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On the existence of affine

Landau-Ginzburg phases in gauged

linear sigma models

Patrick Clarke and Josh Guffin

We prove a simple criterion for the existence of an affine Landau-
Ginzburg point in the Kähler moduli space of a gauged linear sigma
model.

1. Introduction

A Landau-Ginzburg (LG) point in the Kähler moduli space of a gauged lin-
ear sigma model (GLSM) allows one to compute correlation functions which
are otherwise inaccessible. In the literature, there is no efficient method for
determining the existence of such a point.

GLSMs were introduced in [Wit93] as a way of studying correlation
functions that compute Gromov-Witten invariants in certain related non-
linear sigma models (NLSM). In particular, the low-energy limit on the
Higgs branch of a GLSM is a NLSM whose target space is a toric variety X
obtained as a symplectic U(1)ρ quotient using the parameters of the GLSM.

For certain classes of GLSMs, one may choose the parameters so that
the target space of the low-energy theory is an orbifold Cn/Γ, with a super-
potential whose critical locus lies at the fixed point of the finite abelian
group Γ. Such a setup is called a Landau-Ginzburg theory, and correlators
therein are exactly soluble. To find if a given GLSM possesses an LG point,
one typically constructs the secondary fan and laboriously checks whether
the D- and F-terms for each chamber satisfy the requisite condition. Such a
strategy was pursued in §4.2 of [MRP95], for example.

LG points are also useful in (0, 2) GLSMs. These models reduce in the
low-energy limit to a NLSM on the same variety X, but also depend on
a holomorphic vector bundle V → X that is determined by the data of
the (0, 2) GLSM. Correlation functions in these theories are invariants of
(X,V) that generalize the Gromov-Witten invariants of (X,TX) [ADE06]. In
cases where the bundle V is a deformation of the tangent bundle, correlators
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may be computed using a brute-force method based on Čech cohomology
[KS06, GK07], or by employing more refined techniques in the (0, 2) GLSM
[MM07]. When V is not a deformation of TX , general techniques to com-
pute correlators in the NLSM do not exist. However, when the (0, 2) GLSM
admits an LG phase, correlators may be computed using the methods of
[Mel09]. Our results should admit a generalization to the (0, 2) case.

LG theories have also been useful for the computation of Gromov-Witten
invariants, following the program initiated by Fan, Jarvis, and Ruan[FJR07a,
FJR07b]. Our results should be especially useful in this setting for producing
previously unknown classes of LG models for study (see Remark 3.13).

1.1. The criterion

Recently, Herbst conjectured [Her09] a criterion for the existence of a
Landau-Ginzburg point in terms of the charge matrix of the GLSM. The
Herbst criterion can be slightly simplified, and we prove that the simplified
version is equivalent to the existence of an affine LG point provided the
critical locus of the superpotential is compact for some value (and thus all
values) of the Kähler parameter. To this end, we also provide a rigorous
definition of an affine LG point in a GLSM, and prove the equivalence of
symplectic and algebraic quotients for arbitrary GLSMs without regard for
smoothness or compactness.

The Herbst Criterion proven herein takes the following form. Consider
the charge matrix of the GLSM, Q: if the rank of the GLSM gauge group
is ρ and there are N chiral fields, then Q is a ρ×N matrix of rank r. Then
an affine LG point exists whenever one can choose r linearly-independent
columns so that the other n := N − r columns lie in the negative cone of
the chosen r. This setup is a slight generalization of the charge matrices
normally considered in the physics literature, where Q is assumed to be
full rank. We provide a mathematical setting for Q in our discussion of
symplectic quotients — see Equation (4).

Herbst originally included the condition that the chosen columns should
be unique, in the sense that no column amongst the remaining n is a copy of
one of the chosen. However, this is implied by the condition that all others
lie in the negative cone. On the other hand, this corollary can be quite useful
in showing by hand that a given model does not have an affine LG point. A
precise statement of the Herbst Criterion is given in Definition 3.1.

Heretofore, the main class of toric varieties known to admit affine LG
phases were the total spaces of the canonical bundle over compact toric
varieties. Our analysis shows that LG phases are extremely common, and
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easily produced. Indeed, our results provide a way to produce every possible
affine LG phase for any GLSM — see Remark 3.13.

1.2. Examples

Before proceeding, we present three well-known examples and discuss the
application of the criterion to them.

Example 1.1. Consider the canonical bundle of Pm. Here, the gauge group
is rank 1 and the charges are arranged in a 1× (m+ 2) matrix normally
written as

Q =
(
1 1 · · · 1 −m− 1

)
.

Discarding the first m+ 1 columns due to multiplicity, one is left with the
column (−m− 1). Since the firstm+ 1 columns are in its negative cone, this
model will possess an LG point for an appropriate choice of superpotential.

