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Spectral curves and the Schrödinger

equations for the

Eynard-Orantin recursion

Motohico Mulase and Piotr Su�lkowski

It is predicted that the principal specialization of the partition
function of a B-model topological string theory, that is mirror
dual to an A-model enumerative geometry problem, satisfies a
Schrödinger equation, and that the characteristic variety of the
Schrödinger operator gives the spectral curve of the B-model the-
ory, when an algebraic K-theory obstruction vanishes. In this paper
we present two concrete mathematical A-model examples whose
mirror dual partners exhibit these predicted features on the B-
model side. The A-model examples we discuss are the generalized
Catalan numbers of an arbitrary genus and the single Hurwitz
numbers. In each case, we show that the Laplace transform of the
counting functions satisfies the Eynard-Orantin topological recur-
sion, that the B-model partition function satisfies the KP equa-
tions, and that the principal specialization of the partition function
satisfies a Schrödinger equation whose total symbol is exactly the
Lagrangian immersion of the spectral curve of the Eynard-Orantin
theory.
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1. Introduction and the main results

In a series of remarkable papers of Mariño [51] and Bouchard, Klemm,
Mariño, and Pasquetti [8], these authors have developed an inductive mech-
anism to calculate a variety of quantum invariants and solutions to enu-
merative geometry questions, based on the fundamental work of Eynard
and Orantin [27–29]. The validity of their method, known as the remodeled
B-model based on the topological recursion of Eynard-Orantin, has been
established for many different enumerative geometry problems, such as sin-
gle Hurwitz numbers ([7, 26, 60], based on the conjecture of Bouchard and
Mariño [9]), open Gromov-Witten invariants of smooth toric Calabi-Yau
threefolds ([29, 80], based on the remodeling conjecture of Mariño [51] and
Bouchard, Klemm, Mariño, Pasquetti [8]), and the number of lattice points
on Mg,n and its symplectic and Euclidean volumes ([11, 20, 58], based on
[63, 64]). It is expected that double Hurwitz numbers, stationary Gromov-
Witten invariants of P1 [65, 66], certain Donaldson-Thomas invariants, and
many other quantum invariants would also fall into this category.

Unlike the familiar Topological Recursion Relations (TRR) of the
Gromov-Witten theory, the Eynard-Orantin recursion is a B-model formula
[8, 51]. The significant feature of the formula is its universality: indepen-
dent of the A-model problem, the B-model recursion takes always the same
form. The input data of this B-model consist of a holomorphic Lagrangian
immersion

ι : Σ −−−−→ T ∗C⏐⏐�π

C
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of an open Riemann surface Σ (called a spectral curve of the Eynard-Orantin
recursion) into the cotangent bundle T ∗C equipped with the tautological 1-
form η, and the symmetric second derivative of the logarithm of Riemann’s
prime form [30, 62] defined on Σ× Σ. The procedure of Eynard-Orantin [27]
then defines, inductively on 2g − 2 + n, a meromorphic symmetric differen-
tial n-form Wg,n on Σn for every g ≥ 0 and n ≥ 1 subject to 2g − 2 + n > 0.
A particular choice of the Lagrangian immersion gives a differentWg,n, which
then gives a generating function of the solution to a different enumerative
geometry problem.

Thus the real question is how to find the right Lagrangian immersion
from a given A-model.

Suppose we have a solution to an enumerative geometry problem (an
A-model problem). Then we know a generating function of these quantities.
In [20] we proposed an idea of identifying the spectral curve Σ, which states
that the spectral curve is the Laplace transform of the disc amplitude of
the A-model problem. Here the Laplace transform plays the role of mirror
symmetry. Thus we obtain a Riemann surface Σ. Still we do not see the
aspect of the Lagrangian immersion in this manner.

Every curve in T ∗C is trivially a Lagrangian. But not every Lagrangian is
realized as the mirror dual to an A-model problem. The obstruction seems to
lie in the K-group K2

(
C(Σ)

)⊗Q. When this obstruction vanishes, we call Σ
a K2-Lagrangian, following Kontsevich’s terminology. For a K2-Lagrangian
Σ, we expect the existence of a holonomic system that characterizes the
partition function of the B-model theory, and at the same time, the char-
acteristic variety of this holonomic system recovers the spectral curve Σ as
the Lagrangian immersion. A generator of this holonomic system is called
a quantum Riemann surface [1, 16, 17], because it is a differential operator
whose total symbol is the spectral curve realized as a Lagrangian immersion
[18]. It is the work of Gukov and Su�lkowski [39] that suggested the obstruc-
tion to the existence of the holonomic system with algebraic K-theory as an
element of K2.

Another mysterious link of the Eynard-Orantin theory is its relation to
integrable systems of the KP/KdV type [5, 27]. We note that the partition
function of the B-model is always the principal specialization of a τ -function
of the KP equations for all the examples we know by now.

The purpose of the present paper is to give the simplest non-trivial math-
ematical examples of the theory that exhibit these key features mentioned
above. With these examples one can calculate all quantities involved, give
proofs of the statements predicted in physics, and examine the mathematical
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structure of the theory. Our examples are based on enumeration problems
of branched coverings of P1.

The idea of homological mirror symmetry of Kontsevich [44] allows us
to talk about the mirror symmetry without underlying spaces, because the
formulation is based on the derived equivalence of categories. Therefore, we
can consider the mirror dual B-models corresponding to the enumeration
problems of branched coverings on the A-model side. At the same time,
being the derived equivalence, the homological mirror symmetry does not
tell us any direct relations between the quantum invariants on the A-model
side and the complex geometry on the B-model side. This is exactly where
Mariño’s idea of remodeling B-model comes in for rescue. The remodeled
B-model of [8, 51] is not a derived category of coherent sheaves. Although
its applicability is restricted to the case when there is a family of curves Σ
that exhibits the geometry of the B-model, the new idea is to construct a
network of inter-related differential forms on the symmetric powers of Σ via
the Eynard-Orantin recursion, and to understand this infinite system as the
B-model. The advantage of this idea is that we can relate the solution of
the geometric enumeration problem on the A-model side and the symmetric
differential forms on the B-model side through the Laplace transform. In
this sense we consider the Laplace transform as a mirror symmetry.

The first example we consider in this paper is the generalized Catalan
numbers of an arbitrary genus. This is equivalent to the “c = 1 model” of
[39, Section 5]. In terms of enumeration, we are counting the number of
algebraic curves defined over Q in a systematic way by using the dual graph
of Grothendieck’s dessins d’enfants [4, 74].

Let Dg,n(μ1, . . . , μn) denote the automorphism-weighted count of the
number of connected cellular graphs on a closed oriented surface of genus g
(i.e., the 1-skeleton of cell-decompositions of the surface), with n labeled ver-
tices of degrees (μ1, . . . , μn). The letter D stands for ‘dessin.’ The generalized
Catalan numbers of type (g, n) are defined by

Cg,n(μ1, . . . , μn) = μ1 · · ·μnDg,n(μ1, . . . , μn).

While Dg,n(�μ) is a rational number due to the graph automorphisms, the
generalized Catalan number Cg,n(�μ) is always a non-negative integer. It gives
the dimension of a linear skein space. In particular, the (g, n) = (0, 1) case
recovers the original Catalan numbers:

C0,1(2m) = Cm =
1

m+ 1

(
2m

m

)
= dimEndUq(s�2)(T

⊗mC2).
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As explained in [20], the mirror dual to the Catalan numbers Cm is the plane
curve Σ defined by

(1.1)

{
x = z + 1

z

y = −z,

where

(1.2) z(x) =

∞∑
m=0

Cm
1

x2m+1
.

Note that (1.1) also gives a Lagrangian immersion Σ −→ T ∗C. Let us intro-
duce the free energies by

FC
g,n

(
z(x1), . . . , z(xn)

)
=
∑
�μ∈Zn

+

Dg,n(�μ)e
−(w1μ1+···+wnμn)(1.3)

=
∑
�μ∈Zn

+

Dg,n(�μ)

n∏
i=1

1

xμi

i

as the Laplace transform of the number of dessins, where the coordinates
are related by (1.2) and xi = ewi . The free energy FC

g,n(z1, . . . , zn) is a sym-
metric function in n-variables, and its principal specialization is defined by
FC
g,n(z, . . . , z). Now let

WC
g,n(z1, . . . , zn) = d1 · · · dnFg,n(z1, . . . , zn).

It is proved in [20] that WC
g,n’s satisfy the Eynard-Orantin topological recur-

sion.
The Catalan partition function is given by the formula of [27]:

(1.4) ZC(z, �) = exp

⎛⎝ ∞∑
g=0

∞∑
n=1

1

n!
�2g−2+nFC

g,n(z, z, . . . , z)

⎞⎠ .

In this paper we prove
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Theorem 1.1. The Catalan partition function satisfies the Schrödinger
equation

(1.5)

(
�2

d2

dx2
+ �x

d

dx
+ 1

)
ZC

(
z(x), �

)
= 0.

The characteristic variety of this ordinary differential operator, y2 + xy +
1 = 0 for every fixed choice of �, is exactly the Lagrangian immersion (1.1),
where we identify the xy-plane as the cotangent bundle T ∗C with the fiber
coordinate y = � d

dx .

Remark 1.2. A purely geometric reason of our interest in the function
appearing as the principal specialization FC

g,n(z, . . . , z) is that, in the stable
range 2g − 2 + n > 0, it is a polynomial in

(1.6) s =
z2

z2 − 1

of degree 6g − 6 + 3n. It is indeed the virtual Poincaré polynomial ofMg,n ×
Rn
+ [58], and its special value at s = 1 gives the Euler characteristic (−1)n ·

χ(Mg,n) of the moduli space Mg,n of smooth n-pointed curves of genus g.
Thus ZC(z, �) is the exponential generating function of the virtual Poincaré
polynomials of Mg,n × Rn

+.

As such, the generating function ZC(z, �) is also expressible in terms of
a Hermitian matrix integral

(1.7) ZC(z, �) =

∫
HN×N

det(1−√sX)Ne−
N

2
trace(X2)dX

with the identification (1.6) and � = 1/N . Here dX is the normalized Le-
besgue measure on the space of N ×N Hermitian matrices HN×N . It is
a well-known fact that Eq.(1.7) is the principal specialization of a KP τ -
function (see for example, [54]).

Another example we consider in this paper is based on single Hurwitz
numbers. As a counting problem it is easier to state than the previous exam-
ple, but the Lagrangian immersion requires a transcendental function, and
hence the resulting Schrödinger equation exhibits a rather different nature.

Let Hg,n(μ1, . . . , μn) be the automorphism-weighted count of the num-
ber of topological types of Hurwitz covers f : C −→ P1 of a connected non-
singular algebraic curve C of genus g. A holomorphic map f is a Hurwitz
cover of profile (μ1, . . . , μn) if it has n labeled poles of orders (μ1, . . . , μn)
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and is simply ramified otherwise. Introduce the Laplace transform of single
Hurwitz numbers by

(1.8) FH
g,n

(
t(w1), . . . , t(wn)

)
=
∑
�μ∈Zn

+

Hg,n(�μ)e
−(w1μ1+···wnμn),

where

t(w) =

∞∑
m=0

mm

m!
e−mw

is the tree-function. Here again FH
g,n(t1, . . . , tn) is a polynomial of degree

6g − 6 + 3n if 2g − 2 + n > 0 [60]. Bouchard and Mariño have conjectured
[9] that

WH
g,n(t1, . . . , tn) = d1 · · · dnFH

g,n(t1, . . . , tn)

satisfy the Eynard-Orantin topological recursion, with respect to the Lagran-
gian immersion

(1.9)

{
x = e−w = ze−z ∈ C∗

y = z ∈ C,

where

z =
t− 1

t

and we use η = y dx
x as the tautological 1-form on T ∗C∗. The Bouchard-

Mariño conjecture was proved in [7, 26, 60].
Now we define the Hurwitz partition function

(1.10) ZH(t, �) = exp

⎛⎝ ∞∑
g=0

∞∑
n=1

1

n!
�2g−2+nFH

g,n(t, . . . , t)

⎞⎠ .

