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Horizons

Olaf Müller

We define different notions of black holes, event horizons and Killing
horizons for a general time-oriented manifold (M, g) extending pre-
vious notions but without the assumption of the existence of a
causal boundary for (M, g). The notions of ‘horizon’ are always
conformally invariant while the notions of ‘black hole’ are gen-
uinely geometric. Some connections between the different notions
are found. Finally, we state and compare different versions of the
weak cosmic censorship conjecture with precise geometric assump-
tions.

Studying the history of the weak cosmic censorship conjecture, one notices
sooner or later that, even in the case of asymptotically flat spaces, some
notions and definitions diverge between different researchers, and the state-
ment to show varies considerably. For non-asymptotically-flat (but still, say,
globally hyperbolic) spacetimes the situation gets even worse. It is not at
all clear what the precise conjectured statement should be for this case,
as one ingredient, future null infinity, is not defined. This article, by using
the definition of ‘causal boundary’ as given in [4] (based on many previous
approaches), tries to remedy the situation a bit by providing some more or
less plausible definitions of the terms ‘horizon’ and ‘black hole’ applicable in
every globally hyperbolic manifold (and, of course, extending the previous
ones) and by showing some connections between them.

Let us first recall the statement of the weak cosmic censorship conjec-
ture as it is stated usually. The conjecture assures that ‘singularities should
be hidden behind event horizons’, in other words: For a maximally glob-
ally hyperbolic manifold, incomplete timelike geodesics should not be vis-
ible from future null infinity. However, one has to put additional physical
requirements like energy conditions to prevent examples like the following
from happening:

Example 1. Consider (R2 \ {x ∈ R2|u(x), v(x) > 0}, g0 = dudv) and the
metric g := f · g0 with f := 1 + ψ(u) · φ(v) + φ(u) · ψ(v) where φ ∈ C∞(R,
[0,∞)) with supp(φ)=[0,∞) and φ(x)=x for all x≥1 and ψ∈C∞((−∞, 0),
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[0,∞)) with supp(ψ) = [−1, 0) and limx→0ψ(x) =∞. Then (R2, g) is glob-
ally hyperbolic, maximal as a Lorentzian manifold, and the negative t axis
is an incomplete geodesic contained in the past of every other inextendible
future timelike curve, in particular in the past of the hyperboloids u · v =
const > 0 which have infinite length. The scalar curvature of any such (M, g)
(for each choice of φ, ψ) changes its sign (therefore violating the energy con-
dition).

Usually, ‘future null infinity’ is defined for asymptotically flat spacetimes
only. Now we are going to present some more general notions of ‘future
null infinity’, or equivalently, of ‘horizon’, to be able to formulate the con-
jecture in non-necessarily asymptotically flat contexts as well. We will use
(implicitely) the notion of ‘causal boundary’ as defined in [4]. All notions of
‘horizon’ will be conformally invariant, so they only depend on the causal
structure and not on other geometrical data. Given a time-oriented man-
ifold, we will speak of ‘the black hole of (M, g)’ or ‘the event horizon of
(M, g)’ as those sets are uniquely given by the manifold.

General assumption: From now on, (M, g) always denotes a time-oriented
connected Lorentzian manifold.

Definition 2. A CITIF (in M) is a piecewise C1 future directed timelike
curve in M which is C0-inextendible to the future. We introduce an order <
of CITIFs by proper inclusion of their past, that is, c < k if I−(c) � I−(k).
A CITIF c is called non-dominated (resp. non-dominant) iff there is no
other CITIF k with c < k (resp. c > k). A point p is called upper-shielded
(resp. lower-shielded) iff every CITIF from p is non-dominated (resp.
non-dominant). Finally, the upper-shielded horizon uM (resp. lower-
shielded horizon lM ) of M is the boundary of the subset UM of upper-
shielded (resp. LM of lower-shielded) points in M .

Remark: Of course the sets LM and UM are future sets. Assume that
p ∈ LM and that there is a CITIF c : [0,∞) from p which is dominated by
another CITIF k : [0,∞)→M , then there is a t ∈ [2,∞) such that c(1) ∈
I−(k(t)), thus there is a CITIF γ starting at p with γ|[0,1] = c|[0,1] and
γ|[2,∞) = k|[2,∞), which is dominating, contradicting the assumption that
p ∈ LM . Therefore no CITIF from p is dominated, and LM ⊂ UM .

