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Singularities and Gauge Theory Phases

Mboyo Esole, Shu-Heng Shao and Shing-Tung Yau

Motivated by M-theory compactification on elliptic Calabi-Yau
threefolds, we present a correspondence between networks of small
resolutions for singular elliptic fibrations and Coulomb branches
of five-dimensional N = 1 gauge theories. While resolutions cor-
respond to subchambers of the Coulomb branch, partial resolu-
tions correspond to higher codimension loci at which the Coulomb
branch intersects the Coulomb-Higgs branches. Flops between dif-
ferent resolutions are identified with reflections on the Coulomb
branch. Physics aside, this correspondence provides an interesting
link between elliptic fibrations and representation theory.
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1. Introduction

M-theory compactifications have always been a rich setup for exploring the
interplay between gauge theory and geometry. Compactification of M-theory
on Calabi-Yau threefolds gives rise to five-dimensional N = 1 theories with
vector multiplets and hypermultiplets [1]. The vacuum expectation values
(vevs) of scalars in the vector multiplets parametrize the Coulomb branch
of the theory while those of the scalars in the hypermultiplets parametrize
the Higgs branch. There are also mixed branches, which we will call the
Coulomb-Higgs branches, where parts of both the vector multiplet scalars
and hypermultiplet scalars have nonzero vevs. Different crepant resolutions
of the same singular Calabi-Yau threefold correspond to different subcham-
bers of the Coulomb branch [2–4]. Here we present a pedagogical and detailed
demonstration of this correspondence between the network of resolutions
with the subchambers of the Coulomb branch of the quantum field theory.
The analogous story for M-theory compactifications on Calabi-Yau fourfolds
has been considered in [5–13].

We would like to emphasize that our correspondence goes beyond the
context of M-theory. In particular, the total space does not have to be
Calabi-Yau and it can be either a threefold or a fourfold. For this reason,
we will also study the codimension three fibers for our resolutions. On the
gauge theory side, the Coulomb branch can be solely described by the repre-
sentation theory. Thus our correspondence, from a pure mathematical point
of view, provides an interesting link between small resolutions for singular
Weierstrass models and representation theory.

On the geometry side, we focus on elliptically fibered threefolds or four-
folds with a section over the base B. Such elliptic fibrations always admit a
(singular) Weierstrass model [14, 15]. We will use the Weierstrass model as
our starting point and consider those given by the “Tate forms” with gen-
eral coefficients ai,j . Specifically, we will consider the Tate form of type IsN ,
which has the explicit gauge groups SU(N) after resolving the singularities
[16, 17]. The base B is assumed to be nonsingular and of complex dimension
two or three. We present a simple derivation for small resolutions of the
SU(N) Weierstrass model with N = 2, 3, 4 by giving a unified description
that can be summarized by a network of successive blow ups. Flop transi-
tions between different resolutions can be visualized from the ramification
of branches in the network of resolutions. Some of the flops are induced by
the Z2 automorphism in the Mordell-Weil group of the original Weierstrass
model. The same feature was also observed in the case of the SU(5) model
[18]. We also study the fiber enhancements in codimension two and three
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for each resolution. Over the codimension two loci, we recover the standard
enhancements SU(N) → SU(N + 1) and SU(N) → SO(2N) [19, 20]. In the
SU(4) model, we find a non-Kodaira type fiber of type I�+0 in codimension
three.

On the gauge theory side, we consider the low energy quantum field the-
ory by compactifying M-theory on an elliptic Calabi-Yau threefold of the
SU(N) Weierstrass model type. This theory is the five-dimensional N = 1
gauge theory with gauge group SU(N) and hypermultiplets in the funda-

mental representation ( ) and antisymmetric representations ( ). These

are the representations arising from the rank one enhancements SU(N) →
SU(N + 1) and SU(N) → SO(2N) of the Weierstrass model in codimen-
sion two. This theory has a Coulomb branch in its vacuum moduli space
parametrized by the vev of the real scalar field φ in the vector multiplet. It
also has a number of Coulomb-Higgs branches in its vacuum moduli space
parametrized by both the vevs of some components of the real scalar φ
and the vevs of some massless matter scalars Q, Q̃. From a representation-
theoretic perspective, we consider the partitioning of the Coulomb branch
into several subchambers separated by certain codimension one walls Ww.
Each wall Ww is labeled by a weight in the fundamental or antisymmetric
representation. The hypermultiplet scalars Qw, Q̃w̄ with weight w become
massless at the wallWw and we can activate their vevs to go to the Coulomb-
Higgs branch. These walls are sometimes called the Higgs branch roots in
the physics literature where the Coulomb-Higgs branches and the Coulomb
branch intersect.

After collecting the necessary data on the geometry and the gauge the-
ory side, we present a one-to-one correspondence between the network of
resolutions for the Weierstrass model with the Coulomb branch of the cor-
responding gauge theory. Starting from the bulk of the Coulomb branch,
each subchamber of the Coulomb branch corresponds to a resolution in the
network. Next going to codimension one, each wall Ww corresponds to a
partial resolution in the network. Intersections of walls are also matched
with partial resolutions that appear in earlier branches of the network of
resolutions for the Weierstrass model. In addition, flops between different
resolutions are realized as reflections1 with respect to certain walls on the
Coulomb branch. The SU(3) and SU(4) cases are demonstrated in Figure 1

1These are reflections with respect to certain walls on the Coulomb branch, not to
be confused with the Weyl reflections. We will restrict ourselves to the fundamental
chamber, so we will not talk about the Weyl reflections in this paper.
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Coulomb branch ⇐⇒ Network of Resolutions
Subchamber ⇐⇒ Resolution

Walls and their intersections ⇐⇒ Partial resolutions
Moving on to the walls or their intersections ⇐⇒ Blowing down

Reflection ⇐⇒ Flop

and 2. We end up with the following dictionary between the Coulomb branch
(left) and the network of resolutions (right):

The vanishing nodes (cycles) in the fiber of the Weierstrass model can
also be read off from this correspondence. For example, one of the four nodes
in the fiber of the SU(4) model shrinks in the partial resolution E1 (see Figure
132 or (B.22)). On the gauge theory side, the corresponding line L indeed
lies on the boundary of the Coulomb branch (see Figure 12), where part of
the non-abelian gauge symmetry is restored, signaling vanishing nodes on
the geometry side.

Note added. While this work was finalized, a closely related paper [13]
appeared on arXiv. The authors introduced a powerful graphical tool, called
the box graph, to classify all the subchambers on the Coulomb branch from
the representation theory input. We give the box graph descriptions for the
resolutions studied in this paper in Sec 5. We also generalize the box graphs
to partial resolutions.

2. Geometry: small resolutions of Weierstrass models

We first fix our convention and spell out some basic definitions.

Resolution of singularities. A resolution of singularities is a map f :
X ′ → X between a nonsingular variety X ′ and a singular variety X such
that the following conditions are satisfied:

1) X ′ is a nonsingular variety.

2) f is a surjective birational map.

3) f is a proper map.

4) f is an isomorphism away from the singular locus of X.

Small birational map, crepant birational map. A birational map is
said to be small when the exceptional locus has codimension two or higher.

2In Figure 13, the affine node C0 is omitted so only three out of the four affine
Dynkin nodes are shown there.
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Figure 1: Left: The SU(3) Coulomb branch. It is spanned non-negatively
by the two vectors μ1 and μ2. The Coulomb branch is divided by the line
Ww2

into two subchambers C±. The line Ww2
is the codimension one wall

where the Coulomb-Higgs branch intersects the Coulomb branch. Right:
The network of small resolutions for the SU(3) model. Each letter stands
for a (partial) resolution of the original singular Weierstrass model E0 and
each arrow represents a blow up. By going along (against) an arrow, we
blow down (up) a variety. The identifications between the Coulomb branch
with the (partially) resolved varieties are given by T ± = C±, E1 = Ww2

,
and E0 = O. The flop is realized as the reflection with respect to the line
(wall) Ww2

.

A birational map is said to be crepant when X is normal and f preserves the
canonical class, that is f�KX = KX′ . A small resolution is always crepant,
but a crepant resolution is not necessary small. One way to construct a small
resolution is to give a sequence of blowups with centers that are non-Cartier
Weil divisors.

When working over C, a morphism π : Y → B is flat if and only if the
fibers are all equidimensional. We will require our resolutions to be small,
crepant, and flat.

Notations for blow ups. After a blow up, the center of the blowup
becomes a Cartier divisor called the exceptional divisor. We denote the
exceptional divisor by E. Since E is a Cartier divisor, it admits a local
equation e = 0 that is a rational section of O(E). If we blow up X along an
ideal (g1, . . . , gn) to arrive at a new space X ′ we use the notation

X X ′,
(g1, . . . , gn | ḡ1 : · · · : ḡn)
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Figure 2: Left: The SU(4) Coulomb branch. It is the three-dimensional
cone spanned non-negatively by the three vectors μ1, μ2, μ3. There are
three triangles (walls) W+, W 0, W− with vertices (p+, �, O), (p0, �, O), and
(p−, �, O), respectively, extending infinitely from the apex O. The three walls
divide the Coulomb branch into four subchambers C±

± . The four subcham-
bers are tetrahedrons in the above figure with vertices C+

− : (�+, �, p+, O),
C+
+ : (p+, �, p0, O), C−

+ : (p0, �, p−, O), C−
− : (�−, �, p−, O) extending infinitely

from the apex O. The three triangles intersect at a single line L : (�, O).
The point O is the origin of the Coulomb branch. Right: The network of
resolutions for the SU(4) Weierstrass model. One needs to blow up three
times to completely resolve the singularity, leading to four resolved varieties
T ±

± . The identifications with the Coulomb branch are given by T ±
± = C±

± ,
T + = W+, B = W 0, T − = W−, E1 = L, and E0 = O. The flops are real-
ized as reflections with respect to the wall W 0.

where [ḡ1 : · · · : ḡn] are projective coordinates of the exceptional locus and
are related to the generators (g1, . . . , gn) by the condition

rank

(
g1 · · · gn
ḡ1 · · · ḡn

)
= 1,

which is equivalent to asking all the minors to vanish:

ḡigj − ḡjgi = 0, i, j = 1, . . . , n.

If we blowup an ideal generated by gi, we express the blowup with the
following notation [21]:

X X ′,
(g1, . . . , gn| e)
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where e defines a generator of the principal ideal corresponding to the excep-
tional locus of the blowup. Such a blowup is induced by the rescaling

gk = eḡk, k = 1, . . . , n.

We can think of e as a section of O(E), where E is the exceptional divisor
of the blowup of (g1, . . . , gn). Then ḡk are projective coordinates of the pro-
jective bundle generated by the blowup. If gi is a section of O(Di), then ḡi
is a section of O(Di − E).

Since we will often need successive blowups, we will denote by Ek the
exceptional divisor of the k-th blowup and by ek a rational section of O(Ek).

2.1. Weierstrass models

A Weierstrass model [14, 15, 22, 23] is an elliptic fibration over a base variety
B, where over each point on the base, the fiber is an elliptic curve described
by a plane cubic algebraic curve with equation

E0 : y
2z + a1xyz + a3yz

2 − (x3 + a2x
2z + a4xz

2 + a6z
3) = 0,(2.1)

where [x : y : z] are the homogeneous coordinates of P2 and the coefficients
ai are sections of certain line bundles over the base B described below. The
cubic curve is a projective curve of genus one. It has a clear choice of a
rational point given by x = z = 0. The tangent to the curve at that point is
z = 0 and it has a triple intersection with the curve.

Globally, a Weierstrass model over a base B requires a choice of a line
bundle L → B so that the equation (2.1) is the zero locus of a section of
the line bundle

O(3)⊗ π∗L 6(2.2)

inside the projective bundle

π : P[OB ⊕ L 2 ⊕ L 3] → B.(2.3)

The Weierstrass model is Calabi-Yau only when c1(B) = c1(L ) as can be
seen by applying the adjunction formula. The homogeneous coordinates
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x, y, z of the P2-bundle and the coefficients ai are sections of the follow-
ing line bundles: ⎧⎪⎪⎨

⎪⎪⎩
z is a section of O(1),
x is a section of O(1)⊗ π�L 2,
y is a section of O(1)⊗ π�L 3,
ai is a section of π�L i.

In the following we will take the base variety B to be a nonsingular algebraic
variety of complex dimension two or three. Some comments on our notation:

• We use the classical convention for the projectivization π : P(E ) → B
of a locally free sheaf E over B: the fibers of P(E ) are the lines of E
passing through the origin and not the hyperplanes3.

• We denote the tautological line bundle of the projective bundle P(E )
by OP(E )(−1). Its dual is the canonical line bundle OP(E )(1). When
the context is clear, we will abuse the notation and write O(−1) and
O(1) respectively for OP(E )(−1) and OP(E )(1). We also write O(−n)
(for n > 0) for the nth tensor product of O(−1). Its dual is O(n), the
nth tensor product of O(1).

