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Transitive Courant algebroids, string

structures and T-duality
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In this paper, we use reduction by extended actions to give a con-
struction of transitive Courant algebroids from string classes. We
prove that T-duality commutes with the reductions and thereby
determine global conditions for the existence of T-duals in het-
erotic string theory. In particular we find that T-duality exchanges
string structures and gives an isomorphism of transitive Courant
algebroids. Consequently we derive the T-duality transformation
for generalised metrics and show that the heterotic Einstein equa-
tions are preserved. The presence of string structures significantly
extends the domain of applicability of T-duality and this is illus-
trated by several classes of examples.
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1. Introduction

The bosonic fields in the low energy limit of type II string theories consist of
a metric g, closed 3-form H and dilaton function ϕ satisfying a modification
of the Einstein equations. A surprising feature of these equations is that they
possess a symmetry not found in the ordinary Einstein equations, namely
T-duality. The presence of this symmetry reflects the string-theoretic origins
of these equations. T-duality relates spaces X, X̂ which are torus bundles
over a common base space and is characterised by an interchange between
Chern classes of the torus bundle with topological data associated to the
closed 3-form H.

It is possible to give a geometric meaning to T-duality using the lan-
guage of generalised geometry [12]. From this point of view T-duality is
seen as an isomorphism of Courant algebroids E, Ê associated to the spaces
X, X̂. Leaving aside the dilaton ϕ, the field content (g,H) defines a gen-
eralised metric on the Courant algebroid E. It then becomes possible to
understand the T-duality symmetry of the type II string theory equations
as an isomorphism of generalised metrics.

The aim of this paper is to address the problem of T-duality in heterotic
string theory. The situation differs from the ordinary case in two significant
ways. Firstly, heterotic theories require the presence of a gauge bundle with
connection. This leads to more complicated equations of motion and mod-
ifies the topological conditions for the existence of T-duals as we will see.
Secondly, the 3-form H is no longer closed and globally does not correspond
to a gerbe. Instead it is subject to the Green-Schwarz anomaly cancellation
condition [18]

(1.1) dH = α′ (Tr(R ∧R)− Tr(F ∧ F )) ,
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where F is the curvature of a gauge connection ∇ and R the curvature of
an affine connection ∇T (often taken to be the Levi-Civita connection).

To tackle these new challenges, we propose a class of transitive Courant
algebroids, which we call heterotic Courant algebroids (Definition 3.1), as
the appropriate structure to consider. These are constructed by a reduction
procedure and are characterised up to isomorphism by (1.1). The latter also
clarifies the connection to transitive Courant algebroids because, as estab-
lished by Bressler [6], a solution to (1.1) determines a transitive Courant
algebroid. From this vantage point we are able to obtain several new insights
into heterotic T-duality. In particular, in Section 4.3 we determine the topo-
logical conditions for a heterotic T-dual to exist and show that for any
T-dual, there is an isomorphism of transitive Courant algebroids (Propo-
sition 4.5). Using generalised metrics on transitive Courant algebroids we
prove in Section 7 that the heterotic Einstein equations are preserved by
T-duality. A further consequence of (1.1) is that it allows for more flexbility
in the possible changes in topology and thus gives rise to a host of new
examples of T-dual pairs, some of which are documented in Section 5.

In more detail, to each transitive Courant algebroid H on X is an
associated transitive Lie algebroid A = H/T ∗X. We say that H is a het-
erotic Courant algebroid if A is the Atiyah algebroid of a principal G-bundle
σ : P → X. Throughout we take G to be a compact semisimple Lie group
with Lie algebra g. The Courant algebroidH has a pairing 〈 , 〉 which in turn
determines a non-degenerate invariant pairing c = 〈 , 〉 ∈ S2(g∗) on g. We
show in Proposition 3.4 that every heterotic Courant algebroid is obtained
by reduction of an exact Courant algebroid E on P . To describe the reduc-
tion procedure, recall that exact Courant algebroids are classified by degree
3 cohomology. Let H be a closed G-invariant 3-form on P representing a
class h = [H] ∈ H3(P,R) and let E be the corresponding Courant algebroid
on P . To reduce E we require an extended action in the sense of [10]. This
is an equivariant g-valued 1-form ξ satisfying the equation

(1.2) dG(H + ξ) = c,

where dG is the differential for the Cartan complex. In Proposition 3.3 we
prove that up to equivalence all solutions to (1.2) are of the form

ξ = −〈A, 〉, H = σ∗(H0)− CS3(A),

where A is a connection on P with curvature F , CS3(A) is the Chern-Simons
3-form of A and H0 is a 3-form on X satisfying dH0 = 〈F ∧ F 〉. In this way
we see that extended actions lead naturally to the anomaly cancellation
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condition (1.1). Furthermore it follows that such an extended action exists
if and only if the class h ∈ H3(P,R) is a string class in real cohomology,
that is the restriction of h to the fibres of P coincides with the Cartan 3-
form ω3 ∈ H3(G,R) determined by the pairing 〈 , 〉. This construction can
be reversed so that to every string class on P we obtain by reduction a
heterotic Courant algebroid on X depending only on the string class.

To explain our formulation of heterotic T-duality we first review the
Courant algebroid approach to ordinary T-duality [12]. Let Tn, T̂n be dual
tori with Lie algebras t, t̂. Duality of Tn, T̂n means there is a natural pairing
〈 , 〉 : t⊗ t̂→ R. Let π : X →M be a principal Tn-bundle and H a closed
Tn-invariant 3-form on X. The cohomology class [H] ∈ H3(M,R) deter-
mines an exact Courant algebroid E on X and the Tn-action lifts to E.
Similarly let π̂ : X̂ →M be a principal T̂n-bundle, Ĥ a closed invariant 3-
form and Ê the associated exact Courant algebroid. T-duality of the pairs
(X,H), (X̂, Ĥ) is captured by the following identity on the fibre product
X ×M X̂

(1.3) Ĥ −H = d〈θ ∧ θ̂〉,

where θ, θ̂ are connections on X, X̂. This equation captures the exchange of
Chern classes of X, X̂ and cohomology of H, Ĥ along the fibres, central to T-
duality. Using (1.3) one can construct an isomorphism of Courant algebroids
E/Tn ' Ê/T̂n.

In the heterotic setting we have torus bundles π0 : X →M , π̂0 : X̂ →M
equipped with principal G-bundles σ : P → X, σ̂ : P → X̂. Now H, Ĥ are
invariant 3-forms on P, P̂ such that together with extended actions ξ, ξ̂ we
have dG(H + ξ) = c = dG(Ĥ + ξ̂). The extended actions determine heterotic
Courant algebroids H, Ĥ on X, X̂ which carry torus actions. For heterotic
T -duality we require the existence of a principal G-bundle σ0 : P0 →M such
that P, P̂ are obtained from P0 by pullback. Observe that the projections
π : P → P0, π̂ : P̂ → P0 are principal torus bundles over a common base.
Moreover, they are equipped with exact Courant algebroids E, Ê associated
with the invariant closed 3-forms H, Ĥ. Taking advantage of this fact, we
show in Section 4.4 that for heterotic T-duality Equation (1.3) is replaced
by the following equation on the fibre product P ×P0

P̂

(1.4) (Ĥ + ξ̂)− (H + ξ) = dG〈θ ∧ θ̂〉,

where θ, θ̂ are connections for the torus bundles P → P0, P̂ → P0. Notice
that if H + ξ is a solution to (1.2) then so is Ĥ + ξ̂. In addition to the usual
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exchange of Chern classes and H-classes, Equation (1.4) captures some fea-
tures unique to heterotic T-duality, namely the change in extended action
from ξ to ξ̂. Since an extended action ξ corresponds to a gauge connection A,
Equation (1.4) describes the change in connection brought on by heterotic T-
duality. Passing from equivariant forms to the usual de Rham complex (1.4)
reduces to (1.3), hence we obtain an isomorphism of exact Courant alge-
broids φ : E/Tn → Ê/T̂n. Using (1.4) we show that φ exchanges extended
actions ξ, ξ̂ (Proposition 4.13), hence on reduction we obtain an isomorphism
H/Tn ' Ĥ/T̂n of transitive Courant algebroids. We have thus obtained a
T-duality isomorphism in the heterotic setting by reduction from the exact
case.

