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Representability conditions by

Grassmann integration

Volker Bach, Hans Konrad Knörr and Edmund Menge

Representability conditions on the one- and two-particle density
matrix for fermion systems are formulated by means of Grassmann
integrals. A positivity condition for a certain kind of Grassmann
integral is established which by an appropriate choice of the inte-
grand, in turn, induces the well-known G-, P- and Q-Conditions
of quantum chemistry. Similarly, the T1- and T2-Conditions are
derived. Furthermore, quasifree Grassmann states are introduced
and, for every operator γ̃ ∈ H ⊕H with 0 ≤ γ̃ ≤ 1, the existence
of a unique quasifree Grassmann state whose one-particle density
matrix is γ̃ is shown.
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1. Introduction

The grand canonical energy (minus pressure) E0(μ) := inf
{
σ{Ĥ− μN̂}}

at sufficiently large chemical potential μ ≥ 0 of a quantum system with a
Hamiltonian Ĥ and particle number operator N̂ is given by the Rayleigh–
Ritz principle as

E0(μ) = inf
{
tr
(
ρ

1

2

(
Ĥ− μN̂

)
ρ

1

2

) ∣∣∣ ρ ∈ DM
}
,(1.1)

where Ĥ = Ĥ∗ is a self-adjoint operator obeying stability of matter, i. e.,
which is bounded below by −cN̂ for some c < ∞ and at most quartic in
the creation and annihilation operators [11, 18]. This is typically the case
for models of non-relativistic matter in physics and chemistry. The Pauli
principle plays a crucial role for stability of matter to hold true and we,
thus, restrict our attention to fermion systems. On the fermion Fock space
∧H the variation on the r. h. s. of Eq. (1.1) is over the set

DM :=
{
ρ
∣∣∣ ρ ∈ L1

+(∧H), tr(ρ) = 1, 〈N̂2〉ρ < ∞
}
,

i. e., density matrices with finite particle number variance. Here, the expec-
tation value of an observable Â is〈

Â
〉
ρ
:= tr

(
ρ

1

2 Âρ
1

2

)
.

More specifically, if

Ĥ− μN̂ =
∑
k,m

hkm c∗(fk) c(fm) +
∑

k,l,m,n

Vklmn c
∗(fl) c∗(fk) c(fm) c(fn) ,

then

E0(μ) = inf {E(γρ,Γρ) | ρ ∈ DM} ,(1.2)

where

E(γρ,Γρ) :=
∑
k,m

hkm 〈fm, γρfk〉+
∑

k,l,m,n

Vklmn 〈fm ⊗ fn,Γρ (fk ⊗ fl)〉 .
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The one- and two-particle density matrices corresponding to ρ are defined
by

〈f, γρ g〉 := 〈c∗(g) c(f)〉ρ and〈
f ⊗ g,Γρ(f̃ ⊗ g̃)

〉
:=
〈
c∗(g̃) c∗

(
f̃
)
c(f) c(g)

〉
ρ
,

respectively, for all f, g, f̃ , g̃ ∈ H. Note that (1.2) can be rewritten as

E0(μ) = inf {E(γ,Γ) | (γ,Γ) ∈ R} ,(1.3)

where

R :=
{
(γ,Γ) ∈ L1(H)× L1(H⊗H)

∣∣∣ ∃ ρ ∈ DM : (γ,Γ) = (γρ,Γρ)
}

denotes the set of all representable one- and two-particle density matrices.
Eq. (1.3) suggests that the search for a minimizing ρ could be drastically
simplified if one would find a characterization of all representable reduced
density matrices (γ,Γ). This was realized almost fifty years ago [5, 7, 9, 12],
but such a characterization is still unknown.

The characterization of E0(μ) by the variation (1.3) immediately yields
lower bounds of the form

E0(μ) =: ER(μ) ≥ ES(μ) ,(1.4)

for any superset S of R. For example, the positivity 〈P ∗
2P2〉ρ ≥ 0 for all

polynomials P2 ≡ P2 (c
∗, c) in the creation and annihilation operators of de-

gree two yields the so-called G-, P-, and Q-Conditions on (γρ,Γρ) [2, 5, 7, 9].
Similarly, the positivity 〈P ∗

3P3 + P3P
∗
3 〉ρ ≥ 0 yields the T1- and generalized

T2-Conditions [7]. Hence, all representable reduced density matrices (γ,Γ)
necessarily fulfill the G-, P-, Q-, T1-, and generalized T2-Conditions, and we
have

ER(μ) ≥ ES[G,P,Q,T1,T2](μ) ≥ ES[G,P,Q](μ) ,(1.5)

since R ⊆ S [G,P,Q,T1,T2] ⊆ S [G,P,Q], with

S [X] :=
{
(γ,Γ) ∈ L1(H)× L1(H⊗H)

∣∣ (γ,Γ) fulfills Condition X
}
.

We have discussed (1.4) and (1.5) for S = S [G,P] in some detail in [2]
and refer the reader to that paper and references therein. Furthermore, for
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S = S [G,P,Q,T1,T2] numerical works show agreement with Full CI com-
putations [4, 13, 14, 19] to high accuracy.

The purpose of the present paper is the reformulation of representabil-
ity conditions in terms of Grassmann integrals. Such a transcription may
possibly yield new viewpoints and hopefully new insights into the repre-
sentability problem. To this end, we introduce a Grassmann algebra GM as
a finite dimensional complex algebra. The object on GM corresponding to a
given density matrix is an element of the form ϑ∗ � ϑ described in the se-
quel. Grassmann integration is the basic and most commonly used method
(see, e. g., [8, 16]) in theoretical physics to compute partition functions of
the form

ZΓ,λ(J) :=

∫
DΓ(φ) e

−SΓ+(J,φ)
Γ

as a functional integral with DΓ(φ) :=
∏
x∈Γ

dφ (x) with sources J : Γ → R and

an action SΓ (see [16] for further details).

The derivation of the G-, P-, Q-, T1-, and generalized T2-Conditions
is based on the representation of the trace on ∧H in terms of Grassmann
integrals and a positivity condition of a Grassmann integral, namely

∀ η ∈ GM :

∫
d
(
Ψ,Ψ

)
e2(Ψ,Ψ)η∗ � η ≥ 0 ,(1.6)

where
∫
d
(
Ψ,Ψ

)
denotes the Grassmann integration. The star product refers

to a product on GM and is introduced later. Considering appropriate sub-

spaces of GM denoted by G(n)
M , the main results of this paper are the bounds

for the one-particle density matrix γϑ,{
∀μ ∈ G(1)

M :

∫
d
(
Ψ,Ψ

)
e2(Ψ,Ψ)ϑ∗ � ϑ � μ ≥ 0

}
⇔ {0 ≤ γϑ ≤ 1} ,

and the G-, P-, and Q-Condition as conditions for the two-particle density
matrix Γϑ, {

∀μ ∈ G(2)
M :

∫
d
(
Ψ,Ψ

)
e2(Ψ,Ψ)ϑ∗ � ϑ � μ ≥ 0

}
⇔ {0 ≤ γϑ ≤ 1, G-, P-, and Q-Condition} .
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Finally, we prove the validity of the T1- and generalized T2-Condition de-
duced from Ineq. (1.6).

2. Reduced density matrices and representability

Before we elucidate how to derive the G-, P-, Q-, T1-, and generalized T2-
Conditions for the 1- and 2-particle density matrix (1- and 2-pdm) by Grass-
mann integration, we give a definition of these first two reduced density ma-
trices. For this purpose, we consider a finite-dimensional index set M , an
|M |-dimensional (one-particle) Hilbert space (H, 〈 · , · 〉), and an arbitrary,
but fixed orthonormal basis (ONB) {ψi}i∈M of H. Furthermore, we intro-
duce the usual fermion creation and annihilation operators on the fermion
Fock space ∧H overH given by c∗(ψi) ≡ c∗i and c(ψi) ≡ ci with the canonical
anticommutation relations (CAR)

{c(f), c(g)} = {c∗(f), c∗(g)} = 0 and {c(f), c∗(g)} = 〈f, g〉 · 1

for all f, g ∈ H, where 〈 · , · 〉 is linear in the second and antilinear in the first
argument. {A,B} := AB +BA denotes the anticommutator.

The 1-pdm γρ ∈ L1
+(H) of a density matrix ρ, i. e., a positive trace class

operator on ∧H of unit trace (tr∧H(ρ) = 1), is defined by its matrix elements
as

∀ f, g ∈ H : 〈f, γρ g〉 := tr∧H(ρ c∗(g) c(f)) .

Likewise, the 2-pdm Γρ ∈ L1
+(H⊗H) of ρ is defined by

∀ f1, f2, g1, g2 ∈ H :

〈f1 ⊗ f2,Γρ (g1 ⊗ g2)〉 := tr∧H(ρ c∗(g2) c∗(g1) c(f1) c(f2)) .

There are several properties which can be derived directly from the definition
of γρ and Γρ.

Lemma 2.1. Let ρ ∈ L1
+(∧H) be a density matrix and N̂ :=

∑
k∈M

c∗kck the

particle number operator with
〈
N̂2
〉
ρ
< ∞. Then the following assertions

hold true:

(i) γρ ∈ L1
+(H), 0 ≤ γρ ≤ 1, trH(γρ) = 〈N̂〉ρ, Γρ ∈ L1

+(H⊗H), 0 ≤ Γρ ≤
〈N̂〉ρ · 1, and trH⊗H(Γρ) = 〈N̂(N̂− 1

)〉ρ.
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(ii) If Ran(ρ) ⊆ ∧(N)H, N ∈ N, then, for all f, g ∈ H,

〈f, γρ g〉 = 1

N − 1

∑
k∈M

〈f ⊗ ψk,Γρ(g ⊗ ψk)〉 ,

where {ψk}k∈M is an ONB of H. Here, ∧(N)H denotes the fermion
N -particle Fock space.

(iii) Furthermore,

ρ = |c∗(ψ1) · · · c∗(ψN )Ω〉〈c∗(ψ1) · · · c∗(ψN )Ω| ⇔ γρ =

N∑
i=1

|ψi〉〈ψi|

and, in this case,

Γρ = (1− Ex) (γρ ⊗ γρ) ,

where Ex (f ⊗ g) := g ⊗ f for any f, g ∈ H.

