
ADV. THEOR. MATH. PHYS.
Volume 19, Number 5, 1115–1139, 2015

p-adic Berglund-Hübsch duality

Marco Aldi and Andrija Peruničić

Berglund-Hübsch duality is an example of mirror symmetry be-
tween orbifold Landau-Ginzburg models. In this paper we study a
D-module-theoretic variant of Borisov’s proof of Berglund-Hübsch
duality. In the p-adic case, the D-module approach makes it possi-
ble to endow the orbifold chiral rings with the action of a non-trivial
Frobenius endomorphism. Our main result is that the Frobenius
endomorphism commutes with Berglund-Hübsch duality up to an
explicit diagonal operator.

1. Introduction

Berglund-Hübsch duality was originally introduced [3] as a generalization
of the Greene-Plesser construction [4] of mirror pairs. Let W (x) ∈ C[x] =
C[x1, . . . , xn] be an invertible polynomial defining a Calabi-Yau hypersurface
X and let G ⊂ (C∗)n be a group fixing W . Then the Berglund-Hübsch dual
of the orbifold of X by G is the hypersurface XT , defined by the “transpose”
invertible polynomial W T (x) ∈ C[x], orbifolded by an explicitly constructed
group GT ⊂ (C∗)n fixing W T . As shown in [6] and [8], the Berglund-Hübsch
construction can be further generalized to Landau-Ginzburg models with
invertible potentials (not necessarily of Calabi-Yau type) as follows. For any
invertible polynomial W (x) the bigraded chiral ring of the orbifold Landau-
Ginzburg model (W (x), G) is isomorphic to the (twisted) chiral ring of the
orbifold Landau-Ginzburg model (W T (x), GT ).

In the context of the vertex algebra approach to mirror symmetry [1],
Borisov [2] has shown that, as an isomorphism of bigraded vector spaces
(that is, disregarding the multiplicative structure), Berglund-Hübsch dual-
ity can be lifted to the level of chains. Let C[x, y]0 be the quotient of
C[x1, . . . , xn, y1, . . . , yn] by the ideal 〈x1y1, . . . , xnyn〉 and let

∧
(Cn) be the

standard exterior representation of the Clifford algebra with generators ei,
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e∨i and relations eie
∨
j + e∨j ei = δij for all i, j = 1, . . . , n. Borisov’s construc-

tion hinges on the differential

(1.1) δ∞ =

n∑
i=1

xi∂xi
W (x)⊗ ei +

n∑
i=1

yi ⊗ e∨i

acting on C[x, y]0 ⊗
∧
(Cn). As shown in [2], (C[x, y]0 ⊗

∧
(Cn), δ∞) contains

a copy of the standard Koszul resolution of the Milnor ring C[x]/dW in such
a way that the inclusion is a quasi-isomorphism. The starting point for this
paper is to deform δ∞ to

δπ =

n∑
i=1

(xi∂xi
+ πxi∂xi

W (x))⊗ ei +

n∑
i=1

(yi∂yi
+ πyi)⊗ e∨i ,

where π ∈ C∗ is an arbitrary constant. As it turns out, the complex
(C[x, y]0 ⊗

∧
(Cn), δπ) contains a copy of the de Rham complex of the D-

module C[x]eπW (x). The quasi-isomorphism (see e.g. [9]) between the latter
and the Milnor ring allows us to provide an alternate chain-level realization
of Berglund-Hübsch duality. More precisely, our method yields a chain-level
proof of the “total unprojected” (in the terminology of [8]) Berglund-Hübsch
duality, from which the usual “projected” duality of [2] can be obtained by
restricting to the invariant sectors as in [8].

The key difference between our construction and [2] emerges if one
replaces C[x] with the ring C

†
p〈x〉 of p-adic overconvergent power series.

While the de Rham cohomology of the D-module C
†
p〈x〉eπW (x) (where now

π is a fixed (p− 1)-th root of −p) is still isomorphic to the p-adic Milnor
ring, the de Rham chain model has extra structure: a non-trivial Frobenius
endomorphism which descends to cohomology. In this paper we show that
the Frobenius endomorphisms extends naturally to a chain map Fr acting
on the full chain complex C

†
p〈x, y〉0 ⊗

∧
(Cn

p ). It is then natural to ask how
the Frobenius endomorphism interacts with the Berglund-Hübsch duality
quasi-isomorphism Δ. Our main result is that, at the level of cohomology,
Δ and Fr commute up to an explicit diagonal operator whose entries are
non-negative integer powers of p.

The interplay between the cohomological Frobenius and Berglund-
Hübsch duality was first noticed in [10] and used to explore some arithmetic
consequences of Berglund-Hübsch duality in the spirit of [12]. The present
work originated as an attempt to understand the results of [10] at the level
of chains. We hope to further investigate the arithmetic implications of our
construction in future work.



p-adic Berglund-Hübsch duality 1117

This paper is organized as follows. In Section 2 we review some basic
facts about invertible polynomials defined over a field F. In Section 3 and
Section 4 we introduce our “de Rham” version of Borisov’s complex attached
to a suitable matrix A, which we denote by BA(F). In Section 5 we point out
that BA(F) is the total complex of a Z× Z-bigraded bicomplex. In Section 6
we show that BA(F) is quasi isomorphic to the de Rham cohomology of a
certain D-module. To do this we follow the analogous argument given by
Borisov in [2]. However, the bigrading of [2] is no longer preserved by our
differentials and this is why we need the bigrading introduced in Section 3
instead. In Section 7 we prove that BA(F) is quasi-isomorphic to a subcom-
plex CA(F) which is in turn canonically isomorphic to CAT (F). Together with
the results of Section 5, this proves unprojected Berglund-Hübsch duality.
In Sections 8 and 9 we specialize to the p-adic case and observe that the con-
structions of the previous sections can be extended by replacing polynomials
with overconvergent p-adic power series. While not changing cohomology,
this allows for the extra room needed in order to define a natural chain-level
Frobenius endomorphism Fr à la Dwork (see e.g. [9], [11]) whose compatibil-
ity with Berglund-Hübsch duality is then addressed. Finally, in Section 10
we illustrate our constructions by working out two simple examples.