Example 1.2. For the canonical line bundle over the product of rational
curves, K → P1 × P1, the gauge group is rank 2 and the charge matrix is
normally written

Q =

(
1 1 0 0 −2
0 0 1 1 −2

)
.

Examining this matrix, one discards the first four columns since each vector
occurs with multiplicity and finds that there is only one independent unique
column. Therefore this model cannot have an affine LG point.

Example 1.3. Consider the canonical bundle of the resolved weighted pro-
jective space P̃4

1,1,2,2,2. This model has a rank 2 gauge group and charge
matrix

(1) Q =

(
0 0 1 1 1 1 −4
1 1 0 0 0 −2 0

)
.

After discarding the first five columns one is left with the final two, which are
linearly independent. It is not hard to check that the first five columns are
contained in the negative cone of the last two. One can also use the algorithm
outlined in Remark 4.1 to find that the charge matrix row-reduces to(

1 −4
−2 0

)−1
·Q =

(−1
2 −1

2 0 0 0 1 0
−1

8 −1
8 −1

4 −1
4 −1

4 0 1

)
,

so that the first five vectors clearly lie in the negative cone. Thus, for an
appropriate choice of superpotential this model will possess an LG point.
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2. Physical exposition

We first explain the physical origins of LG points in the GLSM. We will
always assume that we are dealing with a GLSM featuring a gauge group
of rank ρ and N chiral bosons, whose low-energy theory describes a toric
variety X for appropriate values of its Kähler parameters.

To determine the low-energy theory, one imposes a system of constraints
arising as the classical equations of motion of the GLSM Lagrangian on the
chiral bosons in the theory. In terms of the charge matrix Q, chiral bosons
φi, and Kähler parameters ra, one has r equations

(2)

N∑
i=1

Qa
i

∣∣φi
∣∣2 − ra = 0 for 1 ≤ a ≤ r.

Here r is the rank of Q. For the purposes of this paper, we will simply call
the equations above D-terms.

The D-terms specify the construction of a toric variety X as a U(1)ρ

quotient, as in Equation (7). The low-energy theory is also dependent on
another class of terms arising from a torus-invariant holomorphic func-
tion W :CN → C called the superpotential. Several terms in the Lagrangian
involve this function, but we will concentrate on one set in particular whose
vanishing is required for supersymmetric vacua:

(3)

N∑
i=1

∣∣∣∣∂W∂φi

∣∣∣∣2 = 0.

For the purposes of this paper, these will be called F-terms.
Let V → Y be a vector bundle of rank k over a compact toric variety

Y , whose total space is the n-dimensional toric variety X. Let Z ⊂ Y be
the smooth vanishing locus of a holomorphic section f :Y → V∨. For certain
values of the Kähler parameters — those in the Kähler cone — such a
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compact complete intersection is realized as the target space in the low-
energy theory of a GLSM whose superpotential is

W =

k∑
α=1

pαf
α(φ),

where pα are a subset of the bosonic fields associated with fiber coordinates
on V and the φ are fields associated with the base Y . Since the zero locus
of f is assumed to be smooth, the critical points of W are precisely the
vanishing locus of f , lying within the zero section of the bundle.

The model possesses an LG point if there is some value of the Kähler
parameters (taken to lie deep in the interior of a top-dimensional cone of the
secondary fan) such that solving the D- and F-terms requires that precisely
r of the bosons get a vacuum expectation value (VEV), while the others
vanish. Additionally, one requires that the low-energy superpotential in this
phase has a single degenerate critical point. In other words, an LG point is
a choice of Kähler parameters such that the low-energy physics is described
by a quantum field theory whose bosonic fields are valued in a vector space
(in particular Cn, or more generally its quotient by a finite abelian group),
governed by a superpotential, and whose space of vacua consists of a single
point. One must take the parameters to be deep inside a cone to avoid
subtleties from quantum corrections.

3. Mathematical exposition

Dividing out the U(1)ρ symmetries of a GLSM with specified D-terms leads
to a toric variety which, along with the superpotential, governs its physics.
The toric variety is obtained as a symplectic quotient at an appropriate
value of the moment map (the ra in 2).

It is well-known that if the value of the moment map is regular and
the quotient is compact, then it is a projective toric manifold [Aud00]. It is
not hard to imagine, though less well-known, that the quotient is a quasi-
projective variety at any value of the moment map, regardless of regularity
or compactness. We provide a proof of this fact in §3.1.

The group of characters on the quotient, M ∼= Z⊕n, fits into an exact
sequence

(4) 0→ M
A−→ (u(1)NZ )

∗ Q−→ (u(1)ρZ)
∗.
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Here u(1)N is the Lie algebra of a maximal torus in Aut(CN ) commuting
with the action of u(1)ρ and u(1)Z denotes the kernel of the exponential
map. The R-linear maps obtained from these by ⊗ZR are denoted by the
same name.

