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A generalized Quot scheme and

meromorphic vortices

Indranil Biswas, Ajneet Dhillon, Jacques Hurtubise and

Richard A. Wentworth

Let X be a compact connected Riemann surface. Fix a positive
integer r and two nonnegative integers dp and dz. Consider all
pairs of the form (F , f), where F is a holomorphic vector bundle
on X of rank r and degree dz − dp, and

f : O⊕r
X −→ F

is a meromorphic homomorphism which an isomorphism outside a
finite subset of X and has pole (respectively, zero) of total degree
dp (respectively, dz). Two such pairs (F1, f1) and (F2, f2) are called
isomorphic if there is a holomorphic isomorphism of F1 with F2

overX that takes f1 to f2. We construct a natural compactification
of the moduli space equivalence classes pairs of the above type. The
Poincaré polynomial of this compactification is computed.

1. Introduction

Take a compact connected Riemann surface X. Fix positive integers r and
d. Consider pairs of the form (E, f), where E is a holomorphic vector bundle
on X of rank r and degree d, and

f : O⊕r
X −→ E

is an OX–linear homomorphism which is an isomorphism outside a finite
subset of X. This implies that the total degree of zeros of f is d. Two such
pairs (E1, f1) and (E2, f2) are called equivalent if there is a holomorphic
isomorphism

φ : E1 −→ E2

such that φ ◦ f1 = f2. Pairs of this form constitute examples of vortices [2],
[7], [6], [1], [9].
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For any pair (E, f) of the above type, consider the dual homomorphism

f∗ : E∗ −→ (O⊕r
X )∗ = O⊕r

X .

The quotient O⊕r
X /image(f∗) is an element of the Quot scheme Quot(r, d)

that parametrizes all torsion quotients of O⊕r
X of degree d [5]. Conversely,

given any torsion quotient

O⊕r
X

ψ−→ T

of degree d, consider the homomorphism

O⊕r
X = (O⊕r

X )∗ ψ′
−→ kernel(ψ)∗

induced by the inclusion kernel(ψ) ↪→ O⊕r
X . The pair (kernel(ψ)∗, ψ′) is clearly

of the above type. Therefore, the moduli space of equivalence classes of pairs
(E, f) is identified with the Quot scheme Quot(r, d).

Here we consider pairs of the form (E, f), where E is a holomorphic
vector bundle on X of rank r and degree d, and

f : O⊕r
X −→ E

is an OX–linear meromorphic homomorphism which is an isomorphism out-
side a finite subset of X. We assume that the total degree of the poles of
the meromorphic homomorphism is dp. This implies that the total degree of
the zeros of the meromorphic homomorphism is d+ dp. As before, two such
pairs (E1, f1) and (E2, f2) will be called equivalent if there is a holomorphic
isomorphism

φ : E1 −→ E2

such that φ ◦ f1 = f2. The equivalence classes of pairs can be considered as
examples of meromorphic vortices.

We construct a natural compactification of the moduli space of these
meromorphic vortices. We compute the Poincaré polynomial of this com-
pactification.

2. Preliminaries

Let S be a scheme and Y −→ S a smooth projective morphism. Given a
coherent sheaf F on Y flat over S and a numerical polynomial r(t), we denote
by Quot(F/S, r(t)) the Grothendieck Quot scheme over S parametrizing
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quotients of F with Hilbert polynomial r(t) [10]. There is a universal exact
sequence on Quot(F/S, r(t))×S Y

0 −→ Kuniv
Quot(F/S,r(t)) −→ π∗

Y F −→ Quniv
Quot(F/S,r(t)) −→ 0,

where πY : Quot(F/S, r(t))×S Y −→ Y is the natural projection. Often we
will just drop the subscripts and write Kuniv or Quniv instead. This construc-
tion is well behaved with respect to pull-backs, so let us record the following:

Lemma 2.1. For any morphism g : T −→ S, the base change

Quot(g∗F/T, r(t)) ∼= Quot(F/S, r(t))×S T

holds.

