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Holographic special relativity

Derek K. Wise

We reinterpret special relativity, or more precisely its de Sitter
deformation, in terms of 3d conformal geometry, as opposed to
(3+1)d spacetime geometry. An inertial observer, usually described
by a geodesic in spacetime, becomes instead a choice of ways to
reverse the conformal compactification of a Euclidean vector space,
up to scale. This inertial observer’s ‘current time,’ usually given
by a point along the geodesic, corresponds to the choice of scale
in the decompactification. We also show how arbitrary 3d confor-
mal geometries give rise to ‘observer space geometries’ as defined in
recent work, from which spacetime can be reconstructed under cer-
tain integrability conditions. We conjecture a relationship between
this kind of ‘holographic relativity’ and the ‘shape dynamics’ pro-
posal of Barbour and collaborators, in which conformal space takes
the place of spacetime in general relativity. We also briefly survey
related pictures of observer space, including the AdS analog and a
representation related to twistor theory.

1. Introduction

Minkowski introduced the idea of spacetime in 1908 as a conceptual frame-
work for Einstein’s theory of special relativity, published three years before
[10]. As radical as it then seemed, the idea of spacetime is today hardly
questioned, and indeed plays essential roles in the two current pillars of
fundamental physics: quantum field theory and general relativity. In fact,
unlike special relativity, the very idea of spacetime was fundamental in the
invention of general relativity.

Yet despite the indelible impression Minkowski’s insight has left on our
thinking, relativity is not fundamentally about spacetime. It is foremost con-
cerned with how different observers view the world around them, and how
their views relate to each other. The spacetime perspective is compelling
precisely because it efficiently accounts for all these possible viewpoints.
Namely, starting with spacetime, observer space—the space of all pos-
sible observers in the universe—is simply the space of future-directed unit
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timelike vectors. But spacetime is not the only framework for understanding
observers.

In this paper we present an alternative way of encoding observers using
not Lorentzian but rather conformal geometry. As in (A)dS/CFT, the key to
this relationship is a certain Lie group coincidence: the connected de Sitter
group

G := SOo(4, 1)

is not only the proper orthochronous isometry group of de Sitter spacetime
S3,1 but also the group of symmetries of the conformal 3-sphere, represented
as a projective light cone P (C) in (4 + 1)-dimensional Minkowski spacetime.
The relationship between these two spaces is subtle. While both are homoge-
neous G-spaces, and P (C) can be thought of as the past or future boundary
of S3,1, there is no G-equivariant map between S3,1 and P (C), and hence no
direct way of mapping things happening in spacetime to things happening
on the boundary, or vice versa, in a way that respects the symmetries of
both.

On the other hand, observers take priority over spacetime. The observer
space of de Sitter spacetime is also a homogeneous G-space and, while there
is no equivariant map between S3,1 and P (C), there is the next best thing—a
span of equivariant maps, with observer space O at the apex:

S3,1 P (C)

O
π a

The map on the left is just a restriction of the tangent bundle: it sends each
observer to its base event in spacetime.

The most direct way to describe the map on the right is to say it sends
each observer to the asymptotic past of its geodesic extension. This is true,
but not quite satisfactory since it relies on spacetime, and hence on the map
π : O → S3,1 for its definition. To explore the idea of encoding observers
using conformal geometry rather than spacetime geometry, we would prefer
a description of a : O → P (C) that does not involve spacetime as an inter-
mediate step.

To arrive at a more intrinsic description, note that while de Sitter space-
time has a conformal 3-sphere as its asymptotic boundary, this boundary
seems to any given observer to have more than a conformal structure: it
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appears to be an ordinary sphere of infinite radius, effectively a three-
dimensional affine space, once we delete the point antipodal to the observer’s
asymptotic past. Using the observer’s asymptotic past as the ‘origin’, this
affine space becomes a vector space.

This ‘vector space in the infinite past’ has an inner product only up to
scale, since the magnitude diverges as we push further back into the past.
However, we can renormalize the scale of this vector space by declaring the
unit sphere to be at the asymptotic past of the observer’s current light cone.
This makes the boundary, after removing the ‘point at infinity’, an inner
product space, or Euclidean vector space.

Remarkably, an observer in de Sitter spacetime is determined uniquely
by this geometry it sees on the sphere at timelike infinity. In other words, the
observer space of de Sitter spacetime is isomorphic to the space of ways to
put a Euclidean vector space structure on the complement of a point in the
conformal sphere. Relationships between observers, usually given in terms
of the Lorentzian geometry of de Sitter space, can then be expressed instead
in terms of the these Euclidean vector space structures on conformal space.
For example:

• Two observers are at the same event in de Sitter spacetime if and
only if they share the same unit sphere with co-orientation in P (C). In
other words, if and only if they have the same unit sphere and their
respective ‘origins’ are on the same side of the this sphere.

• Two observers differing by a ‘time translation’ share the same ‘origin’
and ‘infinity’ in P (C); only their unit sphere is different. In particular,
as time progresses for an inertial observer, only the scale changes, and
does so monotonically with time.

Ultimately, by translating between de Sitter and conformal pictures, we get
two isomorphic and yet superficially quite different perspectives on the de
Sitter observer space:

1) Observers live in de Sitter spacetime. Different observers are distin-
guished by their velocity vectors, so observer space is the space of all
unit future-directed timelike tangent vectors. Conformal space is an
auxiliary construction given by identifying all observers whose geodesic
extensions are asymptotic in the past.

2) Observers live in the conformal 3-sphere. Different observers are dis-
tinguished by their position, notion of infinity, and unit sphere, so
observer space is the space of all such choices. De Sitter spacetime is
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an auxiliary construction given by identifying all observers who share
the same co-oriented unit sphere.

