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Beltrami-Courant differentials
and G.-algebras

ANTON M. ZEITLIN

Using the symmetry properties of two-dimensional sigma models,
we introduce a notion of the Beltrami-Courant differential, so that
there is a natural homotopy Gerstenhaber algebra related to it.
We conjecture that the generalized Maurer-Cartan equation for
the corresponding L., subalgebra gives solutions to the Einstein
equations.

1. Introduction

The geometric and algebraic properties of two-dimensional sigma-models
lead to a lot of important discoveries in mathematics. One of the most inter-
esting topics, emerged this way in the last decade is the study of gerbes of
chiral differential operators, which give the proper mathematical description
of the simplest first-order sigma-models. In [17], it was shown that the clas-
sical actions of the standard second-order sigma-models can be reformulated
under certain conditions (one of which is the introduction of complex struc-
ture) in terms of perturbed first-order ones. In the same article, it was also
suggested that the conformal invariance conditions for the perturbed sigma
model, which have the form of the Einstein (and higher order) equations,
will have a homotopical meaning as generalized Maurer-Cartan equations for
certain L, algebra. In this paper, we show that there is a larger structure,
namely of homotopy Gerstenhaber algebra, so that the desired L., structure
is a part of it.

The central object in the construction is the vertex algebroid with a
Calabi-Yau structure and its classical limit, the Courant algeboid. In [37]
we associated to every positively graded vertex operator algebra (VOA) the
homotopy Gerstenhaber algebra, which, according to the work of [15], [13],
[14], [31] can be extended to G algebra [30] and even to BV, algebra [8],
[9]. The relationship between vertex algebroid and vertex algebra is similar
to the relationship between Lie algebra and its universal enveloping algebra
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[20]. We show here that the correspondence constructed in [37] can be refor-
mulated by consructing a functor from the category of vertex algebroids to
the category of G-algebras. Another important observation of the article
[37] is that one can construct a quasiclassical limit of the resulting G, alge-
bra, so that the operations become covariant, i.e. can be expressed via the
operations of Courant algebroid only. This G, algebra is much easier to
grasp: its C and Lo, subalgebras reduce to C'5 and L3 algebras, where the
Ls-algebra is the extension of the Lj algebra of Roytenberg and Weinstein
[28]. An example of the above construction we need in this paper is the
G — algebra for the vertex algebroid on the space of holomorphic sections
of TMO N & T*LO M and its antiholomorphic counterpart, so that the cor-
responding vertex algebra gives (locally) a description of the unperturbed
first-order sigma-model. The appropriately completed tensor product of cor-
responding "holomorphic” and ”antiholomorphic” homotopy Gerstenhaber
algebras gives the homotopy Gerstenhaber algebra and we conjecture that
this homotopy Gerstenhaber algebra can be extended to G algebra. The
Maurer-Cartan elements for the resulting L.-subalgebra are parametrized
by the perturbation terms of the first-order sigma model, i.e. by the sec-
tions of T((TMOM @ T*HOM) @ (TOVM @ T*OVM)) @ C(M). We call
the sections from the first summand as Beltrami — Courant dif ferentials,
justifying that name by its symmetry transformations of the first-order
sigma-model, which are very similar to the ones of Beltrami differentials on
Riemann surfaces and by the fact that the infinitesimal formula is expressed
algebraically via the operations on Courant algebroid. The sections of the
second term in the summand will be called normalized dilaton fields.

It is possible to show that there is a subcomplex in the complex on which
the homotopy Gerstenhaber algebra is defined, so that all higher homotopies
starting from trilinear ones vanish (in fact, the resulting Gerstenhaber alge-
bra is a BV-algebra [11]). We show that the Maurer-Cartan equation of
the corresponding differential graded Lie algebra is equivalent to Einstein
Equations with dilaton and B-field, if the bivector field from F(T(l’O)M ®
7O A1 ), which parametrizes the Maurer-Cartan element, gives rise to the
Hermitian metric. This leads to the conjecture, in view of the relation
between first and second-order sigma models that the generalized Maurer-
Cartan equations (GMC) for L.c-algebra on the full complex give Einstein
equations with B-field and dilaton, parametrized by the Beltrami-Courant
differential. We justify the conjecture by showing that the symmetries of
GMC reproduce the infinitesimal diffeomorphisms and gauge transforma-
tions of a B-field up to the second order in the Beltrami-Courant differential.
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The structure of the paper is as follows. In Section 2 we study the classic
action functionals for first- and second-order sigma models and the relation-
ship between their symmetries. This leads to the definition of the Beltrami-
Courant differential and its symmetries, e.g. under diffeomorphism trans-
formations. In Section 3, we discuss Vertex/Courant algebroids with the
Calabi-Yau structure, related Goo-algebras and their classical limits. In Sec-
tion 4 we describe the relation of these algebras to Einstein equations with
B-field and dilaton, parametrized by Beltrami differential. First we describe
the simplest case, when the G, algebra is reduced to the Gerstenhaber
algebra, then we formulate the conjecture regarding more general Einstein
equations and support it by calculation of the symmetry transformations.

