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Generalized Donaldson-Thomas invariants

of 2-dimensional sheaves on local P2

Amin Gholampour and Artan Sheshmani

Let X be the total space of the canonical bundle of P2. We study
the generalized Donaldson-Thomas invariants defined in [JS11] of
the moduli spaces of the 2-dimensional Gieseker semistable sheaves
on X with first Chern class equal to k times the class of the zero
section of X. When k = 1, 2, or 3, and semistability implies sta-
bility, we express the invariants in terms of known modular forms.
We prove a combinatorial formula for the invariants when k = 2 in
the presence of the strictly semistable sheaves, and verify the BPS
integrality conjecture of [JS11] in some cases.

1. Introduction

The study of abelian gauge theory on R4 led string theorists to discover an
interesting symmetry, the electric-magnetic duality, which inverts the cou-
pling constant and extends to an action of SL2(Z). This SL2(Z) symmetry
was later studied over the more general 4-manifolds, some with specific topo-
logical twists, where it was called S-duality , say in the context of N = 2, 4
supersymmetric Yang-Mills theories. The S-duality is roughly saying that
certain 4-dimensional gauge theories are modular invariant under the action
of the SL2(Z). This modular invariance can be tested by studying the parti-
tion function of the theory, roughly speaking, measuring the Euler character-
istic of the instanton moduli space of that theory. One of interesting results
by string theorists in [VW94] was to show that the topological quantum field
theories obtained by the so-called (topologically) twisted super Yang-Mills
theories over the four manifold and their associated partition functions are
equivalent to Donaldson’s theory of four manifolds and the associated parti-
tion function of Donaldson’s invariants. These interesting consequences of S-
duality, later set base for much further developments, such as the correspon-
dence between the supersymmetric black hole entropies and N = 2, d = 4
super Yang-Mills theories [OSV04]. Recently the study of the conjectural
modular properties of the BPS partition functions of the supersymmetric
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D4-D2-D0 black holes [GSY07], [GY07] motivated algebraic geometers to
construct a mathematical framework for modeling the D4-D2-D0 BPS states
and prove the modularity properties of their associated partition functions,
using purely algebraic-geometric techniques. The current article is the third
in the sequel, after [GS13] and [GST13], of the authors’ attempt to achieve
this goal where here, the focus of the study is to specifically compute the
D4-D2-D0 BPS invariants via computing their mathematical counterpart
given by the Donaldson-Thomas invariants of torsion sheaves in an ambient
Calabi-Yau threefold.

Let (X,O(1)) be a smooth projective Calabi-Yau threefold. For a pure
sheaf F the Hilbert polynomial is defined to be PF (m) = χ(X,F(m)), and
the reduced Hilbert polynomial of F is

pF =
PF

leading coefficient of PF
= md + aFm

d−1 + · · · .

• F is called Gieseker semistable if for any proper subsheaf G ⊂ F we
have pG(m) ≤ pF (m) for m� 0. F is called Gieseker stable if the
equality never holds for any proper subsheaf G.

• F is called µ-semistable if for any proper subsheaf G ⊂ F we have
aG ≤ aF . F is called µ-stable if the equality never holds for any proper
subsheaf G.

• For a fixed n� 0, a pair (F , s), where s is a nonzero section of F(n),
is called stable ([JS11, Section 12]) if
1) F is Gieseker semistable,
2) if s factors through a proper subsheaf G(n) then pG(m) < pF (m)

for m� 0.

The stability of pairs has originated from the stability of the coherent
systems defined by Le Potier [Pot93]. The reduced Hilbert polynomial of the
pair (F , s) is defined to be

(1) p(F ,s) =
PF + δ0sε

leading coefficient of PF

where and 0 < ε� 1. Now if G ⊂ F , define s′ to be the restriction of s if
s factors through G(n), and otherwise define s′ = 0. Now the pair (F , s) is
stable if and only if for any proper subsheaf G ⊂ F , p(G,s′) < p(F ,s).

Suppose now that M =M(X;P ) is a proper moduli space of Gieseker
stable sheaves F (or the moduli space of stable pairs (F , s)) as above with
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fixed Hilbert polynomial PF = P . The moduli space M is usually singu-
lar and may have several components with different dimensions. To define
(deformation invariant Z-valued) invariantsDT (X;P ) as integration overM
we need to have a virtual fundamental class of the moduli space constructed
by means of a perfect obstruction theory on M. This can be obtained by
studying the deformations and obstructions of the stable sheaves or the
stable pairs [BF97, LT98, Tho00, HT10]. Moreover, the obstruction theory
on M is symmetric and the corresponding invariants are expressible as a
weighted Euler characteristic of the moduli space [Beh09].

If the moduli space of Gieseker semistable sheaves M =M(X;P ) con-
tains strictly semistable sheaves, then one cannot define the invariants
DT (X;P ) by means of the virtual fundamental class. Joyce and Song [JS11]
instead define the Q-valued invariants for M called the generalized DT
invariants DT (X;P ) which are given by the “stacky” weighted Euler char-
acteristic of the moduli space of semistable sheaves. Joyce-Song stable pairs
theory [JS11] provides a tool to compute the so-called stacky Euler charac-
teristics, by using the sophisticated motivic wall-crossing techniques devel-
oped by Joyce [J08], as well as Kontsevich and Soibelman in [KS08]. In other
words, the main idea is to benefit from the, easier to calculate, Joyce Song
pair invariants to compute the generalized DT invariants. The latter can be
done by obtaining a wall-crossing identity between the the elements of the
Hall algebra of the motivic ring of stack functions of the moduli space of
stable pairs and the moduli space of semistable sheaves respectively. After
taking the stacky Euler characteristics of both sides of this identity, one
obtains the wall-crossing identity between the pair invariants and the gener-
alized DT invariants. Note that, DT (X;P ) specializes to DT (X;P ) if there
are no strictly semistable sheaves and moreover, DT (X;P ) is also deforma-
tion invariant.