If we take the liberty of reinterpreting the 3d conformal space as ‘space’,
then these two alternatives seem to describe very different worlds. The first
is our usual 4d spacetime perspective, where space and time are indivisible;
the second has an ‘absolute’ notion of 3d space, albeit with only a conformal
geometry. If I am situated at a point in this second world, then I have my
own way of freezing out conformal degrees of freedom and viewing space
as Euclidean. Moreover, ‘time’ in this second world corresponds to scale: in
the absence of any ‘forces’, my experience of time consists of a monotonic
rescaling in the Euclidean space around me.

While it may be surprising that these two perspectives are isomorphic, a
key point is that the isomorphism is nonlocal: events in de Sitter spacetime
do not correspond to individual events in our new ‘spacetime’ with absolute
conformal space and with scale as ‘time.’

Part of this article is concerned with fleshing out the above ideas in
more detail, and in an expository way. Many authors have nicely explained
the geometry of de Sitter spacetime (see e.g. [2, 7, 11] for an interesting
sample), and there is necessarily some overlap here. However, the purpose
is not to repeat available explanations but rather to explain the geometry
of observers in the de Sitter universe, and in particular the relation between
observers and conformal geometry. I am not aware of any similar exposition.

Another goal here is to provide new examples of ‘observer space geome-
tries.’ In previous work [5], we have studied deformations of the de Sitter
observer space, using Cartan geometry to provide a general definition of
‘observer space’ flexible enough to unify the geometric treatment of a wide
variety of theories of space and time. Any solution of general relativity is an
example, but so are the observer spaces of spacetime theories with preferred
foliations [4], Galilean spacetime, Finsler spacetime [8], and models with no
invariant notion of spacetime at all [5]. Here we will see that observer space
geometries also arise ‘holographically’ from 3-dimensional conformal geome-
try. The main mathematical result is Theorem 11, giving a canonical Cartan
geometry on a certain bundle over any 3d conformal manifold, modeled on
the observer space of de Sitter spacetime.

2. Observers in de Sitter spacetime

The observer space of a time-oriented Lorentzian spacetime is the space
of normalized future-directed timelike tangent vectors [5]. For the moment,
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we are mainly concerned with (3 + 1)-dimensional de Sitter spacetime and
its 7-dimensional observer space. Both of these spaces can be conveniently
described using R

4,1, the vector space R
5 equipped with the standard Min-

kowski inner product η of ‘mostly positive’ signature. De Sitter spacetime
is the pseudosphere S3,1 ⊂ R

4,1 of all points with spacelike distance
√

3/Λ
from the origin; here we normalize the cosmological constant Λ so that this
spacelike radius is 1. Thus:

S3,1 = {x ∈ R
4,1 : η(x, x) = 1}

For the empirical value of Λ in our universe, this means using units of about
2× 1028 meters, or equivalently 6.7× 1019 seconds, since we also set the
speed of light to 1. These numbers indicate just how minuscule the deviation
from Minkowski spacetime is in common units.

We will make much use of linear and affine subspaces of R4,1. If v, w, . . .
are nonzero vectors in R

4,1, we denote their linear span by [v, w, . . .]. The
light cone at a point x in de Sitter spacetime is the intersection of de Sitter
spacetime with the affine plane x+ [x]⊥:

(1) •
x

x+ [x]⊥

time

This is easy to check explicitly. If y is a point in the intersection, then
it satisfies both η(y, y) = 1 and η(x, y − x) = 0, and from this follows that
y − x is null. Conversely, if v is a null vector tangent to de Sitter spacetime
at x, then it is orthogonal to x as a vector in R

4,1, and the entire null line
x+ [v] lies within the intersection of de Sitter spacetime and x+ [x]⊥.

This same picture helps describe the observer space of de Sitter space-
time. At a point x ∈ S3,1, the tangent space TxS

3,1 may be identified with
x+ [x]⊥. An observer is a unit future-timelike vector, so translating the
tangent plane x+ [x]⊥ back to the origin of R4,1, we can think of particle
velocities at x as living in [x]⊥ ∩H4, where

H4 = {u ∈ R
4,1 : η(u, u) = −1, u0 > 0}
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is 4-dimensional hyperbolic space. This lets us identify de Sitter observer
space, which is locally S3,1 ×H3, as a subspace of S3,1 ×H4:

O = {(x, u) ∈ S3,1 ×H4 : η(x, u) = 0}.

The projection (x, u) �→ x is a fiber bundle over spacetime, each fiber iso-
morphic to H3.

The surface of simultaneity of the observer (x, u) is defined, just as
in Minkowski spacetime, to be the totally geodesic 3-dimensional surface
orthogonal to the observer’s velocity; this is just [u]⊥ ∩M . Unlike their
Minkowski analogs, the surfaces of simultaneity of a given inertial observer
at different times are not disjoint. This leads to some peculiar large-scale
behavior: two observers in distant parts of the universe can view the same
‘surfaces of simultaneity’ as occurring in the opposite chronological order.
Coxeter’s article [2] begins with a Lewis Carroll quote, presumably for this
reason. Like the ‘paradoxes’ of Minkowskian special relativity, this causes
no problems: two such observers are on opposite sides of each other’s cosmo-
logical horizon. In any case, the space of these surfaces of simultaneity—the
space of possible ‘nows’—is just H4.

What we have termed an observer might be more accurately called
an ‘instantaneous observer.’ But an observer also determines a timelike
geodesic, the path it takes through spacetime in the absence of any other
forces. For simplicity, we will thus call a timelike geodesic in S3,1 an iner-
tial observer, and the space of these the inertial observer space, O.
The geodesic through the observer (x, u) is one of the two curves at the
intersection of S3,1 with the subspace [x, u]:

just as a geodesics on a sphere is the intersection of the sphere with a plane
through the origin. One may parametrize the curve that passes through
x ∈ S3,1 by proper time τ :

(2) γ(τ) = (cosh τ)x+ (sinh τ)u,
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and verify that this satisfies the geodesic equation. The path followed by the
inertial observer through observer space O is τ �→ (γ(τ), γ̇(τ)), where γ̇, the
τ derivative of γ, is a geodesic in H4.