2. Sigma-models and Beltrami-Courant differentials

In this section, we introduce the first object of interest: Beltrami-Courant
differential. We derive its definition from the symmetries of the classical
sigma-model actions. Let us consider a complex Riemann surface 3, a com-
plex manifold M of dimension d, and a map X : ¥ — M. Then one can write
the following action functional:

(1) $0= 5o [L(0AOX) = (5 0X)),

where p and § belong to X*(Q19(M)) @ QLO(2) and X*(QOD(M)) ®
QOD(%) correspondingly and (-,-) stands for standard pairing. In the fol-
lowing X%, X7 stand for the pull-backs of the coordinate functions on M
with respect to X. This action has the following symmetries (we write them
in components in the infinitesimal form):

X' = X' —0'(X), pi— pi+0Fpy,
(2) X' = X' =0'(X), pi—p;+ 00"

Here, the generators of the infinitesimal transformations v,v are the ele-
ments of T(O(TWOM)) and T(O(TOVM)) correspondingly, i.e. v® (v?)
are (anti)holomorphic. These symmetries illustrate invariance under the
holomorphic coordinate transformations. There is another set of symme-
tries, induced by the (anti)holomorphic 1-forms. Let w € D(O(T*(H9 M)
and @ € T(O(T* %V M)). Then the action (1) is invariant under the trans-
formatiosn of p, p:

(3)  pi— pi — OXF(Opwi — Oiwr),  pr — py — OXF (Opwr — D).
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We want to generalize the action (1) so that it would be invariant under the
diffeomorphism transformations and nonholomorphic generalizations of (3).
In order to do that, one has to introduce extra (perturbation) terms to the
action (1). Let us see how it works with an example. Suppose v*, v in the
formulas (2) are not holomorphic anymore, then Sy won’t be invariant and
there will be an extra contribution to Sp:

1
21

(4) §Sp = — h/2(<50,p/\5X)+<517,]5/\8X>).

Therefore, to compensate this term, it makes sense to add extra terms to
the action of the form

1
2mih

(5) 55, = té«mpA5X>+0L&YA@%

where p e D(TMOM @ T*OV (M), 5 e D(TOVM @ T (M)), so that
upon the (v,v) transformations p, i should be modified as follows:

(6) p=p—0v+-, G jgp—0v+---,
where dots stand for terms higher in u and fi. Continuing and further apply-
ing this approach to the non(anti)holomorphic generalizations of the trans-

formations (2), (3) we find that we have to add the following terms to Sp,
such that the resulting action is:

(7) S =

5 [wnax) - nox)
2mih Jv
— (u,p NOX) — (11, 0X A p) — (b,0X N OX)),
where b € F(T*(l’O)M ® T*(O’I)M). The resulting symmetry transformations
generated by (v, ) can be written as follows:
u% — u% — 851/ + vkﬁk,u;% + vka,;ué + u%@;vE
) — ko’ + u%uf(‘?_kvl, )
bi; = bi; + Ukaklzij + v’%?,;bQ + bi,;ajvk + bljﬁivl

+ b Opv" + byt Oy,

and the formula for the transformation of i can be obtained from the one of
1 by formal complex conjugation. This leads to the symmetry of the action
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Xt X — vi(X, X), pi—opi —i—pkﬁivk —pkué—“aivl_ — bj,gf)ivl_fan,
X' X {(X,X), D7 = P; + DRO" — priaf et — b 009X,
Therefore, the resulting action is invariant under the action of the infinitesi-

mal diffeomorphism group. The component formulas (8) were first discovered
in [10]. Similarly, we obtain that the transformations

(10) bij = bij + Ojwi — Oiw; + 5 (Oiwr — Opwi)

+ [ (Ojws — Osw;) + i3 (Dsw; — Ojws)
accompanied with

Di — Di — 8Xk(8sz — iwk) — 6,:0018)(77 — ﬁi@l‘u@an,

(11) = E, — — I;'
p; = p; — 0X"(Ogw; — Qi) — Orw;0X" — ppOiws0X ™.

leave S invariant. Hereinafter, it is useful to consider u, fi, b as matrix ele-

ments of M € (T M & T*3O M) @ (TOYM & T+ OV M), ie.

(12) M = (2 ‘g) .

For simplicity of notation let us define E = TM @ T*M, also & = TMO M &
BN and € = TOVM & T*OV D, so that E = € & E.

Let a € '(E), ie. a=(v,0,w,w), where v,v are the elements of
D(TMOM) and T(TOVM)  correspondingly and w € QUO(M), @€
QO (M). Next, we introduce operator the operator D : T'(E) — I'(€ @ &),

such that
0 ov
Do = < v 0w — duw >

Then the transformation of M under (8), (10) can be expressed by the
following formula:

(13) M — M — Do + ¢ (v, M) 4 ¢z (e, M, M),

where we separated terms with linear and bilinear dependence on M , denot-
ing them by ¢, and ¢2 correspondingly. There is a hidden algebraic meaning
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of ¢ and ¢ operations on o and M. In order to uncover it, we have to use
jet bundles. Namely, let us consider

§ € T (0m) @ T*(0(E)) & J*(0(E)) @ J*(Om),

U Leroe)e o),

where J*°(E), for any bundle E over M stands for the corresponding co-jet
bundle of E. In other words, let

=Y o)+ M e fk,
J K
L:ZQI@)ZLI,
1

where al, b’ € J®(0(8)), ffeJ®(Oy) and al, b’/ € J*(OE)), fle
J*°(Oxr). Then we can introduce the operation ¢1(f, L) as follows:

(16)  ¢u(&.L) =Y ', dllp® Flal + 3 ! @ B, a]p,

I.J IK

(15)

where [-,-]p is a Dorfman bracket, see e.g. [26] or the next section. Com-
pleting the tensor products in (14), one can introduce the operation on
a € I'(F) and M € T'(§ ® &), which we also denote as ¢;. One can explicitly
check that (16) leads to the part of (8) and (10), linear in o and M. The
last part, bilinear in M, also has an algebraic meaning of a similar kind:
returning back to the notation (15), we find that on the jet counterparts of

a,M, i.e. on &, IL the expression for ¢q is:

(17) o€ L L) = = 3, aF)a’ @ a’ (Fl)ak
2 IJK
41 S (e s B0
IJK

where a’(f1), a’(f') correspond to the action of the differential operator,
assomated to the vector field, on a function (a’(f7), a’(f!) are set to be zero
if a’, a’ are 1-forms). At the same time, the operation ¢ has the following
simple description:

(18) ¢2(a, M,M) =M - Do - M

if we consider M as an element of End(I'(E)).
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Let us notice that we could generalize M in the following way: in the
matrix expression for M let us fill in the empty spot, i.e. let us add extra
element g € T(TM)M @ TODM). Then the modified M, i.e. M € I'(£ @ &)
can be expressed as follows:

(19) M = (z ‘g) .

The corresponding action functional is:

20 Sjo= g | (07 0X) + (57 0X)

—{g,pAP) — (u,p ANIX) — (i, p A OX) — (b,0X N IX)).

It turns out that the symmetries of this action functional can be described
by the same formula (13), where algebraic meaning of the operations on the
jet level is given by the same formulas (16), (17), and the formula (18) is
also valid. In Appendix, one can find the explicit component formulas for the
infinitesimal symmetries of the action Sf,. The reason for introducing the
g-term in the action functional is as follows. If the matrix {g¥} is invertible,
then using elementary variational calculus, one can find that the critical
points for Sy, are the same as for the second-order action functional:

1 5y i 5vk i_ sl i3y ]
(21) Sy = h/zd%(gi;(ax — pedXF)(0X7 — pl0X") — b;0X'0X7),

27
which can be re-expressed as

1

22 so = 1
(22) S 4mh

/ d*2(Gyy + By )0X 0XY,
%

where G is a symmetric tensor and B is antisymmetric, indices u,r run
through the set {7, j}. The expression for G and B via M is given by:

G = Gijlshy, + 95k — bsir Bk = 95ty — 9ok = bafs

(23)  Cui =gl = g, Gai = —gsstt] — gyt
Bai = ggjit; — 9551, Bg = gyl — g5t

where {g;5} stands for the inverse matrix of {g"7}. Such parametrization
of the second-order action in the case when M is a Riemann surface was
first introduced in [25], [38]. The symmetries of the action functional S,
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transform into infinitesimal diffeomorphism transformations and the 2-form
B symmetry

(24) G—-G-LyG, B— B-— LB,
B — B — 2dw,
if a = (v,w), so that v € T(TM), w € QY(M), i.e. the symmetries of Ss,.
Let us formulate this as a theorem.

Theorem 2.1. Let M e (£ ®E), parametrized as in (19), so that its
D(TEOM @ TOVM) part is given by {g”}, which is invertible, then the
infinitesimal diffeomorphism transformations of the resulting symmetric and
antisymmetric tensors G and B (see (23)), as well as the B-tensor shift by
exact 2-forms are encoded in the formula

(25) M-)M—DO(+¢1(O&,M)+¢2(O¢,M,M),
where a € T'(E) and operations ¢1, ¢2 are defined above.

Note that if {G,,, } is invertible and real, it gives rise to the metric tensor.
Therefore, since M parametrizes both G and B, and transforms according
to (25) under diffeomorphisms, it is analogous to Beltrami differential on
the Riemann surface. So, from now on we will call the elements of I'(£ ® &)
as Beltrami-Courant differentials, since, as we see in the following sections,
they are described by means of the Courant algebroid [16] structure on &, &.

3. Vertex algebroids, G,-algebra and quasiclassical limit

In this section, we describe the constructions of the article [37] with some
modifications and refer the reader to this article for some of the details.

Each of the terms in the classical action Sy from which we started the
previous section, leads to the quantum theory which is well described locally
on open neighborhoods of M by means of vertex algebra generated by oper-
ator products

, hot : hé’
(26) X' (@)pi(w) ~ - X (Epi(@) ~

and globally by means of gerbes of chiral differential operators on M [22],
[20]. Each of the corresponding vertex algebras, which provide the local
description, form a Z-graded vector space V = Z:{i% Vi, so that V,, is
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determined (see [20]) by means of a vertex algebroid. In our case, the vertex
algebmld is described by means of the sheaf V = O(£) @ C[h] = O(E)" (resp.
O(E)M), of vector spaces V1, as well as the sheaf of vector spaces Vo, which
coincides with the structure sheaf Oy ® C[h] = O%, (resp. O%,), with certain
algebraic operations between them.

Let us define a vertex alebroid (see e.g. [20], [2]) and then study our
concrete case in detail.

