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Exploring SU(3) structure moduli spaces
with integrable G2 structures

Xenia de la Ossa, Magdalena Larfors and Eirik E. Svanes

We study the moduli space of SU(3) structure manifolds X that
form the internal compact spaces in four-dimensional N= 1

2 domain
wall solutions of heterotic supergravity with flux. Together with
the direction perpendicular to the four-dimensional domain wall,
X forms a non-compact 7-manifold Y with torsionful G2 structure.
We use this G2 embedding to explore how X(t) varies along paths
C(t) in the SU(3) structure moduli space. Our analysis includes
the Bianchi identities which strongly constrain the flow. We show
that requiring that the SU(3) structure torsion is preserved along
the path leads to constraints on the G2 torsion and the embedding
of X in Y . Furthermore, we study flows along which the torsion
classes of X go from zero to non-zero values. In particular, we
present evidence that the flow of half-flat SU(3) structures may
contain Calabi–Yau loci, in the presence of non-vanishing H-flux.
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1. Introduction

Compactifications of string theory provide one of the most fruitful grounds
for the study of the theory’s formal and phenomenological aspects. String
compactifications can also be used as a tool to study properties of com-
pact manifolds, and has been instrumental in the study of Calabi–Yau man-
ifolds. In particular, the demand that supersymmetry is preserved leads
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to severe constraints on the metric of the compactified space. In heterotic
string theory, the conditions for N = 1 supersymmetric, maximally symmet-
ric, four-dimensional vacua have long been known: with vanishing flux H,
the internal 6-manifold must be Calabi–Yau [1], whereas a non-zero H-flux
requires the internal geometry to be complex non-Kähler [2, 3] (see [4–16]
for further discussions). These two types of 6-manifolds both allow a globally
defined, nowhere vanishing spinor η, that can be used to decompose the ten-
dimensional supercharge ε of heterotic supergravity into internal and exter-
nal components, ε = η ⊗ ρ. If the external spinor component ρ is covariantly
constant, it provides a four-dimensional supercharge and guarantees that the
four-dimensional vacuum has N = 1 supersymmetry.

All six-dimensional manifolds with one nowhere vanishing spinor have
SU(3) structure, and so their geometry is completely specified by a real two-
form ω and a complex three-form Ψ that need not be closed [17, 18]. The non-
closure of ω and Ψ determines the intrinsic torsion of the geometry. In this
language, Calabi–Yau manifolds correspond to torsion-free SU(3) structures,
and the spaces that are solutions to the Strominger system [2, 3] have torsion
components transforming in a particular irreducible SU(3) representation
[11, 12].1

If the restrictions on the torsion of the internal SU(3) structure manifold
are relaxed, the resulting vacuum will break supersymmetry. More general
SU(3) structure manifolds can thus provide interesting non-supersymmetric
vacua of heterotic string theory, with the benefit that the SU(3) structure
guarantees an N = 1 four-dimensional effective field theory description of
the low-energy dynamics. A simple class of such vacua, that will be studied
in this paper, are half-BPS domain wall solutions in four dimensions, that
preserve N = 1

2 supersymmetry. As has been shown recently [23], the N = 1
2

supersymmetry constraints put very mild restrictions on the intrinsic torsion;
for the most general H-flux preserving the symmetry of the ansatz, almost
all torsion components can be balanced by the appropriate flux (for studies
with restricted flux, see [24–27] for a ten-dimensional perspective, and [28–
32] for four-dimensional studies). This heterotic set-up can thus be used to
study the properties of many different types of SU(3) structure manifolds.

The scope of this paper is to use heterotic N = 1
2 domain wall solutions to

explore the moduli space of different SU(3) structure manifolds. We restrict

1SU(3) structure manifolds are also relevant for (supersymmetric) type II com-
pactifications with flux, and reviews of this topic can be found in [19–21]. A sum-
mary of the torsion constraints that also includes non-supersymmetric vacua can
be found in Section 2 of [22].
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X(t): SU(3) structure

t

Y : G2 structure

Domain wall direction

Figure 1: The heterotic N = 1
2 domain wall solutions can be viewed as

warped product of a compact SU(3) structure 6-fold X(t) with a four-
dimensional domain wall spacetime, or as a the product of a non-compact
G2 manifold Y with a maximally symmetric three-dimensional spacetime.
The latter is suppressed in this picture.

our study to the zeroth order α′ approximation of heterotic string theory,2

so that the bosonic part of the ten-dimensional supergravity action reduces
to

(1) S =
1

2α′

∫
d10 x e−2φ

√
|G|

(
R+ 4(∂φ)2 − 1

12
H2

)
,

where G is the ten-dimensional metric, R the corresponding Ricci scalar, φ
the dilaton, and H = dB the flux of the Kalb–Ramond field B, satisfying the
Bianchi identity dH = 0. We look for solutions where spacetime decomposes
into a warped product of a compact SU(3) structure manifold X and a
four-dimensional non-compact spacetime. The latter decomposes, for N = 1

2
domain wall solutions, into a maximally symmetric three-dimensional space
along the domain wall world-volume and a direction perpendicular to the
wall. Alternatively, as depicted in Figure 1, we may combine the direction
perpendicular to the domain wall with the SU(3) structure manifold to a

2The heterotic gauge fields appear at first order in α′, and are neglected in our
study, as are the O(α′) corrections to the Bianchi identity of H. Note however that
domain wall solutions avoid the usual no-go theorems for H-flux that appear at
zeroth order in N = 1 solutions [6, 12], since the compactification is on a seven-
dimensional non-compact manifold.
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non-compact seven-dimensional manifold Y with G2 structure [23, 24]. The
spacetime metric thus has the form

(2) ds210 = ds23︸︷︷︸
max. sym.

+N2
t (t, x)d

2t+ gmn(t, x)dx
mdxn︸ ︷︷ ︸

SU(3) structure︸ ︷︷ ︸
G2 structure

,

where the function Nt and SU(3) structure metric depend both on t and
the coordinates on X. For the H-flux, we allow all components that preserve
the symmetries of the metric; fεαβγ along the maximally symmetric three-
dimensional spacetime, and Ĥ along the seven-dimensional G2 manifold.

The N = 1
2 supersymmetry constraints and the Bianchi identity for H

can, as we show in Section 2, be reformulated as constraints on the intrinsic
torsion of the G2 structure. For the most general flux compatible with the
spacetime symmetries, these conditions are met by a certain type of inte-
grable G2 structures. Consequently, the physical problem of finding N = 1

2
supersymmetric domain wall solutions in heterotic string theory translates
into the mathematical problem of determining how the SU(3) structure,
dilaton and flux flow to form an integrable G2 structure. The solutions are
thus generalisations of Hitchin flow [17], where a half-flat SU(3) structure
manifold varies over a perpendicular direction to form a seven-manifold with
G2 holonomy. Indeed, the Hitchin flow is reproduced by the domain wall
solutions when the flux is set to zero, and the dilaton is taken to be con-
stant. Other types of G2 flows have been discussed by Chiossi and Salamon
[18].

As the SU(3) structure flow along the domain wall direction, it will trace
out a curve in the moduli space of SU(3) structure manifolds, see Figure 2.
Consequently, through these constructions we uncover information about
the parameter space of generic SU(3) structure manifolds, which is highly
non-trivial to study. For Calabi–Yau metrics, the parameters decompose into
moduli corresponding to variations of the closed forms ω and Ψ: the former
describe variations of the Kähler structure, and the latter variations of the
complex structure, and the dimension of the two spaces is determined by the
Hodge numbers h(1,1) and h(2,1) of the Calabi–Yau three-fold, respectively
[33]. On generic SU(3) structure manifolds, neither ω nor Ψ are closed,
and the relevant parameters are only partially known (see [34–36] for some
recent progress). Indeed, care is needed when studying the moduli, since
even very basic questions, such as the dimensionality of the parameter space,
become subtle. As an example, the moduli space of deformations of ω in the
Strominger system appears infinite-dimensional [14], unless deformations of



842 X. de la Ossa, M. Larfors and E. E. Svanes

SU(3) structure manifolds

M
C(t)

Figure 2: The embedding of an SU(3) structure into an integrable G2 struc-
ture induces a flow along a curve C in the moduli space M of SU(3) structure
metrics, that is parameterised by the coordinate t.

the O(α′)-corrected Bianchi identity for H are simultaneously taken into
account [37, 38].

In the present paper, the G2 embedding constrains the allowed defor-
mations, and thus simplifies the variational analysis. While this restric-
tion means that questions regarding the number of parameters cannot be
addressed, the setting is rich enough to tackle non-trivial questions such as
the connections between the moduli spaces of Calabi–Yau and non-Calabi–
Yau manifolds. With the most general H-flux, the heterotic constraints are
solved by a wide range of SU(3) structure manifolds, and different domain
wall solutions may connect SU(3) structures of different type. Through these
constructions, we can thus study whether certain properties, such as an inte-
grable complex structure, are preserved or violated by the flow, and whether
torsion classes or flux components can be switched on and off by the flow.
As a result, we will gain insight about the interconnections between the
parameter spaces of different SU(3) structure manifolds.

The rest of this paper is organised as follows. We start, in Section 2, by
presenting the integrable G2 structures that are relevant for N = 1

2 domain
wall solutions. We translate the supersymmetry conditions and Bianchi iden-
tities, which imply the equations of motion for the supergravity fields, into
constraints on the G2 torsion classes. In Section 3, we analyse the same equa-
tions from the perspective of the SU(3) structure manifolds. We derive the
constraints on the variations of the SU(3) structure forms, and find that the
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flow of ω is completely determined by the torsion and flux, whereas some
freedom remain in the variation of Ψ. In the following sections, we give exam-
ples of different types of SU(3) structure flows that illustrate the intricacy
of the moduli space of such manifolds. In Section 4, we study the flow of
Calabi–Yau manifolds with flux: we derive the constraints on the flow to
preserve the Calabi–Yau properties, and perform a first-order analysis of the
flow without these constraints that show that non-zero torsion is induced.
In Sections 5 and 6, we study the flow of nearly Kähler and half-flat SU(3)
structures. We determine the constraints required to preserve the torsion
along the flow, and study whether loci with vanishing torsion are possible.
In Section 7 we summarise our results and discuss possible extensions of
our analysis. Our conventions are summarised in Appendix A. In a sepa-
rate paper [39], a complementary study of the embedding of the Strominger
system into G2 and Spin(7) manifolds will be presented.

2. N = 1
2

domain wall solution and G2 structures

In this paper, we are interested in four-dimensional domain wall solutions of
heterotic string theory that preserve N = 1

2 supersymmetry. Such configu-
rations arise from heterotic compactifications on six-dimensional manifolds
X with SU(3) structure. Alternatively, as shown in Figure 1, they can be
viewed as three-dimensional maximally symmetric heterotic solutions that
result from “compactification” on a non-compact seven-dimensional G2 struc-
ture manifold Y , that is foliated by the SU(3) six-manifolds. In this section,
we describe how N = 1

2 supersymmetry determines the G2 structure of Y .
Any heterotic vacuum solution must satisfy the equations of motion and

Bianchi identities of the low-energy supergravity description of the theory.
For supersymmetric solutions, the vanishing of the supersymmetry variations
of fermionic fields lead to additional constraints. As described in detail in
[23, 24], to lowest order in the α′ expansion, these constraints require the
existence of a three-form ϕ on Y , that must satisfy the following constraints

d7ϕ = 2d7φ ∧ ϕ− ∗7Ĥ − f ψ,(3)
d7ψ = 2d7φ ∧ ψ,(4)

∗7d7φ = −1
2 Ĥ ∧ ϕ,(5)

1
2 ∗7 f = Ĥ ∧ ψ,(6)

where the three-form Ĥ and the function f are the components of the ten-
dimensional flux H = dB, which lie along Y and the three-dimensional,
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maximally symmetric domain wall world-volume, respectively.3 φ is the ten-
dimensional dilaton, and ψ is the seven-dimensional Hodge dual of ϕ. d7
and ∗7 denote the exterior derivative and Hodge dual on Y , respectively (see
Appendix A for further conventions).

This system is equivalent to a G2 structure [18, 40] determined by ϕ

d7ϕ = τ0 ψ + 3 τ1 ∧ ϕ+ ∗7τ3,(7)
d7ψ = 4 τ1 ∧ ψ + ∗7τ2.(8)

with intrinsic torsion specified by

τ0 = −15
14 f,(9)

τ1 =
1
2 d7φ,(10)

τ2 = 0,(11)
τ3 = −H⊥ − 1

2 d7φ�ψ, ∗7τ3 = − ∗7 H⊥ + 1
2 d7φ ∧ ϕ,(12)

The G2 torsion classes τp, p = 0, . . . , 3 are p-forms that transform in irre-
ducible representations of G2. The torsion class τ3 must satisfy the primitiv-
ity constraints

ϕ ∧ ∗7τ3 = 0, τ3 ∧ ϕ = 0,

and the G2 stucture is called integrable when τ2 = 0, as is the case here.
In the above equations, we have decomposed Ĥ into components that are
parallel and orthogonal to ϕ:

Ĥ = 1
14 f ϕ+H⊥, H⊥ ∧ ψ = 0, ∗7H⊥ ∧ ϕ = 0.

By further restricting the flux, the torsion class τ0 can be set to zero so that
the G2 structure is integrable conformally balanced [41]; this case is studied
in [10, 13, 24].

It is straight-forward to prove the equivalence between (3)–(6) and (7)–
(12). The equations for τ2 and τ1 are obvious, whereas the remaining equa-
tions require some work. Comparing Equations (7) and (3) we obtain

(13) τ0 ψ + ∗7τ3 = −f ψ − ∗7Ĥ + 1
2 d7φ ∧ ϕ.

3The flux component f determines the cosmological constant of the three-
dimensional spacetime; a non-zero f gives an anti de Sitter spacetime, while a
vanishing f gives Minkowsi spacetime.
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Using the first primitivity constraint on τ3 in (13) gives the relation

(τ0 + f)ψ ∧ ϕ = − ∗7 Ĥ ∧ ϕ.

Decomposing Ĥ as Ĥ = hϕ ϕ+H⊥, with H⊥ as above, we have ∗7Ĥ =
hϕ ψ + ∗7H⊥, and thus

τ0 = −f − hϕ.

Using this in Equation (13), and taking the Hodge-dual, we find

τ3 = −H⊥ − 1
2 d7φ�ψ.

The second primitivity constraint on τ3 now gives

0 = −H⊥ ∧ ϕ− 1
2 (d7φ�ψ) ∧ ϕ.

It turns out that this equation is equivalent to (5). In fact,

(d7φ�ψ) ∧ ϕ = − ∗7 (d7φ ∧ ∗7ψ) ∧ ϕ = − ∗7 (d7φ ∧ ϕ) ∧ ϕ

= − ∗7 (ϕ�(d7φ ∧ ϕ)) = 4 ∗7 d7φ.

The last Equation (6) gives

1
2 f = ∗7(Ĥ ∧ ψ) = hϕ ∗7 (ϕ ∧ ψ) = 7hϕ,

and therefore

hϕ = 1
14 f, and τ0 = −15

14 f.