In Section 6 we consider generalised metrics on heterotic Courant alge-
broids. Proposition 6.2 gives an equivalence between admissible generalised
metrics and triples (g,A,H), consisting of a Riemannian metric g, a G-
connection A with curvature F and a 3-form H such that dH = 〈F ∧ F 〉.
This is the bosonic field content of the low energy limit of heterotic string
theory. More accurately, one should in addition include a metric connection
∇T with curvature R and consider the gauge group G×O(m), for m the
dimension of X. Then the 3-form H will satisfy the anomaly cancellation
condition (1.1), as required for heterotic string theory. Using an isomorphism
of heterotic Courant algebroids H/Tn ' Ĥ/T̂n we may send a generalised
metric (g,A,H) on X to a corresponding generalised metric (ĝ, Â, Ĥ) on
X̂. We determine in detail the relation between these generalised metrics
(Proposition 6.4).

In Section 7 we show that (ĝ, Â, Ĥ) is a solution of the heterotic equations
of motion if and only if (g,A,H) is a solution (Proposition 7.3), establish-
ing that heterotic T-duality is a symmetry of these equations. To do this
we first prove that the heterotic equations of motion may be obtained by
reduction from the type II equations (Proposition 7.1) and then verify that
T-duality preserves the latter equations (Proposition 7.2). Given the com-
plexity of the transformation laws for generalised metrics, it is a remarkable
fact that the equations of motion can be matched up. Moreover the man-
ner in which the equations are matched up involves a series of unexpected
cancellations, brought to light through the use of Courant algebroids and
generalised metrics.

We give a brief description of each section of the paper. Section 2 reviews
Courant algebroids and their reduction by group actions. We distinguish two
notions of reduction, simple reduction and reduction by extended action
and give conditions for these reduction procedures to commute. Section 3
introduces heterotic Courant algebroids, gives their classification and their
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construction from string classes and extended actions. Section 4 develops the
theory of heterotic T-duality by reduction, culminating in an isomorphism
of heterotic Courant algebroids. In Section 6 we consider generalised metrics
on heterotic Courant algebroids and their transformation under T-duality.
Finally in Section 7 we consider the heterotic equations of motion and show
they are preserved by T-duality.

2. Reduction of Courant algebroids

2.1. Courant algebroids and symmetries

Let (E, [ , ], ρ, 〈 , 〉) consist of a vector bundle E →M over a smooth man-
ifold M , a bilinear operator [ , ] : Γ(E)⊗ Γ(E)→ Γ(E) on the space of sec-
tions of E, a bundle map ρ : E → TM and 〈 , 〉 a non-degenerate bilinear
form on E. Since 〈 , 〉 is non-degenerate we may use it together with ρ to
define a natural map from T ∗M to E. Explicitly a 1-form ξ ∈ Γ(T ∗M) is
mapped to a section ξ′ = 1

2ρ
∗(ξ) of E such that for all e ∈ Γ(E) we have

〈ξ′, e〉 = 1
2ξ(ρ(e)).

Definition 2.1 ([21]). The data (E, [ , ], ρ, 〈 , 〉) is a Courant algebroid if
the following conditions hold for all a, b, c ∈ Γ(E):

• [a, [b, c]] = [[a, b], c] + [b, [a, c]]

• [a, b] + [b, a] = 2 d〈a, b〉

• ρ(a)〈b, c〉 = 〈[a, b], c〉+ 〈b, [a, c]〉.

We call [ , ] the Dorfman bracket, ρ the anchor and 〈 , 〉 the pairing of E.

Two properties of Courant algebroids which follow from the above axioms
but are often included as separate axioms are:

• [a, fb] = f [a, b] + ρ(a)(f)b

• ρ[a, b] = [ρ(a), ρ(b)]

for every f ∈ C∞(M) and a, b ∈ Γ(E).
We say that a Courant algebroid E is transitive if the anchor ρ is sur-

jective and that E is exact if E is transitive and the kernel of the anchor
coincides with the image of the map 1

2ρ
∗ : T ∗M → E. When E is transitive

the map 1
2ρ
∗ is injective, so we can identify T ∗M as a subbundle of E. Since

we will be concerned exclusively with transitive Courant algebroids we will
identify 1-forms with their image in E without further mention.
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Let E be an exact Courant algebroid on M , so we have an exact sequence
0→ T ∗M → E

ρ→ TM → 0. An isotropic splitting for E, or splitting for
short, is a section s : TM → E of ρ such that the image s(TM) ⊆ E is
isotropic with respect to the pairing on E. Given a splitting s : TM → E
we obtain an identification E = TM ⊕ T ∗M with anchor given by projec-
tion to TM and pairing 〈X + ξ, Y + η〉 = 1

2(iXη + iY ξ), for tangent vectors
X,Y and 1-forms ξ, η. There exists a closed 3-form H on M such that the
bracket on E is as follows [25]:

(2.1) [X + ξ, Y + η]H = [X,Y ] + LXη − iY dξ + iY iXH.

Choosing a different splitting for E has the effect of changing H by an exact
term. The cohomology class [H] ∈ H3(M,R), which is independent of the
choice of splitting, is called the Ševera class of the exact Courant algebroid
[24]. Conversely given a closed 3-form H, (2.1) defines an exact Courant
algebroid structure on E = TM ⊕ T ∗M . We call the bracket [ , ]H the H-
twisted Dorfman bracket on E. This construction determines a bijection
between isomorphism classes of exact Courant algebroids and H3(M,R).

Definition 2.2. Let (E, [ , ], ρ, 〈 , 〉), (E′, [ , ]′, ρ′, 〈 , 〉′) be Courant alge-
broids on M . An isomorphism φ : (E, [ , ], ρ, 〈 , 〉)→ (E′, [ , ]′, ρ′, 〈 , 〉′), or
φ : E → E′ for short consists of a diffeomorphism f : M →M and a bundle
isomorphism φ : E → E′ covering f such that the induced map of sections
φ∗ : Γ(E)→ Γ(E′) given by φ∗(a) = φ ◦ a ◦ f−1 interchanges the Courant
algebroid structures:

• [φ∗a, φ∗b]
′ = φ∗[a, b]

• ρ′(φ∗a) = f∗ρ(a)

• 〈φ∗a, φ∗b〉′ = (f−1)∗〈a, b〉.

