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Multisymplectic formulation of

Yang–Mills equations

and Ehresmann connections

Frédéric Hélein

We present a multisymplectic formulation of the Yang–Mills equa-
tions. The connections are represented by normalized equivariant
1-forms on the total space of a principal bundle, with values in
a Lie algebra. Within the multisymplectic framework we realize
that, under reasonable hypotheses, it is not necessary to assume
the equivariance condition a priori, since this condition is a conse-
quence of the dynamical equations.

Introduction

The motivation of the following work was at first to provide a Hamiltonian
formulation of the Yang–Mills system of equations which would be as much
covariant as possible. This means that we look for a formulation which does
not depend on choices of space-time coordinates nor on the trivialization of
the principal bundle. Among all possible frameworks (covariant phase space,
etc.) we favor the multisymplectic formalism which takes automatically into
account the locality of fields theories. Following this approach we have been
led to discover a new variational formulation of the Yang–Mills equations
with nice geometrical features.

The origin of the multisymplectic formalism goes back to the discovery
by V. Volterra in 1890 [29, 29] of generalizations of the Hamilton equa-
tions for variational problems with several variables. These ideas were first
developped mainly around 1930 [4, 7, 24, 31] and in 1950 [6]. After 1968 this
theory was geometrized in a way analogous to the construction of symplectic
geometry by several mathematical physicists [10, 11, 23] and in particular
by a group around W. Tulczyjew in Warsaw [20–22]. This theory has many
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recent developments which we cannot report here (see e.g. [1, 9, 12, 15–
17, 19, 25, 26] and, for surveys, [3, 8, 13, 14, 27]). Today the Hamilton–
Volterra equations are often called the De Donder–Weyl equations for ref-
erence to [7, 31], which is inaccurate [14]. However in this paper we name
them the HVDW equations for Hamilton–Volterra–De Donder–Weyl.

The basic concept is the notion of a multisymplectic (n+ 1)-form ω on a
smooth manifold N , where n refers to the number of independent variables.
The form ω is always closed and one often assumes that it is non degenerate,
i.e. that the only vector field ξ on the manifold such that ξ ω = 0 is zero.
An extra ingredient is a Hamiltonian function H : N −→ R. One can then
describe the solutions of the HVDW equations by oriented n-dimensional
submanifolds Γ of N which satisfy the condition that, at any point m ∈
N , there exists a basis (X1, . . . , Xn) of TmΓ such that X1 ∧ · · · ∧Xn ω =
(−1)ndH. Equivalently one can replace ω by its restriction to the level set
H−1(0) and describe the solutions as the submanifolds Γ ofH−1(0) such that
X1 ∧ · · · ∧Xn ω = 0 everywhere (plus some independence conditions, see
e.g. [14]).

All that have led to elegant formulations of most variational problems in
mathematical physics involving e.g. maps and sections of bundles. However
the multisymplectic formulation of the Yang–Mills raises difficulties [18, 28],
because the dynamical field is a connection and is subject to gauge invari-
ance, hence their geometrical description is delicate. A possible approach
consists in building a suitable reduction of the geometry of connections on a
G-principal bundle as for instance in [2]. We follow another approach, which
is based on ideas which are now quite standard since Élie Cartan: we lift the
connection defined on some manifold M representing the space-time to the
principal bundle P over M with structure group G. The connection is then
represented by a g-valued 1-form η on P which satisfies a normalization (3)
and an equivariance (4) hypothesis. Although a priori necessary the equiv-
ariance condition has the drawback of being a constraint on the first order
derivatives of the field, which, to our opinion, is not a natural condition.

In the following we compute the Legendre transform for the Yang–Mills
action by treating connections as normalized and equivariant g-valued 1-
forms on P. We find that the natural multisymplectic manifold can be built
from the vector bundles g⊗ T ∗P and g∗ ⊗ Λn+r−2T ∗P over P, where n+ r
is the dimension of P, g is the structure Lie algebra and g∗ its dual vector
space. These vector bundles are endowed with a canonical g-valued 1-form
η and a canonical g∗-valued (n+ r − 2)-form p respectively. Inside g⊗ T ∗P
we consider the subbundle g⊗n T ∗P of normalized forms. Then the multi-
symplectic manifold corresponds more or less to the total space of the vector
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bundle R⊕P (g⊗n T ∗P)⊕P (g∗ ⊗ Λn+r−2T ∗P), equipped with the (n+ r)-
form θ = εβ ∧ γ + p ∧ (dη + η ∧ η), where ε a coordinate on R and β ∧ γ is
the volume form on P. The Hamiltonian functionH is (up to a factor−1

4) the
squared norm of the coefficients pμν such that p ∧ dxμ ∧ dxν + pμνβ ∧ γ = 0.
Once this is done, we will see that we may remove the unnatural equivari-
ance constraint and derive the corresponding generalized Hamilton equations
without this assumption; then we discover that, if the structure group of the
gauge theory is unimodular and compact (which is the case for U(1) and all
SU(k)’s), the dynamical Hamilton equations force the g-valued 1-forms to
be equivariant and give us back the Yang–Mills equations.

What are the byproducts of this approach? The fact that we obtain a
first order formulation of the Yang–Mills equations is not new. But, most
importantly, this formulation works on the space of normalized g-valued 1-
forms on a principal bundle which are not equivariant, i.e. which don’t cor-
respond to a connection in the usual sense. Instead these 1-forms correspond
to Ehresmann connections on the total space of the bundle P. However the
classical Euler–Lagrange equations contains conditions which, under some
hypotheses on the structure group, forces these fields to be equivariant on-
shell and hence to correspond to a connection, which turns out to be also a
solution of the Yang–Mills equation. Hence, although it is different from the
standard Yang–Mills variational problem, this problem has the same classi-
cal solutions. We also note that our problem is invariant under an action of
the standard gauge group of the usual Yang–Mills action, plus the action of
another gauge group, which is Abelian and acts additively on the momentum
variables.

It is interesting to note that our new Lagrangian density in (65) is not
that mysterious and could have been invented out of the blue. The merit of
the multisymplectic approach here is to provide a conceptual way to build it
from the standard Yang–Mills action. In particular, performing the Legendre
transform by respecting the equivariance constraint produces automatically
the extra fields paj which play the role of Lagrange multipliers for this con-
straint. A more miraculous fact is however that these extra fields which may
not be equivariant themselves are dynamically decoupled from the other
fields if the gauge structure group is compact unimodular.

Various interesting questions can be set. It seems interesting to study
the quantization of this model and, in particular, to explore the mass gap
question [18] in this setting. Indeed one could expect that the elastic mech-
anism which replaces the usual equivariance constraint could induce a mass
at the quantum level. Another point is that our formulation has some flavor
of a Kaluza–Klein theory, so it would be interesting to study gravitational
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theories by following similar ideas and to build a Kaluza–Klein gravitational
theory where the mechanism of spontaneaous dynamical reduction that we
observed here could be useful.

1. Geometric preliminaries

1.1. Yang–Mills gauge fields

We are interested in the critical points of a Yang–Mills action functional on
an n-dimensional manifold M with coordinates (x1, . . . , xn). We fix some
Lie group G, which will be the structure group of our gauge theory, and
we denote by g its Lie algebra. The fields are then g-valued 1-forms A =
Aμdx

μ on M. The curvature 2-form of A is F = dA+ 1
2 [A ∧A]. We will

assume for simplicity that G is a group of matrices and write equivalently
F = dA+A ∧A. We have in local coordinates F = 1

2F μνdx
μ ∧ dxν , where

F μν := ∂Aν

∂xμ − ∂Aμ

∂xν + [Aμ,Aν ]. We fix a pseudo-Riemannian metric gμν on
M and a metric hij on g which is invariant under the adjoint action of G.
Then the Yang–Mills action of A is

(1) YM[A] :=

∫
M

dvolg

(
−1

4
|F |2

)
where |F |2 = gλν(x)gμσ(x)hijF

i
λμF

j
νσ and dvolg is the pseudo-Riemannian

measure on M. This action is invariant by gauge transformations A �−→
f−1df + f−1Af , for any map f from M to G. It is well-known that one
interprets geometrically a gauge fieldA as a connection on a principal bundle
with structure group G overM. Our first task will be to recast this problem
by replacing the gauge fields A by g-valued 1-forms defined on the total
space of the principal bundle, which satisfy suitable conditions.

