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Representability conditions by
Grassmann integration

VOLKER BACH, HANS KONRAD KNORR AND EDMUND MENGE

Representability conditions on the one- and two-particle density
matrix for fermion systems are formulated by means of Grassmann
integrals. A positivity condition for a certain kind of Grassmann
integral is established which by an appropriate choice of the inte-
grand, in turn, induces the well-known G-, P- and Q-Conditions
of quantum chemistry. Similarly, the T;- and Ts-Conditions are
derived. Furthermore, quasifree Grassmann states are introduced
and, for every operator ¥ € H & H with 0 <5 <1, the existence
of a unique quasifree Grassmann state whose one-particle density
matrix is 7 is shown.
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1. Introduction

The grand canonical energy (minus pressure) Fo(u) := inf {O’{]I/‘\I ,u]lA\I}}
at sufficiently large chemical potential ¢ > 0 of a quantum system with a
Hamiltonian H and particle number operator N is given by the Rayleigh—
Ritz principle as

(1.1) Eo() = inf {tr(p% (B - uN) 3 ) ‘ peDM},

where H = H* is a self-adjoint operator obeying stability of matter, i.e.,
which is bounded below by —cIN for some ¢ < oo and at most quartic in
the creation and annihilation operators [11, 18]. This is typically the case
for models of non-relativistic matter in physics and chemistry. The Pauli
principle plays a crucial role for stability of matter to hold true and we,
thus, restrict our attention to fermion systems. On the fermion Fock space
AH the variation on the r.h.s. of Eq. (1.1) is over the set

DM := {p ’ p € LLNH), tr(p) = 1, <]1A\12>p < oo},

i.e., density matrices with finite particle number variance. Here, the expec-
tation value of an observable A is

<£A§\>p = tr(p%;&p%) .

More specifically, if

— N = thm < (fi) e(fm) + Z Vitmn ¢ (ft) ¢ (fr) ¢(fm) c(fn)
k,m

k,l,m,mn

(1.2) Eo(p) = inf{€(7p,I'y) | p € DM},

g(')’pyrp) = thm <fm7'Ypfk> + Z Vklmn <fm ® fn7Fp (fk ® fl)> :

k,m k,l,m,n
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The one- and two-particle density matrices corresponding to p are defined
by

(f:19) = (" (g9)e(f)), and
(fearifen) = (@) .

respectively, for all f, g, f,§ € H. Note that (1.2) can be rewritten as
(1.3) Eo(p) =inf{E(v,1)| (v.T) € R},
where

Ri={(1,T) € L'(H) x L'H@H)|3p € DM : (1.T) = (3, T) }

denotes the set of all representable one- and two-particle density matrices.
Eq. (1.3) suggests that the search for a minimizing p could be drastically
simplified if one would find a characterization of all representable reduced
density matrices (7, I"). This was realized almost fifty years ago [5, 7, 9, 12],
but such a characterization is still unknown.

The characterization of Ey(u) by the variation (1.3) immediately yields
lower bounds of the form

(1.4) Eo(n) =: Er(p) = Es(p),

for any superset S of R. For example, the positivity (Pj Ps) , =0 for all
polynomials P, = P, (c¢*, ¢) in the creation and annihilation operators of de-
gree two yields the so-called G-, P-, and Q-Conditions on (v,,T')) [2, 5, 7, 9].
Similarly, the positivity (PjP3 + P3Py) o> 0 yields the T;- and generalized
Ty-Conditions [7]. Hence, all representable reduced density matrices (v,T")
necessarily fulfill the G-, P-, Q-, T-, and generalized Ts-Conditions, and we
have

(1.5) Er(p) =2 Esigp,qr,,1.(10) = Esjap,q (1),
since R C S[G,P,Q,T1,Ts] C S[G,P,Q], with
={(vD)eL'H)x LLH®H) | (v,T) fulfills Condition X } .

We have discussed (1.4) and (1.5) for S = S[G,P] in some detail in [2]
and refer the reader to that paper and references therein. Furthermore, for
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S =S|[G,P,Q,T1, To] numerical works show agreement with Full CI com-
putations [4, 13, 14, 19] to high accuracy.

The purpose of the present paper is the reformulation of representabil-
ity conditions in terms of Grassmann integrals. Such a transcription may
possibly yield new viewpoints and hopefully new insights into the repre-
sentability problem. To this end, we introduce a Grassmann algebra G, as
a finite dimensional complex algebra. The object on G corresponding to a
given density matrix is an element of the form ¥* %1 described in the se-
quel. Grassmann integration is the basic and most commonly used method
(see, e.g., [8, 16]) in theoretical physics to compute partition functions of
the form

Zra(J) = /Dr(qb) o= StH+(1)r

as a functional integral with Dp(¢) := [] d¢ (x) with sources J : I' — R and
zel
an action Sr (see [16] for further details).

The derivation of the G-, P-, Q-, Ti-, and generalized Ts-Conditions
is based on the representation of the trace on AH in terms of Grassmann
integrals and a positivity condition of a Grassmann integral, namely

(1.6) VneGy: /d(\I/, \Il) eQ(E"I')n* *1 >0,

where [ d(@, \If) denotes the Grassmann integration. The star product refers
to a product on Gp; and is introduced later. Considering appropriate sub-
spaces of Gy; denoted by QJ(\Z), the main results of this paper are the bounds
for the one-particle density matrix -y,

{vuegf\?:/d(qf,q:)eQ(“/v“’)ﬂ**ﬁ*uzo} & {0<y <1},

and the G-, P-, and Q-Condition as conditions for the two-particle density
matrix 'y,

{vu eg. /d(\I/, 0) 2(T0) 9% w )y > o}
& {0< 9 <1, G-, P-, and Q-Condition} .
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Finally, we prove the validity of the T;- and generalized T9-Condition de-
duced from Ineq. (1.6).

2. Reduced density matrices and representability

Before we elucidate how to derive the G-, P-, Q-, T1-, and generalized Ts-
Conditions for the 1- and 2-particle density matrix (1- and 2-pdm) by Grass-
mann integration, we give a definition of these first two reduced density ma-
trices. For this purpose, we consider a finite-dimensional index set M, an
|M|-dimensional (one-particle) Hilbert space (H,(-,-)), and an arbitrary,
but fixed orthonormal basis (ONB) {t;};c,, of H. Furthermore, we intro-
duce the usual fermion creation and annihilation operators on the fermion
Fock space AH over H given by ¢*(v;) = ¢! and ¢(¢;) = ¢; with the canonical
anticommutation relations (CAR)

{e(f),e(9)} = {c"(f);¢"(9)} = 0 and {c(f), ¢ (9)} = (f,9) - 1

for all f,g € H, where (-,-) is linear in the second and antilinear in the first
argument. {A, B} := AB + BA denotes the anticommutator.

The 1-pdm ~, € [&r(’H) of a density matrix p, i.e., a positive trace class
operator on AH of unit trace (tray(p) = 1), is defined by its matrix elements
as

Viget: (f,79) = tranlpc(g)c(f)).

Likewise, the 2-pdm I', € £} (H ® H) of p is defined by

vflaf??.glng eH:
(fi® f2,Tp (g1 ® g2)) :==tran(pc(92) € (91) c(f1) c(f2)) -

There are several properties which can be derived directly from the definition
of v, and I',.

Lemma 2.1. Let p € L1 (AH) be a density matriz and N:i=Y crcy, the
keM

particle number operator with <]1A\T2>p < 00. Then the following assertions
hold true:

(i) v, € LL(H), 0<y, <1, trq{/@p) (N),, T,e LL(H®H),0<T, <
(N), - 1, and tryeu(T,) = (N(IN - 1)),.
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(ii) If Ran(p) € AMH, N € N, then, for all f,g € H,

(F09) = g 3 U @ Tolg © ),

keM
where {1 }cpr 95 an ONB of H. Here, AN denotes the fermion
N -particle Fock space.