A vertex O%,-algebroid is a sheaf of C[h]-vector spaces V with a pairing
Om ®cppV =V, ie. f@v— fxov such that 1*v =0, equipped with a
structure of a Leibniz C[h]-algebra [, | : V ®¢pp) V — V, a C[h]-linear map of
Leibniz algebras 7 : V — I'(T'M ), which usually is referred to as an anchor,
a symmetric C[h]-bilinear pairing ( , ) :V ®cp V — O} a C-linear map
0: Oy — V such that mo 9 = 0, which satisfy the relations

* (g*v) = (fg) *v=m(v)(f)*9(g) + m(v)(g) * I(f),
[vl,f*w] m(v1)(f) * va + f* [v1, 2],
[U1, V2] + [v2, 1] = O((v1,v2)),  7(f xv) = fr(v),
(27) <f*v1,v2> f{vr,v2) = m(v1)(7(v2)(f)),
W(U)((vhw)) ([v,v1],02) + (v1, [0, v2]),
fg) = f=9(g) +g=0(f),
[Uﬂ(f)] Am(v)(f)), (v, 0(f)) =m(v)(f),

where v,v1,v2 €V, f,g € O%.

The correspondence between vertex algebroid and the vertex algebra on
each neighborhood U is similar to the correspondence between Lie algebra
and its universal enveloping algebra: for more details see [20].

Let us concentrate on the case when V = O(&)". Explicitly, if f € Oy,
v, 01,09 € O(TEDNM), w,wi,ws € OT* VYN, then locally in the neigh-
borhood with the coordinates {X*}

of =df, w(v)f=—-hv(f), m(w)=0,
fxv=fo+hdX'9;0;fv), [xw= fu,

(28) [v1, 2] = —h[v1, va]p — h2dX'9;0v5 0508,
[v,w] = —hlv,w]p, [w,v]=—hlw,v]p, [wi1,ws] =0,
(v,w) = —h(v,w)*, (v, v2) = —h%]0;vh, (w1, ws) =0,
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where (-,-)* is a standard pairing on £ and [-,-|p is the Dorfman bracket:

[v1,v2]p = [v1,v2]",  [v,w]p = Lyw,

(29) [w,v]p = —iydw, [wi,w2]p =0.

In [37], it was shown that given a holomorphic volume form on the open
neighborhood U of M, one can associate a homotopy Gerstenhaber algebra
to the vertex algebroid on U (although the main emphasis of [37] was on Cx
part of it). This was done by considering semi-infinite complex associated to
the vertex algebra: due to the results of[15], [14], [13], [31], there is a struc-
ture of G, algebra attached to it if the central charge of the corresponding
Virasoro algebra is 26. Using this fact and considering the subcomplex cor-
responding to the elements of total conformal weight zero, we find out that
the central charge condition can be dropped. The resulting complex (F°, Q)
appears to be much shorter that original semi-infinite one, namely it is of
the form

(30) 05F L8 28 30
and the action of the differential is defined by means of the following diagram

(31) %

O Ol

Here FU = (’)’](’/[ ~ F3 Fl =~ (’);L/I oV .7-",%, missing arrows correspond to the
zero action of @ and div stands for divergence operator with respect to the
nonvanishing volume form applied to sections of I'(U, T0) (M)). Appropri-
ate analogue of operator div in the case of general vertex algebroid is called
Calabi — Yau structure on vertex algebroid [20] (since e.g. in our case to
be defined globally M should possess a nonvanishing holomorphic volume
form). According to [37], this complex has a bilinear operation, which satis-
fies the Leibniz identity with respect to @, it is also homotopy commutative
and associative, and can be described by the following table:

(32) (a1,a2)n =
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M Ay v1 Ay 01 (0}
az
u U U2 Arug VU Ajug U1 Uy U2
+7(A1)ug
Ag w1 Ao —[A1,A2]+ —v1 Ao+ %<A1,A2> —7T(A2)1~)1 0
%<A1,A2> 77(171)142
() U11~L2 A1U2 0 —7T(A1)U2 —’L~)1U2 0
AQ ulAg %<A1,A2> —7T(A2)1)1 0 0 0
172 U11~L2 7T(A1)l~)2 —’01172 0 0 0
122 (75} @2 0 0 0 0 0

where u; € Fy, (vi, A;) € Fi, (05, &) € F7, ii; € Fj.
We note that there is an operator b of degree -1 on (F;,, Q) which anti-

commutes with Q:

(33)

S

oh, <=0k,

h id

—id

1%
D

Ol

—id h
OM

This operator gives rise to the bracket operation

(34)

(—1)l*Hay, as}y = b(ar, a2), — (bar, az), — (—1)1**/(arbas)p,

which satisfies quadratic relations together with (-,-); and @, which follows
from the properties of the vertex algebra [15]. On the cohomology of @) these
relations turn into defining properties of Gerstenhaber algebra. Namely, the
following Proposition holds.

Proposition 3.1.[37] Symmetrized versions of operations (32) together
with (34) satisfy the relations of the homotopy Gerstenhaber algebra, which
follows from these relations:
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Q(a1,a2), = (Qar, az)y + (—1)1*'(a1, Qaz)n,
(a1, a2)n — (=) 1%l (ay, a1), =
Qm(ay, az) + m(Qay, az) + (=1)"Im(ay, Qay),
Qnp (a1, az, a3)n + nn(Qar, ag, as) + (—1)\%ny (ar, Qag, as)+
(—1)lltlazly, (a1, a2, Qag) = ((a1, a2)n, as)n — (a1, (az, az)p)n,
{a1,a2} + (—1)(|a1|71)(|a2|71){a2,al} =

(35) (—=1)I"I=(@mi, (a1, a2) — m},(Qar, az) — (—1)1**lmj, (a1, Qay)),
{a1, (a2, a3)n}n = ({a1, as}n, as)p + (—1)1=17DN92l(ay {a1, ag}p),
{(a1,a2)n, as}n — (a1, {az, az}n)n — (—=1)1=1=D0=l({ay ag}p, a0)y =
(=Dl Hlel=YQn, (a1, a9, a3) — nj,(Qar, az, a3)—
(=D, (a1, Qaz, ag) — (=1)1H1%Inj (a1, as, Qas),
{{a1, a2tn, as}n — {a1, {az, as}tn}nt
(_1)(\a1|—1)(\a2|—1){a27 {a1,a3}n}n =0,

where mp,mj), are some bilinear operations of degrees —1, —2 correspond-
ingly and ny,n), are trilinear operations of degree -1, -2 correspondingly.