Acknowledgments: M.A. would like to thank Albert Schwarz for stim-
ulating conversations on the results of [11], which inspired our D-module-
theoretic approach. The work of A.P. was supported by the Natural Sciences
and Engineering Research Council (NSERC) of Canada through the Discov-
ery Grant of Noriko Yui. A.P. thanks the support of the NSERC. A.P. held a
visiting position at the Fields Institute during the preparation of this paper,
and would like to thank this institution for its hospitality.

2. Invertible polynomials

Let F be a field and consider the map

W : GLn(Z≥0) → F[x] = F[x1, . . . , xn]

defined by

A �→ WA(x) =

n∑
i=1

xeiA ,

where {ei}1≤i≤n is the standard basis of Zn, and for v = (v1, . . . , vn) ∈
Zn
≥0 we write xv = xv1

1 · · ·xvn
n . For simplicity, we assume that charF = 0
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or charF > detA. A matrix A ∈ GLn(Z≥0) is Berglund-Hübsch over F if
WA(x) is an invertible polynomial, i.e. if WA(x) is quasi-homogeneous and
(∂1WA(x), . . . , ∂nWA(x)) is a regular sequence in F[x]. For each n ∈ Z≥0 we
let

BH(F) =
⋃
n

BHn(F) ,

where

BHn(F) = {A ∈ GLn(Z≥0) | A is Berglund-Hübsch over F} .

Remark 2.1. Berglund-Hübsch matrices satisfy the following properties.

1) If A ∈ BHn(F) and B ∈ BHm(F), then A⊕B ∈ BHn+m(F).

2) If [
A B

0 C

]
∈ BH(F),

then C ∈ BH(F). We call A ∈ BHn(F) irreducible if it cannot be writ-
ten as B ⊕ C with B,C ∈ ⋃

m≤n BHm(F).

3) Let Wn ⊆ GLn(Z≥0) be the Weyl group. Given S ∈ Wn and A ∈
BHn(F), then SA,AS ∈ BHn(F). Moreover,

WSA(x) = WA(x) and WAS(x) = WA(x) · S ,

where · denotes the right action of Wn on F[x] by permutation of the
variables.

Remark 2.2. Let A ∈ BHn(F) and suppose that F contains a primitive
(detA)-th root of unity ζ. We define the group of scaling symmetries of
A ∈ BHn(F) to be GA = Zn/(ZnAT ). The terminology is justified by the
following observation. The group Zn/(det(A)Zn) acts on F[x] by

(2.1) μ · xγ = ζγμ
T

xγ .

Under this action μ ·WA(x) = WA(x) if and only if μAT = (detA)λ for some
λ ∈ Zn. Let ν : GA → Zn/(det(A)Zn) be such that ν(λ) = λ det(A)A−T for
every λ ∈ GA. Then ν provides a canonical identification between GA and
the stabilizer of WA(x) under the action defined by (2.1). In the rest of the
paper we slightly abuse notation and identify each equivalence class λ+
ZnAT ∈ GA with its unique representative λ ∈ Zn such that 0 ≤ (λA−T )i <
1 for all i = 1, . . . , n. Using this identification, to λ ∈ GA we attach the
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subset Jλ ⊆ {1, . . . , n} such that i ∈ Jλ if and only if (λA−T )i ∈ Q \ Z. We
define the submatrix Aλ of A such that WAλ(x) is obtained from WA(x) by
setting xi = 0 whenever i ∈ Jλ.

Proposition 2.3 ([6]). Let A ∈ BHn(F) be irreducible. Then there exists
S ∈ Wn such that WAS(x) is in one of the following canonical forms:

1) a loop,

xa1

1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n x1 ,

2) a chain,

xa1

1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n .

Corollary 2.4. Let A ∈ BHn(F). Then

1) AT ∈ BHn(F),

2) for each λ ∈ GA, we have Aλ ∈ BHn−|Jλ|(F), and

3) the matrix defined by

Aorb :=
⊕
λ∈GA

Aλ

is in BHn|GA|−∑ |Jλ|(F).

Corollary 2.5. Let A ∈ BHn(F) and let β ∈ Zn such that (βA−1)i ∈ Q \ Z.
1) If A is a chain, then (βA−1)j, (βA−T )k ∈ Q \ Z for all 1 ≤ j ≤ i ≤

k ≤ n.

2) If A is a loop, then (βA−1)j , (βA
−1)k ∈ Q \ Z for all 1 ≤ j, k ≤ n.

Proof. Both statements follow from

AT
ii(βA

−T )i + (βA−T )i+1 = βi = (βA−1)i−1 +Aii(βA
−1)i ,

where i is considered modulo n in the case of loops. �

3. Exterior operators

Let e1, . . . , en be the standard generators of Fn. We denote by
∧
(Fn) the

exterior algebra
∧
(Fe1 ⊕ · · · ⊕ Fen) viewed as a representation of the Clif-

ford algebra Cln(F) with generators ei (multiplication) and e∨i (contraction),
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and (odd) commutators [ei, e
∨
j ] = δij for all 1 ≤ i, j ≤ n. As an F-module,∧

(Fn) is generated by monomials eI = eI11 · · · eInn , where I = (I1, . . . , In) ∈
Zn
≥0. In particular, eI = 0 if and only if Ii ≥ 2 for some i. Given A ∈ BHn(F)

and π ∈ F∗, for 1 ≤ i ≤ n we also consider

EA,i = π

n∑
j=1

ejA
T
ji and E∨

A,i =
1

π

n∑
j=1

e∨j (A
−1)ji ,

so that

[EA,iE
∨
A,j ] =

∑
k,m

AT
ki(A

−1)mj [ek, e
∨
m] =

∑
k

Aik(A
−1)kj = δij .

Lemma 3.1. If ∗A ∈ GL (
∧
(Fn)) is defined by

∗A(ei1 · · · eik) = E∨
AT ,i1E

∨
AT ,i2 · · ·E∨

AT ,ik

(
EAT ,1EAT ,2 · · ·EAT ,n

)
,

then

1) ∗AEA,i = e∨i ∗A, ∗AE∨
A,i = ei∗A, and

2) ∗AT ∗A commutes with the action of Cln(F) on
∧
(Fn).

Proof. By definition,

∗Aei = E∨
AT ,i ∗A and ∗A e∨i = EAT ,i ∗A .