(iii) Furthermore,

N
p=1c"(r) - @N)Q( (W) - (WN)Q & =D [ (Wl

i=1

and, in this case,
r,= (1 - Ex) (’}’p ®’Yﬂ) )
where Ex (f @ g) := g ® f for any f,g € H.

For further details we recommend [1, 2, 5, 9] and a proof can be found
in [1]. Beside these properties, necessary conditions on (v,I") to be repre-
sentable were derived in [5, 7, 9]. In particular, the P-, G-, and Q-Conditions
are

(P)  {(»,I") fulfills P-Condition} :< {I'>0},
(G)  {(»,I) fulfills G-Condition}
o {vAeBMH): u((A4 @A) (T +Ex(y2 1)) = (A7)},

(Q)  {(n,I) fulfills Q-Condition}
S {I+(1-Ex)(1@1l-7y21-1®7)>0}.

The T1- and generalized To-Conditions are more complicated and not given
here. For these conditions we refer the reader to [7] or Subsection 5.3 of this
work.

3. Grassmann algebras

We introduce the Grassmann algebra as the complex algebra generated by
elements of the set {@l, wi}i o With |M| < oo modulo the anticommutation
relations specified below. A product of two generators is denoted by v; - ¢; =
i1j. The unity is given as 1 - 1; = 1); - 1 = 1); (and equivalently for @j) The
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anticommutation relations allow us to find a one-to-one representation of the
CAR of fermion creation and annihilation operators in terms of Grassmann
variables. For further details on this well-known material we recommend
[6, 15-17]. We use the notation of [15].

Definition 3.1. For an ordered set I := {i1,...,im} C M we write
W=y, ooy, W=y -

For I =) we set U; = U7 = 1. Denoting the reversely ordered set corre-
sponding to I by I’, we write

U=, -y,

Definition 3.2. Given a set of generators {aszi} obeying the anti-

commutation relations

eM

Eﬂﬁj + @Z’j% = Ezaj +Eg@z’ =i+ =0 Vi, je M,
the Grassmann algebra Gj; is defined as
Gv o= span{@ﬂl&; | I,J C M}

Introducing the ordinary wedge product, we can identify Gjs with the
Fock space A (H @ H) of a Hilbert space (7, (-,-)) with finite dimension
|M|. Considering H as a subset of Gys, we can identify {v;},.,, with a fixed
ONB of H and {@i}ieM with the corresponding ONB of H, i.e., the space
of all continuous linear functionals H — C, ¥; — 1; (+) := (¢4, - ).
Remark 3.3. If G, is generated by {ai,gbi}ieM, we emphasize this by
using ,u@, qb) € Gy instead of p € Gy We also use “mixed” generators,
e.g.,

(1, ¢) = Zaij U Py, .
i,J

Later, it is necessary to link the CAR algebra of fermion annihilation and
creation operators to a Grassmann algebra. For this purpose, a map between
B(AH) and Gy as an isomorphism between vector spaces is required. This
map is provided below.
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Definition 3.4. Let Gy be generated by {El, wi}ieM and associate {1}/
with a fixed ONB of H. For all z € C and {i1,...,0m},{j1,...,jn} S M,
m,n < |M]|, we define the linear map O : B(AH) — Gy by O(2) := z and

(3.1) O™ (Wi) " (Wi,) () - c(ihy,) = Uy, -+ Uy g -1,
and extension to B(AH) by linearity.

We emphasize that © is not multiplicative: While

O(c™(¥1) e(¥1)) = P11 = O(c"(¢1)) O(c(¥1))

we have

O(c(¥n) " (Y1) = O(=c"(¢1) c(¢r) + 1)
= =1 +1 =1 +1=0(c(¥1)) O(c"(¥1)) + 1

Thus, Eq. (3.1) only holds for normal-ordered monomials in creation and
annihilation operators, i.e., monomials in which all creation operators are
to the left of all annihilation operators.

Definition 3.5. For any A € B(H) we set

(¥, A®) = Z [0; (Ap;)] ;05 € Gur -

i,7EM

Note that 1; (A;) = (¢;, Av;) € C. Furthermore, (¥, A®) does not de-
pend on the choice of generators of Gy as can be seen by a unitary change

of generators, e.g., x; := », Ui, for unitary U. An important case is
JjeEM

A = 1. Here we have (@ <I>) Z 1;¢;. One of the last ingredients for the

Grassmann integration is the followmg

Definition 3.6. The expression £ (V.A2) € Gy is given by
(¥ !
+(W A(IJ
e Zomv (T, A9)]™.
m=

As dim{AH} = 29M*  the sum runs only over 0 < m < 24m%,
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Remark 3.7. Since (@, <I>) = Y 9Y,0a, and 9,0, commutes with every

aeM
element of Gy, we have
(3.2) H(T®) = I (1 £%a0a).
aeM

Definition 3.8. For all 7,57 € M, we define the vector space homomor-

phisms 6%“ %E. : Gy — Gy by
0 § — 5 — )
Twi% = 5—%% = 51:j and M%‘ = (57%% =0.

Remark 3.9. The set {(%, 5%} itself generates a Grassmann algebra.

e M

4. Grassmann integration

Now we are prepared to define the Grassmann integral, which is a linear
operator from Gs to C.

Definition 4.1. The map [d(¥, V) : Gy — C is defined by

Jawo = T )

and is referred to as the Grassmann integral.

Remark 4.2. If the factor ¢(¥¥) = II (1 + 2@0%%) is involved in the
aceM
integration, we use the abbreviation

/ D(T,T) = / A(T, 0) (P,

since [ enr (1 + 2@0{@[@) commutes with every element of Gy;.

In order to state the invariance of the Grassmann integration with re-
spect to a change of;generators, we introduce some notation. We write two
sets of generators, {wi, wi}iEM and {X;, Xi };cas» as 2|M|-component vectors
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a and b, respectively, whose entries are given by
(4.1) a; = J@ and M| +i = v, and b :=; and b|]\/[|+z = Xi

for all © € M. Furthermore, we define the entries of the 2|M|-component

9
vectors 3 and by

0 = i and 0 = i and i = i and d = 0
oa; oy Sayngj4i 0% ob;  0X; Obnrj4i O

We denote the index set for the introduced vectors by M,J]T/[/ | = 2|M|. In

this notation the Grassmann integration with respect to {11}1-, @Z)i}z. M reads
1 0
o T () < s T = g
0q S ]
5’(/]04 ¢ Ot OLEM ,(’b BGM QB

Lemma 4.3. The Grassmann integral does not depend on the choice of the
generators. More precisely, for a and b as defined in (4.1) and a transfor-
mation defined by

b=Ua

where U is a unitary 2| M| x 2| M |-matriz, we have

0 =90
5~ Usa

and, for any p € Gy,
) ) — b 0 _
——— | u(,¥) = (> (X X) -
1 (55 G

Proof. First we prove % =U fa The identity 5 ~a; = 0;; follows from the
propertles of the generators. An equivalent 1dent1ty has to be claimed for

2. Suppose £ 5 transforms as 5b =V - with a 2[M| x 2[M|-matrix V. This
ylelds

(5 0
- (S v ) (S vom] - 0o,
acM ,BEM

In other words, we have UVT =1 and, thus, V = U. Finally, we can prove
the invariance of the Grassmann integral. For a given set of generators
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{Ei,l/%}ieM, any i € Gy can be written as

p=pl )= Y aUly,

1,JCM

where ayy € C for all I,J C M and I,J ordered. The Grassmann integral
of u is

/d\If\If (4, ) /dquf ZaIJ\pIqJJ_/d\II\I/aMM\pM\pM,

I1,JCM

since all other terms of p do not contribute to the integral. If the decompo-
sition of p yields aprpr = 0, the Grassmann integral of p vanishes. In this
case there is nothing to show. For arps # 0 we consider the transformation

offd \I/ , ) and U Uy separately. For fd \I/ ,U) we use %% = —%%

for ¢ # j and express 551; in terms of

nma)ns- s
(aedea a€M5X /BEMdbﬁ By 7/3\M\EMJ€M ] 5(1
- Z H Ul J)5a

€Sy jeM )
- Z H UJW(J
7T€S jEM
= det H (5(1
jEM

Analogously, we have

I %o I xar = ] b6 =det(@) I] a5

a€M  aeM BeM jeM

Merging the results we obtain
<H 6Xa><H 5x>HXMHXM_|det H a; Haj
aceM acM acM acM jEM jGM

The proof is complete with |det(U)|* = 1, since U is unitary. O
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Remark 4.4. The transformation U mixes v,;’s and v;’s. For U := (4%),
a transformation without mixing is given for v = 0. In this case, u has to be
unitary.