2.1.1. Mordell-Weil group. A Weierstrass model is a true elliptic fibra-
tion in the sense that the generic fiber is a genus one curve endowed with
a choice of a rational point. As we move over the base, that rational point
becomes a section of the fibration. Here the section is given by the point
x = z = 0 on every fiber. The Mordell-Weil group of the elliptic fibration is
the group of sections of the elliptic fibration. For a Weierstrass model, we
take its origin to be the section x = z = 0. Given a point on the base B in
the Weierstrass model, the opposite of a point [x : y : z] under Mordell-Weil
group is [x : −y − a1x− a3z : z]. This defines a fiberwise Z2 automorphism
of E0,

ι :E0 → E0 : [x : y : z] �→ [x : −y − a1x− a3z : z].(2.4)

If the Weierstrass model is singular, after a resolution ι is not necessarily
an automorphism of the resolved space. However, the mapping it induces,

3 The convention we use for projective bundles is the opposite of the convention
used in Hartshorne but matches the convention used in most papers in F-theory,
the conventions of Fulton’s book on intersection theory, and in the (coming) book
of Eisenbud and Harris on intersection theory.
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which will be called the inverse action, can map a resolution of E0 to another
one and can even be a flop transition.

2.1.2. Singular fibers and Tate forms. An elliptic curve given by a
Weierstrass equation is singular if and only if its discriminant Δ is zero. If
a Weierstrass equation is defined over k and let k̄ be the algebraic closure
of k, then two nonsingular elliptic curves are isomorphic over k̄ if and only
if they have the same j-invariant. We can write the discriminant and the
j-invariant in terms of variables (b2, b4, b6) or (c4, c6) which are defined as
follows [14, 24]:

b2 = a21 + 4a2,(2.5)

b4 = a1a3 + 2a4,(2.6)

b6 = a23 + 4a6,(2.7)

b8 = b2a6 − a1a3a4 + a2a
2
3 − a24,(2.8)

c4 = b22 − 24b4,(2.9)

c6 = −b32 + 36b2b4 − 216b6,(2.10)

Δ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 =
1

1728
(c34 − c26),(2.11)

j =
c34
Δ
.(2.12)

These quantities are related by the following relations:

(2.13) 4b8 = b2b6 − b24 and 1728Δ = c34 − c26.

A nonsingular Weierstrass model only has nodal and cuspidial curves as
singular fibers. In order to have more interesting singular fibers, we have to
consider singular Weierstrass models. The singularity of an elliptic fibration
over divisors of the base are classified by Kodaira and Néron [25, 26] and
can be predicted by manipulating the coefficients of the Weierstrass equa-
tion following Tate’s algorithm [27]. We can force a given singularity over a
hypersurface (a Cartier divisor) cut by an equation:

e0 = 0(2.14)

by allowing the coefficients ai to vanish on e0 with certain multiplicities.
Given the order of e0 for each of the sections ai, the types of singularity are
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given by Tate’s algorithm. If ai has vanishing order k, we will write

ai = ai,ke
k
0.(2.15)

(If k = 0 we will simply write ai,k as ai.)
In this paper we will consider the type IsN Weierstrass model correspond-

ing to gauge group SU(N). For N being even N = 2n or odd N = 2n+ 1,
the vanishing orders for Is2n : SU(2n) and Is2n+1 : SU(2n+ 1) are [16, 17]:

SU(2n) :a1 = a1, a2 = a2,1e0, a3 = a3,ne
n
0 ,(2.16)

a4 = a4,ne
n
0 , a6 = a6,2ne

2n
0 ,

SU(2n+ 1) :a1 = a1, a2 = a2,1e0, a3 = a3,ne
n
0 ,(2.17)

a4 = a4,n+1e
n+1
0 , a6 = a6,2n+1e

2n+1
0 .

In the case of SU(2n), the discriminant factorizes as follows

(2.18) Δ = e2n0

[
− a41P2n +O(e0)

]
, P2n := −a1a3,na4,n − a24,n + a21a6,2n.

The first component e2n0 is the locus over which we have the fiber of type
Is2n after resolution of singularities. The second component corresponding
to the bracket is the locus over which we have the nodal curves I1. These
two divisors intersect in codimension two in the base along e0 = a1 = 0 and
e0 = P2n = 0. They intersect further in codimension three along e0 = a1 =
a4,n = 0. We see that e0 = a1 = 0 is on the cuspidal locus c4 = c6 = 0 while
e0 = P2n = 0 is not. We will see in later sections that there are rank one
enhancements in the codimension two loci e0 = a1 = 0 and e0 = P2n = 0.

In the case of SU(2n+ 1) we have

Δ = e2n+1
0

[
− a41P2n+1 +O(e0)

]
,(2.19)

P2n+1 := a2,1a
2
3,n − a1a3,na4,n+1 + a21a6,2n+1.

The discriminant again contains two components. They intersect in codi-
mension two along e0 = a1 = 0 and e0 = P2n+1 = 0. These two codimension
two loci intersect further in codimension three along e0 = a1 = a2,1 = 0 and
e0 = a1 = a3,n = 0. We will see in later sections that there are rank one
enhancements in codimension two loci e0 = a1 = 0 and e0 = P2n+1 = 0.
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2.2. Is2: The SU(2) model

The Tate form for the SU(2) model is [16, 17]

E0 : Y := y2 + a1xy + a3,1e0y(2.20)

− (x3 + a2,1e0x
2 + a4,1e0x+ a6,2e

2
0) = 0,

where we are in the patch z �= 0. It is easy to see that there is no singularity
at z = 0, so we will henceforth stay in this patch and set z = 1. In fact, the
total space is singular at

x = y = e0 = 0,(2.21)

where all the partial derivatives of Y vanish. The singularity is sitting at a
point x = y = 0 over the divisor e0 = 0 in the base. Above the divisor e0 = 0,
the elliptic curve becomes

(2.22) y2 + a1xy − x3 = 0

which can be written explicitly as a nodal curve:

(2.23)

(
y +

1

2
a1x

)2

− x2
(
x+

1

4
a21

)
= 0.

In particular, we see that over e0 = a1 = 0, the nodal curve becomes a cus-
pidal curve

(2.24)

(
y +

1

2
x

)2

− x3 = 0.

This suggests a possibility of fiber enhancement for the resolved variety over
e0 = a1 = 0.

To resolve the singularity, we will blow up the singular locus x = y =
e0 = 0.

Resolution E1 : (x, y, e0|e1). To blow up the center (x, y, e0), we intro-
duce a P2 with homogeneous coordinates [x̄ : ȳ : ē0] such that they are
collinear with x, y, e0. That is,

x = e1x̄, y = e1ȳ, e0 = e1ē0,(2.25)

where e1 = 0 is the exceptional divisor. Note that e1 is always defined since at
least one of x̄, ȳ, ē0 is nonzero. To simplify our notations, we will henceforth
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drop the bar for the new projective coordinates and forget about the original
unbarred coordinates x, y, e0. The collinear condition (2.25) is then rewritten
as the replacement,

(x, y, e0) → (e1x, e1y, e1e0).(2.26)

The blow up will be denoted as

(2.27) E0 E1,
(x, y, e0|e1)

with the last entry e1 in parentheses being the ideal of the exceptional divi-
sor. By doing the replacement (2.26) in E0 and factoring out e21 (which
shows that the singularity has multiplicity two), we arrive at the resolved
variety E1:

E1 : y
2 + a1xy + a3,1e0y = e1x

3 + a2,1e1e0x
2 + a4,1e0x+ a6,2e

2
0.(2.28)

Since the blow up introduces an extra P2, now the ambient space is paramet-
rized by

[e1x : e1y : z = 1][x : y : e0].(2.29)

As one can easily check, E1 is a nonsingular variety if dimCB ≤ 3. There-
fore for the SU(2) model, we need only one blow up to fully resolve the
singularity.

Fiber enhancements. In E0, the fibers are singular over e0 = 0. Now
after the blow up, the divisor e0 = 0 is replaced by e1e0 = 0, over which the
fiber is still singular even though the total space is nonsingular. The fiber
over the codimension one hypersurface e0e1 = 0 consists of the following two
nodes, which are both isomorphic to P1,

C0 : e0 = y2 + a1xy − e1x
3 = 0,

C1 : e1 = y2 + a1xy + a3,1e0y − a4,1e0x− a6,2e
2
0 = 0.

(2.30)

Over e0 = 0, the ambient space is described by a fibration of Hirzebruch
surfaces F1. This can be seen by introducing the variables X = e1x and
Y = e1y. Indeed we then have the following ambient space parametrized by
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the projective coordinates

(2.31) [X : Y : z][x : y : 0],

together with the relation

(2.32) xY − yX = 0,

which is the definition for the Hirzebruch surface F1.
The equation of C0 is better understood by putting back the projective

variable z into the defining equations for the nodes,

C0 : e0 = zy2 + a1xyz − e1x
3 = 0,

C1 : e1 = zy2 + a1xyz + a3,1e0yz
2 − a4,1e0xz

2 − a6,2e
2
0z

3 = 0.
(2.33)

We see that the equation for C0 fixes the value of e1 and hence fixes to a
point in the first P2 in the ambient space. It follows that C0 is parametrized
by [x : y]. At x = 0, even though e1 is not fixed by the equation, the equation
implies z = 0 since y �= 0 if x = 0. Hence the equation also fixes to a point,
i.e. [e1x = 0, e1y = 0, z = 1], in the first P2. In other words, C0 describes a
P1-bundle over the divisor e0e1 = 0 in the base.

Over e1 = 0, the ambient space is just a P2-bundle with projective coor-
dinates [x : y : e0]. It follows that C1 is a quadric in P2 : [x : y : e0]. In par-
ticular it means that C1 defines a quadric bundles over the divisor e0e1 = 0.
A quadric bundle, in contrast to a P1-bundle, can have singular fibers. These
singular fibers are located at the zero locus of the discriminant of the quadric
as we will see later. All together, the nodes C0 and C1 intersect at two points

C0 ∩ C1 : [0 : 0 : 1][1 : 0 : 0] + [0 : 0 : 1][1 : −a1 : 0].(2.34)

This the I2 fiber in Kodaira’s classification. In the gauge theory language,
this is interpreted as the affine Dynkin diagram for SU(2).

Now let us move on to some special codimension two loci on B where
more interesting fibers appear. The fiber formed by C0 and C1 can degen-
erate in two different ways: the two intersection points can coincide so that
the fiber becomes a fiber of Kodaira type III, or C1 can degenerate into
two lines, giving in this way a fiber of Kodaira type I3. The latter would
happen when the discriminant of the quadric describing C1 vanishes. This
discriminant is precisely the P2 introduced in (2.18).
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Over e0e1 = 0 and

P2 = −a1a3,1a4,1 − a24,1 + a21a6,2 = 0(2.35)

but a1, a4,1 �= 0, the quadric C1 splits into two lines,

y2 + a1xy + a3,1e0y − a4,1e0x− a6,2e
2
0(2.36)

=
1

a1a4,1
[a4,1y + a1a4,1x+ a1a6,2e0] (a1y − a4,1e0) = 0.

That is, the node C1 splits as

C1 → C
(1)
1 : e1 = a4,1y + a1a4,1x+ a1a6,2e0 = 0,(2.37)

[0 : 0 : 1][a4,1x : −a1x− a1a6,2e0 : a4,1e0],

C
(2)
1 : e1 = a1y − a4,1e0 = 0,(2.38)

[0 : 0 : 1][a1x : a4,1e0 : a1e0].

Right next to each node we write their explicit parametrizations. Note

C
(1)
1 and C

(2)
1 intersect at a21a4.1x+ (a21a6,2 + a24,1)e0 = 0. Hence the fiber

enhances from I2 to the I3 fiber over P2 = 0 on the divisor e0e1 = 0. In the
gauge theory language, this is the rank one enhancement from SU(2) to
SU(3).

Over e0e1 = a1 = 0, the two fibers C0 and C1 meet at a double point, so
the fiber enhances from I2 to the type III fiber there.

Over e0e1 = a1 = a4,1 = 0, the node C1 becomes

C1 : e1 = y2 + a3,1e0y − a6,2e
2
0 = 0.(2.39)

Hence C1 splits into two nodes C
(1)′

1 and C
(2)′

1 parametrized by

C1 →C
(i)′

1 : [0 : 0 : 1][x : y(i) : e
(i)
0 ], i = 1, 2,(2.40)

where y(i), e(i), i = 1, 2, are the two roots of y2 + a3,1e0y − a6,2e
2
0 = 0. The

three nodes C0, C
(1)′

1 , and C
(2)′

1 meet at a point [0 : 0 : 1][1 : 0 : 0], so the
fiber is of type IV. The fiber enhancements for E1 in the SU(2) model are
summarized in Table 1 and Figure 3.
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Network of resolutions. The blow up for the SU(2) model is summa-
rized in the following (degenerate) network,

E0 E1,
(x, y, e0|e1)

where the arrow represents the blow up. This network will be the key data
we extract from the geometry side. We will see more nontrivial networks in
the following.

e0e1 = 0 e0e1 = P2 = 0 e0e1 = a1 = 0 e0e1 = a1 = a4,1 = 0

C1 → C
(1)
1 + C

(2)
1 C1 → C

(1)′

1 + C
(2)′

1

I2 I3 III IV

Table 1: The fiber enhancements for E1 in the SU(2) model. Here P2 =
−a1a3,1a4,1 − a24,1 + a21a6,2 = 0.