Therefore,

∗AEA,i = ∗Aπ
∑
j

ejA
T
ji = π

∑
j

E∨
AT ,jA

T
ji∗A =

∑
k,j

e∨k (A
−T )kjA

T
ji ∗A e∨i ∗A .

Similarly, ∗AE∨
A,i = ei∗A. This proves part (1). Part (2) follows from

∗AT ∗A ei = ∗AT

E∨
AT ,i∗A = ei ∗AT ∗A

and

∗AT ∗A e∨i = ∗AT

EA,i∗A = e∨i ∗AT ∗A .

�
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Remark 3.2. The operator

ext =

n∑
i=1

eie
∨
i =

n∑
i=1

EA,iE
∨
A,i

is diagonal on
∧
(Fn). If charF = 0, its eigenvalues count the total exterior

degree. Moreover,

∗A ext =

n∑
i=1

e∨i ei∗A = (n Id− ext) ∗A .

4. The basic complex

Given a graded vector space V endowed with a differential d of degree 1,
we denote by (V, d) the corresponding chain complex and by H(V, d) its
cohomology. If V is bigraded and d, d′ are differentials of bidegree (1, 0) and
(0, 1) respectively, we denote the corresponding bicomplex by (V, d, d′) and
by H(V, d, d′) its total cohomology. If V is a vector space acted upon by
a collection of commuting endomorphisms φ1, . . . , φn, we denote the corre-
sponding Koszul complex by Kos(V, φ1, . . . , φn).

Given A ∈ BHn(F), consider the subring R̃A(F) of F[x1, . . . , xn, y1, . . . ,
yn] generated by monomials xγyλ such that (λA−T )i ≥ 0 for all 1 ≤ i ≤ n.

We define RA(F) to be the quotient of R̃A(F) by the ideal generated by
monomials xγyλ for which γA−1λT > 0. Given π ∈ F∗, we define θA,i, T

∨
A,i,

ψ∨
A,i, ϕA,i,∈ EndF (RA(F)) by the formulas

θA,i(x
γyλ) = γi x

γyλ ;

T∨
A,i(x

γyλ) = π−1(λA−T )i x
γyλ ;

ψ∨
A,i(x

γyλ) = xγyλ+eiAT

;

ϕA,i(x
γyλ) = π (θiWA(x))x

γyλ = π

n∑
j=1

Aji x
γ+ejAyλ .

We also define the odd linear endomorphisms of RA(F)⊗
∧
(Fn)

dA,i = (θA,i + ϕA,i) ei , dA =

n∑
i=1

dA,i
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and

d∨A,i =
(
T∨
A,i + ψ∨

A,i

)
e∨i , d∨A =

n∑
i=1

d∨A,i .

Lemma 4.1. BA(F) = (RA(F)⊗
∧
(Fn), dA + d∨A) is a chain complex.

Proof. The morphism dA is the Koszul differential for the sequence

(θA,1 + ϕA,1, θA,2 + ϕA,2, . . . , θA,n + ϕA,n)

of commuting operators acting on RA(F). Therefore, [dA, dA] = 0 and simi-

larly [d∨A, d
∨
A] = 0. Moreover, since (θA,i + ϕA,i) and

(
T∨
A,j + ψ∨

A,j

)
commute,

[dA,i, d
∨
A,j ] =

[
(θA,i + ϕA,i) ei,

(
T∨
A,j + ψ∨

A,j

)
e∨j

]
= (θA,i + ϕA,i)

(
T∨
A,j + ψ∨

A,j

) [
ei, e

∨
j

]
= (θA,i + ϕA,i)

(
T∨
A,j + ψ∨

A,j

)
δij .

If

0 �= (
θA,i T

∨
A,i

)
(xγyλ) = γi (A

−1λT )i x
γyλ ,

then xγyλ = 0 in RA(F) and thus (θA,i + ϕA,i)
(
T∨
A,i + ψ∨

A,i

)
= 0. For

(
ϕA,i T

∨
A,i

)
(xγyλ) =

n∑
j=1

Aji(λA
−T )i x

γ+ejAyλ

we note that if for some j we have Aji, (λA
−T )i > 0, then

(γ + ejA)A
−1λT ≥ (ejA)(A

−1λT ) =

n∑
m=1

Ajm(A−1λT )m ≥ Aji(A
−1λT )i > 0

and conclude as before that xγ+ejAyλ = 0 in RA(F). It is similarly shown
that ϕA,i ψ

∨
A,i = 0 and θA,i ψ

∨
A,i = 0. Therefore, [dA, d

∨
A] = 0. �

Remark 4.2. Since for λ ∈ GA we take 0 ≤ (λA−T )i < 1 for each i by
Remark 2.2, the condition γA−1λT = 0 imposed on a monomial xγyλ means
that γi = 0 if λ acts non-trivially on xi.



p-adic Berglund-Hübsch duality 1123

5. Bigrading

Let P∨
A,i ∈ EndF (RA(F)) be given by

P∨
A,i(x

γyλ) =

{
0, if (λA−T )i = 0 ;

xγyλ, otherwise .

Lemma 5.1. Let QA,i, Q
∨
A,i, QA and Q∨

A be linear endomorphisms of
RA(F)⊗

∧
(Fn) defined by

Q∨
A,i = P∨

A,i e
∨
i ei and QA,i = eie

∨
i +Q∨

A,i

as well as

QA =

n∑
i=1

QA,i and Q∨
A =

n∑
i=1

Q∨
A,i .

Then for each 1 ≤ i, j ≤ n,

1) [QA,i, Q
∨
A,j ] = 0,

2) [Q∨
A,i, dA,j ] = 0 and [QA,i, dA,j ] = δijdA,j,

3) [QA,i, d
∨
A,j ] = 0 and [Q∨

A,i, d
∨
A,j ] = δijd

∨
A,j.

Proof. The operators QA,i and Q∨
A,j commute because they have monomials

of the form xγyλeI as a common basis of eigenvectors, which proves (1).
For (2),

[Q∨
A,i, dA,j ] =

[
P∨
A,i e

∨
i ei, (θA,j + ϕA,j) ej

]
= P∨

A,i (θA,j + ϕA,j) [e
∨
i ei, ej ]

= δijP
∨
A,i (θA,j + ϕA,j) e

∨
j .