Then we have the following

Theorem 1.3. The Hurwitz partition function satisfy two equations:[
1

2
�

∂2

∂w2
+

(
1 +

1

2
�

)
∂

∂w
− �

∂

∂�

]
ZH

(
t(w), �

)
= 0,(1.11) (

�
d

dw
+ e−we−�

d

dw

)
ZH

(
t(w), �

)
= 0.(1.12)

Moreover, each of the two equations recover the Lagrangian immersion (1.9)
from the asymptotic analysis at � ∼ 0. And if we view � as a fixed constant
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in (1.12), then its total symbol is the Lagrangian immersion (1.9) with the
identification z = −� d

dw .

Remark 1.4. The second order equation (1.11) is a consequence of the
polynomial recursion of [60]. This situation is exactly the same as Theo-
rem 1.1. The differential-difference equation (1.12), or a delay differential
equation, follows from the principal specialization of the KP τ -function that
gives another generating function of single Hurwitz numbers [41, 67]. We
remark that (1.12) is also derived in [82]. The point of view of differential-
difference equation is further developed in [59] for the case of double Hurwitz
numbers and r-spin structures, where we generalize a result of [82].

Remark 1.5. Define two operators by

P = �
d

dw
+ e−we−�

d

dw and(1.13)

Q =
1

2
�

∂2

∂w2
+

(
1 +

1

2
�

)
∂

∂w
− �

∂

∂�
.(1.14)

Then it is noted in [49] that

(1.15) [P,Q] = P.

Thus the heat equation (1.11) preserves the space of solutions of the Schrö-
dinger equation (1.12). In this sense, (1.12) is holonomic for every fixed �.
The analysis of these equations is further investigated in [49].

The existence of a holonomic system is particularly appealing when we
consider the knot A-polynomial as the defining equation of a Lagrangian
immersion, in connection to the AJ conjecture [33, 34, 38]. One can ask:

Question 1.6. Let K be a knot in S3 and AK its A-polynomial [13]. Is
there a concrete formula for the quantum knot invariants of K, such as the
colored Jones polynomials, in terms of AK?

The B-model developed in [15], [39], and more recently in [6], clearly
shows that the answer is yes, and it should be given by the Eynard-Orantin
formalism. Although our examples in the present paper are not related to any
knots, they suggest the existence of a corresponding A-model. An interesting
theory of generalized A-polynomials and quantum knot invariants from the
point of view of mirror symmetry is recently presented in Aganagic and Vafa
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[2]. We also remark that there are further developments in this direction
[10, 31, 32].

The paper is organized as follows. In Section 2, we give the definition
of the Eynard-Orantin topological recursion. We emphasize the aspect of
Lagrangian immersion in our presentation. In Section 3 we review the gen-
eralized Catalan numbers of [20]. Then in Section 4 we derive the Schrödinger
equation for the Catalan partition function. The equation for the Hurwitz
partition function is given in Section 5. Finally, in Section 6 we give the
proof of (1.12) using the Schur function expansion of the Hurwitz generat-
ing function and its principal specialization.

2. The Eynard-Orantin topological recursion

We adopt the following definition for the topological recursion of Eynard-
Orantin [27]. Our emphasis, which is different from the original, is the point
of view of the Lagrangian immersion.

Definition 2.1. The spectral curve (Σ, ι) consists of an open Riemann
surface Σ and a Lagrangian immersion

(2.1)

ι : Σ −−−−→ T ∗C⏐⏐�π

C

with respect to the canonical holomorphic symplectic structure ω = −dη on
T ∗C, where η is the tautological 1-form on the cotangent bundle π : T ∗C −→
C. Recall that p ∈ Σ is a Lagrangian singularity if d(π ◦ ι) = 0 at p, and that
π(ι(p)) ∈ C is a caustic of the Lagrangian immersion. We assume that the
projection π restricted to the Lagrangian immersion is locally simply rami-
fied around each Lagrangian singularity. We denote by R = {p1, . . . , pr} ⊂ Σ
the set of Lagrangian singularities, and by

U = 
r
j=1Uj

the disjoint union of small neighborhood Uj around pj such that π : Uj −→
π(Uj) ⊂ C is a double-sheeted covering ramified only at pj . We denote by
sj(z) the local Galois conjugate of z ∈ Uj .

Another key ingredient of the Eynard-Orantin theory is the normal-
ized fundamental differential of the second kind BΣ(z1, z2) [30, Page
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20], [62, Page 3.213], which is a symmetric differential 2-form on Σ× Σ
with second-order poles along the diagonal. To define it, let us recall a
few basic facts about algebraic curves. Let C be a nonsingular complete
algebraic curve over C. We are considering a nonsingular compactification
C = Σ of the Riemann surface Σ. We identify the Jacobian variety of C as
Jac(C) = Pic0(C), which is isomorphic to Picg−1(C). The theta divisor Θ
of Picg−1(C) is defined by

Θ = {L ∈ Picg−1(C) | dimH1(C,L) > 0}.

We use the same notation for the translate divisor on Jac(C), also called
the theta divisor. Now consider the diagram

Jac(C)

C × C
pr1

��

δ

��

pr2

��
C C,

where prj denotes the projection to the j-th components, and

δ : C × C � (p, q) �−→ p− q ∈ Jac(C).

Then the prime form EC(z1, z2) [30, Page 16] is defined as a holomorphic
section

EC(p, q) ∈ H0
(
C × C, pr∗1K

− 1

2

C ⊗ pr∗2K
− 1

2

C ⊗ δ∗(Θ)
)
,

where KC is the canonical line bundle of C and we choose Riemann’s spin

structure (or the Szegö kernel) K
1

2

C (see [30, Theorem 1.1]). We do not need
the precise definition of the prime form here, but its characteristic properties
are important:

1) EC(p, q) vanishes only along the diagonal Δ ⊂ C × C, and has simple
zeros along Δ.

2) Let z be a local coordinate on C such that dz(p) gives the local trivi-
alization of KC around p. When q is near at p, δ∗(Θ) is also trivialized
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around (p, q) ∈ C × C, and we have a local behavior

(2.2) EC

(
z(p), z(q)

)
=

z(p)− z(q)√
dz(p) ·√dz(q)

(
1 +O

(
(z(p)− z(q))2

))
.

3) EC

(
z(p), z(q)

)
= −EC

(
z(q), z(p)

)
.

The fundamental 2-form BC(p, q) is then defined by

(2.3) BC(p, q) = d1 ⊗ d2 logEC(p, q)

(aee [30, Page 20], [62, Page 3.213]). We note that dz(p) appears in (2.2)
just as the indicator of our choice of the local trivialization. With this local
trivialization, the square

EC(p, q)
2 ∈ H0

(
C × C, pr∗1K

−1
C ⊗ pr∗2K

−1
C ⊗ δ∗(Θ)⊗2

)
behaves better because of

(2.4) EC

(
z(p), z(q)

)2
=

(
z(p)− z(q)

)2
dz(p) · dz(q)

(
1 +O

(
(z(p)− z(q))2

))
.

We then see that

BC

(
z(p), z(q)

)
=

1

2
d1 ⊗ d2 logE

2
(
z(p), z(q)

)
(2.5)

=
dz(p) · dz(q)(
z(p)− z(q)

)2 +O(1) dz(p) · dz(q)

∈ H0 (C × C, pr∗1KC ⊗ pr∗2KC ⊗O(2Δ)) .

Definition 2.2. Let D be a divisor of Σ. A meromorphic symmetric
differential form of degree n with poles along D is an element of the
symmetric tensor product

SymnH0 (Σ,KΣ(∗D)) .

Definition 2.3. Meromorphic differential forms

Wg,n(z1, . . . , zn) ∈ SymnH0 (Σ,KΣ(∗R))

for g ≥ 0 and n ≥ 1, subject to 2g − 2 + n > 0, with poles along the Lagran-
gian singularities of the Lagrangian immersion Σ −→ T ∗C, are said to satisfy
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the Eynard-Orantin topological recursion if they satisfy the recursion
formula

Wg,n(z1, z2, . . . , zn)(2.6)

=
1

2πi

r∑
j=1

∮
γj

Kj(z, z1)

[
Wg−1,n+1

(
z, sj(z), z2, . . . , zn

)
+

No (0, 1) terns∑
g1+g2=g

I�J={2,3,...,n}

Wg1,|I|+1(z, zI)Wg2,|J |+1(sj(z), zJ)

]
.

Here the integration is taken with respect to z ∈ Uj along a positively
oriented simple closed loop γj around pj , and zI = (zi)i∈I for a subset
I ⊂ {1, 2, . . . , n}. In the summation, “No (0, 1) terms” means the summand
does not contain the terms with g1 = 0 and I = ∅ or g2 = 0 and J = ∅.
The recursion kernels Kj(z, z1), j = 1, . . . , r, are defined as follows. First we
define W0,1 and W0,2.

(2.7) W0,1(z) = ι∗η = ydx ∈ H0(Σ,K),

where x is a linear coordinate of C and y is the dual coordinate of T ∗
0C so

that the Lagrangian immersion is given by

(x, y) : Σ � t �−→ (x(z), y(z)) ∈ T ∗C.

W0,2(z1, z2) = BΣ(z1, z2)− π∗ dx1 · dx2
(x1 − x2)2

.(2.8)

We note that W0,2(z1, z2) is holomorphic along the diagonal z1 = z2. The

recursion kernel Kj(z1, z2) ∈ H0
(
Uj × Σ,K−1

Uj
⊗KΣ

)
for z1 ∈ Uj and z2 ∈

Σ is defined by

Kj(z1, z2) =
1

2

1

W0,1

(
sj(z1)

)−W0,1(z1)
⊗
∫ sj(z1)

z1

W0,2( · , z2)(2.9)

=
1

2

d2
(
logEΣ

(
sj(z1), z2

)− logEΣ(z1, z2)
)(

y(sj(z1)
)− y(z1)

)
dx(z1)

.

The kernel Kj(z1, z2) is an algebraic operator that multiplies dz2 while con-
tracts ∂/∂z1.

The topological recursion is the reduction of 2g − 2 + n by 1, which is
different from the usual boundary degeneration formula of Mg,n. As shown
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in Figure 2.1, the reduction corresponds to degeneration cycles of codimen-
sion 1 and 2, as in Arbarello-Cornalba-Griffiths [3, Chapter 17, Section 5,
Page 589].

M0.3 ×Mg,n−1 −→Mg,n, M0.3 ×Mg−1,n+1 −→Mg,n,

M0.3 ×
⋃

g1+g2=g
n1+n2=n−1

Mg1,n1+1 ×Mg2,n2+1 −→Mg,n

Figure 2.1: The topological recursion and degeneration.

The recursion starts from W1,1 and W0,3. If we modify (2.6) slightly,
then these can also be calculated from W0,2 [27].

W1,1(z1) =
1

2πi

r∑
j=1

∮
γj

Kj(z, z1)(2.10) [
W0,2(u, v) + cπ∗ dx(u) · dx(v)

(x(u)− x(v))2

]∣∣∣∣
u=z,v=sj(z)

.
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Formula (2.6) does not give an apparently symmetric expression for W0,3.
In terms of the coordinate (x, y) ∈ T ∗C we have an alternative formula for
W0,3 [27]:

(2.11) W0,3(z1, z2, z3) =
1

2πi

r∑
j=1

∮
γj

W0,2(z, z1)W0,2(z, z2)W0,2(z, z3)

dx(z) · dy(z) .