As in Equation (6) below, Qt specifies the a linear action of (C∗)ρ on CN

and A is the kernel of Q. Physically, Q is the matrix of charges appearing
in the D-terms (2) of the GLSM. The Lie algebra u(1)N has a canonical set,
C = {∂ψ1

· · · ∂ψN
}, corresponding to coordinates zj with arg zj = 2πψj .

Definition 3.1. The mapQ in Equation (4) satisfies the Herbst Criterion if
there exists a subset {h1, . . . , hr} of {∂ψ1

, . . . , ∂ψN
} such that {Qh1, . . . , Qhr}

are linearly independent and

QC \ {Qh1, . . . , Qhr} ⊂ R≤0Qh1 + · · ·+R≤0Qhr.

In particular, isomorphisms (u(1)ρ)∗ ∼= Rρ = Zρ ⊗Z R and (u(1)N )∗ ∼=
RN = ZN ⊗Z R give an integer matrix expression for Q. The criterion is
satisfied if there exists an reordering of the basis of RN and a rational
change of basis for Rρ so that

(5) Q =

(
1r×r nr×n
0 0

)
,

with the entries of n non-positive rational numbers. We will prove the equiv-
alence of the Herbst Criterion to the existence of an affine quotient in §3.2.

3.1. Toric quotients

The most important consequence of the equality of symplectic and algebraic
quotients is that we can read off the algebro-geometric description of the
quotient from its image under the moment map. This image, known as the
moment polyhedral set, is defined by a finite family of inequalities.

Later, we rely on the geometry of the polyhedral set to understand when
quotient is unchanged for small changes in the Kähler parameter.

Every linear action of an algebraic torus on an N -dimensional complex
vector space V , (C∗)ρ � V, may be unitarily diagonalized so that for any
�λ ∈ (C∗)ρ, �z ∈ CN , and integers Qt

ij for 1 ≤ i ≤ N, 1 ≤ j ≤ ρ,

(6) �λ 	 �z =
(
λ
Qt

11

1 · · ·λQt
1ρ

ρ z1, . . . , λ
Qt

N1

1 · · ·λQt
Nρ

ρ zN

)
.
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The standard symplectic form ω =
√−1
2

∑
i dz

i ∧ dzi and the standard action
of U(1)N on CN define a moment map

μ :CN → RN =
(
u(1)N

)∗
.

In coordinates, μ is given by �z 	→ 1
2(|zi|2)i.

The moment map for the action of U(1)ρ ⊂ (C∗)ρ on (CN , ω) is given
by the composition

μQ = Q ◦ μ :CN → Rρ = (u(1)ρ)∗.

Because of D-term contributions (2) to the Lagrangian, the physical action
is stationary for maps Σ→ μ−1Q (s) for a choice of s ∈ Rρ . If s is not in the
image ofQ,X is empty. Otherwise, s corresponds to ra in the D-terms. These
maps are taken up to the action of U(1)ρ on μ−1Q (s). Thus, it is equivalent
to consider maps Σ→ X, where

(7) X = μ−1Q (s)/U(1)ρ.

X naturally carries the structure of a toric variety and can be written as
a geometric quotient as follows. Define E to be the complement of (C∗)N 	
μ−1Q (s) in CN , and consider

X = (CN \ E)/(C∗)ρ.

Since the U(1)ρ orbits are contained in the (C∗)ρ orbits, there is a natural
map X → X. We will show that this map is an isomorphism. We first check
that it is an injection by showing that the orbits Rr

+ 	 �z for �z ∈ μ−1Q (s) are
disjoint. This is accomplished by showing that μQ restricted to such an orbit
is injective.

Lemma 3.2. X → X is injective.

Proof. The action of Rρ
+ ⊂ (C∗)ρ on CN induces an action of Rρ

+ on RN
≥0

defined by �λ 	 μ(�z) = μ(�λ 	 �z). It is easy to see that this is independent of the
choice of �z, as different choices are given by the action of U(1)N . Directly,
the action R

ρ
+ on RN

≥0 is given by

(8) �λ 	 �q = �λQt

�q = diag
(
λQt

1 , . . . , λQt
N

)
�q

where λQt
i = λ

Qt
i1

1 · · ·λQt
iρ

ρ .
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We would like to show that the action of Rr
+ on CN changes the value of

μQ. It suffices to show that Rr
+ on RN

≥0 changes the value of q. Concretely,
we wish to show Q(1− �λQt

)�q = 0 has no solutions except �q = 0.
If we denote the kernel of Q by A as in Equation (4), then it is equivalent

to show

(1− �λQt

)RN
≥0 ∩ ImA = {0}.