The proof of Lemma 4.1 shows that P∨
A,i ϕA,i = 0. Similarly, P∨

A,i θA,i(x
γyλ)

�= 0 implies that γi(A
−1λT )i > 0 so that the corresponding term is 0 in

RA(F). Therefore, [Q
∨
A,i, dA,j ] = 0, which in turn implies that

[QA,i, dA,j ] = (θA,j + ϕA,j) [eie
∨
i , ej ] = δijdA,j .

For part (3), if i �= j

[P∨
A,i, T

∨
A,j + ψ∨

A,j ] = 0 = [e∨i ei, e
∨
j ] .
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If i = j, then e∨i e
∨
i ei = 0 and e∨i eie

∨
i = e∨i , which means that

[Q∨
A,i, d

∨
A,j ] = δijP

∨
A,j

(
T∨
A,j + ψ∨

A,j

)
e∨i = δijd

∨
A,j .

Similarly,

[QA,i, d
∨
A,j ] =

[
eie

∨
i ,

(
T∨
A,j + ψ∨

A,j

)
e∨j

]
+ δijd

∨
A,j

= δij
(− (

T∨
A,j + ψ∨

A,j

)
e∨j eje

∨
j + d∨A,j

)
= 0 . �

Remark 5.2. In particular, with respect to the Spec(QA)× Spec(Q∨
A)

bigrading, BA(F) is the total complex of the bicomplex
(RA(F)⊗

∧
(Fn),

dA, d
∨
A

)
.

6. Unprojected orbifold de Rham cohomology

Given A ∈ BHn(F) and π ∈ F∗, let

MA(F) = F[x]eπWA(x)

be the module over the Weyl algebra F[x1, . . . , xn, ∂1, . . . , ∂n] on which xi
acts by multiplication and ∂i acts according to the formula

(6.1) ∂i · P (x) = ∂iP (x) + π(∂iWA(x))P (x)

for each 1 ≤ i ≤ n and P (x) ∈ MA(F). Note that eπWA(x) is a formal symbol
serving as a reminder of the Weyl algebra action. We denote by DRA(F) the
de Rham complex of MA(F), which is by definition the Koszul complex

Kos (MA(F), ∂1, ∂2, . . . , ∂n) ,

where each ∂i acts as in Equation (6.1). Given λ ∈ Zn
≥0 such that (λA−T )i ≥

0 for all 1 ≤ i ≤ n, let Rλ
A(F) ⊆ RA(F) be generated by monomials of the

form xγyλ+μAT

for some γ, μ ∈ Zn
≥0. Then Rλ

A(F)⊗
∧
(Fn) is closed under

dA + d∨A and we denote by Bλ
A(F) ⊆ BA(F) the corresponding subcomplex.

Lemma 6.1. If A ∈ BHn(F), then

1) BA(F) ∼=
⊕

λ∈GA
Bλ
A(F), and

2) Bλ
A(F) is quasi-isomorphic to B0

Aλ(F).
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Proof. Part (1) holds because GA = Zn/ZnAT and (λA−T )i ≥ 0 for 1 ≤ i ≤
n. For (2), note that since xiy

λ = 0 in Rλ
A(F) for any i ∈ Jλ

Rλ
A(F)

∼= R0
Aλ(F)⊗ F[ψ∨

A,i]{i∈Jλ} y
λ ,

and thus

(6.2) Bλ
A(F)

∼= B0
Aλ(F)⊗Kos

(
F[ψ∨

A,i]{i∈Jλ} y
λ, (T∨

A,i + ψ∨
A,i){i∈Jλ}

)
.

The cohomology of the second factor is isomorphic to Fyλ, making the inclu-
sion B0

Aλ(F) ↪→ Bλ
A(F) a quasi-isomorphism. �

Proposition 6.2. The complex B0
A(F) is canonically quasi-isomorphic to

DRA(F).

Proof. The map Θ: MA(F)⊗
∧
(Fn) → R0

A(F)⊗
∧
(Fn) defined by Θ(xγeI)

= xγ+IeI gives rise to an embedding

DRA(F) ↪→ B0
A(F)

of complexes. For each γ ∈ Zn
≥0, let

∧
γ =

∧(⊕
γi=0 Fei

)
. Then(

R0
A(F)⊗

∧
(Fn), d∨A

)
=

⊕
γ,I

Cγ,I ,

where

Cγ,I =

⎛⎝xγ+IF[yeiA
T

](γ+I)i=0 ⊗ eI
∧

γ+I
,

∑
(γ+I)i=0

d∨A,i

⎞⎠
is a Koszul complex with cohomology Fxγ+IeI . This implies that

H

(R0
A(F)⊗

∧
(Fn)

ImΘ
, d∨A

)
= 0 ,

and using the spectral sequence of first quadrant bicomplexes we conclude
that

H
(B0

A(F)/DRA(F)
)
= 0 .

Therefore, the inclusion DRA(F) ↪→ B0
A(F) is a quasi-isomorphism. �
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Corollary 6.3. Let A ∈ BHn(F) and let S(A) be the collection of monomi-
als xγeI such that |I| = n and 1 ≤ γi ≤ ai = Aii for all i = 1, . . . , n. Then

1) H(B0
A(F)) is isomorphic to the Milnor ring F[x]/dWA(x).

2) If WA(x) is a loop, then H(B0
A(F)) is generated by monomials in S(A).

3) If WA(x) is a chain, then H(B0
A(F)) is generated by those monomials

in S(A) of the form

xa1

1 x2x
a2

3 x4 · · ·xa2m−1

2m−1x2mx
γ2m+1

2m+1 · · ·xγn
n

where m ≥ 0 is such that γ2m+1 < a2m+1.

Proof. Part (1) follows from Proposition 6.2 and the fact (see e.g. [9]) that
there is a linear map from F[x]/dWA(x) to H(DRA(F)) sending monomials
to monomials. Comparison with the standard monomial basis for the Milnor
ring of chains and loops (see e.g. [6]) establishes (2) and (3). �

Proposition 6.4. The natural inclusion of DRAorb(F) into BA(F) is a
quasi-isomorphism.

Proof. The proposition follows from Lemma 6.1 and Proposition 6.2. �

7. Unprojected duality

Given A ∈ BHn(F) and π ∈ F∗, let ψA,i, TA,i ∈ EndF(RA(F)) for 1 ≤ i ≤ n
be defined by

ψA,i(x
γyλ) = xγ+eiAyλ

and

TA,i(x
γyλ) = π−1(γA−1)i x

γyλ,

so that dA =
∑n

i=1 d̂A,i, where

d̂A,i = (TA,i + ψA,i)EA,i .