We study the case where X is the total space of the canonical bundle of
P2 andM(X;P ) is the moduli space of semistable sheaves with Hilbert poly-
nomial P (m) = rm2/2 + · · · . Any semistable sheaf F with Hilbert polyno-
mial P is (at least set theoretically) supported on the zero section of X, and
c1(F) is equal to r times the class of the zero section. We relate DT (X;P )
to the topological invariants of the moduli space of torsion-free semistable
sheaves on P2. Using the wall-crossing formula of Joyce-Song [JS11] and the
toric methods of [Per04, Koo08] we find a formula for DT (X;P ) when r = 2
in the presence of strictly semistable sheaves. To express the main result, let
M(P2;P ) be the moduli space of rank 2 Gieseker semistable sheaves on P2

with Hilbert polynomial P and let Ms(P2;P ) be the open subset of stable
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sheaves. Denote by Hilbn(P2) the Hilbert scheme of n points on P2. Then
we prove

Theorem 1. Let P (m) = m2 + 3m+ 2 + b where 0 ≥ b ∈ Z,

1) If b is an odd number then DT (X;P ) = DT (X;P ) = χ(M(P2;P )).

2) If b is an even number then

DT (X;P ) = χ(Hilb−b/2(P2))/4− χ(Ms(P2;P ))− 1

2
css(b),

where css(b) ∈ Z is a combinatorial expression (cf. Theorem 2.15) tak-
ing into account the contribution of indecomposable strictly semistable
sheaves.

DT (X;P ) is in general a rational number in the presence of semistable
sheaves. Joyce and Song in [JS11, Section 6.2] define the corresponding BPS
invariants denoted by D̂T (X;P ) by the following formula:

DT (X;P ) =
∑

d≥1, d|P (m)

1

d2
D̂T (X;P/d).

Joyce and Song conjecture that D̂T (X;P ) is an integer. In the case that
there are no strictly semistable sheaves with Hilbert polynomial P we have
D̂T (X;P ) = DT (X;P ).

Corollary 2. Using the notation of Theorem 2.15, we assume that b is an
even number then 1

D̂T (X;P ) = −χ(Ms(P2;P ))− 1

2
css(b).
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1By this result to show D̂T (X;P ) ∈ Z one needs to show that css(b) ∈ 2Z.
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2. Proof of Theorem 1

Let X be the total space of O(−3) over P2. Then X is a quasiprojective
Calabi-Yau threefold, called local P2. Let L be the pullback of O(1) from
P2, and let S ∼= P2 ⊂ X denote the zero section. We identify the compactly
supported cohomology groups of X with the cohomology groups of P2:

H∗cs(X,Q) ∼= H∗−2(P2,Q).

Using this identification, let H ∈ H2
cs(X,Q), h ∈ H4

cs(X,Q), pt ∈ H6
cs(X,Q)

be respectively the classes of S, a line and a point on S. The Hilbert polyno-
mial (with respect to L) of a 2-dimensional compactly supported coherent
sheaf F on X with the compactly supported Chern character

chcs(F) =
(
0, kH, (3k/2 + a)h, (3k/2 + 3a/2 + b)pt

)
∈ ⊕3

i=0H
2i
cs(X,Q)

is given by

P (m) =
k

2
m2 +

3k + 2a

2
m+

3k + 2a+ 2b

2
.

Any such F is set theoretically supported on S. Moreover, we have

Lemma 2.1. If F as above is semistable 2, then F is scheme theoretically
supported on S and hence

M(X;P ) ∼=M(P2;P ),

the moduli space of rank k semistable sheaves on P2 with Hilbert polyno-
mial P .

Proof. The ideal sheaf of S in X is isomorphic to L3, hence we get the exact
sequence

F ⊗ L3 → F → F|S → 0.

Since F is semistable, the first morphism in the sequence above is necessarily
zero and hence F ∼= F|S . �

Note that for any stable torsion-free sheaf F on P2 we have Ext2(F ,F) = 0
by Serre duality and the negativity of KP2 ∼= O(−3). Therefore, if P (m)
is such that there are no strictly semistable sheaves on P2 with Hilbert

2Whenever we mention (semi)stability of sheaves, unless otherwise is specified,
we always mean Gieseker (semi)stability.
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polynomial P (m), then the moduli spaceM =M(X;P ) ∼=M(P2;P ) is un-
obstructed and smooth of dimension

dimM = 1− χ(F ,F) = −2kb+ a2 − k2 + 1,

where as a sheaf on P2

ch0(F) = k, ch1(F) = a · h, ch2(F) = b · pt.

In this case the Behrend’s function is determined by νM = (−1)dimM [Beh09],
and hence

DT (X;P ) = (−1)dimMχ(M).

The generating function of the Euler characteristic of the moduli space of
µ-stable torsion-free sheaves on P2 is known for k = 1, 2, 3, by the results of
[Koo09, Kly91, Got90, Man10, VW94] and they all have modular properties.
Here is the summary of these results:

1) k = 1. By tensoring with O(−a) we can assume that a = 0. So then
M(X;P ) ∼= Hilb−b(P2), the Hilbert scheme of −b points on P2, which
is smooth of dimension −2b. Note that in this case there are no strictly
semistable sheaves on P2 with Hilbert polynomial m2 + 3m/2 + b+ 1,
so by [Got90]

(2)
∑
b

DT (X;m2/2 + 3m/2 + b+ 1)q−b =
∏
n>0

1

(1− qn)3
.

2) k = 2. By tensoring with O(b−a/2c) we can assume that either a = 0
or a = 1. If a = 1 then there are no strictly semistable sheaves with the
corresponding Hilbert polynomial m2 + 4m+ 7/2 + b (and µ-stability
is equivalent to Gieseker stability) and henceM(X;m2 + 4m+ 7/2 +
b) is smooth of dimension −4b− 2 so by [Koo09, Corollary 4.2]∑

b∈(1/2)Z
b6=bbc

DT (X;m2 + 4m+ 7/2 + b)q1/2−b

= χ(M(X;m2 + 4m+ 7/2 + b))

=
1∏

n≥0(1− qn)6

∞∑
m=1

∞∑
n=1

qmn

1− qm+n−1
.