For the application of the Grassmann integration on representability
conditions we still need some tools, especially the definition of a product on
Gas which induces the CAR on the Grassmann algebra.

Definition 4.5. For all = u(@, ¢) and n = n(@, w) € Gy, we define the
star product u*n € Gy by

(e (@0) = [ A(@.0) (@0 n(@v) e FWeTe (PO,

We calculate the star product of two monomials p := ¥;¥; and 7 :=
UiV, which determines the star product in general, due to the linearity
of the Grassmann integral.

Lemma 4.6. LetI,J,K,L C M. Then we have

(4.2) (@]\I’J) * (@K\IJL)
= osoys - PNT W)U sV [ (14 Patha)
\?Jeuﬂf()

[S|=1

where S :=JNK and 055 := (_1)|S|(\J\S\+ ). The sign og 1is given by
the identity 05<I>5<I>J\5635K\S =o,;Dp.

Proof. Writing S := J N K, we face the integral
(@[\I/J) * (@K\IJL) =0g - e_(‘lj’qj)\llj/d(q), (I)) @S@J\SasiK\s

X H (1 + aawa + Ead)()é - $a¢a - gaﬁta&oﬂ/}a) \PL ’

aeM

where we use

[T (1 + atha + $aba — Guba — Gubatiatia) = (TP (F2)e(¥)

aeM

as a consequence of Eq. (3.2). In the next step we write

M = (M\ (JUK))U(J\S)U(K\S)US
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(where U denotes a disjoint union) and arrive at

(@[\I/J) * (WK\IJL) =0508J * e_(w’w)q}[/d(q), (I)) H %aa

aesS
X H (¢a + ¢a$&w0‘) H (aa + @@Cﬁﬁa)
ac\S a€K\S
X H (1 + $a¢a + @aqﬁa - aaqba - $a¢aia¢a) LG
\IR)

(_1)|S|(|J\S\+‘S'{1

The sign 055 := ) occurs due to the permutation of all ¢’s

in &5 with all ¢’s in ® g, and PgPg = (—1)%|S|(‘S‘71) I1 d)agba). Now
es
we can perform the integration and arrive at ¢

(@I‘I’J)*(@K\IJL):USC’JS‘ei(E’lIJ)@I H Yo H Vo

acJ\S aceK\S

X H 1+ T/JaT/)a \I]L P

aeM
\(JUK)

as claimed in Eq. (4.2), since all involved sets are disjoint. [l

Several properties of the star product follow directly from Lemma 4.6.
Lemma 4.7. For all p,n,v € Gy we have
px (nxv) = (u*n)*v
Proof. By the definition of the star product we have
o) = (@) [ Q@ 8) 0(5.0) v(5.5) e (1) H(P0)-(B0) (E)
- [a@.9) [ 4@.9) u(5.) @) v(6.v)
« e—(@,w)+(@,9)—(ﬁ,§z)+(§,¢)—(6,<I>)+($,\1/).

Performing the integration with respect to (6, QS) we obtain

wx (mxv) = /d(Q, Q) p(v, w) (@, v) o~ (L) +(.0)-(2.0)+(v)
*v(¥,9),
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which is, in fact, (u*n) * v. O

As for the creation and annihilation operators on B(AH), there is also
an implementation of the CAR for the generators of Gyy.

Lemma 4.8. Let {Ei’q/}i}ieM be the generators of Gyr. For {p,n}, == p*
n—+n* u we have

{¢Za¢]}* = {@m@;}* =0 and {Emd]]}* = 51] fO?” any Za.] EM.

Proof. The identities follow directly from Lemma 4.6 by an appropriate
choice of I, J, K and L. We observe that

e_<ﬁ,\p) H (1 +@oﬂ/}o¢) = H (1 - @a%)
aeM acJUK
\(JUK)

and conclude for the first identity with I = K =0, J = {i}, and L = {j} in
Eq. (4.2) that S = () and, therefore, g = 055 = 1. This yields

(4.3) Vi x by = (1 — ) iy = ;.
Setting J = {j} and L = {i}, we obtain ¢; x ¢ = 1)j1); and, hence, 1; x
U5+ ¥ * i = P 4+ b = 0. Equivalently, we obtain ¢;1h; + ¢;1p; = 0.

For the last identity we set J =K =, I = {i} and L = {j}. On the one
hand, Eq. (4.2) leads to

Yix by = by,

which is valid for both i = j and 7 # j. On the other hand, with I = L = ),
J ={j}, and K = {i}, we have to distinguish between the cases J = K and
J # K. For J # K we have

Vi = (L= i) (1 —0j05) hjnh; = hjub; .
For J = K we have ¢ = j and S = J = K, and thus
(4.4) Y; ;= (1 - %%) .
Together, the last two results give v; x 1, = 0ij — Ei@z}j. Finally, we arrive at

; xj + b x; = ;5. We mention that in Eqs. (4.3)-(44) og =05 =1
due to the choice of the sets I, J, K and L. Il



Representability conditions 1155

By a straightforward calculation using Lemma 4.6 one can also show
that for any generator {wi, wi}i M of Gyr we have the following:
Corollary 4.9. Let {Ei’w}z‘eM be the generators of Gyr. Then we have

Jil * - - '*Eim *¢j1 * o *wj” = Eil .. @’Lmd}h .. .¢j” .
Proof. We use the associativity

Py xxy xhkexh= (g, kRt ) x (g % k1))

and calculate the brackets using Lemma 4.6. For the first bracket we set
I={i1,...,im}and J =K = L = () in Eq. (4.2). For the second bracket we
use [ =J =K =0 and L= {j1,...,jn} For both we have 0g =05 =1
and we conclude

B xeex By ey, = (B, ) (5.

The last star product can be calculated by setting I = {i1,...,in}, L=
{j1,---yjn},and J = K = () in Eq. (4.2). Again, 05 = 055 = 1 and we arrive
at the assertion. O

We emphasize that

Eid}j =1 x5, but wi@j = _Eﬂbi = —Ej * ;.

This implies that the star product can be inserted (or skipped) only if the
monomial in ¢ and 1) is normal-ordered (i. e., all 1’s are to the left of all ¢’s).
As follows from the proof, monomials containing only 1)’s or 1)’s can also be
considered as normal-ordered in the sense that we can identify ¢; *---* @zn

with ¢ ---1b; and ¢, x -+ *1hj, with ¢, -+~ 1h;,.

Lemma 4.10. Let N € N and A; € B(ANH) forie {1,...,N}. Then
O(A1As - AN) = O(A1) xO(A) x--- xO(Apn) .

Proof. Due to the associativity of the star product it suffices to consider the

assertion for NV = 2. We use the CAR to establish normal-order in the pro-

duct A1 Ay € B(AH) and indicate this order by g A; A 3. For some iy ..y, €
]1---jn
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C, we can write

:A1A2. Z Z azl Zm ;fkl .”C;Fm,cjl .”Cjn
MM Ay, ne M
J1---Jn
and apply ©. Together with Corollary 4.9 we arrive at
(45)  OQA1ALD) =D D iy ek Ky Kk,

Ji-Jn
m,n ;.. lmeM

]1 Jn

Now we can use the CAR on G, to restore the same order we had in A7 As
within the r.h.s. of Eq. (4.5) and recognize that it equals ©(A;) x O(A3).
In other words, we have

DD i i ke xy, x by ke x g, = $O(A1) xO(4s) 3
e T
which gives the assertion. O
We can equip (G, +,*) with an involution (-)* such that (G, +,*,*)
becomes a *-algebra.

