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Squaring the magic

Sergio L. Cacciatori, Bianca L. Cerchiai and Alessio Marrani

We construct and classify all possible Magic Squares (MS’s) related
to Euclidean or Lorentzian rank-3 simple Jordan algebras, both
on normed division algebras and split composition algebras. Be-
sides the known Freudenthal-Rozenfeld-Tits MS, the single-split
Günaydin-Sierra-Townsend MS, and the double-split Barton-
Sudbery MS, we obtain other 7 Euclidean and 10 Lorentzian novel
MS’s.

We elucidate the role and the meaning of the various non-
compact real forms of Lie algebras, entering the MS’s as sym-
metries of theories of Einstein-Maxwell gravity coupled to non-
linear sigma models of scalar fields, possibly endowed with local
supersymmetry, in D = 3, 4 and 5 space-time dimensions. In par-
ticular, such symmetries can be recognized as the U -dualities or
the stabilizers of scalar manifolds within space-time with standard
Lorentzian signature or with other, more exotic signatures, also
relevant to suitable compactifications of the so-called M∗- and
M ′- theories. Symmetries pertaining to some attractor U -orbits
of magic supergravities in Lorentzian space-time also arise in this
framework.

1. Introduction

Magic Squares (MS’s), arrays of Lie algebras enjoying remarkable symmetry
properties under reflection with respect to their main diagonal, were dis-
covered long time ago by Freudenthal, Rozenfeld and Tits [1–3], and their
structure and fascinating properties have been studied extensively in math-
ematics and mathematical physics, especially in relation to exceptional Lie
algebras (see e.g. [4–12]).

Following the seminal papers by Günaydin, Sierra and Townsend [13, 14],
MS’s have been related to the generalized electric-magnetic (U -)duality1

symmetries of particular classes of Maxwell-Einstein supergravity theories

1Here U -duality is referred to as the “continuous” symmetries of [15]. Their dis-
crete versions are the U -duality non-perturbative string theory symmetries intro-
duced by Hull and Townsend [16].
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(MESGT’s), called magic (see also [17–21]). In particular, non-compact,
real forms of Lie algebras, corresponding to non-compact symmetries of
(super)gravity theories, have become relevant as symmetries of the corre-
sponding rank-3 simple Jordan algebras [22], defined over normed division
(A = R,C,H,O) or split (AS = R,CS ,HS ,OS) composition algebras [23].

Later on, some other MS’s have been constructed in literature through
the exploitation of Tits’ formula [2] (cfr. (2.1) below). On the other hand,
the role of Lorentzian rank-3 simple Jordan algebras in constructing unified
MESGT’s in D = 5 and 4 Lorentzian space-time dimensions (through the
determination of the cubic Chern-Simons FFA coupling in the Lagrangian
density) has been investigated in [24–26].

In the present paper, we focus on Tits’ formula (and its trialitarian refor-
mulation, namely Vinberg’s formula [4]; cfr. (2.17) below), and construct and
classify all possible MS structures consistent with Euclidean or Lorentzian
rank-3 simple Jordan algebras. We also elucidate the MS structure, in terms
of maximal and symmetric embeddings on their rows and columns.

It should be remarked that most of the MS’s which we determine (classi-
fied according to the sequences of algebras entering their rows and columns)
are new and never appeared in literature. Indeed, as mentioned above,
before the present survey only particular types of MS’s, exclusively related
to Euclidean Jordan algebras, were known, namely the original Freudenthal-
Rozenfeld-Tits (FRT) MS L3(A,B) [1–3], the single-split supergravity
Günaydin-Sierra-Townsend (GST) MS L3(AS ,B) [13], and the double-split
Barton-Sudbery (BS) MS L3(AS ,BS) [8] (which also appeared in [27]).
Besides these ones, only a particular “mixed” MS (denoted as L3(Ã,B) in
our classification; see below) recently appeared in [21], in the framework
of an explicit construction of a manifestly maximally covariant symplectic
frame for the special Kähler geometry of the scalar fields of D = 4 magic
MESGT’s. The entries of the last row/ column of the magic squares have
been computed also in [28], depending on the norm of the composition alge-
bras involved.

Furthermore, we elucidate the role and the meaning of the various non-
compact, real forms of Lie algebras as symmetries of Einstein-Maxwell grav-
ity theories coupled to non-linear sigma models of scalar fields, possibly
endowed with local supersymmetry. We consider U -dualities in D = 3, 4
and 5 space-time dimensions, with the standard Lorentzian signature or
with other, more exotic signatures, such as the Euclidean one and others
with two timelike dimensions. Interestingly, symmetries pertaining to par-
ticular compactifications of 11-dimensional theories alternative to M -theory,
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namely to the so-called M∗-theory and M ′-theory [29, 30], appear in this
framework.

Frequently, the Lie algebras entering the MS’s also enjoy an interpre-
tation as stabilizers of certain orbits of an irreducible representation of the
U -duality itself, in which the (Abelian) field strengths of the theory sit (pos-
sibly, along with their duals). The stratification of the related representation
spaces under U -duality has been extensively studied in the supergravity lit-
erature, starting from [31, 32] (see e.g. [33] for a brief introduction), in
relation to extremal black hole solutions and their attractor behaviour (see
e.g. [34] for a comprehensive review).

A remarkable role is played by exceptional Lie algebras. It is worth
observing that the particular non-compact real forms2 f4(−20) and e6(−14),
occurring as particular symmetries of flux configurations supporting non-
supersymmetric attractors in magic MESGT’s, can be obtained in the frame-
work of MS’s only by considering Lorentzian rank-3 Jordan algebras on
division or split algebras.

Thus, the present investigation not only classifies all MS’s based on
rank-3 Euclidean or Lorentzian simple Jordan algebras, but also clarifies
their role in generating non-compact symmetries of the corresponding (pos-
sibly, locally supersymmetric) theories of gravity in various dimensions and
signatures of space-time.

The plan of the paper is as follows.
In Sec. 2, we recall some basic facts and definitions on rank-3 (alias

cubic) Jordan algebras and MS’s, and present Tits’ and Vinberg’s formulæ,
which will be crucial for our classification.

Then, in Sec. 3 we compute and classify all 4× 4 MS’s based on rank-3
simple (generic) Jordan algebras of Euclidean type. We recover the known
FRT, GST and BS MS’s, and other 7 independent MS arrays, and we analyze
the role of the corresponding symmetries in (super)gravity theories.

Sec. 4 deals with rank-3 simple (generic) Jordan algebras of Lorentzian
type, and with the corresponding MS structures, all previously unknown.
In particular, the Lorentzian FRT MS (Table 11), which is symmetric and
contains only non-compact Lie algebras, is relevant to certain (non-super-
symmetric) attractors in the corresponding theory.