When a = 0, there are strictly semistable sheaves with Hilbert polyno-
mial m2 + 3m+ 2 + b only when b ∈ 2Z. If b 6∈ 2Z then M is smooth
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of dimension −4b− 3. So for b = 2b′ + 1

DT (X;m2 + 3m+ 3 + 2b′) = −χ(M(P2;m2 + 3m+ 3 + 2b′)).

We will study the case b ∈ 2Z in more detail in what follows in this
section.

3) k = 3. We can assume again that a = 0, 1 or 2. In the latter two cases
M has no strictly semistable sheaves (and µ-stability is equivalent to
Gieseker stability) and there is a modular formula for the generating
function DT (X;P ) in terms of the generating function of the Euler
characteristics of M(P2;P ) computed in [Koo09, Section 4.3].

In the following we compute DT (X;P ) in the presence of semistable
sheaves when k = 2. By the discussion above strictly semistable sheaves
only occur if a = 0 and b ∈ 2Z. Let

(3) P (m) = m2 + 3m+ 2 + b, b ∈ 2Z

be the corresponding Hilbert polynomial. We use the moduli space of stable
pairs in the sense of [JS11].

For n� 0, let Pn = Pn(X;P ) be the moduli space of stable pairs (F , s)
where F is a semistable sheaf of rank 2 with Hilbert polynomial (3), and s is
a nonzero section of F(n). The stability of pairs further requires that if G 6= 0
is a proper subsheaf of F , such that s factors through G(n), then the Hilbert
polynomial of G is strictly less than the Hilbert polynomial of F . By [JS11]
Pn admits a symmetric perfect obstruction theory. Let PIn = PIn(X;P ) be
the corresponding pair invariants. Note that, even though X is not proper,
Pn is proper (as all the semistable sheaves are supported on P2 ∼= S ⊂ X)
so PIn is well defined. Alternatively, PIn = χ(Pn, νPn

).

Lemma 2.2. DT (X;P ) = DT (X;P/2)2 · P (n)/8− PIn(X;P )/P (n).

Proof. This is a direct corollary of the wall-crossing formula [JS11, 5.17]
by noting two facts. Firstly, the only decomposable semistable sheaves with
Hilbert polynomial P are of the form IZ1

⊕ IZ2
where IZ1

and IZ2
are the

push forwards to X of the ideal sheaves of the 0-dimensional subschemes
Z1, Z2 ⊂ P2 of length −b/2. Secondly, the Euler form χ(IZ1

, IZ2
) = 0. �

Remark 2.3. Note the polynomial on the right hand side of Lemma 2.2 is
a rational number independent of n� 0.
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There is a natural morphism Pn →M that sends a stable pair (F , s)
to the S-equivalence class of F . Note that M is singular at a point corre-
sponding to a strictly semistable sheaf. However, we have

Proposition 2.4. Pn(X;P ) is a smooth scheme of dimension P (n)−4b−4.

Proof. We denote by I• the 2-term complex O(−n)
s(−n)−−−→ F corresponding

to a stable pair (F , s). By the stability of pairs F has to be a semistable
sheaf and hence Lemma 2.1 implies that

Pn(X;P ) ∼= Pn(P2;P ),

the moduli space of the stable pairs on P2. The Zariski tangent space and
the obstruction space at a C-point (F, s) ∈ Pn are then identified with
HomP2(I•,F) and Ext1

P2(I•,F) respectively. Consider the following natu-
ral exact sequence:

0→ HomP2(F ,F)→ HomP2(O(−n),F)→ HomP2(I•,F)→ Ext1
P2(F ,F)

→ Ext1
P2(O(−n),F)→ Ext1

P2(I•,F)→ Ext2
P2(F ,F)

Since n� 0, we have ExtiP2(O(−n),F) ∼= H i(P2,F(n)) = 0 for i > 0.
We also know that Ext2

P2(F ,F) = 0 by Serre duality and the semista-
bility of F . So the exact sequence above firstly implies that Ext1(I•,F) = 0
which means that Pn is unobstructed and hence smooth, and secondly

dim Hom(I•, F ) = χP2(F(n))− χP2(F ,F) = P (n)− 4b− 4. �

By Proposition 2.4, and noting that P (n) ∈ 2Z (see (3)), we have

Corollary 2.5. PIn(X;P ) = χ(Pn(X;P )) = χ(Pn(P2;P )).

We will find χ(Pn(P2;P )) using toric techniques. According to [Koo09],
a torsion-free T = C∗2-equivariant sheaf F on P2 corresponds to three com-
patible σ-families, F1, F2, F3 one for each of the standard T-invariant open
subsets U1, U2, U3 of P2. For any element m of the character group of T
identified with Z2, Fi(m) = Γ(Ui,F)m, the eigenspace corresponding to m
in the space of sections of F on Ui. A triple of σ-families giving rise to a
T-equivariant sheaf is called a ∆-family.

A T-equivariant rank 1 torsion-free sheaf I on P2 is determined by three
integers u, v, w and three 2d partitions π′1, π

′
2, π
′
3. Figure 1 from left to right

indicates the σ-families I1, I2, I3 over U1, U2, U3, respectively.
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(u, v)

π′1 π′2 π′3

•
(v, w)

•
(w, u)

•

Figure 1. ∆-family for a T-equivariant rank 1 sheaf

For any j = 1, 2, 3 we have Ij(m) = 0 if m is below the horizontal axis, on
the left of the vertical axis, or inside the partition π′j . Otherwise, Ij(m) = C.
Moreover, we have (see [Koo08, Proposition 3.16])

ch1(I) = −u− v − w,
ch2(I) = (u+ v + w)2/2−#π′1 −#π′2 −#π′3.

A T-equivariant rank 2 torsion-free sheaf F on P2 (up to tensoring with
a degree 0 T-equivariant line bundle) is determined by a ∆-family given by

i) an integer A,

ii) three nonnegative integers ∆1,∆2,∆3,

iii) a 1-dimensional subspace pi ⊂ C2 one for each ∆i 6= 0 (if ∆i = 0 we set
pi = 0),

iv) six 2d partitions π1
j , π

2
j for j = 1, 2, 3.

Definition 2.6. We call a ∆-family corresponding to a T-equivariant rank
2 torsion-free sheaf F on P2 non-degenerate if p1, p2, p3 are pairwise distinct
and nonzero.