Suppose we have a solution Wg,n to the topological recursion. A prim-
itive functions of the symmetric differential form Wg,n is a symmetric
meromorphic function Fg,n on Σn such that its n-fold exterior derivative
recovers the Wg,n, i.e.,

(2.12) Wg,n(z1, . . . , zn) = dz1 · · · dznFg,n(z1, . . . , zn).

The partition function of the topological recursion for a genus 0 spectral
curve is the formal expression in infinitely many variables

(2.13) Z(z1, z2, . . . ; �) = exp

⎛⎝ ∑
g≥0,n≥1

1

n!
�2g−2+nFg,n(z1, z2, . . . , zn)

⎞⎠ .

The principal specialization of the partition function is also denoted by the
same letter Z:

(2.14) Z(z, �) = exp

⎛⎝ ∑
g≥0,n≥1

1

n!
�2g−2+nFg,n(z, z, . . . , z)

⎞⎠ .

Remark 2.4. The partition function depends on the choice of the primitive
functions. When we consider the topological recursion as the B-model corre-
sponding to an A-model counting problem, then there is always a canonical
choice for the primitives, as the Laplace transform of the quantum invari-
ants.

Remark 2.5. When the spectral curve Σ has a higher genus, the parti-
tion function requires a non-perturbative factor in terms of a theta function
associated to the curve [5, 6]. In this case the algebraic K-theory condition
of [39], probably similar to the Boutroux condition of [1], becomes essential
for the existence of the quantum curve or the Schrödinger equation. Our
consideration in paper is limited to the genus 0 case.
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3. The generalized Catalan numbers and the
topological recursion

A cellular graph of type (g, n) is the one-skeleton of a cell-decomposition
of a connected closed oriented surface of genus g with n 0-cells labeled
by the index set [n] = {1, 2, . . . , n}. Two cellular graphs are identified if
an orientation-preserving homeomorphism of a surface into another surface
maps one cellular graph to another, honoring the labeling of each vertex. Let
Dg,n(μ1, . . . , μn) denote the number of connected cellular graphs Γ of type
(g, n) with n labeled vertices of degrees (μ1, . . . , μn), counted with the weight
1/|Aut(Γ)|. It is generally a rational number. The orientation of the surface
induces a cyclic order of incident half-edges at each vertex of a cellular graph
Γ. Since Aut(Γ) fixes each vertex, the automorphism group is a subgroup of
the Abelian group

∏n
i=1 Z

/
μiZ that rotates each vertex. Therefore,

(3.1) Cg,n(μ1, . . . , μn) = μ1 · · ·μnDg,n(μ1, . . . , μn)

is always an integer. The cellular graphs counted by (3.1) are connected
graphs of genus g with n vertices of degrees (μ1, . . . , μn), and at the j-th
vertex for every j = 1, . . . , n, an outgoing arrow is placed on one of the inci-
dent μj half-edges (see Figure 3.1). The placement of n arrows corresponds
to the factors μ1 · · ·μn on the right-hand side. We call this integer the gen-
eralized Catalan number of type (g, n). The reason for this naming comes
from the following theorem.

Figure 3.1: A cellular graph of type (1, 2).
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Theorem 3.1. The generalized Catalan numbers (3.1) satisfy the following
equation.

Cg,n(μ1, . . . , μn) =

n∑
j=2

μjCg,n−1(μ1 + μj − 2, μ2, . . . , μ̂j , . . . , μn)(3.2)

+
∑

α+β=μ1−2

[
Cg−1,n+1(α, β, μ2, . . . , μn)

+
∑

g1+g2=g
I�J={2,...,n}

Cg1,|I|+1(α, μI)Cg2,|J |+1(β, μJ)

]
,

where μI = (μi)i∈I for an index set I ⊂ [n], |I| denotes the cardinality of I,
and the third sum in the formula is for all partitions of g and set partitions
of {2, . . . , n}.

Proof. Let Γ be an arrowed cellular graph counted by the left-hand side
of (3.2). Since all vertices of Γ are labeled, let {p1, . . . , pn} denote the vertex
set. We look at the half-edge incident to p1 that carries an arrow.

Case 1. The arrowed half-edge extends to an edge E that connects p1 and
pj for some j > 1.

In this case, we shrink the edge and join the two vertices p1 and pj
together. By this process we create a new vertex of degree μ1 + μj − 2. To
make the counting bijective, we need to be able to go back from the shrunken
graph to the original, provided that we know μ1 and μj . Thus we place an
arrow to the half-edge next to E around p1 with respect to the counter-
clockwise cyclic order that comes from the orientation of the surface. In
this process we have μj different arrowed graphs that produce the same
result, because we must remove the arrow placed around the vertex pj in
the original graph. This gives the right-hand side of the first line of (3.2).
See Figure 3.2.

Case 2. The arrowed half-edge at p1 is a loop E that goes out and comes
back to p1.

The process we apply is again shrinking the loop E. The loop E separates
all other half-edges into two groups, one consisting of α of them placed on
one side of the loop, and the other consisting of β half-edges placed on the
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1 jp p
E

Figure 3.2: The process of shrinking the arrowed edge E that connects ver-
tices p1 and pj , j > 1.

other side. It can happen that α = 0 or β = 0. Shrinking a loop on a surface
causes pinching. Instead of creating a pinched (i.e., singular) surface, we
separate the double point into two new vertices of degrees α and β. Here
again we need to remember the place of the loop E. Thus we place an arrow
to the half-edge next to the loop in each group. See Figure 3.3.

E

Figure 3.3: The process of shrinking the arrowed loop E that is attached
to p1.

After the pinching and separating the double point, the original surface
of genus g with n vertices {p1, . . . , pn} may change its topology. It may have
genus g − 1, or it splits into two pieces of genus g1 and g2. The second line
of (3.2) records all such cases. This completes the proof. �

Remark 3.2. For (g, n) = (0, 1), the above formula reduces to

(3.3) C0,1(μ1) =
∑

α+β=μ1−2

C0,1(α)C0,1(β).

When n = 1, the degree of the unique vertex μ1 is always even. By defining
C0,1(0) = 1, we find that

C0,1(2m) = Cm =
1

m+ 1

(
2m

m

)
is the m-th Catalan number. Only for (g, n) = (0, 1) we have this irregular
case of μ1 = 0 happens, because a degree 0 single vertex is connected, and
gives a cell-decomposition of S2. We can imagine that a single vertex on
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S2 has an infinite cyclic group as its automorphism, so that C0,1(0) = 1 is
consistent with

C0,1(μ1) = μ1D0,1(μ1).

All other cases, if one of the verteces has degree 0, then the Catalan number
Cg,n is simply 0 because of the definition (3.1).

Let us introduce the generating function of the Catalan numbers by

(3.4) z = z(x) =

∞∑
m=0

1

x2m+1
.

Then by the quadratic recursion (3.3) we find that the inverse function of
z(x) that vanishes at x =∞ is given by

(3.5) x = z +
1

z
.

This defines a Lagrangian immersion

(3.6) Σ = C � z �−→ (x(z), y(z)) ∈ T ∗C,

{
x(z) = z + 1

z

y(z) = −z .

The Lagrangian singularities are located at the points at which dx = 0, i.e.,
z = ±1. Often it is more convenient to use the coordinate

(3.7) z =
t+ 1

t− 1
.

The following theorem is established in [20].

Theorem 3.3 ([20]). The Laplace transform of the Catalan numbers of
type (g, n) defined as symmetric differential forms by

(3.8) WC
g,n(t1, . . . , tn) = (−1)n

∑
(μ1,...,μn)∈Zn

+

Cg,n(μ1, . . . , μn) e
−〈w,μ〉dw1 · · · dwn

satisfies the Eynard-Orantin recursion with respect to the Lagrangian immer-
sion (3.6) and

(3.9) WC
0,2(t1, t2) =

dt1 · dt2
(t1 − t2)2

− dx1 · dx2
(x1 − x2)2

.
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Here the Laplace transform coordinate w is related to the coordinate t of the
Lagrangian by

ewi = xi = zi +
1

zi
=

ti + 1

ti − 1
+

ti − 1

ti + 1
, i = 1, 2, . . . , n,

and 〈w, μ〉 = w1μ1 + · · ·+ wnμn.

In this case the Eynard-Orantin recursion formula is given by

WC
g,n(t1, . . . , tn)(3.10)

= − 1

64

1

2πi

∫
γ

(
1

t+ t1
+

1

t− t1

)
(t2 − 1)3

t2
· 1
dt
· dt1

×
[

n∑
j=2

(
WC

0,2(t, tj)W
C
g,n−1(−t, t2, . . . , t̂j , . . . , tn)

+WD
0,2(−t, tj)WC

g,n−1(t, t2, . . . , t̂j , . . . , tn)

)
+WC

g−1,n+1(t,−t, t2, . . . , tn)

+

stable∑
g1+g2=g

I�J={2,3,...,n}

WC
g1,|I|+1(t, tI)W

C
g2,|J |+1(−t, tJ)

]
.

The last sum is restricted to the stable geometries. In other words, the
partition should satisfies 2g1 − 1 + |I| > 0 and 2g2 − 1 + |J |. The contour
integral is taken with respect to t on the curve defined by Figure 3.4.

t1

t1tj

tj

t-plane

dt

r

r

Figure 3.4: The integration contour γ. This contour encloses an annulus
bounded by two concentric circles centered at the origin. The outer one has
a large radius r > maxj∈N |tj | and the negative orientation, and the inner
one has an infinitesimally small radius with the positive orientation.
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Remark 3.4. The recursion formula (3.10) is a genuine induction formula
with respect to 2g − 2 + n. Thus from the given WC

0,1 and WC
0,2, we can cal-

culate all WC
g,n one by one. This is a big difference between (3.10) and (3.2).

The latter relation contains the terms with Cg,n in the right-hand side as
well.

4. The partition function for the generalized Catalan
numbers and the Schrödinger equation

Let us now define

(4.1) FC
g,n(t1, . . . , tn) =

∑
(μ1,...,μn)∈Zn

+

Dg,n(μ1, . . . , μn) e
−〈w,μ〉

for 2g − 2 + n > 0. Then from (3.1) we have

WC
g,n(t1, . . . , tn) = d1 · · · dnFC

g,n(t1, . . . , tn).

Therefore, we have a natural primitive function of Wg,n(t1, . . . , tn) for every
(g, n). We note that

t = −1 =⇒ z = 0 =⇒ x =∞.

Therefore,

(4.2) FC
g,n(t1, . . . , tn)

∣∣
ti=−1

= 0

for every i = 1, 2, . . . , n. The following recursion formula of [61] is the key
for our investigation.

Theorem 4.1. The Laplace transform FC
g,n(t[n]) satisfies the following dif-

ferential recursion equation for every (g, n) subject to 2g − 2 + n > 0.
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∂

∂t1
FC
g,n(t[n])(4.3)

= − 1

16

n∑
j=2

[
tj

t21 − t2j

(
(t21 − 1)3

t21

∂

∂t1
FC
g,n−1(t[ĵ])

− (t2j − 1)3

t2j

∂

∂tj
FC
g,n−1(t[1̂])

)]

− 1

16

n∑
j=2

(t21 − 1)2

t21

∂

∂t1
FC
g,n−1(t[ĵ])

− 1

32

(t21 − 1)3

t21

[
∂2

∂u1∂u2
FC
g−1,n+1(u1, u2, t2, t3, . . . , tn)

]∣∣∣∣
u1=u2=t1

− 1

32

(t21 − 1)3

t21

stable∑
g1+g2=g

I�J={2,3,...,n}

∂

∂t1
FC
g1,|I|+1(t1, tI)

∂

∂t1
FC
g2,|J |+1(t1, tJ).