This concludes the proof of the equivalence between (3)–(6) and (7)–(12).
For future reference, we record the inverse relations for φ, f and Ĥ in terms
of the torsion classes

f = −14
15 τ0,

d7φ = 2 τ1,

H⊥ = −τ3 − τ1�ψ.
(14)

In addition to the supersymmetry equations, heterotic vacuum solutions
have to satisfy the equations of motion and the Bianchi identities. At lowest
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order in α′, the latter is

d7Ĥ = 0, f = constant,

Inserting (14) in these relations, we find further constraints on the G2 torsion:

τ0 = constant,

0 = d7
(
τ3 + τ1�ψ + 1

15 τ0 ϕ
)
.

(15)

Finally, we turn to the equations of motion. At lowest order in α′, the for-
mer comprise Einstein’s equations, the equation of motion for the dilaton φ
and the equations of motion for the flux Ĥ. To first order in the α′ expansion,
it has been shown [10, 16] that both Einstein’s equations and the equation of
motion for the dilaton are implied by the supersymmetry equations, Bianchi
identity and flux equations of motion, and so provide no further constraint
on the G2 structure. An extension of this result, that includes the flux equa-
tion of motion in the equations implied by supersymmetry and the Bianchi
identities, can be found in [42]. Let us provide an alternative proof for this
last point. The seven-dimensional flux equation of motion are

0 = d7

(
∗7e−2φĤ

)
⇔

0 = −1

8
τ0 (−2d7φ ∧ ψ + d7ψ)− 1

8
d7τ0 ∧ ψ

+ (−2d7φ ∧ ∗7H⊥ + d7 ∗7 H⊥) .

(16)

This equation is also implied by the Killing spinor equations and Bianchi
identities, as we now show. Clearly, the supersymmetry constraints and the
Bianchi identities set the first three terms on the right hand side of the second
equation in (16) to zero. What remains is

0 = (−2d7φ ∧ ∗7H⊥ + d7 ∗7 H⊥)(17)
= d7 ∗7 τ3 + τ0τ1 ∧ ψ − 3τ1 ∧ ∗7τ3 .

This should be compared to

0 = d27ϕ = (d7 ∗7 τ3 + τ0τ1 ∧ ψ − 3τ1 ∧ ∗7τ3)(18)
+ (d7τ0 ∧ ψ + 3d7τ1 ∧ ϕ) ,

where the last bracket vanish as a consequence of the supersymmetry con-
ditions and Bianchi identities. Thus, to zeroth order in α′, all equations of
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motion follow from the Killing spinor equations and Bianchi identities, and
the G2 structure is completely specified by (7)–(12) in conjunction with the
differential constraints (15).

3. SU(3) structures embedded into integrable G2 structures

In this section, we derive the constraints that the Killing spinor equations and
Bianchi identities of N = 1

2 domain wall solutions put on the SU(3) structure
of X(t). Mathematically, these constraints determine how the SU(3) struc-
ture embeds into integrable G2 structures. As in the previous section, we
start with the supersymmetry constraints, and then proceed to the Bianchi
identities.

3.1. The embedding

Consider a manifold X with an SU(3) structure [11, 12, 18, 43] determined
by the complex (3, 0)-form Ψ and the real (1, 1) form ω which satisfy the
compatibility equations

(19) ω ∧Ψ = 0, dvol6 =
1

6
ω ∧ ω ∧ ω =

iΨ ∧ Ψ̄

‖Ψ‖2 ,

and the torsion structure equations

dω = − 12

‖Ψ‖2 Im(W0Ψ) +Wω
1 ∧ ω +W3,(20)

dΨ = W0 ω ∧ ω +W2 ∧ ω +W
Ψ
1 ∧Ψ,(21)

where W0 is a complex function, W2 is a primitive (1, 1)-form, W3 is a real
primitive 3-form of type (1, 2) + (2, 1), and Wω

1 and WΨ
1 are 1-forms. The

torsion components Wω
1 and WΨ

1 are the Lee-forms of ω and Ψ respectively.
The SU(3) structure forms determine both the almost complex structure

J (determined by the real part of Ψ), and the metric on the manifold [44],
see Appendix A. The torsion classes W0,W2 are related to the Nijenhuis
tensor of the almost complex structure, and vanish if and only if the latter
is integrable.

We now embed the SU(3) structure (X,ω,Ψ) into an integrable G2 struc-
ture (Y, ϕ), by choosing a 1-form N = Nt dt and a complex valued function
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α such that

(22) ϕ = N ∧ ω +Re(αΨ),

The Hodge dual ψ of ϕ is

(23) ψ = ∗7ϕ = −N ∧ Im(αΨ) +
1

2
ω ∧ ω.

where we have used

∗6 ω =
1

2
ω ∧ ω, ∗6Ψ = −iΨ,

and the metric gϕ on Y induced by the G2 structure ϕ which is

(24) d2sϕ = N2
t d

2t + d2sX , NtN
t = 1, |α|2 ‖Ψ‖2 = 8.

Note that we are not assuming that the metric on X is independent of t. The
SU(3) structure (X,ω,Ψ) varies with t and so does the metric on X. As Ψ
and the metric on X are covariantly constant (with respect to the connection
with torsion), ‖Ψ‖2 is a constant on X, d‖Ψ‖2 = 0, and therefore so is |α|

d|α| = 0.

It is important however to keep in mind that all these quantities may depend
on t. Note also that different choices of α correspond to same almost complex
structure J on X, however they give different embeddings of the SU(3)
structure into the G2 structure.

Recall that an integrable G2 structure satisfies τ2 = 0. Thus the torsion
structure equations for (Y, ϕ) are

d7ϕ = τ0 ψ + 3τ1 ∧ ϕ+ ∗7τ3,(25)
d7ψ = 4τ1 ∧ ψ.(26)

The torsion class τ3 belongs to Λ3
27, that is

(27) ϕ ∧ ∗7τ3 = 0, ϕ�(∗7τ3) = 0.

The torsion class τ0 is therefore

(28) 7 τ0 = ∗7(ϕ ∧ d7ϕ).

For these G2 structures the 1-form τ1 is not in general closed. Since we are
interested in the N = 1/2 domain wall solutions of Section 2, we restrict the
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G2 structure so that τ1 is exact

τ1 =
1

2
d7φ.

To embed the SU(3) structure into an integrable G2 structure, we need
to decompose the G2 torsion classes as follows

τ1 = τ1 t dt+ τX1 ,(29)
τ3 = dt ∧ τ3 t + τX3 , ∗7τ3 = −N ∧ ∗τX3 +N−1

t ∗ τ3 t,(30)

where

τ1 t =
1

2
∂tφ, τX =

1

2
dφ.

The constraints on τ3, Equations (27), can be decomposed using Equa-
tion (30). The first constraint gives

(31) ω ∧ ∗τ3 t = −NtRe(αΨ) ∧ ∗τX3 ,

and the second

(32) Re(αΨ)� ∗ τX3 = 0, Nt ω� ∗ τX3 = Re(αΨ)� ∗ τ3 t.

The following identities will be useful in our computations.

Lemma 1. Let

ρ = ∗ω =
1

2
ω ∧ ω.

Then

dRe(αΨ) = 2Re(αW0) ρ+Re(αW2) ∧ ω +Re((W
Ψ
1 + d logα) ∧ αΨ)

= 2Re(αW0) ρ+Re(αW2) ∧ ω +ReW Ψ
1 ∧ Re(αΨ)

− (ImW
Ψ
1 + da) ∧ Im(αΨ),

dIm(αΨ) = 2Im(αW0) ρ+ Im(αW2) ∧ ω + Im((W
Ψ
1 + d logα) ∧ αΨ)

= 2Im(αW0) ρ+ Im(αW2) ∧ ω +ReW Ψ
1 ∧ Im(αΨ)

+ (ImW
Ψ
1 + da) ∧ Re(αΨ),

d(Nt ω) = Nt

(
(d logNt +Wω

1 ) ∧ ω − 3
2 Im((αW0) (ᾱΨ)) +W3

)
.

where a is the argument of α.
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Proof. These identities are easily obtained by a calculation using Equa-
tions (20) and (21). In the third equation we have also used identity (24). �

To embed the SU(3) structure into an integrable G2 structure, we use
Equations (22) and (23), into the Equations (25) and (26).

Proposition 1. The embedding given by Equations (22) and (23) of the
SU(3) structure (X,ω,Ψ) with torsion classes as in (20) and (21) into an
integrable G2 structure (Y, ϕ) with torsion classes (25) and(26) gives the the
following relations between the torsion classes and the flow of ω and Ψ with
respect to the coordinate t:

Wω
1 = 2τX1 ,(33)

∂tρ = 4τ1 t ρ+ 2NtW
ω
1 ∧ Im(αΨ)− d(Nt Im(αΨ))(34)

= 2(2 τ1 t −Nt Im(αW0)) ρ−Nt Im(αW2) ∧ ω

−Nt Im
(
(d log(αNt)− 2Wω

1 +W
Ψ
1 ) ∧ αΨ

)
,

∂tω = (2 τ1 t − 3Nt Im(αW0))ω + 2NtW
ω
1 �Re(αΨ)(35)

− dc†(Nt Im(αΨ))

= (2 τ1 t + Nt Im(αW0))ω − 2Nt Im(αW2)

+ 2NtW
ω
1 �Re(αΨ) + d†(NtRe(αΨ))

= (2 τ1 t −Nt Im(αW0))ω −Nt Im(αW2)

−NtRe
(
(d log(αNt)− 2Wω

1 +W
Ψ
1 )�(αΨ)

)
,

7Nt τ0 = 12NtRe(αW0)− Im(αΨ)�∂tRe(αΨ),(36)

N−1
t τ3 t = d†Im(αΨ)− τ0 ω + 3

2 W
ω
1 �Im(αΨ)(37)

= (2Re(αW0)− τ0)ω − Re(αW2)

− Im
(
(d logα− 3

2 W
ω
1 +W

Ψ
1 )�(αΨ)

)
,

∂tRe(αΨ) = d(Nt ω)− 3
2 NtW

ω
1 ∧ ω + 3 τ1 tRe(αΨ)(38)

−Nt τ0 Im(αΨ)−Nt ∗ τX3
= Nt

(
d logNt − 1

2 W
ω
1

) ∧ ω

+ 3
2 (2 τ1 t −Nt Im(αW0))Re(αΨ)

−Nt

(
τ0 − 3

2 Re(αW0)
)
Im(αΨ)−Nt ∗ τX3 +NtW3.

Proof. We begin our analysis of the embedding with Equation (26) (which
enforces the condition that τ2 = 0). Using Equations (22) and (23) and
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Lemma 1, we obtain

d7ψ − 4τ1 ∧ ψ

= dt ∧ (
∂tω ∧ ω − 2τ1 t ω ∧ ω + d(Nt Im(αΨ))− 4Nt τ

X
1 ∧ Im(αΨ)

)
+ dω ∧ ω − 2τX1 ∧ ω ∧ ω,

which gives Equations (33) and (34)

dω ∧ ω = Wω
1 ∧ ω ∧ ω = 2 τX1 ∧ ω ∧ ω ⇐⇒ Wω

1 = 2τX1 ,

∂tω ∧ ω = 2τ1 t ω ∧ ω − d(Nt Im(αΨ)) + 4Nt τ
X
1 ∧ Im(αΨ).

The last of these equations gives the first identity in (34) and we obtain the
second after using Lemma 1. Equations (35) can be obtained from Equa-
tion (34) using the formula

∂tω = ω�∂tρ− 1

2
(ρ�∂tρ)ω,

and recalling that for any k-form β

dcβ = J−1d(Jβ), dc†β = − ∗ dc(∗β).

Now we turn to Equation (25). Equation (36) can be easily obtained by
computing τ0 using Equations (28) and (25):

7 τ0 dvolϕ = ϕ ∧ d7ϕ

= (N ∧ ω +Re(αΨ)) ∧ (dt ∧ (∂tRe(αΨ)− d(Ntω)) + dRe(αΨ))

= dt ∧ (Nt ω ∧ dRe(αΨ)− Re(αΨ) ∧ (∂tRe(αΨ)− d(Ntω)))

= dt ∧ (12NtRe(αW0) dvolX − Re(αΨ) ∧ ∂tRe(αΨ)).

Taking the Hodge dual, we obtain Equation (36) where we have used

∗(Re(αΨ) ∧ ∂tRe(αΨ)) = Im(αΨ)�∂tRe(αΨ).

Using Equations (22) and (23) into Equation (25) we obtain

d7ϕ− (τ0 ψ + 3τ1 ∧ ϕ+ ∗τ3)
= dt ∧ (−d(Nt ω) + ∂tRe(αΨ) +Nt τ0 Im(αΨ)

− 3 τ1 tRe(αΨ) + 3Nt τ
X
1 ∧ ω +Nt ∗ τX3 ))

+ dRe(αΨ)− τ0 ρ− 3 τX1 ∧ Re(αΨ)−N−1
t ∗ τ3 t,
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from which we find two relations

dRe(αΨ) = τ0 ρ+ 3 τX1 ∧ Re(αΨ) +N−1
t ∗ τ3 t,

∂tRe(αΨ) = d(Nt ω)− 3Nt τ
X
1 ∧ ω + 3 τ1 tRe(αΨ)

−Nt τ0 Im(αΨ)−Nt ∗ τX3 .

The first one gives a relation between the torsion classes of the G2 structure
and the SU(3) structure which we can write, for example, as an equation for
∗τ3t. Using Lemma 1 we find

N−1
t ∗ τ3 t = dRe(αΨ)− τ0 ρ− 3 τX1 ∧ Re(αΨ)(39)

= (2Re(αW0)− τ0) ρ+Re(αW2) ∧ ω

+Re
(
(d logα− 3

2 W
ω
1 +W

Ψ
1 ) ∧ αΨ

)
.

Taking the Hodge dual, we find Equation (37). This relation is a flow equation
for Re(αΨ) which, using Lemma 1, gives Equation (38). �

It will be useful for later to have an expression for τX3 which satisfies the
contraints in Equations (31) and (32).

Proposition 2.

∗τX3 =
1

2

(
2 Jda+ 3Wω

1 − 4ReWΨ
1

) ∧ ω(40)

+
3

4
(τ0 − 2Re(αW0)) Im(αΨ) + γ,

where γ is a primitive 3-form of type (2, 1) + (1, 2).

Proof. We begin by writing the Lefshetz decomposition of ∗τX3
∗τX3 = β ∧ ω + γ̃, ω�γ̃ = 0.

Also, the Hodge decomposition of γ̃ can be written as

γ̃ = κ1Re(αΨ) + κ2 Im(αΨ) + γ,

where γ is of type (2, 1) + (1, 2). Using Equation (39) into the second equa-
tion in (32) we obtain

ω� ∗ τX3 = 2β = 3Wω
1 − 4ReWΨ

1 + 2 Jda,
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which gives the first term in Equation (40). The first relation in Equation (32)
gives

0 = Re(αΨ)� ∗ τX3 = 4κ1,

whereas the Hodge dual of Equation (31) gives

Im(αΨ)� ∗ τX3 = 4κ2 = −N−1
t ω� ∗ τ3 t = 3(τ0 − 2Re(αW0)).