We now turn to 3-dimensional conformal space, of which a well known
model is the projective light cone P (C): the space of one-dimensional
null subspaces of R4,1. Let us recall how P (C) gets its conformal structure.
If C− ⊂ R

4,1 is the past light cone, we have the canonical map

(3)

P (C)

C−

[v]

v

The tangent space of C− at v is canonically isomorphic to [v]⊥, via trans-
lation along v, and all vectors in [v]⊥ that are not proportional to v are
spacelike. Thus, if q is any section of (3), the pullback of the metric along
that section is a Riemannian metric. Moreover, if we adjust the section q by
multiplying it by a positive function on P (C), the corresponding metric just
changes by the same multiple. Thus C− is isomorphic to the tautological
bundle of P (C) [3].

Two canonical maps from de Sitter observer space to the conformal 3-
sphere are given by sending a given observer inertially into the infinite past
or future. These maps can be nicely visualized using the ambient space R4,1.
First, an observer gives a subspace [x, u] of R4,1, intersecting S3,1 along the
corresponding inertial observer’s worldline (2) and the antipodal worldline.
Then, forgetting about S3,1, this same subspace [x, u] intersects the light
cone in a pair of null lines; one of these approaches the worldline asymptot-
ically in the past, the other in the future. We can draw the past asymptotic
map, which factors through the inertial observer space, as

(4)

inertial observer
{(cosh τ)x+ (sinh τ)u : τ ∈ R}

null subspace
[x− u] ∈ P (C)

observer
(x, u) ∈ O

[x, u]

�→ �→
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The future asymptotic map is the same except that the other light ray
in R

4,1 ∩ [x, u] is chosen. We see that the past and future asymptotic maps
are given by

a−, a+ : O → P (C), a−(x, u)= [x− u]
a+(x, u)= [x+ u].

Note that the past and future boundaries are naturally identified, so that
both of these maps land in the same copy of conformal space.

The map a− : O → P (C) is clearly many-to-one. In fact, we will see
that the preimage of a point in conformal space determines a local field
of observers—a local section of the canonical projection O → S3,1 from
observer space to spacetime. Using the description of O as a subset of
S3,1 ×H4, we can think of an observer field as a map u from some region of
S3,1 to H4, such that η(x, u(x)) = 0 for all x.

To find these local observer fields explicitly, pick [v] ∈ P (C), where v ∈
C−. If an observer (x, u) satisfies a−(x, u) = [v], then since x− u ∈ C−, we
have v = et(x− u) for some t ∈ R. Taking the inner product with x, we find
that

(5) et = η(x, v),

and hence in particular that η(x, v) > 0. This determines a region of de
Sitter spacetime above the subspace [v]⊥:

{x ∈ S3,1 : η(x, v) > 0}

On this region, we can solve uniquely for u, obtaining a local field of observers
given by:

(6) u(x) = x− v

η(x, v)
∀x ∈ S3,1 with η(x, v) > 0.
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The observers in this local observer field all share the same past hori-
zon, the boundary of the future of the inertial observer’s worldline. Using
the geodesic (2) followed by an inertial observer, the light cone at time
τ (see (1)) is (γ(τ) + [γ(τ)]⊥) ∩ S3,1, and this tends to [x− u]⊥ ∩ S3,1 as
τ → −∞. Since the observer field (6) consists of all observers with the same
asymptotic past [x− u(x)], all of these observers agree on the past horizon.

Level surfaces of the time coordinate t are intersections of de Sitter
spacetime with hyperplanes in R

4,1 parallel to [v]⊥; they have no intrinsic
curvature. Two observers have the same time coordinate t if and only if they
map to the same point in C− under the map (x, u) �→ x− u.

It is worth noting that the observer field (6) is related to a well known
local coordinate system defined on the same region. For this, let us spe-
cialize to the case where v is the point on the light cone with coordinates
(−1, 0, 0, 0, 1). On the region η(x, v) > 0, i.e. x0 + x4 > 0, we define coordi-
nates

t = log(x0 + x4) yi =
xi

x0 + x4
, i = 1, 2, 3

where the time coordinate t was already introduced in (5). These coordinates
are standard when using de Sitter spacetime as a model for inflation, since
the metric takes the familiar form

ds2 = −dt2 + e2t
3∑

i=1

(dyi)2,

with exponentially expanding flat spatial metric. It is then easy to check
that the vector field

(7)
∂

∂t
=

(
x0 +

1

x0 + x4

)
∂

∂x0
+ xi

∂

∂xi
+

(
x4 − 1

x0 + x4

)
∂

∂x4

in these coordinates coincides with the observer field (6) determined by
our choice of v. Coordinate systems for different choices of null subspace
[v] ∈ P (C) can be obtained by Lorentz transformations of R4,1. However, for
us, any single one of these coordinate systems is not important; we care only
that the collection of local vector fields (6) is a conformal 3-sphere.

3. Symmetries

We have discussed relationships among de Sitter observer space, spacetime,
and conformal space, but have so far ignored their symmetries. Let G denote
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the connected de Sitter group

G = SOo(4, 1).