2For simplicity’s sake, in the following treatment, we will not distinguish between
algebra level and group level. In the present investigation, indeed, we are not inter-
ested in dealing with various discrete factors Zn possibly arising at group level
[10].
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A detailed analysis of the MS structure, and further group-theoretical
and physical considerations, are given in the concluding Sec. 5.

2. Magic squares and Jordan algebras

We start by briefly recalling the definition of a magic square: AMagic Square
(MS) is an array of Lie algebras L(A,B), where A and B are normed division
or split composition algebras which label the rows and columns, respectively.
The entries of L(A,B) are determined by Tits’ formula [2]:

(2.1) L (A,B) = Der (A)⊕Der
(
JB

)
�
(
A
′ ⊗ J′B

)
.

The symbol ⊕ denotes direct sum of algebras, whereas � stands for direct
sum of vector spaces. Moreover, Der are the linear derivations, with JB we
indicate the Jordan algebra on B, and the prime amounts to considering
only traceless elements.

In order to understand all these ingredients of the Tits’ formula (2.1),
it is necessary to introduce some notation first. The octonions are defined
through the isomorphism O ∼= 〈1, e1, . . . , e7〉R, where 〈 · 〉R means the real
span. The multiplication rule of the octonions is described by the Fano
plane:

Figure 1: The Fano plane and the octonionic product

Let (ei, ej , ek) be an ordered triple of points lying on a given line with
the order specified by the direction of the arrow. Then the multiplication is
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given by:

ei ej = ek, and ej ei = −ek,

together with:

e2i = −1, and 1 ei = ei 1 = ei.

O′ denotes the imaginary octonions. The split octonions OS can be obtained
e.g. by substituting the imaginary units ei → ẽi, i = 4, 5, 6, 7, so that they
satisfy ẽ2i = 1 instead of e2i = −1 (see e.g. [35]).

If the quaternions H and the complex numbers C are represented e.g. by
the isomorphisms: HS

∼= 〈1, e1, e5, e6〉R, and CS
∼= 〈1, e4〉R, the split quater-

nions HS and the split complex numbers CS can be represented by the
isomorphisms:

HS
∼= 〈1, e1, ẽ5, ẽ6〉R, CS

∼= 〈1, ẽ4〉R.(2.2)

As for the octonions, the prime denotes the purely imaginary quaternions H′

and complex numbers C′, respectively.
An inner product can be defined on any of the above division algebras

A as:

(2.3) 〈x1, x2〉 := Re(x̄1x2), x1, x2 ∈ A,

where the conjugation “ · ” changes the sign of the imaginary part.
The algebra of derivations Der(A) is given by:

Der(A) := {D ∈ End(A) |D(x1x2) = D(x1)x2 + x1D(x2)(2.4)

∀x1, x2 ∈ A},

i.e. by the maps satisfying the Leibniz rule. Then, if L and R respectively
are the left and right translation in A, a derivation Dx1,x2

∈Der(A) can be
constructed from x1, x2 ∈ A as:

(2.5) Dx1,x2
:= [Lx1

, Lx2
] + [Rx1

, Rx2
] + [Lx1

, Rx2
],

which, when applied to an element x3 ∈ A, becomes:

Dx1,x2
(x3) =

[
[x1, x2], x3

]− 3
(
(x1x2)x3 − x1(x2x3)

)
.

The main ingredient entering in the Tits’ formula (2.1) is the Jordan
algebra J [22, 23], which is defined in the following way: A Jordan algebra



928 S. L. Cacciatori, B. L. Cerchiai and A. Marrani

J is a vector space defined over a ground field F, equipped with a bilinear
product ◦ satisfying:

X ◦ Y = Y ◦X;(2.6)

X2 ◦ (X ◦ Y ) = X ◦ (X2 ◦ Y )
, ∀X,Y ∈ J.(2.7)

The Jordan algebras relevant for the present investigation are rank-3 Jordan
algebras J3 over F = R, which also come equipped with a cubic norm:

N : J → R,

N (λX) = λ3N (X) , ∀λ ∈ R, X ∈ J.(2.8)

There is a general prescription for constructing rank-3 Jordan algebras,
due to Freudenthal, Springer and Tits [36–38], for which all the properties
of the Jordan algebra are essentially determined by the cubic norm N (for
a sketch of the construction see also [39]).

In the present investigation, we realize a rank-3 Jordan algebra JB over
the division or split algebra B as the set of all 3× 3 matrices J with entries
in B satisfying:

(2.9) ηJ†η = J,

where η = diag{ε, 1, 1}, with ε = 1 for the Euclidean Jordan algebra JB3 , and
ε = −1 for the Lorentzian Jordan algebra3 JB1,2 (see e.g. [24]), i.e. J is of the
form:

(2.10) J =

⎛
⎝ a1 x1 x2

εx1 a2 x3
εx2 x3 a3

⎞
⎠ ,

with ai ∈ R, and xi ∈ B, i = 1, 2, 3. Thus, out of the all the Jordan algebras
from the classification in [23], we are restricting ourselves to the considera-
tion of all the simple rank-3 Jordan algebras except for the non-generic case

3The following Jordan algebraic isomorphism holds:

JB1,2 ∼ JB2,1,

and in general:
JBM,N ∼ JBN,M .
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of J = R itself4. The (commutative) Jordan product ◦ (2.6)–(2.7) is realized
as the symmetrized matrix multiplication:

(2.11) j1 ◦ j2 := 1

2
(j1j2 + j2j1), j1, j2 ∈ JB3 .

It is then possible to introduce an inner product on the Jordan algebra:

(2.12) 〈j1, j2〉 := Tr(j1 ◦ j2).

As an example, for both the rank-3 Jordan algebras JO3 and JOS

3 , the
relevant vector space is the representation space 27 pertaining to the fun-
damental irrep. of E6(−26) resp. E6(6), and the cubic norm N is realized in
terms of the completely symmetric invariant rank-3 tensor dIJK in the 27
(I, J,K = 1, . . . , 27):

(27× 27× 27)s � ∃!1 ≡ dIJK ;(2.13)

N (X) ≡ dIJKXIXJXK .(2.14)

A detailed study of the rank-3 totally symmetric invariant d-tensor of Lor-
entzian rank-3 Jordan algebras can be found in [24].

The last important ingredient entering Eq. (2.1) is the Lie product [., .],
which extends the multiplication structure also to A′ ⊗ J′B, thus endowing
L (A,B) with the structure of a (Lie) algebra. Its general explicit expression
can be found e.g. in Eq. (2.5) of [12]:

[h1 ⊗ j1, h2 ⊗ j2] :=
1

12
〈j1, j2〉Dh1,h2

− 〈h1, h2〉[Lj1 , Lj2 ](2.15)

+
1

2
[h1, h2]⊗ (j1 ◦ j2 − 1

3
〈j1, j2〉I3).