Here we use the index convention [n] = {1, 2, . . . , n} and [ĵ] = {1, 2, . . . , ĵ,
. . . , n}.

Remark 4.2. We note that the above formula is identical to [58, The-
orem 5.1], even though Fg,n is a different function. There we considered
the Laplace transform of the number of lattice points in Mg,n, and hence
F0,1 = F0,2 = 0.

Remark 4.3. Because of (4.2), the recursion (4.3) uniquely determines
each FC

g,n by integrating from −1 to t1. With the same reason, FC
g,n is

uniquely determined by WC
g,n. Since we know exactly where FC

g,n vanishes,
there is no discrepancy of the constants of integration in (2.12).

Let us now consider the principal specialization of the partition function
for the Catalan numbers

(4.4) ZC(t, �) = exp

⎛⎝ ∞∑
g=0

∞∑
n=1

1

n!
�2g−2+nFC

g,n(t, t, . . . , t)

⎞⎠ .

Since unstable terms FC
0,1(t) and FC

0,2(t, t) are included in the above formula,
we need to calculate them first.



976 M. Mulase and P. Su�lkowski

Proposition 4.4. In terms of the z-variable, we have

FC
0,1(t) = −

1

2
z2 + log z,(4.5)

FC
0,2(t1, t2) = − log(1− z1z2).(4.6)

Proof. Due to the irregularity of μ = 0 for D0,1(μ), we need to modify the
definitions (3.8) and (4.1) for (g, n) = (0, 1). It is natural to define

(4.7) W0,1(t) = −
∞∑

m=0

C0,1(2m)
dx

x2m+1
= −zdx =

(
−z + 1

z

)
dz

because of the consistency with (2.7). Since WC
0,1 = dFC

0,1, we have

F0,1(t) = −1

2
z2 + log z + const

=

∞∑
m=0

D0,1(2m)

(
1

x2m
− δm,0

)
,

where the m = 0 term is adjusted so that we do not have the infinity term
D0,1(0) in FC

0,1. Using the expression

D0,1(2m) =
1

2m(m+ 1)

(
2m

m

)
,

we have

lim
m→0

D0,1(2m)

(
1

x2m
− δm,0

)
= − log x.

Since x = z + 1
z , by taking the limit z → 0 we conclude that the constant

term in FC
0,1(t) is 0, which establishes (4.5).

The computation of FC
0,1(t1, t2) is performed in [20, Proposition 4.1],

where the idea is to use the Euler differential operator x1
d

dx1
+ x2

d
dx2

. By

definition FC
0,1(t1, t2) does not have any constant term as x→∞, therefore

there is no constant correction in (4.6), either. �
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Theorem 4.5. The principal specialization of the partition function satis-
fies the following Schrödinger equation.

(4.8)

(
�2

d2

dx2
+ �x

d

dx
+ 1

)
ZC(t, �) = 0,

where t is considered as a function in x by

t = t(x) =
z(x) + 1

z(x)− 1

and (3.4).

The rest of this section is devoted to proving the above theorem. Let us
define for m ≥ 0

(4.9) Sm =
∑

2g−2+n=m−1

1

n!
FC
g,n(t, . . . , t),

and put

F =

∞∑
m=0

�m−1 Sm.

Then the Schrödinger equation (4.8) becomes

�2

(
d2F

dx2
+

(
dF

dx

)2
)

+ �x
dF

dx
+ 1 = 0,

which is equivalent to

(4.10)

∞∑
m=0

S′′
m�m+1 +

( ∞∑
m=0

S′
m�m

)2

+ x

∞∑
m=0

S′
m�m + 1 = 0,

where ′ = d
dx . Since S0 = FC

0,1 and

WC
0,1 = dFC

0,1 = ydx = −zdx,

we obtain

(4.11) S′
0 =

d

dx
FC
0,1 = −z = − t+ 1

t− 1
.
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Using the Lagrangian immersion (3.5), we see that the constant terms
of (4.10) then become

(4.12) (−z)2 + x(−z) + 1 = z2 − xz + 1 = 0.

Collecting the �m+1-contributions in (4.10) for m ≥ 0, we obtain

−x d

dx
Sm+1 =

d2

dx2
Sm +

∑
a+b=m+1

dSa

dx

dSb

dx

=
d2

dx2
Sm + 2S′

0S
′
m+1 + 2S′

1S
′
m +

∑
a+b=m+1

a,b≥2

dSa

dx

dSb

dx
.

Therefore,

(4.13) − (2S′
0 + x)

d

dx
Sm+1 =

d2

dx2
Sm + 2S′

1

d

dx
Sm +

∑
a+b=m+1

a,b≥2

dSa

dx

dSb

dx
.

To use the closed formulas (4.5) and (4.6) for S0 and S1 here, we need
to switch from the x-coordinate to the t-coordinate. Using the change of
variable formulas (3.5) and (3.7), we have

dx = dz

(
1− 1

z2

)
= − 8t

(t2 − 1)2
dt,

hence

d

dx
=

z2

z2 − 1

d

dz
= −(t2 − 1)2

8t

d

dt
,

d2

dx2
=

(t2 − 1)4

64t2
d2

dt2
+

(t2 − 1)2

8t

(
d

dt

(t2 − 1)2

8t

)
d

dt

=
(t2 − 1)4

64t2
d2

dt2
+

(t2 − 1)3

64t3
(3t2 + 1)

d

dt
.

Therefore,

−(2S′
0 + x)

d

dx
= −(t2 − 1)2

8t

(
z − 1

z

)
d

dt
(4.14)

= −(t2 − 1)2

8t

4t

t2 − 1

d

dt
=

1

2
(t2 − 1)

d

dt
,
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S′
1 =

1

2

d

dx
FC
0,2(z, z) =

1

2

z2

z2 − 1

d

dz
(− log(1− z2))(4.15)

= −(t2 − 1)(t+ 1)2

16t2
.

Substituting (4.11), (4.14) and (4.15) in (4.13), we obtain

Proposition 4.6. For m ≥ 0, the Schrödinger equation (4.8) is equivalent
to a recursion formula

d

dt
Sm+1 = −(t2 − 1)3

32t2

⎡⎢⎢⎣ d2

dt2
Sm +

∑
a+b=m+1

a,b≥2

dSa

dt

dSb

dt

⎤⎥⎥⎦(4.16)

− (t2 − 1)2

16t3
(2t2 + t+ 1)

d

dt
Sm.

Remark 4.7. The recursion equation (4.16) is a direct consequence of the
principal specialization applied to (4.3).

The proof of (4.16) is given in Appendix A.

5. Single Hurwitz numbers

The A-model problem that we are interested in this section is the auto-
morphism-weighted count Hg,n(μ1, . . . , μn) of the number of the topologi-
cal types of meromorphic functions f : C −→ P1 of a nonsingular complete
irreducible algebraic curve C of genus g that has n labeled poles of orders
(μ1, . . . , μn) such that all other critical points of f than these poles are unla-
beled simple ramification points. Let r denote the number of such simple
ramification points. Then the Riemann-Hurwitz formula gives

(5.1) r = 2g − 2 + n+

n∑
i=1

μi.

A remarkable formula due to Ekedahl, Lando, Shapiro and Vainshtein [22,
37, 68] relates Hurwitz numbers and Gromov-Witten invariants. For genus
g ≥ 0 and the number n ≥ 1 of the poles subject to the stability condition
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2g − 2 + n > 0, the ELSV formula states that

Hg,n(μ1, . . . , μn) =

n∏
i=1

μμi

i

μi!

∫
Mg,n

Λ∨
g (1)∏n

i=1

(
1− μiψi

)(5.2)

=

g∑
j=0

(−1)j
∑

k1,...,kn≥0

〈τk1
· · · τkn

cj(E)〉g,n
n∏

i=1

μμi+ki

i

μi!
,

whereMg,n is the Deligne-Mumford moduli stack of stable algebraic curves
of genus g with n distinct smooth marked points, Λ∨

g (1) = 1− c1(E) + · · ·+
(−1)gcg(E) is the alternating sum of the Chern classes of the Hodge bundle
E on Mg,n, ψi is the i-th tautological cotangent class, and

(5.3) 〈τk1
· · · τkn

cj(E)〉g,n =

∫
Mg,n

ψk1

1 · · ·ψkn
n cj(E)

is the linear Hodge integral, which is 0 unless k1 + · · ·+ kn + j = 3g − 3 + n.
Although the Deligne-Mumford stackMg,n is not defined for 2− 2g − n < 0,
single Hurwitz numbers are well defined for unstable geometries (g, n) =
(0, 1) and (0, 2), and their values are

(5.4)

H0((d)) =
dd−3

(d− 1)!
=

dd−2

d!

and H0((μ1, μ2)) =
1

μ1 + μ2
· μ

μ1

1

μ1!
· μ

μ2

2

μ2!
.

The ELSV formula remains valid for unstable cases if we define

∫
M0,1

Λ∨
0 (1)

1− dψ
=

1

d2
,(5.5) ∫

M0,2

Λ∨
0 (1)

(1− μ1ψ1)(1− μ2ψ2)
=

1

μ1 + μ2
.(5.6)

The ELSV formula predicts that the single Hurwitz numbers exhibit the
polynomial behavior in terms of their Laplace transform. Following [26], and
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modifying our choice of the coordinates slightly, we define

FH
g,n(t1, . . . , tn) =

∑
μ∈Zn

+

Hg,n(μ1, . . . , μn)e
−(μ1w1+···+μnwn)(5.7)

=
∑
μ∈Zn

+

∑
k1+···+kn≤3g−3+n

〈τk1
· · · τkn

Λ∨
g (1)〉g,n(

n∏
i=1

μμi+ki

i

μi!

)
e−(μ1w1+···+μnwn)

=
∑

k1+···+kn≤3g−3+n

〈τk1
· · · τkn

Λ∨
g (1)〉g,n

n∏
i=1

ξ̂ki
(ti),

where the ξ̂-functions are given by

(5.8) ξ̂k(t) =

∞∑
μ=1

μμ+k

μ!
e−μw =

∞∑
μ=1

μμ+k

μ!
xμ

for k ≥ 0, and x = e−w. Although ξ̂k are complicated functions in x, their
behavior is simple in terms of ξ̂0. So we introduce

(5.9) t = 1 +

∞∑
μ=1

μμ

μ!
xμ and z =

∞∑
μ=1

μμ−1

μ!
xμ.

Then by the Lagrange inversion formula, we have

(5.10) x = ze−z and z =
t− 1

t
,

and moreover, each ξ̂k(t) is a polynomial of degree 2k + 1 in t for every
k ≥ 0, recursively defined by

(5.11) ξ̂k+1(t) = t2(t− 1)
d

dt
ξ̂k(t).

This is because

(5.12) − d

dw
= x

d

dx
= t2(t− 1)

d

dt
.

Therefore, if 2g − 2 + n > 0, then FH
g,n(t1, . . . , tn) is a symmetric polynomial

of degree 6g − 6 + 3n, and satisfies

(5.13) FH
g,n(t1, . . . , tn)

∣∣
tj=1

= 0

for every j = 1, 2 . . . , n.
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The computation of [20] adjusted to our current convention of this paper,

(5.14) FH
0,1(t) =

1

2

(
1− 1

t2

)
= z − 1

2
z2

and

(5.15) FH
0,2(t1, t2) = log

(
z1 − z2
x1 − x2

)
− (z1 + z2),

determines the Lagrangian immersion

ι : Σ = C∗ −→ T ∗C∗

by

(5.16)

{
x = ze−z

y = z,

and

WH
0,2(t1, t2) = d1 ⊗ d2F

H
0,2(t1, t2) =

dt1 · dt2
(t1 − t2)2

− dx1 · dx2
(x1 − x2)2

.