Recently, the definition of the causal boundary of stably causal space-
times has been systematized in a comprehensive way in [4]. The causal
boundary is a powerful tool e.g. for recognizing the structure of conformal
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embeddings of one space-time to another. However, for general time-oriented
Lorentzian manifolds it does not exist. Now, we want to compare the notion
of upper-shielded horizons to the usual definition of ‘event horizon’ in terms
of the conformal boundary which is in some sense a special case of the causal
boundary. Therefore, let us revise the definition of the latter. First we con-
sider the set of all indecomposable past sets (indecomposable means here
that the set is not the proper union of two past sets), short IPs. By a theo-
rem due to Geroch, Kronheimer and Penrose, every IP is either of the form
I−(p) in which case it is called proper IP or PIP for short, or else it is of
the form I−(c) for c an inextendible future timelike curve c in which case it
is called a TIP. The set of all IPs is called M̂ , correspondingly the set of all
IFs is called M̌ . Let the common future C+ resp. the common past C− of
a set X denote the set of points C±(X) := {p ∈M | p ∈ I±(x) ∀x ∈ X}.
Now recall that M̌ and M̂ are subsets of the power set of M and set
M̌1 := M̌ ∪ ∅ as well as M̂1 := M̂ ∪ ∅. Then set M̃ := M̌1 × M̂1 \ (∅, ∅). On
M̃ we consider an equivalence relation ∼ defined by P ∼ F if and only
F ⊂ C+(P ), F maximal element w.r.t. inclusion under all indecomposable
future sets in C+(P ), and P ⊂ C−(F ), P maximal element w.r.t. inclu-
sion under all indecomposable past sets in C−(F ). Finally we define M :=
{(P, F ) ∈ M̂1 × M̌1|P ∼ F}. Obviously M ⊂M , as I−(x) ∼ I+(x), for all
x ∈M . On this point setM one defines a chronology relation which extends
the one on M : chr((P, F ), (P ′, F ′))⇔ F ∩ P ′ 
= ∅. Now define the naive
future null infinity J +

n as the set of non-maximal elements w.r.t. chr in
the image of the quotient of the future boundary, where a point p ∈M is
called non-maximal if and only if there is q ∈M \ {p} s.t. for every x with
chr(x, p) we have chr(x, q). Clearly, this extends the notion of J + as the
lightlike part of the future boundary of an open conformal embedding (as
used in [3] for the class of weakly asymptotically simple and empty space-
times). Now, maximal elements are necessarily of the form (P, ∅): Assume
for an element of the form (P, F � x) we can choose some y ∈ I+(x) and
then chr((P, F ), (I−(y), I+(y)). Therefore the set of non-maximal elements
can be identified with the TIPs which are pasts of non-dominating CITIFs,
and we get immediately the following theorem:

Theorem 3. Let (M, g) have a causal boundary J . Then UM =M \I−(J +
n ).

So, in case that there is a causal boundary of M as in [4], the definition
of ‘upper-shielded horizon’ coincides with the usual one ∂(I−(J +

n )). On the
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other hand, this new notion of ‘horizon’ is applicable in the much wider con-
text of general time-orientable Lorentzian manifolds. However, most physi-
cists would probably not consider our definition of shielded horizons the
correct one. As it depends only on the causal structure, it cannot take into
account sufficiently what future infinity is. As an example, modify the usual
conformally equivalent representation of the two-dimensional Schwarzschild
space-time as a hexagonal subset of two-dimensional Minkowski spacetime
by removing a small triangle of the surrounding Minkowski spacetime to the
spacelike part of future infinity. Then the original Schwarzschild event hori-
zon is not a shielded horizon any more as there are CITIFS in the enclosed
region which dominate other curves depending on their endpoint on the
new lightlike part of the future boundary. Still, those curves do stay in the
Schwarzschild horizon and do certainly not satisfy our expectations of a
curve ‘escaping to infinity’. To remedy this difficulty and to distinguish a
class of geodesics approaching infinity, we call a CITIF c horizontal iff
there is no sequence cn of CITIFs with cn ↗ c, that is, cn < c for all n ∈ N

and limn→∞cn = c where convergence of the pasts I−(cn) is defined as final
coincidence with I−(c) on every compact subset, that is, for every K ⊂M
compact there is an m ∈ N with I−(ci) ∩K = I−(c) ∩K for all i > m. Then
a CITIF belongs to causal future null infinity iff its past does not con-
tain a horizontal CITIF. Finally, EM is defined as the complement of the
past of causal future null infinity and the event horizon eM of M as its
boundary eM := ∂EM .