Because both 1− x and − log(x) are positive/negative/zero on the same
set we have

(1− �λQt

)RN
≥0 = − log(�λQt

)RN
≥0 = −diag(Qt log(�λ))RN

≥0.

An element of −diag(Qt log(�λ))RN
≥0 is non-zero if and only if its dot product

the vector

−diag(Qt log(�λ))

⎡
⎢⎣
1
...
1

⎤
⎥⎦ = −Qt log(�λ)

is non-zero. Finally, observe that the dot product for any v ∈ MR is given
by

−Qt log(�λ) ·Av = − log(�λ)tQAv = 0.

�

Lemma 3.3. X → X is surjective.

Proof. First notice that Lemma 3.2 guarantees X = ((C∗)ρ 	 μ−1Q (s))/(C∗)ρ.
So, we need to check that

(C∗)N 	 μ−1Q (s) = (C∗)ρ 	 μ−1Q (s).

We will show by construction that given any element p ∈ (C∗)N 	 μ−1Q (s)
there exists an element h ∈ (C∗)ρ such that μQ(h 	 p) = s. Choosing g
such that μQ(g 	 p) = s, h will be constructed by lifting the curve γ(t) =
μQ(exp(t ln g) 	 p) ⊂ Rρ to a curve in (C∗)ρ.

Denote the Lie algebra of (C∗)N by g and the Lie algebra of (C∗)ρ by
h. Then, given a curve η : [0, 1]t → g, we obtain a curve P exp(η) : [0, 1]t →
(C∗)N defined by d

dtP exp(η) = η. Furthermore if η lies in h then the resulting
curve is in (C∗)ρ. To be clear, this notation is with respect to the trivializa-
tion by right-invariant vector fields: Te(C

∗)N = g.
The typical fibre of the tangent bundle of (C∗)N × CN is g⊕ CN . Con-

sider the differential d(μQ ◦ 	) of the composition of 	 with μQ :C
N → Rρ.
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Restricting to g induces a map from Lie algebra of (C∗)N to the tangent
space of Rρ. Given a curve γ : [0, 1]→ Rρ such that γ′(t) is in the image of g
under d(μQ ◦ 	), denote the lifted curve by γ̂ : [0, 1]→ g. Observe that it has
the property that μQ(P exp(γ̂(t)) 	 l0) = γ(t) for any choice l0 ∈ μ−1Q (γ(0)).

Now consider the curve γ(t) = μQ(exp(t ln g) 	 p). Observe that γ(0) =
μQ(p) and γ(1) = s. The proof then depends on the existence of a lift of γ′,
η : [0, 1]→ h ⊂ g. Once we have this lift, we can take h = P exp(η(1)). By
construction, γ′ ⊂ d(μQ ◦ 	)(g) since γ̂(t) = t ln g is a lift to g. We will prove
the existence of η by showing d(μQ ◦ 	)(g) = d(μQ ◦ 	)(h).

The differential d(μQ ◦ 	) annihilates u(1)N . So, we can restrict our
attention to its evaluation on RN

+ . As before, the action is diagonal and
so the rank of the differential at �q ∈ R≥0 equals the dimension of the small-
est coordinate subspace containing �q — that is, the number of non-zero
entries of �q. Note that it suffices to check when �q has all non-zero entries, as
the appearance of a zero-entry is the same as replacing N with N − 1.

As in Equation (8), the action of Rρ
+ is given by the product �λQt

�q. The
differential of the action is

d(�λQt

) · �q = diag

⎛
⎝ ρ∑

j=1

λQt
i Qt

ij d log λj

⎞
⎠

i

· �q.

The Jacobian can be written diag(qiλ
Qt

i)Qt, and it follows that the Jaco-

bian of μQ ◦ 	 is given by Q diag(qiλ
Qt

i)Qt. If we set f2 = diag(qiλ
Qt

i ) for a
diagonal square matrix f , then we can write the Jacobian as

(fQt)t(fQt).

The rank of fQt is the rank of Qt, and it is not too difficult to check that
any matrix of the form LtL has the same rank as L. It is also easy to check
that the rank of d(μQ ◦ 	) also equals the rank of Qt, so we are done. �

One consequence of these proofs is that if StabU(1)ρ(�z) is isomorphic to

T × U(1)�, for some torsion group T , then Stab(C∗)ρ(�λ 	 �z) is isomorphic to

T × (C∗)� for any �λ ∈ (C∗)ρ.
As with usual symplectic quotients (no regularity assumption here), the

map μ restricted to μ−1Q (s) descends to a map μX :X → RN . μX(X) lies in
the affine translation of Im A over s, so we regard it as a map

μX :X → Im A ∼=MR.

Here MR =M ⊗Z R.
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3.2. The Herbst criterion and affine Landau-Ginzburg points

The vector space im Q ∼= Rr ⊂ (u(1)ρ)∗ may be decomposed into regions
fitting together as a polyhedral fan known as the secondary fan[BFS90].
The level sets of μQ over the relative interior of its top-dimensional cones
define isomorphic toric varieties.