Here the tautological 1-form on T ∗C∗ is chosen to be

(5.17) η = y
dx

x
.

It is consistent with

WH
0,1(t) = dFH

0,1(t) = z
dx

x
= ι∗η.

We also note that

(5.18) FH
0,1(t)

∣∣
t=1

= 0,

and

(5.19) FH
0,2(t1, t2)

∣∣
tj=1

= 0, j = 1 or 2.

The latter equality holds because t2 = 1 =⇒ z2 = 0 =⇒ x2 = 0, and hence
from (5.15) we have

FH
0,2(t1, 1) = log

z1
x1
− z1 = 0.
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Since
x1 − x2
z1 − z2

∣∣∣∣
z1=z2=z

= (1− z)e−z,

the diagonal value of FH
0,2 is calculated as

(5.20) FH
0,2(t, t) = log

(
ez

−z
)
− 2z = −z − log(1− z) =

1− t

t
+ log t.

The single Hurwitz numbers Hg,n(�μ) satisfy the cut-and-join equation
[36, 77] (

2g − 2 + n+

n∑
i=1

μi

)
Hg,n(μ1, . . . , μn)(5.21)

=
1

2

∑
i �=j

(μi + μj)Hg,n−1(μi + μj , μ[̂i,ĵ])

+
1

2

n∑
i=1

∑
α+β=μi

αβ

[
Hg−1,n+1(α, β, μ[̂i])

+
∑

g1+g2=g
I�J=[̂i]

Hg1,|I|+1(α, μI)Hg2,|J |+1(β, μJ)

]
,

where we use the convention for indices as in Section 3. The Laplace trans-
form of (5.21) is the polynomial recursion of [60] and takes the form

(
2g − 2 + n+

n∑
i=1

ti(ti − 1)
∂

∂ti

)
FH
g,n(t1, . . . , tn)

(5.22)

=
1

2

∑
i �=j

titj
ti − tj

(
t2i (ti − 1)2

∂

∂ti
FH
g,n−1(t[ĵ])− t2j (tj − 1)2

∂

∂tj
FH
g,n−1(t[̂i])

)
−
∑
i �=j

t3i (ti − 1)
∂

∂ti
FH
g,n−1(t[ĵ])

+
1

2

n∑
i=1

(
t2i (ti − 1)

)2 ∂2

∂u1∂u2
FH
g−1,n+1(u1, u2, t[̂i])

∣∣∣∣
u1=u2=ti

+
1

2

n∑
i=1

(
t2i (ti − 1)

)2 stable∑
g1+g2=g
I�J=[̂i]

∂

∂ti
FH
g1,|I|+1(ti, tI) ·

∂

∂ti
FH
g1,|J |+1(ti, tJ).
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It is proved in [26] that the n-fold exterior differentiation of the above
formula is exactly the Eynard-Orantin recursion, as predicted by Bouchard
and Mariño [9]. Thus we obtain a natural integration of the Eynard-Orantin
recursion by taking the Laplace transform of the A-model quantity again,
which is the single Hurwitz umber Hg,n(�μ).

Theorem 5.1. Let us define

(5.23) SH
m(t) =

∑
2g−2+n=m−1

1

n!
FH
g,n(t, . . . , t).

Then SH
m ’s satisfy the following second order differential equations:

(
emw d

dw
e−mw

)
SH
m+1(5.24)

= −1

2

[
d2

dw2
SH
m +

∑
a+b=m+1

dSH
a

dw
· dS

H
b

dw
+

d

dw
SH
m

]
.

Here the w-dependence of t is given by x = e−w and (5.9). We also note that
SH
m(t) is a polynomial of degree 3m-3 for every m ≥ 2, and for all values of

m we have

(5.25) SH
m(t)

∣∣
t=1

= 0.

The proof is similar to the case of the Catalan numbers (Section 4 and
Appendix A). First we compute the principal specialization of the differen-
tial equation (5.22). We then assemble them according to (5.23). By adjust-
ing the unstable geometry terms (g, n) = (0, 1) and (0, 2), we obtain (5.24).
However, due to the difference between the cut-and-join equation and the
edge-shrinking operation of Section 3, the resulting equation becomes quite
different.

Choose m ≥ 2 and (g, n) so that 2g − 2 + n = m. Then the principal
specialization of the left-hand side of (5.22) is

(
m+ t(t− 1)

d

dt

)
FH
g,n(t, . . . , t).
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The first line of the right-hand side of (5.22) gives

1

2
t2
∑
i �=j

∂

∂ti

(
t2i (ti − 1)2

∂

∂ti
FH
g,n−1(ti, t, . . . , t)

)∣∣∣∣
ti=t

=
n(n− 1)

2
t2

d

dt

(
t2(t− 1)2

) · 1

n− 1

d

dt
FH
g,n−1(t, . . . , t)

+
n(n− 1)

2
t4(t− 1)2

∂2

∂u2
FH
g,n−1(u, t, . . . , t)

∣∣∣∣
u=t

=
1

2
n! t2

d

dt

(
t2(t− 1)2

) · 1

(n− 1)!

d

dt
FH
g,n−1(t, . . . , t)

+
1

2
n!(n− 1)t4(t− 1)2

1

(n− 1)!

∂2

∂u2
FH
g,n−1(u, t, . . . , t)

∣∣∣∣
u=t

.

The second line of the right-hand side of (5.22) becomes

−n! t3(t− 1)
1

(n− 1)!

d

dt
FH
g,n−1(t, . . . , t).

The third line simply produces

n!

2

(
t2(t− 1)

)2 1

(n+ 1)!
(n+ 1)n

∂2

∂u1∂u2
FH
g−1,n+1(u1, u2, t . . . , t)

∣∣∣∣
u1=u2=t

.

Finally, since the set partition becomes the partition of numbers because all
variables are set to be equal, the fourth line of the right-hand side of (5.22)
gives

n!

2

(
t2(t− 1)

)2 stable∑
g1+g2=g

n1+n2=n−1

1

(n1 + 1)!

d

dt
FH
g1,n1+1(t, . . . , t)

· 1

(n2 + 1)!

d

dt
FH
g1,n2+1(t, . . . , t).

We now apply the operation ∑
2g−2+n=m

1

n!

to the above terms. The left-hand side becomes(
m+ t(t− 1)

d

dt

)
SH
m+1.
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The right-hand side terms are re-assembled into the sum of (g′, n′) subject
to 2g′ − 2 + n′ = m− 1, following the topological structure of the recur-
sion (5.22). Noticing that unstable geometers are contained only in SH

0 and
SH
1 , we obtain

(
m+ t(t− 1)

d

dt

)
SH
m+1(t)(5.26)

=
1

2

(
t2

d

dt

(
t2(t− 1)2

) · d
dt
SH
m(t)

+
(
t2(t− 1)

)2 d2

dt2
SH
m(t)− 2t3(t− 1)

d

dt
SH
m(t)

)
+

1

2

(
t2(t− 1)2

)2 ∑
a+b=m+1

a,b≥2

d

dt
SH
a (t) · d

dt
SH
b (t)

=
1

2

(
t2(t− 1)

)2
⎛⎜⎜⎝ d2

dt2
SH
m(t) +

∑
a+b=m+1

a,b≥2

d

dt
SH
a (t) · d

dt
SH
b (t)

⎞⎟⎟⎠
+ 2t3(t− 1)2

d

dt
SH
m(t).

Proposition 5.2. The functions Sm(t) are recursively determined by

SH
0 (t) =

1

2

(
1− 1

t2

)
,(5.27)

SH
1 (t) =

1

2

(
1− t

t
+ log t

)
,(5.28)

and

SH
m+1(t) =

(
t− 1

t

)−m ∫ t

1

[
1

2
t3−m(t− 1)m+1

(
d2

dt2
SH
m(t)(5.29)

+
∑

a+b=m+1
a,b≥2

d

dt
SH
a (t) · d

dt
SH
b (t)

)

+ 2t2−m(t− 1)m+1 d

dt
SH
m(t)

]
dt.
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Proof. As a differential operator,

m+ t(t− 1)
d

dt
= t(t− 1)

(
t− 1

t

)−m d

dt

(
t− 1

t

)m

.

Therefore, (5.26) is equivalent to[(
t− 1

t

)−m d

dt

(
t− 1

t

)m
]
SH
m+1(t)

=
1

2
t3(t− 1)

⎛⎜⎜⎝ d2

dt2
SH
m(t) +

∑
a+b=m+1

a,b≥2

d

dt
SH
a (t) · d

dt
SH
b (t)

⎞⎟⎟⎠
+ 2t2(t− 1)

d

dt
SH
m(t).

On the right-hand side only SH
k (t) with k ≤ m appear. Using the fact of the

zero (5.25), we obtain (5.29). �
On the third line of (5.26) the terms with SH

0 and SH
1 are not included.

More precisely, these omitted terms are

t(t− 1)2
d

dt
SH
m+1(t) +

1

2
t2(t− 1)3

d

dt
SH
m(t).

When we add these terms to (5.26), and adjust the second order differenti-
ation as (

t2(t− 1)
d

dt

)2

=
(
t2(t− 1)

)2 d2

dt2
+ t3(t− 1)(3t− 2)

d

dt
,

we finally obtain(
m+ t2(t− 1)

d

dt

)
SH
m+1(t)(5.30)

=
1

2

((
t2(t− 1)

d

dt

)2

SH
m(t)

+
(
t2(t− 1)

)2 ∑
a+b=m+1

dSH
a (t)

dt
· dS

H
b (t)

dt
− t2(t− 1)

d

dt
SH
m(t)

)
.

Then (5.24) follows from (5.30) and (5.12). This completes the proof Theo-
rem 5.1.
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Theorem 5.3. Let us define the partition function for the single Hurwitz
numbers in a similar way:

ZH(t, �) = exp

( ∞∑
m=0

SH
m�m−1

)
(5.31)

= exp

⎛⎝ ∞∑
g=0

∞∑
n=1

1

n!
�2g−2+nFH

g,n(t, . . . , t)

⎞⎠ .

Then we have

(5.32)

[
1

2

∂2

∂w2
+

(
1

2
+

1

�

)
∂

∂w
− ∂

∂�

]
ZH(t, �) = 0.

Remark 5.4. Eq.(5.32) is a heat equation, where � is considered as the
time variable of the heat conduction. It determines the solution uniquely
with the “initial condition”

ZH
(
t(w), �

)∣∣
�∼0

= exp

(
1

�
SH
0 + SH

1

)
given by (5.27) and (5.28).

Proof. Let

FH(t, �) =

∞∑
m=0

SH
m�m−1 =

∞∑
g=0

∞∑
n=1

1

n!
�2g−2+nFH

g,n(t, . . . , t).

In terms of FH , (5.32) is equivalent to

(5.33)
�

2

∂2FH

∂w2
+

�

2

(
∂FH

∂w

)2

+

[(
1 +

�

2

)
∂

∂w
− �

∂

∂�

]
FH = 0.

We apply the operation
∞∑

m=0

�m

to (5.24). The left-hand side is

(5.34)

∞∑
m=0

�m
(
−m+

d

dw

)
SH
m+1 =

(
∂

∂w
− �

∂

∂�

)(
FH − 1

�
SH
0

)
.
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The right-hand side gives

− �

2

(
∂2

∂w2

∞∑
m=0

SH
m�m−1 +

∞∑
m=0

∑
a+b=m+1

∂SH
a

∂w
�a−1 · ∂S

H
b

∂w
�b−1(5.35)

+
∂

∂w

∞∑
m=0

SH
m�m−1

)

= −�

2

(
∂2

∂w2
FH +

(
∂FH

∂w

)2

− 1

�2

(
∂SH

0

∂w

)2

+
∂

∂w
FH

)
.