Figure 2 indicates the corresponding ∆-family (F1, F2, F3) in the case
p1, p2, p3 are pairwise distinct 3. The points indicated by • have the coor-
dinates (0, 0), (0, A), (A, 0), respectively. The partitions π1

j , π
2
j are placed

respectively at the points (indicated by ×) with the coordinates

(0,∆2), (∆1, 0), (0, A+ ∆3), (∆2, A), (A,∆1), (A+ ∆3, 0).

Figure 3, indicates a typical degenerate case in which p1 = p2 6= p3.
Everything is the same as in the non-degenerate case except that we repo-
sition the partitions π1

1, π
2
1 to respectively the points with the coordinates

3each diagram corresponds to the σ-family Fi on Ui.
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�- �- �-

?

6

?

6

?

6

∆1

∆2

π1
1

π2
1

π1
2

π2
2

π1
3

π2
3

∆2

∆3

∆3

∆1• • •

×

×

×
×
××

(0, 0) (0, A) (A, 0)

Figure 2. A non-degenerate ∆-family corresponding to a rank 2 T-
equivariant sheaf

(0, 0), (∆1,∆2). Similarly if p1 6= p2 = p3 (respectively p1 = p2 6= p3) then we
reposition the partitions π1

2, π
2
2 (respectively π1

3, π
2
3) to the points with the

coordinates (0, A), (∆2, A+ ∆3) (respectively (A, 0), (A+ ∆3,∆1)). Finally,
if p1 = p2 = p3 then we bring all the partitions to the point with new coor-
dinates (indicated by •).

�- �- �-

?

6

?

6

?

6

∆1

∆2

π2
1

π1
1

π1
2

π2
2

π1
3

π2
3

∆2

∆3

∆3

∆1

•
•

• • •
•

×
×

× ×
(0, 0) (0, A) (A, 0)

Figure 3. A degenerate ∆-family corresponding to a rank 2 T-equivariant
sheaf

For any j = 1, 2, 3, we denote by S1
j , S

2
j the vertical and the horizontal

strips made by two vertical and two horizontal lines in each diagram:

S1
1 = {(x, y) | x ≥ 0, 0 ≤ y < ∆1}, S2

1 = {(x, y) | y ≥ 0, 0 ≤ x < ∆2}
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etc. We also denote by R1, R2, R3 the areas located above the horizontal
strip and to the right of the vertical strip:

R1 = {(x, y) | x ≥ ∆1, y ≥ ∆2}

etc. We then have (we use the convention p4 = p1)

(F1) Fj(m) = 0 if either m ∈ π1
j ∩ π2

j , m ∈ Sij ∩ πi
′

j , m is on the left of the

strip S1
j , or m is below the strip S2

j .

(F2) Fj(m) = pj ∩ pj+1, m ∈ S1
i ∩ S2

i − π1
j .

(F3) Fj(m) = C2 if m is in Rj − π1
j − π2

j .

(F4) Suppose that pj 6= pj+1 then Fj(m) = pj if m ∈ S1
j − π1

j or if m belongs

to a connected component of π2
j − π1

j adjacent to a member of S1
j −

π1
j ; and Fj(m) = pj+1 if m ∈ S2

j − π2
j or if m belongs to a connected

component of π1
j − π2

j adjacent to a member of m ∈ S2
j − π2

j .

Suppose that pj = pj+1 then Fj(m) = pj if m ∈ S1
j ∪ S2

j − π1
j or if m

belongs to a connected component of π1
j ∪ π2

j − π1
j ∩ π2

j adjacent to a

member of S1
j ∪ S2

j − π1
j .

(F5) Fj(m) = s ⊂ C2 where s is an arbitrary 1-dimensional subspace of
C2 for all m in any connected component of π1

j ∪ π2
j − π1

j ∩ π2
j other

than the ones mentioned in (F4). We denote these connected compo-
nents by C1, . . . , Ck, and denote by s1, . . . , sk ⊂ C2 the corresponding
1-dimensional subspaces.

Remark 2.7. It can be seen that the T-equivariant sheaf described above
is indeomposable if and only if the number of nonzero elements of the set
{p1, p2, p3, s1, . . . , sk} is at least three. A T-equivariant sheaf with non-
degenerate ∆-family obviously satisfies this condition regardless of the sub-
spaces s1, . . . , sk.

Definition 2.8. By a ∆-family data Ξ we mean the collection of

i) an integer A,

ii) nonnegative integers ∆1,∆2,∆3,

iii) six possibly empty 2d partitions π1
1, . . . , π

2
3,

iv) the set E = {(i, j) | i < j, pi 6= 0, pj 6= 0, pi = pj}.
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Note that in a ∆-family data we do not specify p1, p2, p3, but we only keep
track of whether they are distinct or not. Given a ∆-family data Ξ we define
eΞ to be the number of nonzero elements of the set {p1, p2, p3}.

In terms of ∆-family data (see [Koo08, Proposition 3.16])

ch1(F) = −2A−∆1 −∆2 −∆3,

ch2(F) = A2/2 +

(
A+

∑
i

∆i

)2

/2−
∑
i,j

#πij −
∑
i<j

∆i∆j(1− dim pi ∩ pj).

As a result, the ∆-family of the T-equivariant sheaf F determines the Hilbert
polynomial of F .

Definition 2.9. For a Hilbert polynomial P of a rank 2 torsion-free sheaf
F on P2, we define D(P ) to be the set of all ∆-family data giving rise to P .

Given a non-degenerate F as above, we define the rank 1 torsion-free
T-equivariant sheaves Lpi for any nonzero pi, to be the maximal subsheaves
of F respectively with

u = 0, v = ∆2 w = A+ ∆3, generated by p1

u = ∆1, v = 0, w = A+ ∆3, generated by p2

u = ∆1, v = ∆2, w = A, generated by p3

Similarly, if F is given by a degenerate σ-family we can define Lpi to be the
maximal rank 1 subsheaf generated by the pi.