All of the spaces we have discussed—de Sitter spacetime S3,1, its observer
space O and inertial observer space O, 4-dimensional hyperbolic space H4,
the past cone C− ⊂ R

4,1 and the conformal 3-sphere P (C)—are homogeneous
G-spaces. Moreover, it is clear that all of the maps we have discussed are
G-equivariant:

O

S3,1 H4

P (C)

C−

O
observer space

a−

spacetime hyperbolic
space

conformal 3-sphere

inertial
observer space

ambient past
light cone

[x− u]

x u x− u

γ(R)

(x, u)

where γ is the geodesic (2) through the observer.
Since each of the spaces is homogeneous, they can all be described

as Klein geometries—quotients G/G′ where G′ is the subgroup of G
stabilizing an element of the space (see e.g. [13]). Any equivariant map
G/G′′ → G/G′ is then induced by some inclusion G′′ → G′ of one subgroup
of G into another. Fixing an arbitrary basepoint (x, u) ∈ O, the above maps
give basepoints in each of the other spaces. The corresponding stabilizer
subgroups and inclusions are then:

(8)

K ∼= SO(3) stabilizer of (x, u) ∈ O
G0

∼= SO(3)× R stabilizer of γ(R) ⊂ S3,1, with γ as in (2)
H ∼= SOo(3, 1) stabilizer of x ∈ S3,1

H ′ ∼= SO(4) stabilizer of u ∈ H4

H ′′ ∼= ISO(3) stabilizer of x− u ∈ C−

P ∼= SIM(3) stabilizer of [x− u] ∈ P (C)
P

H H′ H′′

G0

K
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It is convenient to describe these subgroups explicitly in a matrix represen-
tation, since all of our spaces are either subspaces or quotients of subspaces
of R4,1.

Defining R
4,1 := (R5, η) with η the matrix of the standard Minkowski

metric on R
5, G ⊂ GL(5) is then the connected component of the group

of matrices A such that AT ηA = η. Its Lie algebra g ⊂ gl(5) consists of all
matrices A such that AT η = −ηAT . As the basepoint for observer space O,
we choose (x, u) with

(9) x =

(
0
0
1

)
, u =

(
1
0
0

)

where we adopt the convention for such column vectors that the middle
entry is really a three-component vector. Then the subgroups H,H ′,K ⊂ G
are easily described: H is the upper 4× 4 block of G, H ′ the lower 4× 4
block, and K is their intersection, the 3× 3 block in the middle. Likewise
for the Lie algebras h, h′ and k.

For the groups related to conformal geometry, it is convenient to tem-
porarily change basis so that the asymptotic past and future of our base
observer, corresponding to [x− u] and [x+ u] in R

4,1, are two of the coor-
dinate axes. We define R4,1 := (R5, η) where

η :=

⎛
⎝ 0 0 1

0 13 0
1 0 0

⎞
⎠ = SηST , S =

⎛
⎜⎝

1√
2

0 1√
2

0 13 0
− 1√

2
0 1√

2

⎞
⎟⎠

so that S is the matrix of a linear isometry S : R4,1 → R4,1. For any sub-
group G′ ⊆ G with Lie alebra g′, we have G

′
:= SG′S−1 ⊂ GL(5) and g′ :=

Sg′S−1 ⊂ gl(5) as the corresponding symmetry group and Lie algebra on
R4,1. In particular when g′ = g, conjugating an arbitrary matrix in g, we
find that an element of g has the form

(10)

⎛
⎝ τ −qT 0

p b q
0 −pT −τ

⎞
⎠

where the 3× 3 matrix b is anti-symmetric. The Lie algebra p of the stabilizer
P of the point [S(x− u)] is then the set of such matrices for which (0, 0, 1)T

is an eigenvector, namely those for which q = 0. Likewise, g0, the stabilizer
algebra of the inertial observer, is the intersection of p with the stabilizer of
[S(x+ u)], and hence consists of matrices in g for which p = q = 0.
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By exponentiating an element (10) with q = 0, we find an explicit form
for elements of P , and check that they can be uniquely factored into the
form

(11)

⎛
⎝ eτ 0 0

0 B 0
0 0 e−τ

⎞
⎠

⎛
⎝ 1 0 0

p 13 0
−1

2p
T p −pT 1

⎞
⎠

Here B ∈ K = K ∼= SO(3), τ ∈ R. The first factor is clearly the exponential
of an element of g0, while the second is a multiplicative rewriting of the
additive group R

3. The factorization makes P and hence also P , switching
back to the original basis, a semidirect product:

P ∼= G0 �R
3 ∼= (SO(3)× R)�R

3

which is just the group of Weyl or similarity transformations, SIM(3). The
group H ′′ is clearly the subgroup of P with τ = 0, which is just ISO(3) ∼=
SO(3)�R

3.

4. Observer space from conformal geometry

Each observer in de Sitter spacetime is part of exactly one of the local fields
of observers (6), and the space of these observer fields is a conformal 3-
sphere. We now consider what additional structure on the conformal 3-sphere
specifies a particular observer within the corresponding field of observers.
Ultimately, this will let us produce ‘observer space geometries’ from more
general conformal geometries than just P (C).

To construct the de Sitter observer space from the conformal sphere,
let us begin by constructing the inertial observer space. The key is that an
inertial observer is completely determined if we specify both its asymptotic
past and future, and these may be chosen to be any distinct points of P (C).

This is easy to prove using the ambient space R
4,1. Pick two points

[v] �= [w] ∈ P (C). Any observer (x, u) with asymptotic past [x− u] = [v] and
asymptotic future [x+ u] = [w] must lie in the intersection of [v, w] with
S3,1. This intersection is a pair of timelike geodesics, but only one of these
geodesics has [v] as its past and [w] as its future, while the other geodesic has
it the other way around. Thus (x, u) is determined up to translation along the
worldline. On the other hand, we can always arrange for the representatives
v and w of [v] and [w] to be such that v ∈ C− and w ∈ C+ with η(v, w) = 2.
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This uniquely determines a point (x, u) ∈ O ⊂ S3,1 ×H4 with

x− u = v

x+ u = w(12)

This whole process is G-equivariant, and thus we have shown:

Proposition 1. The inertial observer space O of de Sitter spacetime is
isomorphic as a G-space to the space of ordered pairs of distinct points in
P (C).