Tits’ formula (2.1) can be rewritten in a more symmetric way in A

and B by generalizing the concept of derivations to that of triality (see e.g.
[4, 11, 35]):

4The MS row which can be associated to J = R and to the semi-simple rank-3
Jordan algebras J = R⊕Γm,n [23] is known (see e.g. Table 1 of [40], as well as Table
1 of [27]).
By their very definition, these algebras already have a signature, and, therefore,

it would not make sense to treat them here.
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Tri(A) = {(A,B,C) with A,B,C ∈ End(A)(2.16)

| A(x1x2) = B(x1)x2 + x1C(x2)}.

This leads to Vinberg’s formula [4]:

(2.17) L(A,B) = tri(A)⊕ tri(B)� 3A⊗ B,

which implies:

(2.18) L(A,B) = L(B,A),

a relation which will be useful in subsequent treatment.
A remarkable property of Jordan algebras is that they have various sym-

metry groups, which are relevant to supergravity theories and appear as
entries in the MS’s.

The derivations algebra Der(JB) generates the automorphisms group
Aut(JB) of the Jordan algebra.

The structure algebra Str(A), which for a general algebra A is defined to
be the Lie algebra generated by the left and right multiplication maps, in
the case of a Jordan algebra can be expressed as [8]:

(2.19) Str
(
JB

)
:= Der

(
JB

)
� L

(
JB

)
with L

(
JB

)
:= {Lj |j ∈ JB},

and its Lie algebra structure follows from [D,Lj ] = LDj for D ∈ Der(JB),
j ∈ JB and [Lj1 , Lj2 ] ∈ Der(JB) for j1, j2 ∈ JB.

The reduced structure algebra Str0
(
JB

)
is then defined as the quotient

of Str(JB) by the subspace of multiples of L1, with 1 the identity of JB. It
can be verified that Str0

(
JB

)
= L(CS ,B).

The conformal algebra Conf(JB) is the vector space [41, 42]:

(2.20) Conf
(
JB

)
:= Str

(
JB

)
� 2 JB,

and its Lie algebra structure is defined by the brackets [(x, 0), (y, 0)] = 0 =
[(0, x), (0, y)] and [(x, 0), (0, y)] = 1

2 (Lxy + [Lx, Ly]) for (x, y) ∈ Conf
(
JB

)
. It

turns out that Conf
(
JB

)
= L(HS ,B).

Finally, for the quasi-conformal algebra QConf(JB) [27, 41–43] (see also
e.g. Sec. 3.5 of [44]), it can be seen that QConf

(
JB

)
= L(OS ,B).
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3. Magic squares L3 over rank-3 Euclidean Jordan algebras

By exploiting Tits’ formula (2.1), we can now construct all possible MS’s
L3 based on rank-3 Euclidean Jordan algebras over the division algebras
R, C, H, O, CS , HS and OS , by taking into account that C ⊂ H,HS and
H ⊂ O,OS , while CS ⊂ HS and HS ⊂ OS . Thus, the possible sequences to
be specified on the rows and columns of L3 are only four:

(3.1)

A = R,C,H,O;

Â = R,C,H,OS ;

Ã = R,C,HS ,OS ;

AS = R,CS ,HS ,OS ,

giving rise a priori to sixteen possible structures of Euclidean MS L3.
However, by virtue of (2.17) and (2.18), it is enough to explicitly list only

the magic squares for which the number of split division algebras labeling
the rows is bigger or equal to that of the columns. This yields only ten
different structures of Euclidean MS L3, which we list and analyze below.

1. The Freudenthal-Rozenfeld-Tits (FRT) MS5 L3(A,B) [1–3]

R C H O

R SO(3) SU(3) USp(6) F4(−52)
C SU(3) SU(3)× SU(3) SU(6) E6(−78)
H USp(6) SU(6) SO(12) E7(−133)
O F4(−52) E6(−78) E7(−133) E8(−248)

Table 1: The Freudenthal-Rozenfeld-Tits (FRT) MS L3(A,B)

This is a symmetric MS (L3(A,B) = L3(A,B)
T ), and it contains only

compact (real) Lie algebras.

5The subscript in brackets denotes the character χ of the real form under con-
sideration, namely the difference between the number of non-compact and compact
generators [45]. Thus, in the case of compact real forms (as for all entries of FRT
MS), the character is nothing but the opposite of the dimension of the algebra/group
itself.
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2. The Günaydin-Sierra-Townsend (GST) single-split MS L3(AS ,B) [13]

R C H O

R SO(3) SU(3) USp(6) F4(−52)
CS SL(3,R) SL(3,C) SU∗(6) E6(−26)
HS Sp(6,R) SU(3, 3) SO∗(12) E7(−25)
OS F4(4) E6(2) E7(−5) E8(−24)

Table 2: The Günaydin-Sierra-Townsend (GST) single-split MS L3(AS ,B)

This is a non-symmetric MS (L3(AS ,B) �= L3(AS ,B)
T ), and it displays sym-

metries relevant to (quarter-maximal) Maxwell-Einstein supergravity theo-
ries (MESGT’s) with 8 supersymmetries, in various space-time signatures
and dimensions.

The fourth row displays QConf
(
JB3

)
, the quasi-conformal symmetries

of JB3 [41, 42], which are the U -duality symmetries of N = 4 magic theories
in6 D = (2, 1) (i.e. Lorentzian) space-time dimensions [13, 46], based on the
extended Freudenthal triple system (EFTS) T

(
JB3

)
.

The third row displays Conf
(
JB3

)
, the conformal symmetries of JB3

(2.20) [41, 42]:

• They are the U -duality symmetries ofN=2,D=(3,1)magic MESGT’s
[13, 14] based on the Freudenthal triple system (FTS) M

(
JB3

)
[47].

• Up to a commuting Ehlers SL(2,R) factor, they are the stabilizers
of the extended scalar manifold of the T

(
JB3

)
-based magic theories in

D = (3, 0) (i.e. Euclidean) space-time dimensions [48, 49].

• However, other (exotic) supergravity theories can be considered, ob-
tained from suitable compactifications of theories in 11 dimensions
alternative to the usual D = (10, 1) M -theory, but still consistent with
the existence of a real 32-dimensional spinor, namely M∗-theory in
D = (9, 2) and M ′-theory in D = (6, 5) [29]. By exploiting the analy-
sis of [30], Conf

(
JB3

)
(up to the Ehlers SL(2,R)) factor can also be

regarded as the stabilizers of the the extended scalar manifold of the
T
(
JB3

)
-based magic theories in D = (3, 0)M∗ , D = (3, 0)M ′ and D =

(0, 3)M ′ dimensions, where the subscript denotes the 11-dimensional
origin throughout. For instance, for the theories based on T

(
JH3

)
,

6The first and second entries in the pair D = (s, t) are to be read as the number
of spacelike (s) and timelike (t) dimensions.
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T
(
JO3

)
and T

(
JOS

3

)
, the following embedding of symmetric cosets

holds:

(3.2)
E7(−5)

SO∗(12)× SL(2,R)
T(JH

3 ), H∗

⊂

⎡
⎢⎢⎢⎣

E8(−24)
E7(−25) × SL(2,R)

T(JO

3 ), H∗

∩ E8(8)

SO∗(16)
T
(
J
OS
3

)

⎤
⎥⎥⎥⎦ ,

where “H∗” denotes the para-quaternionic structure of the correspond-
ing spaces, which have vanishing character (χ = 0; see e.g. [50] for a
recent study of such manifolds).