1.2. Working on the principal bundle

Let P be the total space of a principal bundle which is fibered over M and
with structure group G. We denote by πM : P −→M the fibration map.
We assume that G is acting on the right on P:

P ×G −→ P
(z, g) �−→ z · g = Rg(z)

This induces an infinitesimal action of g: to any ξ ∈ g, we associate the
vector field ρξ on P defined by: ∀z ∈ P, ∀ξ ∈ g, ρξ(z) :=

d
dt(z · etξ)|t=0; we
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also set ρξ(z) = z · ξ. For any z ∈ P the orbit of the G action containing z
is the fiber Px, where x = πM(z); the tangent vector subspace to Px at z is
called the vertical subspace and is denoted by Vz := kerd(πM)z. Since the
map G 	 g �−→ z · g ∈ Px is a diffeomorphism, Vz is isomorphic to the Lie
algebra g of G through the differential of the latter diffeomorphism:

g −→ TzPx = Vz

ξ �−→ z · ξ
We denote by αz : Vz −→ g the inverse map. Then α|Px

is a g-valued 1-form
on Px (the Maurer–Cartan form) and is characterized by one of the two
following conditions: ∀z ∈ Px,

(2) [z · αz(v) = v, ∀v ∈ Vz] ⇐⇒ [αz(z · ξ) = ξ, ∀ξ ∈ g] .

An Ehresmann connection on P is a distribution of ‘horizontal’ vector
subspaces (Hz)z∈P , where ∀z ∈ P, Hz ⊂ TzP and:

∀z ∈ P, Hz ⊕ Vz = TzP.

Ehresmann connections can be described by using the space Γ(P, g⊗ T ∗P)
of sections of the bundle g⊗ T ∗P over P, i.e. of g-valued 1-forms on P.
Indeed any Ehresmann connection (Hz)z∈P can be defined by some η ∈
Γ(P, g⊗ T ∗P) such that kerηz = Hz, ∀z ∈ P. The 1-form η is unique if,
furthermore, it satisfies the normalization condition

(3) ηz|Vz
= αz, ∀z ∈ P.

We denote by Γn(P, g⊗ T ∗P) the subspace of η ∈ Γ(P, g⊗ T ∗P) which sat-
isfy (3). Alternatively we define the ‘normalized’ affine subbundle of the
bundle g⊗ T ∗P to be:

g⊗n T ∗P := {(z, η) ∈ g⊗ T ∗P; ∀ξ ∈ g, η(z · ξ) = ξ}

and observe that Γn(P, g⊗ T ∗P) is the space of sections of g⊗n T ∗P.
Among the forms in Γn(P, g⊗ T ∗P) the ones which lift gauge fields in

the sense of Paragraph 1.1 are characterized by the additional equivariance
condition:

(4) ∀(g, z) ∈ G× P, (
R∗gη

)
z
= Adg−1 ◦ ηz = g−1ηzg,

where R∗g is the pull-back by the right action mapping Rg. We denote by
Γg
n(P, g⊗ T ∗P) the subspace of normalized and equivariant g-valued 1-forms



810 Frédéric Hélein

on P. Assuming that G is connected, Condition (4) is equivalent to its Lie
algebraic analogue:

(5) Lρξ
η + [ξ,η] = 0, ∀ξ ∈ g,

where Lρξ
is the Lie derivative. Lastly if η ∈ Γg

n(P, g⊗ T ∗P) the quantity
dη + η ∧ η represents the curvature of the connection defined by η on M.

All that is made clear through a trivialization of P. Let σ :M−→ P be
a section of P. Then

M×G −→ P
(x, g) �−→ σ(x) · g

is a local diffeomorphism. Its inverse map:

ϕ : P −→ M×G
z �−→ (x, g)

where x = πM(z) and σ(x) · g = z,

provides us with a coordinate system. In this setting (2) reads α|Px
= g−1dg.

Using local coordinates (x1, . . . , xn) on M and the identification η � ϕ∗η,
we can translate the normalization condition (3) by:

(6) η(x,g) = g−1dg + ημ(x, g)dx
μ.

Setting Aμ(x, g) := gημ(x, g)g
−1 and A(x,g) := Aμ(x, g)dx

μ, (6) reads

(7) η(x,g) = g−1dg + g−1A(x,g)g.

We then have the identity

(8) dη + η ∧ η = g−1(dA+A ∧A)g.

Still assuming (6) the extra equivariance condition (4) then translates as
Aμ(x, g) = Aμ(x), i.e. that Aμ does not depend on g ∈ G. If so,

(9) η(x,g) = g−1dg + g−1Axg, where Ax := Aμ(x)dx
μ.

In particular the pull-back of η by σ is σ∗η = A and, if σ′ :M−→ P
is another section, then there exists γ :M−→ G such that σ′(x) = σ(x) ·
γ(x), ∀x ∈M and the pull-back of η by σ′ is: (σ′)∗η = γ−1dγ + γ−1Aγ.
This shows the correspondence between the normalized and equivariant g-
valued 1-forms on P on the one hand, and the connection 1-forms on the
corresponding principal bundle up to gauge transformations on the other
hand.
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1.3. Coframe on the total space P

Let (t1, . . . , tr) be a basis of g and, for i = 1, . . . , r, set ρi := ρti . We hence
obtain a rank r family of tangent vector fields on P which, at every point
z ∈ P, spans the vertical subspace Vz. We also choose a local orthonormal
moving frame (e1, . . . , en) on M. This means that we are given a reference
pseudo-Riemannian metric gab with constant coefficients on R

n and that
〈ea, eb〉 = gab, ∀a, b = 1, . . . , n. In order to obtain a moving frame on P we
choose a section σ :M−→ P which induces a trivialization z = σ(x) · g �
(x, g) and we set

ea(z) := d(Rg ◦ σ)x(ea(x)) � ea(x) · g, for a = 1, . . . , n.

Then (e1, . . . , en, ρ1, . . . , ρr) is a moving frame on P. We define its dual
coframe

(β1, . . . , βn, γ1, . . . , γr),

i.e. the family of sections of T ∗P such that βa(eb) = δab , γ
i(ρj) = δij and

βa(ρj) = γi(eb) = 0. This provides us with coordinates on g⊗ T ∗P: a point
(z, η) in g⊗ T ∗P (where z ∈ P and η ∈ g⊗ T ∗z P) has the coordinates (x, g,
ηia, η

i
j), where z = σ(x) · g and η = ti(η

i
aβ

a + ηijγ
j).

Let ∇ be the Levi-Civita connection on TM for the metric gμν on M
and let ωb

a ∈ Ω1(M) be the connection 1-forms of ∇ in the moving frame
(e1, . . . , en), i.e. such that ∇ea

eb = ωc
b(ea)ec. Using ∇ and the the choice of

a section σ, we construct a connection ∇ on TP : we extend ωb
a on P by

letting ωb
a � (πM)∗ωb

a and we set

∇eaeb = ωc
b(ea)ec; ∇ρi

eb = 0;

∇eaρj = 0; ∇ρi
ρj = 0.

This connection acts on sections η of Γ(P, g⊗ T ∗P): if η = ηaβ
a + ηiγ

i,
where ηa and ηi are functions on P with values in g, then ∀v ∈ TzP,
∇vη =

(
dηa(v)− ωb

a(v)ηb

)
βa + dηi(v)γ

i. Moreover, because of the torsion
free conditions

(10) dβa + ωa
b ∧ βb = 0,

we have the following expression for the exterior differential of η,

(11) dη = dηa ∧ βa − ηcω
c
b ∧ βb + dηi ∧ γi + ηidγ

i.
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Hence in particular the βa ∧ βb component of the curvature dη + η ∧ η is

F ab = (dηb − ηcω
c
b)(ea)− (dηa − ηcω

c
a)(eb) + [ηa,ηb](12)

= (∇eaη)b − (∇ebη)a + [ηa,ηb].

In the decomposition η = ηaβ
a + ηiγ

i of some η ∈ Γ(P, g⊗ T ∗P), con-
ditions (3) and (5) can be expressed as follows. The normalization condition
means that ηi = ti, so that (3) reads

(13) η = ηaβ
a + tiγ

i

and, since Lρξ
βa = 0, ∀ξ ∈ g, the equivariance condition (5) reads

(14) dηa(ρi) + [ti,ηa] = 0, ∀i = 1, . . . , r.