Definition 4.11. For all y; € Gy, i € N, and ¢ € C, the involution ()" on
(Gar, +,%) is defined by (1;)* := ¢; and (i;)" := ¢; Vi € M, and

(cpn---pn)" i=Cpgy oo p
Remark 4.12. For p= u(@, qS) :=>"a;;¥®; and ayy € C, the involu-

IJ
tion p* is given by

1 (B,) = ZEUEJ/\PP _ Z (_1)%|1\(|1\—1)+§|J|(\J\—1) ;0,0
I1,J I1,J

We emphasize that (u(@, qb))* =pu* (5,1/)) =+ (u@, 1/}))*

Lemma 4.13. The involution in Definition 4.11 is compatible with ©, the
Grassmann integration, and the star product:

(@) ©((-)) =©()),
b) [A(T,®)(-)" = [[d(T,?) ()],
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(c) (uxm)"=n"*p.

Proof. We prove (a) and (b). (c) is a consequence of (b).

(a) For any I,J C M, we abbreviate C7 :=¢j ---¢f and Cj:=c; ---¢;

and write any A € B(H) as A = ZQIJC C; for some ajy € (D This

leads to

Zau U, = ZEIJ@J"I’I' =0 ZEU C5.Cr
1,7 7

*

=0 > ascic, = 0(4%).
1,J

(b) We formally have ( 55, 0 ) p=s= 1/1 30 ¢ u for any fixed, but arbitrary
1 € M and any u € Gy, which gives the assertion.

(¢) We calculate the 1. h.s. of (¢) using (b) and Remark 4.12:
e’ = [ A@.2) 1 (3.0) (3, 0) - (PWeT ) (F)e(E2)
=0 p,
since (e('))*:e('). ]

A key property of the Grassmann integral for deriving representability
conditions as in the next section is the cyclicity property which has its
equivalent in the cyclicity of the trace, i.e., tr(AB) = tr(BA).

Theorem 4.14. For p,n € Gy, we have
/D(\I’,\If) (n*m) = /D(‘If,‘l') (n*p).
Proof. Without loss of generality, we can set

/LZZ@[\I{] and U:ZWK\I/L
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and observe with Eq. (4.2) and T:=1NL

/D(\I/, \I/) IR ]
= USUTJJS/D(\II, \Il) -e_(a’q’)
xUpUpny [ va [I ¥a JI (1 +%ate) ¥2¥n7.
acJ\S acK\S aeM

\(JUK)

Afterwards, we rearrange the factors and arrive at
(4.6) /D(\If, W) pxn
= O'So'T(}/d(‘I’, \I/) @I\TWK\SWJ\SWL\T H @awa

L+ Tui) T (4 5ut)s

aeM aeM
\(JUK)

where ¢ € {£1} corresponds to the signs resulting from the anticommuta-
tions and is given by

5= (_1)ISIIJ\S|+IT\IK\SI+§\S\(|5|—1)+%IT\(|T|—1)+\T\\J\S\+|T|II\T\+IK\SHJ\S\ )

To go on, we need some preparation. First of all, we observe that

[T +%ava) [T O+ 0ata) = J] (1+200ta) J] (1+Wata).

aceM aeM aeM acJUK
\(JUK) \(JUK)

On the one hand, we have JU K = (J\S)U(K\S)US, which implies

H (14 ¢ota) Y sUps = H (14 Yatha) T sV s -

acJUK acsS

On the other hand, we have by the same arguments

H (14 2¢0%a) YnrY s ns¥ryr H Vata

aceM acT
\(JUK)
= H (14 200%a) U nr¥ g s¥ ps¥ e H Yota,
aceM acT

\(JUKUIUL)
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since I UL = (I\T)U (L\T)UT. Consequently, our latter calculations lead
in Eq. (4.6) to

(4.7) /D(\y, ) pxn

= USUT&/d(\IJv U) VeV s¥nsPir H Yola
acT

< [T 0 +%ava) I (1+20a00)-

a€esS aceM
\(JUKUIUL)

Let us take a closer look at the involved sets. First of all, we observe that

(I) K\SNJ\S =0,

)
(I1) U (K\S) = LU (J\S),
(II1) TN (K\S) = 0 and
(IV) LN (J\S) = 0.

In any other case we have [D(U, W) p*n = [D(¥,V¥)n*p = 0. These ob-
servations have some consequences:

(a) (IT) and (I) = (K\S) C L and (J\S) C I = 3 T1,T5, C M, such that
I=(J\S)UTy and L = (K\S)UTs.

(b) (II) and I = (J\S)UT} = ((J\S)UT1)N(K\S)=0=T1NK\S =
(. Analogously: (IV) and L = (K\S)UT), = To N (J\S) =

(¢) (IT) and (b) = Ty = T», since all sets on the 1. h.s. and r.h.s. of (II)
are disjoint.

d) (a), (b) and (c) = LNI=((K\S)UT)N((J\S)UTs)=T1N
1512171

Back to (a), we see that I = (J\S)UT or I\T = J\S, and L = (K\S)UT
implies L\T = K\S. This is illustrated in the following figure.
We go on in Eq. (4.7) and take the intersection S N7 into account. The

term [] ota [] (14 tatba) contributes to the integral as follows:
acT a€Ees

1T 5% %Hw vo [T (1 +9svs) = [] 5% % I %ata.

acTus pes aceTUsS acTus
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K \

K\S
L\T

N
T

\ I |

Figure 1: Chequerboard: The integrals vanish if JUL T UK. S :=JNK
and T := I N L. Grey areas represent empty subsets.

since H aa% H (1 +Eﬁ¢ﬁ) = H adﬂa and

acTns BeETNS aceTnNs

6 0 —
I Sna, M arw)
aeS\(TNS) 7 e "7 Bes\(Tns)

6 o —
= M e L vevs
acS\(TNS) =~ e BeS\(TNS)

This finishes our calculations and we conclude

(4.8) /D(\If, ) pkn = aSaT&/d(\If, U) J] Yt

aeTUS
X H (14 200%a) UnrV i\ sY ns¥ s
\(JLJO}%L%UL)

The r.h.s. of the assertion in Theorem 4.14 can be calculated analogously.
The result is

/D(\II, ) xp = UTJSa/d(xp, W) [[ Pute
aeSUT
X H (14 2¢0%a) Yirs¥ nr¥ 7P ns

aeM
\(JUKUIUL)
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where the sign resulting from the anticommutations is
5= (_1)IT|IL\T|+|SHL\TI+é\S\(|5|—1)+%IT\(IT|—1)+\S\II\T|+|5\IK\SI+II\TIIL\T| )

The 1. h.s. and the r. h. s. of the asserted identy in Theorem 4.14 are symmet-
ric with respect to the involved sets. The proof is complete by the observation

(,1)§\S|(IS\*1)+§\TI(IT\*l)HK\S\IJ\S\HTIIK\SHISIIJ\SI ’

which follows from I\T' = J\S and L\T = K\S. O

Remark 4.15. The integral on the r.h.s. of Eq. (4.8) can be calculated
explicitly. Abbreviating sg := 3|Q| (|Q| — 1) for @ C M, we have

/D(\I/’ \I/) LK1 = o507 (_1)SS+ST+\T\\K\S|+\S|\J\S\+81\T+SK\S

< [a@w) T Gava ] Guve

acl\T acK\S
x I Pate T  (1+20400)
acTUS aeM\(IUK)

= ogor (_1)SS+ST—HT\\K\S|+\SHJ\S\+SI\T+SK\S

« (—1)/NTIHIE\SIHTUS] (g IMI=IIUK]

With [I\T'| + |K\S| +|T'U S| = |I U K| we obtain
/D(\Ij, \IJ) U*x1n =050 (—1)81+8L 2‘M|*|IUK|

for p:=W;¥; and n:= V7.