Picking an ordered pair of points in P (C), and calling them ‘0’ and
‘∞’, is the same as giving P (C)− {∞} the structure of a conformal vector
space, or a Euclidean vector space up to scale. This may be most familiar
one dimension lower, where we can think of the conformal 2-sphere as the
Riemann sphere. However, the same idea applies in higher dimensions, and
can also be seen from Klein geometry, as follows.

From the previous section we know the stabilizer of ‘∞’ is isomorphic to
SIM(3), the group of transformations of a scale-free Euclidean affine space.
Removing this point, SIM(3) acts transitively on the remaining space, with
point stabilizer G0 = K × R. As SIM(3) spaces, we thus have P (C)− {∞} ∼=
SIM(3)/(SO(3)× R), which is a Euclidean affine space up to scale, or Weyl
space. Specifying the origin ‘0’ makes this affine space a scale-free Euclidean
vector space. Fixing the origin reduces the SIM(3) symmetry toG0 = K × R;
the orbits of the K ∼= SO(3) part are 2-spheres centesred at the origin, while
the R part acts as dilations, moving between these concentric spheres:

•
‘∞’

(asymptotic future)

•
‘0’

(asymptotic past)

S3

equally spaced
concentric
copies of S2

By Prop. 1, this is just a picture of an inertial observer from the holographic
perspective.
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From here, it is easy to get to the observer space. From the spacetime
perspective, the flow of time for an inertial observer is given by the action of
the R part of G0. Since we have an isomorphism as G-spaces, this must be
the case in the holographic picture as well: an inertial observer’s timeline
is the action of R as dilations on the corresponding conformal vector space.
Using Klein geometry, we need only pick some feature in inertial observer
space that is stabilized by K, so that the homogeneous space of such features
becomes G/K. The obvious choice is one of the copies of S2 determined by
an inertial observer, the one serving as the ‘unit sphere’.

Hence an observer is uniquely specified by two points ‘0’ and ‘∞’ in
P (C), as in Prop. 1, together with a unit sphere. From the foregoing discus-
sion, this is the same as removing the point ∞ and putting a compatible
Euclidean vector space structure on the rest. For short, we can call this pro-
cess Euclidean decompactification, since it reverses the conformal com-
pactification of a Euclidean vector space. We have thus established three
equivalent descriptions of observer space.

Proposition 2. The following are isomorphic as G-spaces:

• the observer space O of de Sitter spacetime;

• the space of ordered pairs of distinct points in P (C) together with a
sphere centered at the origin of the resulting conformal vector space;

• the space of Euclidean decompactifications of P (C).

So far, we have mainly understood conformal space in terms of de Sitter
spacetime, but the symmetry of this proposition suggests we should equally
well understand de Sitter spacetime in terms of conformal space. We have
defined the unit sphere for an observer at x ∈ S3,1 to be the ‘past infinity’ of
the light cone (x+ [x]⊥) ∩ S3,1 (see (1)). The affine plane x+ [x]⊥ intersects
every light ray in the ambient past light cone C− on the ‘+x’ side of [x]⊥.
That is, the unit sphere in P (C) consists of all light rays in the subspace
[x]⊥, i.e. {[v] : v ∈ [x]⊥, η(v, v) = 0}. This is of course independent of the
observer’s velocity in spacetime; it depends only on the event. It is easy to
check that the event in spacetime is uniquely determined by the unit sphere,
including co-orientation; reversing co-orientation simply gives the antipodal
event −x. Thus we have:

Proposition 3. De Sitter spacetime S3,1 is isomorphic as a G-space to the
space of co-oriented 2-spheres in P (C).
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To summarize the correspondence between spacetime and holographic
pictures, we can draw all of the equivariant maps, but describing all of
the spaces alternatively in relation to spacetime or in relation to conformal
space. These are simply two geometric representations of the same ‘observer
space’ Klein geometry G/K:

Spacetime picture:

O

S3,1 H4

P (C)

C−

O
space of unit future
timelike vectors

a−

spacetime space of
‘nows’

past boundary

space of timelike
geodesics

Holographic picture:

O

S3,1 H4

P (C)

C−

O
space of Euclidean
decompactifications

a−

space of co-
oriented spheres

conformal 3-sphere

ordered pairs of
distinct points

tautological
bundle

One disadvantage of our construction so far of the observer space O from
conformal space is that it is rather ‘nonlocal’ involving a choice of two points
as well as a 2-sphere between them to set the scale. This is quite natural for
the conformal 3-sphere, but does not readily generalize to arbitrary confor-
mal manifolds, as we will do shortly, using differential methods. Fortunately,
there is an equivalent way to view an observer, involving only differential
data at a single point of the conformal 3-sphere.

A transverse 3-plane in the tautological bundle C− → P (C) is a 3-
dimensional subspace of some tangent space TvC− transverse to the fiber
direction. Let us show that such a transverse 3-plane is equivalent to an
observer in S3,1. Note that TvC− ∼= [v]⊥ so we can think of a transverse 3-
plane instead as a 3d subspace W ⊂ [v]⊥ ⊂ R

4,1 such that [v]⊥ = W ⊕ [v], or
equivalently a spacelike subspace of [v]⊥. ThenW⊥ ⊂ R

4,1 is a 2-dimensional
Lorentzian subspace whose projective cone consists of [v] and one other
lightlike subspace [w]. The ordered pair ([v], [w]) in P (C) gives an inertial
observer via Prop. 1. Since we also have the specific basepoint v ∈ C−, we
may assume [w] is represented by w ∈ C+ with η(v, w) = 2 and solve (12) for
an observer (x, u) ∈ O, as before. Conversely, an observer (x, u) ∈ O deter-
mines null vectors v, w by (12), and [v, w]⊥ = [x, u]⊥ is a spacelike subspace
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of [v]⊥ ∼= TvC−. These processes are inverse and everything is G-equivariant.
Recalling that the bundle (3) is isomorphic to the tautological bundle of the
conformal 3-sphere, we can neatly summarize these observations.