Furthermore, given two adjacent top-dimensional cones and correspond-
ing varieties, the quotient construction in Equation (7) applied to the
codimension-one cone separating them induces a proper birational transfor-
mation between the two varieties. See §3.4 of [CK00] for a nice exposition.

Given a point s ∈ Rr, one constructs the corresponding polytope by first
choosing a lift s̃ ∈ RN such that Q(s̃) = s. The polytope is defined to be

(9) Ps := {m ∈ MR | A(m) + s̃ ≥ 0} .

The constraints in the definition of Ps are easily reinterpreted as a collection
of N half-spaces in MR whose inward normal vectors are the rows of A.
Furthermore, one can show that the image of the polytope under the map
m 	→ A(m) + s̃ is exactly μX(X). For this reason, Ps is known as the moment
polyhedral set of X at level s.

Definition 3.4. The relative interior of a top-dimensional cone of the sec-
ondary fan is called a phase of the associated GLSM.

Definition 3.5. A point in the secondary fan is stable if it is contained in
the relative interior of a top-dimensional cone.

Definition 3.6. A stable point s ∈ Rr is affine if the polytope Ps is a
top-dimensional simplicial cone in MR.

The nomenclature affine is justified, since via standard construction
[Ful93], vertices in the polytope correspond to affine open sets that are glued
together using the data of higher dimension faces. As there is one vertex in
a polyhedral cone there is only one open set. In §3.3, we will show that in
fact the quotient is Cn/Γ for Γ a finite abelian group.

Lemma 3.7. The map Q satisfies the Herbst Criterion iff there is an affine
stable point in its image.
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Proof. Consider a charge matrix Q satisfying the Herbst Criterion — it may
be written in the form (5). Since A is full rank, there is a basis such that

(10) A =

(
Nr×n
1n×n

)
.

Furthermore, the sequence (4) implies that nr×n = −Nr×n.
We now use these facts to construct a simplicial polytope. Select a point

σ in the positive orthant of Rr (positive in the basis chosen so that Q is as
in Equation (5)). One may then select a lift σ̃ ∈ RN whose first r entries are
σ and whose final n entries are zero.

The resulting half-spaces are of two types: those arising the first r rows
of A, and those arising from the last n rows. Those defined by the first r
rows are of the form

(11) H+
i = {m ∈ MR | Ni ·m ≥ −σi},

while those defined by the last n rows take the form

H+
j = {m ∈ MR | mj ≥ 0}.

Half-spaces defined by the last rows pick out the positive orthant of MR,
and since the entries of N are all non-negative, any m ∈ M+

R will satisfy the
inequality (11). Thus, the polytope consists of the positive orthant, which
is a top-dimensional simplicial cone in MR. Since σ may be taken to be any
element in the positive orthant, one may choose it to be stable.

To prove the converse, let P ⊂ MR
∼= Rn be a top-dimensional simpli-

cial cone defined by N half-spaces. We first show by contradiction that the
inward-pointing normal vectors of all N half-spaces are contained in P .

By translations, we can take the apex of the cone P to be the origin in
MR. Let {e1, . . . , en} generate the rays of P , so that P = Cone(e1, . . . , en).
Define 〈 , 〉 so these vectors are orthonormal. Let H+ be a half-space with
normal ζ �∈ P : by definition, we have

H+ := {m ∈ MR | 〈m, ζ〉 ≥ −a}.

Note that if a < 0, H+ does not contain the origin, so that a ≥ 0. Further-
more, stability implies that a > 0.
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Since ζ �∈ Cone(e1, . . . , en), there exists an ej with 〈ej , ζ〉 = β < 0. Then
for all α > |a/β|,

〈αej , ζ〉 = αβ < − |a| .
Therefore αej is not in Cone(e1, . . . , en), a contradiction.

Since all the inward normals are positive, a basis for A exists (the ej)
such that (10) holds with all entries of N positive — exactly the Herbst
Criterion. �

Definition 3.8. An affine Landau-Ginzburg point of a GLSM is an affine
stable point such thatW :X → C has an isolated critical point. The phase in
which an affine LG point lies is known as an affine Landau-Ginzburg phase.

Hereafter, we will refer to an affine LG point (phase) as an LG point
(phase). As mentioned earlier, in an LG phase X ∼= Cn/Γ for a finite group
Γ ⊂ U(1)n. We shall explain the origin of Γ and how to compute it in §3.3.
Also, note that if the critical locus of W is compact at an affine stable
point then it is zero-dimensional, and a “nearby” LG phase may be found
by modifying the coefficients of the monomials in W so that its critical
locus contracts to a single point. In fact, compactness of the critical locus is
independent of phase, as the following lemma shows.