Remark 4.16. A consequence of Lemma 4.7 and Theorem 4.14 is the
invariance of the Grassmann integral with respect to cyclic permutations of
the integrand:

(4.9) /d(\If,\Il) (Ml*MQ*”'*MN)Z/d(‘I’,‘I’) (po % -+ % Uy * 1) -

This also holds true for [D(¥, V) (-), since eX(TY) commutes with any
n e Q M-

Given an involution on (G, +, %), we define the property of positivity
on Gy as follows:
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Definition 4.17. We call u € Gy positive semi-definite, shortly p > 0, if
there exists an n € G such that

p=n"xn.

Approaching the problem of representability by Grassmann integration,
an important result is the following theorem.

Theorem 4.18. For any p € Gy with > 0 we have

(4.10) (—1)!M] /D(\IJ, W) pu>0.

Proof. We use an induction in LM | € IN. For this purpose, we write any
§¢€ gM+1 = Spa‘n{wla B w\M\7¢|M|+17 (P 71/]|M\’1/]|M\+1} as
€ =100 + No1¥| M 41 + Va0 + Diarpa a1

for normal-ordered 700, 101, 710, 711 € Grr- We indicate integration with re-
spect to a certain index set M by writing [ das (\I/,\Il) and [ Dy (\I/,\Il),
respectively. Furthermore, we recall that

oBm . e(@,\l})e(ﬁ,@)e—(i@)e(iqf)

=TI (1 = $aa + Patba + butia + Pada — 200 tadada) -

aeM

In order to show Eq. (4.10) for |M| =0, we consider p := a* xa € Gy with
a € C, and observe that with [Do(¥,¥) =1 the Lh.s. of Eq. (4.10) is
nonnegative,

/DO(\D,\IJ)M: la> > 0.

Now we assume that Eq. (4.10) holds for | M| and consider the L. h.s. of (4.10)

for [M|+1 and p = £* x £. We abbreviate 9711 = ¢’ and @|M|+1 =)

(4.11) (—1)|M+1/DM+1(\P, D) ("% &)
= (—1)/MIH /DM-i—l (T, 0) x [Uéo * 100 + Moo * (¥ m11")
+ (' 151) * (n019") + (mi0¥") * (¢ mo)
+ (@it ) +moo + (F i)+ (@) |
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Other terms like [ Dpriq (¥, W) 1 * (n01¢") vanish. This can be seen by
Eq. (4.7), since, in this case, UK # J U L.

In the next step, we use the deﬁnition of the star product and the iden-
tity [ dar1 (T, ¥) = [du (T, T) 2 55 51!)’ to carry out all integrations with

respect to 1’ and ¢/. We exemplify this step by the last term on the r.h.s.
of Eq. (4.11):

(1l / Darr (0, 9) (F ) 5 (7 qat)

= (—1)M+1/dM+1(‘1/, ‘I’)/dMH(‘I), P)
x 'ty (U, 0) ¢ ma (¢, ) o ePrer,
Since 77, (@, ¢) 7711(5, w) is even in the (@,w,a, ¢)—variables, we continue
with
(DM [ D (,0) (01, 0') » (1)
= 0P [y (@) [ (@) iy (7.6) i (6.0) e
o 6 o0 6

@@WWM G (1= ¢+ + Y + ¢ — 2075 )

— (—1)|M|+2/DM W, 0) nf; % -

By analogous calculations, we obtain

()M [ Dy (B 0) (€ )
= (—1)M|+2/DM \IJ,\I/) |:27760*’r]00—|—1780*’l711 +U81*U01

+ 010 * M0 + 771 * Moo + N1 * M1

where 711 := ) (—1)|I|+|J‘ arg UiV € Gy if mip =Y. a;;¥ ¥y for some
1,J 1,0
ary € C. m11 occurs due to the anticommutations of ¥y, with nj; and of

41 With 717 in the second and the fifth term on the r.h.s. of Eq. (4.11),
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respectively. Observing that

/DM (W, 0) 7}y * 711

Z aUaLK |I|+|J|+K+IL/DM \I/ \If) (\I/]\IIJ) (‘I/K\I/L)
1,J,K,L

- /DM(\Ilv \IJ) 77>1k1 * M1,

since |I| +|J| + | K|+ |L| is even (otherwise both integrals vanish), we fi-
nally conclude

()M Dy (F.9) (¢ + 6
= (<) [ Dy (T )

X 050 * 100 + (Moo + 711)™ * (100 + 711) + 191 * o1 + Mo * Mo ,

which is nonnegative by the induction hypothesis. OJ

Finally, we can express the trace of an operator of B(AH) and, due
to Lemma 4.10, the trace of a product of such operators as a Grassmann
integral.

Theorem 4.19. For all A € B(AH) we have
(4.12) trpp(A) M'/D (W, ) 0(A).

Proof. Without loss of generality we may assume that A € B(AH) is normal-
ordered. Since the trace and the Grassmann integral are linear, it suf-
fices to consider tr/\H( R ) where I := {i1,...,in} and J :=

{j1,-..,jn} are ordered. For [ # Jboth thel h.s. and ther. h s. of Eq. (4.12)
vanish. For I = J, the 1. h.s. of Eq. (4.12) is given by

HI(H-1 -
JEI"/\;L[(C;E(1 .. 'C:mcil .. 'Cim) = (_1)2| (1] )2|M| |I|
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We have @(c;-*1 ERRIN R cz) = %1 ---Eim@bil ---1; on the r.h.s. of the
asserted Eq. (4.12) and, thus,

/D(‘I’v W) Py, o, iy -y, = (— 1) D /D(‘I’a v) [T i,

a=1

()M (1) BHITD) gla—n,

since [1 (Yathe) T = 1] (Yaha) I (1+ 20,1a) and, therefore,

a€cl ael aeM\I
d 9 > H 7 ) e2(T,0) | M|—|1]|
11 (5550 ) I1 (waa) 207 = (=)0
acM <61’Z) &b acl
The proof is complete by (—2)MI=11 = (—1)IMI (1)l glM|-|1], O

Due to the restriction to a Hilbert space with even dimension, we hence-
forth skip the factor (—1)|M|.

5. Representability conditions from Grassmann integrals

The last section allows for an application of the Grassmann integration on
the problem of representability for fermion systems. In particular, we are
interested in necessary conditions for the 1- and 2-pdm to have their origin
in a density matrix p [2]. In the language of Grassmann integration we call
the equivalents of density matrices Grassmann densities.

Definition 5.1. A Grassmann variable 9* « 9 € G is called Grassmann
density if it is normalized, i.e., fulfills

/D(\D,\P)ﬂ**ﬁ—l.

By definition, the Grassmann density is positive semi-definite and self-
adjoint. For a given state p, the map © immediately provides ¥* x 1, namely
U* %19 = 0O (p). Thanks to the product rule for © and the positive semi-
definiteness of p, we also have ¥* x 9 = @(p%p%) = @(p%) *@(p%). O is a
bijection and compatible with the involution. This implies that ¢ = @(p%).
Given a Grassmann density, we can formulate the problem of representability
by Grassmann integrals using the trace formula (4.12).
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Definition 5.2. Let {Ji’wi}ieM be the generators of Gy and associate
{%i},epr with a fixed ONB of H. The 1-pdm 7y € B(H) and the 2-pdm
I'y € B(H® H) of a Grassmann density 9" x ) are defined by their matrix
elements

(5.1) <1/Jk,"}/19’(/11> ::/D(\I’, \If) 19**19*@[*1/)]6 and
(52)  ($m © s Ty (Y ® ¥y)) 2=/D(\I/,\1/) O %9 % g Dy % o

Applying the trace formula (4.12) on Egs. (5.1) and (5.2), respectively,
we observe that

(s ypthr) = trpn (071 (0 % 9) fe;)  and
<1/}m & wny I‘,0 (¢z & wk)> =trau (971(19* * 79) c?czcncm) y
which agrees with the common definition of the 1- and 2-pdm [2] if we

interpret ©~1(¥* x V) = (@‘1(19))* O~ 1(¥) as a density matrix p € B(AH).
Then the problem of representability can be formulated as follows:

Definition 5.3. We call (v,I') € B(H) x B(H ® H) representable if there
exists a Grassmann density ©* x ¥ such that (v,T") = (79, 'y).