For further details we recommend [1, 2, 5, 9] and a proof can be found
in [1]. Beside these properties, necessary conditions on (γ,Γ) to be repre-
sentable were derived in [5, 7, 9]. In particular, the P-, G-, and Q-Conditions
are

(P) {(γ,Γ) fulfills P-Condition} :⇔ {Γ ≥ 0} ,
(G) {(γ,Γ) fulfills G-Condition}

:⇔
{
∀A ∈ B(H) : tr((A∗ ⊗A) (Γ + Ex (γ ⊗ 1))) ≥ |tr(Aγ)|2

}
,

(Q) {(γ,Γ) fulfills Q-Condition}
:⇔ {Γ + (1− Ex) (1⊗ 1− γ ⊗ 1− 1⊗ γ) ≥ 0} .

The T1- and generalized T2-Conditions are more complicated and not given
here. For these conditions we refer the reader to [7] or Subsection 5.3 of this
work.

3. Grassmann algebras

We introduce the Grassmann algebra as the complex algebra generated by
elements of the set

{
ψi, ψi

}
i∈M with |M | < ∞ modulo the anticommutation

relations specified below. A product of two generators is denoted by ψi · ψj ≡
ψiψj . The unity is given as 1 · ψi = ψi · 1 = ψi (and equivalently for ψj). The
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anticommutation relations allow us to find a one-to-one representation of the
CAR of fermion creation and annihilation operators in terms of Grassmann
variables. For further details on this well-known material we recommend
[6, 15–17]. We use the notation of [15].

Definition 3.1. For an ordered set I := {i1, . . . , im} ⊆ M we write

ΨI := ψi1 · · ·ψim , ΨI := ψi1 · · ·ψim .

For I = ∅ we set ΨI = ΨI = 1. Denoting the reversely ordered set corre-
sponding to I by I ′, we write

ΨI′ := ψim · · ·ψi1 .

Definition 3.2. Given a set of generators
{
ψi, ψi

}
i∈M obeying the anti-

commutation relations

ψiψj + ψjψi = ψiψj + ψjψi = ψiψj + ψjψi = 0 ∀ i, j ∈ M ,

the Grassmann algebra GM is defined as

GM := span
{
ΨIΨJ | I, J ⊆ M

}
.

Introducing the ordinary wedge product, we can identify GM with the
Fock space ∧ (H⊕H) of a Hilbert space (H, 〈 · , · 〉) with finite dimension
|M |. Considering H as a subset of GM , we can identify {ψi}i∈M with a fixed
ONB of H and

{
ψi

}
i∈M with the corresponding ONB of H, i. e., the space

of all continuous linear functionals H → C, ψi �→ ψi ( · ) := 〈ψi, · 〉.

Remark 3.3. If GM is generated by
{
φi, φi

}
i∈M , we emphasize this by

using μ
(
φ, φ
) ∈ GM instead of μ ∈ GM . We also use “mixed” generators,

e. g.,

μ
(
ψ, φ
)
:=
∑
i,j

αij ΨIiΦJj
.

Later, it is necessary to link the CAR algebra of fermion annihilation and
creation operators to a Grassmann algebra. For this purpose, a map between
B(∧H) and GM as an isomorphism between vector spaces is required. This
map is provided below.
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Definition 3.4. Let GM be generated by
{
ψi, ψi

}
i∈M and associate {ψi}i∈M

with a fixed ONB of H. For all z ∈ C and {i1, . . . , im} , {j1, . . . , jn} ⊆ M ,
m,n ≤ |M |, we define the linear map Θ : B(∧H) → GM by Θ(z) := z and

Θ(c∗(ψi1) · · · c∗(ψim) c(ψj1) · · · c(ψjn)) := ψi1 · · ·ψimψj1 · · ·ψjn ,(3.1)

and extension to B(∧H) by linearity.

We emphasize that Θ is not multiplicative: While

Θ(c∗(ψ1) c(ψ1)) = ψ1ψ1 = Θ(c∗(ψ1))Θ(c(ψ1)) ,

we have

Θ(c(ψ1) c
∗(ψ1)) = Θ(−c∗(ψ1) c(ψ1) + 1)

= −ψ1ψ1 + 1 = ψ1ψ1 + 1 = Θ(c(ψ1))Θ(c∗(ψ1)) + 1 .

Thus, Eq. (3.1) only holds for normal-ordered monomials in creation and
annihilation operators, i. e., monomials in which all creation operators are
to the left of all annihilation operators.

Definition 3.5. For any A ∈ B(H) we set(
Ψ, AΦ

)
:=
∑
i,j∈M

[
ψi (Aψj)

]
ψjφi ∈ GM .

Note that ψi (Aψj) = 〈ψi, Aψj〉 ∈ C. Furthermore,
(
Ψ, AΦ

)
does not de-

pend on the choice of generators of GM as can be seen by a unitary change
of generators, e. g., χi :=

∑
j∈M

Uijψj for unitary U . An important case is

A = 1. Here we have
(
Ψ,Φ

)
=
∑
i∈M

ψiφi. One of the last ingredients for the

Grassmann integration is the following.

Definition 3.6. The expression e±(Ψ,AΦ) ∈ GM is given by

e±(Ψ,AΦ) :=

∞∑
m=0

1

m!

[± (Ψ, AΦ
)]m

.

As dim{∧H} = 2dimH, the sum runs only over 0 ≤ m ≤ 2dimH.
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Remark 3.7. Since
(
Ψ,Φ

)
=
∑

α∈M
ψαφα, and ψαφα commutes with every

element of GM , we have

e±(Ψ,Φ) =
∏
α∈M

(
1± ψαφα

)
.(3.2)

Definition 3.8. For all i, j ∈ M , we define the vector space homomor-
phisms δ

δψi
, δ

δψi

: GM → GM by

δ

δψi
ψj =

δ

δψi

ψj = δij and
δ

δψi
ψj =

δ

δψi

ψj = 0 .

Remark 3.9. The set
{

δ
δψi

, δ
δψi

}
i∈M itself generates a Grassmann algebra.

4. Grassmann integration

Now we are prepared to define the Grassmann integral, which is a linear
operator from GM to C.

Definition 4.1. The map
∫
d
(
Ψ,Ψ

)
: GM → C is defined by∫

d
(
Ψ,Ψ

)
:=
∏
α∈M

(
δ

δψα

δ

δψα

)
.

and is referred to as the Grassmann integral.

Remark 4.2. If the factor e2(Ψ,Ψ) =
∏

α∈M

(
1 + 2ψαψα

)
is involved in the

integration, we use the abbreviation∫
D(Ψ,Ψ

)
:=

∫
d
(
Ψ,Ψ

)
e2(Ψ,Ψ),

since
∏

α∈M
(
1 + 2ψαψα

)
commutes with every element of GM .

In order to state the invariance of the Grassmann integration with re-
spect to a change of generators, we introduce some notation. We write two
sets of generators,

{
ψi, ψi

}
i∈M and {χi, χi}i∈M , as 2|M |-component vectors
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a and b, respectively, whose entries are given by

ai := ψi and a|M |+i := ψi , and bi := χi and b|M |+i := χi(4.1)

for all i ∈ M . Furthermore, we define the entries of the 2|M |-component
vectors δ

δa and δ
δb by

δ

δai
:=

δ

δψi

and
δ

δa|M |+i

:=
δ

δψi
, and

δ

δbi
:=

δ

δχi

and
δ

δb|M |+i

:=
δ

δχi
.

We denote the index set for the introduced vectors by M̃ , |M̃ | = 2|M |. In
this notation the Grassmann integration with respect to

{
ψi, ψi

}
i∈M reads

(−1)
1

2
|M |(|M |−1)

∏
α∈M

(
δ

δψα

δ

δψα

)
=
∏
α∈M

δ

δψα

∏
α∈M

δ

δψα
=
∏
β∈˜M

δ

δaβ
.

Lemma 4.3. The Grassmann integral does not depend on the choice of the
generators. More precisely, for a and b as defined in (4.1) and a transfor-
mation defined by

b = U a ,

where U is a unitary 2|M | × 2|M |-matrix, we have

δ

δb
= U

δ

δa

and, for any μ ∈ GM ,∏
α∈M

(
δ

δψα

δ

δψα

)
μ
(
ψ, ψ

)
=
∏
α∈M

(
δ

δχα

δ

δχα

)
μ(χ, χ) .

Proof. First we prove δ
δb = U δ

δa . The identity δ
δaj

ai = δij follows from the
properties of the generators. An equivalent identity has to be claimed for
δ
δbb. Suppose

δ
δb transforms as δ

δb = V δ
δa with a 2|M | × 2|M |-matrix V . This

yields

δ

δbj
bi =

⎛⎝∑
α∈˜M

Vjα
δ

δaα

⎞⎠⎛⎝∑
β∈˜M

Uiβaβ

⎞⎠ =
(
UV T

)
ij
.

In other words, we have UV T = 1 and, thus, V = U . Finally, we can prove
the invariance of the Grassmann integral. For a given set of generators
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{
ψi, ψi

}
i∈M , any μ ∈ GM can be written as

μ ≡ μ
(
ψ,ψ

)
=
∑

I,J⊆M

αIJΨIΨJ ,

where αIJ ∈ C for all I, J ⊆ M and I, J ordered. The Grassmann integral
of μ is∫

d(Ψ,Ψ)μ
(
ψ,ψ

)
=

∫
d(Ψ,Ψ)

∑
I,J⊆M

aIJΨIΨJ =

∫
d(Ψ,Ψ)αMMΨMΨM ,

since all other terms of μ do not contribute to the integral. If the decompo-
sition of μ yields αMM = 0, the Grassmann integral of μ vanishes. In this
case there is nothing to show. For αMM �= 0 we consider the transformation
of
∫
d(Ψ,Ψ) and ΨMΨM separately. For

∫
d(Ψ,Ψ) we use δ

δai

δ
δaj

= − δ
δaj

δ
δai

for i �= j and express δ
δb in terms of δ

δa :(∏
α∈M

δ

δχα

)(∏
α∈M

δ

δχα

)
=
∏
β∈˜M

δ

δbβ
=

∑
β1,...,β|˜M|∈˜M

∏
j∈˜M

U jβj

δ

δaβj

=
∑
π∈S

˜M

∏
j∈˜M

U jπ(j)
δ

δaπ(j)

=
∑
π∈S

˜M

(−1)π
∏
j∈˜M

U jπ(j)
δ

δaj

= det
(
U
) ∏
j∈˜M

δ

δaj
.

Analogously, we have∏
α∈M

χM

∏
α∈M

χM =
∏
β∈˜M

bβ = det(U)
∏
j∈˜M

aj .

Merging the results we obtain(∏
α∈M

δ

δχα

)(∏
α∈M

δ

δχα

) ∏
α∈M

χM

∏
α∈M

χM = |det(U)|2
∏
j∈˜M

δ

δaj

∏
j∈˜M

aj .