We are only interested in the case where the Hilbert polynomial of F is
P (m) = m2 + 3m+ 2 + b, so we must have

∆1 + ∆2 + ∆3 = −2A,

and

b = A2 −
∑
i,j

#πij −
∑
i<j

∆i∆j(1− dim pi ∩ pj).

Then one can see that F is Gieseker (semi)stable if the Hilbert polynomial
of Lpi is less than (less than or equal to) P/2 for i = 1, 2, 3 (see [Koo08,
Proposition 3.19]). Similarly F is µ-(semi)stable if the linear term of the
Hilbert polynomial of Lpi is less than (less than or equal to) to the linear
term of P/2 for i = 1, 2, 3.
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A closed point of Pn(P2, P )T consists of a T-equivariant semistable sheaf

F and a T-invariant morphism O(−n)
f−→ F , such that f does not factor

through any Lpi with the Hilbert polynomial P/2. Given an indecomposable
T-equivariant semistable sheaf F , such an f is determined by a triple of
integers ` = (u, v, w) and a 1-dimensional subspace t ⊂ C2 such that

(P1) u+ v + w = n.

(P2) ` determines 3 lattice points (u, v), (v, w), and (w, u) one in each
diagram of the ∆-family. We require that F1(u, v) 6= 0, F2(v, w) 6= 0,
F3(w, u) 6= 0.

(P3) If one of F1(u, v), F2(v, w), or F3(w, u) is a 1-dimensional subspace
r ⊂ C2 then t has to be equal to r,

(P4) If the Hilbert polynomial of Lpi is P/2, then t is not allowed to be
equal to pi.

Definition 2.10. We define l(Ξ, `) to be 0 if (P3) is satisfied, otherwise we
set l(Ξ, `) = 1. We sometimes use l instead of l(Ξ, `) if Ξ and ` are clear from
the context. Given a ∆-family data Ξ and a triple of integers ` satisfying
(P1)-(P4) we say that ` is Ξ-compatible.

For a fixed Ξ and ` (compatible with Ξ), any closed point of C(Ξ, `) =
(P1)k+eΞ+l gives rise to a T-equivariant pair

O(−n)
f−→ F

where F is a rank 2 T-equivariant sheaf with ∆-family data Ξ 4.

Example 2.11. In this example we consider a T-equivariant stable pair

O(−5)
f−→ F

with the non-degenerate ∆-family data Ξ given by

A = −2, (∆1,∆2,∆3) = (2, 1, 1), (π1
1, . . . , π

2
3) = ( , , , , , ).

The Hilbert polynomial of F is P (m) = m2 + 3m. The lattice points

(u, v), (v, w), (w, u)

4Note that 1-dimensional subspaces of C2 can be identified with the closed points
of Gr(1,2) ∼= P1.
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corresponding to the possible Ξ-compatible triples ` = (u, v, w) are denoted
by ◦ and • in Figure 4 respectively from left to right. We use ◦ when l(Ξ, `) =
0, and • when l(Ξ, `) = 1. Note that in each diagram the number of ◦ plus
twice the number of • is equal to P (5) = 40.

In order to determine the morphism f , we in addition need to specify
a 1-dimensional subspace t ⊂ C2. Note that F given by this data is strictly
semistable if the Hilbert polynomial of Lp1

is equal to P/2. Therefore, the
pair is stable if and only if t 6= p1. This means that if l(Ξ, `) = 0 then there
is at most one choice for t; but if l(Ξ, `) = 1 then t can be any point in
P1\p1. So the space of possible t can be either ∅, a point, or P1\p1. We
assign the weight 0 or 1 to a lattice point ◦ depending on respectively the
first or second possibility occurs, and we assign the weight 1 to each •. With
these new weights, one can check that the count of ◦ and • in each diagram
is P(5)/2=20.

- � - � - �

?

6

?

6

?

6

∆1 = 2

∆2 = 1

∆2 = 1

∆3 = 1

∆3 = 1

∆1 = 2
◦
◦
◦
◦
◦

◦
◦
◦
◦

•
•
•
•
◦

•
•
•
◦

•
•
◦

•
◦
◦

◦ ◦ ◦ ◦ ◦
◦ ◦

◦
◦
◦
◦ ◦ ◦

◦ ◦
◦ ◦
◦ ◦
◦ ◦
◦◦ ◦ ◦ ◦

•
•
•
•

•
•
•

•
•
•

◦
◦
◦
◦
◦

◦
◦
◦
◦ ◦
◦
◦
◦
◦
◦

◦

◦
◦
◦
◦
••

••
••

•
•
•
•

Figure 4. Toric description of stable pairs

In order to get a bijection between the closed points of Pn(P2, P )T and
the T-equivariant stable pairs with a fixed Ξ ∈ D(P ), we need to take a GIT
quotient of C(Ξ, `) with the action of SL(2,C) induced from the natural
action on C2. The crucial point is that by a slight modification of the ample
line bundle constructed in [Koo09, Proposition 3.11], one can find an ample
line bundle LΞ on C(Ξ, `) with respect to which the GIT stability matches
with the stability of the pairs. In fact in [Koo09, Proposition 3.11], an ample
line bundle �k+eΞ

i=1 O(gi) was constructed on (P1)k+eΞ with respect to which
the GIT stability matches with the Gieseker stability of sheaves. If l = 1,
the modified line bundle on C(Ξ, `) is taken to be

(�k+eΞ

i=1 O(gi)) �O(ε),
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where O(ε) is a suitable power of O(1) on the factor of C(Ξ, `) correspond-
ing to l (see (1)). If l = 0 then the modification of �k+eΞ

i=1 O(gi) is made by
adjusting the power of O(1) pulled back from one of the factors of C(Ξ, `).
We have proven

Proposition 2.12. The Euler characteristic of the moduli space of stable
pairs Pn(P2, P ) is given by the following formula

χ(Pn(P2, P )) =
∑
Ξ,`

χ(C(Ξ, `) �LΞ
SL(2,C)),

where the sum is over all Ξ ∈ D(P ) and the Ξ-compatible triples of integers
`.