2.3. Is3: The SU(3) model

Let us move on to the SU(3) Weierstrass model [16, 17],

y2 + a1xy + a3,1e0y = x3 + a2,1e0x
2 + a4,2e

2
0x+ a6,3e

3
0.(2.41)

Again the total space is singular at

x = y = e0 = 0.(2.42)

To resolve the singularity, we proceed as before by blowing up along the
ideal (x, y, e0).
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SU(2) I3

I2 IV

III

codim 1 codim 2 codim 3

a1 = 0P2 = 0

a1 = 0 P2 = 0

Figure 3: The fiber enhancements over the divisor e0e1 = 0 for the SU(2)
model. Note that the codimension three locus e0e1 = a1 = P2 = 0 is the same
as e0e1 = a1 = a4,1 = 0 (see (2.35)).

2.3.1. First blow up and conifold singularity: E1 : (x, y, e0|e1). By
blowing up along the ideal (x, y, e0)

(x, y, e0) → (e1x, e1y, e1e0),(2.43)

we obtain the resolved variety E1,

E1 : y(y + a1x+ a3,1e0)− e1
(
x3 + a2,1e0x

2 + a4,2e
2
0x+ a6,3e

3
0

)
= 0.(2.44)

The ambient space is parametrized by the following projective coordinates

[e1x : e1y : z = 1][x : y : e0].(2.45)

Description of the fiber. Generally over the divisor e0e1 = 0, we have
three nodes in the fiber,

C0 : e0 = y2 + a1xy − e1x
3 = 0,

C1 : e1 = y + a1x+ a3,1e0 = 0, [0 : 0 : 1][x : −a1x− a3,1e0 : e0],

C ′
1 : e1 = y = 0, [0 : 0 : 1][x : 0 : e0].

(2.46)

Below each node is its explicit parametrization. For example, C ′
1 is paramet-

rized by x, e0 in the last P2 : [x : 0 : e0]. The three nodes intersect pairwise
at three different points and we identify them as the I3 fiber. It should be
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emphasized at this point that even though E1 is still singular as we will see
shortly, we already obtain the full affine Dynkin diagram for SU(3). If we
consider the Kähler moduli here, while the size of the affine node C0 is set
by the size of the original P2 for the projective bundle, the sizes of C1 and C ′

1

are not independent and are controlled by the size of the P2 we introduced
to perform the first blow up. This can be seen by noting that C1 and C ′

1 are
both complex lines inside the new P2 : [x : y : e0] and scale uniformly with
the new P2. It is only after the second blow up that the two nodes C1 and C ′

1

acquire independent Kähler parameters controlling their sizes. This is quite
in contrast with the usual blow up of a complex surface with A−D − E
singularity, where we obtain new nodes at each step of the blow up.

Conifold singularity. In contrast to the SU(2) model, the variety E1

after the first blow up is still singular. To see this, we define

s(x, y, e0) = y + a1x+ a3,1e0,(2.47)

Q(x, e0) = x3 + a2,1e0x
2 + a4,2e

2
0x+ a6,3e

3
0,(2.48)

and rewrite E1 (2.44) as

E1 : ys = e1Q.(2.49)

In this expression, it is clear there is a conifold singularity at

y = e1 = s = Q = 0.(2.50)

Note that y = e1 = s = 0 is precisely the intersection C ′
1 ∩ C1. Over a general

point on the base B, Q can not be zero at the same time as y = e1 = s = 0.
Only at

P3 = a33,1 − a1a2,1a
2
3,1 + a21a3,1a4,2 − a31a6,3 = 0(2.51)

is there a solution to (2.50). Hence the conifold singularity only occurs at a
codimension two locus on the base B defined by P3 = e1e0 = 0. Note that
P3 was first introduced as the leading term in the second component of the
discriminant (2.19). As we will see in Appendix A, after the second blow up,
there will be a fiber enhancement at this codimension two locus.

2.3.2. Second blow ups and flop: T + : (y, e1|e2) and T − : (s, e1|e2).
Next we wish to blow up the conifold singularity of ys = e1Q. As usual for
the conifold singularity, there are two possible blow ups one can do: we can
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either blow up along the ideal (y, e1) or the ideal (s, e1). The two resolutions
T + and T − are related by the flop exchanging y with −s = −y − a1x−
a3,1e0, which is the inverse action (2.4) induced by the Z2 automorphism in
the Mordell-Weil group. Geometrically, T + and T − are obtained by blow-
ing up along C ′

1 : e1 = y = 0 and C1 : e1 = s = 0, respectively. Hence the flop
exchanges the two nodes C ′

1 and C1 in the SU(3) Dynkin diagram. Also,
since we blow up along divisors C1 or C ′

1, the resolutions are guaranteed
to be crepant. One can check that after the second blow up, T ± are both
nonsingular varieties for dimCB ≤ 3. We therefore arrive at the network of
resolutions for the SU(3) model in Figure 4.

T +

E0 E1

T −

flop
(x, y, e0|e1) (y,

e1|e2
)

(s, e1 |e2 )

Figure 4: The network of resolutions for the SU(3) model. Each letter stands
for a (partial) resolution and each arrow represents a blow up. Starting from
E0, there is a unique (crepant) blow up (x, y, e0|e1) to go to the partial
resolution E1. For the second blow ups, there are two inequivalent blow ups
leading to T ±. The two resolutions T ± are related by a flop induced by the
Z2 automorphism (2.4) in the Mordel-Weil group. Here s = y + a1x+ a3,1e0.

A detailed analysis of T + and T − can be found in Appendix A. The
fiber enhancements over codimension two and three loci are summarized in
Figure 5.

2.4. Is4: The SU(4) model

For the SU(4) model we need three blow ups to completely resolve the
singularity for a base of dimension two or three. The details can be found
in Appendix B. The SU(4) model is [16, 17]

E0 : y
2 + a1xy + a3,2e

2
0y = x3 + a2,1e0x

2 + a4,2e
2
0x+ a6,4e

4
0.(2.52)
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SU(3) 1

1

1

1

I4

1

1

1

I3 2

11

1 1

I∗0

11

1

IV

codim 1 codim 2 codim 3

a1 = 0P3 = 0

a1 = 0 P3 = 0

Figure 5: The fiber enhancements over the divisor e0e1e2 = 0 for the resolved
SU(3) model T ±. The fiber enhancements are the same for both resolutions
up to relabeling. The trivalent point for IV means that the three nodes
meet at the same point. Note that the codimension three locus e0e1e2 =
a1 = P3 = 0 is the same as e0e1e2 = a1 = a3,1 = 0 (see (2.51)). Here P3 =
a33,1 − a1a2,1a

2
3,1 + a21a3,1a4,2 − a31a6,3 = 0.

After three blow ups, we end up with four resolutions T ±
± . The network of

resolutions is given in Figure 7. The fiber enhancements in codimension two
and three loci are summarized in Figure 6.

In the SU(4) network of resolutions, the red lines are the flops induced
by the Z2 automorphism (2.4) of E0. The blue line indicates that the two
varieties are isomorphic to each other and will therefore be identified as one
resolution. See section B.4.1 for a detailed discussion. The fiber enhance-
ments are summarized in Appendix B, Tables B1 and B2.
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SU(4)
1

11

1

1

I5

1

1

1

1

I4 2

11

1

1 1

I∗1

2

11

1 1

I∗0 2

11

2

I⋆+0

codim 1 codim 2 codim 3

a1 = 0P4 = 0

a1 = 0 P4 = 0

a22,1 − 4a4,2 = 0

Figure 6: The fiber enhancements over the divisor e0e1e2e3 = 0 for the
resolved SU(4) model T ±

± . Even though the splittings of the nodes are dif-
ferent for the four resolutions, the fiber enhancements are the same. See
Table B1 and B2 for the splittings of the nodes. Over e0e1e2e3 = a1 =
a22,1 − 4a4,2 = 0, we found a non-Kodaira type fiber I∗+0 , which is a degen-
eration of I∗0. Note that the codimension three locus e0e1e2e3 = a1 = P4 = 0
is the same as e0e1e2e3 = a1 = a4,2 = 0 (see (B.38)). Here P4 = −a24,2 −
a1a3,2a4,2 + a21a6,4 = 0.
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T +
−

T +

T +
+

B+

E0 E1 B

B−

T −
+

T −

T −
−

flop

(r,
e2|e3

)

(x, e2 |e3)

flop
(x, y, e0|e1) (x, y, e1|e2)

(y
, e
1
|e 2
)

(s, e
1 |e

2 )

(y,
e1|e3)

(s, e1 |e3 )

(x,
e2|e3

)

(r, e2 |e3)

Figure 7: The network of resolutions for the SU(4) model. Each letter stands
for a (partial) resolution and each arrow stands for a blow up. For the SU(4)
model, one needs to blow up three time to completely resolve the singularity.
The red lines are the flops induced by the Z2 automorphism (2.4) in the
Mordell-Weil group. The blue line indicates that the two resolutions are
identified as a single one (see Section B.4.1). After the identifications, we
end up with four resolutions T ±

± for the SU(4) model. Later on we will
identify this network of resolutions with the SU(4) Coulomb branch (see
Figure 12).
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3. Gauge theory: Coulomb branches of 5d N = 1 Gauge
theories

In this section we discuss the 5d N = 1 theories arising from M-theory com-
pactification on elliptic Calabi-Yau threefolds of the type IsN , corresponding
to gauge group SU(N). We will not discuss the explicit prepotential or the
5d Chern-Simons term, but focus on the Coulomb branch from a purely
representation theory aspect. We will mainly follow [4].

Consider 5d N = 1 gauge theory with a vector multiplet in gauge group
G = SU(N) and massless hypermultiplets in representations Ra, where a
labels different representations. We will restrict ourselves to the case where
the Ra are the fundamental representation ( ), the two-index antisym-

metric representation ( ), and their conjugates. These are the represen-

tation arising from the rank one enhancements SU(N) → SU(N + 1) and
SU(N) → SO(2N), respectively. The numbers for each such representations
will be assumed to be nonzero but otherwise unconstrained.

In the 5d SU(N) N = 1 vector multiplet, there is a real adjoint scalar
φ parametrizing the Coulomb branch. Modding out the residual gauge sym-
metry, the Coulomb branch is described by the fundamental chamber, i.e.
the dual of Cartan subalgebra modulo Weyl reflections, which we will denote
by C,

C : = fundmanetal chamber =
{
φ
∣∣ φ · αi ≥ 0, αi = simple root

}
= Coulomb branch.

In C we will associate to each weight w in the representation Ra a codimen-
sion one wall Ww ⊂ C defined by4

wall : Ww :=
{
φ ∈ C

∣∣∣ φ · w = 0
}
⊂ C.(3.53)

On the Coulomb branch where φ acquires a vev, the 5d supersymmetry
induces the following mass terms to the hypermultiplet

(φ · w)2|Qw|2 + (φ · w̄)2|Q̃w̄|2(3.54)

where Qw and Q̃w̄ are the two complex scalars in the hypermultiplet with
weights w and w̄ (the conjugate of w). Therefore at the wall Ww, the matter

4The wall defined here is a codimension one hypersurface on the Coulomb branch
where some matter scalars become massless. This is not to be confused with the
boundary of the Coulomb branch where some of the W -bosons become massless.
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scalars Qw and Q̃w̄ become massless and we can activate their vevs to go
to the Coulomb-Higgs branch. That is, the codimension one walls are the
intersections of the Coulomb and Coulomb-Higgs branches.

The main object we will study on the gauge theory side is the parti-
tioning of the Coulomb branch C into several subchambers separated by the
walls Ww (3.53). In the following we will consider three explicit examples.

3.1. SU(2) with 2

The fundamental chamber in this case is a half line,

C = R≥0.(3.55)

The relevant representation is the fundamental representation 2 from the
rank one enhancement SU(2) → SU(3). There are two weights in 2. For
rank one, φ · w is a scalar product so it is zero if and only if φ or w is zero.
Since the weights for 2 are both nonzero, the walls are just the origin O of
the fundamental chamber, φ = 0. The SU(2) Coulomb branch is shown in
Figure 8.

3.2. SU(3) with 3

Let us denote the simple roots by αi, i = 1, 2, normalized such that |αi|2 = 2.
Let μi be the fundamental weights such that μi · αj = δij . The fundamental
chamber C is spanned by the two fundamental weights μi with non-negative
coefficients,

C : R≥0 μ
1 + R≥0 μ

2.(3.56)

The relevant representation here is the fundamental representation 3
from the rank one enhancement SU(3) → SU(4), with weights

w1 = [1 0], w2 = [−1 1], w3 = [0− 1].(3.57)

Let

φ = φ1μ
1 + φ2μ

2 ∈ C, φ1,2 ≥ 0,(3.58)
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be a general point in the fundamental chamber C. The inner products φ · w
can then be computed as5

φ · w1 =
1

3
(2φ1 + φ2),

φ · w2 =
1

3
(−φ1 + φ2),

φ · w3 =
1

3
(−φ1 − 2φ2).

(3.59)

Since φ1,2 ≥ 0, the inner products φ · w1 and φ · w3 are never zero except
at the origin O. It follows that these walls Ww1

, Ww3
do not divide the

fundamental chamber C. The only nontrivial wall is

Ww2
: φ1 = φ2,(3.60)

dividing the SU(3) Coulomb branch C into two subchambers, which we
will call C+ and C−. At the wall Ww2

, some hypermultiplet scalars becomes
massless so Ww2

is the intersection between the Coulomb and the Coulomb-
Higgs branch. The SU(3) Coulomb branch is shown in Figure 10.