The proof is complete with |det(U)|2 = 1, since U is unitary. �
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Remark 4.4. The transformation U mixes ψi’s and ψi’s. For U := ( u v
v u ),

a transformation without mixing is given for v = 0. In this case, u has to be
unitary.

For the application of the Grassmann integration on representability
conditions we still need some tools, especially the definition of a product on
GM which induces the CAR on the Grassmann algebra.

Definition 4.5. For all μ ≡ μ
(
ψ, ψ

)
and η ≡ η

(
ψ,ψ

) ∈ GM , we define the
star product μ � η ∈ GM by

(μ � η)
(
ψ,ψ

)
:=

∫
d
(
Φ,Φ

)
μ
(
ψ, φ
)
η
(
φ, ψ
)
e−(Ψ,Ψ)e(Ψ,Φ)e−(Φ,Φ)e(Φ,Ψ).

We calculate the star product of two monomials μ := ΨIΨJ and η :=
ΨKΨL, which determines the star product in general, due to the linearity
of the Grassmann integral.

Lemma 4.6. Let I, J,K,L ⊆ M . Then we have(
ΨIΨJ

)
�
(
ΨKΨL

)
(4.2)

= σSσJS · e−(Ψ,Ψ)ΨIΨJ\SΨK\SΨL

∏
α∈M

\(J∪K)

(
1 + ψαψα

)
,

where S := J ∩K and σJS := (−1)|S|(|J\S|+
|S|−1

2 ). The sign σS is given by
the identity σSΦSΦJ\SΦSΦK\S = ΦJΦK .

Proof. Writing S := J ∩K, we face the integral(
ΨIΨJ

)
�
(
ΨKΨL

)
= σS · e−(Ψ,Ψ)ΨI

∫
d
(
Φ,Φ

)
ΦSΦJ\SΦSΦK\S

×
∏
α∈M

(
1 + φαψα + ψαφα − φαφα − φαφαψαψα

)
ΨL ,

where we use∏
α∈M

(
1 + φαψα + ψαφα − φαφα − φαφαψαψα

)
= e(Ψ,Φ)e−(Φ,Φ)e(Φ,Ψ)

as a consequence of Eq. (3.2). In the next step we write

M = (M\ (J ∪K)) ∪̇ (J\S) ∪̇ (K\S) ∪̇S
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(where ∪̇ denotes a disjoint union) and arrive at(
ΨIΨJ

)
�
(
ΨKΨL

)
= σSσSJ · e−(Ψ,Ψ)ΨI

∫
d
(
Φ,Φ

) ∏
α∈S

φαφα

×
∏

α∈J\S

(
φα + φαφαψα

) ∏
α∈K\S

(
φα + φαψαφα

)
×
∏
α∈M

\(J∪K)

(
1 + φαψα + ψαφα − φαφα − φαφαψαψα

)
ΨL.

The sign σJS := (−1)|S|(|J\S|+
|S|−1

2 ) occurs due to the permutation of all φ’s

in ΦS with all φ’s in ΦJ\S , and ΦSΦS = (−1)
1

2
|S|(|S|−1)

( ∏
α∈S

φαφα

)
. Now

we can perform the integration and arrive at(
ΨIΨJ

)
�
(
ΨKΨL

)
= σSσJS · e−(Ψ,Ψ)ΨI

∏
α∈J\S

ψα

∏
α∈K\S

ψα

×
∏
α∈M

\(J∪K)

(
1 + ψαψα

)
ΨL ,

as claimed in Eq. (4.2), since all involved sets are disjoint. �
Several properties of the star product follow directly from Lemma 4.6.

Lemma 4.7. For all μ, η, ν ∈ GM we have

μ � (η � ν) = (μ � η) � ν .

Proof. By the definition of the star product we have

μ � (η � ν) = μ
(
ψ,ψ

)
�

∫
d
(
Φ,Φ

)
η
(
ψ, φ
)
ν
(
φ, ψ
)
e−(Ψ,Ψ)+(Ψ,Φ)−(Φ,Φ)+(Φ,Ψ)

=

∫
d
(
Ω,Ω

) ∫
d
(
Φ,Φ

)
μ
(
ψ, ω

)
η(ω, φ) ν

(
φ, ψ
)

× e−(Ψ,Ψ)+(Ψ,Ω)−(Ω,Ω)+(Ω,Φ)−(Φ,Φ)+(Φ,Ψ).

Performing the integration with respect to
(
φ, φ
)
we obtain

μ � (η � ν) =

∫
d
(
Ω,Ω

)
μ
(
ψ, ω

)
η(ω, ψ) e−(Ψ,Ψ)+(Ψ,Ω)−(Ω,Ω)+(Ω,Ψ)

� ν
(
ψ, ψ

)
,
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which is, in fact, (μ � η) � ν. �

As for the creation and annihilation operators on B(∧H), there is also
an implementation of the CAR for the generators of GM .

Lemma 4.8. Let
{
ψi, ψi

}
i∈M be the generators of GM . For {μ, η}� := μ �

η + η � μ we have

{ψi, ψj}� =
{
ψi, ψj

}
�
= 0 and

{
ψi, ψj

}
�
= δij for any i, j ∈ M .

Proof. The identities follow directly from Lemma 4.6 by an appropriate
choice of I, J,K and L. We observe that

e−(Ψ,Ψ)
∏
α∈M

\(J∪K)

(
1 + ψαψα

)
=

∏
α∈J∪K

(
1− ψαψα

)

and conclude for the first identity with I = K = ∅, J = {i}, and L = {j} in
Eq. (4.2) that S = ∅ and, therefore, σS = σJS = 1. This yields

ψi � ψj =
(
1− ψiψi

)
ψiψj = ψiψj .(4.3)

Setting J = {j} and L = {i}, we obtain ψj � ψi = ψjψi and, hence, ψi �
ψj + ψj � ψi = ψiψj + ψjψi = 0. Equivalently, we obtain ψiψj + ψjψi = 0.
For the last identity we set J = K = ∅, I = {i} and L = {j}. On the one
hand, Eq. (4.2) leads to

ψi � ψj = ψiψj ,

which is valid for both i = j and i �= j. On the other hand, with I = L = ∅,
J = {j}, and K = {i}, we have to distinguish between the cases J = K and
J �= K. For J �= K we have

ψj � ψi =
(
1− ψiψi

) (
1− ψjψj

)
ψjψi = ψjψi .

For J = K we have i = j and S = J = K, and thus

ψj � ψi =
(
1− ψiψi

)
.(4.4)

Together, the last two results give ψj � ψi = δij − ψiψj . Finally, we arrive at
ψi � ψj + ψj � ψi = δij . We mention that in Eqs. (4.3)–(4.4) σS = σJS = 1
due to the choice of the sets I, J, K and L. �
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By a straightforward calculation using Lemma 4.6 one can also show
that for any generator

{
ψi, ψi

}
i∈M of GM we have the following:

Corollary 4.9. Let
{
ψi, ψi

}
i∈M be the generators of GM . Then we have

ψi1 � · · · � ψim � ψj1 � · · · � ψjn = ψi1 · · ·ψimψj1 · · ·ψjn .

Proof. We use the associativity

ψi1 � · · · � ψim � ψj1 � · · · � ψjn =
(
ψi1 � · · · � ψim

)
� (ψj1 � · · · � ψjn)

and calculate the brackets using Lemma 4.6. For the first bracket we set
I = {i1, . . . , im} and J = K = L = ∅ in Eq. (4.2). For the second bracket we
use I = J = K = ∅ and L = {j1, . . . , jn}. For both we have σS = σJS = 1
and we conclude

ψi1 � · · · � ψim � ψj1 � · · · � ψjn =
(
ψi1 · · ·ψim

)
� (ψj1 · · ·ψjn) .

The last star product can be calculated by setting I = {i1, . . . , im}, L =
{j1, . . . , jn}, and J = K = ∅ in Eq. (4.2). Again, σS = σJS = 1 and we arrive
at the assertion. �

We emphasize that

ψiψj = ψi � ψj , but ψiψj = −ψjψi = −ψj � ψi .

This implies that the star product can be inserted (or skipped) only if the
monomial in ψ and ψ is normal-ordered (i. e., all ψ’s are to the left of all ψ’s).
As follows from the proof, monomials containing only ψ’s or ψ’s can also be
considered as normal-ordered in the sense that we can identify ψi1 � · · · � ψim
with ψi1 · · ·ψim and ψj1 � · · · � ψjn with ψj1 · · ·ψjn .

Lemma 4.10. Let N ∈ N and Ai ∈ B(∧H) for i ∈ {1, . . . , N}. Then

Θ(A1A2 · · ·AN ) = Θ(A1) �Θ(A2) � · · · �Θ(AN ) .

Proof. Due to the associativity of the star product it suffices to consider the
assertion for N = 2. We use the CAR to establish normal-order in the pro-
duct A1A2 ∈ B(∧H) and indicate this order by ••A1A2

••. For some ai1...im
j1...jn

∈
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C, we can write

••A1A2
•• =

∑
m,n

∑
i1...im
j1...jn

∈M
ai1...im
j1...jn

c∗i1 · · · c∗imcj1 · · · cjn

and apply Θ. Together with Corollary 4.9 we arrive at

Θ(••A1A2
••) =

∑
m,n

∑
i1...im
j1...jn

∈M
ai1...im
j1...jn

ψi1 � · · · � ψim � ψj1 � · · · � ψjn .(4.5)

Now we can use the CAR on GM to restore the same order we had in A1A2

within the r. h. s. of Eq. (4.5) and recognize that it equals Θ(A1) �Θ(A2).
In other words, we have∑

m,n

∑
i1...im
j1...jn

∈M
ai1...im
j1...jn

ψi1 � · · · � ψim � ψj1 � · · · � ψjn = ••Θ(A1) �Θ(A2)
•• ,

which gives the assertion. �

We can equip (GM ,+, �) with an involution ( · )∗ such that (GM ,+, �,∗ )
becomes a *-algebra.

Definition 4.11. For all μi ∈ GM , i ∈ N, and c ∈ C, the involution ( · )∗ on
(GM ,+, �) is defined by (ψi)

∗ := ψi and
(
ψi

)∗
:= ψi ∀i ∈ M , and

(c μ1 · · ·μn)
∗ := c μ∗

n · · ·μ∗
1 .

Remark 4.12. For μ ≡ μ
(
ψ, φ
)
:=
∑
I,J

aIJ ΨIΦJ and aIJ ∈ C, the involu-

tion μ∗ is given by

μ∗(φ, ψ) =∑
I,J

aIJ ΦJ ′ΨI′ =
∑
I,J

(−1)
1

2
|I|(|I|−1)+ 1

2
|J |(|J |−1) αIJ ΦJΨI .