If we collect all terms that contain SH
0 (t) in (5.34) and (5.35), we have an

equation (
t2(t− 1)

∂

∂t
+ �

∂

∂�

)
1

�
SH
0 =

1

2�

(
t2(t− 1)

∂

∂t
SH
0

)2

,

or equivalently,

(5.36) SH
0 (t) = t2(t− 1)

d

dt
SH
0 (t)− 1

2

(
t2(t− 1)

)2(dSH
0 (t)

dt

)2

.

We see that (5.27) is a solution to (5.36). After eliminating (5.36) from (5.34)
= (5.35), we obtain (5.33). This completes the proof. �

6. The Schur function expansion of the Hurwitz
partition function

Let us introduce the free energy of single Hurwitz numbers by a formal sum
as

(6.1) FH(t1, t2, t3, . . . ; �) =
∑

g≥0, n≥1

1

n!
�2g−2+n FH

g,n(t1, . . . , tn)

=
∑

g≥0, n≥1

1

n!
�2g−2+n

∑
(μ1,...,μn)∈Zn

+

Hg,n(μ1, . . . , μn) e
−(μ1+···+μn)

n∏
i=1

xμi

i .

The partition function we considered in Section 5 is the principal special-
ization

ZH(t, �) = exp
(
FH(t, t, · · · : �)) .



990 M. Mulase and P. Su�lkowski

Recall another generating function of the Hurwitz numbers [41, 42, 67]
defined by

(6.2) H(s,p) =
∑

g≥0, n≥1

Hg,n(s,p),

(6.3) Hg,n(s,p) =
1

n!

∑
�μ∈Zn

+

Hg,n(�μ)pμs
r(g,μ),

where pμ = pμ1
· · · pμn

, and

r = r(g, μ) = 2g − 2 + n+

n∑
i=1

μi

is again the number of simple ramification point of a Hurwitz cover of genus
g and profile μ.

At this point we wish to go back and forth between the following two
distinct points of view: One is to regard �μ = (μ1, . . . , μn) as a vector consist-
ing of positive integers, and the other is to view μ as a partition of length
n. For any function f(�μ) in �μ as a vector, we have a change of summation
formula

(6.4)
∑
�μ∈Zn

+

f(�μ) =
∑

μ:�(μ)=n

1∣∣Aut(μ)
∣∣ ∑
σ∈Sn

f(�μσ).

Here the first sum in the right-hand side runs over partitions μ of a fixed
length n, the second sum is over the symmetric group Sn of n letters,

�μσ =
(
μσ(1), . . . , μσ(n)

) ∈ Zn
+

is the integer vector obtained by permuting the parts of μ by σ ∈ Sn, and
Aut(μ) is the permutation group interchanging the equal parts of μ. As a
partition, the length of μ is denoted by �(μ), and its size by

|μ| =
�(μ)∑
i=1

μi.

Often single Hurwitz numbers are labeled by the genus g and a partition μ.
In this case the expression

hg,μ =
r(g, μ)!

|Aut(μ)|Hg,�(μ)(μ1, . . . , μ�(μ))
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is used in the literature, when we do not label the poles, but label the simple
ramification points. The generating function then has an expression in terms
of sumes over partitions:

H(s,p) =

∞∑
g=0

∑
μ

hg,μpμ
sr(g,μ)

r(g, μ)!
.

In terms of the ELSV formula (5.2) we have

H(s,p) =
∑

g≥0, n≥1

1

n!
s2g−2+n

∑
k1+···+kn≤3g−3+n

〈τk1
· · · τkn

Λ∨
g (1)〉g,n(6.5)

n∏
i=1

∞∑
μi=1

μμi+ki

i

μi!
sμipμi

with an appropriate incorporation of (5.5) and (5.6). Recall the Laplace
transform (5.7) here for comparison that is assembled into the free energy

FH(t1, t2 . . . ; �)(6.6)

:=
∑

g≥0, n≥1

1

n!
�2g−2+n FH

g,n(t1, . . . , tn)

=
∑

g≥0,n≥1

1

n!
�2g−2+n

∑
k1+···+kn≤3g−3+n

〈τk1
· · · τkn

Λ∨
g (1)〉g,n

n∏
i=1

∞∑
μi=1

μμi+ki

i

μi!
xμi

i .

It is easy to see that the relation between the two sets of variables is exactly
the power-sum symmetric functions. Let us re-scale the usual power-sum
symmetric function pj of degree j in xi’s with a scale parameter s as follows:

(6.7) pj(s) := s−j
(
xj1 + xj2 + xj3 + · · ·

)
.

Here we consider pj(s) as a degree j polynomial defined on Cn, but the
dimension n is unspecified. Then for every μ ∈ Zn

+, we have

(6.8) d1 · · · dn pμ(s) = s−(μ1+···+μn)

(∑
σ∈Sn

n∏
i=1

μi x
μi−1
σ(i)

)
dx1 · · · dxn

as a differential form on Cn.
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Now from (6.7), (6.8) and (6.4), we obtain

d1 · · · dn Hg,n(s,p(s))(6.9)

=
∑

μ:�(μ)=n

hg,μ d1 · · · dn pμ(s)
sr

r!

=
∑

μ:�(μ)=n

hg,μ
sr

r!
s−|μ| ∑

σ∈Sn

n∏
i=1

μi x
μi−1
σ(i) dx1 · · · dxn

=
∑

μ:�(μ)=n

1

|Aut(μ)| Hg,n(μ1, . . . , μn)s
2g−2+n

∑
σ∈Sn

n∏
i=1

μi x
μi−1
σ(i) dx1 · · · dxn

=
∑
μ∈Zn

+

Hg,n(μ1, . . . , μn)s
2g−2+n

n∏
i=1

μi x
μi−1
i dx1 · · · dxn

= s2g−2+nd1 · · · dn
∑
μ∈Zn

+

Hg,n(μ1, . . . , μn)

n∏
i=1

xμi

i

= s2g−2+nd1 · · · dnFH
g,n(t1, . . . , tn)

= s2g−2+n WH
g,n(t1, . . . , tn).

This formula tells us that the Eynard-Orantin differential form WH
g,n is the

exterior derivative of Hg,n(s,p(s)) with the identification (6.7). Moreover,
we have

(6.10) s2g−2+n FH
g,n(t1, . . . , tn) ≡ Hg,n(s,p(s)) mod Ker(d1 · · · dn)

as functions on Cn.

Remark 6.1. Let us examine (6.10). For n = 1, the power sum (6.7) con-
tains only one term and we have

Hg,1(s,p(s)) = s2g−1
∞∑
k=1

Hg,1(k)pk(s)s
k(6.11)

= s2g−1
∞∑
k=1

Hg,1(k) x
k = s2g−1FH

g,1(t1).
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Thus (6.10) is an equality for n = 1. In general what happens is

Hg,n(s,p) =
1

n!
s2g−2+n

∑
�μ∈Zn

+

Hg,n(�μ)

n∏
i=1

(xμ1

1 + xμ2

2 + · · ·+ xμn
n )(6.12)

= s2g−2+n
∑
�μ∈Zn

+

Hg,n(�μ) x
μ1

1 xμ2

2 · · ·xμn
n

+ (terms with less than n variables).

Therefore, (6.10) is never an equality for n > 1.

However, the principal specialization t = t1 = t2 = t3 = · · · corresponds
to evaluating

(6.13) pj =
(x
s

)j
.

With this identification we have again an equality

H(s,p) =
∑

g≥0,n≥1

1

n!
s2g−2+n

∑
�μ∈Zn

+

Hg,n(�μ) x
(μ1+···+μn)(6.14)

=
∑

g≥0,n≥1

1

n!
s2g−2+nFH

g,n(t, t, . . . , t).

In Section 5 we noted that the Eynard-Orantin recursion for Hurwitz
numbers is the Laplace transform of the cut-and-join equation (5.21) [26, 60].
Another consequence of the same combinatorial equation is a heat equation
[35, 41, 79]

(6.15)
∂

∂s
eH(s,p) =

1

2

⎡⎣∑
i,j≥1

(
(i+ j)pipj

∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)⎤⎦ eH(s,p),

with the initial condition H(0,p) = p1. An important and fundamental fact
here is that the heat equation (6.15) implies that eH(s,p) is a KP τ -function
for each value of s [41, 42, 67, 79]. Let us recall this fact here. We note that a
solution of the heat equation is expanded by the eigenfunction of the second
order operator. In our case of (6.15), the eigenfunctions of the cut-and-join
operator on the right-hand side are given by the Schur functions.
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For a partition μ = (μ1 ≥ μ2 ≥ · · · ) of a finite length �(μ), we define the
shifted power-sum function by

(6.16) pr[μ] :=

∞∑
i=1

[(
μi − i+

1

2

)r

−
(
−i+ 1

2

)r]
.

This is a finite sum of �(μ) terms. In this paper we consider pr[μ] as a
number associated with a partition μ. Then we have [35, 79]

(6.17)
∑
i,j≥1

(
(i+ j)pipj

∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)
sμ(p) = p2[μ] · sμ(p),

where sμ(p) is the Schur function defined by

sμ(p) =
∑

|λ|=|μ|

χμ(λ)

zλ
pλ,

zμ =

�(μ)∏
i=1

mi!i
mi ,

mi = the number of parts in μ of length i,

and χμ(λ) is the value of the irreducible character of the representation μ
of the symmetric group evaluated at the conjugacy class λ. If we write

� =
1

2

∑
i,j≥1

(
(i+ j)pipj

∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)
,

Then

�sμ(p) =
1

2
p2[μ] · sμ(p)

and
∂

∂s
eH(s,p) = �eH(s,p).

Therefore, we have an expansion formula

eH(s,p) =
∑
μ

cμsμ(p)e
1

2
p2[μ]s

for a constant cμ associated with every partition μ. The constants are deter-
mined by the initial value. Since the initial condition is

eH(s,p)
∣∣∣
s=0

= ep1 =
∑
μ

cμsμ(p),
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we conclude that

cμ = sμ(1, 0, 0, . . . , 0).

This follows from the Cauchy identity

(6.18)
1∏

i,j(1− xiyj)
=
∑
μ

sμ(p)sμ(p
y),

where

pj =
∑
i

xji and pyj =
∑
i

yji .

Since we have

∑
μ

sμ(p)sμ(p
y) =

1∏
i,j(1− xiyj)

= exp

⎛⎝−∑
i,j

log(1− xiyj)

⎞⎠(6.19)

= exp

⎛⎝∑
i,j

∑
m≥1

1

m
xmj ymi

⎞⎠
= exp

⎛⎝∑
m≥1

1

m
pmpym

⎞⎠ ,

the restriction of (6.19) to py1 = 1 and pym = 0 for all m ≥ 2 reduces to

ep1 =
∑
μ

sμ(1, 0, . . . , 0)sμ(p).

Because of the determinantal formula for the Schur functions, sμ(1, 0, 0,
. . . , 0)’s are the Plücker coordinate of a point of the Sato Grassmannian. It
follows that

sμ(1, 0, 0, . . . , 0)e
1

2
p2[μ]s

for all μ also form the Plücker coordinates because of (6.16). Then by a
theorem of Sato [73],

eH(s,p) =
∑
μ

sμ(1, 0, 0, . . . , 0)sμ(p)e
1

2
p2[μ]s(6.20)

=
∑
μ

dimμ

|μ|! e
1

2
p2[μ]ssμ(p)
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is a τ -function of the KP equations. Here dimμ is the dimension of the
irreducible representation of the symmetric group S|μ| belonging to the par-
tition μ.