The second row displays Str0
(
JB3

)
, the reduced structure symmetries

of JB3 [8]:

• They are the U -duality symmetries ofN=2,D=(4,1)magic MESGT’s
[13, 14] based on JB3 .

• They are the stabilizers of the non-BPS ZH �= 0 “large” U -orbit of the
corresponding MESGT in D = (3, 1) [31, 51].

• They are the stabilizers (up to a Kaluza-Klein SO(1, 1) commuting fac-
tor) of the scalar manifolds of M

(
JB3

)
-based N = 2, magic MESGT’s

in D = (4, 0).

• Considering more exotic theories, they are the stabilizers (up to a
Kaluza-Klein SO(1, 1) commuting factor) of the scalar manifolds of
M

(
JB3

)
-based N = 2, magic MESGT’s in D = (4, 0)M∗ , D = (4, 0)M ′

and D = (0, 4)M ′ dimensions. For instance, for the theories based on

M
(
JH3

)
,M

(
JO3

)
andM

(
JOS

3

)
, the following embedding of symmetric

cosets holds:

(3.3)
SO∗(12)

SU∗(6)× SO(1, 1)
M(JH

3 ), K∗

⊂

⎡
⎢⎢⎢⎣

E7(−25)
E6(−26) × SO(1, 1)

M(JO

3 ), K∗

∩ E7(7)

SU∗(8)
M

(
J
OS
3

)

⎤
⎥⎥⎥⎦ ,

where “K∗” denotes the (special) pseudo-Kähler structure of the cor-
responding spaces, which also have vanishing character (χ = 0).
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The first row displays Aut
(
JB3

)
= mcs

(
Str0

(
JB3

))
, namely the auto-

morphisms of JB3 :

• They are the stabilizers of the scalar manifolds of N = 2, D = (4, 1)
magic MESGTs [13, 14] based on JB3 .

• They are stabilizers of the (1/2-)BPS “large” U -orbit in the same
theory [52, 53].

• Considering more exotic theories, Aut
(
JB3

)
can also be regarded as

the stabilizers of the scalar manifolds of the same JB3 -based theory in
D = (0, 5)M ′ dimensions.

3. The Barton-Sudbery (BS) double-split MS L3(AS ,BS) [8], which also
appeared more recently in [27]

R CS HS OS

R SO(3) SL(3,R) Sp(6,R) F4(4)

CS SL(3,R) SL(3,R)× SL(3,R) SL(6,R) E6(6)

HS Sp(6,R) SL(6,R) SO(6, 6) E7(7)

OS F4(4) E6(6) E7(7) E8(8)

Table 3: The Barton-Sudbery (BS) double-split MS L3(AS ,BS)

This is a symmetric MS (L3(AS ,BS ) = L3(AS ,BS)
T ), and it displays

symmetries relevant to Maxwell-Einstein theories of gravity with 8 (quarter-
maximal, B(S) = R) or 32 (maximal, BS = OS) supersymmetries, or without
(BS = CS ,HS) any supersymmetry at all (see e.g. [27]).

The fourth row displays QConf
(
JBS

3

)
, the quasi-conformal symme-

tries of JBS

3 , which are the U -duality symmetries of ME(S)GT’s in D = (2, 1)

dimensions, based on the EFTS T
(
JBS

3

)
[41, 42].

The third row displays Conf
(
JBS

3

)
, the conformal symmetries of JBS

3

[41, 42]:

• They are the U -duality symmetries of D = (3, 1) ME(S)GT’s based on

the FTS M
(
JBS

3

)
[47].

• By extending the analysis of [30] to non-maximally supersymmetric
theories of gravity, they also are (up to a commuting Ehlers SL(2,R)

factor) the stabilizers of the extended scalar manifold of the T
(
JBS

3

)
-

based magic theories in D = (2, 1)M∗ , D = (1, 2)M∗ , D = (2, 1)M ′ , and
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D = (1, 2)M ′ dimensions. This holds with the exclusion of the case
BS = OS , in which maximal supersymmetry constrains the stabilizer
to match the R-symmetry, namely SO(8, 8). For instance, for the the-

ories based on T
(
JHS

3

)
and T

(
JOS

3

)
, the following embedding of sym-

metric cosets holds:

(3.4)
E7(7)

SO(6, 6)× SL(2,R)
T
(
J
HS
3

)
, H∗

⊂

⎡
⎢⎢⎢⎣

E8(8)

SO(8, 8)
T
(
J
OS
3

)
∩ E8(8)

E7(7) × SL(2,R)
H∗

⎤
⎥⎥⎥⎦ ,

where the para-quaternionic spaces also have vanishing character (χ =

0). Note that for the T
(
JOS

3

)
-based theory,

E8(8)

SO(8,8) is the enlarged

scalar manifold, whereas
E8(8)

E7(7)×SL(2,R) can be regarded as a particular,

non-compact pseudo-Riemannian version of the rank-4 quaternionic
symmetric manifold

E8(−24)

E7(−25)×SU(2) , the c-map [54] of the rank-3 spe-

cial Kähler space
E7(−25)

E6(−78)×U(1) (scalar manifold of the M
(
JO3

)
-based

MESGT in D = (3, 1) [13, 14]; for a recent treatment, see e.g. [21]).

The second row displays Str0

(
JBS

3

)
, the reduced structure symmetries

of JBS

3 [8]:

• They are the U -duality symmetries of D = (4, 1) ME(S)GT’s based on
JBS

3 .

• They are the stabilizers of a certain “large” U -orbit of the correspond-
ing ME(S)GT in D = (3, 1) (which, in presence of local supersymme-
try, is the non-BPS one [31, 51]).