5.1. Conditions on the one-particle density matrix
The lower and upper bound for the eigenvalues of the 1-pdm vy of a Grass-
mann state 9* x ¥ arise directly from the definition of the 1-pdm (see [2] for
further details). Here, we would like to derive the conditions by Grassmann
integration. To this end, we consider certain subspaces of Gy;.
Definition 5.4. For any n € IN, n < |M|, we define the subspace
G\ = span { WU [ 1,0 C M, |I|,|J] < n} C Gar.

Bounds for the 1-pdm rise by considering g](\}). In what follows, we call

conditions derived by considering Q(Mn) “conditions of n-th order”.

Lemma 5.5. Theorem 4.18 implies

Y9 = 0.



Representability conditions 1167

Proof. Let {Ei’wi}ieM be the generators of Gy and ar € C Vk € M. In

Theorem 4.18, we use Eq. (4.9) with n:= ¢ x 9" and ¢ := > aphx € Gus.
B kEM
We observe that ¢* = > axth, and n* = (¢ x 9*)* = ¥ x ¢* with the invo-
keM
lution (-)* on Gyps. This leads to

0< [ D@ )5 wn= 3w [ D(TW) 0" w0 x Tyt = (f01).
kleM
where f:= ) @;9; € H is arbitrary. O
ieM
The upper bound for ~y is given by another choice of 7.
Lemma 5.6. Theorem 4.18 implies
v < 1.
Proof. The bound can be proved by following the steps of the proof of the
lower bound. Again, we have a, € CVk € M and set ¢* = > apyy, € G

keM
and, this time, n* = (¢* x¥)" = 9* x ¢. Before we go on, we observe that

GxdT = D k=Y Apar— > @iy Py

kleM keM kleM

by the CAR on Gy given in Lemma 4.8. Inserting this into the inequality
of Theorem 4.18 and using the associativity of the star product, we obtain

0</D@&Mun

= Z |ak|2— Z alak/D(\If,\Il) 0* % % )y * Pp

keM kleM
= <ga (]l - 779)Q> ’
where we have used [D(U, V) * x =1 and g:= Y apthy € H. O

keM

Considering the subspace Q](Vl[), we can summarize our last two results.

Theorem 5.7. Let 9 x9* be a Grassmann density and vy its 1-pdm. Then
the following statements are equivalent:

(a) 0 <y < 1.
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(b) Vi e G\ [D(T, W) 9% %95 p > 0.

Proof. In Theorem 3.1 of [2], the analogue of this theorem has been shown
for polynomials in creation and annihilation operators of degree lower than
or equal to two. With the bijection ©, we have a one-to-one mapping between
the space of polynomials of degree lower than or equal to two and G;,/. [

5.2. G-, P-, and Q-Condition

We proceed with representability conditions of second order by consider-
ing g](\? and a star-product of ¢ and ), in this case, for example ¢ :=

> g * iy € Gy with ayy € C Vk,1 € M. This time, we are interested
kleM
in conditions on I'y and use the Grassmann integration to rewrite the matrix

elements of the 2-pdm as in Eq. (5.2). The first condition is the P-Condition.
Lemma 5.8. Theorem 4.18 implies the P-Condition
I'y > 0.

Proof. The proof is similar to the one in the last subsection. Setting 7n :=

o*x UV, nt = (¢*19*)* =1 x¢*, and ¢ := Z apr * Y € Gy with ay €
kleM
CVEk,l € M, we arrive at

OS/D(‘IJ,\I’)n**T]

= Z aklamn/D(\I’a W) 0" 0 Py K Wy, % o U
k,l,mneM
= <F7 FﬂF> 5
where F':= Y @k (¥ @ y,) € H ® H is arbitrary. O
kleM

The Q-Condition is the next representability condition we want to de-
duce. In order to obtain a convenient formulation of this condition, we use
an exchange operator on B(H ® H) which is defined by Ex (f ® g) ;=g ® f
for f,g € H.

Lemma 5.9. Theorem 4.18 implies the Q-Condition

Fg—l—(]l—EX)(]l@]l—’yﬁ@]l—]l@’w)20.
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Proof. With ¢ := Y @b, *x; € Gur, g € CVE, 1 € M, and ) = ¢ x 9",
k,leM
we have

Og/D(\II,\I/)n**n

= Z aklamn/lp(\ljalp)ﬁ**ﬁ*¢n*¢m*wk*¢l'

klmmneM

Aiming for an expression in terms of I' and 7, we establish normal-ordering
using the CAR:

(53) wn * wm * @k * @l = 5mk5nl - 5nk6ml + 6nk@l * wm
- 5mk@l * wn + 5nl$kz * wl
= Otk * P — Vg * Py x % Uy

As in the proof of Lemma 5.8, we write an arbitrary G € H® H as G :=
> g (Y @ 4y) for some ayy € C. Thus, we have > @p1mnOpmOm =

kleM k,l,mneM

(G, 1G) and Y. Qkimndkndim = (G, ExG). With Egs. (5.1) and (5.2)
k,lmneM

we find

0<(G(I'y+(1-Ex) (11l -pwel-11®))G)

by evaluating the Grassmann integral fD(@, \I/) (-) on the r.h.s. of (5.3).
]

The last second order representability condition which can be derived by
the described method is the (optimal) G-Condition. Deriving this condition
by Grassmann integration requires a choice of n, that is not as obvious as
before. In the following, tri(-) denotes the trace on H and tra(-) the trace
on H®H.

Lemma 5.10. Theorem .18 implies the G-Condition:

VAEB(H) : tra((A* @ A) (Ty + Ex (y9 © 1)) > [try(Ayy)|*.

Proof. This time, we choose 7 := ( S athy x Yy — ﬁ) * 1, where ay; €
EleM B
CVk,leMand B:= Y op [D(V,¥) 9«0 *thy, x 1. Before we apply
M

)
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Theorem 4.18, we emphasize that by the CAR

(5.4) D authti =B | x| Y autp— B

kleM kleM

=BB—B > Wb *x k=B Y mnty*tn

kleM m,neM

= > Wty * P * Yk x o + Y Wty x

kleM klneM

We consider the last two lines separately and integrate. The integration of
the line before the last line in Eq. (5.4) yields

(5.5) /D(\If,\I/)ﬁ**ﬁ* B8—BS @ty x bk —B Y Qnntp % n

kJleM m,neM
= BB~ BB~ BB =—P8,

which follows from the definition of 3. It is important to notice that 3 does
not depend on v or ¢ and, therefore, is a constant with respect to the
Grassmann integration. In detail, we have for 8

(5.6) B= > au /D(q/, W) 0 %)% Py, %y = tri(Avg)

kleM
if we set (¢, AYy) := ayy for every k.l € M and A € B(H). The evaluation
of the Grassmann integral of the last line in Eq. (5.4) provides

(5.7) — Z aklamn/D(\II, \I/) 0% % 0 %y %1, * g * Py,

k,leM
+ Z Q] Ofen /D(\I’, \I/) 9* *19*@[ * P,
klneM
= trg((A* & A) (Fﬁ + Ex ("}/19 & ]l))) .
Summing up, calculation (5.5) together with Egs. (5.6) and (5.7) gives
tr2((A* ® A) (Lg + Ex (9 ® 1)) — |try(Ayy)* = 0,

due to Theorem 4.18. O

. . 2
We summarize our results using g](\/[):
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Theorem 5.11. Let 9 x 9" be a Grassmann density, vy its 1-pdm, and Iy
its 2-pdm. Then the following statements are equivalent:

(a) (yo,Lw) fulfills 0 < vy <1 and the G-, P-, and Q-Conditions.
(b) Yu e G . [D(T, ) 0* x5 p > 0.