One theorem which will be important for the order relation between
CITIFs is the following ‘catcher theorem’:

Theorem 4. Let (M, g) have noncompact Cauchy surfaces. Then from any
point p ∈M and any point q ∈ I+(p) there is a CITIF c from p not inter-
secting J+(q). In particular, I−(c) 
=M .

Proof. Choose intermediate points z, r ∈M such that p� z � r � s� q.
Choose a smooth Cauchy temporal function t for (M, g), and for any a ∈ R

put Sa := t−1({a}), Ja := J+(r) ∩ Sa and Ia := I+(z) ∩ Sa. Then, for any
a ∈ R, we have Ia open in Sa, Ja compact, and Ja ⊂ Ia as a consequence
of the first push-up lemma as presented in [2], Lemma 2.4.14. Therefore,
for any a ∈ R we have that the open set Ia \ Ja is nonempty, as otherwise
Ia = Ja would be open and compact and therefore equal to Sa which would
be in contradiction to noncompactness of Sa. Therefore there are timelike
future curves cn from z to pn ∈ In \ Jn, for n ∈ N, n > t(z). The limit curve
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lemma assures that there is a causal curve c starting at z whose intersec-
tion with Sn is nonempty and contained in the closure of In \ Jn, for every
n ∈ N, n > t(z). By considering Aa := Sa ∩ I+(s) and Ba := Sa ∩ J+(q) in
addition similarly, it is easy to see that Ba ⊂ int(Ja), for any a, thus c is
disjoint from J+(q). Finally, we consider a future timelike curve k from p to
z and apply to the curve l := c ◦ k and to the neighborhood I(p) \ J(q) the
(time-dual of the) second push-up lemma as presented in [2], Lemma 2.9.10,
to conclude that there is a C0-inextendible future timelike curve m from p
disjoint to J+(q), as required. �

Led by the consideration of the hexagonal form of Kruskal space-times
versus causal diamonds Dpq := I+(p) ∩ I−(q) in Minkowski space which are
conformal to Minkowski space itself, one could think of defining horizons by
the property of Dpq that the future of each two points intersect. This is done
in the notion of ‘synopticity horizon’:

Definition 5. A subset U ⊂M is called synoptic iff I+M (p) ∩ I+M (q) ∩ U 
=
∅ for each two points p, q ∈ U . A synopticity region is the complement
of the closure of a maximal synoptic subset, that is, of a subset A ⊂M
which is synoptic and which is not a proper subset of a synoptic subset.
Finally, a synopticity horizon is the boundary of a synopticity region.

The definition implies directly that any synoptic subset is arcwise con-
nected and any maximal synoptic subset of a globally hyperbolic manifold
is open. The limiting case of de Sitter space-time shows two facts: Firstly, as
opposed to the other notions of ‘horizon’ appearing in this article, maximal
synoptic subsets are not unique: a spatial rotation maps one to another. Sec-
ondly, de Sitter space-time itself is not synoptic although it does not have a
synopticity region due to the definition via complements of closures. On the
other hand, the following theorem shows that every time-oriented Lorentzian
manifold does contain a nonempty maximal synoptic region. Consequently,
it does not contain a synopticity horizon if and only if the closure of such a
maximal synoptic region is all of M .

Theorem 6. Every point p ∈M has a globally hyperbolic and synoptic
neighborhood.

Proof. Let U be a globally hyperbolic and geodesically convex neighborhood
of p (which is well-known to exist), then every local causal diamond I+U (x) ∩
I−U (y) containing p and contained in U satisfies the condition (because every
I−(z) is open and because I− is continuous as a set-valued map). �
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The relation < restricted to CITIFs in a maximal synoptic subset has a
maximal element:

Theorem 7. Let A be a maximal synoptic subset, then there is a CITIF k
with I−(k) = A.

Proof. Take a countable covering of A by sets of the form I+(yn) ∩ I−(xn)
for xn, yn ∈ A and choose pn+1 ∈ I+(pn) ∩ I+(xn) ∩ U . Then join the pn by
future timelike arcs. The result is a curve k with I−(k) = A. It has to be a
CITIF, as every extension of it to the future could be added to the subset
preserving its synopticity, which contradicts the maximality assumption. �

Theorem 8 (Hierarchy L-U-E-S for horizons). We have the inclusions
LM ⊂ UM ⊂ EM , and for every point p ∈M \ L there is a synopticity region
S with L ⊂ S and p /∈ S.