Putting all this together we obtain Equation (40). By computing the Hodge
dual of (40), we obtain an equation for τX3 . �

Using the expression for τ3 in this proposition, we can rewrite Equa-
tion (38) for the flow of Ψ. Substituting Equation (40) into Equation (38)
we find

∂tRe(αΨ) = d(Nt ω) +Nt (−3Wω
1 + 2ReWΨ

1 − Jda) ∧ ω(41)
+ 3 τ1 tRe(αΨ)− 1

4 Nt (7τ0 − 6Re(αW0)) Im(αΨ)−Nt γ

= Nt (d logNt − 2Wω
1 + 2ReWΨ

1 − Jda) ∧ ω

+ 3
2 (2 τ1 t −Nt Im(αW0))Re(αΨ)

− 1
4 Nt (7τ0 − 12Re(αW0)) Im(αΨ) +Nt(W3 − γ).

Note the consistency between this equation and Equation (36).

3.2. Flow equations and moduli

The manifold X is an almost-hermitian manifold with an SU(3) structure.
Its almost-complex structure J is completely determined by Ψ, and therefore,
the flow of Ψ corresponds to variations of the almost complex structure of
X as t varies. On the other hand, the flow of ω has simultaneous variations
of both the hermitian structure and those of the almost complex structure.

The variations of ω can be written as

(42) ∂tω = λt ω + ht,

where λt is a function on Y and ht is a primitive real 2-form on X. Comparing
the flow equation for ω (35) with (42) we have

λt = 2 τ1 t −Nt Im(αW0) = ∂tφ−Nt Im(αW0),

h
(1,1)
t = −Nt Im(αW2),

h
(0,2)
t = −1

2 Nt(d logNt + η̄)�(ᾱΨ),
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where we have defined the (0, 1) form

(43) η = W
Ψ
1 − 2 (Wω

1 )
(0,1) + ∂̄ logα = W

Ψ
1 − 2 (Wω

1 )
(0,1) + i ∂̄a,

for later convenience. It is very interesting to note that h(1,1)t = 0 vanishes for
all SU(3) structures for which Im(αW2) vanishes. In these cases the SU(3)
structure deforms with t such that the hermitian structure is fixed.

The variations of Ψ with respect to t are given by [45, 46]

(44) ∂tΨ = KtΨ+ χt,

where Kt is a complex valued function on Y and χt is a (2, 1)-form on X.
As t ∈ R, we also have

∂tΨ = KtΨ+ χt.

The variation of the volume form compatibility condition (19) of SU(3)
structure gives

∂t log ‖Ψ‖2 = 2ReKt − 3λt.

ReKt is constant on X up to diffeomorphisms, and therefore λt is constant
on X. Both functions can vary with t

dReKt = 0, dλt = 0.

Therefore

∂tRe(αΨ) = Re(αχt) +
3
2 λtRe(αΨ)− (∂ta+ ImKt) Im(αΨ),

where we have used Equation (24). Comparing with the flow Equation (41)
we find

Re(αχt) = Nt ((d logNt + 2Re η) ∧ ω +W3 − γ) ,(45)
Nt (7 τ0 − 12Re(αW0)) = 4 (∂ta+ ImKt).(46)

We can obtain χt by taking the (2, 1) component of the equation for Re(αχt):

(47) αχt = 2Nt

(
(Pd logNt + η̄) ∧ ω + (W3 − γ)(2,1)

)
.

As Wω
1 = dφ, the SU(3) structure equation for ρ

dρ = 2Wω
1 ∧ ρ,
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becomes

d(e−2φ ρ) = 0.

This needs to be compatible with the flow Equation (34) for ∂tρ which can
now be written as

∂t(e
−2φ ρ) = −d(e−2φNt Im(αΨ)).

Therefore, the 4-form e−2φ ρ ∈ H4(X), flows into another d-closed 4-form in
the same cohomology class as e−2φ ρ. Consider now the equations for ω. The
flow Equation (35) can be written as

∂tω = λt ω −Nt Im(αW2)−NtRe
(
(∂̄ logNt + η)�(αΨ)

)
.

This expression must be a solution to the variation of the SU(3) integrability
Equation (20)

d∂tω = −3
2 |α|2 Im

(
(∂tW0)Ψ +W0 ∂tΨ

)
(48)

+ ∂tdφ ∧ ω + dφ ∧ ∂tω + ∂tW3.

Plugging into this equation the expression for ∂tω above, gives a non-trial
equation for the variation of the torsion class W3

∂tW3 − λtW3 = 3
2 |α|2 Im

(
(∂tW0 + (Kt − λt)W0)Ψ +W0 χt

)
(49)

+ eφ d
(
e−φ ht

)− ∂tdφ ∧ ω.

Consider now the integrability equation for Ψ, Equation (21). Varying
this equation with respect to t, we find a differential equation for the variation
χt of Ψ:

dχt −W
Ψ
1 ∧ χt = (∂tW

Ψ
1 − dKt) ∧Ψ+ 2 (∂tW0 −KtW0) ρ(50)

+ (∂tW2 −KtW2) ∧ ω + 2W0 ∂tρ+W2 ∧ ∂tω.

This equation together with the exterior derivative of Equation (47) give a
differential equation for the primitive part of χt.
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3.3. Bianchi identities

The supersymmetric solutions we have discussed need to satisfy the Bianchi
identities. We consider these identities as a further constraint on the inte-
grable G2 structure (Y, ϕ). Recall

Ĥ = − (
τ3 + τ1�ψ + 1

15 τ0 ϕ
)
.

The Bianchi identities state that Ĥ is closed

d7Ĥ = 0,

and that τ0 is a constant on Y . We express these constraints as constraints
on the SU(3) structure (X,Ψ, ω) embedded into the G2 structure.

Let
Ĥ = dt ∧ St + SX .

Then

SX = (2Imη + JWω
1 ) ∧ ω − 1

2

(
49
30 τ0 − 3Re(αW0)

)
Re(αΨ)

+N−1
t τ1 t Im(αΨ) + Jγ,

N−1
t St = 2

(
7
15 τ0 − Re(αW0)

)
ω +Re(αW2) + Im(η�(αΨ)),

where

η = W
Ψ
1 − 2(Wω

1 )
(0,1) + ∂̄ logα = W

Ψ
1 − 2(Wω

1 )
(0,1) + i∂̄a,

and we have used

τ1�ψ =
1

2
N ∧ (Wω

1 �Im(αΨ))−N−1
t τ1 t Im(αΨ)− 1

2
JWω

1 ∧ ω.

Now the Bianchi identity gives

0 = d7Ĥ = dt ∧ (∂tS
X − dSt) + dSX ,

from which we obtain two equations

dSX = 0(51)
∂tS

X = dSt.

This means that variations ∂tS
X of a solution SX in a cohomology class in

H3(X) remain in the same cohomology class.
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3.4. Summary of constraints

Since this is a long section, let us briefly recall the constraints that super-
symmetry and the Bianchi identities put on the the SU(3) structure.

• The Lie form Wω
1 is exact: Wω

1 = dφ.

• The embedding of the SU(3) structure into an integrable G2 structure
is specified through (22) by a real function Nt and a complex function
α.

• The remaining torsion classes W0, W2 and W3 can take on different val-
ues, and determine, together with Nt, α and φ, the NS flux components
Ĥ and f , as well as the flow of ω and Ψ.

• The Bianchi identities (51) further constrain the G2 structure.

In addition, the flow of the SU(3) structure is determined by

∂tΨ = KtΨ+ χt,

ImKt =
Nt

4 (7 τ0 − 12ReW0), dReKt = 0,

χt = 2Nt ((d logNt + 2Reη) ∧ ω +W3 − γ)(2,1) ,

ω�γ = 0, Ψ ∧ γ = 0, η = W 1
Ψ − 2 (Wω

1 )
(0,1),

∂tω = λt ω + ht,

λt = 2 τ1 t −Nt ImW0, τ1 t =
1
2 ∂tφ, dλt = 0,

ht = −Nt ImW2 −NtRe
(
(∂ logNt + η̄)�Ψ̄

)
.

(52)

4. Example: Flow of Calabi–Yau manifold with flux

In this, and the two following sections, we will determine the flow of SU(3)
structure manifolds with restricted torsion. The aim is to study how the
constraints from the embedding G2 structure determines a path in the moduli
space of the SU(3) structure manifolds. We will show that flows can be SU(3)
structure-preserving, so that a fixed set of torsion classes are non-zero along
the flow. Flows where the SU(3) torsion classes change are also allowed, and
will be analysed from different perspectives.

To simplify our calculations, we henceforth work in the gauge α = 1.
This means in particular that we have absorbed the phase a in Ψ. As a
consequence, the phases of W0,W2 change, and WΨ

1 is modified by i∂a.
Moreover, in the gauge α = 1 we have ‖Ψ‖2 = 8 for all values of t. In this
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case we have the relation

(53) ReKt =
3

2
λt.

The simplest SU(3) structure is when all torsion classes are zero so that
the manifold is Calabi–Yau. We now determine the necessary and sufficient
constraints on the flow so that the three-fold stays Calabi–Yau to all orders
in t. In the next subsection, we will compute the torsion classes generated
at linear order in t, once these constraints fail to hold. A summary and
discussion of the result from this perturbative analysis is found in the last
subsection.

4.1. Calabi–Yau to all orders

Proposition 3. The N = 1/2 domain wall flow preserves the Calabi–Yau
conditions if and only if dNt = 0 and γ is harmonic.

Proof. Suppose that all SU(3) torsion classes vanish. Then the general anal-
ysis gives

∂tΨ = KtΨ+ χt,

ImKt =
Nt

4 7 τ0, dKt = 0,(54)

χt = 2 (dNt ∧ ω −Nt γ)
(2,1) , ω�γ = 0, Ψ ∧ γ = 0,(55)

∂tω = λt ω + ht,

λt = 2 τ1 t, τ1 t =
1
2 ∂tφ, dλt = 0,

ht = −dNt�ReΨ = d†(NtΨ).(56)

Note that Kt is d-constant whenever the form Ψ is holomorphic. Then, taking
the exterior derivative of the first equation in (54) we find that

τ0 dNt = 0.

Therefore, either τ0 = 0 or Nt is a constant.
Consider the flow equation for ω. To preserve the Kähler condition, we

have that
d∂tω = 0 ⇐⇒ dht = 0.

Using the expression for ht in Equation (56), we find

dht = 0 ⇐⇒ dd†(NtΨ) = 0 ⇐⇒ ht = d†(NtΨ) = 0.
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Therefore
dNt = 0,

and Nt should be d-constant, which proves the first condition in Proposi-
tion 3. We can absorb Nt, which is a function of t only, into the definition of
t, and therefore we can set

∂tNt = 0.

Consider now the flow for Ψ. As Nt is constant, Equation (55) gives

Reχt = −γ, Imχt = Jγ,

and the flow equation implies

d∂tΨ = 0 ⇐⇒ dχt = 0 ⇐⇒ dγ = 0.

The first Bianchi identity

dSX = 0,

where
SX = −49

60 τ0ReΨ + 1
2 N

−1
t λt ImΨ + Jγ,

is satisfied only if
d(Jγ) = 0,

where have used the fact that λt is a constant. This constraint on the prim-
itive form γ is equivalent to γ being co-closed

d†γ = 0.
�

We obtain further constraints from the second Bianchi identity, which in
our case is

∂tS
X = dSt, St = Nt

14
15 τ0 ω.

Noting that St is closed, and using the expression for SX above this gives
an expression for the variation of Jγ

∂t(Jγ) = −49
60 τ0 γ − 1

2 λtN
−1
t Jγ

+ 7
20 τ0 λtReΨ− 1

2

(
∂t(λtN

−1
t ) + 73

120 τ
2
0 Nt +

3
2 λ

2
t N

−1
t

)
ImΨ

= −49
60 τ0 γ − 1

2 λtN
−1
t Jγ + 7

20 τ0 λtReΨ

− 1
2 N

−1
t

(
∂tλt +

73

120 τ
2
0 N

2
t + 3

2 λ
2
t

)
ImΨ.
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We remark that this variation is harmonic.
In conclusion, we see that the Calabi–Yau flow requires that Nt is a

constant and that the primitive form γ is harmonic. Moreover

∂tω = λt ω, dλt = 0,

∂tΨ = KtΨ+ χt, dKt = 0,

Reχt = −γ, Imχt = Jγ, ω�γ = 0.

4.2. Flow from Calabi–Yau: first order analysis

As shown in the last section, a non-constant Nt and/or a non-harmonic γ,
implies that the G2 embedding will not preserve the Calabi–Yau conditions,
and SU(3) torsion will be generated by the flow. Here, we determine the
torsion classes to first order in t.

From the general analysis, the flow equations are given by (52). Recall
that in the gauge α = 1 we have ‖Ψ‖2 = 8 for all values of t, so ReKt =

3
2 λt.

The variations of the torsion classes must be such that they preserve their
original properties:

(∂tW2)
(0,2) = Δt

m ∧W2mn dx
n, to preserve type (1, 1)

ω�(∂tW2)
(1,1) = −NtW2�ImW2, to preserve primitivity

(∂tW3)
(0,3) = 1

2 Δ
m
t ∧ (W

(1,2)
3 )mnp dx

n ∧ dxp, to preserve type (2, 1)+(1, 2)

ω�(∂tW3) = J(ht)�W3, to preserve primitivity

where Δt
m is given in (A.23) and corresponds to first order variations of the

almost complex structure. Note that any primitive three form, such as γ,
satisfies equations identical to those for W3.

Let β be any form in our equations above. We will consider a Taylor
series expansion

β(t) =

∞∑
i=0

1

i!
δiβ ti,

where we have set

β0 = δ0β.
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At t = 0 the equations above give

δ1Ψ = K0Ψ0 + χ0, ImK0 =
7
4 N0 τ0,(57)

χ0 = 2 (dN0 ∧ ω0 −N0 γ0)
(2,1) , ω0�γ0 = 0, Ψ0 ∧ γ0 = 0,(58)

Δm
0 = 1

8 Ψ
mpq
0

(
2 (∂pN0)ω0 qn −N0 γ

(2,1)
0 pqn

)
dxn,(59)

η0 = 0,(60)

δ1ω = λ0 ω + h0, λ0 = τ1 t|0 = δ1φ,(61)
h0 = −Re

(
∂N0�Ψ̄0

)
.(62)

Note also that δ1W2, δ1W3 are primitive with respect to ω0, that δ1W2 is type
(1, 1) and δ1W3 is type (2, 1) + (1, 2) with respect to Ψ0. We have included
Δ0 which may be needed later.

Varying the integrability equations for Ψ (see Equation (50)) and evalu-
ating at t = 0 we find a differential equation for χ0

(63) dχ0 = (δ1W 1
Ψ − dK0) ∧Ψ0 + δ1W0 ω0 ∧ ω0 + δ1W2 ∧ ω0,

The expression for χ0 in (58) must satisfy Equation (63). We find

− 2 d(N0 γ0)
(2,1)(64)

= δ1W0 ω0 ∧ ω0 + (δ1W2 − 2∂̄∂N0) ∧ ω0 + (δ1W
Ψ
1 − dK0) ∧Ψ0

= (δ1W0 ω0 − 2∂̄∂N0 + δ1W2) ∧ ω0 +
(
δ1W

Ψ
1 − 7

4 i τ0 dN0

)
∧Ψ0.