There exist higher homotopies which turn this homotopy Gerstenhaber
algebra into G algebra. This follows from the results of [13], [31], [14] where
it was shown that the symmetrized versions of (-,-)p, {, }n, considered on
the whole vertex algebra can be continued to the G algebra [30]. In our
case we just need specialization to the conformal weight zero.

One of the central observations of [37] was that this G algebra has
a quasiclassical limit, which can be constructed as follows. Let V|,—g = V°
(in our example VY = O()), then consider the subcomplex of (F;,Q), i.e.
(F,Q) = (F;,Q), which is:

(36) Vo

o/ D

Om hOn
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The bilinear operations and the operator b act on (36) as follows:

(I F@F — FHMh), { t:F @F — hFij-lh],

(87) b:F — hF'[h),

so that

. . — i .« . . . — |1 -1 . — i -1
(38) (7 )0 ilzl—%(’ )h7 {7 }0 }Lg%h {7 }h7 bg }Lli}%h b

are well defined. The corresponding homotopy Gerstenhaber algebra is much
less complicated: the corresponding L., and C4 parts are only L3 and Cs-
algebras. Let us have a look in detail. On the level of the vertex algebroid
of O(E)", let us denote

lim h_l[vl,vg] = [Ul, Ug]o, lim h~'r = o,
(39) h—0 h—0

lim 271, -) = (-, )o.

h—0

Therefore, we can express the bilinear operations (-,-)o and {-,-}o on the
complex

(40) O(€) o(€)

Oum Om —4

via the following tables:

(a1,a2)0=
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“ U1 Aq U1 Ay U1 Uy
a2
ug uy U Ayug VU2 Arug Uy ug Uy ug

+7T0(A1)u2
Ay urAy | —[A1, AoJo— | —v1As | $(A1, Ao)o | —mo(A2) (1) 0
(A1, Ag)o
V9 ulﬂg Alvg 0 0 —1711)2 0
AQ ’LL1A2 %<A1, A2>0 0 0 0 0
’l~)2 ul’ﬂ,g —7T0(A1)’l~}2 —1)1’172 0 0 0
’L~L2 ulﬁg 0 0 0 0 0
{a1,a2}o=

“ uy Ay vy Ay 01 (0}
az
u9 0 —Wo(Al)UQ 0 7T0(A1)U2 0 0
AQ 0 —[Al, A2]0 0 —[A}, AQ]Q —7'('0(142)171 7T0(A2)111

_%<A17 A2>0

U2 0 —7TO(A1>U2 0 0 O O
A2 0 —[Al, AQ]O 0 <A1, A2>0 —7T0(A2)1~)1 0
’LN)Q 0 —7T0(A1)’L~}2 0 —7T0(A1)1~JQ 0 0
122 —7T0(A1)ﬂ2 0 0 0 0 0

where u; € f,?, (Ui;Az‘) € fé, (f)i,/ii) € f}%, u; € }-}?
Let us summarize the results about the quasiclassical limit via Proposition.

Proposition 3.2.[37] The operations (-,-)o, {-, }o satisfy the relations (35)
so that their symmetrized versions satisfy the relations of G~ algebra which
is the quasiclassical limit of Goo algebra considered in Proposition 3.1. The
resulting Coo and Lo, algebras are reduced to Cs and L3 algebras.

The classical limits for the corresponding homotopies my, = mg + O(h)

and np =ng+ O(h) are as follows. The commutativity homotopy mg is
nonzero iff its both arguments belong to Fi:

(41) moy = —<A1,A2>0.

The associativity homotopy ng is nonzero only when all three elements
belong to Fi or one of the first two belongs to Fo and the other belong
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no(A1, Ag, Az) = Aa(A1, As)o — A1(As2, A3)o,
no(A1, 0, Az) = ng(v, A1, Az) = —0(A1, A2)o.

Notice, that in the quasiclassical limit we get rid of all noncovariant
terms in the expression for the product and the bracket. This is very close
to the classical limit procedure for vertex algebroid. Namely, using (39), one
can obtain vertex algebroid from Courant algebroid.

The definition of Courant algebroid is as follows (see e.g. [16], [2]). A
Courant Ojs-algebroid is an Op-module Q equipped with the structure of
a Leibniz C-algebra [, ]p : @ ®c Q@ — Q, an Opy-linear map of Leibniz alge-
bras (the anchor map) m: Q@ — I'(T'M), a symmetric Oys-bilinear pairing
(,): Q®0o,, Q@ — Oy, a derivation 0 : Oy — Q, which satisfy

100 =0, [q1,fqlo= flar, ]+ mo(q1)(f)qe,
(43) (lg:a1l,q2) + (a1, [, @2]) = m0(9)({q1, 92)0), 1[4, 9(f)]o = O(mo(q)([)),
(@, 0(f)) =mo(q)(f) a1, a2]o + g2, ¢1]o = O({q1,42)0)-

where f € Oy and q,q1, g2 € Q. In our case Q = O(E), m is just a projection
on O(TM)

(44) lq1,92]0 = —[a1, @2]p,  {(q1,q2)0 = —(q1,q2)°, O =d.