Proposition 4. The observer space of de Sitter spacetime is isomorphic as
a G-space to the space of all transverse 3-planes in the tautological bundle
over the conformal 3-sphere.

The transverse 3-planes are easy enough to visualize. At each point in
conformal 3-space, we have a 1-dimensional fiber in the tautological bundle,
giving the scale of the metric or, in observer space terms, giving the ‘time’
of the observer.

•

basepoint in
‘absolute’
conformal
space

fiber is ‘timeline’
at this basepoint

observer knows
the time to first
order at nearby
points.

It is worth noting that a transverse 3-plane is the same as a first-order
approximation of a section of the tautological bundle. So, we can also think
of an observer as a ‘metric up to first order’ at a point in conformal space.
Prop. 4 then says that since we are in the homogeneous conformal sphere
P (C), this first order approximation is enough to specify canonically a flat
metric on P (C) minus a determined antipodal point.

However, the most important feature of Prop. 4 is that it suggests a
definition that easily applies to any conformal manifold:

Definition 5. Given an arbitrary 3-manifold with conformal metric, we
define its associated observer space to be the space of transverse 3-planes
in its tautological bundle.

This definition is the ‘holographic’ analog of the definition of observer
space associated to a spacetime as the unit future tangent bundle; it will be
more fully justified in the next section, where we show that it is an ‘observer
space geometry’ in the sense defined in [5]. However, before moving on to
this goal, first we make a couple of corollary observations regarding inertial
observers.
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Recall that an inertial observer in P (C) is determined simply by an
ordered pair of points [v], [w] in P (C), and these give a subspaceW = [v, w]⊥.
Without a specific representative v ∈ C− of [v], we cannot naturally view [v]⊥

as a particular tangent space to the past light cone. However, we can view
it as simultaneously representing all tangent spaces to points of C− in the
fiber over [v]. In this way, W determines a 3-dimensional distribution on the
fiber, and this distribution is invariant under translation along the fiber.

Proposition 6. The inertial observer space of S3,1 is isomorphic as a G-
space to the space of R-invariant distributions of transverse 3-planes sup-
ported on a single fiber of the tautological bundle.

If we smoothly pick such an invariant distribution on each fiber of (3),
we have precisely the horizontal subspaces of an Ehresmann connection on
the principal R bundle. Let us define a field of inertial observers on P (C)
to be a section of the bundle O → P (C). We then have:

Proposition 7. The space all fields of inertial observers on P (C) is iso-
morphic to the space of connections on the principal R bundle C−→ P (C).

5. The observer space of a general Möbius geometry

Observer space geometries are introduced in [5] as deformations of the
observer space of de Sitter spacetime, or one of the other homogeneous
spacetimes. The idea is a straightforward application of Cartan geometry
[13]. Namely, since any Klein geometry gives a type of Cartan geometry
modeled on it, we simply use the Klein geometry of de Sitter observer space
as a model.

Definition 8. An observer space geometry is a Cartan geometry mod-
eled on G/K, where G = SOo(4, 1) is the connected de Sitter group and
K ∼= SO(3) is the group of spatial rotations around a fixed observer in de
Sitter spacetime.

Roughly, a Cartan geometry is a manifold with the same ‘infinitesimal’
geometry as its model Klein geomety, but without the same rigid unifor-
mity on the macroscopic level. More precisely, a Cartan geometry on a
manifold M , with model G/G′, consists of a principal G′ bundle Q over
M equipped with a g-valued 1-form A, the Cartan connection, satisfying
three properties:
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C1. For each q ∈ Q, Aq : TqQ → g is a linear isomorphism;

C2. (Rg)
∗A = Ad(g−1) ◦A ∀g ∈ G′;

C3. A restricts to the Maurer–Cartan form on vertical vectors.

Besides observer space geometries, we need conformal Cartan geometry,
which is more general than a manifold with a conformal metric.

Definition 9. A Möbius geometry is a Cartan geometry modeled on
G/P , where G = SOo(4, 1) and P is a parabolic subgroup, stabilizing some
point in the projective light cone P (C) in R

4,1.

Proposition 10. A Cartan geometry on M modeled on G/P induces a con-
formal structure on M . Conversely, a conformal structure on M is induced
by a unique normal Cartan geometry on M modeled on G/P .

This is proved in Sec. 7.3 of Sharpe’s book [13]. The definition of ‘normal’
can also be found there (Def. 7.2.7), though here we do not need it in full
generality, thanks to a dimensional coincidence: a Möbius geometry on a
three-dimensional manifold is normal if and only if its curvature takes values
in the kernel of the isotropy representation g/p; this kernel is a P module
which we call g+1 for reasons to be seen shortly.

Our goal here is to obtain observer space geometries from Möbius geom-
etry, hence from any conformal 3-manifold. But first, we discuss a few basic
facts about observer space geometries.