Proof. We had already seen the first inclusion. For the second, let p ∈ UM .
Then, for all CITIFs c from p, there is no CITIF k with I−(c) � I−(k).
But then I−(c) contains a horizontal CITIF, as c itself is horizontal: If cn
were a sequence with I−(cn)→ I−(c), I−(cn) ⊂ I−(c), then I−(cm) � p for
some m due to the notion of convergence, so this cm would be a dominated
CITIF from p, contradicting the assumption. For the third implication, let
c be a dominating CITIF from p. Then the image of c is a synoptic subset
and can therefore be extended to a maximal synoptic subset A. Because
of Theorem 7, we know that A = I−(k) for some CITIF k. Now if ∅ 
=
A ∩ L � q, then k(m) ∈ I+(q) ⊂ L for some m ∈ R, as L is a future set.
Therefore all CITIFs from k(m) are non-dominant. But k itself is dominant
as it dominates c (as I−(c) ⊂ I−(k) = A and q /∈ I−(c), again because L is
a future set). �

The upper horizon is an obstruction for the synopticity of the entire
space-time:

Theorem 9. If (M, g) has noncompact Cauchy surfaces and an upper-
shielded horizon, it is not synoptic.

Proof. If (M, g) is synoptic then no point of it is upper-shielded, as by The-
orem 4, we know that from every point there is a curve k with I−(k) 
=M .
Then we pick q ∈M \ I−(k) and look for some point r ∈ I+(p) ∩ I−(q). Any
future timelike curve joining q with r dominates k. �



Horizons 753

Be aware of the fact that the reverse direction of the previous theo-
rem does not hold: The de Sitter spacetime is not synoptic, but the future
boundary is spacelike.

Finally, one could come up with a particularly easy horizon definition
by spatial compactness:

Definition 10. In a globally hyperbolic manifold. A subset A is called
spatially (pre-)compact iff A ∩ S is (pre-)compact for every Cauchy surface
S. A CITIF c is called compact iff I−(c) is spatially precompact. The
compactness subset CM of M is defined as the subset of all points p ∈M
such that all CITIFs from p are compact, and we define a compactness
horizon cM as before as the boundary of a connected component of CM .

Of course this definition is only interesting for globally hyperbolic man-
ifolds with noncompact Cauchy surfaces. Now there is a relation between
the compactness horizon and the event horizon:

Theorem 11 (Hierarchy L-U-C-E of horizons in globally hyper-
bolic manifolds). In every globally hyperbolic manifold (M, g), every non-
dominating CITIF is compact, and the past of every compact CITIF con-
tains a horizontal CITIF. Thus we have the inclusions LM ⊂ UM , CM and
UM , CM ⊂ EM .

Remark. It is an easy exercise to find counterexamples to any other inclu-
sion between CM and any of LM , UM and EM , except for UM ⊂ CM .

Proof. After Theorem 8, it remains to show LM ⊂ CM ⊂ EM . To show the
first, let c : [0,∞)→M be a noncompact CITIF. We shall show that c is
dominating. Let S be a Cauchy surface of M containing p := c(0). As I−(c)
is not spatially precompact, there is a sequence pn in I−(c) ∩ S not con-
verging in S. Choose a sequence tn such that c(tn) ∈ I+(pn) and choose
timelike future curves γn from pn to c(tn). We define q := c(1) and choose
rn ∈ (γn([0,∞)) \ J+(q)) ∩ I+(p) as well as future timelike curves ρn from
p to rn. Then we use the limit curve theorem in the globally hyperbolic
manifold K := I−(c) \ J+(q) to show the existence of a limit curve ρ, which
is not only a CITIF in K but also inM , as the past of any possible endpoint
x would contain infinitely many of the pn and thus its intersection with S
would not be precompact. Now, ρ as a curve in I−(c) \ J+(q) is dominated
by c.