In this case we say that the isomorphism φ covers f or that φ is a lift of f .

When E = E′ we have Courant algebroid automorphisms. The corre-
sponding infinitesimal notion is given by derivations:

Definition 2.3. Let (E, [ , ], ρ, 〈 , 〉) be a Courant algebroid on M . A
derivation D : (E, [ , ], ρ, 〈 , 〉)→ (E, [ , ], ρ, 〈 , 〉), or D : E → E for short
consists of an endomorphism D : Γ(E)→ Γ(E) and a vector field X such
that:

• D[a, b] = [Da, b] + [a,Db]
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• X〈a, b〉 = 〈Da, b〉+ 〈a,Db〉.

From these properties it follows that the vector field is uniquely determined
from D, so we denote X by X = ρ(D). The space Der(E) of derivations of
E forms a Lie algebra.

From the definition we obtain the identities D(fa) = ρ(D)(f)a+ fD(a)
and ρ(Da) = [ρ(D), ρ(a)], where D is a derivation, a ∈ Γ(E), f ∈ C∞(M).
In particular the natural map ρ : Der(E)→ Vect(M) sending a derivation
to the corresponding vector field on M is a Lie algebra homomorphism.
Observe that for any section a ∈ Γ(E) the adjoint action ada(b) = [a, b] is a
derivation. We say that a derivation is inner if it is given by the adjoint action
of some section of E. Next we are interested in reducing a Courant algebroid
by a group of symmetries and observe two such notions of reduction.

2.2. Simple reduction

Let G be a Lie group and suppose that G acts on M on the right by diffeo-
morphisms. Let g denote the Lie algebra of G, defined using left invariant
vector fields on G. By differentiation a right action of G determines a Lie
algebra homomorphism1 ψ : g→ Vect(M) to the Lie algebra of vector fields
on M .

Definition 2.4. A lifted action of G on E is a right action of G on E by
automorphisms covering the right action of G on M by diffeomorphisms.
A lifted infinitesimal action is a Lie algebra homomorphism ψ̃ : g→ Der(E)
covering a homomorphism ψ : g→ Vect(M).

Let G act on M on the right and let ψ : g→ Vect(M) be the cor-
responding infinitesimal action. Suppose we have a lifted action of G to
automorphisms of a Courant algebroid E. By differentiating we obtain a
lifted infinitesimal action ψ̃ : g→ Der(E) covering ψ. Conversely suppose
we have a lifted infinitesimal action ψ̃ covering the infinitesimal action
ψ : g→ Vec(M). If ψ̃ is obtained by differentiation of a lifted action of G
then we say that ψ̃ integrates to a lifted action of G on E.

Suppose we are given a lifted action of G on M to a Courant algebroid
E. We would like to define the quotient of E by the lifted action of G. To

1For a right action taking left invariant vector fields on g ensures that ψ is a
Lie algebra homomorphism. For a left action on M we should define g using right
invariant vector fields on G instead.
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do this we will assume that M is a principal G-bundle so that the quo-
tient space M/G is a well behaved manifold. Since G acts on E by bundle
isomorphisms covering the action on M it is immediate that the quotient
space E/G is a vector bundle on M/G. Moreover there is a canonical iden-
tification Γ(E/G) = Γ(E)G between sections of the quotient bundle E/G
and G-invariant sections of E, the space of which we denote by Γ(E)G. We
give E/G the structure of a Courant algebroid. First observe that if a, b
are G-invariant sections of E then [a, b] and 〈a, b〉 are G-invariant, so E/G
naturally inherits a bracket [ , ] and pairing 〈 , 〉. We define an anchor ρG

on E/G by the composition Γ(E)G
ρ→ Γ(TM)G → Γ(T (M/G)), where the

last map is induced by the natural projection TM/G→ T (M/G).

Proposition 2.5. The data (E/G, [ , ], ρG, 〈 , 〉) obtained from a lifted
action defines a Courant algebroid on M/G.

We call E/G the simple reduction of E by the lifted action of G.

2.3. Extended actions

Let us recall the notion of extended actions and their reductions as intro-
duced in [10]. It will be necessary to adapt their framework to a class of
Courant algebroids which are transitive but not exact. We focus on the case
which is most relevant to us, the case of trivially extended actions.

Let G act on a manifold M and suppose we have a lifted action G→
Aut(E) of G to an action on a Courant algebroid E over M . By differentia-
tion we have an infinitesimal lifted action µ : g→ Der(E). Let ad: Γ(E)→
Der(E) denote the adjoint map taking sections of E to inner derivations. If
the image of µ lies in the subspace of inner derivations then we can consider
lifting µ to a map from g to Γ(E). However, we would like to lift µ in a
way that respects the algebra structures on g and Γ(E). In general there
are obstructions to doing this, so one is lead to consider extensions of g [10].
In the situation which concerns us however the obstruction vanishes, thus
we will concern ourselves only with the special case of trivially extended
actions.

Definition 2.6 ([10]). Let G be a connected Lie group acting on M with
infinitesimal action ψ : g→ Γ(TM). Let E be a transitive Courant algebroid
on M , not necessarily exact. A trivially extended action is a map α : g→
Γ(E) such that α is a homomorphism of algebras, ρ ◦ α = ψ and the induced
adjoint action of g on E integrates to an action of G on E.
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In the case that G is compact and E is an exact Courant algebroid there
is a characterisation of trivially extended actions in terms of the Cartan com-
plex for equivariant cohomology. Suppose that we have an extended action
of G on E. Since G is compact find a G-invariant splitting of E. Thus we
obtain a closed 3-form H such that E = TM ⊕ T ∗M with H-twisted Dorf-
man bracket. With respect to this splitting the infinitesimal action of G on
E necessarily has the form e(Y + η) = Lψ(e)(Y + η) for all e ∈ g. In partic-
ular, it follows that H is G-invariant. Since this is an extended action we
have that e(Y + η) = [α(e), Y + η] = [ψ(e) + ξ(e), Y + η] = Lψ(e)(Y + η) +
iY (iψ(e)H − dξ(e)). We therefore must have

(2.2) dξ(e) = iψ(e)H

for all e ∈ g. The condition that α is an algebra homomorphism is that
ψ([a, b]) + ξ([a, b]) = [ψ(a) + ξ(a), ψ(b) + ξ(b)] = Lψ(a)(ψ(b) + ξ(b)), or sim-
ply

(2.3) Lψ(a)(ξ(b)) = ξ([a, b]).

This is exactly the condition that ξ thought of as a g∗-valued 1-form is
equivariant. The conditions (2.2),(2.3) can be expressed using the Cartan
complex

Ωk
G(M) =

⊕
2p+q=k

Ωq(M,Spg∗)G

with differential dG = d− ι given by

dG(ω) = dω − eaiψ(ea)ω

where ea denotes a basis for g and ea the corresponding dual basis. Following
[10] we set Φ = H + ξ ∈ Ω3

G(M). Then ξ determines an extended action if
and only if

dG(Φ) = −〈α(ei), α(ej)〉eij .

We write this as dG(Φ) = c, where c = −〈α(ei), α(ej)〉eij ∈ Ω0(M,S2g∗)G

thought of as a bilinear form on g is −1 times the pullback under α : g→
Γ(E) of the pairing 〈 , 〉 on E. Note that since an extended action of this
form simply acts on E = TM ⊕ T ∗M by Lie derivative, there is no obstruc-
tion to integrating this to a G-action on E provided that G acts on M .