3.3. SU(4) with 4 and 6

Let us denote the simple roots by αi, i = 1, 2, 3 and the fundamental weights
by μi. The fundamental chamber C is spanned by μi with non-negative
coefficients,

C = R≥0μ
1 + R≥0μ

2 + R≥0μ
3.(3.61)

The relevant representations are 4 and 6 from the rank one enhance-
ments SU(4) → SU(5) and SU(4) → SO(8), respectively. Out of the ten
weights w4

p , w
6
q , p = 1, . . . , 4, q = 1, . . . , 6, in 4 and 6, there are two weights

w4
2 , w

4
3 from 4 and two weights w6

3 , w
6
4 from 6 giving vanishing φ · w in the

bulk of the fundamental chamber C. Their Dynkin labels are

w4
2 = [−1 1 0], w4

3 = [0 − 1 1],

w6
3 = [−1 0 1], w6

4 = [1 0 − 1].
(3.62)

Note that w6
4 = −w6

3 so they define the same wall.

5Recall that the inner product between fundamental weights is given by the
inverse of the Cartan matrix, μi · μj = (A−1)ij . Here our normalization is |αi|2 = 2
and the Cartan matrix is defined by Aij = 2αi · αj/|αi|2.
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If we parametrize φ by

φ = φ1μ
1 + φ2μ

2 + φ3μ
3 ∈ C(3.63)

with φ1,2,3 ≥ 0, the four weights (3.62) define the following three nontrivial
walls in the fundamental chamber C,

W+ := Ww4
2
: φ · w4

2 =
1

4
(−φ1 + 2φ2 + φ3) = 0,

W 0 := Ww6
3
: φ · w6

3 =
1

4
(−φ1 + φ3) = 0,

W− := Ww4
3
: φ · w4

3 =
1

4
(−φ1 − 2φ2 + φ3) = 0.

(3.64)

For notational simplicity, we have renamed Ww4
2
, Ww6

3
, Ww4

3
as W+,

W 0, W−, respectively. As shown in Figure 12, these three walls divide the
Coulomb branch C into four subchambers, C+

− , C+
+ , C−

+ , C−
− .

The three walls intersect at a single line, which we will denote by L,

L = W+ ∩W 0 ∩W− : φ2 = −φ1 + φ3 = 0.(3.65)

Since φ2 = 0, L lies on the boundary of the fundamental chamber C. This
will be a crucial fact as we study the vanishing nodes of the fiber.

To summarize, the SU(4) Coulomb branch C is divided by three walls
W+, W 0, W− into four subchambers C+

− , C+
+ , C−

+ , C−
− , and the three walls

intersect at a line L. The SU(4) Coulomb branch is shown in Figure 12.
In the next section, we will see the partitioning of the Coulomb branch

exactly matches with the topology of the network of resolutions.

4. The correspondence: networks of resolutions and
Coulomb branches

We will now demonstrate the one-to-one correspondence between resolu-
tions in the network and the subchambers in the Coulomb branch. This
correspondence also holds between partial resolutions with walls and their
intersections. Furthermore, flops transitions between different resolutions
are realized as transitions between different subchambers by reflections with
respect to certain walls on the Coulomb branch (not to be confused with the
Weyl reflections). We have the following dictionary between the Coulomb
branch (left) and the network of resolutions (right):
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Coulomb branch ⇐⇒ Network of Resolutions
Subchamber ⇐⇒ Resolution

Walls and their intersections ⇐⇒ Partial resolutions
Moving on to the walls or their intersections ⇐⇒ Blowing down

Reflection ⇐⇒ Flop

In the following we will study three explicit examples to demonstrate
this correspondence.

4.1. SU(2)

O C

Figure 8: The SU(2) Coulomb branch.

E0 E1

©

0d 1d

Figure 9: The SU(2) network of resolutions. The singular fiber of the reso-
lution is drawn in the second row where the affine node C0 is always ignored.
In this case we have the nodal curve for E0 and the (affine) SU(2) Dynkin
diagram as the fiber for E1. The identifications with the Coulomb branch
are given by E1 = C and E0 = O.

In the SU(2) model, we only need to do one blow up and this is consistent
with the fact that the SU(2) Coulomb branch has real dimension one. The
Coulomb branch C is a half line and there is no nontrivial wall dividing it.
This corresponds to the fact that the crepant resolution E1 → E0 is unique.
We hence have the following identification,

C = E1.(4.66)

By blowing down E1 to the singular Weierstrass model E0, correspondingly
on the gauge theory side we move from the bulk of the Coulomb branch C
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to the origin O. Hence the origin O is identified with E0,

O = E0.(4.67)

We summarize the identifications for the SU(2) model in Table 2.

SU(2):

Network of Resolutions Coulomb Branch

1d E1 C
0d E0 O

Table 2: identifications between the resolution and the (in this case only
one) subchamber on the Coulomb branch of the SU(2) model.

4.2. SU(3)

In the SU(3) model, we need to do two blow ups and the Coulomb branch
is indeed of real dimension two. While the first blow up E1 → E0 is unique,
there are two options for the second blow up leading to T + and T −. On the
gauge theory side, there are two subchambers C+ and C− on the Coulomb
branch and these are thus identified with the two resolutions,

C± = T ±.(4.68)

O
C+

C−

μ1

μ2

Ww2 C− C+
Ww2

Figure 10: Left: The SU(3) Coulomb branch. It is spanned non-negatively
by the two vectors μ1 and μ2. The wall Ww2

divides the Coulomb branch
into two subchambers C±. Right: The two subchambers C± intersect at a
line Ww2

.
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This identification is consistent with the intersection of the two sub-
chambers C± in the following sense. On the gauge theory side, the two sub-
chambers C± intersect at a line (wall) Ww2

(see Figure 10),

Ww2
= C+ ∩ C−.(4.69)

Correspondingly on the geometry side, the two resolutions T ± can meet

T +

E0 E1

T −

©—© ©—©
0d 1d 2d

flop

Figure 11: The SU(3) network of resolutions. The singular fiber for each
(partial) resolution is shown in the second row, where the affine node C0 is
always ignored. The identifications with the Coulomb branch are given by
T ± = C±, E1 = Ww2

, and E0 = O. The flop is realized as the reflection with
respect to the line Ww2

on the Coulomb branch.

with each other at E1 by blowing down (see Figure 11). We thus have the
identification in codimension one,

Ww2
= E1.(4.70)

Finally, blowing down E1 to E0 corresponds to going along the line (wall)
Ww2

to the origin O of the Coulomb branch. Hence

O = E0.(4.71)

We summarize the identifications for the SU(3) model in Table 3.
As a further consistency check, we first note that the singular fiber for

the partial resolution E1 is already the full affine SU(3) Dynkin diagram
(see (2.46)). This implies the corresponding line (wall) Ww2

should not lie
on the boundary of the Coulomb branch (the two black lines in Figure 10)
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SU(3):

Network of Resolutions Coulomb Branch

2d T + C+

2d T − C−

1d E1 Ww2

0d E0 O

Table 3: identifications between (partial) resolutions and subchambers C±

or the wall Ww2
on the Coulomb branch of the SU(3) model.

where part of the non-abelian gauge symmetries is restored. This is indeed
the case as Ww2

lies in the bulk of the Coulomb branch C (see Figure 10).
The flop transition is also beautifully identified as the reflection on the

Coulomb branch. The flop induced by the Z2 automorphism (2.4) in the
Mordell-Weil group exchanges T +

± with T −
± ,

T + T −,
flop

which corresponds to the reflection with respect to the wall W 0 on the
Coulomb branch,

C+ C−.reflection

Ww2

4.3. SU(4)

In the SU(4) model, we need three blow ups and the Coulomb branch
is indeed of real dimension three. There are four subchambers C±

± on the
Coulomb branch shown as tetrahedrons in Figure 12 with vertices

C+
− : (�+, �, p+, O), C+

+ : (p+, �, p0, O),

C−
+ : (p0, �, p−, O), C−

− : (�−, �, p−, O),
(4.72)

extending infinitely from the apex O. They are identified with the four res-
olutions T ±

± in Figure 13,

C±
± = T ±

± .(4.73)

This identifications are consistent with the intersections between C±
± . For

example on the geometry side, we can blow down T +
+ and T +

− to the par-
tial resolution T + or blow down T +

+ and T −
+ to the partial resolution B.
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However, there is no way to blow down once so that T +
+ can meet with T −

− .
Correspondingly on the gauge theory side, while the subchamber C+

+ share
walls with C+

− and C−
+ , it is not adjacent to C−

− by a codimension one wall.
The intersections for the subchambers C±

± are summarized in the left figure
in Figure 14.

The intersections of the four subchambers give three walls W+, W 0, W−

(see the left figure of Figure 14). They are shown as triangles in Figure 12
with vertices,

W+ = C+
− ∩ C+

+ : (p+, �, O),

W 0 = C+
+ ∩ C−

+ : (p0, �, O),

W− = C−
+ ∩ C−

− : (p−, �, O),

(4.74)

extending infinitely from the apex O. They are identified as the three partial
resolutions in the network in Figure 13,

W+ = T +, W 0 = B, W− = T −.(4.75)

Again the identifications are consistent with the intersections of the walls in
the following sense. The three walls intersect at a single line L rather than
pairwise at three lines (see Figure 12 or the right figure of Figure 14),

L = W+ ∩W 0 ∩W−.(4.76)

On the other hand, by blowing down the three partial resolutions T +, B,
and T −, they indeed meet at a single partial resolution E1 (see Figure 13).
Hence we reach the following identification,

L = E1.(4.77)

Note that the fiber for each of the three partial resolutions is a full affine
SU(4) Dynkin diagram (see (B.33), (B.69), and (B.85)). This is consistent
with the fact that the three walls W+, W 0, W− lie in the bulk of the
Coulomb branch rather than on the boundary.

On the other hand, the fiber for E1 is only an affine SU(3) Dynkin
diagram (see (B.22)). That is, one of the four nodes in the affine SU(4)
Dynkin diagram shrinks when we blow down to the partial resolution E1.
Correspondingly on the gauge theory side, the line L indeed lies on the
boundary of the Coulomb branch. This provides a nontrivial check for the
correspondence.
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μ2

μ3

μ3

�

p−

p+

p0

O

W−

W+

W 0

L

�−

�+ C+
−

C+
+ C−

+

C−
−

W+

W 0

W−

C−
−

C−
+C+

+

C+
−

p0

p−p+

��+ �−

Figure 12: Left: The SU(4) Coulomb branch. It is the three-dimensional
cone spanned non-negatively by the vectors μ1, μ2, μ3. The three walls
W+, W 0, W− are triangles in the above figure with vertices (p+, �, O),
(p0, �, O), and (p−, �, O), respectively, extending infinitely from the apex
O. The three walls divide the Coulomb branch into four subchambers C±

± .
The four subchambers are tetrahedrons in the above figure with vertices
C+
− : (�+, �, p+, O), C+

+ : (p+, �, p0, O), C−
+ : (p0, �, p−, O), C−

− : (�−, �, p−, O)
extending infinitely from the apex O. The three walls intersect at a semi-
infinite line L : (�, O) lying on the bottom of the Coulomb branch, which is
spanned by μ1 and μ3. Right: The two-dimensional projection along L.

T +
−

T +

T +
+

E0 E1 B

T −
+

T −

T −
−

©–© ©–© –© ©–© –©
0d 1d 2d 3d

flop
flop

Figure 13: The SU(4) network of resolutions. The singular fiber for each
(partial) resolution is shown in the second row, where the affine node C0 is
always ignored. The resolutions are identified with the Coulomb branch as
T ±

± = C±
± , T + = W+, B = W 0, T − = W−, E1 = L, and E0 = O. The flops

are realized as reflections with respect to the wall W 0.
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C+
− C+

+ C−
+ C−

−
W+ W 0 W−

W−W+

W 0

L

Figure 14: Intersections in the SU(4) Coulomb branch. Left: Intersections
in codimension zero for the subchambers C±

± . Right: Intersections in codi-
mension one for the walls W+, W 0, W−. The trivalent point means that the
three walls intersect at a single line L. Intersections in higher codimensions
are trivial.

Finally as before, the origin O is identified as the original singular Weier-
strass model E0,

O = E0.(4.78)

We summarized the identifications for the SU(4) model in Table 4.
The flop is realized as reflection as follows. The flop induced by the Z2

automorphism (2.4) in the Mordell-Weil group exchanges T +
± with T −

± ,

T +
± T −

± .
flop

It corresponds to the reflection with respect to the wall W 0,

C+
± C−

± .
reflection

W 0

5. Network of Boxes

In [13] the authors introduce a powerful graphical tool called the box graph
to classify all the subchambers on the Coulomb branch from the representa-
tion theory side. Some of the fibers for the corresponding geometries can also
be predicted from the box graphs.6 In this section we describe our (partial)
resolutions using the box graph technology and confirm the fibers predicted
from the box graph with our explicit calculation from the geometry side.