Let us denote by ckij the constants such that

(15) [ti, tj ] = ckijtk,

where the summation over repeated indices is assumed. Then from the
decomposition g−1dg = tiγ

i and the zero curvature condition d(g−1dg) +
(g−1dg) ∧ (g−1dg) = 0 we deduce the relation

(16) dγi +
1

2
cijkγ

j ∧ γk = 0.

To conclude, we define β := β1 ∧ · · · ∧ βn and γ = γ1 ∧ · · · ∧ γr and, for
1 ≤ a, b ≤ n, 1 ≤ i, j ≤ r, we set (the symbol denotes the interior prod-
uct)

βa := ea β, βab := eb (ea β), γi := ρi γ, γij := ρj (ρj γ).

We note the following useful relations

(17) βa ∧ βb = δabβ, βa ∧ βb ∧ βcd = (δac δ
b
d − δadδ

b
c)β

and similarly

(18) γi ∧ γj = δijγ, γi ∧ γj ∧ γkl = (δikδ
j
l − δilδ

j
k)γ.

The following result will be helpful later on. We recall that, if ξ ∈ g, then
adξ : g −→ g is the linear map defined by adξ(η) = [ξ, η], ∀η ∈ g.
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Lemma 1.1. The following identities holds

(i) For any i = 1, . . . , r,

(19) dγi + tr(adti)γ = 0.

(ii) For any a, b = 1, . . . , n,

(20) dβa = ωb
a ∧ βb,

(21) dβab = ωc
a ∧ βcb + ωc

b ∧ ωac.

Proof. The proof of (19) follows from the following computation, where we
assume a summation over each repeated index and we use (16) and (18),

dγi = dγj ∧ γij = −1

2
cjklγ

k ∧ γl ∧ γij = −cjijγ = −tr(adti)γ;

(20) and (21) are obtained by similar computations, by using (10) and ωa
b +

ωb
a = 0:

dβa = dβb ∧ βab = −ωb
c ∧ βc ∧ βab = −ωb

b ∧ βa + ωb
a ∧ βb,

dβab = dβc ∧ βabc = −ωc
d ∧ βd ∧ βabc = −ωc

c ∧ βac + ωc
b ∧ βac − ωc

a ∧ βbc.

�

Identity (19) has the following straightforward consequence. We recall
that a Lie algebra is unimodular iff tr(adξ) = 0, ∀ξ ∈ g. Note that U(1) and
all SU(k)’s are unimodular.

Corollary 1.1. Assume that g is unimodular, then dγi = 0, ∀i = 1, . . . , r.

2. Towards the multisymplectic formulation

2.1. The multisymplectic framework

In order to set the multisymplectic framework it is simpler to start with
an abstract general description: let Z be a m-dimensional manifold and
consider the fiber bundle ΛmT ∗Z of m-forms over Z. By using the fibra-
tion πZ : ΛmT ∗Z −→ Z we define a canonical m-form θZ on ΛmT ∗Z by
θZ(Z,�)(X1, . . . , Xm) := �(π∗ZX1, . . . , π

∗
ZXm), ∀Z ∈ Z, ∀� ∈ ΛmT ∗ZZ,
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∀X1, . . . , Xm ∈ T(Z,�)(Λ
mT ∗Z). If Z is itself fibered over a manifold X by

a projection map πX : Z −→ X , this defines in each tangent space TZZ a
vertical subspace VZ which is the kernel of π∗X . We then define the subbundle
of so-called (m− 1)-horizontal forms (see [9])

Λm
1 T ∗Z := {(�,Z) ∈ ΛmT ∗Z; ∀v1, v2 ∈ VZ , v1 ∧ v2 � = 0}.

This corresponds to assuming that each m-multilinear map � ∈ Λm
1 T ∗ZZ

has a degree at most one in the vertical coordinates of vectors in TZZ.
Then Λm

1 T ∗Z is the geometrical framework for the so-called ‘De Donder–
Weyl’ theory for sections of Z over X which are critical points of a first
order variational problem [15]. We will denote by θZ1 the restriction of θZ

to Λm
1 T ∗Z.
We use this setting for m = n+ r, Z = g⊗ T ∗P and X = P. Coordinate

functions on Λm
1 T ∗(g⊗ T ∗P) are (xμ, g) for a point z ∈ P, (ηia, ηij) for the

components of η ∈ g⊗ T ∗z P in the basis (ti ⊗ βa, ti ⊗ γj) and (e, pabi , pjbi , paji ,

pjki ) for the components of � ∈ Λm
1 T ∗(z,η)(g⊗ T ∗P) in the basis (β ∧ γ, dηia ∧

βb ∧ γ, dηij ∧ βb ∧ γ, (−1)ndηia ∧ β ∧ γj , (−1)ndηij ∧ β ∧ γk). The Poincaré–

Cartan form θZ1 then reads

θZ1 = eβ ∧ γ + pabi dηia ∧ βb ∧ γ + pjbi dηij ∧ βb ∧ γ(22)

+ (−1)npaji dηia ∧ β ∧ γj + (−1)npjki dηij ∧ β ∧ γk.

Since we are interested in normalized sections of g⊗ T ∗P, i.e. satisfy-
ing (3), we must actually work on Λn+r

1 T ∗(g⊗n T ∗P). The latter space is
a bundle over g⊗n T ∗P and can actually be constructed through a reduc-
tion of Λn+r

1 T ∗(g⊗ T ∗P): we restrict ourself on (πg⊗T ∗P)−1(g⊗n T ∗P) and
for any (z, η) ∈ g⊗n T ∗P, we replace the fiber Λn+r

1 T ∗(z,η)(g⊗ T ∗P) by its

quotient by the annihilator of T(z,η)(g⊗n T ∗P), i.e. the space of forms �
in Λn+r

1 T ∗(z,η)(g⊗ T ∗P) such that v � = 0, ∀v ∈ T(z,η)(g⊗n T ∗P). This

amounts to impose (see also (13))

(23) ηij = δij

and to assume that (ẽ, p̃abi , p̃aji , p̃jbi , p̃jki ) ∼ (e, pabi , paji , pjbi , pjki ) whenever (ẽ,

p̃abi , p̃aji ) = (e, pabi , paji ), so that we may forget about coordinates (pjbi , pjki ).
Denoting simply by θ the restriction to Λn+r

1 T ∗(g⊗n T ∗P) of θZ1 given in
(22), this leads to the simplification

(24) θ = eβ ∧ γ + pabi dηia ∧ βb ∧ γ + (−1)npaji dηia ∧ β ∧ γj .
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2.2. The Legendre correspondence

A Lagrangian for a gauge theory is a real valued function L defined on
the bundle T ∗P ⊗g⊗nT ∗P (T (g⊗n T ∗P)/TP) over g⊗n T ∗P, whose fiber at
(z, η) ∈ g⊗n T ∗P is the space of linear maps λ : TzP −→ T(z,η)(g⊗n T ∗P)
such that d(πP)(z,η) ◦ λ = IdTzP (this vector space can be canonically iden-
tified with T ∗Pz ⊗ (T(z,η)(g⊗n T ∗P)/TzP)). We define coordinates (x, g, ηia,
λi
a;b, λ

i
a;j) on T ∗P ⊗g⊗nT ∗P (T (g⊗n T ∗P)/TP) in a natural way from the

ones on g⊗ T ∗P: for any (z, η, λ) ∈ T ∗P ⊗g⊗nT ∗P (T (g⊗n T ∗P)/TP), take
a section η ∈ Γ(P, g⊗n T ∗P) such that η(z) = η and (viewing η as a map
from P to the total space of the bundle g⊗n T ∗P) the differential of η
at z is λ. Then λ has the coordinates λi

a;b(z, η, λ) := (∇ebη
i)a = (d(ηi

a)z −
ηi
cω

c
a)(eb) and λi

a;j(z, η, λ) := (∇ρj
ηi)a = d(ηi

a)z(ρj).
However we have to take into account the following important fact. The

problem we start with concerns gauge fields on a space-time manifold M
but not all normalized g-valued 1-forms η on P, so that we actually need to
compute the Legendre correspondence along equivariant 1-forms η. In view
of (14) this means that we must impose the extra constraint on λ

(25) λi
a;j = [ηa, tj ]

i.

We denote by T ∗P ⊗g⊗nT ∗P (T (g⊗n T ∗P)/TP)g the submanifold of points
(z, η, λ) ∈ T ∗P ⊗g⊗nT ∗P (T (g⊗n T ∗P)/TP) which satisfy Condition (25).