Lemma 3.9. Consider a GLSM with secondary fan Σ and two top-
dimensional cones σ, σ′ ⊂ Σ and corresponding toric varieties X, X ′. If W
is a function on X with compact critical locus, the induced function W ′ on
X ′ has compact critical locus as well.

Proof. X and X ′ are related by a proper birational transformation over the
toric variety defined by σ′′ = σ ∩ σ′. The critical loci are related by strict
transform, because W and W ′ factor through W ′′. Such operations do not
effect the compactness or non-compactness of a set. �

Remark 3.10. If W :CN → C is a (C∗)ρ-invariant function whose critical
locus is compact in some phase, its critical locus is compact in every phase.

Theorem 3.11. The Herbst Criterion together with a (C∗)ρ-invariant func-
tion on CN whose critical locus is compact after quotienting (in any/every
phase) is equivalent to the existence of an affine Landau-Ginzburg point.

Proof. Immediate, by Lemmas 3.7 and 3.9. �
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For convenience, let us define the cone of an r × n integer matrix as the
cone over the convex hull of its columns, thought of as n elements of Rr.

Definition 3.12. Let T :Zr → Zn and fix a basis for Zr. Then

Cone(T ) := {ν ∈ Rn = Zn ⊗Z R | ν = T (ρ) for ρ ∈ Rr
≥0}.

Remark 3.13. Theorem 3.11 shows that GLSMs admitting an affine
Landau-Ginzburg phase are both extremely common and easily produced.
One may be found by simply choosing an arbitrary r × r integer matrix R
with non-zero determinant and selecting a finite set S ⊂ Cone(−R) ∩Zr.
Then the matrix whose entries are R and S, as in Equation (12) below,
satisfies the Herbst criterion.

3.3. Orbifold structure of the Landau-Ginzburg phase

Of great importance to the physics of the LG model is the finite group Γ. It
determines the twisted sector of the model, which controls much of the non-
trivial dynamics. As we now show, this group is inherited from the U(1)r

action in the GLSM as the stabilizer of certain coordinates on CN .
Consider a charge matrix Q satisfying the Herbst Criterion, assumed for

simplicity to be a full-rank matrix. Order the columns of Q so that it takes
the form

(12) Q =
(
R S

)
,

with R an r × r integer matrix with non-zero determinant such that R−1 ·Q
is of the form given in Equation (5).

Choose s to lie in the relative interior of Cone(R) ⊂ Rr so that the
polytope is a simplicial cone, and consider the quotient X as the algebraic
quotient (CN\E)/(C∗)r. Since the polytope is a cone, the excluded set is
the union of coordinate hyperplanes in CN corresponding to the half-spaces
that do not define codimension-one faces of the cone.

The action of the torus (C∗)r on Spec C[x±11 , . . . , x±1r , y1, . . . , yn] =
(CN\E) is then

C[x±11 , . . . , x±1r , y1, . . . , yn]→ C[z±11 , . . . , z±1r , x±11 , . . . , x±1r , y1, . . . , yn]

xi 	→ xiz
Rt

i

yj 	→ yjz
St

j .

(13)
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Here, we have set zR
t
i =

∏
k z

Rt
ik

k and zS
t
j =

∏
k z

St
jk

k as in Equation (6).
Define Γ ⊂ (C∗)r to be the stabilizer of the x’s under this action:

Γ := Spec
C[z±11 , . . . , z±1r ]

〈zRt
1 − 1, . . . , zRt

r − 1〉 ⊂ (C∗)r.

Lemma 3.14. Consider Rt :Zr → Zr as a morphism of abelian groups.
Then Γ ∼= cok Rt is a finite abelian group.

Proof. Note that Γ ⊂ U(1)r ⊂ (C∗)r iff for all z ∈ Γ, 1/z ∈ Γ. By invert-
ing the relation zR

t

= 1, we have 1 = 1/zR
t
j =

∏r
k=1(1/zk)

Rkj so Γ ⊂ U(1)r.
Now, consider the following commutative diagram of abelian groups with
exact rows:

0 �� Zr i �� Rr exp
�� U(1)r �� 0

0 �� Zr Rt
�� Zr ��

(Rt)−1

��

cok Rt ��

��

0.

Let z ∈ cok Rt, and z̃ ∈ Zr a lift of z. Then, composing the lift with
(Rt)−1 and exp yields z̃ 	→ exp

(
2πi(Rt)−1 · z̃), which satisfies

exp
(
2πi(Rt)−1z̃

)Rt

= e2πiz̃ = 1.

