +
ε1+ε2

2 |ε1, ε2
)

(B.25)

Γ2

(〈a, α〉 −madj +
ε1+ε2

2 |ε1, ε2
)
.

The equivariant index for a hypermultiplet in an arbitrary representation
R of the gauge group is rather subtle since there occurs an enhancement
of a flavor group in some representations. We refer the reader to [82] in
which the detail analysis is provided. In conclusion, for a hypemultiplet in
an arbitrary representation R, the U(1)2 × SU(N)×GF-equivariant index
can be expressed as

indDhm
R (ε1, ε2, a,mf )(B.26)

= − e
1

2
(iε1+iε2)

(1− eiε1)(1− eiε2)

NF∑
f=1

∑
w∈R

(
ei〈a,w〉−imf + e−i〈a,w〉+imf

)
.

where NF mass parameters mf with f = 1, . . . NF parametrizes the Cartan
subalgebra of GF. Therefore, the one-loop determinant of a hypermultiplet
in a representation R can be expressed as

Z hm R
1-loop =

NF∏
f=1

∏
w∈R

Γ2

(〈a, w〉 −mf + ε1+ε2
2 |ε1, ε2

)
(B.27)

Γ2

(−〈a, w〉+mf + ε1+ε2
2 |ε1, ε2

)
.

Since the instanton partition functions with a full surface operator can
be obtained by applying the localization method to the instanton moduli
space on the orbifold space C× (C/ZN ), it is reasonable to expect that the
one-loop determinant can be also computed by the orbifold procedure. Due
to the orbifold space C× (C/ZN ), we need to take the fractional equivariant
parameter ε2 → ε2

N (20), and the coulomb (21) and mass parameters (102)
with holonomy shift. Hence, the part of a one-loop determinant that takes
the form Γ2(x|ε1, ε2) on C2 is generally altered in the following way:

(B.28) Γ2(x(a,mf , ε1, ε2)|ε1, ε2) → Γ2

(
x̃(a,mf , ε1) +

Iε2
N

∣∣∣ε1, ε2N )
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Then, its ZN -invariant part becomes the one-loop determinant on C×
(C/ZN ). To take the ZN -invariant part, it is easy to use the index. Writing
t = eiε2/N , the index that corresponds to the right hand side of (B.28) is

(B.29) g(t) = eix̃
tI

1− t
.

The ZN -invariant part can be taken by averaging over the ZN group

(B.30)
1

N

N−1∑
k=0

g(ωkt) = eix̃
t	

I

N

N

1− tN
,

where ω = exp(2πi/N) is theN -th root of unity and �x� denotes the smallest
integer ≥ x. Subsequently, the one-loop determinant on C× (C/ZN ) can be
written as

(B.31) Z1-loop[C× (C/ZN )] = Γ2

(
x̃(a,mf , ε1) +

⌈
Iε2
N

⌉ ∣∣∣ε1, ε2) .

For concrete illustration, let us show simple examples in the case of C×
(C/Z2). The fractional equivariant parameter ε2

2 and the holonomy shift
generally ends up with the Barnes double gamma function Γ2(x|ε1, ε22 ) whose
pole structure is depicted in Figure B1. Roughly speaking, we need to take
the even modes from them. For instance, the even modes can be read off by
averaging over the Z2 group

Γ2

(
x+ ε2|ε1, ε22

)→ Γ2 (x+ ε2|ε1, ε2) 1

2

[
t2

1− t
+

(−t)2

1− (−t)

]
=

t2

1− t2

Γ2

(
x+ ε2

2 |ε1, ε22
)→ Γ2 (x+ ε2|ε1, ε2) 1

2

[
t

1− t
+

(−t)

1− (−t)

]
=

t2

1− t2

Γ2

(
x|ε1, ε22

)→ Γ2 (x|ε1, ε2) 1

2

[
1

1− t
+

1

1− (−t)

]
=

1

1− t2
(B.32)

Γ2

(
x− ε2

2 |ε1, ε22
)→ Γ2 (x|ε1, ε2) 1

2

[
t−1

1− t
+

(−t−1)

1− (−t)

]
=

1

1− t2
.

Let us conclude this section by providing the definitions of the special
functions that appear in this paper. The Barnes double Gamma function
Γ2(x|ε1, ε2) is defined by

(B.33) Γ2(x|ε1, ε2) := exp

[
d

ds

∣∣∣∣
s=0

ζ2(s;x|ε1, ε2)
]
,
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ε2

ε1

Figure B1: The distribution of poles of Γ2(x|ε1, ε22 ). Only poles with black
color are Z2-invariant.

where the double zeta function is provided as

ζ2(s;x|ε1, ε2) =
∑
m,n

(mε1 + nε2 + x)−s(B.34)

=
1

Γ(s)

∫ ∞

0

dt

t

tse−tx

(1− e−ε1t)(1− e−ε2t)
.

In this paper, we also use the Upsilon function which is the product of the
Barnes double Gamma functions

(B.35) Υ(x|ε1, ε2) := 1

Γ2(x|ε1, ε2)Γ2(ε1 + ε2 − x|ε1, ε2) ,

and therefore it obeys

(B.36) Υ(x|ε1, ε2) = Υ(ε1 + ε2 − x|ε1, ε2) .

Besides, it admits the following line integral representation

logΥ(x|ε1, ε2)(B.37)

=

∫ ∞

0

dt

t

[
(ε1 + ε2 − 2x)2

4
e−2t − sinh2(ε1 + ε2 − 2x) t2

sinh(ε1t) sinh(ε2t)

]
.
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The characteristic property of the Upsilon function is the shift relation

(B.38)
Υ(x+ ε1|ε1, ε2) = ε

2x/ε2−1
2 γ(x/ε2)Υ(x|ε1, ε2)

Υ(x+ ε2|ε1, ε2) = ε
2x/ε1−1
1 γ(x/ε1)Υ(x|ε1, ε2) ,

which plays an important role in this paper.