We define C(Ξ, `) = C(Ξ, `) �LΞ
SL(2,C), and denote by C(Ξ, `)sp,

C(Ξ, `)ss, and C(Ξ, `)st the locally closed subspaces of C(Ξ, `) where the cor-
responding underlying sheaves F are respectively decomposable, indecom-
posable strictly semistable, and stable. Given any two Ξ-compatible triple
of integers `, `′, it is not hard to verify the following properties:

i) C(Ξ, `)sp is empty or an isolated point,

ii) χ(C(Ξ, `)ss) = χ(C(Ξ, `′)ss); we denote the common value by c(Ξ)ss.

iii) χ(C(Ξ, `)st)/(l(Ξ, `) + 1) = χ(C(Ξ, `′)st)/(l(Ξ, `′) + 1); we denote the
common value by c(Ξ)st.

In the following proposition we determine the contributions of each of
the above items to the Euler characteristc χ(Pn(P2, P )) (P as in (3)).

Proposition 2.13. 1) If F ∼= IZ1
⊕ IZ2

, where IZ1
, IZ2

are the ideal
sheaves of the T-invariant 0-dimensional subschemes Z1, Z2 ⊂ P2 such
that the Hilbert polynomials of IZ1

, IZ2
are equal to P/2 then the con-

tribution of F to the Euler characteristc χ(Pn(P2, P )) is{
P (n)(P (n)− 2)/8 if Z1 = Z2,

P (n)2/4 if Z1 6= Z2.

2) Given Ξ ∈ D(P )∑
` is Ξ-compatible

χ(C(Ξ, `)ss) = P (n) · c(Ξ)ss/2.
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3) Given Ξ ∈ D(P )

∑
` is Ξ-compatible

χ(C(Ξ, `)st) = P (n) · c(Ξ)st.

Proof. Given F as in (1), the contribution of F is equal to the Euler charac-
teristic of the space of T-equivariant sections of F(n) satisfying the stability
condition for the pairs. This is essentially worked out in [JS11, Example 6.1
and 6.2]. (2) and (3) are proven by fining a weighted number of Ξ-compatible
triples `. Each ` is counted with multiplicity l(Ξ, `) + 1 to account for the
Euler characteristics of P1 and a point (see Example 2.11). �

Remark 2.14. In the case that Ξ is a non-degenerate ∆-family and

∆i < ∆j + ∆k

for any pairwise distinct i, j, k ∈ {1, 2, 3}, it is easy to find c(Ξ)ss and c(Ξ)st.
Let `0 be a Ξ-compatible triple of integers with l(Ξ, `0) = 1. Since p1, p2, p3

are nonzero and pairwise distinct by assumption C(Ξ, `) = (P1)k+4, and we
have

c(Ξ)st = 2k and c(Ξ)ss = 0.

In fact in this case, C(Ξ, `0)ss = ∅, and C(Ξ, `0)ss = (P1)k+1 because by the
SL(2,C)-action one can fix p1, p2, p3 to be respectively 0, 1,∞ and then

t, s1, . . . , sk ∈ P1

can be arbitrary.

Using Lemma 2.2 and Proposition 2.13, we prove the following result
evaluating the DT invariants of X corresponding to the rank 2 torsion-free
sheaves on P2:

Theorem 2.15. Let P (m) = m2 + 3m+ 2 + b where 0 ≥ b ∈ Z, and let
Ms(P2;P ) ⊆M(P2;P ) be the open subset of the stable sheaves.

1) If b is an odd number then DT (X;P ) = DT (X;P ) = χ(M(P2;P )).
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2) If b is an even number then

DT (X;P ) = χ(Hilb−b/2(P2))/4−
∑

Ξ∈D(P )

c(Ξ)st − 1

2

∑
Ξ∈D(P )

c(Ξ)ss

= χ(Hilb−b/2(P2))/4− χ(Ms(P2;P ))− 1

2

∑
Ξ∈D(P )

c(Ξ)ss,

Proof. (1) is already proven (see the discussion at the beginning of this
section). It also follows from our toric description, as only cst(Ξ) is nonzero
for any relevant ∆-family data Ξ. We now prove (2). By Lemma 2.2

DT (X;P ) = χ(Hilb−b/2(P2))2 · P (n)/8− PIn(X;P )/P (n).

P In(X;P ) is the sum of the contributions of three types of T-equivariant
semistable sheaves to the Euler characteristics evaluated in Proposition 2.13.
The contribution of the decomposable sheaves is given by:

χ(Hilb−b/2(P2)) · P (n)(P (n)− 2)/8

+ χ(Hilb−b(P2))(χ(Hilb−b/2(P2))− 1)/2 · P (n)2/4.

By Proposition 2.13, the contribution of the Gieseker stable sheaves is equal
to ∑

Ξ∈D(P )

P (n) · c(Ξ)st = χ(Ms(P2;P )) · P (n).

The equality follows from the fact that Gieseker stable sheaves are simple,
and from the definition of the stability of pairs in which the section does
not play a role when the underlying sheaf is Gieseker stable. Finally, the
contribution of the indecomposable strictly semistable sheaves is

∑
Ξ∈D(P )

P (n) · c(Ξ)ss/2.

Now the formula in the theorem is obtained by adding all these contribu-
tions.

This also finishes the proof of Theorem 1. �

Remark 2.16. Let P (m) = m2 + 3m+ 2 + b be the Hilbert polynomial cor-
responding to a = 0 then by Remark 2.14 χ(Mµs(P2;P )) is the number of
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9-tuples

(∆1,∆2,∆3, π
1
1, π

2
1, π

1
2, π

2
2, π

1
3, π

2
3)

of positive integers ∆i and 2d partitions πij such that

∆i < ∆j + ∆k, b =
∑

∆2
i /2−

∑
i,j

#πji .

It is not hard to see that

∑
∆1,∆2,∆3>0
∆i<∆j+∆k

q(
∑

i ∆i)2/4+
∑

i<j ∆i∆j =

∞∑
m=1

∞∑
n=1

qmn+m+n

1− qm+n
.

From this we get

∑
b∈Z

χ(Mµs(P2;m2 + 3m+ 2 + b))q−b =
1∏

n>0(1− qn)6

∞∑
m=1

∞∑
n=1

qmn+m+n

1− qm+n
.