Two extended actions ξ, ξ′ are considered equivalent if there is an equiv-
ariant function f : M → g∗ such that for each a ∈ g we have ξ′(a) = ξ(a) +
df(a). In terms of the corresponding equivariant 3-forms Φ = H + ξ, Φ′ =
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H + ξ′ we have Φ′ = Φ + dG(f), so that Φ,Φ′ differ by a dG-exact term.
In addition we observe that a change in choice of invariant splitting for E
corresponds to a change Φ 7→ Φ + dG(β), where β ∈ Ω2(M)G is the invari-
ant 2-form relating the splittings. In this way we obtain a correspondence
between solutions of the equation dG(Φ) = c modulo dG-exact terms and
extended actions up to equivalence.

Proposition 2.7 ([10], Theorem 2.13). Let G be a compact group. Then
trivially extended G-actions α : g→ Γ(E) on a fixed exact Courant algebroid
E with prescribed quadratic form c(a) = −〈α(a), α(a)〉 are up to equivalence
in bijection with solutions to dGΦ = c modulo dG-exact forms, where Φ =
H + ξ is an equivariant 3-form and H represents the Ševera class of E.

Our objective now is to extend Proposition 2.7 to a more general class
of Courant algebroids. We will consider Courant algebroids of the following
form: let L be a Lie algebroid on M , which for simplicity we will assume
to be transitive. Let Ωk(L) = Γ(M,∧kL∗) be the space of degree k Lie alge-
broid forms and dL : Ωk(L)→ Ωk+1(L) the Lie algebroid differential. Let
H ∈ Ω3(L) be a dL-closed 3-form. Set E = L⊕ L∗ with the following bracket

[X + ξ, Y + η] = [X,Y ]L + LXη − iY dLξ + iY iXH

where X,Y ∈ Γ(L), ξ, η ∈ Γ(L∗) and LXη = iXdLη + dLiXη. It is straight-
forward to see that this bracket makes E into a Courant algebroid [3]. The
pairing on E is just the dual pairing of L and L∗:

〈X + ξ, Y + η〉 =
1

2
(iXη + iY ξ)

and the anchor is the projection to L followed by the anchor of L. Note
also that the isomorphism class of E depends only on the cohomology class
[H] ∈ H3(L) in Lie algebroid cohomology. We call [H] the Ševera class of E
and E the Courant algebroid associated to [H]. We note that E naturally fits
into an short exact sequence 0→ L∗ → E → L→ 0. An isotropic splitting
s : L→ E of this sequence will be called a splitting of E. It is immediate that
splittings of E exist. A choice of splitting s : L→ E determines a 3-form H
representing the Ševera class of E, namely H(a, b, c) = 2〈[s(a), s(b)], s(c)〉.
It is clear also that different choices of splitting give rise to different repre-
sentatives for the Ševera class.

As a prerequisite to obtaining an extended action on E we first need
to assume the existence of an action of G on L lifting an action of G on
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M . Therefore we will assume that there is a Lie algebra homomorphism
ψ : g→ Γ(L) with the property that the adjoint action of ψ integrates to an
action of G on L covering an action of G on M . If ρ : L→ TM is the Lie
algebroid anchor then we obtain a commutative diagram of Lie algebras

g
ψ //

""

Γ(L)

ρ

��
Γ(TM)

For each a ∈ g we obtain a contraction operator iψ(a) : Ωk(L)→ Ωk−1(L).
There is a natural infinitesimal action of g on Ω∗(L) by Lie derivative Lψ(a) =
iψ(a)dL + dLiψ(a) which gives Ω∗(L) the structure of a g-differential complex
in the language of [17]. Following [17] we may now define the equivariant
cohomology for Ω∗(L) from a Cartan model construction (see also [7]). Let
Ωq(L, Spg)g ⊂ Ωq(L, Spg∗) denote the subspace of equivariant Lie algebroid
forms valued in S∗g∗. The Cartan model (Ωk

G(L), dG) is given by the complex

Ωk
G(L) =

⊕
2p+q=k

Ωq(L, Spg∗)g

with equivariant differential dG given by

dG(ω) = dLω − eaiψ(ea)ω.

Now consider extended actions α : g→ Γ(E) of the form α = (ψ, ξ) for
some map ξ : g→ Γ(L∗). The conditions for α to be an extended action are a
direct generalisation of (2.2), (2.3) to the Lie algebroid setting. Therefore if
we set Φ = H + ξ ∈ Ω3

G(L) and c(a) = −〈α(a), α(a)〉 then the condition for
α to be an extended action is dGΦ = c, the same condition as in the exact
case. As with the exact case we may say that extended actions corresponding
to ξ, ξ′ are equivalent if there exists f ∈ Ω0(L, g∗)g such that ξ′ = ξ + dL(f).
Then modulo this equivalence relation we have a classification of extended
actions parallel to Proposition 2.7. For convenience let us summarise this:

Proposition 2.8. Let G be a compact group, L a transitive Lie algebroid
and E the Courant algebroid associated to a class in H3(L). Let G act
on M and suppose that there is an infinitesimal action ψ : g→ Γ(L) which
integrates to an action of G on L covering the action on M . Fix a quadratic
form c ∈ Ω0(L, S2g∗)g. There is a bijection between trivially extended G-
actions α : g→ Γ(E) satisfying:
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• there exists an isotropic splitting E = L⊕ L∗ such that α has the form
α = (ψ, ξ) for some ξ : g→ Γ(L∗)

• c(a) = −〈α(a), α(a)〉 for all a ∈ g

and solutions to dGΦ = c modulo dG-exact forms, where Φ = H + ξ is an
equivariant 3-form and H represents the Ševera class of E.

As with the exact case, once we assume that the action ψ : g→ Γ(L) can
be integrated to an action of G on L there is no obstruction to integrating
α : g→ Γ(E) to an action of G on E.

2.4. Reduction by extended actions

Let G act on M and suppose that E is a Courant algebroid with a trivially
extended action α : g→ Γ(E). In [10] a theory of reduction for exact Courant
algebroids with extended actions is developed. We will extend this to the
more general class of Courant algebroids considered in Section 2.3, but for
simplicity we will do so only for a restricted class of extended action.

Definition 2.9. An extended action α : g→ Γ(E) is called non-degenerate
if for each point x ∈M the bilinear form cx ∈ S2g∗ given by cx(a, b) =
−〈α(a)(x), α(b)(x)〉 is non-degenerate as a bilinear form on g.

In the case of a non-degenerate extended action the map α : g→ Γ(E)
is injective on each fibre of E so that the image K is a sub-bundle of E
which is non-degenerate with respect to the pairing on E. Let K⊥ be the
annihilator of K with respect to the pairing on E.