Proof. This follows by examining the corresponding representable functors.
�

We will mostly be interested in the case where

• Y −→ S is a smooth, connected and of relative dimension one, that is
a relative curve over S, and

• F is locally free of rank r.

Further, we will only consider torsion quotients of rank zero and degree d.
This Quot scheme will be denoted by Quot(F/S, d). When r = 1 and S is a
point, then

Quot(O, d) = Symd(Y ),

the d-th symmetric power of the curve Y .
Given an positive integer d, by a partition of length k > 0 of d we mean

a sequence P = (p1, p2, . . . , pk) of non-negative integers with
∑k

i=1 pi = d.

For such a partition define d(P) :=
∑k

i=1(i− 1)pi. We will write

SymP(Y ) = Symp1(Y )× · · · × Sympk(Y ).

3. A relative Quot scheme

Let X be a compact connected Riemann surface. Let E and F be two holo-
morphic vector bundles on X of common rank r. Take a dense open subset
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U ⊂ X, such that the complement S := X \ U is a finite set, and take an
isomorphism of coherent analytic sheaves

f : E|U −→ F|U

over U . This homomorphism f will be called meromorphic if there is a pos-
itive integer n such that f extends to a homomorphism of coherent analytic
sheaves

f̂ : E −→ F ⊗OX(nS) ⊃ F
over X, where S is the reduced divisor defined by the finite subset S. Note
that since the divisor S is effective, we have F ⊂ F ⊗OX(nS). Therefore, f
is meromorphic if and only if the homomorphism f is algebraic with respect
to the algebraic structures on E|U and F|U given by the algebraic structures
on E and F respectively.

Take a meromorphic homomorphism f as above. We note that the above
extension f̂ is uniquely determined by f because f and f̂ coincide over U .
The inverse image

E(f) := f̂−1(F) ⊂ E
(recall that F ⊂ F ⊗OX(nS)) is clearly independent of the choice of n.
We note that both E(f) and f̂(E(f)) are holomorphic vector bundles on X
because they are coherent analytic subsheaves of holomorphic vector bun-
dles. Both of then are of rank r, and the restriction

(3.1) f̂ |E(f) : E(f) −→ f̂(E(f))

is an isomorphism of holomorphic vector bundles. Define the quotients

(3.2) Qp(f) := E/E(f) and Qz(f) := F/(f̂(E(f)))

(the subscripts “p” and “z” stand for “pole” and “zero” respectively). We
note that both Qp(f) and Qz(f) are torsion coherent analytic sheaves on
X. In particular, their supports are finite subsets of X. From (3.2) it follows
that

(3.3) degree(Qp(f)) = degree(E)− degree(E(f)) and

degree(Qz(f)) = degree(F)− degree(f̂(E(f))).
Fix positive integers r, dp and dz. Set the domain E to be the trivial

vector bundle O⊕r
X of rank r. Consider all triples of the form (F , U, f), where
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• F is a holomorphic vector bundle on X of rank r,

• U is the complement of a finite subset of X, and

• f : O⊕r
X |U = O⊕r

U −→ F|U is a meromorphic homomorphism such that

degree(Qp(f)) = dp and degree(Qz(f)) = dz.

Since f̂ |E(f) in (3.1) is an isomorphism, from (3.3) we conclude that

(3.4) degree(F) = dz − dp + degree(O⊕r
X ) = dz − dp.

Two such triples (F1, U1, f1) and (F2, U2, f2) will be called equivalent if there
is a holomorphic isomorphism of vector bundles over X

β : F1 −→ F2

such that

β ◦ (f1|U1∩U2
) = f2|U1∩U2

.

Therefore, the equivalence class of (F , U, f) depends only on (F , f) and it
is independent of U . More precisely, (F , U, f) is equivalent to (F ,W, f |W )
for every W ⊂ U such that the complement U \W is a finite set.