6Not all the fibers can be predicted from the box graphs. For example, the codi-
mension two fiber of type III in Figure 3 for the SU(2) model cannot be distin-
guished from the type Is2 fiber in the box graph.
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SU(4):

Network of Resolutions Coulomb Branch

3d T +
+ C+

+

3d T +
− C+

−
3d T −

+ C−
+

3d T −
− C−

−
2d T + W+

2d B W 0

2d T − W−

1d E1 L

0d E0 O

Table 4: identifications between (partial) resolutions and subchambers C±
± ,

walls W±,W 0, or the intersection of walls L on the Coulomb branch of the
SU(4) model.

Definition of the box graph

We will focus on the SU(4) model while it can also be applied to the other
models studied in the present paper. Let εi with i = 1, . . . , 4 be the weights
in the fundamental representation of SU(4) and Ci with i = 1, 2, 3 be the
simple roots of SU(4). We have

Ci = εi − εi+1.(5.79)

The traceless condition of SU(4) implies

4∑
i=1

εi = 0.(5.80)

Since we are interested in the general Tate form, both the fundamental
4 and the antisymmetric representation 6 matter fields are present. The
(uncolored) SU(4) box graph with 4 and 6 is shown in Figure 15. The box
labeled by (i, j) corresponds to the weight εi + εj .

Next, we will put color to each of the boxes in the box graph according to
the sign of the inner product φ · w between the corresponding weight w with
the real vector scalar φ. The blue (yellow) boxes stand for weights w with
positive (negative) inner products with φ, which will be called the positive
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(1, 1) (1, 2) (1, 3) (1, 4)

(2, 2) (2, 3) (2, 4)

(3, 3) (3, 4)

(4, 4)

Figure 15: The box graph for the SU(4) model with both the fundamental
and the antisymmetric representations. The box labeled by (i, j) represents
the weight εi + εj where εi, i = 1, . . . , 4, are the weights in the fundamental
representation. The diagonal boxes (i, i) stand for the weights in the funda-
mental representation 4 while the rest of the boxes are the weights in the
antisymmetric representation 6.

(negative) weights. We use dark (light) color for the weights in the antisym-
metric (fundamental) representation. A consistent assignment of signs to the
boxes corresponds to a possible resolution, or equivalently, a subchamber on
the Coulomb branch. The rules for the sign assignment was discussed in
details in [13]. In the SU(4) model, there are four consistent sign assign-
ments for the box graphs shown in Figure 16, corresponding to the four
resolutions T ±

± in Figure 13.

Fibers from box graphs

The fiber enhancement for each resolution can be reproduced from the box
graph. Let us work out the case for T +

+ . We start with the fiber enhancement
over the codimension two locus associated with the fundamental represen-
tation. From the box graph, we see that φ · ε2 > 0 and φ · ε3 < 0. Hence we
can write the simple root C2 as the sum of two positive weights,

C2 = ε2 + (−ε3).(5.81)

Correspondingly on the geometry side, the node C2, which we use the same
notation as the associated simple root, splits into two nodes. This is indeed
what we have seen in Table B1 where C2 → C4 + C5 over the codimension
two locus w = P4 = 0.
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T +

−
T +

+
T −

+
T −

−

flop

flop

Figure 16: The box graphs for the four resolutions T ±
± of the SU(4) models.

Each blue (yellow) box represents a weight w with positive (negative) inner
product with the real scalar φ in the vector multiplet.

Next moving on to the codimension two locus w = a1 = 0 associated
with the antisymmetric representation. From the box graph we see that the
simple root C3 can be written as the sum of three positive weights

C3 = (ε2 + ε3) + (−ε1 − ε4) + C1.(5.82)

Indeed, from the direct blowup result shown in Table B1, we see that the

node C3 splits into C
(1)
3 + C

(2)
3 + C1.

The codimension three fiber enhancement can also be read off from
the box graph. Over the codimension three locus w = a1 = P4 = 0 where
the SU(5) and SO(8) fibers collide, we have the fiber enhancement (5.81)
and (5.82) at the same time. In fact, since ε2 in C2 can be written as the
sum of two positive weights in this codimension three locus,

ε2 = (ε2 + ε3) + (−ε3),(5.83)

it follows that C2 splits into three nodes there. The fiber enhancements over
the codimension three locus w = a1 = P4 = 0 are then

C2 = (ε2 + ε3) + 2(−ε3),(5.84)

C3 = (ε2 + ε3) + (−ε1 − ε3) + C1.(5.85)

Again, this matches with the fiber enhancement obtained directly from the

blowup in Table B1, C2 → C ′
2 + C

(1)
2 + C

(2)
2 , C3 → C ′

2 + C
(1)
3 + C1.



Singularities and Gauge Theory Phases 1219

0

0

0 0

T + B T −

Figure 17: The box graphs for the three partial resolutions T ± and B
in the SU(4) model. Each blue, yellow, or white box stands for a weight
w with positive, negative, or zero inner product with the real scalar φ in
the vector multiplet, respectively. The two zeroes in B are correlated due
to the traceless condition, (ε1 + ε4) + (ε2 + ε3) = 0. On the corresponding
codimension one loci on the Coulomb branch, the hypermultiplet scalars Qw

and Q̃w corresponding to the weights w labeled by 0 are massless, so one
can active their vevs to go the Coulomb-Higgs branch. Hence these partial
resolutions correspond to the Higgs branch roots where the Coulomb-Higgs
branches intersect with the Coulomb branch.

Box graphs for partial resolutions

The partial resolutions can also be represented by the box graph by putting
some of the weights to be zero (Figure 17). For example, the partial resolu-
tion T + has ε3 = 0 and B has (ε1 + ε4) = (ε2 + ε3) = 0. It should be noted
that the number of zeroes does not necessarily represent the codimension
of the corresponding locus on the Coulomb branch because there are some
relations between the weights in the box graph. For example for the partial
resolution B, setting (ε1 + ε4) = 0 implies (ε2 + ε3) = 0 due to the traceless
condition (5.80). Therefore, even though the box graph for B has two zeroes
it still represents a codimension one wall W 0 on the Coulomb branch.

The fiber enhancements for the partial resolutions can also be read off
from the box graph in Figure 17. Let us start with the codimension two
locus w = P4 = 0 associated with the fundamental representation for the
partial resolution T +. The weights in the fundamental representation 4
correspond to the light blue, light yellow, and white boxes on the diagonal
line in Figure 17. In contrast to its final resolution T +

+ , we can no longer
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write any simple root as the sum of two positive weights because the zero
weight ε3 is standing between the positive and negative weights. Indeed,
as can be seen from Sec B.2, the fiber for T + does not enhance over this
codimension two locus w = P4 = 0.

On the other hand, there are no zero weights standing in the way between
positive and negative weights for the antisymmetric weights (dark blue and
dark yellow boxes in Figure 17). Hence, the fiber enhancement over the
codimension two locus w = a1 = 0 associated with the antisymmetric rep-
resentation should be the same as T +

+ . This is indeed the case as one can
check from Sec B.2.

Lastly, we can now relate each (partial) resolution to a box graph and
draw the network of resolutions (see Figure 13) in terms of boxes in Fig-
ure 18.

6. Discussion

Let us summarize our results:

• We present a simple and systematic procedure to resolve SU(N) Weier-
strass models by sequences of blow ups for N = 2, 3, 4. The fiber en-
hancements in codimension two and three are analyzed for each case.
We found the non-Kodaira type fiber I∗+0 in codimension three in the
SU(4) model. Such a fiber was observed before in the study of elliptic
threefolds with the assumption of normal crossing for the components
of the discriminant of the fibration [28]. It can also appear in codimen-
sion two or higher [29]. See also [21] and [30].

• From the network of resolutions one can keep track of the way to blow
down to various partial resolutions along the arrows. Furthermore,
flops are manifest from the ramification of the branches in the network.
Since all the resolutions are obtained by sequences of blow ups, they
are manifestly projective varieties provided the base is projective too.

• In connection with physics, the topology of the network of resolu-
tions has an one-to-one correspondence with the Coulomb branch of
5d N = 1 gauge theory. We explicitly match the subchambers, walls,
and intersections of walls on the Coulomb branch with (partial) reso-
lutions in the network for the Weierstrass model. In addition, flops are
realized as reflections with respect to the walls. This provides a clean
demonstration of phase transitions from a geometric point of view via
M-theory compactification.
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T +

−

0

T +

T +

+

E0 0

0 0

0E1

0

0

B

T −

+

0

T −

T −

−

flopflop

Figure 18: The network of boxes for the SU(4) model. Each box graph
stands for a (partial) resolution of the SU(4) model. Each blue, yellow, or
white box stands for a weight w with positive, negative, or zero inner product
with the real scalar φ in the vector multiplet, respectively.

• Since the singularity structure of the Weierstrass model does not de-
pend on the choice of a specific fundamental line bundle, the total space
does not even have to be Calabi-Yau in particular. In that regard our
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correspondence goes beyond the context of string/M-theory compact-
ification. It suggests a deep connection between small resolutions for
singular Weierstrass models and representation theory.

It would be interesting to study explicitly the network of resolutions
for the other Tate models. For the SU(5) model, a sub-network is already
available from the six resolutions in [18] which are organized as an hexagon
[12, 18]. The full network of resolutions of the SU(5) model should include
all the partial resolutions as well as the known resolutions that are projec-
tive varieties. For example, in addition to the six resolutions of [18], it would
also include the “toric resolutions” of [10, 12, 31], thus clarifying their defi-
nitions in terms of sequences of blow ups. We would also like to extend this
correspondence to the D- and E-series.

Throughout this paper we have only talked about the phase transitions
within the Coulomb branch. It would also be interesting to understand the
conifold transitions [32, 33] from the Coulomb branch into the Coulomb-
Higgs branch in this context to complete the picture. A similar story of
deformation was recently discussed in [34, 35].
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Appendix A. Second blow ups and flop for the
SU(3) model

In this appendix we study the fiber enhancements for the resolved varieties
T ± after the second blow up in the SU(3) model. Recall that after the first
blow up we arrive at the partial resolution E1

E1 : ys = e1Q(A.1)

where s = y + a1x+ a3,1e0 and Q = x3 + a2,1e0x
2 + a4,2e

2
0x+ a6,3e

3
0. To re-

solve the conifold singularity at y = s = e1 = Q = 0 over e0e1 = P3 = 0 (P3



Singularities and Gauge Theory Phases 1223

is defined in (2.51)) on the base B, we can either blow up along the ideal
(y, e1) or the ideal (s, e1). These two resolutions T ± are related by a flop.

A.1. Resolution T + : (y, e1|e2)

By blowing up along (y, e1)

(y, e1) → (e2y, e2e1)(A.2)

we obtain

E0
(x,y,e0|e1)←−−−−−− E1

(y,e1|e2)←−−−−− T +(A.3)

T + : y(e2y + a1x+ a3,1e0) = e1(x
3 + a2,1e0x

2 + a4,2e
2
0x+ a6,3e

3
0),(A.4)

where we have written down the chain of blow ups for T + to keep track
which point in the network of resolutions we are at. The ambient space is
parametrized by the following projective coordinates

[e2e1x : e22e1y : z = 1][x : e2y : e0][y : e1].(A.5)

The original divisor e0 = 0 is now blown up to be e0e1e2 = 0. The nodes
in the fiber over the divisor e2e1e0 = 0 are

C0 : e0 = e2y
2 + a1xy − e1x

3 = 0,

C1 : e1 = e2y + a1x+ a3,1e0 = 0,

C ′
1 : e2 = (a1x+ a3,1e0)y

− e1(x
3 + a2,1e0x

2 + a4,2e
2
0x+ a6,3e

3
0) = 0.

(A.6)

They intersect pairwise at three different points so the fiber is of type I3.
This corresponds to the affine Dynkin diagram for SU(3).

Over the codimension two locus e0e1e2 = P3 = 0 but a1, a3,1 nonzero, we
have simultaneous solution to s(y = 0) = a1x+ a3,1e0 = 0 and Q(x, e0) = 0,
i.e. Q(a3,1,−a1) = 0. Above this locus, we can factor Q as

Q(x, e0) = x3 + a2,1x
2e0 + a4,2xe

2
0 + a6,3e

3
0

= (a1x+ a3,1e0)

(
1

a1
x2 +

a1a2,1 − a3,1
a21

xe0 +
a6,3
a3,1

e20

)
:= (a1x+ a3,1e0)Q̃(x, e0).

(A.7)
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The defining equation for C ′
1 thus becomes

C ′
1 : e2 = (a1x+ a3,1e0)

[
y − e1Q̃(x, e0)

]
= 0.(A.8)

Hence C ′
1 splits into two nodes, which we will call C2, C3:

C ′
1 → C2 + C3,

C2 : [0 : 0 : 1][a3,1 : 0 : −a1][y : e1],

C3 : [0 : 0 : 1][x : 0 : e0][Q̃(x, e0) : 1],

(A.9)

From the intersections of C0, C1, C2, C3 we recognize the fiber to be of type
I4. This is the rank one enhancement from SU(3) → SU(4). Note that this
codimension two locus e0e1e2 = P3 = 0 is precisely the locus of the conifold
singularity (2.50) of the partial resolution E1. After the second blow up, the
singular point (2.50) is blown up to be a full P1 and gives rise to the rank
one enhancement to SU(4).

Over the codimension two locus e0e1e2 = a1 = 0, the three nodes inter-
sect at a single point, C0 ∩ C1 ∩ C ′

1 : e0 = e1 = e2 = 0, so we have the IV
fiber.