Remark 7.1. Since we are using logarithmic differentials, ei can be natu-
rally interpreted as dxi/xi. One motivation for the change of basis to EA,i

is the Shioda map xγ �→ zγA
−1 det(A) which sends WA to ze1 det(A) + · · ·+

zen det(A). If we interpret EA,i as dzi/zi, its definition is simply the chain
rule.
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Let SA(F) ⊆ RA(F) be generated by monomials xγyλ such that
(γA−1)i ≥ 0 for all 1 ≤ i ≤ n. Then SA(F)⊗

∧
(Fn) is closed under dA + d∨A.

Let CA(F) ⊆ BA(F) denote the corresponding subcomplex.

Lemma 7.2. The inclusion CA(F) ↪→ BA(F) is a quasi-isomorphism.

Proof. Consider the filtration

SA(F) ⊆ Fn ⊆ Fn−1 ⊆ · · · ⊆ F 1 = RA(F) ,

where F i is spanned by monomials xγyλ such that (γA−1)j ≥ 0 for all j < i.
In particular, F i/F i+1 is canonically identified with the space of monomials
xγyλ such that (γA−1)i < 0. Consider the filtration G•(F) = F • ⊗∧

(Fn) of
RA(F)⊗

∧
(Fn). Notice that(

Gi(F)

Gi+1(F)
; dA, d

∨
A

)
is a bicomplex with respect to the Spec(QA)× Spec(Q∨

A) bigrading, while(
Gi(F)

Gi+1(F)
; d̂A,i, dA − d̂A,i

)
is a bicomplex with respect to the

Spec(EA,iE
∨
A,i)× (ext− EA,iE

∨
A,i)

bigrading. Therefore, in order to prove that

(7.1) H

(
Gi(F)

Gi+1(F)
, dA + d∨A

)
= 0 ,

it is sufficient to show that

(7.2) H

(
Gi(F)

Gi+1(F)
, d̂A,i

)
= 0 .

If this is the case, the result then follows from the spectral sequence of the
filtered complex (BA(F), G

•(F)). To prove (7.2), we distinguish the following
two cases.

First, suppose that charF = 0. In this case, TA,i acts by nonzero eigen-
values on F i/F i+1. By looking at the filtration of F i/F i+1 by Spec(TA,i),
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−π−1

−2π−1

−3π−1

−4π−1

−5π−1

−6π−1

−7π−1

ψA,1

ψA,1

SA(F)

Figure 1: Eigenspaces of TA,2 in F 2 for WA = x21 + x1x
3
2, with eigenvalues

designated along the left. Each point represents γ in xγ .

we conclude that TA,i + ψA,i is injective. Therefore, H
(

Gi(F)
Gi+1(F) , d̂A,i

)
is con-

centrated in top Spec(EA,iE
∨
A,i)-degree and isomorphic to the quotient

F i
/ (

F i+1 + Im(TA,i + ψA,i)
)
.

On the other hand, for each f ∈ F i there exists N ∈ N such that ψn
A,if ∈

F i+1, which implies (7.2). See Figure 1 for an illustration.
Second, suppose that charF = p > detA. Let K be a field such that

charK = 0 and F = K/pK. Consider the short exact sequence of complexes

0−−−−→
(

Gi(K)
Gi+1(K) , d̂A,i

)
p−−−−→

(
Gi(K)

Gi+1(K) , d̂A,i

)
−−−−→

(
Gi(F)

Gi+1(F) , d̂A,i

)
−−−−→ 0 .

Taking the long exact sequence and using the characteristic 0 case estab-
lished above yields (7.2). �

Proposition 7.3. Let DA : SA(F) → SAT (F) be defined by DA(xγyλ) =
xλyγ. Then,

ΔA = DA ⊗ ∗A : SA(F)⊗
∧

(Fn) → SAT (F)⊗
∧

(Fn)
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induces an isomorphism of complexes

CA(F)
∼=−−−−→ CAT (F) .

Proof. Since DAT

DA = Id and ∗A ∈ GL (
∧
(Fn)), we only need to prove that

ΔA is a chain map. Using

DAψA,i = ψ∨
AT ,iD

A and DATA,i = T∨
AT ,iD

A ,

it follows that

ΔA ((TA,i + ψA,i)EA,i) =
(
(T∨

AT ,i + ψ∨
AT ,i)e

∨
i

)
ΔA

and

ΔA
(
(T∨

A,i + ψ∨
A,i)e

∨
i

)
=

(
(TAT ,i + ψAT ,i)EAT ,i

)
ΔA. �

Theorem 7.4 (Unprojected Berglund-Hübsch Duality). The com-
plexes DRAorb(F) and DR(AT )orb(F) are canonically quasi-isomorphic.

Proof. The theorem follows from Proposition 7.3, Lemma 7.2, and Proposi-
tion 6.4. �

8. Overconvergent power series

Let p ∈ Z≥0 be a prime, K = Cp, F = K/pK, A ∈ BHn(F), and π ∈ K such

that πp−1 = −p. Let R̃A
†
(K) be the ring of overconvergent power series∑

γ,λ∈Zn
≥0

aγ,λ x
γyλ

such that (λA−T )i ≥ 0 for all 1 ≤ i < n, and such that there exists M > 0
for which

(8.1) ordp(aγ,λ) ≥ M(|γ|+ |λ|)

for all but finitely many γ, λ. Similarly, define R†
A(K), S†

A(K), B†
A(K), and

C†
A(K) as before, by replacing polynomials with overconvergent power series.
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Lemma 8.1. 1) The inclusions

BA(K) −−−−→ B†
A(K)�⏐⏐ �⏐⏐

CA(K) −−−−→ C†
A(K)

are quasi-isomorphisms.

2) ΔA extends to an isomorphism of complexes

C†
A(K)

∼=−→ C†
AT (K).

Proof. To prove (1), let f =
∑

aγ,λ x
γyλ be an overconvergent power series.