Before considering the more general case let us suppose first that E is
an exact Courant algebroid. We will assume also that the action of G on M
is free and proper so that M is a principal G-bundle over M/G. Recall from
[10] that the big distribution ∆b is given by ∆b = ρ(K +K⊥) ⊂ TM . In our
case we know that K is non-degenerate with respect to the pairing on E so
that K and K⊥ are complementary and thus ∆b = TM . By [10, Theorem
3.3] we obtain a Courant algebroid Ered on M/G, the reduction of E. As a
vector bundle Ered is given by

Ered =
K⊥

K ∩K⊥
/G.
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In our case we know that K ∩K⊥ = 0 so that Ered = K⊥/G. Sections of
Ered can be identified with G-invariant sections of K and in this way Ered

inherits the structure of a Courant algebroid on M .
Now we consider the more general case where E is the Courant algebroid

associated to a transitive Lie algebroid L and a class in H3(L). Assume
that we have a non-degenerate extended action α : g→ Γ(E) of the form
described in Proposition 2.8, associated to an infinitesimal action ψ : g→
Γ(L). Let us again assume that M →M/G is a principal G-bundle. Then it
is natural to define the reduction Ered of E to be the bundle Ered = K⊥/G.

Proposition 2.10. The bundle Ered naturally has the structure of a Courant
algebroid on M/G. The Dorfman bracket and pairing on Ered are inherited
from E by identifying sections of Ered with G-invariant sections of K⊥ ⊆ E.
The anchor on Ered is the composition

K⊥/G→ E/G
ρ−→ TM/G→ T (M/G).

Proof. We first need to show that the space Γ(K⊥)G of G-invariant sections
of K⊥ is closed under the Dorfman bracket. For this let v, w ∈ Γ(K⊥)G. It is
clear that [v, w] is G-invariant so we need only show that [v, w] is orthogonal
to α(a) for any a ∈ g. We find

〈α(a), [v, w]〉 = ρ(v)〈a,w〉 − 〈[v, α(a)], w〉
= 〈[α(a), v], w〉 − 2〈d〈v, α(a)〉, w〉
= 0

since v, w are orthogonal to α(a) and [α(a), v] = 0 since v is G-invariant.
This shows that K⊥/G naturally inherits a bracket from E. The bundle
Ered inherits a pairing and anchor as described above. One verifies that these
satisfy the axioms for a Courant algebroid on M/G given in Definition 2.1.

�

We now show that equivalent extended actions produce isomorphic reduc-
tions. Although this is true more generally we restrict to the special case
where the action of G is free and proper. Consider changing an extended
action Φ to an equivalent extended action Φ′ = Φ + dG(f), where f ∈
Ω0(L, g∗)g is an equivariant g∗-valued function. Let A ∈ Ω1(M, g) be a con-
nection for the principal G-bundle M →M/G. Then by pullback under the
anchor ρ : L→ TM we obtain a g-valued Lie algebroid 1-form B = ρ∗(A) ∈
Ω1(L, g) with the property that iψ(e)B = e. Let e1, . . . , em be a basis for g
and e1, . . . , em the dual basis. If f = fie

i then f = −ι(−fiBi), where Bi =
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ei(B). Thus fie
i = dG(−fiBi) + dL(fiB

i). Applying dG we obtain dG(f) =
dG(dL(fiB

i)). Thus Φ′ = Φ + dG(β) where β = dL(fiB
i) ∈ Ω2(L)g, which is

a closed, equivariant Lie algebroid 2-form. We know that such 2-forms act
as automorphisms of E changing the choice of splitting. It follows that the
reduced Courant algebroids obtained from the extended actions Φ and Φ′

are isomorphic.

2.5. Commuting reductions

We have introduced two types of reduction, simple reductions in Section 2.2
and reduction by extended action in Section 2.4. We now show that for
commuting actions these reductions commute. Let σ : P → X be a principal
G-bundle and suppose that the space X is itself the total space of a principal
H-bundle π0 : X →M . We assume here that G,H are compact connected
Lie groups with Lie algebras g, h. When we consider T-duality we will take
H to be a torus, but it is not necessary to assume this yet.

Given a Courant algebroid on P we are interested in reducing to a
Courant algebroid on X and then reducing again to M . In some situations
it will be possible to reverse the order of the reductions. For this we assume
that the H-action on X lifts to a H-action on P commuting with the G-
action. Thus P can be considered as a principal G×H-bundle over M . We
set P0 = P/H, so that P0 is a principal G-bundle over M . Define π, σ0 to be
the projections π : P → P0 and σ0 : P0 →M . Then we have a commutative
diagram

(2.4) P
π //

σ
��

P0

σ0

��
X

π0 //M

Let E be a Courant algebroid on P . We assume that E is the Courant
algebroid associated to a transitive Lie algebroid L and a cohomology class
in H3(L). We assume that there is an infinitesimal action ψg + ψh : g⊕ h→
Γ(L) which integrates to an action of G×H on L covering the action on
P . By averaging we can find a G×H-invariant representative h ∈ Ω3(L) for
the Ševera class of E and thus we obtain an action of G×H on E. Note
that the action of G×H on L determines the action of G×H on E up to
isomorphism.

We suppose in addition that the G-action on E comes from a non-
degenerate extended action αg : g→ Γ(E), where αg = (ψg, ξg) for some
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ξg ∈ Ω1(L, g∗)g. Finally, in order for it to be possible to reduce E twice
we need to assume that the extended action αg is H-invariant in the sense
that for every e ∈ g the section αg(e) is H-invariant.

Let K ⊆ E be the image of αg and Ered = K⊥/G the reduction of E
by the extended action. Then Ered is a Courant algebroid on X. Let E/H
denote the simple reduction of E by the action of H, which is a Courant
algebroid on P0.

Proposition 2.11. The action of H on E determines an action of H on
Ered. Let Ered/H be the simple reduction of Ered by this action. The extended
action αg on E determines an extended action on E/H. Let (E/H)red denote
the reduction by this extended action. There is a canonical isomorphism of
Courant algebroids on M :

Ered/H ' (E/H)red.

Proof. Since the extended action αg maps to H-invariant sections of E we
have that K and K⊥ are preserved by H. Then since the actions of G and
H commute we get a natural action of H on Ered = K⊥/G. We can identify
sections of Ered/H with G×H-invariant sections of K⊥.

Let M be the vector bundle on P0 obtained by the quotient of L by
the action of H, so M = L/H. It is clear that M is a Lie algebroid on
P0 and transitive since we assume L is transitive. Recall that E is given
by E = L⊕ L∗ with the h-twisted Dorfman bracket. Since h is invariant
under the action of H it defines a class h′ ∈ H3(M). Clearly the simple
reduction E/H is the Courant algebroid associated to the Lie algebroid
M with Ševera class h′ ∈ H3(M). Now since the extended action αg : g→
Γ(E) maps to H-invariant sections it automatically defines an extended
action α′ : g→ Γ(E/H). The image of α′ is given by the quotient K/H and
(K/H)⊥ = K⊥/H. Thus sections of (E/H)red are naturally identified with
G×H-invariant sections of K⊥. These identifications give the isomorphism
Ered/H ' (E/H)red. �

3. Heterotic Courant algebroids

3.1. Quadratic Lie algebroids

Let V →M be a vector bundle equipped with a bundle map [ , ] : V ⊗ V →
V which is skew-symmetric and satisfies the Jacobi identity, so that the
fibres of V have the structure of Lie algebras. Following [22] we say that
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V is a Lie algebra bundle if there is a fixed Lie algebra g, an open cover
{Ui} of M and trivialisations V |Ui

' Ui × g under which the bracket [ , ] is
identified with the Lie bracket on g. If A is any transitive Lie algebroid the
kernel V = Ker(ρ) of the anchor ρ : A→ TM is a Lie algebra bundle [22,
IV, Theorem 1.4]. Additionally we note that V is a Lie algebroid module
over A, where the action of a ∈ Γ(A) on a section v ∈ Γ(V ) is [a, v].