Let

(3.5) Q0 = Q0
X(r, dp, dz)

be the space of all equivalence classes of triples of the above form. We will
embed Q0 as a Zariski open subset of a smooth complex projective variety.

Take any triple (F , U, f) as above that is represented by a point of Q0.
Consider the short exact sequence

(3.6) 0 −→ E(f) := kernel(qp) −→ E = O⊕r
X

qp−→ Qp(f) −→ 0,

where qp denotes the projection to the quotient in (3.2). We also have

E(f) = f̂(E(f)) ↪→ F

(recall that f̂ |E(f) in (3.1) is an isomorphism). Let

(3.7) 0 −→ F∗ −→ E(f)∗

be the dual of the above inclusion of E(f) in F . From (3.6) we have

degree(E(f)∗) = degree(Qp(f)) = dp.
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Therefore, from (3.4) it follows that

degree(E(f)∗/F∗) = degree(E(f)∗)− degree(F∗) = dp + dz − dp = dz

as degree(F∗) = −degree(F). These imply that we can recover the equiva-
lence class of (F , f) once we know the following two:

• the torsion quotient Qp(f) of O⊕r
X of degree dp, and

• the torsion quotient E(f)∗/F∗ of E(f)∗ of degree dz.

(It should be clarified that “knowing the torsion quotient Qp(f)” means
knowing the sheaf Qp(f) along with the surjective homomorphism O⊕r

X −→
Qp(f); similarly “knowing the torsion quotient E(f)∗/F∗” means knowing
the sheaf E(f)∗/F∗ along with the surjective homomorphism from E(f)∗ to
it.) Indeed, once we know Qp(f), we know the kernel E(f) and hence know
E(f)∗; if we know the quotient E(f)∗/F∗, then we know the subsheaf F∗ of
E(f)∗. The dual of this inclusion F∗ ↪→ E(f)∗, namely the homomorphism

E(f) −→ F ,

gives the meromorphic homomorphism f . In other words, we have the dia-
gram

0⏐⏐�
0 −→ E(f) −→ O⊕r −→ Qp −→ 0⏐⏐�f̂

F⏐⏐�
Qz⏐⏐�
0

Let Quot(r, dp) be the Quot scheme parametrizing the torsion quotients
of O⊕r

X of degree dp. We have the tautological short exact sequence of coher-
ent analytic sheaves on X ×Q(r, dp)

(3.8) 0 −→ Kuniv −→ p∗XO⊕r
X −→ Quniv −→ 0,



A generalized Quot scheme and meromorphic vortices 911

where pX is the projection of X ×Quot(r, dp) to X. We write K = Kuniv.
Now consider the dual vector bundle

K∗ −→ X ×Quot(r, dp)
pQ−→ Quot(r, dp),

where pQ is the natural projection. Using pQ, we will consider K∗ as a
family of vector bundles on X parametrized by Quot(r, dp). For any point
y ∈ Quot(r, dp), the vector bundle K∗|X×{y} over X will be denoted by K∗

|y.
Let

(3.9) ϕ : Quot(r, dp, dz) := Quot(K∗/Quot(r, dp), dz) −→ Q(r, dp)

be the relative Quot scheme over Quot(r, dp), for the family K∗, parametriz-
ing the torsion quotients of degree dz. Therefore, for any point y∈Quot(r, dp),
the fiber ϕ−1(y) is the Quot scheme parametrizing the torsion quotients of
degree dz of the vector bundle K∗

|y.
Both Quot(r, dp) and the fibers of ϕ are irreducible smooth projec-

tive varieties. The morphism ϕ is smooth. Therefore, the projective variety
Quot(r, dp, dz) is irreducible and smooth.

Consider Q0 defined in (3.5). We have a map

η′ : Q0 −→ Quot(r, dp)

that sends any triple (F , U, f) ∈ Q0 to the point representing the quotient
Qp(f) in (3.6). Let

(3.10) η : Q0 −→ Quot(K∗, dz) = Quot(r, dp, dz)

be the map that sends any point α=(F , U, f)∈Q0 to the point of ϕ−1(η′(α))
that represents the quotient E(f)∗/F∗ in (3.7). This map η is injective
because, as observed earlier, the equivalence class of the pair (F , f) can
be recovered from the quotient Qp(f) of O⊕r

X and the quotient E(f)∗/F∗ of
E(f)∗. The image of η is clearly a Zariski open subset of Quot(r, dp, dz).