We emphasize that
(
μ
(
ψ, φ
))∗

= μ∗(φ, ψ) �= (μ(φ, ψ))∗.
Lemma 4.13. The involution in Definition 4.11 is compatible with Θ, the
Grassmann integration, and the star product:

(a) Θ (( · )∗) = (Θ ( · ))∗,
(b)

∫
d(Ψ,Ψ) ( · )∗ = [∫ d(Ψ,Ψ) ( · )]∗,
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(c) (μ � η)∗ = η∗ � μ∗.

Proof. We prove (a) and (b). (c) is a consequence of (b).

(a) For any I, J ⊆ M , we abbreviate C∗
I := c∗i1 · · · c∗im and CJ := cj1 · · · cjn

and write any A ∈ B(H) as A =
∑
I,J

aIJ C
∗
ICJ for some aIJ ∈ C. This

leads to

(Θ(A))∗ =

⎛⎝∑
I,J

aIJ ΨIΨJ

⎞⎠∗

=
∑
I,J

aIJ ΨJ ′ΨI′ = Θ

⎛⎝∑
I,J

aIJ C
∗
J ′CI′

⎞⎠
= Θ

⎛⎝⎛⎝∑
I,J

aIJ C
∗
ICJ

⎞⎠∗⎞⎠ = Θ(A∗) .

(b) We formally have
(

δ
δψi

δ
δψi

)∗
μ = δ

δψi

δ
δψi

μ for any fixed, but arbitrary

i ∈ M and any μ ∈ GM , which gives the assertion.

(c) We calculate the l. h. s. of (c) using (b) and Remark 4.12:

(μ � η)∗ =
∫

d
(
Φ,Φ

)
η∗
(
ψ, φ
)
μ∗(φ, ψ) e−(Ψ,Ψ)e(Ψ,Φ)e−(Φ,Φ)e(Φ,Ψ)

= η∗ � μ∗,

since
(
e( · )
)∗

= e( · ). �

A key property of the Grassmann integral for deriving representability
conditions as in the next section is the cyclicity property which has its
equivalent in the cyclicity of the trace, i. e., tr(AB) = tr(BA).

Theorem 4.14. For μ, η ∈ GM , we have∫
D(Ψ,Ψ

)
(μ � η) =

∫
D(Ψ,Ψ

)
(η � μ) .

Proof. Without loss of generality, we can set

μ := ΨIΨJ and η := ΨKΨL
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and observe with Eq. (4.2) and T := I ∩ L∫
D(Ψ,Ψ

)
μ � η

= σSσTσJS

∫
D(Ψ,Ψ

) · e−(Ψ,Ψ)

×ΨTΨI\T
∏

α∈J\S
ψα

∏
α∈K\S

ψα

∏
α∈M

\(J∪K)

(
1 + ψαψα

)
ΨTΨL\T .

Afterwards, we rearrange the factors and arrive at∫
D(Ψ,Ψ

)
μ � η(4.6)

= σSσT σ̃

∫
d
(
Ψ,Ψ

)
ΨI\TΨK\SΨJ\SΨL\T

∏
α∈T

ψαψα

×
∏
α∈M

(
1 + ψαψα

) ∏
α∈M

\(J∪K)

(
1 + ψαψα

)
,

where σ̃ ∈ {±1} corresponds to the signs resulting from the anticommuta-
tions and is given by

σ̃ := (−1)|S||J\S|+|T ||K\S|+ 1

2
|S|(|S|−1)+ 1

2
|T |(|T |−1)+|T ||J\S|+|T ||I\T |+|K\S||J\S| .

To go on, we need some preparation. First of all, we observe that∏
α∈M

(
1 + ψαψα

) ∏
α∈M

\(J∪K)

(
1 + ψαψα

)
=

∏
α∈M

\(J∪K)

(
1 + 2ψαψα

) ∏
α∈J∪K

(
1 + ψαψα

)
.

On the one hand, we have J ∪K = (J\S) ∪̇ (K\S) ∪̇S, which implies∏
α∈J∪K

(
1 + ψαψα

)
ΨK\SΨJ\S =

∏
α∈S

(
1 + ψαψα

)
ΨK\SΨJ\S .

On the other hand, we have by the same arguments∏
α∈M

\(J∪K)

(
1 + 2ψαψα

)
ΨI\TΨK\SΨJ\SΨL\T

∏
α∈T

ψαψα

=
∏
α∈M

\(J∪K∪I∪L)

(
1 + 2ψαψα

)
ΨI\TΨK\SΨJ\SΨL\T

∏
α∈T

ψαψα ,
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since I ∪ L ≡ (I\T ) ∪̇ (L\T ) ∪̇T . Consequently, our latter calculations lead
in Eq. (4.6) to

∫
D(Ψ,Ψ

)
μ � η(4.7)

= σSσT σ̃

∫
d
(
Ψ,Ψ

)
ΨI\TΨK\SΨJ\SΨL\T

∏
α∈T

ψαψα

×
∏
α∈S

(
1 + ψαψα

) ∏
α∈M

\(J∪K∪I∪L)

(
1 + 2ψαψα

)
.

Let us take a closer look at the involved sets. First of all, we observe that

(I) K\S ∩ J\S = ∅,
(II) I ∪ (K\S) = L ∪ (J\S),
(III) I ∩ (K\S) = ∅ and

(IV) L ∩ (J\S) = ∅.
In any other case we have

∫ D(Ψ,Ψ
)
μ � η =

∫ D(Ψ,Ψ
)
η � μ = 0. These ob-

servations have some consequences:

(a) (II) and (I) ⇒ (K\S) ⊆ L and (J\S) ⊆ I ⇒ ∃ T1, T2 ⊆ M , such that
I = (J\S) ∪̇T1 and L = (K\S) ∪̇T2.

(b) (III) and I = (J\S) ∪̇T1 ⇒ ((J\S) ∪̇T1) ∩ (K\S) = ∅ ⇒ T1 ∩K\S =
∅. Analogously: (IV) and L = (K\S) ∪̇T1 ⇒ T2 ∩ (J\S) = ∅.

(c) (II) and (b) ⇒ T1 = T2, since all sets on the l. h. s. and r. h. s. of (II)
are disjoint.

(d) (a), (b) and (c) ⇒ L ∩ I = ((K\S) ∪̇T1) ∩ ((J\S) ∪̇T2) = T1 ∩
T2 =: T .

Back to (a), we see that I = (J\S) ∪̇T or I\T = J\S, and L = (K\S) ∪̇T
implies L\T = K\S. This is illustrated in the following figure.

We go on in Eq. (4.7) and take the intersection S ∩ T into account. The
term

∏
α∈T

ψαψα
∏
α∈S

(
1 + ψαψα

)
contributes to the integral as follows:

∏
α∈T∪S

δ

δψα

δ

δψα

∏
α∈T

ψαψα

∏
β∈S

(
1 + ψβψβ

)
=
∏

α∈T∪S

δ

δψα

δ

δψα

∏
α∈T∪S

ψαψα ,
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T

SI\T

J\S

K\S

L\T

K

L

I

J

Figure 1: Chequerboard: The integrals vanish if J ∪ L �= I ∪K. S := J ∩K
and T := I ∩ L. Grey areas represent empty subsets.

since
∏

α∈T∩S
ψαψα

∏
β∈T∩S

(
1 + ψβψβ

)
=

∏
α∈T∩S

ψαψα and

∏
α∈S\(T∩S)

δ

δψα

δ

δψα

∏
β∈S\(T∩S)

(
1 + ψβψβ

)
=

∏
α∈S\(T∩S)

δ

δψα

δ

δψα

∏
β∈S\(T∩S)

ψβψβ .

This finishes our calculations and we conclude∫
D(Ψ,Ψ

)
μ � η = σSσT σ̃

∫
d
(
Ψ,Ψ

) ∏
α∈T∪S

ψαψα(4.8)

×
∏
α∈M

\(J∪K∪I∪L)

(
1 + 2ψαψα

)
ΨI\TΨK\SΨJ\SΨL\T .

The r. h. s. of the assertion in Theorem 4.14 can be calculated analogously.
The result is∫

D(Ψ,Ψ
)
η � μ = σTσS σ̂

∫
d
(
Ψ,Ψ

) ∏
α∈S∪T

ψαψα

×
∏
α∈M

\(J∪K∪I∪L)

(
1 + 2ψαψα

)
ΨK\SΨI\TΨL\TΨJ\S ,
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where the sign resulting from the anticommutations is

σ̂ := (−1)|T ||L\T |+|S||L\T |+ 1

2
|S|(|S|−1)+ 1

2
|T |(|T |−1)+|S||I\T |+|S||K\S|+|I\T ||L\T | .

The l. h. s. and the r. h. s. of the asserted identy in Theorem 4.14 are symmet-
ric with respect to the involved sets. The proof is complete by the observation

σ̃ = σ̂ = (−1)
1

2
|S|(|S|−1)+ 1

2
|T |(|T |−1)+|K\S||J\S|+|T ||K\S|+|S||J\S| ,

which follows from I\T = J\S and L\T = K\S. �

Remark 4.15. The integral on the r. h. s. of Eq. (4.8) can be calculated
explicitly. Abbreviating sQ := 1

2 |Q| (|Q| − 1) for Q ⊆ M , we have∫
D(Ψ,Ψ

)
μ � η = σSσT (−1)sS+sT+|T ||K\S|+|S||J\S|+sI\T+sK\S

×
∫

d(Ψ,Ψ)
∏

α∈I\T
ψαψα

∏
α∈K\S

ψαψα

×
∏

α∈T∪S
ψαψα

∏
α∈M\(I∪K)

(
1 + 2ψαψα

)
= σSσT (−1)sS+sT+|T ||K\S|+|S||J\S|+sI\T+sK\S

× (−1)|I\T |+|K\S|+|T∪S| (−2)|M |−|I∪K| .

With |I\T |+ |K\S|+ |T ∪ S| = |I ∪K| we obtain∫
D(Ψ,Ψ

)
μ � η = σSσT (−1)sJ+sL 2|M |−|I∪K|

for μ := ΨIΨJ and η := ΨKΨL.

Remark 4.16. A consequence of Lemma 4.7 and Theorem 4.14 is the
invariance of the Grassmann integral with respect to cyclic permutations of
the integrand:∫

d
(
Ψ,Ψ

)
(μ1 � μ2 � · · · � μN ) =

∫
d
(
Ψ,Ψ

)
(μ2 � · · · � μN � μ1) .(4.9)

This also holds true for
∫ D(Ψ,Ψ

)
( · ), since e2(Ψ,Ψ) commutes with any

μ ∈ GM .