Appendix C. J-function of cotangent bundle of partial
flag variety

NdM−1· · ·d2d1

4d2d

Figure C1: Quiver diagram for N = (2, 2)∗ GLSM whose Higgs branch is
the cotangent bundle T ∗Fl(�d) of a partial flag variety.

The partial flag variety Fl(�d) = Fl(d1, . . . , dM−1, dM = N) is an increas-
ing sequence of linear subspaces of CN

(C.39) 0 ⊂ Cd1 ⊂ · · · ⊂ CdM−1 ⊂ CdM = CN .

Thus, the GLSM given in Figure C1 flows to NLSM with T ∗Fl(�d). As
in §2.2.2, one can extract the J-function of T ∗Fl(�d) from the S2 partition
function of the GLSM:

J [T ∗Fl(�d)] =
∑
�k(I)

M−1∏
I=1

z
|k(I)|
I

M−1∏
I=1

dI∏
s �=t

(1+�
−1H

(I)
st +�

−1m)
k
(I)
s −k

(I)
t

(�−1H
(I)
st )

k
(I)
s −k

(I)
t

(C.40)

M−2∏
I=1

dI∏
s=1

dI+1∏
t=1

(�−1H(I)
s −�

−1H
(I+1)
t −�

−1m)
k
(I)
s −k

(I+1)
t

(1+�−1H
(I)
s −�−1H

(I+1)
t )

k
(I)
s −k

(I+1)
t

dM−1∏
s=1

N∏
t=1

(�−1H(M−1)
s −�

−1H
(M)
t −�

−1m)
k
(M−1)
s

(1+�−1H
(M−1)
s −�−1H

(M)
t )

k
(M−1)
s

.
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Here we identify H
(I)
s (s = 1, . . . , dI) with Chern roots to the duals of the

universal bundles SI :

(C.41) 0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ SM−1 ⊂ SM = CN ⊗OFlN .

Furthermore, the Higgs branch formula of the vortex partition function can
be written as

Zv[Fl(�d)] =
∑
�k(I)

M−1∏
I=1

z
|k(I)|
I

M−1∏
I=1

dI∏
s �=t

(1−�
−1ast+�

−1m)
k
(I)
s −k

(I)
t

(−�−1ast)
k
(I)
s −k

(I)
t

(C.42)

M−2∏
I=1

dI∏
s=1

dI+1∏
t=1

(−�
−1ast−�

−1m)
k
(I)
s −k

(I+1)
t

(1−�−1ast)
k
(I)
s −k

(I+1)
t

dM−1∏
s=1

N∏
t=1

(−�
−1ast−�

−1m)
k
(M−1)
s

(1−�−1ast)
k
(M−1)
s

With the identification dI =
∑I

J=1NJ , this can be regarded as kM = 0 spe-
cialization of the instanton partition function (A.7)

Zv[T
∗Fl(�d)](zI , ai,m, �)(C.43)

=
∑

k1,...,kM−1

(
M−1∏
I=1

zkI

I

)
Z N=2∗

�N,k1,...,kM−1,kM=0
(ai, μadj = m− �, ε1 = �) .

Among partial flag varieties, the projective space PN−1 and the Grass-
mannian Gr(r,N) play a distinctive role since they are particularly simple.
Hence, we write the J-functions of their cotangent bundles explicitly. The
J-function of the cotangent bundle T ∗PN−1 of the projective space is ex-
pressed as

(C.44) J [T ∗PN−1] =
∑
k

zk+�
−1H (�−1H − �−1m)Nk

(1 + �−1H)Nk
,

whereas that of the cotangent bundle T ∗Gr(r,N) of the Grassmannian is
given by
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J [T ∗Gr(r,N)](C.45)

=
∑
�k

z|ks|+�
−1|Hs|

r∏
s=1

(�−1Hs − �−1m)Nks

(1 + �−1Hs)Nks

r∏
s<t

ks−kt+�−1Hs−�−1Ht

�−1Hs−�−1Ht

�−1Hs−�−1Ht+1+�−1m

ks−kt+�−1Hs−�−1Ht+1+�−1m
.

Hori and Vafa conjectured in [84] that the J-function of the Grassman-
nian can be obtained by acting Vandermonde differential operators on the
product of the J-functions of the projective spaces:

(C.46) J [Gr(r,N)](z) =

r∏
s<t

zs∂zs − zt∂zt
�−1Hs − �−1Ht

J [P](z1, . . . , zr)
∣∣∣
zs=(−1)r−1z

,

where we define J [P](z1, . . . , zr) :=
∏r

s=1 J [P
N−1](zs). This conjecture has

been proved in [85]. From the explicit expressions (C.45) and (C.44), it is
straightforward to find a similar relation between them

J [T ∗Gr(r,N)](z)(C.47)

=

r∏
s<t

zs∂zs − zt∂zt
�−1Hs − �−1Ht

[
zs∂zs − zt∂zt + 1 + �−1m

�−1Hs − �−1Ht + 1 + �−1m

]−1

J [T∗P](z1, . . . , zr)
∣∣∣
zs=z

,

where we define J [T∗P](z1, . . . , zr) :=
∏r

s=1 J [T
∗PN−1](zs). Recently, it was

proven in [86, 87] that the quantum connection of Gr(r,N) is the r-th wedge
of the quantum connection of PN−1. It would be intriguing to study whether
the statement can be extended to their cotangent bundles. Note that the
quantum connection of T ∗PN−1 is given by

(C.48)
[
(z∂z)

N − z(z∂z − �−1m)N
]
J [T ∗PN−1](z) = 0 .
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