Taking the wedge product of this equation with ω0 and recalling that γ and
δ1W2 are primitive, we obtain, after taking the Hodge dual (with respect to
ω0), an equation for δ1W0:

3

2
δ1W0 = ω0�(∂̄∂N0) = − i

2
ω0�d(J(dN0)).

Using the identity (A.12) for α = J(dN0) we have

(65)
3

2
δ1W0 = − i

2
d†0dN0.

Putting this expression back into Equation (64), we find

−2 d(N0 γ0)
(2,1) =

(
i
(−1

3 (d
†0dN0)ω0 + d(J(dN0))

)
+ δ1W2

) ∧ ω0(66)

+
(
δ1W

Ψ
1 − 7

4 i τ0 dN0

)
∧Ψ0.
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This constraint can be separated by type giving

∂(N0 γ0)
(2,1) = 1

2

(
7
4 i τ0 dN0 − δ1W

Ψ
1

)
∧Ψ0,(67)

∂̄(N0 γ0)
(2,1) = 1

2

(
i
(
1
3 (d

†0dN0)ω0 − d(J(dN0))
)− δ1W2

) ∧ ω0,(68)

which can be used to write expressions for δ1W
Ψ
1 and δ1W2

(δ1W
Ψ
1 )

(0,1) = 1
4 Ψ0�∂(N0 γ0)

(2,1) + 7
4 i τ0 ∂̄N0,(69)

δ1W2 = −2ω0�∂̄(N0 γ0)
(2,1) + i

(
1
3 (d

†0dN0)ω0 − d(J(dN0))
)
.(70)

Note that WΨ
1 at any t is a (1, 0)-form with respect to Ψ(t). Hence

∂tW
Ψ
1 = Δm

t WΨ
1 m

is a (0, 1) form. To first order in t, this means that

(δ1W
Ψ
1 )

(1,0) = 0.

Consider now the integrability equation for ω (see Equation (48)). Eval-
uating at t = 0 we find a differential equation for h0

dδ1ω = dh0 = −3

2
Im(δ1W0Ψ0) + δ1W

ω
1 ∧ ω0 + δ1W3.

The expression for h0 in (62) must satisfy this equation. Hence

(71) − dRe(∂̄N0�Ψ0) = −3

2
Im(δ1W0Ψ0) + δ1W

ω
1 ∧ ω0 + δ1W3.

Taking the wedge product of this equation with ω0 and using the fact that
δ1W3 is primitive we find

(72) δ1W
ω
1 = 0.

Equation (71) then becomes

dd†0 Re(N0Ψ0) = −3

2
Im(δ1W0Ψ0) + δ1W3.

where in the left hand side we have used Equation (A.18). The (2, 1) + (1, 2)
part of this equation gives an expression for δ1W3

(73) 2 δ1W3 = ∂̄∂†0(N0Ψ) + ∂∂̄†0(N0Ψ),
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and the (0, 3) part gives another expression for δ1W0

(74)
3

2
δ1W0 = − i

8
Ψ0�(dd†0(N0Ψ0)).

To show that Equation (74) is equivalent to (65) we use the identity
(A.19) with

β = d†0(N0Ψ0) = −dN0�Ψ0,

we find that (74) becomes

3

2
δ1W0 = − i

8
d†0((dN0�Ψ)�Ψ) = −i d†0(∂N0),

which is equivalent to Equation (65).
In summary we have the following equations for the torsion classes

δ1W0 = − i
3 d

†0dN0,

δ1W
ω
1 = 0,

δ1W
Ψ
1 = 1

4 Ψ0�∂(N0 γ
(2,1)
0 ) + 7

4 i τ0 ∂̄N0,

δ1W2 = −2ω0�∂̄(N0 γ
(2,1)
0 ) + i

(
1
3 (d

†0dN0)ω0 − d(J(dN0))
)
,

δ1W3 =
1
2

(
∂̄∂†0(N0Ψ) + ∂∂̄†0(N0Ψ)

)
.

The Bianchi identities at t = 0 are

dSX
0 = 0,(75)

δ1S
X = dS0,(76)

where

SX
0 = −49

60
τ0ReΨ0 +

1

2
λ0N

−1
0 ImΨ0 + J(γ0),

S0 =
14

15
τ0N0 ω0,

δ1S
X = 2 Imδ1W

Ψ
1 ∧ ω0 + δ1(N

−1
t τ1 t) ImΨ0 − 49

60
τ0Reδ1Ψ

+
1

2
λ0N

−1
0 δ1ImΨ + δ1(Jγ).

The first Bianchi identity (75) gives

d(Jγ0) =
1

2
λ0N

−2
0 dN0 ∧ ImΨ0.
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Separating this equation by type, we find

(3, 1)−part : ∂γ
(2,1)
0 = ∂̄

(
1
4 λ0N

−1
0 Ψ0

)
= −1

4 λ0N
−2
0 ∂̄N0 ∧Ψ0,(77)

(2, 2)−part : ∂̄γ
(2,1)
0 − ∂γ

(1,2)
0 = 0.(78)

The second Bianchi identity (76) is more involved and requires some
preliminary computations. This constraint is an equation for δ1(Jγ), which,
by primitivity, satisfies the constraints for δ1W3 presented at the first page
of this section. Applying these to Jγ we find:

(δ1(Jγ))
(0,3) = − i

2 Δ
m
0 ∧ (γ

(1,2)
0 )mnp dx

n ∧ dxp(79)

=⇒ Ψ0�δ1(Jγ) = − i
2 Δ0m

q Ψmnp
0 (γ

(1,2)
0 )npq,(80)

ω0�δ1(Jγ) = −h0�(Jγ)0 =⇒ ω0�δ1(Jγ) = 4N−1
0 Im(Δm

0 ∂mN0),(81)

The Bianchi identity (76) can be written as an equation for the change
in γ. Using previous results we have

δ1(Jγ) =
(
7
4 τ0 dN0 +

1
2 λ0N

−1
0 J(dN0)− 2 Im(δ1W

Ψ
1 )

) ∧ ω0

− 49
60 τ0N0 γ0 − 1

2 λ0 (Jγ)0 +
7
20 τ0 λ0ReΨ0

− (
73

240 τ
2
0 N0 +

3
4 λ

2
0N

−1
0 + δ1(N

−1
t τ1 t)

)
ImΨ0.

Finally we compute Im(δ1W
Ψ
1 ). Using Equations (59) and (77) in the first

term in δ1W
Ψ
1 we have

Ψ0�∂(N0 γ0)
(2,1) = Ψ0�(∂N0 ∧ γ

(2,1)
0 +N0 ∂γ

(2,1)
0 ),

Ψ0�(∂N0 ∧ γ
(2,1)
0 ) = 4 (∂mN0)Ψ

mnp
0 γ0npq dx

q

= −4N−1
0 (∂mN0)Δ

m
0 ,

Ψ0�(N0 ∂γ
(2,1)
0 ) = 2λ0N

−1
0 ∂̄N0.

Therefore

(82) 2 δ1W
Ψ
1 = −2N−1

0 (∂mN0)Δ
m
0 +

(
λ0N

−1
0 +

7

2
i τ0

)
∂̄N0,

and

(83) 2 Imδ1W
Ψ
1 = −2N−1

0 Im
(
(∂mN0)Δ

m
0 ) +

1

2
λ0N

−1
0 J(dN0) +

7

4
τ0 dN0.
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Inserting Equation (83) into our expression above for the variation of Jγ we
find

δ1(Jγ) = 2N−1
0 Im(Δm

0 ∂mN0) ∧ ω0(84)
− 49

60 τ0N0 γ0 − 1
2 λ0 (Jγ)0 +

7
20 τ0 λ0ReΨ0

− (
73

240 τ
2
0 N0 +

3
4 λ

2
0N

−1
0 + δ1(N

−1
t τ1 t)

)
ImΨ0.

This result must be consistent with Equations (80) and (81). Consis-
tency with (81) is obvious. The consistency with (80) is however nontrivial
and rather nice as it gives an expression for trace of the first order metric
Δ0m

n Δ̄0n
m on the moduli space. Contracting (84) with Ψ0 and comparing

with (80) we find

Ψ0�δ1(Jγ) = − i
2 Δ0m

q Ψmnp
0 (γ

(1,2)
0 )npq

= 7
5 τ0 λ0 − i

(
73

60 τ
2
0 N0 + 3λ2

0N
−1
0 + 4 δ1(N

−1
t τ1 t)

)
.

Using Equation (59) we have

−N0 δ1(N
−1
t τ1 t) = Δ0m

n Δ̄0n
m − 1

4 Δ0m
nΨmpq

0 (∂pN0)ω0 qn

+ 7
20 iτ0N0 λ0 +

73

240 τ
2
0 N

2
0 + 3

4 λ
2
0.

4.3. SU(3) structure at first order

Our analysis shows that, when embedded in an integrable G2 structure,
a Calabi–Yau threefold X0 may flow to an SU(3) structure manifold Xδt

with non-vanishing torsion, where the latter is determined by the G2 torsion
classes. In summary, we find

δ1W0 = − i
3 d

†0dN0,

δ1W
ω
1 = 0,

δ1W
Ψ
1 = −N−1

0 (∂mN0)Δ
m
0 + 1

2

(
λ0N

−1
0 + 7

2 i τ0
)
∂̄N0,

δ1W2 = −2ω0�∂̄(N0 γ0)
(2,1) + i

(
1
3 (d

†0dN0)ω0 − d(J(dN0))
)
,

δ1W3 =
1
2

(
∂̄∂†0(N0Ψ) + ∂∂̄†0(N0Ψ)

)
,
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∂γ
(2,1)
0 = ∂̄

(
1
4 λ0N

−1
0 Ψ0

)
= −1

4 λ0N
−2
0 ∂̄N0 ∧Ψ0,

∂̄γ
(2,1)
0 = ∂γ

(1,2)
0 ,

δ1(Jγ) = 2N−1
0 Im(Δm

0 ∂mN0) ∧ ω0 − 49
60 τ0N0 γ0

− 1
2 λ0 (Jγ)0 +

7
20 τ0 λ0Ψ0

+N−1
0

(
Δ0m

n Δ̄0n
m − 1

4 Δ0m
nΨmpq

0 (∂pN0)ω0 qn

)
ImΨ0,

δ1(N
−1
t τ1 t) = N−1

0

(−Δ0m
n Δ̄0n

m + 1
4 Δ0m

nΨmpq
0 (∂pN0)ω0 qn

)
− 7

20 iτ0 λ0 − 73

240 τ
2
0 N0 − 3

4 λ
2
0N

−1
0 .

There are several interesting observations to make:

• δ1W
ω
1 = 0; this is the only torsion class that cannot, at linear order in

t, be generated by the flow.

• If Xδt is complex, then it is Calabi–Yau. This follows since δ1W0 and
δ1W2 vanish if and only if N0 is constant and γ is harmonic. In this
case all other torsion classes vanish as well. It follows that the flow
cannot connect Calabi–Yau solutions with the conformally balanced
non-Kähler manifolds of the Strominger system.

• Suppose that at t = 0 we set

(85) τ0 = 0, λ0 = 0, γ0 = 0,

but keep N0 non-constant. Then Xδt has a half-flat SU(3) structure:
the two Lie forms vanish, and δ1W0 and δ1W2 are imaginary

δ1W0 = − i
3 d

†0dN0,

δ1W
ω
1 = 0,

δ1W
Ψ
1 = 0,

δ1W2 = i
(
1
3 (d

†0dN0)ω0 − d(J(dN0))
)
,

δ1W3 =
1
2

(
∂̄∂†(N0Ψ) + ∂∂̄†(N0Ψ)

)
.

(86)

To first order in t, there is no flux SX
0 = S0 = 0, and the dilaton is

constant. At linear order, we thus have a G2 holonomy manifold.

• Suppose that at t = 0 γ0 is non-zero, but N0 is d-constant. Then

δ1Wi = 0, ∀i �= 2 ,

δ1W2 = −2N0ω0�∂̄γ(2,1)0 ,

∂γ
(2,1)
0 = 0, ∂̄γ

(2,1)
0 = ∂γ

(1,2)
0 .

(87)
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Note that δ1W2 is real and primitive by construction, but non-zero for
generic γ0. Thus, Xδt is a symplectic half-flat SU(3) structure manifold.
The flux is non-zero at linear order, and the dilaton is non-constant.

There are two options for the study of the integrability of the infinites-
imal flow away from Calabi–Yau derived in the last subsection. First, we
could continue the perturbative analysis to higher orders, and complement
it with an inductive proof of integrability similar to that of Tian for the inte-
grability of Calabi–Yau preserving deformations [47]. Second, we can provide
arguments for the integrability of the flow by studying whether the flow of
half-flat SU(3) structures allow Calabi–Yau loci, and could thus connect to
the flow we have found. After a detour over nearly Kähler flows, we will
proceed along the second route.

5. Nearly Kähler manifolds

Consider the flow of manifolds which are nearly Kähler, that is, we set Wi = 0
for all i �= 0. As before, we set α = 1. As we will see below, we are able to
completely solve for this case. We show that we necessarily have that Nt

is constant, τ0 = 0, and that the forms ht and γ (and therefore χt) vanish.
Moreover, we will prove that the G2-flow of nearly Kähler manifolds with
ImW0 = 0 is not allowed (otherwise we fall back to a Calabi–Yau flow), and
that a consistent flow has either ReW0 = 0, or the complex phase of W0 needs
to vary with the flow parameter t.4 The two cases do not intersect each other,
however the case where the phase of W0 varies with t approaches asymptot-
ically the case where ReW0 = 0. While they both flow into a Calabi–Yau
manifold at infinity, there are no Calabi–Yau loci at finite t along a nearly
Kähler flow.

The equations for the SU(3) structure are:

dω = −3
2 Im(W0Ψ),(88)

dΨ = W0 ω ∧ ω.(89)

The only non-zero torsion class W0 is d-constant

dW0 = 0,

as can be seen by taking the exterior derivative of Equation (89).

4The flow of nearly Kähler manifolds when W0 has constant phase has recently
been discussed in [26, 48].
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The variations of the hermitian structure are:

∂tω = λt ω + ht, dλt = 0,

λt = 2 τ1 t −Nt ImW0, 2 τ1 t = ∂tφ, dτ1 t = 0,

ht = −dNt�ReΨ.

Because λt, τ1 t and W0 are d-constant, the second equation implies that

(90) ImW0 dNt = 0,

and therefore ImW0 = 0 or Nt is a d-constant.
Condition (90) implies that we do not expect that a Calabi–Yau manifold

can flow into a nearly Kähler manifold, except perhaps at infinite distances.
To see this, recall that in the first order analysis for the flow from a Calabi–
Yau manifold at t = 0, we found

δ1W0 = − i

3
d†0dN0,

which is imaginary. For ImW0 to be non-zero to first order, and hence have
a flow into a nearly Kähler manifold, it must be the case that N0 is not
constant. However, when ImW0 �= 0, condition (90) requires that dNt = 0.
It would be interesting to understand whether one can flow from a nearly
Kähler manifold into a half-flat manifold.

In the Appendix 5.3, we prove in fact that ImW0 �= 0, otherwise we fall
back into the flow of a Calabi–Yau manifold. Therefore, with α = 1, the G2

flow of nearly Kähler manifolds with ImW0 = 0 is not allowed. From now on
we assume that ImW0 �= 0, and hence, by Equation (90), we must have

dNt = 0.