Let V be a bundle of Lie algebras. We say that V is a quadratic Lie
algebra bundle if in addition there is a non-degenerate symmetric bilinear
form 〈 , 〉 : V ⊗ V → R which is ad-invariant in the sense that 〈[a, b], c〉+
〈b, [a, c]〉 = 0, for all a, b, c ∈ Γ(V ).

Following [13] we say that a transitive2 Lie algebroid A is a quadratic
Lie algebroid if V = Ker(ρ) is given a non-degenerate symmetric bilinear
pairing 〈 , 〉 which is preserved by the module structure in the sense that
for all a ∈ Γ(A), b, c ∈ Γ(V ) we have

(3.1) ρ(a)〈b, c〉 = 〈[a, b], c〉+ 〈b, [a, c]〉.

Note that by taking a to be a section of V we find that 〈 , 〉 must be ad-
invariant so that V is a quadratic Lie algebra bundle.

3.2. Atiyah algebroids

Let G be a Lie group and P →M a principal G-bundle. Throughout we
regard principal G-bundles as possessing a right action. The quotient of
TP by the action of G defines a vector bundle A = TP/G on M such that
sections of A can be identified with G-invariant vector fields on TP . The
Lie bracket of two invariant vector fields is again invariant, so there is a Lie
bracket on the space of sections of A which makes A a Lie algebroid, the
Atiyah algebroid of P .

Let g be the Lie algebra of G. Throughout this paper we will assume
that G is a compact, connected, semisimple Lie group and equip g with a
G-invariant, non-degenerate bilinear form c( , ) = 〈 , 〉. For any principal G-
bundle P →M with Atiyah algebroid A, the kernel V of the anchor ρ : A →
TM identifies with the adjoint bundle gP = P ×G g. The pairing 〈 , 〉 on g is
G-invariant, so defines a natural pairing on gP which we continue to denote
by 〈 , 〉. This pairing makes A into a quadratic Lie algebroid, indeed let
A,B,C be invariant vector fields on P such that B,C are vertical. Then
B,C can be regarded as g-valued functions B,C : P → g such that B(pg) =

2More generally the notion of quadratic Lie algebroids can be defined for regular
Lie algebroids, that is whenever the anchor has constant rank.
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Adg−1(B(p)) and similarly for C. It follows that A〈B,C〉 = 〈A(B), C〉+
〈B,A(C)〉 from which we see that (3.1) holds.

For any x ∈ g we write ψ(x) for the associated vector field on P . We
have that ψ([x, y]) = [ψ(x), ψ(y)], where we use left invariant vector fields
on G to define the Lie bracket on g. Let A be a connection on P . Thus
A ∈ Ω1(P, g) is a g-valued 1-form on P such that iψ(x)A = x for all x ∈ g
and R∗gA = Adg−1A, where Rg : P → P denotes the right action of g ∈ G
on P . The curvature of A is the g-valued 2-form F ∈ Ω2(P, g) given by
F = dA+ 1

2 [A,A]. We can also regard F as a 2-form valued section of the
adjoint bundle.

A connection A determines a splitting of the exact sequence 0→ gP →
A→ TM → 0. For any vector field X on M there is a unique vector field XH

on P such that XH projects to X and iXHA = 0. We call XH the horizontal
lift of X. By invariance of A we have that XH is an invariant vector field
and thus a section of A. This gives the splitting of the exact sequence for A.
With respect to this splitting A = TM ⊕ gP one finds that the Lie bracket
on sections of A is given by:

(3.2) [X + s, Y + t]A = [X,Y ] +∇Xt−∇Y s− [s, t]− F (X,Y ),

where [s, t] is defined using the algebraic Lie bracket on gP and ∇X is the
covariant derivative determined by the connection A.

3.3. Heterotic Courant algebroids

LetH be a transitive Courant algebroid on M . Then the anchor ρ : H → TM
dualises to an injective map ρ∗ : T ∗M → H, where we use the pairing on H
to identify H with its dual. The quotient A = H/T ∗M inherits the structure
of a transitive Lie algebroid. The anchor of A is induced by the anchor ρ
of H and shall also be denoted as ρ. The kernel of ρ : A → TM naturally
inherits a bilinear pairing from the pairing 〈 , 〉 on H and we will denote
this also by 〈 , 〉. It is straightforward to see that this pairing makes A into
a quadratic Lie algebroid.

Definition 3.1. We say that a transitive Courant algebroid H is a het-
erotic Courant algebroid if there exists a principal G-bundle P such that
A = H/T ∗M is isomorphic to the Atiyah algebroid of P as a quadratic Lie
algebroid.

Let H be a heterotic Courant algebroid associated to the Atiyah alge-
broid A ' H/T ∗M and let gP denote the adjoint bundle. Define K to be
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the kernel of the anchor ρ : H → TM . Then T ∗M ⊆ K and K/T ∗M identi-
fies with the kernel of the induced anchor A → TM , which is gP . We have
exact sequences

0→ K → H → TM → 0(3.3)

0→ T ∗M → K → gP → 0.(3.4)

By a splitting of H we mean a section s : TM → H of the anchor ρ such that
the image s(TM) ⊆ H is isotropic with respect to the pairing on H. As with
the exact case isotropic splittings always exist. Given a splitting s we obtain
a splitting of the exact sequence (3.3). Moreover the subspace s(TM)⊥ ∩ K
defines a lift of gP to K which is orthogonal to T ∗M . Thus a splitting s also
determines a splitting of (3.4), giving a decomposition

(3.5) H = TM ⊕ gP ⊕ T ∗M

such that the anchor and pairing are given by

ρ(X, s, ξ) = X(3.6)

〈(X, s, ξ), (Y, t, η)〉 = 1
2(iXη + iY ξ) + 〈s, t〉.(3.7)

In general there is an obstruction for a quadratic Lie algebroid A asso-
ciated to a principal G-bundle P →M to arise from a transitive Courant
algebroid H as the quotient A = H/T ∗M . Let A be a connection on P with
curvature 2-form F . For suitable choice of 〈 , 〉, the characteristic class rep-
resented by the closed 4-form 〈F ∧ F 〉 is the first Pontryagin class of P . For
convenience we will refer to the cohomology class represented by 〈F ∧ F 〉
for any fixed choice of pairing 〈 , 〉 as the first Pontryagin class of P (with
respect to 〈 , 〉). It is well known that A comes from a transitive Courant
algebroid H if and only if the first Pontryagin class vanishes [6]. In fact we
have the following classification:

Proposition 3.2. Let P →M be a principal G-bundle with Atiyah alge-
broid A and A a connection on P with curvature F . Let H0 be a 3-form
on M such that dH0 = 〈F, F 〉. Such a pair (A,H0) determines a transitive
Courant algebroid H such that H/T ∗M = A. The bundle H is given by (3.5)
with anchor given by (3.6), pairing by (3.7) and bracket given by:

[X + s+ ξ, Y + t+ η]H = [X,Y ] +∇Xt−∇Y s− [s, t]− F (X,Y )(3.8)

+ LXη − iY dξ + iY iXH
0

+ 2〈t, iXF 〉 − 2〈s, iY F 〉+ 2〈∇s, t〉,
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where X,Y ∈ Γ(TM), s, t ∈ Γ(gP ), ξ, η ∈ Γ(T ∗M). Conversely given a tran-
sitive Courant algebroid H and a splitting s : TM → H there exists (A,H0)
with dH0 = 〈F, F 〉, such that the bracket is given by (3.8).