For the second inclusion, let c be a compact CITIF, then either c itself
is horizontal, in which case the proof is complete. Or there is a sequence cn
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of CITIFs with cn ↗ c. We define A :=
⋂

k CITIF,k<c I
−(k). Note that the

family of indices in this intersection is nonempty. this is a past set, and it
is indecomposable because of minimality. Moreover, it is nonempty, as by
Zorn’s lemma we can write it as the intersection of a nonempty monotonous
chain Cn, and by compactness, for every Cauchy surface S, we get S ∩ Cn a
monotonous chain of nonempty compacta, whose intersection is nonempty.
So by the theorem of Kronheimer, Geroch and Penrose [5], A is the past of
a CITIF, which is necessarily horizontal. �

Secondly, let us now introduce a genuinely geometric, that is, not con-
formally invariant, notion with the same purpose of definition of future null
infinity by defining black holes. As there is no precise and commonly accepted
definition of this term except for the asymptotically flat case, we want to take
a naive approach in which a black hole is characterized by two prominent
features: it is black and dangerous. The first property is easily formalized as
the requirement of being a future set, the second as the requirement of finite
lifetime for all timelike future curves in the corresponding region.

Definition 12. Let (M, g) be time-oriented Lorentzian. The black hole
of M is the subset BHM of points p in M such that every future timelike
curve through p has finite length. 1 The black hole BHM is called strong iff
for each point p ∈M \BHM there is a timelike geodesic2 of infinite length
from p.

Be aware of the fact that a black hole can have several connected com-
ponents. Right from the definition, every black hole is a future set. Another
advantage of this definition is the connection to incomplete geodesics which
appear in the notion of singularities. If a manifold has a temporal func-
tion with the property M in the terminology of [6] then it cannot contain
a black hole, as the integral curves of grad(t) are of infinite length. If a
manifold of the form (N := I ×N, g := −λ2dt2 + gt) with (S0, g0) complete
Riemannian, ġt/gt globally bounded and λ bounded from 0 and from ∞
contains a black hole, it is not synoptic, for in this case I has to be an inter-
val bounded from above, so then prS0

(I+(p)) can be estimated uniformly
in terms of BR(p), and one only has to choose two points in S0 which are

1Alternatively, one should think about variants of this requirement: e.g., that
every causal geodesic has finite lifetime, every future b.a. curve has finite length, or
requiring that there is a uniform bound on these lengths etcetera. One could also
define a black hole as a connected component of BHM .

2It could make sense to consider b.a.-curves instead of geodesics here.
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sufficiently far apart. Note that this latter case is not much more special
than the spatially asymptotically flat case containing a black hole, as then
all level surfaces of the Cauchy time function are complete, and the bounds
hold for every level surface.

We want to establish connections between the causal notion of ‘event
horizon’ and the geometric notion of ‘black hole’. The definition corresponds
to the exterior being the past of all timelike curves of infinite length. Those
CITIFS could be defined as geometric future null infinity. It is an interesting
question whether those pasts coincide with the pasts of complete lightlike
geodesics as, traditionally, future null infinity is defined in terms of the latter.
Obviously, not every event horizon bounds a black hole, as event horizons are
conformally invariant and every globally hyperbolic manifold is conformally
invariant to a future causally complete one (cf. [10], p. 258). More exactly
we have

Theorem 13 (compare with [10]).

1) Every globally hyperbolic manifold is conformally equivalent to another
one which is b.a.-complete and null geodesically complete.

2) For every E > 0, every globally hyperbolic manifold is conformally
equivalent to another in which all nonspacelike curves have length
smaller than E.

We include a proof of the statement as the proof appearing in the article
of Seifert uses tacitly the following lemma guaranteeing the existence of
useful time functions:

Lemma 14. Let S be a Cauchy surface in a globally hyperbolic manifold M
and let f ∈ C0(S). Then there is a smooth Cauchy time function t onM with
t(x) > f(x) for all x ∈ S. In particular, as f can be chosen to be proper, there
is a smooth Cauchy time function t on M with S ∩ t−1((−∞, D)) compact
for all D ∈ R.