The standard Yang–Mills Lagrangian in (1) has the following expression
by using the moving frame (ea, ρi):

(26) L(z, η, λ) = −1

4
gacgbdhijF

i
abF

j
cd,

where (see (12))

F i
ab = λi

b;a − λi
a;b + [ηa, ηb]

i.

Such a Lagrangian induces a correspondence between T ∗P ⊗g⊗nT ∗P (T (g⊗n

T ∗P)/TP)g and a submanifold of Λn+r
1 T ∗(g⊗n T ∗P) as follows (see [15]).

Assume as in the previous section that the coframe (βa, γi) is orthonor-
mal, then the volume element dvolg in (1) is equal to β ∧ γ. We define the
function W on (T ∗P ⊗g⊗nT ∗P (T (g⊗n T ∗P)/TP)g)×g⊗nT ∗P Λn+r

1 T ∗(g⊗n

T ∗P) (sorry for the notation) by:

W (z, η, λ,�) := θ(z,η,�)(λ(e1), . . . , λ(en), λ(ρ1), . . . , λ(ρr))− L(z, η, λ)
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and we say that (z, η, λ) is in correspondence with (z, η,�) if ∂W
∂λ (z, η, λ,�)

= 0. (This condition amounts to say that (z, η, λ,�) is a critical point of
the restriction of W to the fiber of the map (z, η, λ,�) �−→ (z, η,�).) If so
the value of W at (z, η, λ,�) defines a function H of (z, η,�), which is the
Hamiltonian.

We now need to compute θ(z,η,�)(λ(e1), . . . , λ(en), λ(ρ1), . . . , λ(ρr)). In
order to avoid a messy computation we use the following trick: choose the
right coframe (as we learned from Cartan). Here given some (z, η, λ,�), we
replace the coframe (βa, γi, dηia) by (βa, γi, δηia) in the expression of θ(z,η,�),
where

δηia = dηia − λi
a;bβ

b − ηicω
c
a − λi

a;jγ
j ,

so that

(27) ∀v ∈ TzP, δηia(λ(v)) = 0.

Hence by using (25),

(28) dηia = δηia + λi
a;bβ

b + ηicω
c
a + [ηa, tj ]

iγj

This gives us by using (17) and (18)

θ = eβ ∧ γ + pabi (δηia + λi
a;cβ

c + ηicω
c
a + [ηa, tk]

iγk) ∧ βb ∧ γ

+ (−1)npaji (δηia + λi
a;cβ

c + ηicω
c
a + [ηa, tk]

iγk) ∧ β ∧ γj

and, noting Γc
ab := ωc

b(ea) (so that ωc
b = Γc

abβ
a),

= eβ ∧ γ + pabi (λi
a;b + ηicΓ

c
ba)β ∧ γ + paji [ηa, tj ]

iβ ∧ γ

+ pabi δηia ∧ βb ∧ γ + (−1)npaji δηia ∧ β ∧ γj .

Hence by using (27) it follows that

θ(z,η,�)(λ(e1), . . . , λ(en), λ(ρ1), . . . , λ(ρr))

= e+ pabi (λi
a;b + ηicΓ

c
ba) + paji [ηa, tk]

i

and thus

W (z, η, λ,�) = e+ pabi (λi
a;b + ηicΓ

c
ba) + paji [ηa, tj ]

i − L(z, η, λ).

We hence find immediately that the condition ∂W
∂λ = 0 reads

(29) pabi =
∂L

∂λi
a;b

(z, η, λ).
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We apply this relation with the standard Yang–Mills action (26) and find

(30) pabi = hijg
acgbdF j

cd = hijg
acgbd

(
λj
d;c − λj

c;d + [ηc, ηd]
j
)
.

We observe that � is subject to the constraints

(31) pabi + pbai = 0.

We thus define the image of the Legendre correspondence:

N := {(z, η,�) ∈ Λn+r
1 T ∗(g⊗n T ∗P); pabi + pbai = 0}.

We still denote by θ the restriction of θ on N and set ω := dθ, (N , ω) is
the multisymplectic manifold we will work with. Assuming (30) we deduce
from (26) that L(z, η, λ) = −1

4h
ijgacgbdp

ab
i pcdj and, by using (31),

pabi (λi
a;b + ηicΓ

c
ba) = −

1

2
pabi (λi

b;a + ηicΓ
c
ab − λi

a;b − ηicΓ
c
ba)

= −1

2
pabi (λi

b;a − λi
a;b + [ηa, ηb]

i)

− 1

2
pabi ηic(Γ

c
ab − Γc

ba) +
1

2
pabi [ηa, ηb]

i

= −1

2
pabi F i

ab −
1

2
pabi ηic(Γ

c
ab − Γc

ba) +
1

2
pabi [ηa, ηb]

i

= −1

2
pabi hijgacgbdp

bd
i −

1

2
pabi ηic(Γ

c
ab − Γc

ba) +
1

2
pabi [ηa, ηb]

i.

We hence deduce the expression for the Hamiltonian function H

H(z, η,�) = e− 1

4
hijgacgbdp

ab
i pcdj −

1

2
pabi ηic(Γ

c
ab − Γc

ba)(32)

+
1

2
pabi [ηa, ηb]

i + paji [ηa, tj ]
i.

2.3. Change of coordinates

We will change the coordinates on N in order to simplify the expression of
the Hamiltonian function and in such a way that θ depends on η uniquely
through the quantity dη + η ∧ η. We set

ε := e− 1

2
pabi ηic(Γ

c
ab − Γc

ba) +
1

2
pabi [ηa, ηb]

i + paji [ηa, tj ]
i.
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We note then that

(33) H(z, η,�) = ε− 1

4
hijgacgbdp

ab
i pcdj .

Moreover, from (24),

θ = εβ ∧ γ + pabi

(
dηia ∧ βb ∧ γ +

1

2
ηic(Γ

c
ab − Γc

ba)−
1

2
[ηa, ηb]

iβ ∧ γ

)
(34)

+ paji
(
(−1)ndηia ∧ β ∧ γj − [ηa, tj ]

iβ ∧ γ
)
.

In order to transform this expression, we need some preliminaries. First
by setting ηa = tiη

i
a and η = ηaβ

a + tiγi (the canonical g-valued 1-form on
g⊗n T ∗P), we get by using (11):

dη = dηa ∧ βa − ηcω
c
b ∧ βb − 1

2
[tj , tk]γ

j ∧ γk.

Since on the other hand

η ∧ η =
1

2
[ηa, ηb]β

a ∧ βb +
1

2
[ti, tj ]γ

i ∧ γj + [ηa, ti]β
a ∧ γi,

we deduce that

(35) dη + η ∧ η = dηa ∧ βa +

(
1

2
[ηa, ηb]− ηcΓ

c
ab

)
βa ∧ βb + [ηa, ti]β

a ∧ γi.

This implies by using (17) that

(dη + η ∧ η) ∧ βab ∧ γ(36)

= (dηb ∧ βa − dηa ∧ βb − ηc(Γ
c
ab − Γc

ba)β + [ηa, ηb]β) ∧ γ

and by using (18):

(37) (dη + η ∧ η) ∧ βa ∧ γj = (−1)n ((−1)ndηa ∧ β ∧ γj + [tj , ηa]β ∧ γ) .

Hence we deduce from (36) and (31) the second r.h.s. term of (34):

pabi

(
dηia ∧ βb +

1

2
ηic(Γ

c
ab − Γc

ba)β −
1

2
[ηa, ηb]

iβ

)
∧ γ(38)

= −1

2
pabi (dη + η ∧ η)i ∧ βab ∧ γ
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and from (37) the last r.h.s. term of (34):

paji
(
(−1)ndηia ∧ β ∧ γj − [ηa, tj ]

iβ ∧ γ
)

(39)

= (−1)npaji (dη + η ∧ η)i ∧ βa ∧ γj .

We thus deduce by summarizing (34), (38) and (39):

Proposition 2.1. The Poincaré–Cartan form θ on N reads:

(40) θ = εβ ∧ γ + pi ∧ (dη + η ∧ η)i,

where

(41) pi := −1

2
pabi βab ∧ γ + (−1)npaji βa ∧ γj .

An alternative expression is θ = εβ ∧ γ + p ∧ (dη + η ∧ η), where in the
r.h.s a duality pairing between the g∗-valued coefficients of p and the g-
valued coefficients of dη + η ∧ η is assumed.