Let
∧r K −→ ∧r p∗XO⊕r

X = p∗XOX be the r-th exterior power of the homo-
morphism in (3.8). Considering it as a family of subsheaves of OX of degree
−dp parametrized by Quot(r, dp), we have the corresponding classifying mor-
phism

δ′1 : Quot(r, dp) −→ Quot(1, dp) = Symdp(X).

Let

(3.11) δ1 := δ′1 ◦ ϕ : Quot(r, dp, dz) =: Q −→ Symdp(X)
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be the composition, where ϕ is constructed in (3.9). Next, consider the
tautological subsheaf

S ↪→ (IdX × ϕ)∗K∗

on X ×Q. Let
∧r S ↪→ ∧r(IdX × ϕ)∗K∗ be the r-th exterior power of the

above inclusion. Let

(3.12) δ2 : Q −→ Symdz(X)

be the morphism that sends any y ∈ Q to the scheme theoretic support of
the quotient sheaf

(∧r
(IdX × ϕ)∗K∗

|ϕ(y)
)
/
(∧r S|X×{y}

)
−→ X.

Now define the morphism

(3.13) δ := (δ1, δ2) : Quot(r, dp, dq) = Q −→ Symdp(X)× Symdz(X),

where δ1 and δ2 are constructed in (3.11) and (3.12) respectively. It can be
shown that δ is surjective. In fact, in Section 4 we will construct, and use, a
section of δ.

Remark 3.1. LetMX(r, dz − dp) denote the moduli stack of vector bundles
on X of rank r and degree dz − dp. Since there is a universal bundle over
X ×Quot(r, dp, dq), we get a morphism

Quot(r, dp, dq) −→MX(r, dz − dp).

4. Fundamental group of Quot(r, dp, dz)

Proposition 4.1. The homomorphism between fundamental groups induced
by the morphism δ in (3.13) is an isomorphism.

Proof. We will first construct a section of δ. Let

D(dp) ⊂ X × Symdp(X)

be the divisor consisting of all (x, {y1, . . . , ydp
}) such that x ∈ {y1, . . . , ydp

}.
Then the subsheaf

OX×Symdp (X)(−D(dp))⊕O⊕r−1
X×Symdp (X)

⊂ O⊕r
X×Symdp (X)
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produces a classifying morphism

(4.1) θ1 : Symdp(X) −→ Quot(r, dp).

Let ξ1 (respectively, ξ2) denote the projection of Symdp(X)× Symdz(X) to
Symdp(X) (respectively, Symdz(X)). Like before, D(dz) ⊂ X × Symdp(X)
be the divisor consisting of all (x, {y1, . . . , ydz

}) such that x ∈ {y1, . . . , ydz
}.

The subsheaf

((IdX × ξ1)
∗(OX×Symdp (X)(D(dp)))

⊗ (IdX × ξ2)
∗(OX×Symdz (X)(−D(dz))))

⊕ (O⊕r−1
X×Symdp (X)Symdz (X)

)∗

⊂ (IdX × ξ1)
∗(OX×Symdp (X)(−D(dp))⊕O⊕r−1

X×Symdp (X)
)∗

produces a classifying morphism

(4.2) θ : Symdp(X)× Symdz(X) −→ Quot(r, dp, dq).

We note that ϕ ◦ θ = θ1, where ϕ and θ1 are the morphisms constructed
in (3.9) and (4.1) respectively.