Proof. Again, we use Theorem 3.1 of [2] and the bijection property of O,
which ensures that the space of polynomials of degree lower or equal than
four in creation and annihilation operators is mapped one-to-one to g](\j). U

5.3. T1- and generalized T3-Condition

The previous sections imply that further conditions on ~y and I'y can be
found by taking into account monomials of higher order of the form Eil *
sk apy ok apj k- k1P for n > 2. Here we face the problem that monomials
with n > 2 have to “decompose” into monomials with n < 2. Due to this,
only some choices of higher order monomials are suitable to derive further
representability conditions. One of such monomials is given by

T = Z Tijki % Y x Y € Gur

imjvkeM

where, due to {1;,¢;}, =0, Tj;, € C is totally antisymmetric, i.e., Tjj;, =
—T}ir, = Tjki- The T1-Condition is the following.

Theorem 5.12. Let T, € B(H) be trace class. Set Ty = [1],,, and Fr, :=

> qun (pr ® on) € H@H. Then Theorem 4.18 implies the T1-Condi-
k,neM
tion

3 (2tr1(|Tq|2) - 6tr1<|Tq|2w> n 3<FTq,F19FTq>> >0.
qeM

Proof. We begin by considering the anticommutator {7, 71}, € Gy and
observe that, by construction, {7}, 7}, > 0. Furthermore, we can use the
CAR to establish normal-order in {7{,71},. The (4, j)-th matrix element of
A € B(H) is denoted by [A];; := (15, Ap;). Using the antisymmetry of Tjjy
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we obtain

{Tik7 7—1}* =9 Z Z lem,—rlinam *Ej * ;i *

leM i,jmmneM

m,leEM k,neM l,m,neM

=9 Z Z [T;]mj [Tq]mam*aj*%*lﬂn

qeM i,5,m,neM

-1y Y I, ¢k*wn+62tr1(|T|)

qeM kneM qeEM

Since {77, 71}, > 0, we have by Theorem 4.18
/D(\Il, U) 05 {5, < 0% > 0.

Together with Eq. (5.2), the latter calculations and this positivity of the
integral bring us to

0<3) > [5],,; [Ti (i ® ¥n.To (¢ @ vm))

qeM i,5,mneM

-6, > [!Tl} (s yotor) +2 3ty (IT))

qeM kneM qeM

With (¢, Tgtpj) =: [Tg];; and Fr, == 3 Trqn (Pk @ ©n), this yields the
knEM
assertion. O

The generalized T2-Condition can be derived equivalently by another
choice of 7. Using the anticommutator with a combination of two v’s and one

¥ (or vice versa), we have three different possibilities: T, := - %:MTJ sz *
Z7]7 e
¢j * P, Top = Z z]sz * Y *wka and 7y 1= Z Tz(jck)¢l *wj * g A
i,9,k€M i,5,k€M

generalization of these possibilities is given by
Z E]k@z *Ej * g + Z ait; ,
i,j,keM icM

where Tj;, a; € CV 4,5,k € M. This is a generalization, since we obtain

a ©
Ty = Toq for a; =0 and Tjj, = Tlgk), Ty = Top for a; = %Tm) and T, =
je
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_p®

o)y and, finally, 7 = 7o for a; = 3 (T35 = T\{]) and Tyjs = T5). The

jeq VI Jij Kij*
identities can be seen using the CAR. Unfortunately, if one uses the gener-

alization 75, symmetry properties on Tjjj, like, for example, Z(J k) =— J(Zak) in

(6 _

Toq O Tz ik = _Tz(k;g) in 79, vanish. The generalized T2-Condition arises from
{5, ™}, > 0. In order to state the condition in a compact form, we need
some new notation.

Definition 5.13. For T}, € B(H), [Ti];; := Tijk Vi, j,k € M, and a € C'M|,
we define Gp, € H® H and the matrices Q1 € B(H® H) and Qa, Q3 €
B(H) by

Gr, = Y [Til; (i ®@¢y),

1,j€EM
(1 @ v, Q1 (e ® ) = [TLVTO)
(Wi, Qo) =t (1Y) 1),

(. Q) = ([( OV [14],7).

where [T,gA)]
ric part of Tj,.

=1 ([Tk]ij - [Tk]ji) =— [T,gA)] ~ denotes the antisymmet-

i Jt

Theorem 5.14. Let Ty, a, Gr, and Q1, Q2, Q3 be as in Definition 5.13.

Then Theorem 4.18 implies the generalized To-Condition

Z (Gr,,TyGr,) + 4tra(Q1Ty) + 2tr1((Q2 + Q3) v9) + |a> > 0.
qeEM

Proof. The first task is to bring {75, 7} into normal-order. Then the two
terms of third order cancel and only terms of order less than or equal to

two remain. To calculate the anticommutator we use {(u +71)", u+n}, =

{w*, nty +2Re {0}, + {n" 0}, for p:= kZMTijk¢i * 1 x Py, and 7 =
f— i»j) €

> ai);. Here, Re denotes the real part. By the CAR, we have

ieM

{77*777}* = Z ’ai‘Qa {M*v 77}* = Z Z an nqk) aqwk *wna

ieM k,neM qeM



1174 V. Bach, H. K. Knorr and E. Menge

and

{n* b, = ( Z Z qu qjk) (Tymn — Trmgn) + Tnqukmq)

J,k,mneM qgeM

X W * ¢m * % * 1%) + Z Z qu qpk) pqnwk * wn

k,neM p,qe M

We set Tjjq =: [Ty];; where T; € B(H) Vg € M and observe that (T =

_ — A\ * A
[T;]jp Tonk — Tngk = 2 [(Té )) :|nq’ and Tymn — Tmgn = 2 [Tr(z )} o’ where
T is the antisymmetric part of T' (see Definition 5.13). This allows us to
rewrite the anticommutators as

2Re {u" 0}, =2 ) ) ([(Tém”

kneM qeM

aq + |:TTSA)i| ok aq) Yy * Pn

ngq

and

s :< DD (4 [(TéA))*LJ [Tgm]qm + (73], [Tq]km>

j:k7m7n€M qu

X¢k*¢m*¢j*¢n> +2 Z Z [(TéA))*Lp[Tn]pqu*q/Jn.

kneM p,qeM

In the next step we use (¢;, AY;) = [A];; for A € B(H) and the Grassmann
representation of v and I' from Egs. (5.1) and (5.2). Definition 5.13 then
leads to

Z Z [T;]jn [Tq]km/D(\If,\ll) O % 0 % 1y, % 1y, * i %y,

J,k;mmneM qeM

= > (Gr,,TyGr,)
qeEM
for Gr, i= & [T (6 © ) € H & H. With {4 © 1, Q1 (0 © ) 1=
i€

[T,gA)TT(LA)]jm we have

4y [T,(j‘)]jq [T}L“]qm/p(\y,\p)ﬁ**ﬁwkwm*%wn

j7k7m7n7q€M
=4 trg(Qng) .
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Furthermore,

22 2 [(T’gA))*Lp [Tn]pq/D(\I/, W) 0 %0 1y, * by = 211 (Q2y)

kneM p,qe M

for [Q2],, = tr1 <<T,£A)>* Tn>. Finally, we have

29 [ D(T0) 0" w05 (i), = 201(Q0).

where [Q3];; == > ([(Ti(A)YLq aqg + [TJ.(A)]qiaq). > la;|* =: |a|® is the

qeM
squared unitary norm of a. The proof is complete by inserting the latter
calculations into the inequality of Theorem 4.18. O

As already mentioned, we have antisymmetry properties for certain choi-
ces of a and Tjjj. In 7o, which we gain by setting a = 0 and T} = Tl(;;g =
[T,ga)} ., we have [T}, = — [T}];; or T, = T,gA). In this case, we have a sim-

i
plification of the generalized T9-Condition:

Corollary 5.15. Fora=0, T = T,EA), [Tk]m := [T}, we have the Toq-
Condition given by

> (6, ToGy, ) + 4t ((T; @ T) To) + 2t (|7, ) ) = 0.

qeM

We can also use an antisymmetry property in 7o, which leads to a con-
dition T.. Unfortunately, there is no simplification compared to the gener-
alized T2-Condition. There is, however, no antisymmetry property in 7op.