The proof is an immediate consequence of the well known classification
of transitive Courant algebroids [6],[26],[13].

Let H be the bundle TM ⊕ gP ⊕ T ∗M . Given a 2-form B and a gP -
valued 1-form A, we define endomorphisms eB : H → H, eA : H → H as fol-
lows:

eB(X + s+ ξ) = X + s+ ξ + iXB

eA(X + s+ ξ) = X + s−AX + ξ + 〈2s−AX,A〉.

We call eB a B-shift and eA an A-shift. Note that A- and B-shifts preserve
the anchor (3.6) and pairing (3.7). Suppose that ∇ is a G-connection with
curvature F∇ and H0 is a 3-form such that dH0 = 〈F∇, F∇〉. Then we may
equip H with the corresponding Dorfman bracket given by (3.8). We write
this as [ , ]∇,H0 to show the dependence on (∇, H0). In general A- and B-
shifts do not preserve this bracket. However we have the following identities:[

eBu, eBv
]
∇,H0 = eB [u, v]∇,H0+dB(3.9) [

eAu, eAv
]
∇,H0 = eA [u, v]

∇+A,H0+2〈A∧F∇〉+〈A∧d∇A〉+1
3 〈A∧[A∧A]〉

.(3.10)

3.4. Heterotic Courant algebroids by reduction

We will show that heterotic Courant algebroids are obtained by reduction
of exact Courant algebroids. Let σ : P →M be a principal G-bundle. Every
exact Courant algebroid on P can be constructed by taking a closed G-
invariant 3-form H ∈ Ω3(P ) and taking the H-twisted Dorfman bracket
on E = TP ⊕ T ∗P . By G-invariance of H, the action of G on P extends
immediately to an action on E which moreover preserves the splitting E =
TP ⊕ T ∗P . We are therefore in the situation described in Section 2.2 of
[10] in which trivially extended actions α : g→ Γ(E) up to equivalence cor-
respond to solutions of dG(Φ) = c, where Φ = H + ξ for ξ : g→ Γ(T ∗M)

the T ∗M -component of α regarded as a section of
(
g∗ ⊗ Ω1(P )

)G
and c ∈(

S2g∗ ⊗ Ω0(P )
)G

is the quadratic form on g given by c(x, y) = −〈α(x), α(y)〉.
It is natural to consider the case where c = 〈 , 〉.
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Proposition 3.3. Equivalence classes of solutions to dG(H + ξ) = c = 〈 , 〉
are represented by pairs (H0, A), where H0 is a 3-form on M and A is a con-
nection on P with curvature F such that dH0 = 〈F, F 〉. The corresponding
pair (H, ξ) is given by

H = σ∗(H0)− CS3(A)

ξ = −cA.

Here c is viewed as a map c : g→ g∗ and CS3(A) is the Chern-Simons 3-
form of A

CS3(A) = c(A,F )− 1

3!
c(A, [A,A]).

Proof. We let ψ : g→ Γ(TP ) denote the map sending an element x ∈ g to the
corresponding vector field on P . Then an extended action α : g→ Γ(E) has
the form α(x) = (ψ(x), ξ(x)), where ξ : g→ Γ(T ∗P ). We can think of ξ as a
g∗-valued 1-form on P or using c we find that there is a g-valued 1-form A′ ∈
Ω1(P, g) such that ξ = −cA′. We have that A′ must be invariant in the sense
that R∗gA

′ = Adg−1A′. The condition that c(x, y) = −〈α(x), α(y)〉 becomes
2c(x, y) = c(iψ(x)A

′, y) + c(iψ(y)A
′, x). To express the general solution let us

fix a basis e1, . . . , em for g, a dual basis e1, . . . , em and set cij = c(ei, ej). Now
choose an arbitrary connection A0 = Ai0ei on P . Then we can decompose A′

as

A′ = aijA
j
0ei +Biei

where the Bi satisfy iψ(x)B
i = 0 for all x ∈ g. Thus ari crj + cria

r
j = 2cij . The

general solution has the form ari crj = cij + βij , where βij = −βji. Substitut-
ing we obtain

A′ = A0 +Biei + βimc
mjAi0ej = A+ βimc

mjAi0ej

where A is the connection A = A0 +Biei. From this we find that ξ = −cA′
is given by ξ = −cA− βijAi0ej . We now argue that the term βijA

i
0e
j can

be eliminated. If Φ = H + ξ is a solution to dG(Φ) = c, then an equiv-
alent solution is given by Φ′ = Φ− dG(12βijA

i
0A

j
0) = H ′ + ξ′ where H ′ =

H − d(12βijA
i
0A

j
0) and ξ′ = ξ + βijA

i
0e
j = −cA. We have shown that modulo

equivalence every solution to dG(H + ξ) = c is given by an extended action
of the form ξ = −cA for some connection A.

Given a pair (H,A) consisting of a closed invariant 3-form H and a
connection A we must determine when the condition dG(H − cA) = c is
satisfied. Write A = Aiei and observe that ι(Ai) = ei. Then dG(−cA) =
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dG(−cijAiej) = −cijdAiej + cije
iej , so we have dG(H)− cijdAiej = 0. To

proceed let us decompose H into the most general form

H = H0 +H1
i A

i +
1

2!
H2
ijA

ij +
1

3!
H3
ijkA

ijk,

where Ai1i2...ik = Ai1 ∧ · · · ∧Aik and we omit pullback notation. Let us intro-
duce structure constants ckij such that [ei, ej ] = ckijek and set cijk = cmij cmj .

Then cijk is skew-symmetric in i, j, k. The curvature F iei is given by F k =
dAk + 1

2c
k
ijA

ij . The equation dG(H − cA) = c takes the form dG(H)−
cijF

iej + 1
2cijkA

ijek = 0. Equating coefficients of ei we arrive at the con-
ditions H3

ijk = cijk, H
2
ij = 0, H1

i = −cijF j . Therefore H is of the form

H = H0 − cijAiF j +
1

3!
cijkA

ijk.

We recognise cijA
iF j − 1

3!cijkA
ijk to be the Chern-Simons 3-form of A,

which we denote by CS3(A). Thus H = H0 − CS3(A). Finally the equation
dG(H − cA) = c also requires that H is a closed form. Since dCS3(A) =
c(F, F ) this is equivalent to the condition dH0 = c(F, F ). Conversely a pair
(H0, A) where H0 is a 3-form on M satisfying dH0 = c(F, F ) defines a solu-
tion to dG(H − cA) = c with H = H0 − CS3(A). �

Let σ : P →M be a principal G-bundle and (H0, A) a pair satisfying
the conditions of Proposition 3.3 so that H = σ∗(H0)− CS3(A) is a closed
3-form on P and we have an extended action α : g→ Γ(E), where E =
TP ⊕ T ∗P with the H-twisted Dorfman bracket and α = (ψ, ξ) with ψ : g→
TP the map sending an element of g to the corresponding vector field and
ξ : g→ Γ(T ∗P ) is given by ξ = −cA. Since our extended action integrates to
an action of G on E we obtain a Courant algebroid by reduction. Let K ⊂ E
be the image of α which in the present situation is a subbundle of E and
let K⊥ be the annihilator of K with respect to the pairing on E. According
the Proposition 2.10 we obtain a Courant algebroid Ered on P/G = M , the
reduction of E. As a vector bundle Ered = K⊥/G. Sections of Ered can be
identified with G-invariant sections of K and in this way Ered inherits the
structure of a Courant algebroid on M .