This is in agreement with [Koo09, Corollary 4.2] which uses a slightly dif-
ferent argument. In order to find χ(Ms(P2;P )) appearing in Theorem 2.15
we need to add to the formula above the contribution of the Gieseker stable
sheaves which are not µ-stable. This means that one of the indequlaities in
Remark 2.14 must turn into an equality ∆i + ∆j = ∆k and we must also
allow for the degenerate ∆-families.

In the following examples we compute DT (X;P ), D̂T (X; p), and
χ(Ms(X;P )) in the cases b = 0, b = −2, and b = −4.

Example 2.17. b = 0. In this case the only semistable sheaf with Hilbert
polynomial P (m) = m2 + 3m+ 2 is isomorphicO ⊕O. Therefore, by Propo-
sition 2.13 part (1) we have PIn(X;P ) = P (n)(P (n)− 2)/8, and hence by
Lemma 2.2 and noting that DT (X;P/2) = 1 we get

DT (X;P ) = P (n)/8− (P (n)− 2)/8 = 1/4

in agreement with the result of Theorem 2.15. We can easily see that

D̂T (X;P ) = 0 and χ(Ms(X;P )) = 0.
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Example 2.18. b = −2. By Proposition 2.13 we have

PIn(X;P ) = 3P (n)2/4 + 3P (n)(P (n)− 2)/8 + 12P (n)/2.

The first term is the sum of the contributions of IZ1
⊕ IZ2

where Z1, Z2

are two distinct T-fixed points of P2. The second term is the sum of the
contributions IZ ⊕ IZ where Z is a T-fixed point of P2, and the last term
is the contributions indecomposable Gieseker semistable sheaves obtained
from Table 1. Columns 2–5 give the ∆-family data Ξ giving rise to Hilbert

A (∆1,∆2,∆3) (π1
1, . . . , π

2
3) E css(Ξ) cst(Ξ) #

1 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

2 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

3 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

4 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

Table 1. ∆-family data for the case b = −2.

polynomial P . We only consider the cases ∆1 ≥ ∆2 ≥ ∆3, and the very last
Column we assign a multiplicity to account for the other ∆-families obtained
by reindexing ∆i’s. See the next example in which we provide more details
for a few rows of a similar table.

Now using the fact that DT (X;P/2) = 3 from (2), by Lemma 2.2 we
get

DT (X;P ) = 9P (n)/8− 3P (n)/4− 3(P (n)− 2)/8− 6 = −21/4

in agreement with the result of Theorem 2.15. We can easily see that

D̂T (X;P ) = −6 and χ(Ms(X;P )) = 0.

Example 2.19. b = −4. We have χ(Hilb2(P2)) = 9 by (2), so decomposable
T-equivariant sheaves contributes 9/4 by Theorem 2.15. We summarize the
contributions of indecomposable Gieseker semistable T-equivariant sheaves
in Table 2. Columns 2–5 give the ∆-family data Ξ giving rise to the Hilbert
polynomial P . We only consider the cases ∆1 ≥ ∆2 ≥ ∆3, and the very last
Column we assign a multiplicity to account for the other ∆-families obtained
by reindexing ∆is. From Table 2 we get

∑
Ξ css(Ξ) = 216 and

∑
Ξ cst(Ξ) =
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54 By the formula in Theorem 2.15

DT (X;P ) = 9/4− 54− 216/2 = −639/4.

We can easily see that

D̂T (X;P ) = −162 and χ(Ms(X;P )) = 54.

by Corollary 2.

- � - �

?

6

?

6

∆1 = 1

∆2 = 1

∆2 = 1

∆1 = 1

p

q0

q

s0
r
0 p

Figure 5. Row 1 of Table 2.

In the following we explain the details for four rows of Table 2. Figure 5
gives the ∆-family data Ξ corresponding to Row 1 of Table 2. We fix a
Ξ-compatible triple `0 with l(Ξ, `0) = 1. We use the following notation

p1 = p, p2 = q, s1 = r, s2 = s.

This data and a point t ∈ P1 completely determine the T-equivariant pair
O(−n)→ F . The stability of the pair translates into the following facts:

i) p 6= q and r, s cannot both be equal to p or q.

ii) r = p, s = q, q 6= t 6= p or r = q, s = p, q 6= t 6= p in which case F is de-
composable.

iii) r = p, s 6= q, t 6= p or r = q, s 6= p, t 6= q or r 6= p, s = q, t 6= q or r 6= q,
s = p, t 6= p in which case F is strictly semistable and indecomposable,

iv) if q 6= r 6= p and q 6= s 6= p, in which case F is Gieseker stable.

From these facts we can conclude that c(Ξ)st = 0, and c(Ξ)ss = 4 as claimed
in the table.
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r r

∆1 = 1

p

0 ∆2 = 1q

∆2 = 1

q

0 ∆1 = 1p
p

- �

?

6

- �

?

6

Figure 6. Row 7 of Table 2.

Figure 6 gives the ∆-family data Ξ corresponding to Row 7 of Table 2.
We fix a Ξ-compatible triple `0 with l(Ξ, `0) = 1. We use the following nota-
tion p1 = p, p2 = q, s1 = r. This data and a point t ∈ P1 completely deter-
mine the T-equivariant pair O(−n)→ F . The stability of the pair translates
into

i) p 6= q and r 6= p.

ii) r = q, q 6= t 6= p in which case F is decomposable.

iii) q 6= r 6= p and t 6= p, in which case F is Gieseker semistable and inde-
composable.

We can conclude that c(Ξ)st = 1, and c(Ξ)ss = 0 as claimed in the table.

r rr

∆1 = 1

p

0 ∆2 = 1q

∆2 = 1

q

0 ∆1 = 1p

- �

?

6

- �

?

6

Figure 7. Row 34 of Table 2.

Figure 7 gives the ∆-family data Ξ corresponding to Row 34 of Table 2.
We fix a Ξ-compatible triple `0 with l(Ξ, `0) = 1. We use the following nota-
tion p1 = p, p2 = q, s1 = r. This data and a point t ∈ P1 completely deter-
mine the T-equivariant pair O(−n)→ F . The stability of the pair translates
into p 6= q and q 6= r 6= p in which case F is Gieseker stable. We can conclude
that c(Ξ)st = 1, and c(Ξ)ss = 0 as claimed in the table.
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r
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Figure 8. Row 68 of Table 2.