2.4. Re-interpretation of the previous result

Let us rephrase the previous result. We see a posteriori that the multisym-
plectic manifold (N , ω), where ω = dθ and θ is given by (40) and (41), has
a simple alternative construction. We consider the pair of vector bundles
g⊗n T ∗P and g∗ ⊗ Λn+r−2T ∗P over P (where g∗ is the dual vector space of
g) and their fibered direct sum over P with R:

Ñ := R⊕P (g⊗n T ∗P)⊕P
(
g∗ ⊗ Λn+r−2T ∗P) .

The base P is equipped with the volume form β ∧ γ and ε is a coordinate on
R. Denote by (pab, paj , pjk) the g∗-valued coordinates on the fibers of g∗ ⊗
Λn+r−2T ∗P in the basis (−βab ∧ γ, (−1)nβa ∧ γj , β ∧ γjk). The bundle g⊗n

T ∗P is equipped with the canonical g-valued 1-form η (which reads ηaβ
a +

tiγ
i in g-valued coordinates) and g∗ ⊗ Λn+r−2T ∗P with the canonical g∗-

valued (n+ r − 2)-form p (which reads −1
2p

abβab ∧ γ + (−1)npajβa ∧ γj +
1
2p

jkβ ∧ γjk in g∗-valued coordinates). We also define the vector subbun-
dles g∗ ⊗ Λn+r−2

0 T ∗P := {(x, p ∈ g∗ ⊗ Λn+r−2T ∗P; ∀a, βa ∧ p = 0} and g∗ ⊗
Λn+r−2
1 T ∗P := {(x, p ∈ g∗ ⊗ Λn+r−2T ∗P; ∀a, b, βa ∧ βb ∧ p = 0}. In coordi-

nates g∗ ⊗ Λn+r−2
0 T ∗P is defined by the equations pab = paj = 0 and g∗ ⊗
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Λn+r−2
1 T ∗P by pab = 0. We have the obvious inclusions

g∗ ⊗ Λn+r−2
0 T ∗P ⊂ g∗ ⊗ Λn+r−2

1 T ∗P ⊂ g∗ ⊗ Λn+r−2T ∗P.

By setting θ := εβ ∧ γ + pi ∧ (dη + η ∧ η)i, we obtain the same expression
as (40), because, in view of (35), all terms involving pjki cancel. Hence (N , θ)
is recovered by quotienting out g∗ ⊗ Λn+r−2T ∗P by g∗ ⊗ Λn+r−2

0 T ∗P.
In this setting the Hamiltonian function H has also an intrinsic char-

acterization: up to a factor −1
4 , it is the squared norm of all quantities pab

such that pabβ ∧ γ + βa ∧ βb ∧ p = 0.

3. The HVDW equations

The multisymplectic form ω = dθ on N is

(42) ω = dε ∧ β ∧ γ + dpi ∧ (dη + η ∧ η)i + (dη ∧ η − η ∧ dη)i ∧ pi.

3.1. What do we want to do and how to proceed?

The geometrical expression of the HVDW equations in (N , ω) for the Hamil-
tonian function H consists in a condition on an oriented submanifold Γ of N
of dimension n+ r (representing the graph of a solution), which says that, for
any point m of coordinates (x, g, ηia, p

ab
i , paji ) of Γ, if (X1, . . . , Xn, Y1, . . . , Yr)

is a basis of the tangent space to Γ at m such that β ∧ γ(X1, . . . , Xn, Y1, . . . ,
Yr) = 1, then

(43) (X1 ∧ · · · ∧Xn ∧ Y1 ∧ · · · ∧ Yr) ω = (−1)n+rdH

(see [15]). However for the Yang–Mills problem we started from a variational
problem on equivariant g-valued 1-forms. But is is not clear a priori whether
we should impose a similar constraint in the Hamiltonian version. In the
following we will derive the HVDW equations in the most general case,
i.e. without assuming any equivariance hypothesis a priori. The HVDW
equations with an equivariance constraint will be simply obtained by adding
this extra constraint to the dynamical equations. We will see however that
both approaches work and that, under some reasonable hypotheses, they
lead to the Yang–Mills system.

Any fixed (n+ r)-dimensional submanifold Γ which is a graph can be
represented as the image of an unique embedding of P in R⊕P (g⊗n T ∗P)⊕P(
g∗ ⊗ Λn+r−2T ∗P) of the form u : z �−→ (z, ε(z),η(z),p(z)). It suffices to
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estimate the l.h.s. of (43) when replacing (X1, . . . , Xn, Y1, . . . , Yr) by (u∗e1,
. . . ,u∗en,u∗ρ1, . . . ,u∗ρr). However a direct computation of this quantity
can be very messy. So again we use the same trick as for the Legendre trans-
form and, given some point m of Γ of coordinates (z, ε(z),η(z),p(z)), we
replace the coframe (βa, γi, dε, dηia, dp

ab
i , dpaji ) at m by (βa, γi, δε, δηia, δp

ab
i ,

δpaji ), where

(44)

δε := dε− dε(ea)β
a − dε(ρj)γ

i

δηia := dηia − dηi
a(eb)β

b − dηi
a(ρj)γ

j

δpabi := dpabi − dpab
i (ec)β

c − dpab
i (ρj)γ

j

δpaji := dpaji − dpaj
i (eb)β

b − dpaj
i (ρj)γ

j ,

It follows in particular that

(45) δε ◦ duz = δηia ◦ duz = δpabi ◦ duz = δpaji ◦ duz = 0.

It will be useful to introduce the covariant derivatives at m ε;a := ∇eaε =
dε(ea), ε;i := ∇ρi

ε = dε(ρi), ηi
b;a := (∇eaη

i)b = (dηi
b − ηi

cω
c
b)(ea), pab

i;c :=

(∇ecpi)
ab = (dpab

i + pdb
i ωa

d + pad
i ωb

d)(ec), etc., so that:

(46)

dε = δε+ ε;aβ
a + ε;iγ

i

dηia = δηia + ηi
a;bβ

b + ηi
cω

c
a + ηi

a;jγ
j

dpabi = δpabi + pab
i;cβ

c − pcb
i ω

a
c − pac

i ωb
c + pab

i;jγ
j

dpaji = δpaji + paj
i;bβ

b − pcj
i ωa

c + paj
i;jγ

j ,

where we assume implicitly that the symbols in bold characters denotes
components of u at z such that u(z) = m. In the following we evaluate
separately the terms in (42) in view of finding the HVDW equations.

3.2. The computation of dpi ∧ (dη + η ∧ η)i

To enlight the notations we drop here the upper indices in η, coefficients
are thus g-valued. Substituting the expression for dηa in (46) and using (10)
and (16) we obtain

dη = dηa ∧ βa + ηadβ
a + tidγ

i

=
(
δηa + ηa;bβ

b + ηcω
c
a + ηa;jγ

j
)
∧ βa − ηaω

a
b ∧ βb − 1

2
[ti, tj ]γ

i ∧ γj
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hence

(47) dη = δηa ∧ βa +
1

2
(ηb;a − ηa;b)β

a ∧ βb − ηa;jβ
a ∧ γj − 1

2
[ti, tj ]γ

i ∧ γj .

On the other hand

η ∧ η = (ηaβ
a + tiγ

i) ∧ (ηbβ
b + tjγ

j)

=
1

2
[ηa,ηb]β

a ∧ βb + [ηa, tj ]β
a ∧ γj +

1

2
[ti, tj ]γ

i ∧ γj .

Hence

dη + η ∧ η = δηa ∧ βa +
1

2
(ηb;a − ηa;b + [ηa,ηb])β

a ∧ βb(48)

− (ηa;j − [ηa, tj ])β
a ∧ γj .

On the other hand we need also to compute dp. We drop the lower indices,
so that coefficients are now g∗-valued. This quantity splits in two terms:

(49) dp = −1

2
d(pabβab ∧ γ) + (−1)nd(paiβa ∧ γi).