It is straightforward to check that

(4.3) δ ◦ θ = IdSymdp (X)×Symdz (X),

where δ is constructed in (3.13). In view of this section θ, we conclude that
the induced homomorphism between fundamental groups

δ∗ : π1(Quot(r, dp, dq)) −→ π1(Sym
dp(X)× Symdz(X))

is surjective (the base points of fundamental groups are suppressed in the
notation).

Let

(4.4) U ⊂ Symdp(X)× Symdz(X))

be the Zariski open subset consisting of all

(x, y) = ({x1, . . . , xdp
}, {y1, . . . , ydz

}) ∈ Symdp(X)× Symdz(X))

such that the dp + dz points {x1, . . . , xdp
, y1, . . . , ydz

} are all distinct, equiv-
alently, the effective divisor x+ y is reduced. Let

(4.5) θ0 := θ|U : U −→ Quot(r, dp, dz)
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be the restriction of the map θ in (4.2). Also, consider the restriction

(4.6) δ0 := δ|δ−1(U) : δ−1(U) −→ U.

Every fiber of δ0 is identified with (Pr−1
C

)dp × (P r−1
C

)dz , where Pr−1
C

is the pro-
jective space parametrizing the hyperplanes in Cr and P r−1

C
is the projective

space parametrizing the lines in Cr (so P r−1
C

parametrizes the hyperplanes
in (Cr)∗). From the homotopy exact sequence associated to δ0 it follows that
the induced homomorphism of fundamental groups

δ0,∗ : π1(δ
−1(U)) −→ π1(U)

is an isomorphism. The variety Quot(r, dp, dz) is smooth, and δ−1(U) is a
nonempty Zariski open subset of it. Therefore, the homomorphism

ι∗ : π1(δ
−1(U)) −→ π1(Quot(r, dp, dz))

induced by the inclusion ι : ϕ−1(U) ↪→ Quot(r, dp, dz) is surjective. Since
δ0,∗ is an isomorphism, this implies that the homomorphism

θ0,∗ : π1(U) −→ π1(Quot(r, dp, dz))

induced in θ0 in (4.5) is surjective. Since θ0 extends to θ, this immediately
implies that the homomorphism

θ∗ : π1(Sym
dp(X)× Symdz(X)) −→ π1(Quot(r, dp, dz)

induced in θ in (4.2) is surjective. Since θ∗ is surjective, and the composition
δ∗ ◦ θ∗ is injective (see (4.3)) we conclude that δ∗ is also injective. �

We note that π1(Sym
k(X)) = H1(X,Z) if k ≥ 2 [8]. Therefore, Proposi-

tion 4.1 has the following corollary:

Corollary 4.2. The fundamental group π1(Quot(r, dp, dq)) is

• H1(X,Z)
⊕

H1(X,Z) if dp, dq ≥ 2,

• π1(X)
⊕

π1(X) if dp = 1 = dq,

• π1(X)
⊕

H1(X,Z) if dp = 1 < dq or dp > 1 = dq,

• H1(X,Z) if dp = 0 < dq − 1 or dp − 1 > 0 = dq, and

• π1(X) if dp = 0 = dq − 1 or dp − 1 = 0 = dq.
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5. Cohomology of Quot(r, dp, dz)

5.1. Generalization of a theorem of Bifet

Let S1, S2, . . . , Sk be a smooth connected projective varieties over C. Fix
some line bundles Li on Si ×X of relative degree di over Si. In other words

deg(Li|s×X) = di

for each point s ∈ Si. Set S = S1 × · · · × Sk. Let

πSi×X : S ×X −→ Si ×X

be the natural projection. Define

L̃i := π∗
Si×XLi.

Let

φ : Quot(
⊕
i

L̃i/S, d) −→ S

be the relative Quot scheme that parametrizes the torsion quotients of degree
d. So for any s = (s1, . . . , sk) ∈ S, the fiber φ−1(s) parametrizes the torsion
quotients of

⊕k
i=1 Li|si×X of degree d. By deformation theory, φ is a smooth

morphism of relative dimension kd, so Quot(
⊕

i L̃i/S, d) is smooth of dimen-

sion dim(S) + kd. The torus Gk
m acts on Quot(

⊕
i L̃i/S, d) via its action on⊕k

i=1 L̃i.
For any positive integer p, let Quot(Li/Si, p) −→ Si denote the relative

Quot scheme parametrizing the torsion quotients of Li/Si of degree p. So the
fiber of Quot(Li/Si, p) over any s ∈ Si parametrizes the torsion quotients of
Li|s×X of degree p.