• They are the stabilizers (up to a Kaluza-Klein SO(1, 1) commuting
factor) of the scalar manifolds of M

(
JB3

)
-based ME(S)GT’s in D =

(2, 2)M∗ and D = (2, 2)M ′ dimensions. This holds with the exclusion
of the case BS = OS , in which maximal supersymmetry constrains the
stabilizer to match theR-symmetry, namely SL(8,R). For instance, for

the theories based onM
(
JHS

3

)
andM

(
JOS

3

)
, the following embedding

of symmetric cosets holds:

(3.5)
SO(6, 6)

SL(6,R)× SO(1, 1)
M

(
J
HS
3

)
, K∗

⊂

⎡
⎢⎢⎢⎣

E7(7)

SL(8,R)
M

(
J
OS
3

)
∩ E7(7)

E6(6) × SO(1, 1)
K∗

⎤
⎥⎥⎥⎦ ,
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where the (special) pseudo-Kähler spaces also have vanishing charac-

ter (χ = 0). Note that for the M
(
JOS

3

)
-based theory,

E7(7)

SL(8,R) is the

scalar manifold, whereas
E7(7)

E6(6)×SO(1,1) can be regarded as a particular,

non-compact pseudo-Riemannian version of the rank-3 special Kähler
symmetric manifold

E7(−25)

E6(−78)×SU(2) , the R-map [26, 55] of the rank-2

real special space
E6(−26)

F4(−52)
(scalar manifold of the JO3 -based MESGT in

D = (4, 1) [13, 14]).

The first row displays Aut
(
JBS

3

)
, namely the automorphisms of JBS

3 ,

which can be regarded as the stabilizers of the scalar manifolds of JB3 -based
ME(S)GTs inD = (3, 2)M∗ ,D = (3, 2)M ′ andD = (2, 3)M ′ dimensions. This
holds with the exclusion of the case BS = OS , in which maximal supersym-
metry constrains the stabilizer to match the R-symmetry, namely Sp(8,R).
For instance, for the theories based on JHS

3 and JOS

3 , the following embedding
of symmetric cosets holds:

(3.6)
SL(6,R)

Sp(6,R)
J
HS
3

⊂

⎡
⎢⎢⎣ E6(6)

SL(8,R)
J
OS
3

∩ E6(6)

F4(4)

⎤
⎥⎥⎦ .

Note that for the JOS

3 -based theory,
E6(6)

SL(8,R) is the scalar manifold, whereas
E6(6)

F4(4)
can be regarded as a particular, non-compact pseudo-Riemannian ver-

sion of the rank-2 real special symmetric manifold
E6(−26)

F4(−52)
(scalar manifold of

the JO3 -based MESGT inD = (4, 1) [13, 14]). Moreover,
E6(6)

F4(4)
can be regarded

as the “large” 1
8 -BPS U -orbit of the JOS

3 -based maximal supergravity theory
in D = (4, 1) [31, 32, 56].

4. The first “mixed” MS L3(Ã,B) [21] This is a non-symmetric MS

R C H O

R SO(3) SU(3) USp(6) F4(−52)
C SU(3) SU(3)× SU(3) SU(6) E6(−78)
HS Sp(6,R) SU(3, 3) SO∗(12) E7(−25)
OS F4(4) E6(2) E7(−5) E8(−24)

Table 4: The first “mixed” MS L3(Ã,B) [21]
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(L3(Ã,B) �= L3(Ã,B)
T ). It displays symmetries relevant to the construc-

tion of maximally manifestly covariant parametrizations (as well as Iwa-
sawa decompositions) of the scalar manifolds of M

(
JB3

)
-based MESGT’s in

D = (3, 1) (the case B = O has been studied in detail in [21]).
5. – 10. All the other Euclidean MS’s L3 can be computed (as to our

knowledge, they never appeared in the literature), and we report them in
Tables 5 – 10.

R C H O

R SO(3) SU(3) USp(6) F4(−52)
C SU(3) SU(3)× SU(3) SU(6) E6(−78)
H USp(6) SU(6) SO(12) E7(−133)
OS F4(4) E6(2) E7(−5) E8(−24)

Table 5: MS L3(Â,B)

R C H OS

R SO(3) SU(3) USp(6) F4(4)

C SU(3) SU(3)× SU(3) SU(6) E6(2)

H USp(6) SU(6) SO(12) E7(−5)
OS F4(4) E6(2) E7(−5) E8(8)

Table 6: MS L3(Â, B̂)

R C H OS

R SO(3) SU(3) USp(6) F4(4)

C SU(3) SU(3)× SU(3) SU(6) E6(2)

HS Sp(6,R) SU(3, 3) SO∗(12) E7(7)

OS F4(4) E6(2) E7(−5) E8(8)

Table 7: MS L3(Ã, B̂)

It can be noticed that L3(Â, B̂), given by Table 6, and L3(Ã, B̃), given
by Table 9, are symmetric, while all the other ones are non-symmetric.
By suitably generalizing the approach of [21] to non-compact spaces, these
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R C H OS

R SO(3) SU(3) USp(6) F4(4)

CS SL(3,R) SL(3,C) SU∗(6) E6(6)

HS Sp(6,R) SU(3, 3) SO∗(12) E7(7)

OS F4(4) E6(2) E7(−5) E8(8)

Table 8: MS L3(AS , B̂)

R C HS OS

R SO(3) SU(3) Sp(6,R) F4(4)

C SU(3) SU(3)× SU(3) SU(3, 3) E6(2)

HS Sp(6,R) SU(3, 3) SO(6, 6) E7(7)

OS F4(4) E6(2) E7(7) E8(8)

Table 9: MS L3(Ã, B̃)

R C HS OS

R SO(3) SU(3) Sp(6,R) F4(4)

CS SL(3,R) SL(3,C) SL(6,R) E6(6)

HS Sp(6,R) SU(3, 3) SO(6, 6) E7(7)

OS F4(4) E6(2) E7(7) E8(8)

Table 10: MS L3(AS , B̃)

MS’s may be used to explicitly construct pseudo-Riemannian scalar mani-
folds of theories of Maxwell-Einstein (super)gravity in non-Lorentian space-
times, also obtained from compactifications of M∗-theory or M ′-theory. For
instance, the symmetric MS L3(Ã, B̃) can be used to determine a (maxi-
mally) manifestly

(
E6(2)×U(1)

)
-covariant construction of the rank-3 pseudo-

Riemannian special Kähler manifold
E7(7)

E6(2)×U(1) , which is a non-compact

version of the aforementioned Riemannian special Kähler symmetric coset
E7(−25)

E6(−78)×U(1) (scalar manifold of the M
(
JO3

)
-based MESGT in D = (3, 1)

[13, 14]).
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4. Magic squares L1,2 over rank-3 Lorentzian
Jordan algebras

We will now exploit Tits’ formula (2.1) in order to construct all possible MS’s
L1,2 based on rank-3 Lorentzian Jordan algebras over the division algebras
R, C, H, O, CS , HS and OS . As discussed at the start of Sec. 3, by virtue
of (2.17) and (2.18), it is enough to explicitly list only the magic squares
for which the number of split division algebras labeling the rows is bigger
or equal to that of the columns.