Since ordp(aγ,λ) ≥ 1 for all but finitely many γ, λ, by reducing modulo p
we obtain a polynomial f ∈ F[x1, . . . , xn, y1, . . . , yn]. Therefore, RA(K) and
R†

A(K) both reduce modulo p to RA(F). Since BA(F) and CA(F) decom-
pose into subcomplexes with cohomology concentrated in top degree, the
statement follows from the long exact sequences of the diagram

0 −−−−→ B†
A(K)

p−−−−→ B†
A(K) −−−−→ BA(F) −−−−→ 0�⏐⏐ �⏐⏐ ∼=

�⏐⏐
0 −−−−→ BA(K)

p−−−−→ BA(K) −−−−→ BA(F) −−−−→ 0�⏐⏐ �⏐⏐ �⏐⏐
0 0 0

as in [9, Theorem 8.5]. Therefore BA(K) ↪→ B†
A(K) is quasi-isomorphism.

Similarly, CA(K) ↪→ C†
A(K) is a quasi-isomorphism. The rest of the statement

follows from Lemma 7.2.
Part (2) follows as in Proposition 7.3 after noticing that the overconver-

gence property is preserved by DA. �

9. The Frobenius endomorphism

Let pQA , pQ
∨
A ∈ End

(
R†

A(K)⊗∧
(Kn)

)
be defined by

pQA(xγyλeI) = pξxγyλeI and pQ
∨
A(xγyλeI) = pξ

∨
xγyλeI ,

where QA(x
γyλeI) = ξxγyλeI and Q∨

A(x
γyλeI) = ξ∨xγyλeI .
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Lemma 9.1. If Θ′
A : R†

A(K) → R†
pA(K) is defined by Θ′

A(x
γyλ) = xpγypλ,

then

Fr′A =
(
Θ′

A ⊗ Id∧(Kn)

)
pQA

defines a chain map B†
A(K) → B†

pA(K).

Proof. This follows from

Fr′AdA,i = Θ′
A(θA,i + ϕA,i)ei p

QA+1 = dpA,iFr
′
A ;

Fr′Ad
∨
A,i = Θ′

A(T
∨
A,i + ψ∨

A,i)e
∨
i pQA = d∨pA,iFr

′
A . �

Lemma 9.2. If Θ′′
A : R†

pA(K) → R†
A(K) is defined by

Θ′′
A(x

γyλ) = ZA(x)ZAT (y)xγyλ,

where ZA(x) = eπ(WpA(x)−WA(x)), then

Fr′′A =
(
Θ′′

A ⊗ Id∧(Kn)

)
pQ

∨
pA

defines a chain map B†
pA(K) → B†

A(K).

Proof. It is well known (see e.g. [9]) that ZA(x) satisfies (8.1). Therefore,
Θ′′

A is well defined. We compute

(θA,i + ϕA,i)Θ
′′
A = θA,i (WpA(x)−WA(x))Θ

′′
A +Θ′′

A θpA,i + ϕA,iΘ
′′
A

= Θ′′
A ϕpA,i − ϕA,iΘ

′′
A +Θ′′

A θpA,i + ϕA,iΘ
′′
A

= Θ′′
A (θpA,i + ϕpA,i) ,

from which we see that

Fr′′A dpA,i = Θ′′
A (θpA,i + ϕpA,i) ei p

Q∨pA = dA,i Fr
′′
A .

To see that Fr′′Ad∨pA,i = d∨A,iFr
′′
A, note that for each 1 ≤ i ≤ n, T∨

A,i satisfies

T∨
A,i

(
yλZAT (y)

)
= T∨

A,i

(
yλeπ(WpAT (y)−WAT (y))

)
= π

(
T∨
A,iWpAT (y)− T∨

A,iWAT (y)
)
yλZAT (y) + ZAT (y)T∨

A,iy
λ

= yλZAT (y)
(
pypeiA

T − yeiA
T
)
+ ZAT (y) pπ−1(λ

1

p
A−T )i y

λ

= yλZAT (y)
(
pψ∨

pA,i − ψ∨
A,i

)
+ ZAT (y) pT∨

pA,iy
λ .
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We therefore have that(
T∨
A,i + ψ∨

A,i

)
Θ′′

A = pΘ′′
Aψ

∨
pA,i −Θ′′

Aψ
∨
A,i + pΘ′′

AT
∨
pA,i +Θ′′

Aψ
∨
A,i

= pΘ′′
A

(
T∨
pA,i + ψ∨

pA,i

)
,

and so

Fr′′A d∨pA,i = Θ′′
A

(
T∨
pA,i + ψ∨

pA,i

)
ei p

Q∨A−1 = d∨A,i Fr
′′
A. �

Lemma 9.3. Let P̂A,i ∈ EndK

(
S†
A(K)

)
be defined by

P̂A,i(x
γyλ) =

{
0 if (γA−1)i = 0 ;

xγyλ otherwise .

1) If we define

Q̂A,i = P̂A,iEA,iE
∨
A,i ;

Q̂∨
A,i = E∨

A,iEA,i + Q̂A,i ,

then

ΔAQ∨
A,i = Q̂AT ,iΔ

A and ΔAQA,i = Q̂∨
AT ,iΔ

A .

2) If we define

d̂A,i = (TA,i + ψA,i)EA,i and D̂∨
A,i =

(
θ∨A,i + ψ∨

A,i

)
E∨

A,i ,

then

[Q̂A,i, d̂
∨
A,j ] = 0 = [Q̂∨

A,i, d̂A,j ]

and

[Q̂A,i, d̂A,j ] = δij d̂A,j ; [Q̂∨
A,i, d̂

∨
A,j ] = δij D̂

∨
A,j .

Proof. We compute

[Q̂A,i, d̂A,k] = [P̂A,iEA,iE
∨
A,i, (TA,j + ψA,j)EA,j ]

= δij P̂A,i (TA,j + ψA,j)EA,j

= δij d̂A,j ,

from which we see that

[Q̂∨
A,i, d̂A,j ] = [E∨

A,iEA,i, d̂A,j ] + δij d̂A,j = δij

(
−d̂A,j + d̂A,j

)
= 0 .
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Similarly,

[Q̂A,i, d̂
∨
A,j ] = P̂A,i

(
θ∨A,j + ψ∨

A,j

)
[EA,iE

∨
A,i, E

∨
A,j ]

= −δij P̂A,i

(
θ∨A,i + ϕ∨

A,i

)
E∨

A,i .