As we indicated earlier, both C and L, parts of G, algebra appear to
be short. We expect this to happen with all the homotopies, i.e. it is natural
to suggest the following.

Conjecture 3.1.The G, algebra of Proposition 3.2. has only bilinear and
trilinear operations, i.e. it is a G3 algebra.

In the following, since we are interested only in the quasiclassical algebra

on the complex (F',Q), we will neglect the 0 subscript for all multilinear
operations of this algebra.

4. Homotopy Gerstenhaber algebra and Einstein equations

4.1. BV-subalgebra and a nontrivial example of Einstein equations.
The homotopy Gerstenhaber algebra we studied in the previous section, has
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a subalgebra based on the following complex (F;,,, Q).

(45) O(T1O M) O(T1O M)
0
0 %div
D D
—%div
C C Onm Owm

It is just a Gerstenhaber algebra (with no higher homotopies), moreover it is
a BV algebra, since b operator also preserves (F,,, Q). Therefore, we have
the following Proposition.

Proposition 4.1. Bilinear operations (-,-), {-,-} together with operator b
generate the structure of BV algebra on (F,,,, Q).

Let us consider the oco-jet version of the complex (F;,,, Q): we substitute
Onr, O(TOD (M) by J®(Onr), J®(O(TOD(M)). We denote the resulting
complex as (f‘;mvoo, Q). Then the completed tensor product

where (Fy,, o, Q) is the complex obtained from (Fj,, ., @) by complex con-
jugation. Complex (Fj,, .,Q), where Q=Q + @, is the jet version
of the complex (F,,,Q), such that e.g. F2, =T(TWOM @ TODM) @
(O(TOVM) ® O(TEIM)E2 @ Oy @ Oy @ C. Clearly, the complex (F,,,,
Q) carries a structure of BV algebra inherited from (F,, o, Q) and its com-

S
plex conjugation, so that
(47) (=1)ul{ar, a9} = b~ (a1, a2) — (b~ a1, az) — (—1)1*/(a1b~ay),

where b~ = b — b. Note, that the elements closed under b~ form a subal-
gebra in the differential graded algebra (DGLA), generated by @, {-,-}. It
turns out that the Maurer-Cartan equations of this DGLA and their symme-
tries have a very interesting meaning. To describe them, let us define some
extra algebraic operations for convenience.
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Let g,h € D(TMOM @ TODM) so that their components are gﬁ@i ®
9;,h79; ® 9;. Then one can define symmetric bilinear operation [17], [34]:

(48) Ha H : F(T(LO)M ® T(O’l)M) ® F(T(LO)M ® T(O,l)M) N
P(T(l’O)M ® T(O,I)M)

written in components as follows:
Kl — (59 a1kl ij 9.9. kl kj o il kjq. il
(49) [[g, R]]¥ = (g7 0;0;h% + W' 0;0;9™ — 0ig" 051 — 91 9;9™)

and looks much less complicated in the jet notation (see Section 2). Namely,
if &neJ®OTHIM) e JoOTOVM), so that ¢ =3 ,vl @v!, n=
S ,w! @w’, where o w/ € J°(OTHOM), ol w! € 70T M),
then

(50) &) = [ w']® @', @],

1,0

As noted in [17],[34], if the bilinear tensor g is such that one can associate
a Kahler metrics to it, then the Ricci tensor RY associated with such metric
tensor is proportional to [[g, g]], more precisely

G1) R(g) = Lllg, g1

If the complex manifold M has a volume form (2, such that in local
coordinates Q = efdX'--- AdX" ANdX'A---dX". Let us denote the vol-
ume form which determines the differential Q as €', so that f = —2®{, then
@, has to be locally a sum of holomorphic and antiholomorphic functions,
i.e. it satisfies equation 9;0;®( = 0.

We will refer to the vector field divgg such that (divgg)’ = 9;¢" +
0:fg¥, (divag)" = 839’7 +0;f g% as the divergence of bivector field g with
respect to the volume form (2.

Now let the Maurer-Cartan element, closed under b™, namely the ele-
ment of (T M @ TOVM) @ O(TOVM) @ O(THIM) @ Oy @ Oy be
defined by its components in the direct sum, i.e. as (g,v,v, ¢, @).

Then the following Theorem holds, which can be proven by direct cal-
culation.

Theorem 4.1a. The Maurer-Cartan equation for the differential graded Lie
algebra on Fy,, |b-=o generated by Q and {-,-} imposes the following system

of equations on g, ¢, ¢ (v,v turn out to be auxilliary variables):
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1) Vector field divag, where Q= Q'e™292% s determined by f=
—28) = —2(®) + ¢ — ¢) and 9;0;9¢ = 0, is such that its T(TLOM),
F(T(O’l)M) components are correspondingly holomorphic and antiholo-
morphic.

2) Biwvector field g € T(T"M @ T M) obeys the following equation:

(52) 19, 9] + Laivg(9)9 = 0,

where Lgiy,(g) 5 a Lie derivative with respect to the corresponding
vector fields.

3) divqdivg(g) = 0. The infinitesimal symmetries of the Maurer-Cartan
equation coincide with the holomorphic coordinate transformations of
the volume form and tensor {g"}.