We can absorb Nt into the definition of dt and choose Nt to be constant.
Note that as a consequence ht vanishes.

The variations of the almost complex structure are

∂tΨ = KtΨ+ χt, dKt = 0,

ReKt =
3
2 λt, ImKt =

1
4 Nt (7 τ0 − 12ReW0),

χt = −2Nt γ
(2,1), ω�γ = 0.
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We begin our analysis by considering the variations of Equation (89), that
is

(91) d∂tΨ = (∂tW0 + 2λtW0)ω ∧ ω.

Taking the wedge product with ω and recalling that γ is a primitive form we
find a simple equation for the flow of W0

(92) ∂tW0 + (2λt −Kt)W0 = 0.

Returning to Equation (91), and using these results we obtain

(93) d∂tΨ = KtW0 ω ∧ ω,

Consider now the variation equations for the hermitian form ω. The flow
equations become

(94) ∂tω = λt ω, dλt = 0.

Compatibility of the variation of Equation (88).

d∂tω = −3
2 Im

(
(∂tW0 + K̄tW0)Ψ +W0 χt

)
,

with the exterior derivative of (94)

d∂tω = λt dω = −3
2 λt Im(W0Ψ),

gives

Im
((

∂tW0 +
(
1
2 λt − i

4 Nt (7 τ0 − 12ReW0)
)
W0

)
Ψ− 2W0Nt γ

(1,2)
)
= 0.

Separating by type we obtain an equation for the flow of W0 which is the
same as Equation (92) and the constraint

(95) γ = 0.

Consequently, the variations of the complex structure are given by

(96) ∂tΨ = KtΨ, Kt =
3

2
λt +

i

4
Nt (7τ0 − 12ReW0).

It is not very hard to check that Equation (92) is enough to guarantee the
compatibility of (96) and (93).



870 X. de la Ossa, M. Larfors and E. E. Svanes

Next, we consider the Bianchi identities. For the flux in this case we have

SX = −1
2

(
49
30 τ0 − 3ReW0

)
ReΨ +N−1

t τ1 t ImΨ,

St = 2Nt

(
7
15 τ0 − ReW0

)
ω.

The first Bianchi identity

dSX = 0 =
(−1

2

(
49
30 τ0 − 3ReW0

)
ReW0 +N−1

t τ1 t ImW0

)
ω ∧ ω,

gives a relation between the embedding parameters and the torsion class W0

(97) −Nt

(
49
30 τ0 − 3ReW0

)
ReW0 + (λt +Nt ImW0) ImW0 = 0.

The second Bianchi identity

dSt = ∂tS
X ,

gives two further constraints

0 = τ0 (λt +Nt ImW0) ,(98)
∂tλt = −3

2 λ
2
t − λtNt ImW0 +

56
5 N2

t τ0ReW0(99)

− 12(NtReW0)
2 − 73

120 (Nt τ0)
2.

We claim that the first equation implies that τ0 = 0. Suppose on the contrary
that τ0 �= 0. Then, Equation (98) requires

λt = −Nt ImW0.

Substituting this into the relation (97) implies

(100) ReW0 =
49

90
τ0 or ReW0 = 0.

In both cases this means that ∂tReW0 = 0. Taking the real part of the vari-
ation of W0 in Equation (92) and setting this to zero, we find

ReW0 =
1

2
τ0,

which is not compatible with (100) unless τ0 vanishes.
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It is worth summarising our results thus far. The equations of the flow
are

∂tω = λt ω, dλt = 0,(101)

∂tΨ = KtΨ, Kt =
3

2
λt − 3 iNtReW0,(102)

and we need to solve

0 = 3Nt (ReW0)
2 + (λt +Nt ImW0) ImW0,(103)

∂tλt = −3
2 λ

2
t − λtNt ImW0 − 12(NtReW0)

2,(104)
∂tW0 =

(−1
2 λt − 3 iNtReW0

)
W0.(105)

We now look for the general solutions of (103)–(105). Solving Equa-
tion (103) for λt we find

(106) λt = − Nt

ImW0

(
3 (ReW0)

2 + (ImW0)
2
)
,

and eliminating λt from Equation (105) we have

(107) ∂tW0 =
Nt

2 ImW0

(
3 (ReW0)

2 + (ImW0)
2 − 6 iReW0 ImW0

)
W0.

After a somewhat tedious computation, one can prove that Equation (104)
is superfluous as it gives an identity when substituting λt in (106) and using
Equation (107).

We can integrate Equation (107) by writing

W0 = r eiθ.

Equation (107) gives two coupled first order differential equations for (r, θ)

∂t r
−1 = − Nt

2 sin θ (1 + 2 cos2 θ),(108)

∂t θ = −3Nt r cos θ.(109)

Before continuing with the analysis of flow, we would like to ask whether
flows for which θ is independent of the flow parameter t are allowed. From
Equation (109) we see that this is possible only when ReW0 = 0. This is
rather interesting: apart from the case where one sets ReW0 = 0, the only
way a nearly Kähler manifold can have a consistent G2 flow is by letting θ
change with the flow. Note that this change in the phase of W0 corresponds to
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a change in the phase of Ψ, however these changes leave the almost complex
structure invariant.

Consider again the flow Equations (101) and (102). It is not very difficult
to prove that one can integrate these equations to find ω(t) and Ψ(t) in terms
of W0, or equivalently, in terms of r and θ. To see this, one shows first that

λt = −∂t log r
2,(110)

Kt = ∂t log(r
−3 eiθ).(111)

The first equation follows by a computation of the variation of r2 = |W0|2
using (107) and then comparing the result with (106). To find the second
relation one only needs the first equation, which gives the real part of Kt,
and for the imaginary part one uses Equation (109). Next, the form of Equa-
tions (101) and (102) means that the general solution has the form

ω(t) = f(t)ω0, Ψ(t) = f̃(t)Ψ0.

where ω0 = ω(0) and Ψ0 = Ψ(0), and f(0) = f̃(0) = 1. Putting this together
with the flow equations and Equations (110) and (111) we find

ω = Ar−2 ω0, A = r(0)2.(112)

Ψ = B r−3 ei θ Ψ0, B = r(0)3 e−i θ(0).(113)

Consider the metric on X. On an SU(3) manifold, the metric is deter-
mined by the complex structure and the hermitian form by

gmn = ωmp Jn
p.

The complex structure is an invariant of the flow as Ψ and Ψ0 differ only by
a scale factor (see Equation (113)). Hence

gmn(t) = Ar−2 gmn(0),

and the metric on the seven dimensional manifold (Y, ϕ) is (see Equation (24))

d2sϕ = N2
t d

2t+ d2sX = r−2 ((r Nt)
2 d2t+A d2sX0

),

where d2sX0
is the metric on X0, that is the metric on X at t = 0. In what

follows it will be useful to define a new coordinate T such that

(114) dT = ±Nt r dt.
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The seven dimensional metric now takes the form

d2sϕ = r−2 (d2 T +A d2sX0
),

We still need to solve Equations (108) and (109) to obtain W0 as a
function of t (or T ). We begin with the latter. Changing variables using
Equation (114), we have

(115) ∂T θ = ∓ 3 cos θ.

Integrating we find

∓ 3T + c = log

(
1 + sin θ

cos θ

)
.

where c is a constant which can be set to zero without loss of generality.
Inverting this relation to find θ as a function of T , we find, after some algebra,
the equation

(116) cos θ (1− cos θ cosh(3T )) = 0.

There are two solutions. The first one, when cos θ = 0, we have ReW0 = 0:
this is the case mentioned above in which we have a flow for a nearly Kähler
manifold with constant θ. For clarity, we will study the two cases separately:
the case where θ does not vary with t and the case in which it does.

5.1. Flow with constant θ

In this case we have

ReW0 = 0,

and the equation for ImW0 is

(117) ∂tImW0 =
1
2 Nt (ImW0)

2.

Note that the dilaton remains constant along the flow.
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Integrating the equation for the flow of ImW0 with respect of t we find
a one parameter family of solutions with:

ImW0 = − 1
1
2 Nt t+ a

, λt =
Nt

1
2 Nt t+ a

,

where a is a constant. The equations for ω and Ψ are in this case

ω(t) =
1

a2

(
1

2
Nt t+ a

)2

ω0,(118)

Ψ(t) =
1

a3

(
1

2
Nt t+ a

)3

Ψ0.(119)

Note that there is a singularity in the flow at values of t = ts for which

ts = − 2a

Nt
.

Both forms Ψ and ω vanish at t = ts. The manifolds Xts have a curvature
singularity. In fact, for nearly Kähler manifolds the scalar curvature is [49]

R =
15

2
|W0|2.

This solution seems to flow to a non-compact Calabi–Yau manifold at t =
∞. In this example we already have ReW0 = 0 to begin with, and in the limit
t = ∞ we also have ImW0 = 0. Moreover, in this limit λt = 0, and the scalar
curvature also vanishes R = 0. Yet, both ω and Ψ increase monotonically to
infinity, and hence the volume of X is infinite in this limit.

Examples of this case have been studied in the literature before, see e.g.
[25]. This flow has also been studied more recently including α′ corrections
and the vector bundle V over X which comes with every heterotic string
compactification [27, 48]. Interestingly, it was shown in [27] that X can have
a finite volume as t → ∞ by choosing appropriately the bundle V . It should
be noted however that for the α′-corrected flow in [27], the dilaton becomes
t-dependent. Moreover, for solutions where the internal radius tends to a
constant, i.e. λt → 0, the dilaton blows up as t → ∞. The decompactification
limit we found at zeroth order in α′ is therefore traded for a finite volume
compactification and a dilaton which blows up.
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5.2. Flow with varying θ

The second solution to Equation (116) is

cos θ = sech(3T ).

Consider now the equation for r (108). Changing variables using (114) we
find

− ∂T log r2 =
4

sinh(6T )
+ coth(3T ),

where we have used the relation

(120) sin θ = ∓ tanh(3T ).

The sign in this relation is chosen by requiring consistency with Equa-
tion (115). Integrating we now obtain

(121) r6 = a6
cosh2(3T )

sinh3(3T )
.

In the expression for r, we note that 3T must be positive in order for
the right hand side to be positive. As a function of T , r is a monotonically
decreasing function and r → 0 as T → ∞. The requirement that T is a pos-
itive function means that for t positive, we need to choose the positive sign
in Equation (114) and the negative sign in (120). Of course, for t negative,
we chose the opposite signs in these equations.

Finally we need to integrate Equation (114) to find T as a function of t.
Integrating the equation

3 ∂tT = ± 3Nt r = ± 3Nt a
(cosh 3T )1/3

(sinh 3T )1/2
,

we find

± 1
2 Nt a t = b+ v−1/12 (1− v)3/4 +

8

11
v11/12 2 F1

(
1

4
,
11

12
,
23

12
; v

)
(122)

= b+ v−1/12 (1− v)3/4 +
2

3
B

(
v;

11

12
,
3

4

)
,

where v = cosh(3T )−2, b is a constant of integration, and B(z; p, q) is the
incomplete Beta function. We choose the constant of integration so that
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0 t�

3 T

Figure 3: Plot of 3T as a function of t̃ = 1
2 Nt a t.

when v = 1, that is 3T = 0, we set t = 0. Hence

b = −2

3
B

(
11

12
,
3

4

)
.

We can always do this as this choice represents a constant shift in the values
of t. In Figure 3 we present a plot of 3T as a function of t̃ = 1

2 Nt a t.
The solution for the torsion class W0 is

ReW0 = r cos θ = a (sinh(3T ))−1/2 (cosh(3T ))−2/3,(123)

ImW0 = r sin θ = −a (sinh(3T ))1/2 (cosh(3T ))−2/3.(124)

In Figure 4 we show the behaviour of W0 with respect to t̃. The torsion class
W0 → 0 as t̃ → ∞, however ReW0 falls much faster than ImW0. In fact, as
t → ∞ (or v → 0) we find that

cosh(3T ) → t̃ 6,

and hence

(125) ReW0 → t̃−5 and ImW0 → −t̃−1.

Finally, note that the point t̃ = 0 corresponds to a manifold with a curvature
singularity as |W0|2 = r2 → a2 (3T )−1 as t̃ → 0.
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Re�W0�

�1.0 �0.5 0.5 t�

�0.5

0.5

Im(W0)

Figure 4: Plot of ReW0 and ImW0 as functions of t̃ = 1
2 Nt a t.

It is interesting also to compute the variation of the dilaton. Recall that

∂tφ = λt +Nt ImW0.

Using Equations (110) and (120), we find

eφ−φ0 r2 = a2 (cosh(3T ))−1/3,

and by Equation (121)
eφ−φ0 = tanh(3T ).

Thus, the dilaton flows to a constant as t → ∞.
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Just as the case in the previous section, this solution flows to a non-
compact Calabi–Yau manifold at t̃ = ∞. In this limit we have W0 = 0, λt =
0, and the scalar curvature also vanishes R = 0. Moreover, both ω and Ψ
increase monotonically to infinity, and hence the volume of X at infinity is
infinite.

This flow does not intersect the flow discussed in the previous section.
The two cases only coincide at t = ∞ where they both flow into a non-
compact Calabi–Yau manifold. However, the flow with varying θ approaches
asymptotically the flow with constant θ when t → ∞, as it is easily checked
by comparing Equation (125) with (117).

5.3. Appendix: ImW0 �= 0

In this appendix we prove the claim at the beginning of this section that
ImW0 �= 0, or otherwise we fall back on a Calabi–Yau flow. Assume that

ImW0 = 0,

and consider the first Bianchi identity

dSX = 0,

where

SX = −1

2

(
49

30
τ0 − 3ReW0

)
ReΨ +N−1

t τ1 t ImΨ + Jγ.

Taking the wedge product with ω, and noting that SX is primitive, we find

0 = dSX ∧ ω = d(SX ∧ ω) + SX ∧ dω =
3

2
ReW0 S

X ∧ ImΨ

= −3ReW0

(
49

30
τ0 − 3ReW0

)
dvolX .

For ReW0 �= 0 we must have

ReW0 =
49

90
τ0.

Note that this means that

(126) ∂tW0 = 0,

as τ0 is a constant.
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Consider now the flow of Ψ. From Equation (50) we have that

dχt = −dKt ∧Ψ+ 2(∂tReW0 −KtReW0) ρ+ 2ReW0 ∂tρ

= −dKt ∧Ψ+ 2ReW0 ((2λt −Kt) ρ+ ht ∧ ω).

where we have used (126) and the flow equations for ω. Taking the wedge
product with ω and recalling the ht and γ are primitive, we find

−i d(∗dNt) = 3ReW0 (2λt −Kt) dvolX .

The real part of this equation gives

λt = 0,

and, from the imaginary part we have

d(∗dNt) = 3ReW0 ImKt dvolX =
9

14
Nt(ReW0)

2dvolX ,

and hence

dNt = 0, ReW0 = 0.