Thus we have established

Theorem 6.2. The Hurwitz partition function ZH(t, �) of (5.31) is obtained
by evaluation of the KP τ -function eH(s,p) at (s,p) = (�,p(�)):

(6.21) ZH(t, �) = eH(�,p(�)).

Here p(�) means the principal specialization

(6.22) pj =
(x
�

)j
for every j = 1, 2, 3, . . . . The t-variable and the x-variable are related by

x =
t− 1

t
e

1

t
−1.

Since we have a concrete expansion formula (6.20) for eH(s,p), it is
straightforward to find a formula for its principal specialization. Let us look
at (6.19) again. This time we apply the principal specialization to both p
and py, meaning that we substitute

pm = xm and pym = ym.

Then we have ∑
μ

sμ(p)sμ(p
y) =

∞∑
m=0

xmym

after the double principal specialization. Therefore, the sum with respect to
all partitions μ is reduced to the sum with respect to only one-part partitions,
i.e., μ = (m). All other partitions contribute 0. Thus sμ = sm = hm, which
is the m-th complete symmetric function. But because of the principal spe-
cialization, we simply have hm = xm. We note that if μ = (m), then (6.16)
reduces to

p2[(m)] =

(
m− 1 +

1

2

)2

−
(
−1 + 1

2

)2

= m(m− 1).

We therefore conclude that

(6.23) ZH(t, �) = eH(�,p(�)) =

∞∑
m=0

1

m!
e

1

2
m(m−1)�

(x
�

)m
.
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We have now established a theorem of Zhou [82].

Theorem 6.3 ([82]). The same Hurwitz partition function satisfies a
differential-difference equation

(6.24)

(
�

∂

∂w
+ e−we−�

∂

∂w

)
ZH(t, �) = 0.

Here again t is a function in w, which is given by

t = 1 +

∞∑
k=1

kk

k!
xk = 1 +

∞∑
k=1

kk

k!
e−wk.

The characteristic variety of this equation, with the identification of

z = −� ∂

∂w
,

is the Lagrangian immersion e−w = ze−z.

Proof. Let us denote

am = e
1

2
m(m−1)�

(x
�

)m
= e(1+2+···+(m−1))�

(x
�

)m
.

Then

ZH(t, �) =

∞∑
m=0

1

m!
am, am+1 = em�am

x

�
, and x

d

dx
am = mam.

We note that x d
dx operates as the multiplication of m to am. Therefore,

−� ∂

∂w
ZH(t, �) = �x

d

dx

∞∑
m=0

1

m!
am = �

∞∑
m=0

1

m!
am+1 = x

∞∑
m=0

1

m!
em�am

= xe�x
d

dxZH(t, �) = e−we−�
∂

∂wZH(t, �).

This completes the proof. �
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Remark 6.4. The asymptotic behavior of ZH(t, �) near � = 0 is deter-
mined by

exp

(
1

�
SH
0 + SH

1

)
.

From (6.24) we have

0 = exp

(
−1

�
SH
0 − SH

1

)(
�

d

dw
+ e−we−�

d

dw

)
exp

(
1

�
SH
0 + SH

1

)∣∣∣∣
�=0

=
d

dw
SH
0

(
t(w)

)
+ e−w exp

(
SH
0

(
t(w − �)

)− SH
0

(
t(w)

)
�

)∣∣∣∣∣
�=0

=
d

dw
SH
0 + e−we−

d

dw
SH

0 = −z + xez.

We thus recover the Lagrangian immersion in this way as well.

Remark 6.5. We can directly verify that the expression (6.23) of ZH(t, �)
satisfies the Schrödinger equation (5.32). Indeed, since x = e−w,[

1

2

∂2

∂w2
+

(
1

2
+

1

�

)
∂

∂w
− ∂

∂�

] ∞∑
m=0

1

m!
e

1

2
m(m−1)� 1

�m
e−mw

=

∞∑
m=0

1

m!
e

1

2
m(m−1)� 1

�m
e−mw

[
1

2
m2 −m

(
1

2
+

1

�

)
− 1

2
m(m− 1) +

m

�

]
= 0.

7. Conclusion

The main purpose of this paper is to derive the Schrödinger equation of the
partition function from the integrated Eynard-Orantin topological recur-
sion, when there is an A-model counting problem whose mirror dual is the
Eynard-Orantin theory. We examined two different types of counting prob-
lem of ramified covering of P1: one is Grothendieck’s dessins d’enfants, and
the other single Hurwitz numbers. The first example leads to a Lagrangian
immersion in T ∗C defined by a Laurent polynomial equation (3.6), while the
latter corresponds to the Lambert curve in T ∗C∗ given by an exponential
equation (5.16).

If we start with the Eynard-Orantin recursion (2.6) and define the prim-
itive functions Fg,n by (2.12), then we have the ambiguity in the constants
of integration. However, if we start with an A-model, then the primitive
functions Fg,n’s are given by the Laplace transform of the solution to the
A-model problem. The examples we have studied in this paper show that
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always there is a natural zero ti = a of Fg,n(t1, . . . , tn) in each variable, such
as (4.2) and (5.13), when 2g − 2 + n > 0. Thus the integration formula

Fg,n(t1, . . . , tn) =

∫ t1

a
· · ·
∫ tn

a
Wg,n(t1, . . . , tn)

uniquely determines Fg,n from Wg,n. The integral transform equation (2.6)
for Wg,n is then equivalent to a differential transform equation for Fg,n, such
as (4.3) and (5.22) for our examples. Because of our assumption for the
Lagrangian immersion that the Lagrangian singularities are simply rami-
fied, the differential recursion equation for Fg,n is expected to be a second
order PDE. Then by taking the principal specialization, we obtain a sec-
ond order differential equation in t and �. For our examples we have thus
established (4.8) and (5.32).

Although (4.8) is holonomic if we consider � a constant, (5.32) is a
PDE containing the �-differentiation as well. Therefore, it is not holonomic.
This difference comes from the constant term 2g − 2 + n in the differential
operator of the right-hand side of (5.22). After taking the n-fold symmetric
exterior differentiation, this term drops, and thus the Eynard-Orantin recur-
sion for Hurwitz numbers [26] takes the same shape as that of the Catalan
case (3.10).

With the analysis of our examples, we notice that the issue of the con-
stants of integration in (2.12) is not a simple matter. Only the corresponding
A-model can dictate which constants of integration we should choose. Oth-
erwise, the Schrödinger equation we wish to establish would take a totally
different shape, depending on the choice of the constants.

Our second equation (6.24) for Hurwitz numbers is much similar to (4.8)
in many ways, such as it is holonomic for each fixed �. But this differential-
difference equation is not a direct consequence of the differential equa-
tion (5.22), while it recovers the Lagrangian immersion more directly than
(5.32). We also note here the commutator relation [P,Q] = P of [49] that we
mentioned in Introduction. We refer to [49] for a further integrable system
theoretic analysis of these equations.

Interestingly, we derive (6.24) from the fact that there is another gener-
ating function for single Hurwitz numbers, which admits a Schur function
expansion. This last point is a more general feature. In [59] we discover that
there is a generalization of (6.24) for the case of double Hurwitz numbers
and r-spin structures, which reduces to (6.24) as a special case. A detailed
analysis of double Hurwitz numbers, or orbifold Hurwitz numbers, will be
given elsewhere.
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So far all these examples have a genus 0 spectral curve. Hence the pro-
posed algebraic K-theory obstruction of Gukov and Su�lkowski [39] automat-
ically vanishes. It is also pointed out by Borot and Eynard [6] that, for a
higher genus spectral curve, the definition of the partition function of the
B-model needs to be modified, by including a theta function factor known
as a non-perturbative sector. This modification also assures the modular
invariance of the partition function. A further investigation is awaited here.

The examples we have carried out in this paper suggest that the expected
Schrödinger equations for the knot A-polynomials should form a rather spe-
cial class of the general Eynard-Orantin mechanism. This seems to be due to
the integer-coefficient Laurent polynomial expression of the A-polynomials,
and their K2 Lagrangian property of Kontsevich.

Appendix A. Proof of the Schrödinger equation for the
Catalan case

In this Appendix we give the proof of Theorem 4.5. In Section 4 we reduced
the proof to verifying the recursion formula (4.16). To prove this, we need
the following trivial lemma.

Lemma A.1. Let f(t1, . . . , tn) be a symmetric function in n variables.
Then

(A.1)

d

dt
f(t, t, . . . , t) = n

[
∂

∂u
f(u, t, . . . , t)

]∣∣∣∣
u=t

;

d2

dt2
f(t, t, . . . , t) = n

[
∂2

∂u2
f(u, t, . . . , t)

]∣∣∣∣
u=t

+ n(n− 1)

[
∂2

∂u1∂u2
f(u1, u2, t, . . . , t)

]∣∣∣∣
u1=u2=t

.

For two functions in one variable g(x) and f(x), we have

(A.2)

[
1

x− y

(
g(x)

df(x)

dx
− g(y)

df(y)

dy

)]∣∣∣∣
x=y

= g′(x)f ′(x) + g(x)f ′′(x).

Proof. For any function f we have

d

dt
f(t, t, . . . , t) =

⎡⎣ n∑
j=1

∂

∂tj
f(t1, t2, . . . , tn)

⎤⎦∣∣∣∣∣∣
t1=t2=···=tn=t

.
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Therefore,

d2

dt2
f(t, t, . . . , t) =

⎡⎣⎛⎝ n∑
j=1

∂

∂tj

⎞⎠2

f(t1, t2, . . . , tn)

⎤⎦∣∣∣∣∣∣
t1=t2=···=tn=t

=

⎡⎣⎛⎝ n∑
j=1

∂2

∂t2j
+ 2

∑
i �=j

∂2

∂ti∂tj

⎞⎠ f(t1, t2, . . . , tn)

⎤⎦∣∣∣∣∣∣
t1=t2=···=tn=t

.

Eq.(A.1) holds when f is symmetric. The second equation (A.2) follows from
l’Hôpital’s rule. �

Now we are ready to give the proof of the recursion (4.16).

Proof of (4.16). The left-hand side of (4.16) is

d

dt
Sm+1 =

∑
2g−2+n=m

1

n!

d

dt
Fg,n(t, . . . , t)

=
∑

2g−2+n=m

1

(n− 1)!

(
∂

∂t1
Fg,n(t1, t, . . . , t)

)∣∣∣∣
t1=t

.

Thus we apply the operation ∑
2g−2+n=m

1

(n− 1)!

to each line of the right-hand side of (4.3) and set all variables equal to t.
From Line 1 of the right-hand side of (4.3), we have

− 1

16

∑
2g−2+n=m

1

(n− 1)!

n∑
j=2

tj
(t1 + tj)(t1 − tj)

×
(
(t21 − 1)3

t21

∂

∂t1
FC
g,n−1(t[ĵ])−

(t2j − 1)3

t2j

∂

∂tj
FC
g,n−1(t[1̂])

)∣∣∣∣∣
t1=···=tn=t

= − 1

32

∑
2g−2+n=m

1

(n− 2)!

[(
d

dt

(t2 − 1)3

t2

)
∂

∂t1
FC
g,n−1(t1, t, . . . , t)

+
(t2 − 1)3

t2
∂2

∂t21
FC
g,n−1(t1, t, . . . , t)

]∣∣∣∣∣
t1=t
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= − 1

32

(
d

dt

(t2 − 1)3

t2

) ∑
2g−2+n=m

1

(n− 1)!

d

dt
FC
g,n−1(t, . . . , t)

− 1

32

(t2 − 1)3

t2

∑
2g−2+n=m

1

(n− 2)!

∂2

∂t21
FC
g,n−1(t1, t, . . . , t)

]∣∣∣∣∣
t1=t

= − 1

32

(
d

dt

(t2 − 1)3

t2

) ∑
2g′−2+n′=m−1

1

n′!
d

dt
FC
g′,n′(t, . . . , t)

− 1

32

(t2 − 1)3

t2

∑
2g′−2+n′=m−1

1

(n′ − 1)!