Proposition 5.1. There is a bijection between the partitions

P = (p1, p2, . . . , pk)

of d of length k and the connected components of the fixed point loci of
the Gk

m action on Quot(
⊕

i L̃i/S, d). The component corresponding to the
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partition
∑k

i=1 pi = d is the product of Quot schemes

Quot(L•/S,P)

:= Quot(L1/S1, p1)×Quot(L2/S2, p2)× · · · ×Quot(Lk/Sk, pk)

with the obvious structure morphism to S.

Proof. One applies the argument used to prove Lemme 1 in [4]. �
As all schemes and morphisms are assumed to be projective it is possible

to choose a 1–parameter subgroup

Gm ↪→ G
k
m

so that

Quot(
⊕
i

L̃i/S, d)
Gm = Quot(

⊕
i

L̃i/S, d)
G

k
m .

Further, the above one-parameter subgroup can be chosen to be given by an
increasing sequence of weights λ1 < λ2 < · · · < λk.

There is an induced action of Gm on the tangent space at a fixed point
x. The action preserves the normal space to the fixed point locus and we
wish to describe the subspace of positive weights.

Take a partition P = (p1, . . . , pk) of D. As before, let

Quot(L•/S,P) ⊂ Quot(
⊕
i

L̃i/S, d)
G

k
m

be the connected component corresponding to P. For a point

x ∈ Quot(L•/S,P),

its image in Si will be denoted by xi. The line bundle Li|xi×X on X will be
denoted by Lx

i . The point xi is given by the exact sequence

0 −→ Lx
i ⊗OX(−Di) −→ Lx

i −→ ODi
−→ 0

where Di is an effective divisor on X with degDi = pi. The relative tangent
bundle for the projection φ is

TxQuot(
⊕
i

L̃i/S, d)/S =

k⊕
i,j=1

Hom(Lx
i ⊗OX(−Di),ODj

).
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On the other hand, the relative tangent space to the fixed point locus
Quot(L•/S,P) is

TxQuot(L•/S,P)/S =

k⊕
i=1

Hom(Lx
i ⊗OX(−Di),ODi

).

Consequently, the normal bundle N to Quot(L•/S,P) ⊂ Quot(
⊕

i L̃i/S, d)
is

Nx =
⊕
i �=j

Hom(Lx
i ⊗OX(−Di,ODj

).

Also, the subspace of positive weights is

N+
x =

⊕
i<j

Hom(Lx
i ⊗OX(−Di,ODj

)

because the torus acts on Hom(Lx
i ⊗OX(−Di,ODj

) with weight λj − λi. It
follows that

d(P) := dimN+
x =

k∑
i=1

(i− 1)pi.

Proposition 5.2. The Quot schemes for line bundles

Quot(Li/Si, pi) = Quot(O/Si, pi) = Sympi(X)× Si.

The Poincaré polynomial of Quot(
⊕

i L̃i/S, d) is given by

P (Quot(
⊕
i

L̃i/S, d), t) =
∑
P

t2d(P)P (Quot(Li/Si, pi), t)

=
∑
P

t2d(P)P (Si, t)P (Sympi(X), t),

where the sum is over all partitions of d of length k.

Proof. The isomorphism Quot(O/Si, pi)
∼−→ Quot(Li/Si, pi) is by tensoring

exact sequences with Li. The second equality is via (2.1).
We need to recall the theorems of [3] and [11] in our present context. The

torus action determines two stratifications of the variety Quot(
⊕

i L̃i/S, d).
The strata are in bijection with connected components of the fixed point
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locus which are in turn in bijection with partitions of d of length k. Given
such a partition P, its corresponding strata are

Quot(L•/S,P)+ :=
{
x | lim

t→0
t.x ∈ Quot(L•/S,P)

}

and

Quot(L•/S,P)− :=
{
x | lim

t→∞ t.x ∈ Quot(L•/S,P)
}
.