Given an involution on (GM ,+, �), we define the property of positivity
on GM as follows:
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Definition 4.17. We call μ ∈ GM positive semi-definite, shortly μ ≥ 0, if
there exists an η ∈ GM such that

μ = η∗ � η .

Approaching the problem of representability by Grassmann integration,
an important result is the following theorem.

Theorem 4.18. For any μ ∈ GM with μ ≥ 0 we have

(−1)|M |
∫

D(Ψ,Ψ
)
μ ≥ 0 .(4.10)

Proof. We use an induction in |M | ∈ N. For this purpose, we write any
ξ ∈ GM+1 := span

{
ψ1, . . . , ψ|M |, ψ|M |+1, ψ1, . . . , ψ|M |, ψ|M |+1

}
as

ξ = η00 + η01ψ|M |+1 + ψ|M |+1η10 + ψ|M |+1η11ψ|M |+1

for normal-ordered η00, η01, η10, η11 ∈ GM . We indicate integration with re-
spect to a certain index set M by writing

∫
dM
(
Ψ,Ψ

)
and

∫ DM

(
Ψ,Ψ

)
,

respectively. Furthermore, we recall that

eEM := e(Ψ,Ψ)e(Ψ,Φ)e−(Φ,Φ)e(Φ,Ψ)

=
∏
α∈M

(
1− φαφα + ψαψα + φαψα + ψαφα − 2ψαψαφαφα

)
.

In order to show Eq. (4.10) for |M | = 0, we consider μ := a∗ � a ∈ G0 with
a ∈ C, and observe that with

∫ D0

(
Ψ,Ψ

)
= 1 the l. h. s. of Eq. (4.10) is

nonnegative, ∫
D0

(
Ψ,Ψ

)
μ = |a|2 ≥ 0 .

Now we assume that Eq. (4.10) holds for |M | and consider the l. h. s. of (4.10)
for |M |+ 1 and μ = ξ∗ � ξ. We abbreviate ψ|M |+1 ≡ ψ′ and ψ|M |+1 ≡ ψ′.

(−1)|M |+1
∫

DM+1

(
Ψ,Ψ

)
(ξ∗ � ξ)(4.11)

= (−1)|M |+1
∫

DM+1

(
Ψ,Ψ

)× [η∗00 � η00 + η∗00 �
(
ψ′ η11ψ′)

+
(
ψ′ η∗01

)
�
(
η01ψ

′)+ (η∗10ψ′) � (ψ′ η10
)

+
(
ψ′ η∗11ψ

′ ) � η00 + (ψ′ η∗11ψ
′) � (ψ′ η11ψ′) ] .
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Other terms like
∫ DM+1

(
Ψ,Ψ

)
η∗00 � (η01ψ′) vanish. This can be seen by

Eq. (4.7), since, in this case, I ∪K �= J ∪ L.
In the next step, we use the definition of the star product and the iden-

tity
∫
dM+1

(
Ψ,Ψ

)
=
∫
dM
(
Ψ,Ψ

)
δ

δψ′
δ

δψ′ to carry out all integrations with

respect to ψ′ and ψ′. We exemplify this step by the last term on the r. h. s.
of Eq. (4.11):

(−1)|M |+1
∫

DM+1

(
Ψ,Ψ

) (
ψ′ η∗11ψ

′) � (ψ′ η11ψ′)
= (−1)|M |+1

∫
dM+1

(
Ψ,Ψ

) ∫
dM+1

(
Φ,Φ

)
× ψ′ η∗11

(
ψ, φ
)
φ′φ′ η11

(
φ, ψ
)
ψ′ eEM+1 .

Since η∗11
(
ψ, φ
)
η11
(
φ, ψ
)
is even in the

(
ψ,ψ, φ, φ

)
-variables, we continue

with

(−1)|M |+1
∫

DM+1

(
Ψ,Ψ

) (
ψ′ η∗11ψ

′) � (ψ′ η11ψ′)
= (−1)|M |+1

∫
dM
(
Ψ,Ψ

) ∫
dM
(
Φ,Φ

)
η∗11
(
ψ, φ
)
η11
(
φ, ψ
)
eEM

× δ

δφ′
δ

δφ′
δ

δψ′
δ

δψ′ψ
′φ′φ′ψ′ (1− φ′φ′ + ψ′ψ′ + φ′ψ′ + ψ′φ′ − 2ψ′ψ′φ′φ′)

= (−1)|M |+2
∫

DM

(
Ψ,Ψ

)
η∗11 � η11 .

By analogous calculations, we obtain

(−1)|M |+1
∫

DM+1

(
Ψ,Ψ

)
(ξ∗ � ξ)

= (−1)|M |+2
∫

DM

(
Ψ,Ψ

) [
2η∗00 � η00 + η∗00 � η̃11 + η∗01 � η01

+ η∗10 � η10 + η̃∗11 � η00 + η∗11 � η11
]
,

where η̃11 :=
∑
I,J

(−1)|I|+|J | aIJΨIΨJ ∈ GM if η11 :=
∑
I,J

aIJΨIΨJ for some

aIJ ∈ C. η̃11 occurs due to the anticommutations of ψM+1 with η∗11 and of
ψM+1 with η11 in the second and the fifth term on the r. h. s. of Eq. (4.11),
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respectively. Observing that

∫
DM

(
Ψ,Ψ

)
η̃∗11 � η̃11

=
∑

I,J,K,L

aIJaLK (−1)|I|+|J |+|K|+|L|
∫

DM

(
Ψ,Ψ

) (
ΨIΨJ

)
�
(
ΨKΨL

)
=

∫
DM

(
Ψ,Ψ

)
η∗11 � η11 ,

since |I|+ |J |+ |K|+ |L| is even (otherwise both integrals vanish), we fi-
nally conclude

(−1)|M |+1
∫

DM+1

(
Ψ,Ψ

)
(ξ∗ � ξ)

= (−1)|M |+2
∫

DM

(
Ψ,Ψ

)
× [η∗00 � η00 + (η00 + η̃11)

∗ � (η00 + η̃11) + η∗01 � η01 + η∗10 � η10] ,

which is nonnegative by the induction hypothesis. �

Finally, we can express the trace of an operator of B(∧H) and, due
to Lemma 4.10, the trace of a product of such operators as a Grassmann
integral.

Theorem 4.19. For all A ∈ B(∧H) we have

tr∧H(A) = (−1)|M |
∫

D(Ψ,Ψ
)
Θ(A) .(4.12)

Proof. Without loss of generality we may assume that A ∈ B(∧H) is normal-
ordered. Since the trace and the Grassmann integral are linear, it suf-
fices to consider tr∧H

(
c∗i1 · · · c∗imcj1 · · · cjn

)
, where I := {i1, . . . , im} and J :=

{j1, . . . , jn} are ordered. For I �= J both the l. h. s. and the r. h. s. of Eq. (4.12)
vanish. For I = J , the l. h. s. of Eq. (4.12) is given by

tr∧H
(
c∗i1 · · · c∗imci1 · · · cim

)
= (−1)

1

2
|I|(|I|−1) 2|M |−|I|.
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We have Θ
(
c∗i1 · · · c∗imci1 · · · cim

)
= ψi1 · · ·ψimψi1 · · ·ψim on the r. h. s. of the

asserted Eq. (4.12) and, thus,∫
D(Ψ,Ψ

)
ψi1 · · ·ψimψi1 · · ·ψim = (−1)

1

2
|I|(|I|+1)

∫
D(Ψ,Ψ

) m∏
α=1

(
ψiαψiα

)
= (−1)|M | (−1)

1

2
|I|(|I|+1) 2|M |−|I|,

since
∏
α∈I

(
ψαψα

)
e2(Ψ,Ψ) =

∏
α∈I

(
ψαψα

) ∏
α∈M\I

(
1 + 2ψαψα

)
and, therefore,

∏
α∈M

(
δ

δψ

δ

δψ

)∏
α∈I

(
ψαψα

)
e2(Ψ,Ψ) = (−2)|M |−|I| .

The proof is complete by (−2)|M |−|I| = (−1)|M | (−1)|I| 2|M |−|I|. �

Due to the restriction to a Hilbert space with even dimension, we hence-
forth skip the factor (−1)|M |.

5. Representability conditions from Grassmann integrals

The last section allows for an application of the Grassmann integration on
the problem of representability for fermion systems. In particular, we are
interested in necessary conditions for the 1- and 2-pdm to have their origin
in a density matrix ρ [2]. In the language of Grassmann integration we call
the equivalents of density matrices Grassmann densities.

Definition 5.1. A Grassmann variable ϑ∗ � ϑ ∈ GM is called Grassmann
density if it is normalized, i. e., fulfills∫

D(Ψ,Ψ
)
ϑ∗ � ϑ = 1 .

By definition, the Grassmann density is positive semi-definite and self-
adjoint. For a given state ρ, the map Θ immediately provides ϑ∗ � ϑ, namely
ϑ∗ � ϑ = Θ(ρ). Thanks to the product rule for Θ and the positive semi-
definiteness of ρ, we also have ϑ∗ � ϑ = Θ

(
ρ

1

2 ρ
1

2

)
= Θ
(
ρ

1

2

)
�Θ
(
ρ

1

2

)
. Θ is a

bijection and compatible with the involution. This implies that ϑ = Θ
(
ρ

1

2

)
.

Given a Grassmann density, we can formulate the problem of representability
by Grassmann integrals using the trace formula (4.12).
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Definition 5.2. Let
{
ψi, ψi

}
i∈M be the generators of GM and associate

{ψi}i∈M with a fixed ONB of H. The 1-pdm γϑ ∈ B(H) and the 2-pdm
Γϑ ∈ B(H⊗H) of a Grassmann density ϑ∗ � ϑ are defined by their matrix
elements

〈ψk, γϑψl〉 :=
∫

D(Ψ,Ψ
)
ϑ∗ � ϑ � ψl � ψk and(5.1)

〈ψm ⊗ ψn,Γϑ (ψl ⊗ ψk)〉 :=
∫

D(Ψ,Ψ
)
ϑ∗ � ϑ � ψk � ψl � ψm � ψn .(5.2)

Applying the trace formula (4.12) on Eqs. (5.1) and (5.2), respectively,
we observe that

〈ψk, γρψl〉 = tr∧H
(
Θ−1(ϑ∗ � ϑ) c∗l ck

)
and

〈ψm ⊗ ψn,Γρ (ψl ⊗ ψk)〉 = tr∧H
(
Θ−1(ϑ∗ � ϑ) c∗l c

∗
kcncm

)
,

which agrees with the common definition of the 1- and 2-pdm [2] if we
interpret Θ−1(ϑ∗ � ϑ) =

(
Θ−1(ϑ)

)∗
Θ−1(ϑ) as a density matrix ρ ∈ B(∧H).