Thus cok Rt ⊂ Γ.
Let γ ∈ Γ be a non-trivial element, and choose a lift γ̃ ∈ Rr. Since γR

t

=
1, (Rt) · γ̃ ⊂ Zr, so γ̃ maps to Zr in the bottom row. Furthermore, (Rt)−1γ̃
is not in the image of Zr, since otherwise γ = 1. Thus, it lies in the cokernel
and Γ ⊂ cok Rt.

In both cases, lift independence follows from usual diagram chasing.
Since R is full-rank, we have that cok Rt ∼= Γ is a finite abelian group. �

It will also be important for us to know the precise form of Γ.

Proposition 3.15. Let D be the Smith normal form of R, D = URV with
U and V invertible over Z, and denote its diagonal entries by di for 1 ≤ i ≤ r.
Then

Γ ∼= Zd1
× · · · ×Zdr

∼= Spec
C[ζ±11 , . . . , ζ±1r ]

〈ζd1

1 − 1, . . . , ζdr
r − 1〉 .

Proof. By Lemma 3.14, Γ ∼= cok Rt. Transposing the expression of the Smith
normal form above, we obtain a commutative diagram of abelian groups with
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exact rows:

0 �� Zr i �� Rr exp
�� U(1)r �� 0

0 �� Zr Rt
�� Zr ��

(Rt)−1

��

Γ ��

��

0

0 �� Zr Dt
��

U t

��

Zr

(V t)−1

��

��

(Dt)−1

��

⊕r
a=1Zda

|	
��

��

�� 0

0 �� Zr i �� Rr
exp

�� U(1)r �� 0.
..............................

...
...
..
..
..
..
..
..
..
..
..
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
..
..
..
..
..
..
..
..

..
...

...
.....

..........................��

U t

The induced morphism between U(1)r and U(1)r obtains by first lifting
and then composing the vertical morphisms in the center columns, U t =
(Rt)−1(V t)−1Dt. In particular, it is given by exponentiation as in Equa-
tion (6); for ζ ∈ U(1)r,

(14) ζ 	→ ζU
t

= (ζU
t
1 , . . . , ζU

t
r ).

A standard diagram chase shows that the composition is independent of the
chosen lift. That U t is an isomorphism follows immediately from the fact
that U is invertible over the integers. Furthermore, the induced action on⊕r

a=1Zda
⊂ U(1)r is the desired isomorphism. �

The Smith normal form may be easily computed by employing, for exam-
ple, the smithNormalForm() command in Macaulay2[GS]. Now that we have
established that the stabilizer is a finite abelian group, we show that the
quotient is in fact an orbifold of Cn by this group.

Theorem 3.16. In a Landau-Ginzburg phase the quotient X ∼= Cn/Γ.

Proof. Since R is full rank, for all (x, y) ∈ CN\E, there exists a z ∈ (C∗)r

such that zRx = 1. Thus, for any [(x, y)] ∈ X,

[(x, y)] = [(1, y′)].
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Furthermore, since Γ ⊂ (C∗)r is the stabilizer of the x’s, [(1, y)] = [(1, γS
t

y)]
for all γ ∈ Γ and [(1, y)] ∈ X. It follows immediately that the map

X → Cn/Γ

[(1, y)] 	→ [y]

is an isomorphism. �

Remark 3.17. As indicated above, the action of Γ on Cn is specified by
S as in Equation (13) and the action of the presentation

⊕r
a=1Zda

of Γ is
given by

ζ 	→ (ζU
t

)S
t

with ζU
t

as in Equation (14).

A natural question to ask is whether or not the affine phase is unique;
that is, if there are two affine phases in the secondary fan, are the resulting
quotients isomorphic? The answer is affirmative, as the following theorem
shows.

Theorem 3.18. Affine quotients are unique up to unique isomorphism.

Proof. First, we note that the ring of regular functions for any quotient Xs is
independent of phase in which s lies. Rational functions on any toric variety
are spanned by characters on the torus, and a character is regular iff it
vanishes along each toric divisor. As the order of vanishing along a divisor is
given by the entries of the map A in Equation 4, the ring of regular functions
depends only on A. Since the quotient Xs is an affine variety whenever s is
an affine stable point, the result follows immediately. �

As we will see in Example 4.4, the finite groups may differ across affine
phases, but they yield the same action on Cn.

4. Examples

The Herbst Criterion allows ready implementation, whether by hand or as
part of a computer program. Typically, one restricts attention to the map
RN → Im Q. In this case, Theorem 3.11 says that

Remark 4.1. An affine stable point exists iff there exists a non-zero maxi-
mal minor of Q (arising say, from a submatrix R) such that entries of R−1Q
away from R are non-positive. Here R is inverted over Q.
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As in §3.3, we may then order the columns of Q so that Q = (R S),
R−1S has non-positive rational entries, and the LG phase is Cone(R). This
follows from the changing basis for the D-terms in (2) to produce the form
of Q given in (5):

N∑
i=1

(R−1 ·Q)ai
∣∣φi

∣∣2 = (R−1 · r)a

N∑
i=1

(1 n)ai
∣∣φi

∣∣2 = sa.