The constraints 1), 2), 3) coincide with the equations studied in [34],
where it was shown that they are equivalent to Einstein equations, i.e. the
following statement is valid.

Theorem 4.1b. If tensor {gij} parametrises Hermitean metric, then the
conditions 1), 2), 3) on g and ®gy from Theorem j.la are equivalent to
FEinstein equations

1 A
Rl‘l/ — ZH# PHS\’p _ QV#VV(P,
(53) Y, H"P — 2(V}\(I))H>\Vp —0,
1
4(VM(I))2 _ 4v,uv'“(1) L+ R+ EHMVPH/W[) —0,

where H = dB s a 3-form, so that metric G, 2-form B and the dilaton field
® € C(M) are expressed as follows:

Gk = 9ik» Bir =9 P =log\/g+ P,

(54)
Gik =G = Gy, = G, =0,
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where by g under the square root we denote the determinant of {gij}. In
other words, (53) are equivalent to the following system:

0i05Py =0, Fpdg™ =0, Fpdig" =0,
29"0,09" — 20,97 0pg"™ — g" O " — g0 d5 g+
8Tgikd§>ogjr + apgkidgognﬁ =0,

Do 1Py ji __
d; d; 9" =0,

(55)

where d?”gﬁ = (0; — 281-<I>0)gi3, d;?‘)gﬁ =(0; — 283@0)925, which is the com-
ponent form of the conditions 1), 2) and 3).

4.2. Physical motivation for the main conjectures. In this subsection,
we give the physics motivation for the generalization of the result of Sec-
tion 4.1: namely, we want to extend Theorem 4.1. to the case of full complex
F*. For more details we refer the reader to the paper [17], [34]. In Section 2,
we considered the equivalence of two action functionals Sy, and Sg,. On the
quantum level the object of primary interest is the path integral

(56) / (dp] dp)[dX][dX]e~S.

In the case of S = Sy the quantum theory corresponding to this path inte-
gral, is described by the gerbes of chiral differential operators (and locally
just by vertex algebras), as it was already mentioned in Section 3. However,
this action should be modified to accomodate the holomorphic volume form
on M, otherwise the Virasoro element in the corresponding vertex algebras
wouldn’t be globally defined. On the level of action functionals, one has to
add an extra term to Sy, namely

(57) So — So+ /E VIR® (7)6(X),

where e72? is the density for the volume form on M, so that 0;0;0 =0, v
is a metric on ¥ and R®)(y) is its curvature. Let us add a similar term
to its perturbed version Sy,, ie. [y \ﬁR(Q) (7)®o(X) with no restrictions
on ¥y, and the resulting action will be denoted as S})(‘;. We will call &y a
normalized dilaton field.

The integration over p, p leads to the following (see [17]):

(58) / (dp)[dp[dX[dX e~ = / XSt RO
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This heuristic formula gives the proper correspondence between the first-
and second-order actions on the quantum level. The relation of those to
Einstein equations is as follows. Analysing the path integral in the right hand
side involves regularization procedure which leads to the broken scale (and
conformal) invariance. In order to make the model conformally invariant,
one has to impose a sequence of constraints, appearing for the vanishing of
the S-function (see [3], [4], [24]). The B-function is the function depending
on G-metric, 2-form B, dilaton

(59) =)+ /g

and parameter h. At the zeroth order in h vanishing of the S-function leads
to Einstein equations (53). Vanishing of the coefficients of higher powers in
h lead to the equations involving higher number of derivatives and higher
powers in Ricci curvature. It was noted (see e.g. [23]) that the linearized
form of Einstein equations and their symmetries can be obtained as the
closedness condition for the elements of degree 2 in the semi-infinite (BRST)
complex associated to the Virasoro module corresponding to the conformal
field theory described by Sg, with the flat metric. One of the statements
of String Field Theory is that the full conformal invariance conditions can
be obtained from Maurer-Cartan equations for some L.,-algebra on BRST
complex [39], so that the full metric, B-field and dilaton can be restored
from the Maurer-Cartan element. The symmetries of the Maurer-Cartan
equations correspond to the h-corrected diffeomorphism symmetries and the
exact shifts of the antisymmetric tensor B.

The complex corresponding to the flat metric does not have any simple
algebraic structure on it (because it is not a vertex algebra) and it is compli-
cated to construct such algebraic operations explicitly. On the contrary, for
the first-order model we start from the vertex algebra and we have related
G oo structure due to [15], [14], [13], [31]. Using the results of [37], we are able
to reduce it to much smaller complex and find the quasiclassical limit. We
claim that the Maurer-Cartan equation corresponding to its Ly,-subalgebra
of the quasiclassical limit of this G, algebra reproduces Einstein equations
and their symmetries, where the metric, 2-form B and the dilaton ® are
expressed by means of (23), (59). In Subsection 4.1., we obtained this cor-
respondence in the case when only one of the perturbing terms was present
in Sf,, namely (g,p A D). In the next subsection, we extend the statement
of Theorem 4.1 to the case of general Sy,.
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4.3. Main Conjectures. Following the ideas of Section 4.1, we want to
repeat the construction in the case of the complex (F°, Q). Namely, we
consider its jet version (F.,, Q) and its complex conjugate (F., Q), so that

(60) F = F o ®F,.