Over the codimension three locus e0e1e2 = a1 = a3,1 = 0, we note that
C ′
1 splits into three components

C ′
1 → C1 + C

(1)
2 + C

(2)
2 + C

(3)
2 ,

C1 : e2 = e1 = 0,

[0 : 0 : 1][x : 0 : e0][1 : 0],

C
(i)
2 : e2 = Q(x, e0) = 0,

[0 : 0 : 1][x(i) : 0 : e
(i)
0 ][y : e1], i = 1, 2, 3,

(A.10)

where x(i), e
(i)
0 are the three roots to Q(x, e0) = 0. Also note that the multi-

plicity for C1 is two now. From the intersections of C0, 2C1, C
(1)
2 , C

(2)
2 , C

(3)
2 ,

we recognize the fiber to be of type I∗0.
The fiber enhancements for T + are summarized in Table A1.

A.2. Resolution T − : (s, e1|e2)

For T − we choose to blow up along (s, e1) where s = y + a1x+ a3,1e0. By
replacing

(s, e1) → (e2s, e2e1)(A.11)



Singularities and Gauge Theory Phases 1225

e0e1e2 = 0 e0e1e2 = P3 = 0 e0e1e2 = a1 = 0 e0e1e2 = a1 = a3,1 = 0

C ′1 → C2 + C3 C ′
1 → C1 + C

(1)
2 + C

(2)
2 + C

(3)
2

I3 I4 IV I∗0

C′
1

C1

C0

C3

C2

C1

C0

C0C1

C ′
1

2C1

C
(1)
2C0

C
(2)
2 C

(3)
2

Table A1: The fiber enhancements for T + in the SU(3) model. The trivalent
point for IV means that the three nodes meet at the same point. Here
P3 = a33,1 − a1a2,1a

2
3,1 + a21a3,1a4,2 − a31a6,3 = 0.

and expressing y = s− a1x− a3,1e0, we arrive at T −,

E0
(x,y,e0|e1)←−−−−−− E1

(s,e1|e2)←−−−−− T −(A.12)

T − : (e2s− a1x− a3,1e0)s = e1(x
3 + a2,1e0x

2 + a4,2e
2
0x+ a6,3e

3
0).(A.13)

The ambient space is

[e2e1x : e2e1(e2s− a1x− a3,1e0) : z = 1](A.14)

[x : (e2s− a1x− a3,1e0) : e0][s : e1].

Over the divisor e0e1e2 = 0, we have the following three nodes in the
fiber,

C0 :e0 = (e2s− a1x)s− e1x
3 = 0,

C ′
1 :e1 = e2s− a1x− a3,1e0 = 0,

[0 : 0 : 1][x : 0 : e0][1 : 0],

C1 :e2 = (a1x+ a3,1e0)s

+ e1(x
3 + a2,1e0x

2 + a4,2e
2
0x+ a6,3e

3
0) = 0,

[0 : 0 : 1][x : −a1x− a3,1e0 : e0]

[−(x3 + a2,1e0x
2 + a4,2e

2
0x+ a6,3e

3
0) : a1x+ a3,1e0].

(A.15)

Note that our labeling for the nodes is consistent with that for the T +

resolution, where C1 comes from e1 = s = 0 and C ′
1 corresponds to e1 = y =
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0. Keeping track of the labeling will be important when we discuss the flop
induced by the Z2 automorphism (2.4) from the Mordell-Weil group in the
following.

From here we see that the analysis for T − is identical to the analysis
for T + by exchanging s with −y, the inverse action (2.4). One crucial point
is that the role played by C1 : e1 = y = 0 and C ′

1 : e1 = s = 0 are switched
when compared T − with T +. For example, over e0e1e2 = P3 = 0, it is C1

that splits into two, rather than C ′
1 as would be the case of T +.

We here summarize the fiber enhancement for T − in Table A2. Note
that it is obtained by exchanging C1 with C ′

1 from the fiber enhancement
for T + in Table A1.

e0e1e2 = 0 e0e1e2 = P3 = 0 e0e1e2 = a1 = 0 w = a1 = a3,1 = 0

C1 → C2 + C3 C1 → C ′
1 + C

(1)
2 + C

(2)
2 + C

(3)
2

I3 I4 IV I∗0

C′
1

C1

C0

C3

C2

C′
1

C0

C0C1

C ′
1

2C′
1

C
(1)
2C0

C
(2)
2 C

(3)
2

Table A2: The fiber enhancements for T − in the SU(3) model. It can be
obtained from the fiber enhancements for T + (Table A1) by switching C1 ←
C ′
1. The trivalent point for IV means that the three nodes meet at the same

point. Here P3 = a33,1 − a1a2,1a
2
3,1 + a21a3,1a4,2 − a31a6,3 = 0.

Appendix B. Small Resolutions and flops for the
SU(4) model

The SU(4) model is defined by [16, 17]

y2 + a1xy + a3,2e
2
0y = x3 + a2,1e0x

2 + a4,2e
2
0x+ a6,4e

4
0.(B.16)

As before, one can check that the singularities of the total space are sup-
ported on:

x = y = e0 = 0.(B.17)
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B.1. Partial resolution E1 : (x, y, e0|e1)

We blow up along (x, y, e0) by replacing

(x, y, e0) → (e1x, e1y, e1e0),(B.18)

in E0 and factoring out the exceptional divisor e1. The first partial resolution
E1 is

(B.19) E0 E1,
(x, y, e0|e1)

E1 : y
2 + a1xy + a3,2e1e

2
0y(B.20)

= e1x
3 + a2,1e1e0x

2 + a4,2e1e
2
0x+ a6,4e

2
1e

4
0.

The ambient space is parametrized by the following projective coordinates

[e1x : e1y : z = 1][x : y : e0].(B.21)

Description of the fiber. We have the following three nodes C0, C1, C
′
1

over the divisor e1e0 = 0:

C0 : e0 = y2 + a1xy − e1x
3 = 0,

C1 : e1 = y + a1x = 0,

C ′
1 : e1 = y = 0.

(B.22)

From the intersections we see that it is a I3 fiber. Recall that in the SU(4)
model there are supposed to be four nodes in the affine Dynkin diagram. In
the partial resolution E1 above, we only have three nodes, which is one less
than what we would have in the fiber of the fully resolved varieties. It follows
that on the Coulomb branch, the line L corresponding to E1 should be on
the boundary of the fundamental chamber where part of the non-abelian
symmetry is restored. This is indeed the case as can be seen from the SU(4)
Coulomb branch in Figure 12.

After the second blow up, we will recover the vanishing node. On the
gauge theory side, this corresponds to moving off the line L to the bulk of
the Coulomb branch.

Conifold singularity. We can write E1 as

E1 : ys = e1Q(B.23)
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where

s(x, y, e0, e1) = y + a1x+ a3,2e1e
2
0,(B.24)

Q(x,w, e1) = x3 + a2,1e0x
2 + a4,2e

2
0x+ a6,4e1e

4
0.(B.25)

There is a conifold singularity at

y = e1 = a1x = x3 + a2,1e0x
2 + a4,2e

2
0x = 0.(B.26)

Over a general point on the divisor e0e1 = 0, the conifold singularity is at

y = e1 = x = 0.(B.27)

Over the codimension two locus e0e1 = a1 = 0, on the other hand, the coni-
fold singularity is at

y = e1 = x(x2 + a2,1e0x+ a4,2e
2
0) = 0.(B.28)

To resolve the conifold singularity, we have the following three options
for the second blow up: T + : (y, e1), B : (x, y, e1), and T − : (s, e1). We will
explore these options separately in the following sections.

B.2. Partial resolution T + : (y, e1|e2)

We start with the T + resolution by replacing

(y, e1) → (e2y, e2e1).(B.29)

The partially resolved variety T + is then

E0
(x,y,e0|e1)←−−−−−− E1

(y,e1|e2)←−−−−− T +(B.30)

T + : y(e2y + a1x+ a3,2e
2
0e1e2)(B.31)

= e1(x
3 + a2,1e0x

2 + a4,2e
2
0x+ a6,4e1e2e

4
0).

The ambient space is parametrized by the following projective coordinates

[e2e1x : e22e1y : z = 1][x : e2y : e0][y : e1].(B.32)
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Description of the fiber. Over the divisor e0e1e2 = 0, we have the fol-
lowing four nodes in the fiber,

C0 : e0 = e2y
2 + a1xy − e1x

3 = 0,

C1 : e1 = e2y + a1x = 0,

C2 : e2 = x = 0,

C3 : e2 = a1y − e1(x
2 + a2,1e0x+ a4,2e

2
0) = 0.

(B.33)

From the intersections we recognize the fiber to be of type I4, which is the
affine Dynkin diagram for SU(4). As advertised before, we recover all the
affine Dynkin nodes in the second blow up. On the gauge theory side, the
corresponding wall W+ indeed lies in the bulk of the Coulomb branch (see
Figure 12) where all the Dynkin nodes are present.

Conifold singularity. Let us rewrite the second blow up space T + as

T + : xr = e2t(B.34)

where

r(x, y, e0, e1) = a1y − e1x
2 − a2,1e1e0x− a4,2e1e

2
0,(B.35)

t(y, e0, e1) = −y2 − a3,2e
2
0e1y + a6,4e

2
1e

4
0.(B.36)

There is a conifold singularity at

x = e2 = a1y − a4,2e1e
2
0 = −y2 − a3,2e

2
0ye1 + a6,4e

2
1e

4
0 = 0.(B.37)

It has solution only if

P4 = −a24,2 − a1a3,2a4,2 + a21a6,4 = 0.(B.38)

(In deriving the above equation we assumed a1 �= 0. However if we assume
a1 = 0, this implies a4,2 = 0 so also satisfies the above condition.) Recall
that P4 is the leading term in the second component of the discriminant for
E0 (see (2.18)).

There are two options for the third blow up: T +
+ : (x, e2) and T − :

(r, e2). Naively, one might also want to blow up along the ideal (x, r, e2).
However, this resolution is not small. In fact, one of the fiber component is
a P2 rather than a P1 (node). We will therefore not consider this possibility.
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B.2.1. Resolution T +
+ (x, e2|e3). To resolve the conifold singularity, we

blow up along the ideal (x, e2)

(x, e2) → (e3x, e3e2),(B.39)

arriving at the resolved variety T +
+ ,

E0
(x,y,e0|e1)←−−−−−− E1

(y,e1|e2)←−−−−− T + (x,e2|e3)←−−−−− T +
+(B.40)

T +
+ : x(a1y − e1e

2
3x

2 − a2,1e1e0e3x− a4,2e1e
2
0)(B.41)

= e2(−y2 − a3,2e
2
0e1y + a6,4e

2
1e

4
0).

The ambient space is

[e23e2e1x : e23e
2
2e1y : z = 1][e3x : e3e2y : e0][y : e1][x : e2].(B.42)

One can check that T +
+ is a nonsingular variety for dimCB ≤ 3 so we do

not need to do any further blow up.

Fiber enhancements. The divisor now is blown up to be e0e1e2e3 = 0,
over which we have the following four nodes

C0 : e0 = a1xy − e1e
2
3x

3 + e2y
2 = 0,

C1 : e1 = a1x+ e2y = 0,

C2 : e3 = (a1y − a4,2e1e
2
0)x+ e2(y

2 + a3,2e
2
0e1y − a6,4e

2
1e

4
0) = 0,

C3 : e2 = a1y − e1e
2
3x

2 − a2,1e1e0e3x− a4,2e1e
2
0 = 0.

(B.43)

From the intersections we recognize the fiber to be of type I4. This is the
affine Dynkin diagram for SU(4).

We label the nodes Ci by their position in the affine SU(4) Dynkin
diagram rather than the order of blow ups. This is for later convenience when
we compare the fibers between different resolutions. Note that C1 : e1 = s =
0, C2 : e3 = 0 (the exceptional divisor for e2 = x = 0), C3 : e2 = r = 0 (the
exceptional divisor for e1 = y = 0).

Over the codimension two locus e0e1e2e3 = P4 = 0 but a1, a4,2 �= 0, we
have the following factorization

y2 + a3,2e
2
0e1y − a6,4e

2
1e

4
0(B.44)

=
1

a1a4,2
(a1y − a4,2e

2
0e1)(a4,2y + a1a6,4e

2
0e1)
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in C2. Hence C2 becomes

C2 : e3 = (a1y − a4,2e
2
0e1)

[
a1a4,2x+ e2(a4,2y + a1a6,4e

2
0e1)

]
= 0.(B.45)

That is, C2 splits into two components, C4, C5

C2 → C4 + C5,(B.46)

C4 : e3 = a1y − a4,2e
2
0e1 = 0,(B.47)

C5 : e3 = a1a4,2x+ e2(a4,2y + a1a6,4e
2
0e1) = 0.(B.48)

Including other fibers, we have the following five nodes in the fiber over
e0e1e2e3 = P4 = 0

C0 : e0 = a1xy − e23e1x
3 + e2y

2 = 0,

C1 : e1 = a1x+ e2y = 0,

C4 : e3 = a1y − a4,2e
2
0e1 = 0,

C5 : e3 = a1a4,2x+ e2(a4,2y + a1a6,4e
2
0e1) = 0,

C3 : e2 = a1y − e1e
2
3x

2 − a2,1e1e0e3x− a4,2e1e
2
0 = 0,

(B.49)

From the intersections we recognize the fiber to be of type I5. This corre-
sponds to the rank one enhancement SU(4) → SU(5) in codimension two.