Substituting the expression for dpab given by (46) and using (21) we obtain
for the first r.h.s. term of (49)

d(pabβab ∧ γ) = dpab ∧ βab ∧ γ + pabωc
a ∧ βcb ∧ γ + pabωc

b ∧ βac ∧ γ

= (δpab + pab
;c β

c − pcbωa
c − pacωb

c + pab
;i γ

i) ∧ βab ∧ γ

+ (pcbωa
c ∧ βab + pacωb

c ∧ βab) ∧ γ

= δpab ∧ βab ∧ γ + (pab
;b βa − pab

;aβb) ∧ γ

and for the second r.h.s. term of (49) we substitute the expression for dpai

given by (46) and we use (20) and (19)

d(paiβa ∧ γi) = dpai ∧ βa ∧ γi + paiωb
a ∧ βb ∧ γi + (−1)npaiβa ∧ tr(adti)γ

= (δpai + pai
;b β

b − pbiωa
b + pai

;j γ
j) ∧ βa ∧ γi

+ pbiωa
b ∧ βa ∧ γi + (−1)ntr(adti)paiβa ∧ γ

= δpai ∧ βa ∧ γi + pai
;aβ ∧ γi − (−1)n(pai

;i − tr(adti)p
ai)βa ∧ γ.

Hence

dp = −1

2
δpab ∧ βab ∧ γ − pab

;b βa ∧ γ

+ (−1)nδpai ∧ βa ∧ γi + (−1)npai
;aβ ∧ γi − (pai

;i − tr(adti)p
ai)βa ∧ γ
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or

dp = −1

2
δpab ∧ βab ∧ γ + (−1)nδpai ∧ βa ∧ γi(50)

− (pab
;b + pai

;i − tr(adti)p
ai)βa ∧ γ + (−1)npai

;aβ ∧ γi.

The last step consists in computing the product dpi ∧ (dη + η ∧ η)i. For that
purpose we split dp = Π1 +Π2 +Π3 +Π4, where

Π1 := −1

2
δpab ∧ βab ∧ γ; Π2 := (−1)nδpai ∧ βa ∧ γi

Π3 := −(pab
;b + pai

;i − tr(adti)p
ai)βa ∧ γ; Π4 := (−1)npai

;aβ ∧ γi.

Similarly we split dη + η ∧ η = H1 +H2 +H3, where

H1 := δηa ∧ βa; H2 :=
1

2
(ηb;a − ηa;b + [ηa,ηb])β

a ∧ βb

H3 := −(ηa;j − [ηa, tj ])β
a ∧ γj .

All products ΠJ ∧HK vanish, except the following ones:

Π1 ∧H1 =
1

2
(δηib ∧ δpabi ∧ βa − δηia ∧ δpabi ∧ βb) ∧ γ,

Π2 ∧H1 = −(−1)nδηia ∧ δpaji ∧ β ∧ γj ,

Π3 ∧H1 = −(pab
i;b + paj

i;j − tr(adtj )p
aj)δηia ∧ β ∧ γ,

Π1 ∧H2 = −1

2
(ηb;a − ηa;b + [ηa,ηb])

iδpabi ∧ β ∧ γ,

Π2 ∧H3 = (ηa;j + [tj ,ηa])
iδpaji ∧ β ∧ γ.

Hence using (31)

dpi ∧ (dη + η ∧ η)i = δηib ∧ δpabi ∧ βa ∧ γ − (−1)nδηia ∧ δpaji ∧ β ∧ γj(51)

−
[
(pab

i;b + paj
i;j − tr(adtj )p

aj)δηia

+
1

2
(ηb;a − ηa;b + [ηa,ηb])

iδpabi

− (ηa;j + [tj ,ηa])
iδpaji

]
∧ β ∧ γ.
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3.3. The computation of (dη ∧ η − η ∧ dη)i ∧ pi

In the following we note [dη ∧ η] := dη ∧ η − η ∧ dη. From (47) we know that:

(52) dη = (δηa + ηa;bβ
b + ηa;jγ

j) ∧ βa − 1

2
[ti, tj ]γ

i ∧ γj .

On the other hand, we have [dη ∧ η] = [dη,ηa] ∧ βa + [dη, tj ] ∧ γj and thus

[dη ∧ η]i ∧ pi

=
(
[dη,ηb]

i ∧ βb + [dη, tj ]
i ∧ γj

)
∧
(
−1

2
pac
i βac ∧ γ + (−1)npak

i βa ∧ γk

)
= −1

2
[dη,ηb]

i ∧ pac
i (δbcβa − δbaβc) ∧ γ + (−1)n[dη,ηb]

i ∧ pak
i δbaβ ∧ γk

+ (−1)n[dη, tj ]i ∧ pak
i (−1)n−1δjkβa ∧ γ,

which gives us

[dη ∧ η]i ∧ pi = −[dη,ηb]
i ∧ pab

i βa ∧ γ + (−1)n[dη,ηa]
i ∧ pak

i β ∧ γk(53)

− [dη, tj ]
i ∧ paj

i βa ∧ γ.

The r.h.s. of (53) is the sum of the three quantities M1 := −[dη,ηb]
i ∧

pab
i βa ∧ γ, M2 := (−1)n[dη,ηa]

i ∧ pak
i β ∧ γk and M3 := −[dη, tj ]i ∧ paj

i βa ∧
γ. When substituting the value of dη given by (52) in (53), we see that M2

vanishes and we just have

(54) [dη ∧ η]i ∧ pi = pab
i [ηb, δηa]

i ∧ β ∧ γ + paj
i [tj , δηa]

i ∧ β ∧ γ.

It is here useful to note that the summation over i of the quantities pab
i [ηb,

δηa]
i is a duality product between pab ∈ g∗ and [ηb, δηa] = adηb

(δηa) ∈ g. It
thus coincides with the duality product between ad∗ηb

(pab) ∈ g∗ and δηa ∈ g,

i.e. with
(
ad∗ηb

(pab)
)
i
δηia, where ad

∗
ηb

is the adjoint of adηb
. Similarly we have

paj
i [tj , δηa]

i =
(
ad∗tj (p

aj)
)
i
δηia. Hence (54) reads

(55) [dη ∧ η]i ∧ pi =
((

ad∗ηb

(
pab

))
i
+
(
ad∗tj

(
paj

))
i

)
δηia ∧ β ∧ γ.
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3.4. Conclusion

Collecting (46), (51) and (55) and substituting in (42), we obtain

ω = δηib ∧ δpabi ∧ βa ∧ γ − (−1)nδηia ∧ δpaji ∧ β ∧ γj + δε ∧ β ∧ γ(56)

−
(
pab
i;b −

(
ad∗ηb

(pab)
)
i
+ paj

i;j −
(
ad∗tj (p

aj)
)
i

− tr(adtj )p
aj
i

)
δηia ∧ β ∧ γ

− 1

2

(
ηb;a − ηa;b + [ηa,ηb]

)i
δpabi ∧ β ∧ γ

+
(
ηa;j + [tj ,ηa]

)i
δpaji ∧ β ∧ γ.

We can now come back to the considerations of Section 3.1 and write Equa-
tion (43) with (X1, . . . , Xn, Y1, . . . , Yr) equal to (u∗e1, . . . ,u∗en,u∗ρ1, . . . ,
u∗ρr). Writing U = X1 ∧ · · · ∧Xn ∧ Y1 ∧ · · · ∧ Yr for short, we deduce from
(45) that, up to the factor (−1)n+r, the l.h.s. of (43) reduces to:

(−1)n+rU ω = δε− 1

2

(
ηb;a − ηa;b + [ηa,ηb]

)i
δpabi(57)

+ (ηa;j + [tj ,ηa])
iδpaji −

(
pab
i;b −

(
ad∗ηb

(pab)
)
i

+ paj
i;j −

(
ad∗tj (p

aj)
)
i
− tr(adtj )p

aj
i

)
δηia.

We observe that the first line in the r.h.s. of (56) does not contribute because
it contains terms quadratic in δ(·).

On the other hand we also need to estimate dH. In the following we use
the metric gab and its inverse gab to respectively lower and lift indices. We
set e.g. pab := gacgbdp

cd, etc.

dH = dε− 1

2
hijpabjdp

ab
i

= δε− 1

2
hijpabjδp

ab
i +

(
ε;e − 1

2
hijpabjp

ab
i;e

)
βe +

(
ε;k − 1

2
hijpabjp

ab
i;k

)
γk

= δε− 1

2
hijpabjδp

ab
i +H ;eβ

e +H ;kγ
k,

where we wrote H := ε− 1
4h

ijpabjp
ab
i for short.
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Let us pose T := (−1)n+rU ω − dH, so that (43) reads T = 0. The
previous computation shows that

T =−H ;aβ
a −H ;iγ

i(58)

− 1

2

(
ηi
b;a − ηi

a;b + [ηa,ηb]
i − hijpabj

)
δpabi

+
(
ηi
a;j + [tj ,ηa]

i
)
δpaji

−
(
pab
i;b −

(
ad∗ηb

(pab)
)
i
+ paj

i;j −
(
ad∗tj (p

aj)
)
i
− tr(adtj )p

aj
i

)
δηia.