Proof of the lemma. Let t0 be a smooth Cauchy time function such that
S = t−1

0 ({0}). Let the compact subsets Un ⊂ Un+1 cover S. We want to reach

t|Un
≥ n.(1)

We cover each Un+1 \ Un locally finitely by sets An
i := I+(pni ) such that

An
i ∩ Un−1 = ∅ and An

i ∩ (Un+3 \ Un+2) = ∅. Then let tni be a smooth Cauchy
time function on An

i and τni := exp(tni ) on A
n
i and zero on the complement of



756 Olaf Müller

An
i . Then t

n :=
∑
ani · τni ∈ C∞(M,R) is a time function on an open subset

containing I+(Un+1 \ Un) and, for an appropriate choice of ani , we have
tn|Un+1\Un

≥ n. Finally, t := t0 +
∑∞

i=1 is well-defined and smooth on M by
standard arguments, it is a Cauchy time function as a sum of a Cauchy time
function and a time function (recall that the latter is defined by monotonicity
along future causal curves and the former additionally by surjectivity along
C0-inextendible future causal curves), and it satisfies Eq. 1, proving the
statement. �

Proof of the Theorem. Let S be a Cauchy surface in M and t a smooth
Cauchy time function as in the lemma. t induces a splitting ug = −adt2 −
ag2t of any conformal multiple ug of g. We get as geodesic equation in (M,ug)
for the t coordinate along a geodesic curve c:

d2t

ds2
=
a,m
a

dxm

ds

dt

ds
− ȧ

2a

(
dt

ds

)2

− 1

2

(
ġmn +

ȧ

a
gmn

)
dxm

ds

dxn

ds
,

where s is the affine parameter. With the ansatz a = a(t) the first term
vanishes. If we consider a b.a. curve we get a bounded real function D as
an additional aditive term on the right hand side. For the geodesic case
just replace D by 0 from now on. Because of compactness of the t level
sets intersected with J+(S) there is an f(t) with (ġmn + f(t)gmn)x

mxn ≥ 0,

that is to say, ġ + f(t) · g positive definite. Now if d(log(a(t)))
dt ≥ max{0, f(t)}

then d2t
ds2 ≤ D, but as dt

ds > 0 we get s ≥ ( dtds)
−1|s=0 · t (geodesics) or s ≥

D( dtds)
−1|s=0 · t2 (b.a. curves), so in either case, for bounded s, t is bounded

as well, thus (I+(S), a · g) is future geodesically complete and b.a.-complete.
Now choose another Cauchy hypersurface S0 ⊂ I−(S) and perform the same
procedure in the past direction constructing a conformal factor a0 on I

−(S0),
and finally interpolate in any manner between a0 and a, showing the first
assertion of the theorem. The second one is easier, if one uses the previous
lemma one has only to choose the factor in the compact balls so that the
maximum over the resulting factors before −dt2 is integrable, or equivalently
the lightlike affine parameter (using the compactness of lightlike directions
additionally). �

The question is, does the presence of an event horizon in a Ricci flat
manifold imply the presence of a black hole? Again the answer is no, as may
be seen by considering the flat hexagon which is the Penrose diagram of
Kruskal spacetime: It is even flat, but it is a black hole in itself, and the
event horizon does not bound a black hole. One can modify this to get an
example of a maximal Lorentzian manifold with the same sort of behaviour
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by considering a smooth function f on the hexagon diverging to infinity
towards its boundary and then choosing 2 + sin ◦ f as a conformal factor.
Of course, the Ricci-flatness is lost by this procedure. So the new question
could be: Can there be an eager-beaver censor in a Ricci-flat time-oriented
maximal Lorentzian manifold in the sense that is geodesically complete and
still contains a horizon of some kind? And conversely, the question could
be whether a maximally globally hyperbolic Ricci-flat manifold which is
geodesically incomplete contains a horizon of some sort. The answer to the
last question is “no’, as Taub-NUT space-time provides a counterexample
— the pasts of all of its CITIFs coincide.

Finally, we introduce another, possibly useful, notion of black hole hori-
zon inspired by Penrose’s 1978 paper [8]. His condition CC4 — ‘no∞ - TIP
contains a singular TIP’ — would imply BHM ⊂ V −

M in the terminology
below. We define the future visibility subset

V +
M := {p ∈M | ∀c CITIF from p, ∀h curve of infinite length : I−(c) 
⊃ h}

as well as the past visibility subset

V −
M := {p ∈M | ∀c CITIF from p, ∀h curve of infinite length : I−(h) 
⊃ c}

we have always V +
M ⊂ BHM , right from the definition. We show:

Theorem 15. If (M, g) is globally hyperbolic and if, for each x ∈M , I+(x)
admits a real C1 function f such that there are D,G>0 with −G2<〈gradf(p),
gradf(p)〉 < −D2 for all p ∈ I+(x), 3 then V +

M = BHM .