Both of these stratifications are known to be perfect. There are affine fibra-
tions

Quot(L•/S,P)+ −→ Quot(L•/S,P)

and

Quot(L•/S,P)− −→ Quot(L•/S,P)

of relative dimensions dimN+
x and dimN−

x respectively, where

x ∈ Quot(L•/S,P)

is an arbitrary closed point. It follows that the codimension of

Quot(L•/S,P)−

is dimN+
x which gives the above formula for the Poincare polynomial. �

5.2. The cohomology of Quot(r, dp, dz)

In this subsection we describe the Poincaré polynomial of Quot(r, dp, dz).
Consider the morphism ϕ in (3.9). There is a natural action of the torus
Gr

m on the target Quot(Or, dp) = Q(r, dp). This action clearly lifts to the
domain Quot(r, dp, dz) for ϕ.

The previous subsection (Section 5.1) provides us with a decomposition
and an induced formula for the Poincaré polynomial of

Quot(r, dp, dz).

Let us recall it quickly in the present context. There is a bijection between
connected components of fixed point locus and partitions of dp of length r.
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Given a partition

P = (p1, p2, . . . , pr),

the corresponding component of Quot(Or, dp)
Gm is

Quot(O, p1)× · · · ×Quot(O, pr) = Symp1(X)× · · · × Sympr(X)

= SymPX.

There are universal divisors Duniv
pi

inside Sympi(X)×X. The component of
Quot(r, dp, dz)

G
r
m corresponding to P, that is

φ−1(Symp1(X)× Symp2(X)× · · · × Sympr(X))

is then identified with Quot(
⊕

iOSympi (X)×X(Duniv
pi

)/ Sympi(X), dz). As the
morphism ϕ in (3.9) is smooth, and smooth morphisms preserve codimen-
sion, we obtain the following formula for the Poincaré polynomial:

P (Quot(r, dp, dz), t)(5.1)

=
∑
P

t2d(P)P (Quot(
⊕
i

OSympi (X)×X(Duniv
pi

)/ Sympi(X), dz), t).

To complete the calculation we need to compute the Poincaré polynomials
of

Quot(
⊕
i

OSympi (X)×X(Duniv
pi

)/ SymP(X), dz).

Once again Proposition 5.2 applies. The connected components of the
fixed point loci are in bijection with partitions of dz of length r. Given a
partition Q = (q1, . . . , qr), the corresponding connected component is

Quot(OSymp1 (X)×X(−Dp1
)/ Symp1(X), q1)× · · ·

· · · ×Quot(OSympr (X)×X(−Dpr
)/ Sympr(X), qr)

which is canonically isomorphic to

SymP,QX := Symp1(X)× · · · × Sympr(X)× Symq1(X)× · · · × Symqr(X).

We obtain the following formula:

P (Quot(
⊕
i

OSympi(X)×X(Duniv
pi

)/ SymP(X), dz))

=
∑
Q

t2d(Q)P (SymP,Q(X), t).
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Putting this all together we obtain the following:

Theorem 5.3. The Poincaré polynomial for Quot(r, dp, dz) is

P (Quot(r, dp, dz), t) =
∑
P

∑
Q

t2[d(P)+d(Q)]P (SymP(X), t)P (SymQ(X), t),

where P varies over all partitions of dp of length r and Q varies over all
partitions of dz of length r.

Poincaré polynomial of Symn(X) is the coefficient of tn in

(1 + tx)2gX

(1− t)(1− tx2)
,

where gX is the genus of X [12, p. 322, (4.3)]. Using this and Theorem 5.3
we get an explicit expression for P (Quot(r, dp, dz), t).
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