Over the codimension two locus e0e1e2e3 = a1 = 0, C3 against splits into

three components, C1, C
(i)
3 , i = 1, 2. The fibers are

C0 : e0 = −e23e1x
3 + e2y

2 = 0,

C1 : e1 = e2 = 0 (with multiplicity 2),

C2 : e3 = −a4,2e1e
2
0x+ e2(y

2 + a3,2e
2
0ye1 − a6,4e

2
1e

4
0) = 0,

C
(i)
3 : e2 = e23x

2 + a2,1e0e3x+ a4,2e
2
0 = 0, i = 1, 2.

(B.50)

From the intersections we see that it is the I∗0 fiber. This corresponds to the
rank one enhancement SU(4) → SO(8) in codimension two.

Over e0e1e2e3 = a1 = a22,1 − 4a4,2 = 0, e23x
2 + a2,1e0e3x+ a4,2e

2
0 = 0 has

a double root so the two C
(i)
3 of coincide, and we end up with the non-

Kodaira I∗+0 fiber.
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Over the codimension two locus e0e1e2e3 = a1 = a4,2 = 0, C2 splits into

three components, C ′
2, C

(1)
2 , C

(2)
2

C2 → C ′
2 + C

(1)
2 + C

(2)
2 ,

C ′
2 : e2 = e3 = 0,

C
(i)
2 : e3 = y2 + a3,2e

2
0ye1 − a6,4e

2
1e

4
0 = 0, i = 1, 2.

(B.51)

C3 splits into C1, C
(i)
3 , where C

(i)
3 become

C
(1)
3 : e2 = e3x+ a2,1e0 = 0 and C

(2)
3 = C ′

2 : e2 = e3 = 0.(B.52)

In total, we have the following nodes in the fiber over e0e1e2e3 = a1 =
a4,2 = 0,

C0 : e0 = −e23e1x
3 + e2y

2 = 0,

C1 : e1 = e2 = 0 (with multiplicity 2),

C ′
2 : e2 = e3 = 0 (with multiplicity 2),

C
(i)
2 : e3 = y2 + a3,2e

2
0e1y − a6,4e

2
1e

4
0 = 0, i = 1, 2,

C
(1)
3 : e2 = e3x+ a2,1e0 = 0.

(B.53)

From the intersections we recognize the fiber to be of type I∗1.
We summarize the fiber enhancements for T +

+ in Table B1.

w = 0 w = P4 = 0 w = a1 = 0 w = a1 = a4,2 = 0 w = a1 = a22,1 − 4a4,2 = 0

C2 → C4 + C5 C3 → C1 + C
(1)
3 + C

(2)
3

C2 → C ′
2 + C

(1)
2 + C

(2)
2

C3 → C1 + C
(1)
3 + C ′

2

C3 → C1 + 2C
(1)
3

I4 I5 I∗0 I∗1 I∗+0

C3

C2

C1

C0

C3

C4C5

C1

C0

2C1

C2C0

C
(1)
3 C

(2)
3

2C1

2C ′
2

C
(1)
3C0

C
(1)
2 C

(2)
2

2C1

C2C0

2C
(1)
3

Table B1: The fiber enhancements for T +
+

∼= B+ in the SU(4) model. The
fiber enhancements for T −

+
∼= B− are obtained by exchanging C1 with C3

from T +
+

∼=B+. Here w=e0e1e2e3 and P4=−a24,2−a1a3,2a4,2+a21a6,4=0.
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B.2.2. Resolution T +
− : (r, e2|α, β). Recall that T + takes the follow-

ing form with manifest conifold singularity,

T + : xr = e2t,(B.54)

where r=a1y−e1x
2−a2,1e1e0x−a4,2e1e

2
0 and t=−y2−a3,2e

2
0e1y+a6,4e

2
1e

4
0.

Let us now explore the other option for the third blow up, T +
− : (r, e2|α, β).

Rather than introducing the parameter e3 for the third exceptional divi-
sor, we will explicitly use the homogeneous coordinates [α : β]7 for the extra
P1 we introduce for the third blow up. The blow up space T +

− can then be
described by

E0
(x,y,e0|e1)←−−−−−− E1

(y,e1|e2)←−−−−− T + (r,e2|α,β)←−−−−−− T +
−(B.55)

T +
− :

{
αe2 − β(a1y − e1x

2 − a2,1e1e0x− a4,2e1e
2
0) = 0,

αx+ β(y2 + a3,2e
2
0e1y − a6,4e

2
1e

4
0) = 0,

(B.56)

where the second equation is the collinear condition between α, β and r, e2.
The ambient space is parametrized by the following projective coordinates

[e2e1x : e22e1y : z = 1][x : e2y : e0][y : e1][α : β].(B.57)

One can check that T +
− is a nonsingular variety so we do not need to do

any further blow up.

Fiber enhancements. Over the codimension one divisor e0e1e2 = 0, we
have the following four fibers

C0 : e0 = αe2 − βa1y + βe1x
2 = αx+ βy2 = 0,

C1 : e1 = αe2 − βa1y = αx+ βy2 = 0,

C2 : e2 = β = x = 0,

C3 : e2 = a1y − e1(x
2 + a2,1e0x+ a4,2e

2
0)

= αx+ β(y2 + a3,2e
2
0e1y − a6,4e

2
1e

4
0) = 0.

(B.58)

From the intersections we see that it is the I4 fiber. Note that we label the
Ci in the same way as T +

+ .

7α, β are the projective coordinates that we would have called r̄, ē2 according to
our notations. However, to simplify the notation, we will use α, β instead.
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Over e0e1e2 = P4 = 0 but a1, a4,2 being nonzero, C3 becomes

C3 : e2 = a1y − e1(x
2 + a2,1e0x+ a4,2e

2
0)(B.59)

= a1a4,2αx+ β(a1y − a4,2e
2
0e1)(a4,2y + a1a6,4e

2
0e1) = 0.

We can rewrite it as

C3 : e2 = a1y − e1(x
2 + a2,1e0x+ a4,2e

2
0)(B.60)

= a21a4,2αx+ βe21x(x+ a2,1e0)
[
a4,2x

2

+ a4,2a2,1e0x+ (a24,2 + a21a6,4)e
2
0

]
= 0.

Hence C3 splits into three components

C3 → C4 + C5,

C4 : e2 = a1y − a4,2e1e
2
0 = x = 0,

C5 : e2 = a1y − e1(x
2 + a2,1e0x+ a4,2e

2
0)

= a21a4,2α+ βe21(x+ a2,1e0)
[
a4,2x

2

+ a4,2a2,1e0x+ (a24,2 + a21a6,4)e
2
0

]
= 0.

(B.61)

Hence we have five nodes, C0, C1, C2, C4, C5, in the fiber over the codi-
mension two locus e0e1e2 = P4 = 0. From the intersections we recognize
the fiber to be of type I5. This corresponds to the rank one enhancement
SU(4) → SU(5).

Over e0e1e2 = a1 = 0, C3 : e2 = e1(x
2 + a2,1e0x+ a4,2e

2
0) = αx+ β(y2 +

a3,2e
2
0e1y − a6,4e

2
1e

4
0) = 0 splits into three components

C3 → C1 + C
(i)
3 ,

C1 : e2 = e1 = αx+ βy2 = 0,

C
(i)
3 : e2 = x2 + a2,1e0x+ a4,2e

2
0

= αx+ β(y2 + a3,2e
2
0e1y − a6,4e

2
1e

4
0) = 0, i = 1, 2,

(B.62)

where C
(i)
3 corresponds to the two roots of x2 + a2,1e0x+ a4,2e

2
0 = 0. In total,

we have the following nodes in the fiber over e0e1e2 = a1 = 0
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C0 : e0 = αe2 + βe1x
2 = αx+ βy2 = 0,

2C1 : e1 = e2 = αx+ βy2 = 0 ,

C2 : e2 = β = x = 0,

C
(i)
3 : e2 = x2 + a2,1e0x+ a4,2e

2
0

= αx+ β(y2 + a3,2e
2
0e1y − a6,4e

2
1e

4
0) = 0, i = 1, 2.

(B.63)

From the intersections we recognize the fiber to be of type I∗0.
Over e0e1e2 = a1 = a22,1 − 4a4,2 = 0, C

(1)
3 = C

(2)
3 and it becomes the non-

Kodaira I∗+0 fiber.
Over the codimension two locus e0e1e2 = a1 = a4,2 = 0, C3 : e2 =

e1x(x+ a2,1e0) = αx+ β(y2 + a3,2e
2
0e1y − a6,4e

2
1e

4
0) = 0 becomes

C3 → C1 + C2 + C
(1)′

3 + C
(2)′

3 + C ′
3,

C1 : e1 = e2 = αx+ βy2 = 0,

C2 : e2 = x = β = 0,

C
(i)′

3 : e2 = x = y2 + a3,2e
2
0e1y − a6,4e

2
1e

4
0 = 0,

C ′
3 : e2 = x+ a2,1e0 = αx+ β(y2 + a3,2e

2
0e1y − a6,4e

2
1e

4
0) = 0.

(B.64)

In total, we have the following nodes in the fiber over e0e1e2 = a1 = a4,2 = 0,

C0 : e0 = αe2 + βe1x
2 = αx+ βy2 = 0,

C1 : [0 : 0 : 1][x : 0 : e0][1 : 0][1 : −x] with multiplicity 2,

C2 : [0 : 0 : 1][0 : 0 : 1][y : e1][1 : 0] with multiplicity 2,

C
(i)′

3 : [0 : 0 : 1][0 : 0 : 1][y(i) : e
(i)
1 ][α : β],

C ′
3 : [0 : 0 : 1][−a2,1 : 0 : 1][y : e1][y

2 + a3,2e1y − a6,4e
2
1 : a2,1].

(B.65)

From the intersections we recognize the fiber to be of the type I∗1.
We summarize the fiber enhancements for T +

− in Table B2.
This completes the analysis from the partial resolution T +. In the fol-

lowing we will return to another option for the second blow up, T − : (s, e1).

B.3. Partial resolution T − : (s, e1|e2)

The partial resolution T − is related to T + by the inverse action (2.4)
induced by the Z2 automorphism in the Mordell-Weil group, hence the anal-
ysis will be identical to T + by exchanging y with −s = −y − a1x− a3,2e1e

2
0.
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w = 0 w = P4 = 0 w = a1 = 0 w = a1 = a4,2 = 0 w = a1 = a22,1 − 4a4,2 = 0

C3 → C4 + C5 C3 → C1 + C
(1)
3 + C

(2)
3 C3 → C1 + C2 + C

(1)′

3 + C
(2)′

3 + C ′
3 C3 → C1 + 2C

(1)
3

I4 I5 I∗0 I∗1 I∗+0

C3

C2

C1

C0

C5

C4C2

C1

C0

2C1

C2C0

C
(1)
3 C

(2)
3

2C1

2C2

C ′
3C0

C
(1)′
3 C

(2)′
3

2C1

C2C0

2C
(1)
3

Table B2: The fiber enhancements for T +
− in the SU(4) model. The fiber

enhancements for T −
− are obtained by exchanging C1 with C3 from T +

− .
Here w = e0e1e2 because we did not introduce e3 for T +

− and P4 = −a24,2 −
a1a3,2a4,2 + a21a6,4 = 0.

Geometrically, this corresponds to switching the nodes C1 : e1 = s = 0 with
C3 : e2 = r = 0 in T +. Note that C3 in T + comes from e1 = y = 0 in E1,
so the inverse action indeed exchanges y with −s. We will not repeat the
details of the analysis as it is similar to T +.

The partial resolution T − is

E0
(x,y,e0|e1)←−−−−−− E1

(s,e1|e2)←−−−−− T −(B.66)

T − :

{
ys = e1(x

3 + a2,1e0x
2 + a4,2e

2
0x+ a6,4e2e1e

4
0)

y + a1x+ a3,2e2e1e
2
0 = e2s,

(B.67)

with the ambient space parametrized by

[e2e1x : e2e1y : z = 1][x : y : e0][s : e1].(B.68)

Description of the fiber. Over e0e1e2 = 0, the nodes in the fiber are

C0 : e0 = ys− e1x
3 = y + a1x− e2s = 0,

C3 : e1 = y = a1x− e2 = 0,

[0 : 0 : 1][x : 0 : e0][1 : 0],

C2 : e2 = x = y = 0,

[0 : 0 : 1][0 : 0 : 1][s : e1],

C1 : e2 = a1s+ e1(x
2 + a2,1e0x+ a4,2e

2
0) = y + a1x = 0,

[0 : 0 : 1][x : −a1x : e0][x
2 + a2,1e0x+ a4,2e

2
0 : −a1].

(B.69)
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Note that our labeling is consistent with that for T +. From the intersections
we see that it is the I4 fiber. Note that we already have the affine SU(4)
Dynkin diagram at the second blow up. On the gauge theory side, this
corresponds to the fact that the wall W− lies in the bulk of the Coulomb
branch.

Conifold singularity. If we rewrite T − as

T − : −x(a1s+ e1x
2 + a2,1e1e0x+ a4,2e1e

2
0)(B.70)

= e2(−s2 + a3,2e
2
0e1s+ a6,4e

2
1e

4
0).