6. Half-flat SU(3) structures

In this section we consider the flow of SU(3) structures which are half-flat,
that is when the torsion classes Wω

1 , WΨ
1 vanish, but W0,W2 and W3 are

non-zero. As we will see below, Hitchin flow [17], for which the torsion classes
of the G2 manifold are all zero, is recovered as a subcase of this flow, with
vanishing flux, constant dilaton and constant embedding functions α,Nt. We
will argue that simplified versions of half-flat flows can allow Calabi–Yau loci,
even at finite values of t. To conform with the previous sections, we choose
α = 1.

A flow that preserves a half-flat SU(3) structure should for all t obey

dω = −3
2 Im(W0Ψ) +W3,(127)

dΨ = 2W0 ρ+W2 ∧ ω,(128)

where

ρ = ∗ω =
1

2
ω ∧ ω,
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is a closed form. Taking the exterior derivative of Equations (127) and (128)
one finds differential equations for the torsion classes

dW3 =
3

2
Im

(
W0W 2 ∧ ω + dW0 ∧Ψ

)
,

d†W2 = 2 J(dW0).
(129)

The flow equations for ω in this case are

∂tω = λt ω + ht,

λt = 2 τ1 t −Nt ImW0, 2 τ1 t = ∂tφ, dλt = 0,

ht = −Nt ImW2 − dNt�ReΨ.

Since λt is d-constant and Wω
1 = dφ = 0 for all t, we find a constraint

(130) d
(
Nt ImW0

)
= 0.

This is similar to the nearly Kähler case, with the difference that W0 need
not be constant.

The flow equations for Ψ are

∂tΨ = KtΨ+ χt,

ReKt =
3
2 λt, ImKt = Nt

(
7
4 τ0 − 3ReW0

)
,

Reχt = dNt ∧ ω +Nt(W3 − γ), ω�γ = 0,(131)
Imχt = −J(dNt) ∧ ω −Nt J(W3 − γ).(132)

To study the flow of SU(3) structures, it is useful to record the t-
variations of the torsion classes. Compatibility between the flow equation for
ω and the variation of Equation (127), or equivalently, using Equation (49)
with α = 1 and vanishing Lie forms, gives

∂tW3 − λtW3 = dht +
3
2 Im

(
(∂tW0 + (K̄t − λt)W0)Ψ

)
(133)

+ 3
2 Nt

(
(ReW0) J(W3 − γ) + (ImW0) (W3 − γ)

)
+ 3

2

(
(ReW0) J(dNt) + (ImW0) dNt

) ∧ ω.

Note that this equation satisfies

∂t(W3 ∧ ω) = ∂tW3 ∧ ω +W3 ∧ ht = 0,

as required by the primitivity of W3. It should also satisfy

∂t(W3 ∧Ψ) = ∂tW3 ∧Ψ+W3 ∧ χt = 0,
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as required by the fact that W3 is a three form of type (2, 1) + (1, 2). This
constraint gives a flow equation for W0

6 (∂tW0 + (K̄t − λt)W0) = −2 iΔdNt +Nt ImW2�W2(134)
+NtW3�(−Jγ + i (W3 − γ)).

Compatibility between the flow equation for Ψ and the variation of Equa-
tion (128) gives a flow equation for W2

(∂tW2 + (−Kt + λt)W2) ∧ ω(135)
= dχt + dKt ∧Ψ− 2 (∂tW0 + (−Kt + 2λt)W0) ρ

− (2W0 ω +W2) ∧ ht.

By assumption, the variation of the Lie forms is zero along a half-flat flow.
The first Bianchi identity dSX = 0 is a constraint on the exterior deriva-

tive of Jγ. With

SX = −1
2

(
49
30 τ0 − 3ReW0

)
ReΨ +N−1

t τ1 t ImΨ + Jγ.

we have

−dJ(γ) = d(N−1
t τ1t) ∧ ImΨ(136)

+
(
N−1

t τ1 t ImW0 − 1
2

(
49
30 τ0 − 3ReW0

)
ReW0

)
ω ∧ ω

+ 3
2dReW0 ∧ ReΨ

+
(
N−1

t τ1 t ImW2 − 1
2

(
49
30 τ0 − 3ReW0

)
ReW2

) ∧ ω.

Taking the wedge product of this equation with ω, and recalling that γ is
primitive, we find

(137)
1

3
W3�γ = 2N−1

t τ1 t ImW0 −
(
49

30
τ0 − 3ReW0

)
ReW0,

which will be of use below.
The second Bianchi identity, dSt = ∂tS

X , where

St = Nt

(
ReW2 + 2

(
7
15 τ0 − ReW0

)
ω
)
,

determines, among other things, the flow of Jγ. For our discussion below,
we will be particularly interested in the necessary constraints obtained by
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wedging the second Bianchi identity with ReΨ and ω. From the former, we
obtain

Nt ∂t(N
−1
t τ1 t) + 3 τ1 t (τ1 t −Nt ImW0)(138)

= −1

4
N2

t

(
‖ReW2‖2 + ‖γ‖2 + 21

(
ReW0 − 1

2
τ0

)2
+

7

15
τ20

)
,

where we have used Equation (137). From the latter we get

Nt (ImW2�γ + 6 J(dReW0)− ReW2�JW3)(139)
= dNt�ReW2 − 2N−1

t τ1 t dNt

+ 7
2 (τ0 − 2ReW0) JdNt − ((dNt)�ReΨ)�γ.

Note that (138) can be viewed as a differential equation for the dilaton φ(t),
whereas (139) determines the one-form dNt. Moreover, the right hand side
of Equation (138) is negative definite, hence it gives an inequality

(140) Nt ∂t(N
−1
t τ1 t) + 3 τ1 t (τ1 t −Nt ImW0) ≤ 0,

which is saturated only when X is a Calabi–Yau manifold.
Given the complexity of the flow Equations (133)–(135) and the con-

straints from the Bianchi identities (136)–(139), we will not attempt to solve
this system of equations in full generality. Instead, we proceed to study sim-
plified cases, where we make assumptions on the flux and the embedding of
the SU(3) structure.

We begin by an inspection of the first Bianchi identity (136). This is a
strong constraint on γ that completely determines its non-coclosed compo-
nents. If we moreover assume that γ is coclosed, (136) immediately tells us
that

(141) dJ(γ) = 0 =⇒ dNt = 0, dW0 = 0, d†W2 = 0,

dW3 =
3
2 Im(W0W 2) ∧ ω,

and furthermore gives relations that determine the flow of the complex phase
of W0 and W2. Using this in Equations (140) and (139), we derive the nec-
essary constraints

∂tτ1t ≤ 3

2
τ1tNtImW0 , 0 = Re (W2�[W3 − iJ(γ)]) ,

where the first inequality can only be saturated when X is a Calabi–Yau
manifold as mentioned above.



Exploring SU(3) structure moduli spaces 883

It is interesting that the requirement that γ is coclosed has so far-reaching
consequences for the SU(3) structure and its G2 embedding. Recall that in
our first order analysis of G2 flows away from a Calabi–Yau manifold X(t =
0), we showed that a half-flat SU(3) structure was obtained when γ(t = 0) =
0, but dN0 �= 0 (cf. Equation (86)). Although the flow of a half-flat SU(3)
structure with vanishing γ would be a natural guess for the completion of
this first order flow, the constraint we just derived shows that this is not the
case. A non-zero γ seems necessary in order for a half-flat flow to contain
Calabi–Yau loci at finite values of t.

Half-flat flows with coclosed γ have been studied before [17, 18, 23–27]. A
particular case is Hitchin flow, where not only γ, but also SX and St vanish,
and the dilaton and embedding parameter α are both constant. In this case,
we can embed the half-flat SU(3) structure in a G2 holonomy manifold, and
the flow equations can be summarised as

∂tρ = −dImΨ

∂tReΨ = dω .
(142)

in the gauge where ReΨ is taken to be constant.5 From our discussion above,
it is clear that this flow cannot contain Calabi–Yau loci. This can also be seen
as follows: Ψ and ω are closed at a Calabi–Yau locus, which means that the
right-hand sides of the Equations (142) vanish at that point of the flow. It is
easy to see that the first order derivatives of the torsion classes (133)–(135)
then also vanish. Moreover, a straightforward inductive analysis shows that
all higher order t-derivatives of the torsion classes vanish, and hence ω and
Ψ have to remain closed along the flow. Consequently, Calabi–Yau manifolds
are fix points of the Hitchin flow.

In order to connect first order analysis of the flow from a Calabi–Yau
threefold in Section 4.3, we therefore need flows where either the embedding
parameter Nt is non-constant and the flux is non-vanishing. In the next
subsection, we analyse a simple type of such a flow.

5Recall that when the two Lie forms vanish, we are free to choose the phase of
Ψ without changing the properties of the SU(3) structure. Thus, we can always
choose a gauge where the real (imaginary) part of Ψ is closed, and hence W0,W2

are imaginary (real). Once we have fixed α = 1, these gauge choices correspond to
different ways of embedding the SU(3) structure in a G2 structure.
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6.1. Symplectic half-flat

There is a way to simplify the analysis of half-flat flows, that still allows to
connect with the perturbative analysis of the Calabi–Yau flow. In Section 4.3
we found that, at linear order, a Calabi–Yau manifold with constant N0 and
non-harmonic γ resulted in a symplectic half-flat SU(3) structure with real
W2, see Equation (87). Therefore, let us now consider the flow of such SU(3)
structures, that is where

dω = 0.(143)
dΨ = W2 ∧ ω,(144)

Since ω is closed, it provides the six-manifold with a symplectic structure.
As above, we will look for points along the flow where W2 vanishes.

We begin by proving that

(145) dNt = 0, ImW2 = 0,

along this flow. To see this consider the flow of the torsion class W0, (134),
for symplectic half-flat SU(3) structures. The real and imaginary parts of
this equation must vanish separately, so with W0 = 0 = W3 for all t we have

(146) 0 = −2ΔdNt +Nt (ImW2�ImW2), 0 = Nt ImW2�ReW2.

Taking the Hodge dual of the first equation we find

−2 d(∗dNt) = Nt ImW2 ∧ ImW2 ∧ ω = 1
6 Nt ‖ImW2‖2 ω ∧ ω ∧ ω.

As the left hand side is d-exact, and the right hand side is either strictly
positive or strictly negative, this identity can only be true if both sides
vanish. Hence, Equation (145) follows. Recall that any t-dependence of a
d-constant Nt can be absorbed by a coordinate change. We will therefore
take Nt constant below.

The flow equations for ω become (note that ht = 0)

∂tω = λt ω, λt = 2 τ1 t = ∂tφ, dλt = 0,

with solution

(147) ω(t, x) = eφ(t)ω0(x) .
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The closure of λt is automatic, since we assume that Wω
1 = dφ is zero along

the flow. Thus, requiring that ω is closed for all t leads to no further con-
straints. This is consistent with the fact that the flow equation for W3, (133),
is trivially satisfied along the flow.

The flow equations for Ψ are (note that dNt = 0)

∂tΨ = (32 λt + i74 Nt τ0)Ψ + χt,

Reχt = −Nt γ, Imχt = Nt Jγ, ω�γ = 0.(148)

For future reference, we record the compatibility conditions coming from
∂tdΨ = d∂tΨ:

Ntd(Jγ) = dImχt = −7
4 τ0NtReW2 ∧ ω ,

−Ntdγ = dReχt = (∂tReW2 − 1
2λtReW2) ∧ ω .

(149)

Finally, the supersymmetry equations fix the flux to

SX = −49
60 τ0ReΨ +N−1

t τ1 t ImΨ + Jγ,

St =
14

15
Nt τ0 ω +NtReW2 .

(150)

As above, the first Bianchi identity is a constraint on the exterior derivative
of Jγ, which can be read off from (136) after setting W0 to zero. The second
Bianchi identity determines the flow of Jγ with t. The compatibility of these
equations with (149) must be checked. First, we have

(151) 0 = dSX ⇔ d(Jγ) = 49
60 τ0ReW2 ∧ ω ,

which is compatible with (149) if and only if

(152) τ0 = 0 .

The second Bianchi identity gives, upon using (152),

∂tS
X = dSt,

⇐⇒ NtdReW2 = N−1
t

(
∂tτ1t + 3τ21t

)
ImΨ + ∂t(Jγ) + τ1t Jγ

⇐⇒ N2
t dReW2 = ∂2

t ImΨ− 2τ1t∂t ImΨ− 2∂tτ1t ImΨ .

(153)

Thus, given W2, the second Bianchi identity further constrains the flow of
ImΨ. This equation is difficult to solve in general, but we note that all terms
in the last equation are d-closed. Thus, the equation is compatible with the
constraints on the flow.
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Let us summarise the conditions for a symplectic half-flat flow. We have

(154) Nt constant, τ0 = 0, ImW2 = 0 ,

and can rewrite (149) and (153) as constraints on γ:

dJγ = 0,

−Ntdγ = (∂tReW2 − τ1tReW2) ∧ ω ,

∂t(Jγ) + τ1t Jγ = NtdReW2 −N−1
t

(
∂tτ1t + 3τ21t

)
ImΨ .

(155)

Consider the wedge product with ReΨ of the last equation (see Eq. (138))

−N2
t (γ�γ +ReW2�ReW2) = 4

(
∂tτ1 t + 3τ21 t

)
.

As the left hand side is negative definite on a symplectic half-flat manifold,
it must be the case that

(156) ∂tτ1 t + 3τ21 t < 0.

Consequently, flows with constant dilaton φ are thus excluded for symplectic
half-flat SU(3) structures: the inequality in (156) can only be saturated if γ
and W2 both vanish. This takes us back to a Calabi–Yau flow as discussed
earlier.

The flow specified by the Equations (155) depends on whether γ vanishes
or not. We therefore have two different classes of solutions.

6.1.1. γ = 0. In the case that γ = 0 for all t, which is in particular true if
dim(H(2,1)(X)⊕H(1,2)(X))prim is zero, we can solve (155) explicitly. First,
note that γ = 0 implies that ∂tΨ = 3τ1tΨ and ∂tW2 = τ1tW2. The flow equa-
tions for ω,Ψ and W2 then integrate to

ω(t, x) = eφ(t)ω0(x),

Ψ(t, x) = e
3

2
φ(t)Ψ0(x),

W2(t, x) = e
1

2
φ(t)W2,0(x) ,

(157)

where a zero denotes the value of the form at some point t = 0 along the
flow, and φ(0) = 0. Clearly, there is no non-singular Calabi–Yau locus in this
flow: if W2 goes to zero, so do ω and Ψ, leading to a manifold of vanishing
volume. As we discuss further below, this is consistent with the first order
analysis of flows from Calabi–Yau manifolds.
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The third equation of (155) can be decomposed into

d(ReW2,0) = −1

2
N−2

t C0 ImΨ0,

−C0 = eφ
(
∂2
t φ+

3

2
(∂tφ)

2

)
,

(158)

where C0 must be positive by (156). The first equation is a constraint on the
SU(3) structure of X(t = 0). The second equation is an non-linear differen-
tial equation for the flow of φ:

φ′′ +
3

2
(φ′)2 + a2 e−φ = 0,

where a2 = 2C0 is a positive constant. To solve this, we proceed as in the
analysis of nearly Kähler flows (cf. Section 5): let

(159) dT = ±Nt e
−φ/2 dt.

In terms of T the differential equation becomes

d2φ

dT 2
+

(
dφ

dT

)2

+ a2 = 0.