Then the problem of representability can be formulated as follows:

Definition 5.3. We call (γ,Γ) ∈ B(H)× B(H⊗H) representable if there
exists a Grassmann density ϑ∗ � ϑ such that (γ,Γ) = (γϑ,Γϑ).

5.1. Conditions on the one-particle density matrix

The lower and upper bound for the eigenvalues of the 1-pdm γϑ of a Grass-
mann state ϑ∗ � ϑ arise directly from the definition of the 1-pdm (see [2] for
further details). Here, we would like to derive the conditions by Grassmann
integration. To this end, we consider certain subspaces of GM .

Definition 5.4. For any n ∈ N, n ≤ |M |, we define the subspace

G(n)
M := span

{
ΨIΨJ

∣∣ I, J ⊆ M, |I|, |J | ≤ n
} ⊆ GM .

Bounds for the 1-pdm rise by considering G(1)
M . In what follows, we call

conditions derived by considering G(n)
M “conditions of n-th order”.

Lemma 5.5. Theorem 4.18 implies

γϑ ≥ 0 .
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Proof. Let
{
ψi, ψi

}
i∈M be the generators of GM and αk ∈ C ∀ k ∈ M . In

Theorem 4.18, we use Eq. (4.9) with η := φ � ϑ∗ and φ :=
∑
k∈M

αkψk ∈ GM .

We observe that φ∗ =
∑
k∈M

αkψk and η∗ = (φ � ϑ∗)∗ = ϑ � φ∗ with the invo-

lution ( · )∗ on GM . This leads to

0 ≤
∫

D(Ψ,Ψ
)
η∗ � η =

∑
k,l∈M

αkαl

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � ψk � ψl = 〈f, γϑf〉 ,

where f :=
∑
i∈M

αiψi ∈ H is arbitrary. �

The upper bound for γϑ is given by another choice of η.

Lemma 5.6. Theorem 4.18 implies

γϑ ≤ 1 .

Proof. The bound can be proved by following the steps of the proof of the
lower bound. Again, we have αk ∈ C ∀ k ∈ M and set φ∗ =

∑
k∈M

αkψk ∈ GM

and, this time, η∗ = (φ∗ � ϑ)∗ = ϑ∗ � φ. Before we go on, we observe that

φ � φ∗ =
∑

k,l∈M
αkαlψk � ψl =

∑
k∈M

αkαk −
∑

k,l∈M
αkαlψl � ψk

by the CAR on GM given in Lemma 4.8. Inserting this into the inequality
of Theorem 4.18 and using the associativity of the star product, we obtain

0 ≤
∫

D(Ψ,Ψ
)
η∗ � η

=
∑
k∈M

|αk|2 −
∑

k,l∈M
αlαk

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � ψl � ψk

= 〈g, (1− γϑ) g〉 ,

where we have used
∫ D(Ψ,Ψ

)
ϑ∗ � ϑ = 1 and g :=

∑
k∈M

αkψk ∈ H. �

Considering the subspace G(1)
M , we can summarize our last two results.

Theorem 5.7. Let ϑ � ϑ∗ be a Grassmann density and γϑ its 1-pdm. Then
the following statements are equivalent:

(a) 0 ≤ γϑ ≤ 1.
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(b) ∀μ ∈ G(1)
M :

∫ D(Ψ,Ψ)ϑ∗ � ϑ � μ ≥ 0.

Proof. In Theorem 3.1 of [2], the analogue of this theorem has been shown
for polynomials in creation and annihilation operators of degree lower than
or equal to two. With the bijection Θ, we have a one-to-one mapping between

the space of polynomials of degree lower than or equal to two and G(1)
M . �

5.2. G-, P-, and Q-Condition

We proceed with representability conditions of second order by consider-

ing G(2)
M and a star-product of ψ and ψ, in this case, for example φ :=∑

k,l∈M
αklψk � ψl ∈ GM with αkl ∈ C ∀ k, l ∈ M . This time, we are interested

in conditions on Γϑ and use the Grassmann integration to rewrite the matrix
elements of the 2-pdm as in Eq. (5.2). The first condition is the P-Condition.

Lemma 5.8. Theorem 4.18 implies the P-Condition

Γϑ ≥ 0 .

Proof. The proof is similar to the one in the last subsection. Setting η :=
φ � ϑ∗, η∗ = (φ � ϑ∗)∗ = ϑ � φ∗, and φ :=

∑
k,l∈M

αklψk � ψl ∈ GM with αkl ∈
C ∀ k, l ∈ M , we arrive at

0 ≤
∫

D(Ψ,Ψ
)
η∗ � η

=
∑

k,l,m,n∈M
αklαmn

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � ψl � ψk � ψm � ψn

= 〈F,ΓϑF 〉 ,

where F :=
∑

k,l∈M
αkl (ψm ⊗ ψn) ∈ H ⊗H is arbitrary. �

The Q-Condition is the next representability condition we want to de-
duce. In order to obtain a convenient formulation of this condition, we use
an exchange operator on B(H⊗H) which is defined by Ex (f ⊗ g) := g ⊗ f
for f, g ∈ H.

Lemma 5.9. Theorem 4.18 implies the Q-Condition

Γϑ + (1− Ex) (1⊗ 1− γϑ ⊗ 1− 1⊗ γϑ) ≥ 0 .
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Proof. With φ :=
∑

k,l∈M
αklψk � ψl ∈ GM , αkl ∈ C ∀ k, l ∈ M , and η = φ � ϑ∗,

we have

0 ≤
∫

D(Ψ,Ψ) η∗ � η

=
∑

k,l,m,n∈M
αklαmn

∫
D(Ψ,Ψ)ϑ∗ � ϑ � ψn � ψm � ψk � ψl .

Aiming for an expression in terms of Γ and γ, we establish normal-ordering
using the CAR:

ψn � ψm � ψk � ψl = δmkδnl − δnkδml + δnkψl � ψm(5.3)

− δmkψl � ψn + δnlψk � ψl

− δmlψk � ψn − ψk � ψl � ψn � ψm .

As in the proof of Lemma 5.8, we write an arbitrary G ∈ H ⊗H as G :=∑
k,l∈M

αkl (ψk ⊗ ψl) for some αkl ∈ C. Thus, we have
∑

k,l,m,n∈M
αklαmnδkmδln =

〈G,1G〉 and ∑
k,l,m,n∈M

αklαmnδknδlm = 〈G,ExG〉. With Eqs. (5.1) and (5.2)

we find

0 ≤ 〈G, (Γϑ + (1− Ex) (1⊗ 1− γϑ ⊗ 1− 1⊗ γϑ))G〉

by evaluating the Grassmann integral
∫ D(Ψ,Ψ

)
( · ) on the r. h. s. of (5.3).

�

The last second order representability condition which can be derived by
the described method is the (optimal) G-Condition. Deriving this condition
by Grassmann integration requires a choice of η, that is not as obvious as
before. In the following, tr1( · ) denotes the trace on H and tr2( · ) the trace
on H⊗H.

Lemma 5.10. Theorem 4.18 implies the G-Condition:

∀A ∈ B(H) : tr2((A
∗ ⊗A) (Γϑ + Ex (γϑ ⊗ 1))) ≥ |tr1(Aγϑ)|2 .

Proof. This time, we choose η :=
( ∑

k,l∈M
αklψk � ψl − β

)
� ϑ, where αkl ∈

C ∀ k, l ∈ M and β :=
∑

k,l∈M
αkl

∫ D(Ψ,Ψ
)
ϑ∗ � ϑ � ψk � ψl. Before we apply
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Theorem 4.18, we emphasize that by the CAR⎛⎝ ∑
k,l∈M

αklψkψl − β

⎞⎠∗

�

⎛⎝ ∑
k,l∈M

αklψkψl − β

⎞⎠(5.4)

= ββ − β
∑

k,l∈M
αklψl � ψk − β

∑
m,n∈M

αmnψm � ψn

−
∑

k,l∈M
αklαmnψl � ψm � ψk � ψn +

∑
k,l,n∈M

αklαknψl � ψn .

We consider the last two lines separately and integrate. The integration of
the line before the last line in Eq. (5.4) yields

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ �

⎛⎝ββ − β
∑

k,l∈M
αklψl � ψk − β

∑
m,n∈M

αmnψm � ψn

⎞⎠(5.5)

= ββ − ββ − ββ = −ββ ,

which follows from the definition of β. It is important to notice that β does
not depend on ψ or ψ and, therefore, is a constant with respect to the
Grassmann integration. In detail, we have for β

β =
∑

k,l∈M
αkl

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � ψk � ψl = tr1(Aγϑ) ,(5.6)

if we set 〈ψk, Aψl〉 := αkl for every k, l ∈ M and A ∈ B(H). The evaluation
of the Grassmann integral of the last line in Eq. (5.4) provides

−
∑

k,l∈M
αklαmn

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � ψl � ψm � ψk � ψn(5.7)

+
∑

k,l,n∈M
αklαkn

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � ψl � ψn

= tr2((A
∗ ⊗A) (Γϑ + Ex (γϑ ⊗ 1))) .

Summing up, calculation (5.5) together with Eqs. (5.6) and (5.7) gives

tr2((A
∗ ⊗A) (Γϑ + Ex (γϑ ⊗ 1)))− |tr1(Aγϑ)|2 ≥ 0 ,

due to Theorem 4.18. �
We summarize our results using G(2)

M :
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Theorem 5.11. Let ϑ � ϑ∗ be a Grassmann density, γϑ its 1-pdm, and Γϑ

its 2-pdm. Then the following statements are equivalent:

(a) (γϑ,Γϑ) fulfills 0 ≤ γϑ ≤ 1 and the G-, P-, and Q-Conditions.

(b) ∀μ ∈ G(2)
M :

∫ D(Ψ,Ψ
)
ϑ∗ � ϑ � μ ≥ 0.

Proof. Again, we use Theorem 3.1 of [2] and the bijection property of Θ,
which ensures that the space of polynomials of degree lower or equal than

four in creation and annihilation operators is mapped one-to-one to G(2)
M . �

5.3. T1- and generalized T2-Condition

The previous sections imply that further conditions on γϑ and Γϑ can be
found by taking into account monomials of higher order of the form ψi1 �
· · · � ψin � ψj1 � · · · � ψjn for n > 2. Here we face the problem that monomials
with n > 2 have to “decompose” into monomials with n ≤ 2. Due to this,
only some choices of higher order monomials are suitable to derive further
representability conditions. One of such monomials is given by

τ1 :=
∑

i,j,k∈M
Tijkψi � ψj � ψk ∈ GM ,

where, due to {ψi, ψj}� = 0, Tijk ∈ C is totally antisymmetric, i. e., Tijk =
−Tjik = Tjki. The T1-Condition is the following.