Then, R provides the basis change back to the original coordinates, so that
positive sa leads to the cone over R. As in the proof of Lemma (3.7), sa > 0
for all 1 ≤ a ≤ r denotes an LG point.

A program to find submatrices of a specified charge matrix that define
an LG phase is given in Appendix A.

Physically, one would like to know which of the bosons in the theory (the
Cox coordinates) obtain VEVs in the low-energy limit and which become
coordinates in the LG phase. As mentioned before, in an LG phase the
excluded set in CN is a union of coordinate hyperplanes. In the notation
above, these coordinates correspond to the first r φ’s. Assuming an appro-
priate choice for superpotential, one will have that these first r coordinates
obtain VEVs while the remaining n become coordinates in the LG phase.

Example 4.2 (Example 1.1, redux). Consider a GLSM with charge
matrix Q = (1, 1,−2) and superpotential W = φ0(φ

2
1 + φ2

2 + φ1φ2). In the
geometric phase the quotient variety is the canonical bundle of P1. The
D-term in this model is

|φ1|2 + |φ2|2 − 2 |φ0|2 = r.

As before, one takes R = (−2), so that n = (−1
2 ,−1

2), s = −1
2r, and the

image of the polytope in R3 is

|φ0|2 = s+
1

2

(
|φ1|2 + |φ2|2

)
,

Since the excluded set for positive s is the coordinate hyperplane {φ0 =
0}, critical points of the superpotential occur only at φ1 = φ2 = 0. Thus
φ0 obtains a VEV, which may be chosen as 〈φ0〉 =

√
s, while φ1 and φ2

become coordinates in the LG phase. It is furthermore clear that the Smith
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r1

r2

Figure 1: The Landau-Ginzburg phase for Example 4.3.

normal form of R is (2), so that the finite group is Z2 acting as (φ1, φ2) 	→
(−φ1,−φ2).

Example 4.3 (Example 1.3, redux). In this model, we found that Q in
Equation (1) may be written as Q = (R S) with

R =

(
1 −4
−2 0

)
and S =

(
0 0 1 1 1
1 1 0 0 0

)
,

so the LG phase is given by Cone(R) for appropriate choice of superpoten-
tial. See Figure 1, and compare with Figure 2 of [MRP95] (up to quantum
corrections). It is easy to check that the Smith normal form of R is

D = U R V =

(
8 0
0 1

)
=

(
2 1
1 1

)(
1 −4
−2 0

)(
4 −1
−1 0

)
,

so that Γ ∼= Z8 ×Z1 ⊂ U(1)2 and X = C5/Z8. To find the action of Z8 on
C5, let (ζ1, ζ2) be generators of Z8 ×Z1 so that

ζ 	→ ζU
t
j

(ζ1, ζ2 = 1) 	→ (ζ21ζ2, ζ1ζ2) = (ζ21 , ζ1),

and the action on coordinates is determined by S as:

(φ1, φ2, φ3, φ4, φ5)
�(ζ

Ut
)S

t

�� (ζ1φ1, ζ1φ2, ζ
2
1φ3, ζ

2
1φ4, ζ

2
1φ5).
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Example 4.4. Consider the charge matrix

(15) Q =

(
0 1 1 1 1 −4
1 0 0 0 −2 0

)
.

There are two cones of the secondary fan containing affine stable points:

Cone((0, 1), (−4, 0)) and Cone((1,−2), (−4, 0)).

One can easily check that the finite groups are Z4 and Z8, respectively, but
both have Z4 actions on C6.

Appendix A. Algorithm implementation

The following Mathematica[WRI08] program takes a full-rank matrix of
charges Q, and returns a list of the Landau-Ginzburg phases. Each phase is
presented as the submatrix R of Q as in Remark 4.1 along with the column
numbers of Q from which R was obtained.

InvertibleSubs[Q_List] := Module[{r,out,sub,i,j,sets,Qsub},

out = {};

r = MatrixRank[Q];

sets = Subsets[Table[i, {i, 1, Length[Q[[1]]]}], {r}];

For[i = 1, i <= Length[sets], i++,

sub = Transpose[(Transpose[Q][[#]] & /@ sets[[i]])];

If[Det[sub] != 0,

Qsub = Q;

For[j = 1, j <= Length[sets[[i]]], j++,

Qsub = Transpose[Drop[Transpose[Qsub],

{Sort[sets[[i]], Greater][[j]]}]]

];

Qsub = Inverse[sub].Qsub;

If[Plus @@ (If[# > 0, 1, 0] & /@ Flatten[Qsub]) == 0,

AppendTo[out, {sub, sets[[i]]}];

]

]

];

Return[out];

]
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