The de Sitter observer space G/K is reductive, meaning that the quo-
tient g/k can be embedded in g as a subrepresentation of K, complementary
to k. In fact, g splits into four irreducible representations of K corresponding
to four types of infinitesimal transformations of an observer:

(13)

g = k⊕ (y⊕�z⊕ zo)

rotations
(stabilizer)

boosts spatial
translations

time
translations

where the parenthesized terms, a K representation isomorphic to g/k, make
up the tangent space to de Sitter observer space G/K at the basepoint
stabilized by K. The reductive splitting allows the Cartan connection to be
split into four separate fields on observer space with distinct physical roles
[5].
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On the other hand, the present context suggests a different decomposi-
tion of g—one very often used in conformal geometry (see e.g. [9]), but here
reinterpreted geometrically in terms of observer space:

(14)

g = g−1 ⊕ g0 ⊕ g+1

rotations
and time

translations

translations of
asymptotic past

translations of
asymptotic future

This is a Z-grading of g (where grade k is trivial for all |k| > 1), and explains
why we have called the stabilizer of an inertial observer G0 all along. We
have defined P to be the stabilizer of the asymptotic past of an observer,
and its Lie algebra is p = g0 ⊕ g+1. The Lie algebras of H, H ′, G0 and H ′′

are h = k⊕ y, h′ = k⊕�z, h′′ = k⊕ g+1, and g0 = k⊕ zo. To complete the rela-
tionship between (13) and (14) we note there is a canonical isomorphism of
K representations f : y →�z, and this lets us define the K representations
g−1 and g+1 (in fact invariant under the larger group G0) by

g± = {(ξ, ζ) ∈ y⊕�z : ζ = ±f(ξ)}

Geometrically, this says, for example, that in order to translate the asymp-
totic future while fixing the asymptotic past, one can translate and boost
in the same spatial direction, with the same magnitude according to our
normalization.

We now prove our main mathematical result, justifying our preliminary
definition (Def. 5) of the observer space of a conformal manifold.

Theorem 11. A Möbius geometry canonically induces an observer space
geometry. Moreover, this geometry may be identified as the space of trans-
verse 3-planes in the tautological R bundle corresponding to the conformal
metric induced by the Möbius geometry.

Proof. Consider a Cartan geometry modeled on G/P , with π : F → S the
principal P bundle, A the Cartan connection. ThenO := F/K is an observer
space geometry: the map F → O is a principal K bundle and properties C1,
C2, and C3 for the stabilizer group P clearly imply the same properties for
the subgroup K ⊂ P . Thus, we need only show that O may be identified
with the space of transverse 3-planes in the tautological R bundle over S.

We first construct a map π′ : F → G making F a principal H ′′ bundle
over the tautological R bundle G over S. Fix an inner product δ on g/p,
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invariant under Ad(P ) up to a scale, i.e. an element of the tautological R
bundle over the model space at the basepoint. A Cartan connection A gives
in particular, for each f ∈ F , a coframe at π(f): a linear isomorphism

(15) eπ(f) : Tπ(f)S → g/p.

Given f ∈ F , we then define π′(f) ∈ G, an inner product at the point π(f),
to be the pullback of the fixed inner product δ. We thus get a factorization
of π:

S

G

F

π

π′

A becomes a Cartan connection on the bundle π′, giving G the structure of
a Cartan geometry modeled on G/H ′′.

Next, we construct a map π′′ : F → O making F a principal K bundle
over O, where O is the space of all transverse 3-planes to G. The Cartan
connection on G gives in particular for each f ∈ F a coframe at π′(f), which
we may think of as

(16) eπ′(f) : Tπ′(f)G → (g−1 ⊕ zo).

The identification of g/h′′ with g−1 ⊕ zo isK-invariant, and we get a principal
K bundle π′′ : F → O by defining

π′′(f) = e−1
π′(f)(g−1).

This gives a factorization of π′:

S

G

O

F

π
π′

π′′

and A is the Cartan connection on π′′ : F → O. Since F is a principal bundle
K bundle over O, we have O ∼= F/K, so the geometry we have constructed
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here is isomorphic to the induced geometry on F/K described in the first
paragraph of this proof. �

Combining this with Prop. 10 we get a canonical observer space geometry
from a conformal metric, via the canonical normal Möbius geometry. Of
course, the canonical geometry may not be the physically relevant one, which
might also have curvature components in g−1 ⊕ g0, just as there may be
physical reasons for using a geometry with torsion (curvature components in
�z⊕ zo for a spacetime Cartan connection) rather than the canonical torsion-
free geometry.

It is worth emphasizing that what we are doing is quite different from
starting with 3-dimensional conformal manifold and constructing a 4-
dimensional spacetime with that conformal manifold as part of its bound-
ary [3]. Rather, from a 3-dimensional conformal manifold, we construct a
7-dimensional manifold of observers. Spacetime is a would-be quotient of
this observer space, obtained by collapsing the ‘boost’ directions—though
in fact these boost directions need not be integrable, in which case space-
time does not exist as a natural quotient. We explain much more about
these ideas in [5], where we also give a sufficient criterion for integrabil-
ity (though not a necessary criterion, as is crucial in [8]), based on certain
curvature components vanishing. Perhaps most interesting, however, is the
case where there is a slight failure of integrability, and spacetime becomes
an observer-dependent notion, though in the present context with the ‘con-
formal boundary’ of spacetime remaining perfectly coherent.

6. Discussion

What we have called ‘holographic special relativity’ is about encoding ob-
servers in the de Sitter universe using three-dimensional conformal geome-
try rather than spacetime geometry. While the two perspectives are isomor-
phic, they suggest distinct types of Cartan-geometric deformation, making it
tempting to propose a ‘holographic’ analog of general relativity. This would
mean introducing a dynamical theory of conformal geometry, with the asso-
ciated observer space given by Thm. 11, but where spacetime, or at least
spacetime in the usual Lorentzian sense, may become only an approximate
concept. This is just the opposite of what happens in ordinary general rela-
tivity, where spacetime remains coherent, but conformal space is no longer
a quotient of the associated observer space as it is in the de Sitter universe.