4. Classical solutions of the HVDW equations

We study here the solutions of the HVDW system of equations. We first
note that the vanishing of the coefficients of βa and γi in (58) means that
the solution Γ is contained in a level set of H, a general feature in multi-
symplectic geometry. In the following we look more carefully at the other
equations.

As a preliminary we introduce some notations. We denote by h∗ : g −→
g∗ the vector isomorphisme s.t. (h∗ξ)(ζ) = hijξ

iζj , ∀ξ, ζ ∈ g and by h∗ :
g∗ −→ g the inverse mapping. Note that, since the metric h is invariant
by the adjoint action of G on g, the following relations hold

(59) h∗[ξ, ζ] = −ad∗ξ(h∗ζ) and [ξ, h∗�] = −h∗(ad∗ξ�), ∀ξ, ζ ∈ g, ∀� ∈ g∗

4.1. The HVDW equations with the equivariance assumption

We consider here a system of HVDW equations on fields which are assumed
to be equivariant a priori. The equivariance condition on η automatically
implies that the coefficients of δpaji in (58) vanishes. Hence it turns out that

the field paji is unuseful and that one can set it to be equal to zero a priori.
This leads to the simplification

T =−H ;aβ
a −H ;iγ

i − 1

2

(
ηi
b;a − ηi

a;b + [ηa,ηb]
i − hijpabj

)
δpab

i

−
(
pab
i;b −

(
ad∗ηb

(pab)
)
i

)
δηi

a.

Hence equation T = 0 is equivalent to the condition that H is constant along
Γ and that u satisfies the system of equations{

ηb;a − ηa;b + [ηa,ηb] = h∗pab

pab
;b − ad∗ηb

(pab) = 0.
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By (59) one sees that the second equation is equivalent to
(
h∗pab

)
;b
+ [ηb,

h∗pab] = 0, i.e. the Yang–Mills equation.
We note that the first equation implies also

pab
;i = h∗

(
ηb;a − ηa;b + [ηa,ηb]

)
;i
= −h∗

(
adti

(
ηb;a − ηa;b + [ηa,ηb]

))
= ad∗ti

(
h∗

(
ηb;a − ηa;b + [ηa,ηb]

))
= ad∗tip

ab,

where we used first (14), then (59). Hence this implies that pab is equivariant
(we may assume it a priori or not, it does not change the result).

4.2. The HVDW equations without assuming the
equivariance a priori

Beside the condition that H is constant along a solution Γ, the equation
T = 0 gives us the system:

(60)

⎧⎪⎨⎪⎩
ηb;a − ηa;b + [ηa,ηb] = h∗pab

ηa;j + [tj ,ηa] = 0

pab
;b − ad∗ηb

(pab) + paj
;j − ad∗tj (p

aj)− tr(adtj )p
aj = 0.

(i) The first equation in (60) is the same as in the previous paragraph.

(ii) The second equation in (60) is just the equivariance condition (14) for
the 1-form η: here this condition is not assumed a priori but is obtained
as one of the dynamical equations ! This is due to the fact that the
fields paj

i plays the role of a Lagrange multiplier for this constraint.
This condition reads also:

0 = ηa;j + [tj ,ηa] = g−1
(
gηag

−1)
;j
g.

It is equivalent to say that there exists g-valued functions Aa, for
a = 1, . . . , n, which depends only on x (and not on g) such that

ηa(x, g) = g−1Aa(x)g, ∀x ∈M, ∀g ∈ G.

Plugging this expression in the first equation in System (60) it has the
consequence that

h∗pab = g−1Φabg,
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where Φab := Ab;a −Aa;b + [Aa,Ab] does not depend on g. We then
observe that

(61)
(
h∗pab

)
;b
+ [ηb, h

∗pab] = g−1
(
Φab

;b + [Ab,Φ
ab]

)
g.

(iii) The third equation in (60) can be translated by using (59) to the form:

(62)
(
h∗pab

)
;b
+ [ηb, h

∗pab] +
(
h∗paj

)
;j
+ [tj , h

∗paj ]− tr(adtj )h
∗paj = 0,

Let us set Φaj := g(h∗paj)g−1, so that

(63)
(
h∗paj

)
;j
+ [tj , h

∗paj ] = g−1Φaj
;j g.

In view of (61) and (63), (62) is equivalent to

(64) Φab
;b + [Ab,Φ

ab] +Φaj
;j − tr(adtj )Φ

aj = 0.

We then have the result:

Theorem 4.1. Assume that g is unimodular and that G is compact, then
for any solution to (60), the 1-form η is a solution of the classical Yang–
Mills equations.

Proof. The assumption that g is unimodular leads to the simplification of
(64):

Φab
;b + [Ab,Φ

ab] = −Φaj
;j .

We observe that the left hand side of this relation does not depend on g ∈ G
(because Aa and hence Φab are constant along the fibers of P). Hence the
same is true for Φaj

;j .
For any x ∈M, consider the restriction of the g-valued (r − 1)-form

Φajγj on the fiber Px. Corollary 1.1 implies that

d
(
Φajγj |Px

)
= dΦaj ∧ γj |Px

= Φaj
;j γ|Px

.

Hence, since the fiber Px is compact and Φaj
;j is constant on Px,

Φaj
;j Vol(Px) = Φaj

;j

∫
Px

γ =

∫
Px

Φaj
;j γ =

∫
Px

d
(
Φajγj

)
= 0,
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thus Φaj
;j = 0. Hence Equation (64) gives us

Φab
;b + [Ab,Φ

ab] = 0,

i.e. the Yang–Mills system. �

5. The Lagrangian action and gauge symmetries

5.1. The Lagrangian action

It is easy to deduce from our Hamiltonian multisymplectic model a Lagran-
gian formulation (see e.g. [14]). We first restrict the multisymplectic manifold
to the level set H−1(0). In coordinates this amounts to eliminate the coor-
dinate ε through the relation ε = 1

4h
ijpabi pabj . Any submanifold Γ in H−1(0)

which is a graph over P of a map u is then given by the collection of g-valued
functions ηa and of g∗-valued functions pab and paj . We define the value of
the Lagrangian density L at (η,p) = (ηa,p

ab,paj) by

L(η,p)β ∧ γ = u∗θ.

The computation of L(ηa,p
ab,paj) is relatively easy: one deduces from (48)

that u∗(dη + η ∧ η) = 1
2(ηb;a − ηa;b + [ηa,ηb])β

a ∧ βb − (ηa;j + [tj ,ηa])β
a ∧

γj and obviously we have u∗(εβ ∧ γ) = εβ ∧ γ and u∗p = −1
2p

abβab ∧ γ +
(−1)npajβa ∧ γj . A straightforward computation thus gives us:

L(η,p) =
1

4
hijpab

i pabj −
1

2
pab(ηb;a − ηa;b + [ηa,ηb])(65)

+ paj(ηa;j + [tj ,ηa]).

Critical points of the functional
∫
P L(ηa,p

ab,paj)β ∧ γ are the solutions of
the HVDW system of equations (60).

Alternatively we may decompose η = g−1dg + g−1Ag as in (7) and re-
place the dual variables p by the g-valued (n+ r − 2)-form Φ such that
h∗p = g−1Φg. Then our action functional reads

L(A,Φ) =
1

4
h
(
Φab,Φab

)
− 1

2
h∗Φab (Ab;a −Aa;b + [Aa,Ab]) + h∗ΦajAa;j .
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5.2. Gauge symmetries

Our variational problem is invariant under the action of the gauge group of
the standard Yang–Mills action. We set this gauge group to be:

G := {γ : P −→ G; ∀z ∈ P, ∀g ∈ G,γ(z · g) = g−1γ(z)g}.
Note that, through a local trivialization of P induced by a section σ :M−→
P, we can represent all maps γ ∈ G in the form

(66) γ(z) = γ(σ(x) · g) = g−1f(x)g,

where f :M−→ G is an arbitrary map. The gauge group G acts on Γn(P, g⊗
T ∗P) through the transformation

(67) η �−→ η̃ := γ−1dγ + γ−1ηγ.