Since P̂A,i θ
∨
A,i(x

γyλ) �= 0 implies (γA−1)i(λA
−T )i > 0, then

(γA−1)iAii(λA
−T )i > 0

and thus γA−1λT > 0. Therefore, [Q̂A,i, d̂
∨
A,j ] = 0. As a consequence,

[Q̂∨
A,i, d̂

∨
A,j ] = [E∨

A,iEA,i, d̂
∨
A,j ] = δij d̂

∨
A,j ,

which concludes the proof of (2). For (1), we compute

ΔAQ∨
A,i = DA P∨

A,i ⊗ ∗A e∨i ei = P̂AT ,iD
A ⊗ EAT ,iE

∨
AT ,i ∗A = Q̂AT ,iΔ

A ;

ΔAQA,i = Δ
(
ei e

∨
i +Q∨

A,i

)
=

(
E∨

AT ,iEAT ,i + Q̂AT ,i

)
ΔA = Q̂∨

AT ,iΔ
A .

�

Proposition 9.4. For each A in BHn(F) the Frobenius endomorphism
defined by

FrA =
(
(Θ′′

AΘ
′
A)⊗ Id∧(Kn)

)
pQA+Q∨A

is a chain map and

ΔA FrA = FrAT ΔA p2 ext−n p−2Q̂A p2Q
∨
A .

Proof. Since pQ
∨
pA (Θ′

A ⊗ Id) = (Θ′
A ⊗ Id) pQ

∨
A , then FrA = Fr′′AFr

′
A is a chain

map. For the second statement, DAΘ′′
AΘ′

A = Θ′′
AT Θ′

AT DA implies

ΔA FrA = ΔA
(
Θ′′

AΘ′
A ⊗ Id

)
pQ

∨
A+QA

= FrAT p−QAT −Q∨
AT ΔA pQ

∨
A+QA

= FrAT ΔA p−Q̂A−Q̂∨A pQ
∨
A+QA

= FrAT ΔA p2 ext−n p−2Q̂A p2Q
∨
A . �

Theorem 9.5. Let #A (respectively #∨
A) be the operator on SA(K) diag-

onalized by monomials and such that the eigenvalue of xγyλ is the num-
ber of non-integer entries of γA−1 (respectively λA−T ). If κ is such that
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(κπ)p−1 = p, then the twisted Frobenius endomorphism

TFrA = FrA (κπ)(p−1)(#A−#∨A)/2

is a chain map, and

H(ΔA)H(TFrA) = H(TFrAT )H(ΔA) .

Proof. Since (κπ)(p−1)(#A−#∨A)/2 is diagonalized by monomials and acts triv-
ially on

∧
(Kn), it commutes with dA + d∨A. Therefore, TFrA is a chain map.

Using Proposition 9.4, we calculate

ΔATFrA = ΔA FrA (κπ)(p−1)(#A−#∨A)/2

= FrAT ΔA p2 ext−n p−2Q̂A p2Q
∨
A (κπ)(p−1)(#A−#∨A)/2

= TFrAT ΔA p2 ext−n p−2Q̂A p2Q
∨
A (κπ)p(p−1)(#A−#∨A),

where the last step follows from

(κπ)−(p−1)(#AT −#∨
AT )/2ΔA = ΔA (κπ)(p−1)(#A−#∨A)/2.

Therefore, the theorem is proven if the eigenvalues of

(9.1) 2 ext− n− 2Q̂A + 2Q∨
A and − (#A −#∨

A)

agree on a monomial basis xγyλeI forH(Bλ
A(K)) for each λ ∈ GA. By Lemma

6.1 and Corollary 6.3 one can choose generators of the form xγ+IyλeI , where
|I| = n− |Jλ| and 0 ≤ (λA−1)i < 1 for all i = 1, . . . , n. In particular, the
eigenvalue of 2 ext− n+ 2Q∨

A −#∨
A on xγ+IyλeI ∈ S(A) is |I|. On the other

hand, inspection of the bases for the cohomology of chains and loops given
in Corollary 6.3 shows that (2Q̂A −#A) = ext on S(A), which concludes the
proof. �

10. Examples

Example 10.1. Let n = 1 and A11 = 2. Then WA(x) = W T
A (x) = x21 and

GA = GAT = Z/2Z. The exterior operators are EA,1 = 2πe1 and E∨
A,1 =



p-adic Berglund-Hübsch duality 1135

1
2πe

∨
1 . Moreover, R0

A(F) = F[x1]⊕ y21F[y
2
1] and R1

A(F) = y1F[y
2
1]. The differ-

entials are

d(xγ1

1 ) = γ1x
γ1

1 e1 + 2πxγ1+2
1 e1;

d∨(yλ1

1 e1) =
1

2π
λ1y

λ1

1 + yλ1+2
1 .

It follows that H(B0
A(F)) = Fx1e1 and H(B1

A(F)) = Fy1 are mapped one into
the other by ΔA. The relations in cohomology are

x2k+1
1 e1 = (−2π)−1(2k − 1)x

2(k−1)+1
1 e1 = · · · = (−2π)−k(2k − 1)!!x1e1;

y2k+1
1 = (−2π)−1(2k − 1)y

2(k−1)+1
1 = · · · = (−2π)−k(2k − 1)!! y1 .

Let (cm) be the sequence of rational numbers defined by

eπ(t
p−t) =

∑
m≥0

cm(−π)mtm.

The action of the twisted Frobenius map in cohomology is thus

H(TFrA)(x1e1)

= p(κπ)(p−1)/2eπ(x
2p
1 −x2

1)xp1e1

= p(κπ)(p−1)/2
∑
m≥0

cm(−π)mx
2(m+ p−1

2
)+1

1 e1

= p(κπ)(p−1)/2

⎛⎝∑
m≥0

cm(−π)−
p−1

2 2−(m+ p−1

2
)(2(m− 1) + p)!!

⎞⎠x1e1

= pκ(p−1)/2

((
p− 1

2

)
! +O(p)

)
x1e1 .

Similarly,

H(TFrA)(y1)

= p2(κπ)−(p−1)/2
(∑

cm(−π)−
p−1

2 2−(m+ p−1

2
)(2(m− 1) + p)!!

)
y1

= pκ(p−1)/2

((
p− 1

2

)
! +O(p)

)
y1 .