Substituting v = dφ
dT and w = v2 we find a first order differential equation

for w. Substituting back, we can solve for φ(T ). We have

± (T − T0) =

∫
1√

−a2 + C1 e−2φ
dφ = −1

a
Arctan

(
1

a

√
−a2 + C1 e−2φ

)
.

Note that the right hand side of always negative irrespective of the sign one
chooses for a = ±√

2C0. Inverting this relation we obtain

(160) e2φ =
C1

a2
cos2 (a (T − T0)) ,

where C1 must be positive. Moreover, when taking the square root of this
relation, one must take the absolute value of the cosine so that eφ is always
positive.
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At infinitely many points Tn, where a (T − T0) = (n+ 1)π/2 and n is an
integer, we see that

(161) e2φ|Tn
= 0 .

Recalling the relations (157), we thus see that the volume of the SU(3) struc-
ture manifold X(t) vanishes at regular intervals. However, this is no curva-
ture singularity, since the scalar curvature is proportional to ‖W2‖2 and hence
goes to zero at these points. To follow the flow through these possibly singular
points6 requires an analysis that goes beyond the supergravity approxima-
tion used in this paper. Although gs corrections should still be small at Tn, α′

corrections might still be important. We hope to come back to this discussion
in the future. For the present analysis, we will circumvent this discussion by
focusing on the flow of φ in the domain −π/2 < a(T − T0) < π/2.

Finally, to find φ as a function of t, we solve Equation (159). Substituting
(160) into (159), we have

±Nt (t− t0) =

∫
eφ/2 dT =

(
C1

a2

)1/4 ∫ (
cos2 (a (T − T0))

)1/4
dT.

For values of T in the domain −π/2 < a(T − T0) < π/2, the integral gives

±Nt (t− t0) = 2

(
C1

a2

)1/4

E

(
a(T − T0)

2
, 2

)
,

where E(x,m) is the elliptic function of the second kind. The range of t

is finite, and bounded by t± = t0 ± 2N−1
t

(
C1

a2

)1/4
E
(
π
4 , 2

)
. By inverting this

relation to get T (t), we can plot the evolution of φ in the interval t− ≤ t ≤ t+.
The result is given in Figure 5, where we have chosen t0 = 0 and normalised
φ so that φ(0) = 0.

6.1.2. γ �= 0. A non-zero γ makes the Equations (155) more intricate.
Indeed, without recourse to the analysis of explicit examples, which goes
beyond the scope of this paper, only a few qualitative observations can be
made. First, the second equation in (155) clarifies that it is only when γ
is non-closed, that ReW2 can vanish at some point t = t∗ along the flow,
without ω also going to zero. This is in agreement with the first order analysis

6It is possible that the G2 manifold Y compactifies and stays regular when the
SU(3) structure fibre shrinks to zero size, in analogy with how a one-circle fibered
over an interval forms a two-sphere by shrinking to zero size at the boundaries of
the interval.



Exploring SU(3) structure moduli spaces 889

t� 0 t�
t

0.5

1

e�

Figure 5: eφ as a function of t for a symplectic half-flat SU(3) structure
manifold X(t) with vanishing γ. At the points t±, X(t) has vanishing volume
and curvature.

of the flow away from Calabi–Yau, where we found that a non-closed γ was
required to generate δ1W2. In contrast to the nearly Kähler case discussed
in Section 5, there are no direct obstructions to t∗ being finite.7

Second, we recall (156) which shows that symplectic half-flat flows require
a non-constant φ(t) at least for some range of t, in order not to fall back into
a Calabi–Yau flow for all t. This constraint requires that e

3

2
φ is a concave

function of t. As such, it will cross the t-axis at at least one point, and at
these point the SU(3) structure of X(t) is singular, since its volume goes to
zero.

Finally, it should be mentioned that it is still allowed that e
3

2
φ asymptotes

to a linear, or even a constant function for some t. Concretely, suppose that
the strict inequality (156) holds for t < t∗, but is saturated after t∗: the sym-
plectic half-flat manifold would then flow to a Calabi–Yau manifold without
flux, with volume proportional to eφ. However, to keep the dilaton evolution
smooth, it is likely that the transition will be asymptotic, and the point t∗
will be at infinity. We thus conclude that non-singular Calabi–Yau loci at
finite t require the presence of flux, and in particular a non-vanishing γ.

7 However, to answer this question in ernest requires the analysis of example
manifolds with dim(H(2,1) ⊕H(1,2))prim �= 0. On such spaces, W2 can be explicitely
computed, and various ansätze for γ can be tested. We hope to come back to such
an analysis in the future.
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7. Conclusions

In this paper, we have been concerned with heterotic string compactifications
to a four-dimensional non-compact space that is is not maximally symmetric.
To be more precise, we have focused on four-dimensional half-BPS domain
wall compactifications. We saw that by allowing for a non-maximally sym-
metric spacetime, the internal six-dimensional space is in general torsional,
even at zeroth order in α′. The compact geometry is, however, always a
manifold with SU(3) structure.

This paper is a continuation of an ongoing program that strives to
get a better understanding of heterotic string compactifications to non-
maximally symmetric spacetimes [22–32, 48, 50–53]. The physical motiva-
tion for these studies is that such compactifications might, after inclusion
of non-perturbative effects, complete to phenomenologically relevant four-
dimensional models. Mathematically, one goal of this program is to get a bet-
ter understanding of the moduli space of the SU(3) structures that arise in
flux compactifications. This is a very hard question in general. For instance,
the usual cohomological tools available for the analysis of the moduli space
of Calabi–Yau compactifications no longer apply, or at least require modifi-
cations, due to the torsional nature of the compact space.

By focusing on domain wall compactifications, the SU(3) structure can
be embedded into a non-compact seven-dimensional G2 structure. Such an
embedding corresponds to a flow along a path in the SU(3) structure moduli
space, thus facilitating the analysis of some of the features of this space. In
this paper, we investigated how restrictive the embedding is when selecting
these paths. For example, is it possible to flow from one SU(3) structure with
a certain type of torsion classes, to another with different torsion classes
turned on? By considering both SU(3) structure preserving and changing
flows, we showed by examples that the answer to this question is yes. In
particular, we derived the constraints for a G2 embedding to preserve SU(3)
structures of Calabi–Yau and nearly Kähler type. In both cases, we found
that restrictions only apply to a function Nt, which encodes warping in the
G2 metric, and a primitive (2,1)-form γ, that is part of the H-flux in the
configuration. Through a perturbative analysis of the Calabi–Yau flow to
linear order, we showed that if the constraints on Nt and γ are violated,
torsion classes are switched on by the flow.

Additionally, we have analysed the flows of nearly Kähler and half-flat
SU(3) structures, and provided evidence that both contain Calabi–Yau loci.
For nearly Kähler manifolds, where we solved the flow equations explicitly,
these loci are necessarily in the limit where t goes to infinity. For half-flat
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manifolds, we found support for the existence of Calabi–Yau loci also at
finite distance, but due to the complexity of the equations in this case, we
cannot present a definite answer to this question. Nevertheless, this does
not render the analysis void, as we have discovered attributes to the flow,
necessary for consistent non-Calabi–Yau solutions. For example, it seems
that at least one singularity or “domain wall” is required along the flow. It
would be interesting to find a physical interpretation of these walls, possibly
in terms of NS5-branes and Kaluza–Klein monopoles.

From a physics perspective, the relaxation of constraints on the compact
geometry can be understood since there is less supersymmetry, and hence
more freedom, in the compactification compared with the maximally sym-
metric case. Still, the G2 structure embedding is under enough control to
provide a fertile ground for the study of string compactifications and the
moduli space of SU(3) structures in general. Our study has uncovered some
features of these spaces, but many intriguing questions remain for future
studies.

These include further investigations of the integrability of flows that con-
nect Calabi–Yau and non-Calabi–Yau manifolds, for example by extending
our perturbative analysis to higher orders. It would also be interesting to
study the flow of specific examples of SU(3) structure manifolds with known
torsion classes. Our results indicate that symplectic half-flat manifolds are
particularly relevant, as they are simple but might still flow to Calabi–Yau
manifolds at finite distance. A study of the flow of smooth compact toric
varieties with SU(3) structure, that have been constructed in [22, 54, 55],
might also be rewarding.

Another area to explore is whether the torsion-changing flows we find
also change the topology of the six-dimensional manifold. From our analysis,
there are no indications of this: what seems to happen is that different SU(3)
structures on the same topological space flow into each other. However, many
flows contain singularities where the volume of the compact space goes to
zero, and where the scalar curvature either goes to zero or infinity. In this
paper, we have refrained from studying the flow through such points, but
we cannot avoid noting the similarities with conifold points in Calabi–Yau
moduli spaces, and how they smoothly connect different moduli spaces [56–
58]. Topology-changing Calabi–Yau flows have recently been shown to be
relevant in the study of two-dimensional supersymmetric theories [59]. The
flows studied here might find similar applications.

In the present paper, we have analysed heterotic compactifications at
zeroth order in α′. It is known that effects at linear order in α′ can change
the flow quite drastically for certain SU(3) structure manifolds, see e.g. [26,
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48]. Indeed, such effects couple the gauge and gravity sectors of heterotic
supergravity, leading to a more intricate mathematical problem. It would
be interesting to see how these effects impact on the findings of the present
paper. A relatively straightforward study would be to extend the analysis
of [26, 48] to the phase-changing flow of nearly Kähler manifolds that we
discussed in Section 5.

Furthermore, in order to properly include the gauge sector, a modified
description of the heterotic configuration might be required. In [37, 38, 60]
it was shown that maximally symmetric heterotic compactifications to six
dimensions can be encoded in a holomorphic structure on a certain extension
bundle. This structure also relates to the generalised geometric description
of the heterotic string [61–67]. Moreover, by rephrasing the whole system in
terms of a holomorphic structure, it was possible to compute the first order
moduli space in the maximally symmetric case. This is done by means of
cohomologies of the holomorphic structures involved. It may be that simi-
lar structures are required when considering the α′ corrected domain wall
compactifications. However, since in this case the base space of the bundle is
non-complex in general, these structures will no longer be holomorphic. The
framework would therefore have to be generalised to apply to the domain
wall case. Hints for such a generalisation might be found in recent studies of
cohomologies for flux compactifications of type II supergravities [36], and it
would be interesting to study this in more detail in the future.
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Appendix A. Conventions and identities

In this appendix we collect our conventions and some useful identities. Our
conventions conform with those of [68].

Index conventions: we use latin indices m,n, . . . for real indices, and greek
indices μ, ν, . . . for holomorphic indices.
Torsion:

T (∇) · (X ∧ Y ) = ∇XY −∇Y X − [X,Y ]

or, equivalently, T (∇)mn
p = 2Γ[mn]

p.

A.1. Differential forms and wedge products

A p-form α is defined by

(A.1) α =
1

p!
αm1···mp

dxm1 ∧ · · · ∧ dxmp .

The wedge product between a p-form α and a q-form β is

(A.2) α ∧ β =
1

p! q!
αm1···mp

βn1···nq
dxm1 ∧ · · · ∧ dxmp ∧ dxn1 ∧ · · · ∧ dxnq .

A.2. Hodge operator and the adjoint operator d†

Let αp be a p-form. The Hodge ∗ operator on αp for a d-dimensional manifold
is defined by

(A.3) ∗ ∗αp = (−1)p(d−p) αp.

Then if d is even,

∗ ∗ αp = (−1)p αp,

and if d is odd

∗ ∗ αp = αp.

In general,

(A.4) ∗ αp =
| det g|1/2
(d− p)! p!

αp m1...mp
εm1...mp

mp+1...md
dxmp+1 ∧ · · · ∧ dxmd .
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The adjoint operator d† on αp is defined by

(A.5) d†αp = (−1)dp+d+1 ∗ d ∗ αp.

If d is even, then

d†αp = − ∗ d ∗ αp,

and if d is odd

d†αp = (−1)p ∗ d ∗ αp.

A.3. Contraction operator �

The operator � denotes the contraction of forms, and is defined by

(A.6) α�β =
1

k! p!
αm1···mk βm1···mkn1···np

dxn1 · · · dxnp ,

where α is any k-form and β is any p+ k-form. It is easy to deduce the
identity

(A.7) α�β = (−1)p(d−p−k) ∗ (α ∧ ∗β).

A.4. Conventions on almost complex manifolds

Real and complex coordinates: We define complex coordinates

ζμ = x2μ−1 + i x2μ ,where μ = 1, . . . , n,

and 2n = d is the real dimension of the manifold.

Hermitian form:

ω(X,Y ) = g(JX, Y ) or, equivalently, ωmn = Jm
p gpn.

In complex coordinates ωμν̄ = i gμν̄ . We have the identity

(A.8) d†ω = −| det g|−1/2 ∂p(| det g|1/2ωpq) gqm dxm = −∇LC
n Jm

n dxm .

Almost complex structure and projection operators
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Let α be a (p, q)-form. The almost complex structure J acts on a (p, q) form
α as follows

(A.9) J(α) = Jm1

n1 · · · Jmp+q

np+qαn1···np+q
= ip−q α.

The projection operators

(A.10) P =
1

2
(1− iJ), Q =

1

2
(1 + iJ).

project a 1-form onto its holomorphic and antiholomorphic components,
respectively.

Volume form

det g = det gmn = −22n (det gμν̄)
2,

dvolX =
√

| det g| dx1 ∧ · · · ∧ dxd

=
1

d!

√
| det g| εm1···md

dxm1 ∧ · · · ∧ dxmd

=
i

2n

√
| det g| dζ1 ∧ · · · ∧ dζn ∧ dζ 1̄ ∧ · · · ∧ dζ n̄,

dvolX =
1

n!
ω ∧ ω ∧ · · · ∧ ω︸ ︷︷ ︸

n times

.

Hodge ∗ operator

Let αk be a primitive k-form. Then, with j ≤ n+ k,

(A.11) ∗ (ωj ∧ αk) = (−1)k(k+1)/2 j!

(n− k − j)!
ωn−k−j ∧ J(αk).

Let α be a one form. Then

(A.12) ω�dα = d†(α�ω) + α�d†ω = −d†(J(α)) + α�d†ω.

This identity is a “non-Kähler identity” and reduces to one of the Kähler
identities when ω is d-closed.

Identitites in 6 dimensions

Holomorphic volume form
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Any almost complex 6-manifold has a nowhere-vanishing holomorphic top
form, defined by

Ψ =
1

3!
Ψμνρ dζ

μ ∧ dζν ∧ dζρ =
1

3!
f εμνρ dζ

μ ∧ dζν ∧ dζρ

= f dζ1 ∧ dζ2 ∧ dζ3.

The following identities hold

∗Ψ = −iΨ.(A.13)

iΨ ∧Ψ = ‖Ψ‖2 dvol6, ‖Ψ‖2 = 1

3!
Ψ

μνρ
Ψμνρ = 8|f |2 (det g)−1/2.

ΨmnpΨ
mnq

= 2 ‖Ψ‖2 Pp
q, Ψmpq Ψ

mrs
= 2 ‖Ψ‖2 P[p

r Pq]
s.

Note that ω ∧Ψ = 0 ; together ω and Ψ determine an SU(3) structure. We
also have

∗Re(αΨ) = Im(αΨ), ∗Im(αΨ) = −Re(αΨ).