We would like to point out that, as to our knowledge, these MS’s never
appeared in literature. Interestingly, their study has been motivated also by
the investigation of the stabilizers of the class of “large” non-BPS Z = 0
U -orbits in magic MESGT’s in D = (3, 1) dimensions [51], which indeed
provide the third row of L1,2(A,B), the Lorentzian counterpart of the FRT
MS L3(A,B) [1–3] given in Table 1.

Moreover, it should be remarked that the two non-compact real forms
F4(−20) and E6(−14), which do not occur Euclidean MS’s L3, can instead
be obtained from Tits’ formula (2.1) or the Vinberg’s formula (2.17) by
considering Lorentzian MS’s L1,2. It holds that [10, 28]:

f4(−20) = Der
(
JO1,2

)
(4.1)

= Der(O)⊕Der
(
JR1,2

)
�
(
O
′ ⊗ J′R1,2

)
;

e6(−14) = Der
(
JO1,2

)
�
(
e4 ⊗ J′O1,2

)
(4.2)

= Der(O)⊕Der
(
JC1,2

)
�
(
O
′ ⊗ J′C1,2

)
.

The ten possible different structures of Lorentzian MS L1,2 are listed
and analyzed below.

1. The Lorentzian FRT MS L1,2(A,B)

R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)
H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)
O F4(−20) E6(−14) E7(−5) E8(8)

Table 11: The Lorentzian FRT MS L1,2(A,B)
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This is a symmetric MS (L1,2(A,B) = L1,2(A,B)
T ), and it contains only

non-compact (real) Lie algebras.
As mentioned above, the first row displays:

• the stabilizer of the “large” non-BPS U -orbit (with ZH �= 0) of the
JB3 -based magic MESGT in D = (4, 1) dimensions [52, 53].

• the stabilizer of the scalar manifold of the same theory in D = (5, 0)
[48, 49].

• Considering more exotic theories, the stabilizer of the scalar manifold
of the same theory in D = (4, 1)M∗ , D = (5, 0)M∗ , D = (4, 1)M ′ , D =
(1, 4)M ′ and D = (5, 0)M ′ dimensions. For instance, for the theories
based on JH3 , J

O

3 and JOS

3 , the following embedding of symmetric cosets
holds:

(4.3)
SU∗(6)

USp(4, 2)
JH

3

⊂

⎡
⎢⎢⎣E6(−26)
F4(−20)

JO

3

∩ E6(6)

USp(4, 4)
J
OS
3

⎤
⎥⎥⎦ .

The second row displays:

• the stabilizer of the “large” non-BPS U -orbit (with ZH = 0) of the
M

(
JB3

)
-based magic MESGT’s in D = (3, 1) dimensions [31, 51].

• Considering more exotic theories, the stabilizer (up to a commuting
U(1) factor) of the scalar manifold of the same theory in D = (3, 1)M∗ ,
D = (3, 1)M ′ and D = (1, 3)M ′ dimensions. For instance, for the theo-

ries based on M
(
JH3

)
, M

(
JO3

)
and M

(
JOS

3

)
, the following embedding

of symmetric cosets holds:

(4.4)
SO∗(12)

SU(4, 2)× U(1)
JH

3 , K

⊂

⎡
⎢⎢⎣ E7(−25)
E6(−14) × U(1)

JO

3 , K

∩ E7(7)

SU(4, 4)
J
OS
3

⎤
⎥⎥⎦ ,

where “K” denotes the (special) Kähler structure of the corresponding

spaces. Note that SO∗(12)
SU(4,2)×U(1) and

E7(−25)

E6(−14)×U(1) are particular pseudo-

Riemannian non-compact forms of the rank-3 special Kähler Rieman-
nian symmetric cosets SO∗(12)

U(6) and
E7(−25)

E6(−78)×U(1) (scalar manifolds of the

M
(
JH3

)
- and M

(
JO3

)
- based magic MESGT’s in D = (3, 1) dimen-

sions).
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The third row displays the stabilizer (up to SU(2) factor) of the scalar
manifold of the T

(
JB3

)
-based magic theories in D = (2, 1)M∗ , D = (1, 2)M∗ ,

D = (2, 1)M ′ and D = (1, 2)M ′ dimensions. For instance, for the theories

based on T
(
JH3

)
, T

(
JO3

)
and T

(
JOS

3

)
, the following embedding of symmet-

ric cosets holds:

(4.5)
E7(−5)

SO(8, 4)× SU(2)
TH

3 , H

⊂

⎡
⎢⎢⎣ E8(−24)
E7(−5) × SU(2)

TO

3 , H

∩ E8(8)

SO(8, 8)
T

OS
3

⎤
⎥⎥⎦ ,

where “H” denotes the quaternionic structure of the corresponding spaces.
Note that

E7(−5)

SO(8,4)×SU(2) and
E8(−24)

E7(−5)×SU(2) are particular pseudo-Riemannian

non-compact forms of the rank-4 quaternionic Riemannian symmetric cosets
E7(−5)

SO(12)×SU(2) and
E8(−24)

E7(−133)×SU(2) (extended scalar manifolds of the T
(
JH3

)
-

and T
(
JO3

)
- based magic theories in D = (2, 1) dimensions).

Finally, the fourth row can be characterized as displaying the non-
compact real forms which (besides QConf(JB3 ); cfr. the fourth row of the
GST MS L3(AS ,B) in Table 2) embed maximally (by an SU(2) factor) the
non-compact real forms in the third row.

2. The Lorentzian GST single-split MS L1,2(AS ,B)

R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
CS SL(3,R) SL(3,C) SU∗(6) E6(−26)
HS Sp(6,R) SU(3, 3) SO∗(12) E7(−25)
OS F4(4) E6(2) E7(−5) E8(−24)

Table 12: Lorentzian GST MS L1,2(AS ,B)

This is a non-symmetric MS (L1,2(AS ,B) �= L1,2(AS ,B)
T ).

The second, third and fourth rows match the corresponding rows
of its Euclidean counterpart, namely of the GST MS L3(AS ,B) given in
Table 2.

On the other hand, the first row coincides with the first row of the
Lorentzian FRT MS L1,2(A,B) given in Table 11.
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3. The Lorentzian BS double-split MS L1,2(AS ,BS)

R CS HS OS

R SL(2,R) SL(3,R) Sp(6,R) F4(4)

CS SL(3,R) SL(3,R)× SL(3,R) SL(6,R) E6(6)

HS Sp(6,R) SL(6,R) SO(6, 6) E7(7)

OS F4(4) E6(6) E7(7) E8(8)

Table 13: Lorentzian BS MS L1,2(AS ,BS)

This is a symmetric MS (L1,2(AS ,BS ) = L1,2(AS ,BS)
T ). It matches its

Euclidean counterpart, namely the BS double-split MS L3(AS ,BS) given in
Table 3, up to the first entry (from the left) in the first row, which reads:

(4.6) SL(2,R) = L1,2(R,R) �= L3(R,R) = SO(3).