Indeed in the decomposition η = g−1dg + ηaβ
a, we compute that

η̃ = g−1dg +
[
g−1(f−1df)g + γ−1ηaβ

aγ
]
,

confirming that η̃ is still normalized. Alternatively if we write η = g−1dg +
g−1Ag, we then obtain η̃ = g−1dg + g−1Ãg, where Ã := f−1df + f−1Af .
This shows also that, if η is normalized and equivariant, i.e. if A does not
depend on g ∈ G, then η̃ is also normalized and equivariant. We also observe
that

(68) dη̃ + η̃ ∧ η̃ = γ−1(dη + η ∧ η)γ = Adγ−1(dη + η ∧ η).

We extend this action of G on sections of

R⊕P (g⊗n T ∗P)⊕P
(
g∗ ⊗ Λn+r−2T ∗P)

over P by letting

(69) p �−→ p̃ := Ad∗γp.

Then p ∧ (dη + η ∧ η) is transformed as follows

p ∧ (dη + η ∧ η) �−→ Ad∗γp ∧Adγ−1(dη + η ∧ η)

= p ∧ [Adγ ◦Adγ−1(dη + η ∧ η)] = p ∧ (η + η ∧ η),

i.e. is invariant by the gauge action. Hence θ is invariant by the gauge action
and, obviously the Hamiltonian function H also.
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5.3. An alternative action of the gauge group

The gauge group G has a different action on Γn(P, g⊗ T ∗P). First we
observe that any γ ∈ G acts on P by the map ϕ : z �−→ z · γ(z). This induces
the action by pull-back η �−→ ϕ∗η on sections of g⊗ T ∗P. If η is normal-
ized and has the form η(x,g) = g−1dg + ηa(x, g)β

a in a local trivialization,

then ϕ∗η(x,g) = g−1dg + [ηa(x,f(x)g)β
a + g−1(f−1df)g], which shows in

particular that ϕ∗η is still normalized. If furthermore η is equivariant and
reads η = g−1dg + g−1Aa(x)β

ag, then ϕ∗η = g−1dg + g−1Ãa(x)β
ag, where

Ãa = f−1df + f−1Aaf . Hence this action coincides with the previous one
on the equivariant normalized sections of g⊗ T ∗P. However it differs from
the previous one on non equivariant nomalized sections. In particular the
Lagrangian given by (65) is not invariant off-shell by this gauge action. It is
however an on-shell symmetry if G is unimodular and compact, since then
any solution of the HVDW is equivariant.

5.4. Gauge symmetries on dual fields

Our action functional is also invariant under the action of another group,
which is additive (and hence Abelian). This group is parametrized by the
space G
 of sections U of the bundle g∗ ⊗P π∗MTM⊗P Λr−1T ∗P over P
which satisfy

(70) (dU − ad∗α ∧U) |Px
= 0, ∀x ∈M,

where α is given by (2). This definition requires some comments: for any
z ∈ P, the value of U at z is a (r − 1)-form with coefficients in g∗ ⊗ TxM,
where x = πM(z), hence we can write U = Uaea, where (e1, . . . , en) is a
basis of TxM and each Ua is a g∗-valued (r − 1)-form. Then Condition (70)
means that

(
dUa − γi ∧ ad∗tiU

a
) |Px

= 0, for any a. If we setUa = h∗ψa ⇐⇒
ψa = h∗Ua, where ψa is a g-valued (r − 1)-form, then the latter condition
reads

(
dψa + [g−1dg,ψa]

) |Px
= 0 or equivalently β ∧ (

dψa + [g−1dg,ψa]
)
=

0. Solutions ψa of this equation are of the form ψa = g−1ϕag, where ϕa ∈
g⊗ Ωr−2P is closed. In conclusion U = eah∗

(
Adg−1ϕa

)
, where dϕa = 0.

The action of any U ∈ G
 is defined by (η, p) �−→ (η, p+ (−1)nβa ∧Ua).
Since components pab are left unchanged, the Hamiltonian function H is
obviously invariant. Moreover under this gauge action θ is changed into

θ + β ∧ (
dηa + [g−1dg, ηa]

) ∧Ua = θ + (−1)nd (β ∧Adgηa ∧ h∗ϕa) ,
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so that we see that θ is affected by the addition of an exact form and,
in particular, ω = dθ is left unchanged. An alternative description of this
gauge group is that it coincides with sections V of g∗ ⊗ Λn+r−2

1 T ∗P mod
g∗ ⊗ Λn+r−2

0 T ∗P (see Paragraph 2.4) which satisfy dV − ad∗α ∧ V = 0, since
any such section has the form βa ∧Ua, where U ∈ G
.

Using the variables Φ as in Paragraph 5.1, the G
 gauge action reads
(A,Φ) �−→ (A,Φ+ χ), where χab = 0 and χaj satisfies χaj

;j = 0 or equiva-

lently β ∧ d(χajγj) = 0.

5.5. Gauge fixing

We can fix the action of G by choosing a critical point (with respect to G
deformations) of the functional

∫
P

1
2h(ηa,η

a)β ∧ γ =
∫
P

1
2h(Aa,A

a)β ∧ γ.
It leads to the condition

∫
Px

Adg(η
a
;a)γ =

∫
Px

Aa
;aγ = 0, ∀x ∈M.

Similarly the action of G∗ can fixed by using, for each x ∈M, a Hodge
decomposition of the g-valued (r − 1)-form Φajγj |Px

. This leads to choose
Φaj such that, for any x ∈M, ∀a, Φajγj |Px

= ha + ∗dV a, where V a is a
function from Px to g and ha|Px

is a harmonic g-valued (r − 1)-form on Px

(note that ha = 0 if the de Rham cohomology group Hr−1(G) is trivial).
Putting these gauge fixing conditions together with equations (60) then

leads to a well-posed system, which, if Hr−1(G) = {0}, reduces to the stan-
dard Yang–Mills system in the Lorentz gauge.
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[16] F. Hélein and J. Kouneiher, The notion of observable in the covari-
ant Hamiltonian formalism for the calculus of variations with several
variables. Adv. Theor. Math. Phys., 8:735–777, 2004.

[17] I. V. Kanatchikov, Canonical structure of classical field theory in the
polymomentum phase space. Rep. Math. Phys., 41(1), 1998.

[18] I. V. Kanatchikov, Precanonical quantization of Yang-Mills fields and
the functional Schrdinger representation. Rep. Math. Phys., 53:181–
193, 2004. arXiv:hep-th/0301001.

[19] I. V. Kanatchikov, On the precanonical structure of the Schrödinger
wave functional. arXiv:1312.4518.

[20] J. Kijowski, A finite dimensional canonical formalism in the classical
field theory. Comm. Math. Phys., 30, 99–128, 1973.

[21] J. Kijowski, Multiphase spaces and gauge in the calculus of variations.
Bull. de l’Acad. Polon. des Sci., Série sci. Math., Astr. et Phys. XXII,
pp. 1219–1225, 1974.

[22] J. Kijowski and W. Szczyrba, A canonical structure for classical field
theories. Commun. Math Phys., 46:183–206, 1976.

[23] D. Krupka, A geometric theory of ordinary first order variational prob-
lems in fibered manifolds, I. Critical sections. J. Math. Anal. Appl., 49:
180–206, 1975; II. Invariance. J. Math. Anal. Appl., 49:469–476, 1975.
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[27] J. Śnyatycki, Geometric quantization and quantum Mechanics. Appl.
Math. Sci. 30, Springer-Verlag 1980.

[28] L. Vitagliano, Partial Differential Hamiltonian Systems. Canad. J.
Math., 65:1164–1200, 2013.



Multisymplectic formulation of Yang–Mills 835

[29] V. Volterra, Sulle equazioni differenziali che provengono da questiono
di calcolo delle variazioni. Rend. Cont. Acad. Lincei, ser. IV, vol. VI,
pp. 42–54, 1890.

[30] V. Volterra, Sopra una estensione della teoria Jacobi–Hamilton del cal-
colo delle varizioni. Rend. Cont. Acad. Lincei, ser. IV, vol. VI, pp. 127–
138, 1890.

[31] H. Weyl, Geodesic fields in the calculus of variation for multiple inte-
grals. Ann. Math. (3), 36:607–629, 1935.
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