Useful identies

Let α be a k-form

ω�(ω ∧ α) = (3− k)α+ ω ∧ (ω�α).
(ω ∧ ω)�(α ∧ ω) = 2(4− k)ω�α+ ω ∧ ((ω ∧ ω)�α), k ≥ 2.

(A.14)

Let β be a 1-form

ω�(β ∧Ψ) = −J(β)�Ψ.

Ψ�(β ∧Ψ) = −(β�Ψ)�Ψ = −‖Ψ‖2 βmQn
m dxn = −‖Ψ‖2 β(0,1).

(A.15)

Let β be a 2-form

ω�(β ∧Ψ) = −(ω�β)Ψ− 1

2
ωmn βmpΨqrn dx

p ∧ dxq ∧ dxr.

Ψ�(β ∧ ω) = −i β�Ψ.

Ψ�(β ∧Ψ) =
1

2
‖Ψ‖2 βmnQp

mQq
n dxp ∧ dxq = ‖Ψ‖2 β(0,2).

(A.16)

Let β be a 3-form

Ψ�(β ∧Ψ) = − 1

3!
‖Ψ‖2 βmnpQr

mQs
nQq

p dxrdxs ∧ dxq

= −‖Ψ‖2 β(0,3),

Ψ�(β ∧ ω) = (Ψ�β)ω + i
2 grpΨ

mnr
βmnq dx

p ∧ dxq.

(A.17)
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Identities involving a closed holomorphic (3, 0)-form Ψ

Let f be a function

(A.18) df�Ψ = ∗(df ∧ ∗Ψ) = ∗d(f ∗Ψ) = −d†(fΨ),

Let β be a two-form

(A.19) Ψ�dβ = −d†(β�Ψ),

Calabi–Yau identities: On a Calabi–Yau manifold, we have

(A.20) dω = 0, dΨ = 0.

Let f be a function. Then

(A.21) d(df�Ψ) ∧ ω = d(∂̄f�Ψ ∧ ω) ∼ d(Ψ ∧ ∂̄f) = −Ψ ∧ d∂̄f = 0.

The almost complex structure J in terms of Ψ:

The (real part of the) complex 3-form Ψ determines a unique almost
complex structure J such that Ψ is a (3, 0)-form with respect to J ,

(A.22) Jm
n =

Im
n√

−1
6trI

2
, Im

n = (ReΨ)mpq(ReΨ)rst ε
npqrst, J2 = −1.

The variations of J in terms of the variations of Ψ are given by

(A.23) ∂tJ = 2 iΔt = 2 iΔt n
m dxn ⊗ ∂m, Δtn

m =
1

2 ‖Ψ‖2 χt npq Ψ
mpq

.

A.5. Conventions on 7-dimensional G2 manifolds

Let ϕ be the 3-form that determines the G2 structure. Then

(A.24) ‖ϕ‖2 = ϕ�ϕ =
1

3!
ϕa1a2a3 ϕa1a2a3

= 7.

Let β be a k-form with

β = dt ∧ βt + βX ,

then

(A.25) ∗7 β = (−1)k N ∧ ∗βX +N−1
t ∗ βt.



898 X. de la Ossa, M. Larfors and E. E. Svanes

References

[1] P. Candelas, G. T. Horowitz, A. Strominger and E. Witten, Vacuum
Configurations for Superstrings. Nucl. Phys., B258 (1985), 46–74.

[2] A. Strominger, Superstrings with Torsion. Nucl. Phys., B274 (1986),
253.

[3] C. Hull, Compactifications of the Heterotic Superstring. Phys. Lett.,
B178 (1986), 357.

[4] D. Lüst, Compactification of Ten-dimensional Superstring Theories
Over Ricci Flat Coset Spaces. Nucl. Phys., B276 (1986), 220.

[5] K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G -
flux. JHEP, 9908 (1999) 023, arXiv:hep-th/9908088.

[6] S. Ivanov and G. Papadopoulos, A No go theorem for string warped
compactifications. Phys. Lett., B497 (2001), 309–316, arXiv:hep-th/
0008232.

[7] K. Becker and K. Dasgupta, Heterotic strings with torsion. JHEP, 0211
(2002) 006, arXiv:hep-th/0209077.

[8] K. Becker, M. Becker, P. S. Green, K. Dasgupta and E. Sharpe, Com-
pactifications of heterotic strings on nonKahler complex manifolds. 2.
Nucl. Phys., B678 (2004), 19–100, arXiv:hep-th/0310058.

[9] K. Becker, M. Becker, K. Dasgupta and P. S. Green, Compactifications
of heterotic theory on nonKahler complex manifolds. 1. JHEP, 0304
(2003) 007, arXiv:hep-th/0301161.

[10] J. P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G structures
and wrapped NS5-branes. Commun. Math. Phys., 247 (2004), 421–445,
arXiv:hep-th/0205050.

[11] G. Lopes Cardoso, G. Curio, G. Dall’Agata, D. Lüst, P. Manousselis,
et. al., NonKahler string backgrounds and their five torsion classes. Nucl.
Phys., B652 (2003), 5–34, arXiv:hep-th/0211118.

[12] J. P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic
torsion. Phys. Rev., D69 (2004) 086002, arXiv:hep-th/0302158.

[13] U. Gran, P. Lohrmann and G. Papadopoulos, The Spinorial geometry of
supersymmetric heterotic string backgrounds. JHEP, 0602 (2006) 063,
arXiv:hep-th/0510176.



Exploring SU(3) structure moduli spaces 899

[14] M. Becker, L.-S. Tseng and S.-T. Yau, Moduli Space of Torsional Man-
ifolds. Nucl. Phys., B786 (2007), 119–134, arXiv:hep-th/0612290.

[15] U. Gran, G. Papadopoulos and D. Roest, Supersymmetric heterotic
string backgrounds. Phys. Lett., B656 (2007), 119–126, arXiv:0706.
4407.

[16] S. Ivanov, Heterotic supersymmetry, anomaly cancellation and equations
of motion. Phys. Lett., B685 (2010), 190–196, arXiv:0908.2927.

[17] N. J. Hitchin, The geometry of three-forms in six and seven dimensions.
arXiv:math/0010054.

[18] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G_2
structures. ArXiv Mathematics e-prints, (Feb., 2002), arXiv:math/
0202.

[19] M. Graña, Flux compactifications in string theory: A Comprehensive
review. Phys. Rept., 423 (2006), 91–158, arXiv:hep-th/0509003.

[20] R. Blumenhagen, B. Kors, D. Lüst and S. Stieberger, Four-dimensional
String Compactifications with D-Branes, Orientifolds and Fluxes. Phys.
Rept., 445 (2007), 1–193, arXiv:hep-th/0610327.

[21] P. Koerber, Lectures on Generalized Complex Geometry for Physicists.
Fortsch. Phys., 59 (2011), 169–242, arXiv:1006.1536.

[22] M. Larfors, Revisiting toric SU(3) structures. Fortsch. Phys., 61 (2013),
1031–1055, arXiv:1309.2953.

[23] J. Gray, M. Larfors and D. Lüst, Heterotic domain wall solutions and
SU(3) structure manifolds. JHEP, 1208 (2012) 099, arXiv:1205.6208.

[24] A. Lukas and C. Matti, G-structures and Domain Walls in Heterotic
Theories. JHEP, 1101 (2011) 151, arXiv:1005.5302.

[25] M. Klaput, A. Lukas and C. Matti, Bundles over Nearly-Kahler Homo-
geneous Spaces in Heterotic String Theory. JHEP, 1109 (2011) 100,
arXiv:1107.3573.

[26] M. Klaput, A. Lukas, C. Matti and E. E. Svanes, Moduli Stabilising
in Heterotic Nearly Kähler Compactifications. JHEP, 1301 (2013) 015,
arXiv:1210.5933.

[27] M. Klaput, A. Lukas and E. E. Svanes, Heterotic Calabi-Yau Compact-
ifications with Flux. JHEP, 1309 (2013) 034, arXiv:1305.0594.



900 X. de la Ossa, M. Larfors and E. E. Svanes

[28] S. Gurrieri, A. Lukas and A. Micu, Heterotic on half-flat. Phys. Rev.,
D70 (2004) 126009, arXiv:hep-th/0408121.

[29] A. Micu, Heterotic compactifications and nearly-Kahler manifolds. Phys.
Rev., D70 (2004) 126002, arXiv:hep-th/0409008.

[30] B. de Carlos, S. Gurrieri, A. Lukas and A. Micu, Moduli stabilisation
in heterotic string compactifications. JHEP, 0603 (2006) 005, arXiv:
hep-th/0507173.

[31] S. Gurrieri, A. Lukas and A. Micu, Heterotic String Compactifications
on Half-flat Manifolds. II. JHEP, 0712 (2007) 081, arXiv:0709.1932.

[32] A. Micu, Moduli Stabilisation in Heterotic Models with Standard Embed-
ding. JHEP, 1001 (2010) 011, arXiv:0911.2311.

[33] P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds.
Nucl. Phys., B355 (1991), 455–481.

[34] L.-S. Tseng and S.-T. Yau, Cohomology and Hodge Theory on Symplectic
Manifolds. I. J. Diff. Geom., 91 (2012) 383–416, arXiv:0909.5418.

[35] L.-S. Tseng and S.-T. Yau, Cohomology and Hodge Theory on Symplectic
Manifolds. II. J. Diff. Geom., 91 (2012), 417–444, arXiv:1011.1250.

[36] L.-S. Tseng and S.-T. Yau, Generalized Cohomologies and Supersymme-
try. arXiv:1111.6968.

[37] L. B. Anderson, J. Gray, and E. Sharpe, Algebroids, Heterotic Moduli
Spaces and the Strominger System. arXiv:1402.1532.

[38] X. de la Ossa and E. E. Svanes, Holomorphic Bundles and the Mod-
uli Space of N=1 Supersymmetric Heterotic Compactifications. arXiv:
1402.1725.

[39] X. de la Ossa, S. Karigiannis and E. E. Svanes To appear.

[40] M. Fernandez and A. Gray, Riemannian manifolds with structure group
g2. Ann. Mat. Pura Appl., 32 (1982), 19–45.

[41] T. Friedrich and S. Ivanov, Killing spinor equations in dimension 7 and
geometry of integrable G2-manifolds. Journal of Geometry and Physics,
48 (2003), 1–11, arXiv:math/0112201.

[42] D. Martelli and J. Sparks, Non-Kahler heterotic rotations. Adv. Theor.
Math. Phys., 15 (2011), 131–174, arXiv:1010.4031.



Exploring SU(3) structure moduli spaces 901

[43] A. Gray and L. Hervella, The sixteen classes of almost hermitian mani-
folds and their linear invariants. Annali di Matematica Pura ed Appli-
cata, 123 (1980), no. 1 35–58.

[44] N. Hitchin, Stable forms and special metrics. In: Global differential
geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Con-
temp. Math, no. 288, 70–89, 2001.

[45] K. Kodaira and D. C. Spencer, On deformations of complex analytic
structures. I, II. Ann. of Math. (2), 67 (1958), 328–466.

[46] K. Kodaira and D. Spencer, On deformations of complex analytic struc-
tures. III: Stability theorems for complex structures.. Ann. Math. (2), 71
(1960), 43–76.

[47] G. Tian, Smoothness of the universal deformation space of compact
Calabi-Yau manifolds and its petersson-weil metric. In: Mathematical
aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys.,
pp. 629–646, World Sci. Publishing, Singapore, 1986.

[48] A. S. Haupt, O. Lechtenfeld and E. T. Musaev, Order α′ heterotic
domain walls with warped nearly Kähler geometry. arXiv:1409.0548.

[49] L. Bedulli and L. Vezzoni, The Ricci tensor of SU(3)-manifolds. Journal
of Geometry and Physics, 57 (2007), 1125–1146, arXiv:math/0606.

[50] T. Maxfield and S. Sethi, Domain Walls, Triples and Acceleration.
JHEP, 1408 (2014) 066, arXiv:1404.2564.

[51] J. Held, D. Lüst, F. Marchesano and L. Martucci, DWSB in heterotic
flux compactifications. JHEP, 1006 (2010) 090, arXiv:1004.0867.

[52] J. Held, BPS-like potential for compactifications of heterotic M-theory?
JHEP, 1110 (2011) 136, arXiv:1109.1974.

[53] A. Chatzistavrakidis, O. Lechtenfeld and A. D. Popov, Nearly Käh-
ler heterotic compactifications with fermion condensates. JHEP, 1204
(2012) 114, arXiv:1202.1278.

[54] M. Larfors, D. Lüst, and D. Tsimpis, Flux compactification on smooth,
compact three-dimensional toric varieties. JHEP, 1007 (2010) 073,
arXiv:1005.2194.

[55] M. Larfors, Flux compactifications on toric varieties. Fortsch. Phys., 59
(2011), 730–733.



902 X. de la Ossa, M. Larfors and E. E. Svanes

[56] P. Candelas and X. C. de la Ossa, Comments on Conifolds. Nucl. Phys.,
B342 (1990), 246–268.

[57] A. Strominger, Massless black holes and conifolds in string theory. Nucl.
Phys., B451 (1995), 96–108, arXiv:hep-th/9504090.

[58] F. Chen, K. Dasgupta, P. Franche and R. Tatar, Toward the Gravity
Dual of Heterotic Small Instantons. Phys. Rev., D83 (2011) 046006,
arXiv:1010.5509.

[59] A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds. arXiv:
1306.4320.

[60] X. de la Ossa and E. E. Svanes, Connections, Field Redefinitions and
Heterotic Supergravity. arXiv:1409.3347.

[61] M. Garcia-Fernandez, Torsion-free generalized connections and Het-
erotic Supergravity. arXiv:1304.4294.

[62] D. Baraglia and P. Hekmati, Transitive Courant Algebroids, String
Structures and T-duality. arXiv:1308.5159.

[63] O. A. Bedoya, D. Marques, and C. Nunez, Heterotic α’-corrections in
Double Field Theory. arXiv:1407.0365.

[64] A. Coimbra, R. Minasian, H. Triendl and D. Waldram, Generalised
geometry for string corrections. arXiv:1407.7542.

[65] O. Hohm and S. K. Kwak, Double Field Theory Formulation of Heterotic
Strings. JHEP, 1106 (2011) 096, arXiv:1103.2136.

[66] O. Hohm and B. Zwiebach, Green-Schwarz mechanism and α′-deformed
Courant brackets. JHEP, 1501 (2015) 012, arXiv:1407.0708.

[67] O. Hohm and B. Zwiebach, Double field theory at order α′. JHEP, 1411
(2014) 075, arXiv:1407.3803.

[68] D. Huybrechts, Complex Geometry An Introduction. Springer, 2005.



Exploring SU(3) structure moduli spaces 903

Mathematical Institute, Oxford University

Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG, UK

E-mail address: delaossa@maths.ox.ac.uk

Department of Physics and Astronomy, Uppsala University

SE-751 20 Uppsala, Sweden

E-mail address: magdalena.larfors@physics.uu.se

Institut Lagrange de Paris, Sorbonne Universites

UPMC Univ Paris 06, LPTHE, F-75005, France

E-mail address: esvanes@lpthe.jussieu.fr