Theorem 5.12. Let Tq ∈ B(H) be trace class. Set Tkqn := [Tq]kn and FTq
:=∑

k,n∈M
T kqn (ϕk ⊗ ϕn) ∈ H ⊗H. Then Theorem 4.18 implies the T1-Condi-

tion

∑
q∈M

(
2 tr1

(
|Tq|2

)
− 6 tr1

(
|Tq|2 γϑ

)
+ 3
〈
FTq

,ΓϑFTq

〉) ≥ 0 .

Proof. We begin by considering the anticommutator {τ∗1 , τ1}� ∈ GM and
observe that, by construction, {τ∗1 , τ1}� ≥ 0. Furthermore, we can use the
CAR to establish normal-order in {τ∗1 , τ1}�. The (i, j)-th matrix element of
A ∈ B(H) is denoted by [A]ij := 〈ψi, Aψj〉. Using the antisymmetry of Tijk
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we obtain

{τ∗1 , τ1}� = 9
∑
l∈M

∑
i,j,m,n∈M

T ljmTlinψm � ψj � ψi � ψn

+ 18
∑

m,l∈M

∑
k,n∈M

T kmlTlmnψk � ψn + 6
∑

l,m,n∈M
T lmnTlmn

= 9
∑
q∈M

∑
i,j,m,n∈M

[
T ∗
q

]
mj

[Tq]in ψm � ψj � ψi � ψn

− 18
∑
q∈M

∑
k,n∈M

[
T ∗
q Tq

]
kn

ψk � ψn + 6
∑
q∈M

tr1

(
|Tq|2

)
.

Since {τ∗1 , τ1}� ≥ 0, we have by Theorem 4.18∫
D(Ψ,Ψ

)
ϑ � {τ∗1 , τ1}� � ϑ∗ ≥ 0 .

Together with Eq. (5.2), the latter calculations and this positivity of the
integral bring us to

0 ≤ 3
∑
q∈M

∑
i,j,m,n∈M

[
T ∗
q

]
mj

[Tq]in 〈ψi ⊗ ψn,Γϑ (ψj ⊗ ψm)〉

− 6
∑
q∈M

∑
k,n∈M

[
|Tq|2

]
kn

〈ψn, γϑψk〉+ 2
∑
q∈M

tr1

(
|Tq|2

)
.

With 〈ψi, Tqψj〉 =: [Tq]ij and FTq
:=

∑
k,n∈M

T kqn (ϕk ⊗ ϕn), this yields the

assertion. �

The generalized T2-Condition can be derived equivalently by another
choice of τ . Using the anticommutator with a combination of two ψ’s and one

ψ (or vice versa), we have three different possibilities: τ2a :=
∑

i,j,k∈M
T
(a)
ijkψi �

ψj � ψk, τ2b :=
∑

i,j,k∈M
T
(b)
ijkψi � ψj � ψk, and τ2c :=

∑
i,j,k∈M

T
(c)
ijkψi � ψj � ψk. A

generalization of these possibilities is given by

τ2 :=
∑

i,j,k∈M
Tijkψi � ψj � ψk +

∑
i∈M

aiψi ,

where Tijk, ai ∈ C ∀ i, j, k ∈ M . This is a generalization, since we obtain

τ2 = τ2a for ai ≡ 0 and Tijk ≡ T
(a)
ijk , τ2 = τ2b for ai =

∑
j∈M

T
(b)
ijj and Tijk =
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−T
(b)
ikj , and, finally, τ2 = τ2c for ai =

∑
j∈M

(
T
(c)
jji − T

(c)
jij

)
and Tijk = T

(c)
kij . The

identities can be seen using the CAR. Unfortunately, if one uses the gener-

alization τ2, symmetry properties on Tijk like, for example, T
(a)
ijk = −T

(a)
jik in

τ2a or T
(c)
ijk = −T

(c)
ikj in τ2c vanish. The generalized T2-Condition arises from

{τ∗2 , τ2}� ≥ 0. In order to state the condition in a compact form, we need
some new notation.

Definition 5.13. For Tk ∈ B(H), [Tk]ij := Tijk ∀i, j, k ∈ M , and a ∈ C|M |,
we define GTk

∈ H ⊗H and the matrices Q1 ∈ B(H⊗H) and Q2, Q3 ∈
B(H) by

GTk
:=
∑
i,j∈M

[Tk]ij (ψi ⊗ ψj) ,

〈ψk ⊗ ψm, Q1 (ψn ⊗ ψj)〉 :=
[
T
(A)
k T (A)

n

]
jm

,

〈ψi, Q2ψj〉 := tr1

((
T
(A)
i

)∗
Tj

)
,

〈ψi, Q3ψj〉 :=
∑
q∈M

([(
T
(A)
i

)∗]
jq
aq +

[
T
(A)
j

]
iq
aq

)
,

where
[
T
(A)
k

]
ij
:= 1

2

(
[Tk]ij − [Tk]ji

)
= −

[
T
(A)
k

]
ji

denotes the antisymmet-

ric part of Tk.

Theorem 5.14. Let Tk, a, GTq
and Q1, Q2, Q3 be as in Definition 5.13.

Then Theorem 4.18 implies the generalized T2-Condition∑
q∈M

〈
GTq

,ΓϑGTq

〉
+ 4 tr2(Q1Γϑ) + 2 tr1((Q2 +Q3) γϑ) + |a|2 ≥ 0 .

Proof. The first task is to bring {τ∗2 , τ2} into normal-order. Then the two
terms of third order cancel and only terms of order less than or equal to
two remain. To calculate the anticommutator we use {(μ+ η)∗ , μ+ η}� =
{μ∗, μ}� + 2Re {μ∗, η}� + {η∗, η}� for μ :=

∑
i,j,k∈M

Tijkψi � ψj � ψk and η :=∑
i∈M

aiψi. Here, Re denotes the real part. By the CAR, we have

{η∗, η}� =
∑
i∈M

|ai|2 , {μ∗, η}� =
∑

k,n∈M

∑
q∈M

(
T qnk − Tnqk

)
aqψk � ψn ,
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and

{μ∗, μ}� =
( ∑

j,k,m,n∈M

∑
q∈M

((
T jqk − T qjk

)
(Tqmn − Tmqn) + TnjqTkmq

)
× ψk � ψm � ψj � ψn

)
+
∑

k,n∈M

∑
p,q∈M

(
T pqk − T qpk

)
Tpqnψk � ψn .

We set Tijq =: [Tq]ij where Tq ∈ B(H) ∀q ∈ M and observe that
[
T q

]
ij
=[

T ∗
q

]
ji
, T qnk − Tnqk = 2

[(
T
(A)
k

)∗]
nq
, and Tqmn − Tmqn = 2

[
T
(A)
n

]
qm

, where

T (A) is the antisymmetric part of T (see Definition 5.13). This allows us to
rewrite the anticommutators as

2Re {μ∗, η}� = 2
∑

k,n∈M

∑
q∈M

([(
T
(A)
k

)∗]
nq

aq +
[
T (A)
n

]
qk

aq

)
ψk � ψn

and

{μ∗, μ}� =
( ∑

j,k,m,n∈M

∑
q∈M

(
4
[(

T
(A)
k

)∗]
qj

[
T (A)
n

]
qm

+
[
T ∗
q

]
jn

[Tq]km

)

× ψk � ψm � ψj � ψn

)
+ 2

∑
k,n∈M

∑
p,q∈M

[(
T
(A)
k

)∗]
qp
[Tn]pq ψk � ψn.

In the next step we use 〈ψi, Aψj〉 = [A]ij for A ∈ B(H) and the Grassmann
representation of γ and Γ from Eqs. (5.1) and (5.2). Definition 5.13 then
leads to ∑

j,k,m,n∈M

∑
q∈M

[
T ∗
q

]
jn

[Tq]km

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � ψk � ψm � ψj � ψn

=
∑
q∈M

〈
GTq

,ΓϑGTq

〉
for GTq

:=
∑

i,j∈M
[Tq]ij (ψi ⊗ ψj) ∈ H ⊗H. With 〈ψm ⊗ ψk, Q1 (ψj ⊗ ψn)〉 :=[

T
(A)
k T

(A)
n

]
jm

we have

4
∑

j,k,m,n,q∈M

[
T
(A)
k

]
jq

[
T (A)
n

]
qm

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � ψk � ψm � ψj � ψn

= 4 tr2(Q1Γϑ) .
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Furthermore,

2
∑

k,n∈M

∑
p,q∈M

[(
T
(A)
k

)∗]
qp
[Tn]pq

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � ψk � ψn = 2 tr1(Q2γϑ)

for [Q2]kn := tr1

((
T
(A)
k

)∗
Tn

)
. Finally, we have

2Re

∫
D(Ψ,Ψ

)
ϑ∗ � ϑ � {μ∗, η}� = 2 tr1(Q3γϑ) ,

where [Q3]ij :=
∑
q∈M

([(
T
(A)
i

)∗]
jq
aq +

[
T
(A)
j

]
qi
aq

)
.
∑
i
|ai|2 =: |a|2 is the

squared unitary norm of a. The proof is complete by inserting the latter
calculations into the inequality of Theorem 4.18. �

As already mentioned, we have antisymmetry properties for certain choi-

ces of a and Tijk. In τ2a, which we gain by setting a ≡ 0 and Tijk = T
(a)
ijk =[

T
(a)
k

]
ij
, we have [Tk]ij = − [Tk]ji or Tk ≡ T

(A)
k . In this case, we have a sim-

plification of the generalized T2-Condition:

Corollary 5.15. For a ≡ 0, Tk ≡ T
(A)
k ,

[
T̃k

]
ij
:= [Tj ]ik, we have the T2a-

Condition given by∑
q∈M

(〈
G

˜Tq
,ΓϑG ˜Tq

〉
+ 4 tr2

((
T̃ ∗
q ⊗ T̃q

)
Γϑ

)
+ 2 tr1

(∣∣T̃q

∣∣2γϑ)) ≥ 0 .

We can also use an antisymmetry property in τ2c which leads to a con-
dition T2c. Unfortunately, there is no simplification compared to the gener-
alized T2-Condition. There is, however, no antisymmetry property in τ2b.

Since {τ∗1 , τ1}� , {τ∗2 , τ2}� ∈ G(3)
M , the T1- and T2-Conditions are condi-

tions of third order.