Comparison with the non-commutative Weil conjectures of Kontsevich [5]
seems to suggest a further overall rescaling of TFrA. This is likely to be
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GA

λ (0, 0) (1, 0) (1, 1) (1, 2) (2, 1) (2, 2)

λA−T (0, 0) (12 , 0) (13 ,
1
3) (16 ,

2
3) (56 ,

1
3) (23 ,

2
3)

GAT

λ (0, 0) (0, 1) (0, 2) (1, 1) (1, 2) (1, 3)

λA−1 (0, 0) (0, 13) (0, 23) (12 ,
1
6) (12 ,

1
2) (12 ,

5
6)

Table 1: Elements of GA and GAT for WA(x) = x21x2 + x32.

relevant for arithmetic applications. We hope to come back to this point in
future work.

Example 10.2. Consider the dual chains WA(x) = x21x2 + x32 and WAT (x)
= x21 + x1x

3
2. The elements of GA

∼= Z2/Z2AT and GAT
∼= Z2/Z2A are given

in Table 1. We can find basis elements xγyλeI of CA and CAT as described in
the proof of Theorem 9.5. Each row of Table 2 contains a pair of elements
dual under ΔA (up to constants), as well as the eigenvalues of

QA +Q∨
A and (#A −#∨

A)/2

applied to xγyλeI . Here we are using ∗A(e1e2) = 1, ∗A(e2) = −EAT ,1 = −2πe1
and

∗A(1) = EAT ,1EAT ,2 = (2πe1)(πe1 + 3πe2) = 6π2e1e2.

Note also that

ΔA(x21x2e1e2) = y21y2 ≡ 3πx1x
3
2e1e2,

since (dAT + d∨AT )(e1) = 3πx1x
3
2e1e2 + y21y2.

We now turn to writing TFrA(x
γyλeI) in terms of this basis for a few

elements. Since for any xγ ,

(θA,1 + ϕA,1)(x
γ+e1A) = γ1x

γ + π
(
2xγ+e1A

)
;

(θA,2 + ϕA,2)(x
γ+e2A) = γ2x

γ + π
(
xγ+e1A + 3xγ+e2A

)
,

in H
(Bλ

A(F)
)
we have the relation

γxγyλeI = (−π)(xγ+e1AyλeI , xγ+e2AyλeI)A,
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CA QA +Q∨
A (#A −#∨

A)/2 CAT QAT +Q∨
AT (#AT −#∨

AT )/2

x1x2e1e2 2 1 y1y2 4 −1

x1x
2
2e1e2 2 1 y1y

2
2 4 −1

x1x
3
2e1e2 2 1 y1y

3
2 4 −1

x21x2e1e2 2 0 x1x
3
2e1e2 2 0

x2y1e2 3 0 x1y2e1 3 0

x22y1e2 3 0 x1y
2
2e1 3 0

y1y2 4 −1 x1x2e1e2 2 1

y1y
2
2 4 −1 x1x

2
2e1e2 2 1

y21y2 4 −1 x21x2e1e2 2 1

y21y
2
2 4 −1 x21x

2
2e1e2 2 1

Table 2: Duality between CA and CAT for WA(x) = x21x2 + x32.

which implies for i = 1, 2 that

xγ+eiAyλeI = (−π)−1
(
γA−1

)
i
xγyλeI .

Therefore, for i = 1, 2,

xγ+kieiAyλeI = (−π)−1
(
(γ + (ki − 1)eiA)A

−1
)
i
xγ+(ki−1)eiAyλeI(10.1)

= (−π)−2
(
(γA−1)i + (ki − 1)

)(
(γA−1)i + (ki − 2)

)
xγ+(ki−2)eiAyλeI

= (−π)−ki
(
(γA−1)i

)
(ki)

xγyλeI .

Take x1x2 e1e2 so that γ = (1, 1) and γA−1 = (12 ,
1
6). Suppose that p is a

prime such that 6 | (p− 1). Then we can write

(p, p) = (1, 1) +

(
p− 1

2
,
p− 1

6

)
A,
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which using Equation (10.1) gives

TFrA(x1x2 e1e2)

= p2(κπ)p−1xp1x
p
2ZA(x)e1e2

= p3xp1x
p
2

⎛⎝∑
k1≥0

(−π)k1ck1
xk1e1A

⎞⎠⎛⎝∑
k2≥0

(−π)k2ck2
xk2e2A

⎞⎠ e1e2

= p3(−π)−
2(p−1)

3

⎛⎝ ∑
k1,k2≥0

ck1
ck2

(
1

2

)
(k1+

p−1

2
)

(
1

6

)
(k2+

p−1

6
)

⎞⎠x11x
1
2 e1e2,

where we have used the fact that ZAT (y) = 1 +O(y1, y2). Next, consider

TFrA(x
2
2y1e2) = p3eπ(x

3p
2 −x3

2)eπ(y
2p
1 −yp

1)x2p2 yp1 e2.

By Equation (6.2), in cohomology we have the relation

yλ+k′1e1A
T

= (−π)−k′1
(
(λA−T )1

)
(k′1)

yλ = (−π)k
′
1

(
3λ1 − λ2

6

)
(k′1)

yλ,

which if 6 | (p− 1) implies that

TFrA(x
2
2y2e2)

= p3(−π)−
7(p−1)

6

⎛⎝ ∑
k′1,k2≥0

ck′1ck2

(
1

2

)
(k′1+ p−1

2 )

(
2

3

)
(k2+

2(p−1)

3 )

⎞⎠x22y1e2.
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(Ph.D.)–Brandeis University, 2013.

[11] A. Schwarz and I. Shapiro, Twisted de Rham cohomology, homological
definition of the integral and “physics over a ring”. Nucl. Phys. B,
809(3):547–560, 2009.

[12] D. Wan, Mirror symmetry for zeta functions. With an appendix by C.
Douglas Haessig. AMS/IP Stud. Adv. Math., 38, Mirror Symmetry V,
159–184, Amer. Math. soc., Providence, RI, 2006.

Department of Mathematics and Applied Mathematics

Virginia Commonwealth University

Richmond, VA 23284, USA

E-mail address: maldi2@vcu.edu

Department of Mathematics and Statistics, Queen’s University

Kingston, ON K7L 3N6, Canada

E-mail address: perunicic@mast.queensu.ca