Figure 8 gives the ∆-family data Ξ corresponding to Row 68 of Table 2.
We fix a Ξ-compatible triple `0 with l(Ξ, `0) = 1. We use the following nota-
tion

p1 = p, p2 = q, s1 = r.

This data and a point t ∈ P1 completely determine the T-equivariant pair
O(−n)→ F . The stability of the pair translates into the following facts:

i) p 6= q and r 6= q.

ii) r = p, q 6= t 6= p in which case F is decomposable.

iii) if q 6= r 6= p and t 6= q in which case F is Gieseker semistable and inde-
composable.

From these facts we can conclude that c(Ξ)st = 0, and c(Ξ)ss = 1 as
claimed in the table.

A (∆1,∆2,∆3) (π1
1, . . . , π

2
3) E css(Ξ) cst(Ξ) #

1 −1 (1, 1, 0) ( , , , , , ) ∅ 4 0 3

2 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

3 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

4 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

5 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

6 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

7 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

8 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

9 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

10 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3
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Continued from previous page

A (∆1,∆2,∆3) (π1
1, . . . , π

2
3) E css(Ξ) cst(Ξ) #

11 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

12 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

13 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

14 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

15 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

16 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

17 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

18 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

19 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

20 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

21 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

22 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

23 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

24 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

25 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

26 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

27 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

28 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

29 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

30 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

31 −1 (1, 1, 0) ( , , , , , ) ∅ 1 0 3

32 −1 (1, 1, 0) ( , , , , , ) ∅ 0 1 3

33 −1 (1, 1, 0) ( , , , , , ) ∅ 0 1 3

34 −1 (1, 1, 0) ( , , , , , ) ∅ 0 1 3

35 −1 (1, 1, 0) ( , , , , , ) ∅ 0 1 3

36 −1 (1, 1, 0) ( , , , , , ) ∅ 0 1 3

37 −1 (1, 1, 0) ( , , , , , ) ∅ 0 1 3

38 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

39 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

40 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

41 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3
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Continued from previous page

A (∆1,∆2,∆3) (π1
1, . . . , π

2
3) E css(Ξ) cst(Ξ) #

42 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

43 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

44 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

45 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

46 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

47 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

48 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

49 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

50 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

51 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

52 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

53 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

54 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

55 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

56 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

57 −2 (2, 1, 1) ( , , , , , ) ∅ 1 0 3

58 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

59 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

60 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

61 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

62 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

63 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

64 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

65 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

66 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

67 −2 (2, 1, 1) ( , , , , , ) ∅ 0 1 3

68 −2 (2, 1, 1) ( , , , , , ) {(2, 3)} 1 0 3

69 −2 (2, 1, 1) ( , , , , , ) {(2, 3)} 1 0 3



i
i

“4-gho” — 2015/10/13 — 17:37 — page 697 — #25 i
i

i
i

i
i

Invariants of 2-dimensional sheaves on local P2 697

Continued from previous page

A (∆1,∆2,∆3) (π1
1, . . . , π

2
3) E css(Ξ) cst(Ξ) #

70 −2 (2, 2, 0) ( , , , , , ) ∅ 1 0 3

71 −2 (2, 2, 0) ( , , , , , ) ∅ 1 0 3

72 −2 (2, 2, 0) ( , , , , , ) ∅ 1 0 3

73 −2 (2, 2, 0) ( , , , , , ) ∅ 1 0 3

74 −2 (2, 2, 0) ( , , , , , ) ∅ 1 0 3

75 −2 (2, 2, 0) ( , , , , , ) ∅ 1 0 3

76 −3 (3, 2, 1) ( , , , , , ) ∅ 1 0 6

77 −3 (3, 2, 1) ( , , , , , ) ∅ 1 0 6

78 −3 (3, 2, 1) ( , , , , , ) ∅ 1 0 6

79 −3 (3, 2, 1) ( , , , , , ) ∅ 1 0 6

80 −3 (3, 2, 1) ( , , , , , ) ∅ 1 0 6

81 −3 (2, 2, 2) ( , , , , , ) ∅ 0 1 1

82 −3 (2, 2, 2) ( , , , , , ) ∅ 0 1 1

83 −3 (2, 2, 2) ( , , , , , ) ∅ 0 1 1

84 −3 (2, 2, 2) ( , , , , , ) ∅ 0 1 1

85 −3 (2, 2, 2) ( , , , , , ) ∅ 0 1 1

86 −3 (2, 2, 2) ( , , , , , ) ∅ 0 1 1

Table 2. ∆-family data for b = −4.

References

[Beh09] K. Behrend, Donaldson–Thomas invariants via microlocal geome-
try. Annals of Math., 170, 1307–1338, (2009).

[BF97] K. Behrend and B. Fantechi, The intrinsic normal cone. Invent.
Math., 128, 45–88, (1997).

[ES87] G. Ellingsrud and S. A. Strømme, On the homology of the Hilbert
scheme of points in the plane. Invent. Math., 87(2), 343–352, (1987).

[GSY07] D. Gaiotto, A. Strominger and X. Yin, The M5-Brane Elliptic
Genus: Modularity and BPS States. J. of high energy phys., 8(070),
1–17, (2007).

[GY07] D. Gaiotto and X. Yin, Examples of M5-Brane Elliptic Genera. J. of
high energy phys., 11(004), 1–12, (2007).



i
i

“4-gho” — 2015/10/13 — 17:37 — page 698 — #26 i
i

i
i

i
i

698 A. Gholampour and A. Sheshmani

[GS13] A. Gholampour and A. Sheshmani, Donaldson-Thomas Invariants
of 2-dimensional sheaves inside threefolds and modular forms. arXiv:
1309.0050, (2013).

[GST13] A. Gholampour and A. Sheshmani and R. P. Thomas, Counting
curves on surfaces in Calabi-Yau threefolds. Math. Annalen., 360, 67–
78, (2014).
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