It is the jet version of the complex (F', Q), such that e.g. the subspace of
degree 1 is as follows: F! 2 T'(E) & C(M) @ C(M). As in Section 4.1, the
divergence operator which determines Q-operator, is based on the volume
form, given in the local coordinates as e 2%(X)dX1...dX" AdX' ... dX™,
so that 8183<I>6 =0.

We can give F' the structure of the homotopy Leibniz bracket by means
of formula which is the same as in Section 4.1:

(61) (—D)ll{ay, a9} = b~ (a1,a2) — (b~a1,a2) — (—1)1*(a1b~ay),

however now we have higher homotopies. We also note that F'|,-—g = F_ is
invariant under {-,-}. Let us formulate the first part of the main conjecture.

Conjecture 4.1a. The structure of homotopy Gerstenhaber algebra on F
can be extended to Goo-algebra, so that the subcomplex ¥ is invariant under
Lo operations.

Let us focus on the subcomplex (F_, Q). The space of Maurer-Cartan
elements, i.e. the subspace of the elements of degree 2 is:

(62) F2 2T (E®E)GI(E)®C(M)®C(M).

The elements of this space are defined by means of the components from
the direct sum above, i.e. ¥ = (M, 7, ¢,¢). We will denote the difference
¢ — ¢ = @) and &y = @), + ®{. Let us formulate the second part of the main
conjecture.

Conjecture 4.1b. Let U = (M, 7, $,¢) be the solution of the generalized
Maurer-Cartan (GMC) equation for Loo-algebra on F_, so that

(63) M= (g g),

Then the n-component is auxilliary and is expressed via M and ¢, ¢. If {gij}
is invertible, then G, B obtained from M via (23) together with ® = ®¢ + /g,
where g is the determinant of {g;5}, satisfy the Einstein equations (53).
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The space of infinitesimal symmetry generators of GMC equation, i.e.
F! is given by

(64) FL =T(E)®C(M),

so that any element can be written in components as A = (&, f).
The third part of the conjecture concerns the question how &, f are
related to o € I'(E) in the transformation formula

(65) M — M — Da + ¢1 (o, M) + ¢a(av, M, M)

from Section 1. First, to justify the statement of Conjecture 4.1b., we prove
the following Proposition.

Proposition 4.2. Let A = (€, f) € FL be the generator of the infinitesimal
transformation of the solution of GMC' equation. Then after the substitution
£=a+ 3M-« (where M is considered as an element of End(I'(E))) the
transformation of M-component of the solution coincides with (65) up to
the second order in M.

Proof. At first, we show that the expression
1
(66) U — U+ QN — {A, U} + §{A’, U, v}

gives the formula (65), where {-, -, -} is the homotopy for the Leibniz identity
for [-,], A = (a, 5), ¥ = (M, n, ¢, ¢). It is easy to check the corresspondence
between (65) and (66) for the Oth and 1st order in M. To prove Proposi-
tion 4.2, we just need to check the term corresponding to trilinear operation.
Let us return to the jet level, i.e. we assume that

(67) a=> et/ +> e ff, M=) ded
J K I

Then the only terms contributing to the relevant part of {A’, U, U} are as
follows:

(68) = > (mp(0",a"), 0’y @ ({a’, [}, a")
1,J,K

=Y (a1}, a") @ (mb (0, a"), a”).
I,J K

We see that modulo the necessary coefficient this coincides with the trilinear
operation ¢y (17). The statement of the Proposition 4.2 can be obtained from
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the antisymmetrization of {-, -}, and therefore of {-,-,-}, so that the formula
1
(69) W — W+ QA+ {W, AJ* 4 {W, WA

corresponds to (65) if A = (a+ M- a, s). O

We note, that the symmetry generated by f-part of F! element does not
affect metric B-field or dilaton. It is easy to check that on the level of Oth
order in M: the symmetry transformation corresponds to the shift of ¢ and ¢
by f. One can check, similar to Proposition 4.2, that this symmetry remains
redundant for the first and second order. We claim that these statements
are exact, namely the following Conjecture is true.

Conjecture 4.1c. Let A = (&, f) € FL, be the generator of the infinitesimal
symmetries of GMC equation (69). The corresponding transformation of
M-component of the solution of GMC' coincide with (65) if &€ = o+ %M-
«a. Under conditions of Conjecture 4.1b these transformations reproduce
infinitesimal diffeomorphism transformations and shifts of B-field by exact
2-form, which are the symmetries of Equations (53).
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Appendix

Here we give explicitly the formulas for the transformations of M (see Sec-
tion 2):

(70) M — M — Da + ¢1(a, M) + ¢2(a, M, M)

of the matrix elements of Beltram-Courant differential

(71) M = (z /g) ,

where ¢ e D(THOM @ TOVM),  peD(TMOMeT*OVM), e
D(T*EOM @ TOYM), be D(T* MO0 @ T*OYM). The explicit form of
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the transformations in components is (with the notations from Section 2):

1]

g7 = g7 + %097 + P g — g g — g o
+ g opo® + gM g,

u% — M% — 851}2‘ + vkak,u% + Uka,g/L% + ,U«%ajvk - M?akvi
+ kOt + g b0,

bi; — b + vFOkb; + vFObs; + bpds0F + b0
+ bgbop® + b ko

97 = g7 + g™ Oy, — Fpwn)g,

Hp = p+ g (Owj — Oj) + p7 g™ (0w, — Ogor),

bﬁ — bz’j + 850.)1‘ — 81‘(,03 -+ M%(aiwk — 8kwi) + ﬂf(@;wg — 8§(A)3)
a8 (Ous — By,
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