The conifold singularity is clearly at

x = e2 = a1s+ a4,2e1e
2
0 = −s2 + a3,2e

2
0e1s+ a6,4e

2
1e

4
0 = 0(B.71)

which can be satisfied only over P4 = 0 on the base B.

B.3.1. Resolution T −
+ : (x, e2|e3). One option for the third blow up is

obtained as below

E0
(x,y,e0|e1)←−−−−−− E1

(s,e1|e2)←−−−−− T − (x,e2|e3)←−−−−− T −
+(B.72)

T −
+ :

⎧⎪⎨
⎪⎩

−x(a1s+ e1e
2
3x

2 + a2,1e3e1e0x+ a4,2e1e
2
0)

= e2(−s2 + a3,2e
2
0e1s+ a6,4e

2
1e

4
0),

y = e3e2s− a1e3x− a3,2e3e2e1e
2
0,

(B.73)

in the ambient space parametrized by

[e23e2e1x : e3e2e1y : z = 1][e3x : y : e0][s : e1][x : e2].(B.74)

Over the divisor e0e1e2e3 = 0, the nodes in the fiber are

C0 : e0 = −a1xs− e1e
2
3x

3 + e2s
2 = y − e3e2s+ a1e3x = 0,

C3 : e1 = a1x− e2s = y − e3e2s+ a1e3x = 0,

C2 : e3 = y = −x(a1s+ a4,2e1e
2
0) + e2(s

2 − a3,2e
2
0e1s− a6,4e

2
1e

4
0)

= 0,

C1 : e2 = a1s+ e1e
2
3x

2 + a2,1e3e1e0x+ a4,2e1e
2
0 = 0.

(B.75)

The fiber enhancements are the same as T +
+ after exchanging C1 with C3.
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B.3.2. Resolution T −
− : (r, e2|α, β). The other option for the third

blow up is

E0
(x,y,e0|e1)←−−−−−− E1

(s,e1|e2)←−−−−− T − (r,e2|α,β)←−−−−−− T −
−(B.76)

T −
− :

⎧⎪⎨
⎪⎩
αe2 + β(a1s+ e1x

2 + a2,1e1e0x+ a4,2e1e
2
0) = 0,

αx+ β(s2 − a3,2e
2
0e1s− a6,4e

2
1e

4
0) = 0,

y = e2s− a1x− a3,2e2e1e
2
0,

(B.77)

in the ambient space parametrized by

[e2e1x : e2e1y : z = 1][x : y : e0][s : e1][α : β].(B.78)

Over the divisor e0e1e2 = 0, the nodes in the fiber are

C0 : e0 = αe2 + β(a1s+ e1x
2) = αx+ βs2 = y − e2s+ a1x = 0,

C3 : e1 = αe2 + βa1s = αx+ βs2 = 0,

C2 : e2 = β = x = 0,

C1 : e2 = a1s+ e1x
2 + a2,1e1e0x+ a4,2e1e

2
0

= αx+ β(y2 − a3,2e
2
0e1y − a6,4e

2
1e

4
0) = 0.

(B.79)

The fiber enhancements are the same as T +
− after exchanging C1 with C3.

Next we will return to the last option for the second blow up, B :
(x, y, e1). As we will see shortly, the resolutions we obtain from this branch
will be identified with those in T ±.

B.4. Partial resolution B : (x, y, e1|e2)

Recall that after the first blow up we end up with the following conifold
singularity:

E1 : ys = e1Q(B.80)

where s = y + a1x+ a3,2e1e
2
0 and Q = x3 + a2,1e0x

2 + a4,2e
2
0x+ a6,4e1e

4
0.

In the previous sections we blow up along (y, e1) obtaining T +. Now
we blow up (x, y, e1) instead,

(x, y, e1) → (e2x, e2y, e2e1),(B.81)
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obtaining the partially resolved variety B,

E0
(x,y,e0|e1)←−−−−−− E1

(x,y,e1|e2)←−−−−−− B(B.82)

B : y(y + a1x+ a3,2e1e
2
0)(B.83)

= e1(e
2
2x

3 + a2,1e0e2x
2 + a4,2e

2
0x+ a6,4e1e

4
0).

The ambient space is parametrized by the following projective coordinates

[e22e1x : e22e1y : z = 1][e2x : e2y : e0][x : y : e1].(B.84)

Description of the fiber. The divisor is blown up to be e0e1e2 = 0, over
which we have four nodes in the fiber,

C0 : e0 = y(y + a1x)− e1e
2
2x

3 = 0,

C1 : e1 = y + a1x = 0,

C ′
1 : e1 = y = 0,

C2 : e2 = y(y + a1x+ a3,2e1e
2
0)− e1(a4,2e

2
0x+ a6,4e1e

4
0) = 0.

(B.85)

From the intersections we see that it is the I4 fiber. Note that we already
have the affine SU(4) Dynkin diagram at the second blow up. On the gauge
theory side, this corresponds to the fact that the wall W 0 lies in the bulk of
the Coulomb branch.

Conifold singularity. There is a conifold singularity in B,

B : y(y + a1x+ a3,2e1e
2
0)(B.86)

= e1(e
2
2x

3 + a2,1e0e2x
2 + a4,2e

2
0x+ a6,4e1e

4
0),

located at

y = e1 = e22x
2 + a2,1e2e0x+ a4,2e

2
0 = 0(B.87)

over the codimension two locus e0e1e2 = a1 = 0. In the following we will
continue to the blow up this singularity. There are two options for the third
blow up: B+ : (y, e1) and B−. As we will see shortly, B+ and B− are
isomorphic to T +

+ and T −
+ , respectively.
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B.4.1. Resolution B+ : (y, e1|e3). Let us blow up along (y, e1)

(y, e1) → (e3y, e3e1)(B.88)

to obtain B+,

E0
(x,y,e0|e1)←−−−−−− E1

(x,y,e1|e2)←−−−−−− B
(y,e1|e3)←−−−−− B+(B.89)

B+ : y(e3y + a1x+ a3,2e3e1e
2
0)(B.90)

= e1(e
2
2x

3 + a2,1e0e2x
2 + a4,2e

2
0x+ a6,4e3e1e

4
0).

The ambient space is parametrized by the following projective coordinates

[e3e
2
2e1x : e23e

2
2e1y : z = 1][e2x : e2e3y : e0][x : e3y : e3e1][y : e1].(B.91)

The isomorphism B+ ∼= T +
+ . By comparing B+ (B.90) with T +

+ (B.42),
we see that the two defining equations are the same by exchanging e2 with
e3. To claim that the two varieties are actually isomorphic to each other, one
needs to further check the scalings of each of the variable and the restrictions
on vanishing of the variables. From the chains of blow ups for T +

+ and B+,

E0
(x,y,e0|e1)←−−−−−− E1

(y,e1|e2)←−−−−− T + (x,e2|e3)←−−−−− T +
+ ,(B.92)

E0
(x,y,e0|e1)←−−−−−− E1

(x,y,e1|e2)←−−−−−− B
(y,e1|e3)←−−−−− B+,(B.93)

we can read off the scaling for each variable with respect to the ambient
projective spaces:

T +
+ :

x y e0 e1 e2 e3
P2 1 1 0 0 0 0

1st 1 1 1 -1 0 0

2nd 0 1 0 1 -1 0

3rd 1 0 0 0 1 -1

(B.94)

B+ :

x y e0 e1 e2 e3
P2 1 1 0 0 0 0

1st 1 1 1 -1 0 0

2nd 1 1 0 1 -1 0

3rd 0 1 0 1 0 -1

(B.95)
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The second rows in both tables labeled by P2 are the scalings from the
original projective bundle P(OB ⊕ L 2 ⊕ L 3). Note that T +

+ and B+ differ
only in the last two blow ups.

Now we are going to show that the two sets of scalings above are actually
the same. First we exchange the last two rows in T +

+ and then add the last
row to the second last row. Lastly, we exchange the last two columns. In the
end we found that this is the same scaling table as B+. Hence the scalings
for the two sets of variables are the same.

Lastly, we need to check that the restrictions on the vanishing of variables
are the same for the two varieties. The ambient spaces in the two cases are
parametrized by

T +
+ : [e23e2e1x : e23e

2
2e1y : z=1][e3x : e3e2y : e0][y : e1][x : e2],(B.96)

B+ : [e3e
2
2e1x : e23e

2
2e1y : z=1][e2x : e2e3y : e0][x : e3y : e3e1][y : e1].(B.97)

(Remember that e2 has to be exchanged with e3 to make the comparison.) It
is easy to see that both varieties have the same restrictions on the vanishing
of variables. For example, we cannot have x = e2 = 0 in T +

+ due to the
projective space [x : e2]. On the other hand, x = e3 (corresponding to x =
e2 = 0 in T +

+ ) is forbidden in B+ by the projective space [x : e3y : e3e1].
In summary, since T +

+ and B+ have the same defining equations, the
same scalings for the variables, and also the same restrictions on the van-
ishing of the variables, they are indeed isomorphic to each other,

B+ ∼= T +
+ .(B.98)

The identification of resolutions B+ and T +
+ . Above we have seen

that the two resolutions B+ and T +
+ are isomorphic to each other. Now

we are going to show that these two resolutions should be identified as one
resolution, hence corresponding to a single subchamber on the Coulomb
branch, i.e. C+

+ .
Let us begin with a general discussion. Given a variety X and two of its

resolutions

f1 : X1 → X,(B.99)

f2 : X2 → X.(B.100)

Suppose the two resolutions are isomorphic to each other, X1
∼= X2, we

arrive at the, not necessarily commutative, diagram shown in Figure B1. In
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X1 X2

X
f1

ϕ
∼=

f2

Figure B1: If two resolutions f1 : X1 → X and f2 : X2 → X are isomorphic
to each other and the above diagram commutes, we identify them as a single
resolution.

the case that the diagram is commutative, i.e.

f1 = f2 ◦ ϕ,(B.101)

we identify the two resolutions X1 with X2 since the blow up maps are the
same.

Let us consider an example where X1
∼= X2 but we do not identify the

two resolutions. Consider the conifold in C4,

X : x1x2 − x3x4 = 0 in C
4,(B.102)

and let

X1 : αx2 − βx4 = αx1 − βx3 = 0,

X2 : αx1 − βx4 = αx2 − βx3 = 0,
(B.103)

in C4 × P1 be the two resolutions. Here [α : β] are the homogeneous coor-
dinates for P1. In these coordinates, the blow up maps f1 and f2 are the
same,

f1 : X1 → X,

(x1, x2, x3, x4)[α : β] �→ (x1, x2, x3, x4),

f2 : X2 → X,

(x1, x2, x3, x4)[α : β] �→ (x1, x2, x3, x4).

(B.104)

The two resolutions X1 and X2 are isomorphic to each other by the isomor-
phism ϕ exchanging x1 with x2,

ϕ :X1 → X2

(x1, x2, x3, x4)[α : β] �→ (x2, x1, x3, x4)[α : β].
(B.105)
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However, f1 is not the same as f2 ◦ ϕ,

f1 :X1 → X,

(x1, x2, x3, x4)[α : β] �→ (x1, x2, x3, x4),

f2 ◦ ϕ :X1 → X,

(x1, x2, x3, x4)[α : β] �→ (x2, x1, x3, x4).

(B.106)

Therefore we do not identify the two resolutions. In fact, they are related
by a flop.

Now back to the case for B+ and T +
+ . The isomorphism ϕ : B+ → T +

+

is given by

ϕ : (e2, e3) �→ (e3, e2)(B.107)

with other coordinates kept fixed. Consider the blow up maps f1 and f2 for
B+ and T +

+ , respectively,

f1 : B+ → E0,

f2 : T +
+ → E0,

(B.108)

where f1 and f2 are both sequences of three blow ups shown in (B.93).
However, since e2 and e3 are not variables in E0, they are projected out by f1
and f2. It follows that f1 = f2 ◦ ϕ, i.e. the following diagram is commutative

B+ T +
+

E0

f1=f2◦ϕ

ϕ
∼=

f2

and we identify the two resolutions (indicated by the blue line as in Figure 7),

B+ T +
+ .

The two resolutions therefore correspond to a single subchamber C+
+ on the

Coulomb branch (see Figure 12).

B.4.2. Resolution B− : (s, e1|e3). The other option for the third blow
up from the partial resolution B is B− : (s, e1),

E0
(x,y,e0|e1)←−−−−−− E1

(x,y,e1|e2)←−−−−−− B
(s,e1|e3)←−−−−− B−(B.109)
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B− :

⎧⎪⎨
⎪⎩

(e3s− a1x− a3,2e3e1e
2
0)s

= e1(e
2
2x

3 + a2,1e0e2x
2 + a4,2e

2
0x+ a6,4e3e1e

4
0),

y = e3s− a1x− a3,2e3e1e
2
0,

(B.110)

with the ambient space parametrized by

[e3e
2
2e1x : e3e

2
2e1y : z = 1][e2x : e2y : e0][x : y : e3e1][s : e1].(B.111)

Since B− and T −
+ are related to B+ and T +

+ by the inverse action (2.4)
respectively and B+ ∼= T +

+ , we immediately conclude that they should be
identified as one single resolution,

B− T −
+ .
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