Since {7}, 7}, , {15, ™}, € Q](\j), the Tq- and Ty-Conditions are condi-
tions of third order.

6. Quasifree Grassmann states

The notion of Grassmann integration allows for a calculation of traces on
the fermion Fock space by Grassmann integrals and, in turn, to reformulate
representability condition in terms of Grassmann integrals. At last, we con-
sider quasifree states, their one-particle density matrices, and the expression
of their relation in terms of Grassmann integrals.
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In the following, we will abbreviate the expectation value of a Grassmann
variable p € Gpy with respect to a Grassmann density s € Gy by

/D(\I/,\Il)%*,u:: (p),, -
Definition 6.1. Let {%,w}ieM be a set of generators of Gy, and let JZ

denote either i; € Gy or ¢; € Gyr. We call a Grassmann density s quasifree
if

(i) <J1 *@Z2*"'*7,52N_1> =0 and

el

(id) (x o xdhan ) = (17 (o) %)) %+

»x e P4

X <?Z7r(2N—1) * JW(QN)>%7

for every N € IN. Here > denotes the sum over all permutations 7 obey-

ing (1) < 7(3) < --- < T(2N — 1) and 7(2j — 1) < 7(2j) forall 1 < j < N.
The maximal number of (distinct) v; or ¢, in (i) and (i) is |M|.

Remark 6.2. We have to restrict N in the latter definition or extend
M sufficiently, since the expression on the 1. h.s. of condition (i) and (ii),
respectively, vanishes, if the number of 1; or v, is larger than |M].

As it is known from [3], there is a unique characterization of quasifree

states by the 1-pdm. In detail, assuming particle number-conservation and
defining

~ (v 0
5= (0 1_7)68(7{@7{),
which is the generalized 1-pdm corresponding to -, one has the following;:

Theorem 6.3. Lety = (g HEW) be an operator on H & H with tri(y) < oo
and 0 <~ < 1. Then there is a unique quasifree state p with tray (pﬁ) < 00
such that 7 = 7,.

For a proof see [3].

In the language of Grassmann integration, the reverse direction, namely
that 7,,, i.e., the generalized 1-pdm of a quasifree Grassmann density s,
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has to fulfill 0 <7,, <1, can be deduced by appropriate choices of ¢ € Gy
in the positivity condition

<¢**¢>% ZO

The aim of this section is to determine the unique quasifree Grassmann
density subject to Theorem 6.3, i.e., the element of a Grassmann algebra
corresponding the state given in [3]. To this end, we consider an operator
vy E€BH®H) with 0 <5 <1 and its eigenvalues \; and (1 — );), where
0< )\ < %, 1 € M. Furthermore, we define Py to be the projection onto the
subspace of AH, on which ) ¢f¢; =0 for i € M. Moreover, for any i € M
;=0

with \; # 0 the quantity ¢; is given by the relation (1 +e%)~! = X;. Then,
according to [3], any operator ¥ with 0 <75 < 1 is the generalized 1-pdm of
a unique quasifree state p € B(AH) given by

G

(6-1) p = m )

where

G:=Pye ™ and H:= Z qiciC; .
0\ #£0

Before we turn to the definition of the Grassmann density corresp(lnding
n

to (6.1), we introduce the abbreviations ©¢ := O(Fy) € Gy and [[ pi:=
=1
W1 * [ K ek oy for py, oo pun € G, n € IN. Furthermore, we assolciate the

generators {Ei,@bi}ieM of Gy with the ONB {v;},.,, of H, where the 1;
are the eigenvectors of v corresponding to the eigenvalues \; and (1 — \;).

Lemma 6.4. Lei{wi}ieM be an ONB of H such that yip; = \jtb; and let Gy
be generated by {1/12-, wi}ieM' The Grassmann density » € Gy corresponding

top= ﬁ s given by

1 *x —
(6.2) x=- @0*'1_[ ((e7® — 1) Phy + 1) |,
i\ 7#0
where

Z::/D(‘lf,\ll) Oox I (e —1) i +1).
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Proof. We consider ©(p) with p as in (6.1). First, we observe that ¢}¢, com-
mutes with c;c, for every i, k. Therefore, we have

- H (Z (_73:) c;ci—%l) = H ((e_q"—l)c;‘ci+1),

since (cf¢;)" = ¢fc;. Thus,

@(Pge @0*@( —1)cfe;+1)
BN 0

= H ((e™® = 1) vy + 1),
X #£0

where we have used ©(AB) = O(A) x ©(B). O

The Grassmann state corresponding to the Grassmann density (6.2) is
given by the map

Gu —C, p—(u), .

We want to check that the Grassmann density from Lemma 6.4 is quasi-
free, i.e., fulfills conditions (i) and (ii) from Definition 6.1. The uniqueness
of s« follows from the bijection property of the map ©.

Theorem 6.5. The Grassmann density s in Lemma 6.4 is quasifree.

Proof. We consider the Grassmann variable

s = [ (it + 1),

ieM

where r; := e~ %) — 1 and qi(p) = p € R for all ¢ with A; = 0 and ¢;(p) = ¢;
for all ¢ with A\; # 0. The quasifreeness of s follows from the quasifreeness of
s, by a limiting argument. The first claim of Definition 6.1 is immediate for
#,, since the Grassmann integral vanishes for any odd number of ¢ s. This
can be seen by Remark 4.15 and the chequerboard. The validity of Equation
(ii) of Definition 6.1 has already been proved in [10]. Here we emphasize
the main steps and transfer the notation of [10] to Grassmann integrals. We
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consider the 1. h.s. of claim (ii) of Definition 6.1,
(uw e oxiy) = [ D) sty Gon Gy e ox .

with 2N generators z[a, e ,sz. In the first step we eliminate zza from the
expectation value by a pull through formula. To this end we use {1’/;6“ @Zb} =

Yo * Uy + Up * e, Which is either 1, —1, or 0. This yields ’
(Fosowox- iy
= {{Ea,%}* <1Zc*{/7d* . ..*{/?f>m - {Ja,{/?c}* @b*iﬁd* . *{/?f>%
IR AN AR g
- {Parts b (oxdberewiie) = (Gpxdoxeoxdyx i)

Hu

"

Pu Pu

Afterwards, we use the cyclicity of the Grassmann integral in the last ex-
pectation value on the r.h.s. of the latter expression and the identities

x5, =e¥ s, x0p; and Y x g, = e Y, K1y,

which follow from the fact that >, is a star product of single states of the
form r;¢p,;4; + 1 and the CAR for the star product. Thus, the last expectation
value can be written as

RN Y A A

n m

and we conclude with
(B Bex- w7 _
(i) (i)

— 71+eiqa <¢C*Jd*...*if>%“ —m<¢b*zzd*...*1zf>m
+%$waw%p%-
R AT
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We have reduced the expectation value of 2N generators to a sum of expec-
tation values of 2(N — 1) generators. As in [10], the assertion follows by an
induction in the number of generators. Finally, the quasifreeness of s follows
from

. »
» = lim K’

n—oo [D(W, W) 5,
which completes the proof. O

Remark 6.6. Carrying out the |M|-fold star product in s, we find a more
convenient form of s

= O [r [0 [Twi= D (~1)*re¥qle,

QCM €Q  1€Q  i€Q QCM

where sg = 1(Q|(|Q| — 1), rg == HQ ri. The sum runs over all ordered sub-
1€
sets Q C M.
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