∂2

∂t21
FC
g′,n′(t1, t, . . . , t)

]∣∣∣∣∣
t1=t

= − 1

32

(
d

dt

(t2 − 1)3

t2

)
d

dt
Sm

− 1

32

(t2 − 1)3

t2

∑
2g′−2+n′=m−1

1

(n′ − 1)!

∂2

∂t21
FC
g′,n′(t1, t, . . . , t)

]∣∣∣∣∣
t1=t

.

From Line 2 we obtain

− 1

16

∑
2g−2+n=m

1

(n− 1)!

n∑
j=2

(t21 − 1)2

t21

∂

∂t1
FC
g,n−1(t[ĵ])

∣∣∣∣∣
t1=···=tn=t

= − 1

16

(t2 − 1)2

t2

∑
2g−2+n=m

1

(n− 2)!

∂

∂t1
FC
g,n−1(t1, t, . . . , t)

∣∣∣∣∣
t1=t

= − 1

16

(t2 − 1)2

t2
d

dt
Sm.

Line 3 produces

− 1

32

∑
2g−2+n=m

1

(n− 1)!

[
(t21 − 1)3

t21

∂2

∂u1∂u2

FC
g−1,n+1(u1, u2, t2, t3, . . . , tn)

]∣∣∣∣
u1=u2=t1=···=tn=t

= − 1

32

(t2 − 1)3

t2

∑
2g−2+n=m

1

(n− 1)!

[
∂2

∂u1∂u2
FC
g−1,n+1(u1, u2, t, . . . , t)

]∣∣∣∣
u1=u2=t

= − 1

32

(t2 − 1)3

t2

∑
2g′−2+n′=m−1,n′≥2

1

(n′ − 2)![
∂2

∂u1∂u2
FC
g′,n′(u1, u2, t, . . . , t)

]∣∣∣∣
u1=u2=t

.



Spectral curves and the Schrödinger equation 1003

Finally, Line 4 gives

− 1

32

∑
2g−2+n=m

1

(n− 1)!

[
(t21 − 1)3

t21

×
stable∑

g1+g2=g
I�J={2,3,...,n}

∂

∂t1
FC
g1,|I|+1(t1, tI)

∂

∂t1
FC
g2,|J |+1(t1, tJ)

]∣∣∣∣∣
t1=···=tn=t

= − 1

32

(t2 − 1)3

t2

∑
2g−2+n=m

1

(n− 1)!

×
stable∑

g1+g2=g
n1+n2=n−1

[(
n− 1

n1

)
∂

∂t1
FC
g1,n1+1(t1, t, . . . , t)

∂

∂t1
FC
g2,n2+1(t1, t, . . . , t)

]∣∣∣∣∣
t1=t

= − 1

32

(t2 − 1)3

t2
×

∑
2g−2+n=m

stable∑
g1+g2=g

n1+n2=n−1

[
1

n1!

∂

∂t1
FC
g1,n1+1(t1, t, . . . , t)

1

n2!

∂

∂t1
FC
g2,n2+1(t1, t, . . . , t)

]∣∣∣∣∣
t1=t

= − 1

32

(t2 − 1)3

t2
×

∑
2g−2+n=m

stable∑
g1+g2=g

n1+n2=n−1

1

(n1 + 1)!

d

dt
FC
g1,n1+1(t, . . . , t)

1

(n2 + 1)!

d

dt
FC
g2,n2+1(t, . . . , t)

= − 1

32

(t2 − 1)3

t2

∑
a+b=m+1

a,b≥2

dSa

dt

dSb

dt
.

In the last line we note that unstable geometries (g, n) = (0, 1) and (0, 2)
are included only in S0 and S1. This line gives the correct contribution of
the product term in (4.16).

Since

− 1

32

(
d

dt

(t2 − 1)3

t2

)
− 1

16

(t2 − 1)2

t3
= − 1

16

(t2 − 1)2

t3
(2t2 + t+ 1),

we have the correct term for dSm/dt in (4.16). The remaining terms are
second derivatives, and we calculate
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− 1

32

(t2 − 1)3

t2

∑
2g′−2+n′=m−1

1

(n′ − 1)!

∂2

∂t21
FC
g′,n′(t1, t, . . . , t)

∣∣∣∣∣
t1=t

− 1

32

(t2 − 1)3

t2

∑
2g′−2+n′=m−1,n′≥2

1

(n′ − 2)![
∂2

∂u1∂u2
FC
g′,n′(u1, u2, t, . . . , t)

]∣∣∣∣
u1=u2=t

= − 1

32

(t2 − 1)3

t2

∑
2g′−2+n′=m−1

1

n′!
×
(
n′ ∂2

∂t21
FC
g′,n′(t1, t, . . . , t)

∣∣∣∣∣
t1=t

+ n′(n′ − 1)

[
∂2

∂u1∂u2
FC
g′,n′(u1, u2, t, . . . , t)

]∣∣∣∣
u1=u2=t

)

= − 1

32

(t2 − 1)3

t2
d2

dt2
Sm.

This completes the derivation of (4.16) from (4.3). �

Appendix B. Hierarchy of equations for Sm

In this paper we proved that the Catalan and Hurwitz partition functions
Z satisfy appropriate Schrödinger equations, which can be written as

(B.1) Â Z = 0.

In general such partition functions have an expansion Z = expF =
exp

(∑∞
m=0 �

m−1Sm

)
, where Sm are expressed in terms of Fg,n as in (4.9)

(B.2) Sm =
∑

2g−2+n=m−1

1

n!
Fg,n,

while Â is a differential (or a difference-differential) operator expressed in
terms of x and � d

dx . Our proofs relied on the knowledge of the recursion
equations satisfied by Fg,n, and we did not need to determine coefficients
Sm explicitly. However, from the viewpoint of the asymptotic expansion in
�, these are the coefficients Sm which play the fundamental role. They can
be determined order by order in � once the form of the operator Â is known,
or in turn – if the form of Sm is known, it allows to determine, also order
by order in �, the operator Â from the knowledge of its symbol A = A(x, y).
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The relation between Sm and Â can be encoded in a hierarchy of differential
equations which was analyzed in [39]. In what follows we summarize the
structure of this hierarchy and use it to determine several coefficients Sm in
the examples considered in this paper.

As Â is an operator expression, we should specify the ordering of x and
� d
dx operators it is built from. Let us choose the ordering such that, in each

monomial summand, all � d
dx are to the right of x. In general, the Schrödinger

operator can be written then in the form

(B.3) Â = Â0 + �Â1 + �2Â2 + · · · ,

which reduces in the �→ 0 limit to the symbol A0 = Â0 = A = A(x, y).
The examples considered in this paper are in fact quite special – in both
Catalan and Hurwitz case all Ak = 0 for k ≥ 1, and the issue of ordering is
irrelevant (because monomials involving both x and � d

dx do not arise), so
that the Schrödinger operator can be obtained from the symbol A0 just by
the substitution y → � d

dx . Nonetheless, let us recall the most general form
of the hierarchy of differential equations which relates a general operator of
the form (B.3) to the coefficients Sm. This hierarchy can be written as [39]

(B.4)

n∑
r=0

DrAn−r = 0 ,

where An−r are symbols of the operators Ân−r, and Dr are differential oper-
ators of degree 2r, which can be written as polynomials in ∂y ≡ ∂

∂y , whose
coefficients are polynomial expressions in functions Sm and their derivatives
(in what follows we denote ′ ≡ d

dx). The operators Dr are defined via the
generating function

∞∑
r=0

�rDr = exp

( ∞∑
n=1

�ndn

)
,

where

dn =

n+1∑
r=1

S
(r)
n+1−r

r!
(∂y)

r .
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In particular, for small values of n we get

d1 =
1

2
S′′
0∂

2
y + S′

1∂y ,

d2 =
1

6
S′′′
0 ∂3

y +
1

2
S′′
1∂

2
y + S′

2∂y ,

d3 =
1

4!
S
(4)
0 ∂4

y +
1

3!
S′′′
1 ∂3

y +
1

2
S′′
2∂

2
y + S′

3∂y ,

so that

D0 = 1 ,

D1 =
S′′
0

2
∂2
y + S′

1∂y ,

D2 =
(S′′

0 )
2

8
∂4
y +

1

6

(
S′′′
0 + 3S′′

0S
′
1

)
∂3
y +

1

2

(
S′′
1 + (S′

1)
2
)
∂2
y + S′

2∂y ,

...

In consequence, at each order �n in (B.4) we get:

�0 : A = 0 ,(B.5)

�1 :

(
S′′
0

2
∂2
y + S′

1∂y

)
A+A1 = 0 ,(B.6)

...

�n : DnA+Dn−1A1 + · · ·+An = 0 ,(B.7)
...

We can now use the above formalism to analyze Schrödinger equations
for the generalized Catalan and Hurwitz numbers. We already stressed that
these equations are special as they have no � corrections, i.e. all Ak = 0 for
k ≥ 1. We can test this statement – or, in other words, reconstruct entire Â
from the form of A – using (B.7). In particular, from the Proposition 4.4,
for Catalan numbers we have

SC
0 = −1

2
z2 + log z, SC

1 = −1

2
log(1− z2).

Plugging into (B.6) expressed in terms of z and d
dx =

(
dx
dz

)−1 d
dz (and x(z) =

z + z−1), we indeed find A1 = 0. From the knowledge of the recursion rela-
tions for Fg,n we could now reconstruct other Sm via (B.2), and use the above
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hierarchy to show that higher Ak vanish as well. However, from our earlier
considerations we have essentially proven this, using the form of recursion
relations for Fg,n, without the need of writing down Sm explicitly. Nonethe-
less, in various situations it is necessary to know the form of coefficients
Sm or the recursion they satisfy, so we can also use the above formalism in
this context. The equation (B.7) indeed gives a recursion directly for Sm,
which in addition (due to Ak = 0 for k ≥ 1) reduces simply to DnA = 0.
Expressing this recursion in terms of z-variable, we find in particular

dSC
2

dx
=

z5(2z2 + 3)

(z2 − 1)5
,

dSC
3

dx
= −5z7(3 + 7z2 + 2z4)

(z2 − 1)8
,

dSC
4

dx
=

1− 9z2 + 36z4 − 84z6 − 4599z8 − 13005z10− 4440z12

360(−1 + z2)9
.

Moreover, from (4.2) we have SC
m(z = 0) = 0, which fixes a constant of

integration, so that integrating the above formulas gives

SC
2 =

z4(9 + z2)

12(1− z2)3
,

SC
3 =

5z6(1 + z2)

2(z2)6 − 1
,

SC
4 =

z8(−4725− 12879z2 − 4524z4 + 36z6 − 9z8 + z10)

360(z2 − 1)9
.

This exercise can also be repeated for the case of the generalized Hurwitz
numbers. From (5.14) and (5.20) we have

SH
0 = z − 1

2
z2, SH

1 = −1

2

(
z + log(1− z)

)
.

Plugging into (B.6) confirms that the first correction to the classical Hurwitz
curve vanishes, A1 = 0, as it should. Solving further the hierarchy (B.7),
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which again reduces to DnA = 0, results in

dSH
2

dx
=

z3(4 + z2)

8(1− z)5
,

dSH
3

dx
= −z4(12 + 8z + 9z2 + z4)

16(z − 1)8
,

dSH
4

dx
=

z5(192 + 352z + 376z2 + 104z3 + 76z4 + 5z6)

128(1− z)11
.

These equations can be further integrated to get SH
m , with the integration

constant fixed by SH
m(z = 0) = 0, which follows from (5.13).
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