What sort of dynamical conformal geometry might lead to a physically
realistic ‘holographic general relativity’? One possibility is that it is to be



1038 Derek K. Wise

found already in a recently proposed alternative to general relativity called
‘shape dynamics.’ This is also a theory in which (3+1)-dimensional space-
time geometry appears to be exchanged for 3-dimensional conformal geom-
etry. Remarkably, it is equivalent, at the level of classical field theory, to
the ADM formulation of general relativity under certain conditions. Both
theories are particular gauge fixings of a ‘linking theory’, and the constraint
surface of each can be viewed as a particular gauge-fixing surface of the
other, so that on the intersection of these surfaces the classical field theories
are indistinguishable [1].

On the other hand, the complete geometric description of a gravity the-
ory must involve more than an analysis of classical field theories. After all,
gravity is not a field theory living on some space with a predefined geometry,
but a theory that determines the physical geometry. What is the physical
meaning of the conformal space used in shape dyanamics, and how does
this conformal space relate to the physical space we see around us, or to
some other sort of geometric structure in the usual spacetime picture? If
shape dynamics is to take the place of general relativity, then what theory
takes the place of special relativity? Is it holographic special relativity as
described here, or something else? These are all questions whose answers
should ultimately not involve phase space, canonical analysis, gauge fixing,
or other techniques of classical field theory. Cartan geometry gives a precise
framework within which to study such questions.

Some work toward understanding shape dynamics in such terms has
recently been done one dimension down, where spacetime has 2+1 dimen-
sions [6]. These authors essentially use the relationship between the Lie
algebra splittings (13) and (14) (or rather their analogs for g = so(3, 1)) to
rewrite spacetime fields as fields on the conformal 2-sphere. They find results
consistent with our conjecture: the procedure turns 3-dimensional Chern–
Simons gravity into shape dynamics. However, while this work was motivated
by Cartan geometry (in part through discussions with the present author),
the Cartan geometric picture is not made explicit. Moreover, as usual, while
(2+1)-dimensional gravity is more tractable, it is also special enough that it
could be misleading. Only a careful geometric study in 3+1 dimensions will
tell.

If these ideas are right, they have strong implications for the interpreta-
tion of shape dynamics. For example, shape dynamics is so far thought of as
a theory with ‘spatial conformal symmetry’ rather than the refoliation sym-
metry of spacetime-based Hamiltonian approaches, like ADM. However, if
shape dynamics is really a ‘holographic general relativity’ of the kind we have



Holographic special relativity 1039

suggested, then the adjective ‘spatial’ may not be quite appropriate: the rel-
evant conformal space may not represent ‘space’ as we usually understand it.
Indeed, in holographic special relativity, the conformal 3-sphere P (C) repre-
sents not ‘space’ but a certain space of extended families of observers. Points
of ‘space’, in the usual sense of the 3-dimensional world we see around us,
are nonlocal features of conformal space. Indeed, one might suspect this to
be the geometric reason behind the nonlocal nature of the shape dynamics
Hamiltonian.

Whether or not holographic general relativity turns out to take shape in
the form of ‘shape dynamics’, it is interesting to ponder the implications of
alternative ways to represent observers. Minkowski insisted that only “a kind
of union” (“eine Art Union”) of space and time will endure. The question
we have been asking here is: What kind of union? We have seen that space-
time is not the only possible answer. To emphasize this point, it is worth
pointing out some other possible answers, besides the holographic special
relativity we have described. Each different possibility comes with different
potential consequences, both for generalizing to dynamical geometry and for
quantization.

For example, another alternative to spacetime is implicit in what we have
already explained. We defined the observer space O to be the unit future
tangent bundle of de Sitter spacetime S3,1 and found it convenient to do
this using the embedding of S3,1 and H4 into the ambient space R

4,1:

O = {(x, u) ∈ S3,1 ×H4 : η(x, u) = 0}.

Notice, however, that this definition is completely symmetric. We could just
as well have defined O to be the unit tangent bundle of H4, and indeed
the unit future tangent bundle of S3,1 and the unit tangent bundle of H4

are G-equivariantly isomorphic. The hyperbolic space H4 is the space of
all possible ‘nows’—all notions of simultaneity that observers in de Sitter
spacetime can have. Thus, de Sitter observers are uniquely specified by the
direction in which they are passing through this space of nows. Because of
the temporal peculiarities of de Sitter spacetime, two observers with the
same ‘now’ can even move in opposite directions in this space, though these
two are on opposite sides of a cosmological horizon, hence cannot interact.

Also, one can derive a version of ‘holographic special relativity’ using
anti de Sitter spacetime, rather than de Sitter spacetime. The procedure is
similar to what we have done here, if somewhat more involved. The con-
formal boundary is at spacelike infinity, with Lorentzian signature, and
observers’ geodesics do not meet it. Instead, an observer has a canonical
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notion of ‘space’—the orthogonal complement of the velocity vector. This
‘spatial’ subspace of the tangent space extends to a totally geodesic space-
like hypersurface in spacetime, and this leaves a 2-dimensional footprint at
the conformal boundary.

Another related way to represent observer space lies at the foundations
of twistor theory, and what we have done here is admittedly similar in spirit
to the twistor approach, if not in the details. In twistor theory, a primary
object of study is the 5-dimensional space P (N) of all 1-dimensional null
affine subspaces of R3,1. Much like in our context, spacetime is viewed as a
secondary construction, in this case given as the space of 2-spheres in P (N),
which can be identified with the celestial spheres at points of spacetime. Dif-
ferent observers at the same point are related by conformal transformations
of this celestial sphere [12].

In Klein geometric language, this means the observer space of Minkowski
spacetime is ISOo(3, 1)-isomorphic to space of ways to realize spheres in
P (N) ∼= ISOo(3, 1)/(SIM(2)× R) as standard spheres. The space P (N) is
a Λ → 0 limit of its obvious analog in de Sitter spacetime. This space is
the boundary of the space O of inertial observers, which are just timelike
geodesics.

In any case, the present work serves as a further example of the seemingly
universal nature of observer space geometry for theories of space and time.
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