Proof. Let p ∈ BHM , let k be the maximal integral curve of gradf from
p, this is a CITIF parametrized on [0, S) with S ≤ ∞. Then (f ◦ k)′ =
〈k̇, gradf〉 = −〈gradf, gradf〉 = −〈k̇, k̇〉 and
∫ S

0
|(f ◦ k)′(s)|ds ≤ G ·

∫ S

0

√
|(f ◦ k)′(s)|ds = G ·

∫ S

0

√
−〈k̇(s), k̇(s)〉ds.

Therefore f |I+(p) is bounded by a real number E. Now assume that there
is a future timelike curve h of infinite length in I−(c), parametrized by arc
length for simplicity. Then, as h(n) is in the past of the image of c for all n,

3Compare with Theorem 3 of [6] where for each Cauchy surface S, a time function
t on I+(S) is constructed with 〈gradt(p), gradt(p)〉 bounded on each of the levelsets
of t. In a forthcoming paper [7], the condition of this theorem will be shown to be
valid in an arbitrary globally hyperbolic manifold.
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we can find a timelike geodesic curve kn : [0, 1] of length > n from h(0) to
some point of the image of c. We write X = gradf for short. Then we get
for the length l(kn) of kn:

l(kn) =

∫ 1

0

√
〈k̇n(s), k̇n(s)〉ds ≤

∫ 1

0

〈k̇n(s), X(kn(s))〉
−〈X(kn(s)), X(kn(s))〉ds

≤ D

∫ 1

0
〈k̇n(s), X(kn(s))〉ds.

Here the first inequality is due to the inverse Cauchy-Schwarz inequality.
Consequently, we have, for all n ∈ N,

l(kn) ≤ −D
∫ 1

0
〈gradf(kn(s)), k̇n(s)〉dt ≤ f(kn(1))− f(h(0))

≤ E − f(h(0))

which is a contradiction. �
Finally, let us compare the previous notions with the ones using a Killing

vector field. Recall that a (local) Killing horizon is a null hypersurface N
whose tangent bundle contains X(N) for some (local) Killing vector field X
(around N). We will consider a narrower notion.

Definition 16. A subset A ⊂M of a globally hyperbolic manifold is spa-
tially bounded if there is a positive number R such that, for every smooth
Cauchy hypersurface C, the intersection of A with C has diameter less or
equal to R in the Riemannian metric of C. A subset A ⊂M of a globally
hyperbolic manifold is spatially compact if, for some (hence any) Cauchy
time function t, the intersection of A with each level set of t is compact.
A strong Killing horizon is a hypersurface S in M which bounds a con-
nected, spatially bounded future set on which a Killing field X is spacelike
and also bounds a subset on which X is timelike. An ultrastrong Killing
horizon is a hypersurface S in M which bounds a connected, spatially
bounded and spatially compact future set on which a Killing field X is
spacelike and also bounds a subset on which X is timelike.

Obviously, in this terminology, every strong Killing horizon is the bound-
ary of a spatially bounded set, and every ultrastrong Killing horizon is the
boundary of a spatially compact and spatially bounded set. The Schwarz-
schild horizon is a strong Killing horizon, but it is not ultrastrong. We would
like to show that every strong Killing horizon is an event horizon. Unfor-
tunately, that is not true. A counterexample is easily found on R2 by the
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usual technique of cone ballet on the x axis: Consider coordinates (t, x) and
u := x+ y, v := x− y and define the metric g := φ(x) · dv(du+ f(x)dv), for
some smooth monotonously non-increasing surjective f : R→ [0, 2). This
metric is globally hyperbolic, as its causal cones are narrower than the cor-
responding causal cones of Minkowski spacetime. Moreover, X := ∂t is a
Killing vector field which is spacelike on the left half L := f−1((1, 2)) of R2

which is a future set. And by an appropriate choice of the conformal factor φ,
L can be made spatially bounded. But there is no shielded or event horizon
in (R2, g), as the past of every future timelike curve is properly contained
in the past of the same curve composed with the flow of X. Moreover, the
manifold is synoptic. So the existence of a strong Killing horizon does not
imply the existence of a horizon of any kind. Still the following question
remains unanswered: Does the existence of an ultrastrong Killing horizon in
a Ricci-flat maximal Lorentzian manifold (M, g) imply the existence of an
event horizon in M? In any case, given the nongenericity of Killing horizons,
it does not seem very likely to the author that the notion of Killing hori-
zons can contribute much to the questions around the weak cosmological
censorship conjecture in their above formulation.
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