4. The Lorenzian counterpart L1,2(Ã,B) of the first “mixed” MS L3(Ã,B)
reads:

R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)
HS Sp(6,R) SU(3, 3) SO∗(12) E7(−25)
OS F4(4) E6(2) E7(−5) E8(−24)

Table 14: The Lorentzian first “mixed” MS L1,2(Ã,B)

This is a non-symmetric MS (L1,2(Ã,B) �= L1,2(Ã,B)
T ). Its third and

fourth rows coincide with those of its Euclidean counterpart, namely of
first “mixed” MS L3(Ã,B), given in Table 4. On the other hand, its first
and second rows match those of the Lorentzian FRT MS L1,2(A,B), given
in Table 11.

5. – 10. All the other Lorentzian MS’s L1,2 can be computed, and

we report them in Tables 15 – 20. It can be noticed that L1,2(Â, B̂), given

by Table 16, and L1,2(Ã, B̃), given by Table 19, are symmetric, while all
the other ones are non-symmetric. By suitably generalizing the approach of
[21] to non-compact spaces, also these MS’s may be used to explicitly con-
struct pseudo-Riemannian scalar manifolds of theories of Maxwell-Einstein



Squaring the magic 943

(super)gravity in non-Lorentian space-times, also obtained from compacti-
fications of M∗-theory or M ′-theory.

R C H O

R SL(2,R) SU(2, 1) USp(4, 2) F4(−20)
C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(−14)
H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)
OS F4(4) E6(2) E7(−5) E8(−24)

Table 15: Lorentzian MS L1,2(Â,B)

R C H OS

R SL(2,R) SU(2, 1) USp(4, 2) F4(4)

C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(2)

H USp(4, 2) SU(4, 2) SO(8, 4) E7(−5)
OS F4(4) E6(2) E7(−5) E8(8)

Table 16: Lorentzian MS L1,2(Â, B̂)

R C H OS

R SL(2,R) SU(2, 1) USp(4, 2) F4(4)

C SU(2, 1) SU(2, 1)× SU(2, 1) SU(4, 2) E6(2)

HS Sp(6,R) SU(3, 3) SO∗(12) E7(7)

OS F4(4) E6(2) E7(−5) E8(8)

Table 17: Lorentzian MS L1,2(Ã, B̂)

5. Analysis

Below we list some observations on common properties, as well as on differ-
ences, among the two sets of 4× 4 MS’s over rank-3 Euclidean (Tables 1 –
10) and Lorentzian (Tables 11 – 20) rank-3 (simple, generic) Jordan algebras.

1) For L3(A,B) and L1,2(A,B) (namely for the FRT MS - Table 1 - and
its Lorentzian analogue - Table 11 -), the symmetries in the second
row/column are embedded into the symmetries in the third one with
a factor U(1) or SO(2), while the symmetries in the third row/column
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R C H OS

R SL(2,R) SU(2, 1) USp(4, 2) F4(4)

CS SL(3,R) SL(3,C) SU∗(6) E6(6)

HS Sp(6,R) SU(3, 3) SO∗(12) E7(7)

OS F4(4) E6(2) E7(−5) E8(8)

Table 18: Lorentzian MS L1,2(AS , B̂)

R C HS OS

R SL(2,R) SU(2, 1) Sp(6,R) F4(4)

C SU(2, 1) SU(2, 1)× SU(2, 1) SU(3, 3) E6(2)

HS Sp(6,R) SU(3, 3) SO(6, 6) E7(7)

OS F4(4) E6(2) E7(7) E8(8)

Table 19: Lorentzian MS L1,2(Ã, B̃)

R C HS OS

R SL(2,R) SU(2, 1) Sp(6,R) F4(4)

CS SL(3,R) SL(3,C) SL(6,R) E6(6)

HS Sp(6,R) SU(3, 3) SO(6, 6) E7(7)

OS F4(4) E6(2) E7(7) E8(8)

Table 20: Lorentzian MS L1,2(AS , B̃)

are embedded into the symmetries in the fourth one with a factor
SO(3) or SU(2). Examples of such maximal and symmetric embed-
dings from L1,2(A,B) read

(5.1)
E7(−5) ⊃ E6(−14) × U(1);

E6(−14) ⊃ SU(4, 2)× SU(2).

Analogously, for L3(AS ,B) and L1,2(AS ,B) (namely for the single-split
GST MS - Table 2 - and its Lorentzian analogue - Table 12 -), the sym-
metries in the second column (row) are embedded into the symmetries
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in the third column (row) with a factor U(1) (SO(1, 1)), whereas the
symmetries in the third column (row) are embedded into the symme-
tries in the fourth column (row) with a factor SU(2) (SU(1, 1)). And,
similarly, for L3(AS ,BS) and L1,2(AS ,BS) (namely for the double-split
BS MS - Table 3 - and its Lorentzian analogue - Table 13 -), the sym-
metries in the second row/column are embedded into the symmetries
in the third one with a factor SO(1, 1), while the symmetries in the
third row/column are embedded into the symmetries in the fourth one
with a factor SU(1, 1). Analogous results holds for all other Euclidean
(Tables 4 – 10) and Lorentzian (Tables 11 – 20) MS’s. The rationale of

all this is the following. When the embedding of H into G in the next
row/ column of the MS contains an extra factor T = U(1), SO(1, 1),
SU(2) or SU(1, 1), this reflects the structure of the symmetric coset

G
H×T , which then carries a complex (special Kähler), (special) pseudo-
Kähler, quaternionic or para-quaternionic structure, respectively.

2) When all the aforementioned commuting factors are taken into account,
all the embeddings in the MS’s are maximal and symmetric [45].

3) From Tits’ formula (2.1), it can be realized that the factor SO(2)
or SO(1, 1), needed to maximally embed the symmetries in the sec-
ond row into the symmetries in the third one, is in turn embed-
ded respectively into Aut(H) = SO(3) or Aut(HS) = SL(2,R); on the
other hand, the factor SU(2) or SU(1, 1), needed to maximally embed
the symmetries in the third row into the symmetries in the fourth one,
is in turn embedded respectively into Aut(O) = G2(−14) or Aut(OS) =
G2(2). The relevant (maximal and symmetric) embeddings read:

(5.2)

G2(−14) ⊃ SU(2)× SU(2);

G2(2) ⊃ SU(1, 1)× SU(1, 1);

SU(2) ⊃ SO(2);

SU(1, 1) ⊃ SO(1, 1).