6. Quasifree Grassmann states

The notion of Grassmann integration allows for a calculation of traces on
the fermion Fock space by Grassmann integrals and, in turn, to reformulate
representability condition in terms of Grassmann integrals. At last, we con-
sider quasifree states, their one-particle density matrices, and the expression
of their relation in terms of Grassmann integrals.
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In the following, we will abbreviate the expectation value of a Grassmann
variable μ ∈ GM with respect to a Grassmann density κ ∈ GM by∫

D(Ψ,Ψ
)
κ � μ =: 〈μ 〉

κ
.

Definition 6.1. Let
{
ψi, ψi

}
i∈M be a set of generators of GM and let ψ̃i

denote either ψi ∈ GM or ψi ∈ GM . We call a Grassmann density κ quasifree
if

(i)
〈
ψ̃1 � ψ̃2 � · · · � ψ̃2N−1

〉
κ

= 0 and

(ii)
〈
ψ̃1 � ψ̃2 � · · · � ψ̃2N

〉
κ

=
∑
π

′(−1)π
〈
ψ̃π(1) � ψ̃π(2)

〉
κ

× · · ·
×
〈
ψ̃π(2N−1) � ψ̃π(2N)

〉
κ

,

for every N ∈ N. Here
∑
π

′ denotes the sum over all permutations π obey-

ing π(1) < π(3) < · · · < π(2N − 1) and π(2j − 1) < π(2j) for all 1 ≤ j ≤ N .
The maximal number of (distinct) ψi or ψi in (i) and (ii) is |M |.

Remark 6.2. We have to restrict N in the latter definition or extend
M sufficiently, since the expression on the l. h. s. of condition (i) and (ii),
respectively, vanishes, if the number of ψi or ψi is larger than |M |.

As it is known from [3], there is a unique characterization of quasifree
states by the 1-pdm. In detail, assuming particle number-conservation and
defining

γ̃ :=

(
γ 0
0 1− γ

)
∈ B(H⊕H) ,

which is the generalized 1-pdm corresponding to γ, one has the following:

Theorem 6.3. Let γ̃ =
(

γ 0
0 1−γ

)
be an operator on H⊕H with tr1(γ) < ∞

and 0 ≤ γ̃ ≤ 1. Then there is a unique quasifree state ρ with tr∧H
(
ρN̂
)
< ∞

such that γ̃ = γ̃ρ.

For a proof see [3].

In the language of Grassmann integration, the reverse direction, namely
that γ̃κ, i. e., the generalized 1-pdm of a quasifree Grassmann density κ,
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has to fulfill 0 ≤ γ̃κ ≤ 1, can be deduced by appropriate choices of φ ∈ GM

in the positivity condition

〈φ∗ � φ〉
κ
≥ 0 .

The aim of this section is to determine the unique quasifree Grassmann
density subject to Theorem 6.3, i. e., the element of a Grassmann algebra
corresponding the state given in [3]. To this end, we consider an operator
γ̃ ∈ B(H⊕H) with 0 ≤ γ̃ ≤ 1 and its eigenvalues λi and (1− λi), where
0 ≤ λi ≤ 1

2 , i ∈ M . Furthermore, we define P0 to be the projection onto the
subspace of ∧H, on which

∑
i:λi=0

c∗i ci = 0 for i ∈ M . Moreover, for any i ∈ M

with λi �= 0 the quantity qi is given by the relation (1 + eqi)−1 = λi. Then,
according to [3], any operator γ̃ with 0 ≤ γ̃ ≤ 1 is the generalized 1-pdm of
a unique quasifree state ρ ∈ B(∧H) given by

ρ :=
G

tr∧H(G)
,(6.1)

where

G := P0 e
−H and H :=

∑
i:λi �=0

qic
∗
i ci .

Before we turn to the definition of the Grassmann density corresponding

to (6.1), we introduce the abbreviations Θ0 := Θ(P0) ∈ GM and
n∏

i=1

�

μi :=

μ1 � μ2 � · · · � μn for μ1, . . . , μn ∈ GM , n ∈ N. Furthermore, we associate the
generators

{
ψi, ψi

}
i∈M of GM with the ONB {ψi}i∈M of H, where the ψi

are the eigenvectors of γ corresponding to the eigenvalues λi and (1− λi).

Lemma 6.4. Let {ψi}i∈M be an ONB of H such that γψi = λiψi and let GM

be generated by
{
ψi, ψi

}
i∈M . The Grassmann density κ ∈ GM corresponding

to ρ = G
tr∧H(G) is given by

κ =
1

Z

⎛⎝Θ0 �
∏

i:λi �=0

� ((
e−qi − 1

)
ψiψi + 1

)⎞⎠ ,(6.2)

where

Z :=

∫
D(Ψ,Ψ

)
Θ0 �

∏
i:λi �=0

� ((
e−qi − 1

)
ψiψi + 1

)
.
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Proof. We consider Θ(ρ) with ρ as in (6.1). First, we observe that c∗i ci com-
mutes with c∗kck for every i, k. Therefore, we have

e−H =
∏

i:λi �=0

( ∞∑
n=1

(−qi)
n

n!
c∗i ci + 1

)
=
∏

i:λi �=0

((
e−qi − 1

)
c∗i ci + 1

)
,

since (c∗i ci)
n = c∗i ci. Thus,

Θ
(
P0e

−H
)
= Θ0 �Θ

⎛⎝ ∏
i:λi �=0

((
e−qi − 1

)
c∗i ci + 1

)⎞⎠
= Θ0 �

∏
i:λi �=0

� ((
e−qi − 1

)
ψiψi + 1

)
,

where we have used Θ(AB) = Θ(A) �Θ(B). �

The Grassmann state corresponding to the Grassmann density (6.2) is
given by the map

GM → C, μ �→ 〈μ 〉
κ
.

We want to check that the Grassmann density from Lemma 6.4 is quasi-
free, i. e., fulfills conditions (i) and (ii) from Definition 6.1. The uniqueness
of κ follows from the bijection property of the map Θ.

Theorem 6.5. The Grassmann density κ in Lemma 6.4 is quasifree.

Proof. We consider the Grassmann variable

κμ :=
∏
i∈M

� (
riψiψi + 1

)
,

where ri := e−qi(μ) − 1 and qi(μ) ≡ μ ∈ R for all i with λi = 0 and qi(μ) ≡ qi
for all i with λi �= 0. The quasifreeness of κ follows from the quasifreeness of
κμ by a limiting argument. The first claim of Definition 6.1 is immediate for

κμ, since the Grassmann integral vanishes for any odd number of ψ̃’s. This
can be seen by Remark 4.15 and the chequerboard. The validity of Equation
(ii) of Definition 6.1 has already been proved in [10]. Here we emphasize
the main steps and transfer the notation of [10] to Grassmann integrals. We
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consider the l. h. s. of claim (ii) of Definition 6.1,〈
ψ̃a � ψ̃b � ψ̃c � · · · � ψ̃f

〉
κμ

=

∫
D(Ψ,Ψ

)
κμ � ψ̃a � ψ̃b � ψ̃c � · · · � ψ̃f ,

with 2N generators ψ̃a, · · · , ψ̃f . In the first step we eliminate ψ̃a from the

expectation value by a pull through formula. To this end we use
{
ψ̃a, ψ̃b

}
�
:=

ψ̃a � ψ̃b + ψ̃b � ψ̃a, which is either 1, −1, or 0. This yields〈
ψ̃a � ψ̃b � ψ̃c � · · · � ψ̃f

〉
κμ

=
{
ψ̃a, ψ̃b

}
�

〈
ψ̃c � ψ̃d � · · · � ψ̃f

〉
κμ

−
{
ψ̃a, ψ̃c

}
�

〈
ψ̃b � ψ̃d � · · · � ψ̃f

〉
κμ

+
{
ψ̃a, ψ̃d

}
�

〈
ψ̃b � ψ̃c � · · · � ψ̃f

〉
κμ

+ · · ·

+
{
ψ̃a, ψ̃f

}
�

〈
ψ̃b � ψ̃c � · · · � ψ̃e

〉
κμ

−
〈
ψ̃b � ψ̃c � · · · � ψ̃f � ψ̃a

〉
κμ

.

Afterwards, we use the cyclicity of the Grassmann integral in the last ex-
pectation value on the r. h. s. of the latter expression and the identities

ψi � κμ = eqi κμ � ψi and ψi � κμ = e−qi
κμ � ψi ,

which follow from the fact that κμ is a star product of single states of the
form riψiψi + 1 and the CAR for the star product. Thus, the last expectation
value can be written as〈

ψ̃b � ψ̃c � · · · � ψ̃f � ψ̃a

〉
κμ

= e±qa
〈
ψ̃a � ψ̃b � ψ̃c � · · · � ψ̃f

〉
κμ

,

and we conclude with〈
ψ̃a � ψ̃b � ψ̃c � · · · � ψ̃f

〉
κμ

=

{
ψ̃a, ψ̃b

}
�

1 + e±qa

〈
ψ̃c � ψ̃d � · · · � ψ̃f

〉
κμ

−

{
ψ̃a, ψ̃c

}
�

1 + e±qa

〈
ψ̃b � ψ̃d � · · · � ψ̃f

〉
κμ

+

{
ψ̃a, ψ̃d

}
�

1 + e±qa

〈
ψ̃b � ψ̃c � · · · � ψ̃f

〉
κμ

+ · · ·

+

{
ψ̃a, ψ̃f

}
�

1 + e±qa

〈
ψ̃b � ψ̃c � · · · � ψ̃e

〉
κμ

.
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We have reduced the expectation value of 2N generators to a sum of expec-
tation values of 2(N − 1) generators. As in [10], the assertion follows by an
induction in the number of generators. Finally, the quasifreeness of κ follows
from

κ = lim
μ→∞

κμ∫ D(Ψ,Ψ
)
κμ

,

which completes the proof. �

Remark 6.6. Carrying out the |M |-fold star product in κμ, we find a more
convenient form of κμ:

κμ =
∑
Q⊆M

(−1)sQ
∏
i∈Q

ri
∏
i∈Q

ψi

∏
i∈Q

ψi =
∑
Q⊆M

(−1)sQ rQΨQΨQ ,

where sQ := 1
2 |Q|(|Q| − 1), rQ :=

∏
i∈Q

ri. The sum runs over all ordered sub-

sets Q ⊆ M .
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méchanique statistique. Nuclear Physics, 15 (1960), 89–91.

[11] E. H. Lieb and W. Thirring, Bound for the Kinetic Energy of Fermions
which Proves the Stability of Matter. Physical Review Letters, 35(11)
(1975), 687–689; Errata 35 (1975), 1116.
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