Analogous considerations can be made for the embeddings of the col-
umns. The factor U(1) or SO(1, 1), needed to maximally embed the
symmetries in the second column into the symmetries is in turn embed-

ded respectively into Aut
(
JH1,2

)
= USp(4, 2) or Aut

(
JHS

1,2

)
= Sp(6,R);

on the other hand, the factor SU(2) or SU(1, 1), needed to maximally
embed the symmetries in the third column into the symmetries in the
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fourth one, is in turn embedded respectively into Aut
(
JO1,2

)
= F4(−20)

or Aut
(
JOS

1,2

)
= F4(4). The relevant (maximal and symmetric) embed-

dings read:

(5.3)

F4(−20) ⊃ USp(4, 2)× SU(2);

F4(4) ⊃ Sp(6,R)× SU(1, 1);

USp(4, 2) ⊃ SU(2, 1)× U(1);

Sp(6,R) ⊃ SL(3,R)× SO(1, 1).

Therefore, for each of the embeddings of a row/column in the next,
these generators always have the same origin.

4) The symmetries of Euclidean and Lorentzian rank-3 Jordan algebras
over division algebras can be read from the rows of the corresponding
single-split MS, namely from the GST MS L3 (AS ,B) (Table 2) and
from its Lorentzian counterpart, i.e. the MS L1,2 (AS ,B) (Table 12).
For Euclidean rank-3 Jordan algebras, it holds:

(5.4)

Row 1: Automorphism Aut
(
JB3

)
= L3 (R,B) ;

Row 2: Reduced Structure Str0
(
JB3

)
= L3 (CS ,B) ;

Row 3: Conformal Conf
(
JB3

)
= L3 (HS ,B) ;

Row 4: QuasiConformal QConf
(
JB3

)
= L3 (OS ,B) .

Since the second, third and fourth rows of L3 (AS ,B) and L1,2 (AS ,B)
match, this implies that the reduced structure, conformal and quasi-
conformal symmetries of Euclidean and Lorentzian rank-3 Jordan alge-
bras over division algebras coincide:

(5.5)

Str0
(
JA1,2

)
= Str0

(
JA3

)
;

Conf
(
JA1,2

)
= Conf

(
JA3

)
;

QConf
(
JA1,2

)
= QConf

(
JA3

)
,

whereas their automorphisms differ:

(5.6) Aut
(
JB3

)
= L3 (R,B) �= L1,2 (R,B) = Aut

(
JB1,2

)
.

This is consistent with the analysis of [24, 25].
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5) Analogously, the symmetries of Euclidean and Lorentzian rank-3 Jor-
dan algebras JBS

3 over split algebras can be read from the rows of the
corresponding double-split MS, namely from the BS MS L3 (AS ,BS)
(Table 3) and from its Lorentzian counterpart, i.e. the MS L1,2 (AS ,BS)
(Table 13). For Euclidean rank-3 Jordan algebras, it holds:

(5.7)

Row 1: Automorphism Aut
(
JBS

3

)
= L3 (R,BS) ;

Row 2: Reduced Structure Str0

(
JBS

3

)
= L3 (CS ,BS) ;

Row 3: Conformal Conf
(
JBS

3

)
= L3 (HS ,BS) ;

Row 4: QuasiConformal QConf
(
JBS

3

)
= L3 (OS ,BS) .

Since the second, third and fourth rows of L3(AS ,BS) and L1,2(AS ,BS)
match, this implies that the reduced structure, conformal and quasi-
conformal symmetries of Euclidean and Lorentzian rank-3 Jordan alge-
bras over split algebras coincide:

(5.8)

Str0

(
JAS

1,2

)
= Str0

(
JAS

3

)
;

Conf
(
JAS

1,2

)
= Conf

(
JAS

3

)
;

QConf
(
JAS

1,2

)
= QConf

(
JAS

3

)
.

On the other hand, since the first rows of L3 (AS ,BS) and L1,2 (AS ,BS)
match (with the exception of the first entry from the left), it also
follows that their automorphisms coincide:

(5.9)
Aut

(
JBS

3

)
= L3 (R,BS) = L1,2 (R,BS) = Aut

(
JBS

1,2

)
,

BS = CS ,HS ,OS ,

whereas Eq. (4.6) can be interpreted as follows:

SL(2,R) = Aut
(
JR1,2

)
= L1,2(R,R)(5.10)

�= L3(R,R) = Aut
(
JR3

)
= SO(3).

6) The complexification of the Jordan algebras JA3 and JA1,2 by means
of a Cayley-Dickson procedure should in principle allow to recover all
Euclidean and Lorentzian magic squares given in Tables 1 – 20, as
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suitable sections of only two magic squares over the bi-octonions [10,
44].

7) In our treatment, we never mentioned unified MESGT’s based on JA1,2
(in D = (4, 1)) and on M

(
JA1,2

)
(in D = (3, 1)), which are endowed

with a non-homogeneous scalar manifoldM [24–26]. However, it respec-
tively holds [24, 25]

D = (4, 1) : M (
JA1,2

) ⊂ Str0
(
JA1,2

)
Aut

(
JA1,2

) =
Str0

(
JA3

)
Aut

(
JA1,2

) ;(5.11)

D = (3, 1) : M (
M

(
JA1,2

)) ⊂ Conf
(
JA1,2

)
K

(
JA1,2

) =
Conf

(
JA3

)
K

(
JA1,2

) .(5.12)

Str0(JA
1,2)

Aut(JA
1,2)

(5.11) can also be regarded as the scalar manifold of the

JA3 -based magic MESGT in D = (5, 0) dimensions, as well as in D =
(4, 1)M∗ , D = (5, 0)M∗ , D = (4, 1)M ′ , D = (1, 4)M ′ and D = (5, 0)M ′

dimensions (see Sec. 4). Moreover,
Str0(JA

1,2)
Aut(JA

1,2)
can be identified also

with the “large” non-BPS U -orbit (with ZH �= 0) of the JA3 -based
magic MESGT in D = (4, 1) dimensions [52, 53]. On the other hand,
Conf(JA

1,2)
K(JA

1,2)
(5.12), whose stabilizer is given (up to a U(1) factor) by

the second row of the Lorentzian FRT MS L1,2(A,B) (Table 11), is
the Koecher upper half plane of JA1,2 [25], which can be identified also

with the “large” non-BPS U -orbit (with ZH = 0) of the M
(
JB3

)
-based

magic MESGT’s inD = (3, 1) dimensions [31, 51]. Moreover, by adding

an additional U(1) factor in the stabilizer,
Conf(JA

1,2)
K(JA

1,2)×U(1)
can also be

regarded as the scalar manifold of the JA3 -based magic MESGT in
D = (3, 1)M∗ , D = (3, 1)M ′ and D = (1, 3)M ′ dimensions (see Sec. 4).
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Università degli Studi dell’Insubria

Via Valleggio 11, 22100 Como, Italy

and INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

E-mail address: sergio.cacciatori@uninsubria.it



954 S. L. Cacciatori, B. L. Cerchiai and A. Marrani

Dipartimento di Matematica, Università degli Studi di Milano
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