Proposition 3.4. Given an extended action α : g→ Γ(E) corresponding to
a pair (H0, A) there is an isomorphism of Courant algebroids f : H → Ered

where H = TM ⊕ gP ⊕ T ∗M is the heterotic Courant algebroid associated
to the pair (H0, A) as in Proposition 3.2. In fact we can take f to be as
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follows:

f(X + s+ ξ) = XH + s+ c(A, s) + σ∗(ξ)

where XH is the horizontal lift of X determined by the connection A and
s ∈ Ω0(M, gP ) is identified with an invariant vertical vector field on P .

Proof. Let us take the map f : H → Ered to be defined as above. We show
that f is an isomorphism of Courant algebroids. First we need to show that
f is well defined in the sense that it takes a section X + s+ ξ of H to a
section of Ered. Recall first that sections of Ered naturally identify with G-
invariant sections of K⊥. This is easily verified by noting that the bundle
K is spanned by sections of the form t− c(A, t) where t ∈ Ω0(M, gP ). It is
trivial to verify that f preserves anchors and pairings, so all that remains
is to check that f preserves Dorfman brackets. Let X + s+ ξ and Y + t+ η
be sections of H. We compute (omitting pullback notation)

[f(X + s+ ξ), f(Y + t+ η)]E

= [XH + s+ c(A, s) + ξ, Y H + t+ c(A, t) + η]E

= [XH + s, Y H + t] + L(XH+s)(c(A, t) + η)

− i(Y H+t)d(c(A, s) + ξ)

+ i(Y H+t)i(XH+s)(H
0 − CS3(A)).

The term [XH + s, Y H + t] is the commutator of invariant vector fields on
P , so it is given by the formula (3.2) for the Atiyah algebroid:

[XH + s, Y H + t] = [X,Y ]H +∇Xt−∇Y s− [s, t]− F (X,Y ).

Consider now the expression i(XH+s)d(c(A, t) + η). After some simplification
we find

i(XH+s)d(c(A, t) + η) = iXdη − c(s,∇t) + c(iXF, t)

− c([s, t], A) + c(A,∇Xt).

Likewise we find that

di(XH+s)(c(A, t) + η) = diXη + dc(s, t).

Finally we also have

i(Y H+t)i(XH+s)(H
0 − CS3(A)) = iY iXH

0 − c(s, iY F ) + c(t, iXF )

− c(A,F (X,Y )) + c(A, [s, t]).
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Combining all of these calculations we arrive at

[f(X + s+ ξ), f(Y + t+ η)]E = [X,Y ]H +∇Xt−∇Y s− [s, t]− F (X,Y )

+ c(∇Xt, A)− c(∇Y s,A)− c([s, t], A)

− c(F (X,Y ), A)− 2c(iY F, s) + 2c(iXF, t)

+ 2c(∇s, t) + LXη − iY dξ + iY iXH
0.

The right hand side is f([X + s+ ξ, Y + t+ η]H) as required. �

Combining Propositions 3.2 and 3.4 we obtain the following classification
of heterotic Courant algebroids:

Proposition 3.5. Every heterotic Courant algebroid on M is obtained
by reduction of an exact Courant algebroid E = TP ⊕ T ∗P on a princi-
pal G-bundle σ : P →M with flux a closed invariant 3-form H ∈ Ω3(P ).
The reduction is by a trivially extended action ξ : g→ Γ(T ∗P ) of the form
ξ = −cA, where A is a connection such that H = σ∗(H0)− CS3(A).

We saw in Section 2.4 that equivalent actions give rise to isomorphic
reductions, so equivalence classes of extended actions give rise to isomorphic
heterotic Courant algebroids.

Suppose that σ : P →M is a principal G-bundle with vanishing first
Pontryagin class. Let EA(P ) denote the set of equivalence classes of trivially
extended actions on P . Here by an extended action we mean a pair (H, ξ)
such that H is a closed G-invariant 3-form on P and ξ is an equivariant map
ξ : g→ Γ(T ∗P ) satisfying dG(H + ξ) = c. Two such pairs (H, ξ) and (H ′, ξ′)
are equivalent if there is a degree 2 class β in the Cartan complex such
that H ′ + ξ′ = H + ξ + dG(β). Since we are assuming that P has trivial
first Pontryagin class we know that EA(P ) is non-empty. Moreover it is
clear that the set of pairs (H, ξ) such that dG(H + ξ) = c is a torsor over
the space of dG-closed classes of degree 3 in the Cartan complex. Factoring
out by equivalence we find that EA(P ) is a torsor over H3

G(P,R), degree
3 equivariant cohomology of P . Since P is a principal G-bundle we have
that H3

G(P,R) = H3(M,R) and we conclude that EA(P ) is a torsor over
H3(M,R).

Let (H, ξ) be an extended action so that dG(H + ξ) = c. In particu-
lar H is a closed 3-form on P . Changing (H, ξ) to an equivalent extended
action changes H by an exact form, so the cohomology class [H] ∈ H3(P,R)
depends only on the equivalence class of the pair (H, ξ). We know that any
such H has the form H = σ∗(H0)− CS3(A), for some 3-form H0 on M and
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a connection A on P . The restriction of H to any fibre of P is given by

(3.11) ω3 =
1

3!
c([ω, ω], ω)

where ω ∈ Ω1(G, g) is the left Maurer-Cartan form on G. We call ω3 the
Cartan 3-form. Thus [H] ∈ H3(P,R) has the property that its restriction to
any fibre yields the class ω3 ∈ H3(G,R).

Definition 3.6. A real string class is a class x ∈ H3(P,R) such that the
restriction of x to any fibre of P coincides with ω3.

Since G is taken to be compact, connected and semisimple we have
H0(G,R) = R, H1(G,R) = H2(G,R) = 0 and H3(G,R) 6= 0, with ω3 repre-
senting a non-trivial class. Considering the Leray-Serre spectral sequence for
G→ EG→ BG with cohomology in real coefficients we see that the exis-
tence of a real string class on P is equivalent to the vanishing of the first
Pontryagin class in real coefficients. Let us denote by SC(P ) the set of real
string classes on P .

Proposition 3.7. Suppose σ : P →M is a principal G-bundle with vanish-
ing real first Pontryagin class. Then the set SC(P ) is a torsor for H3(M,R)
where the action of y ∈ H3(M,R) on x ∈ SC(P ) is given by x+ σ∗(y). The
map EA(P )→ SC(P ) which sends a pair (H, ξ) to the cohomology class [H]
is an isomorphism of H3(M,R)-torsors.

Proof. The fact that SC(P ) is a torsor over H3(M,R) is immediate from the
Leray-Serre spectral sequence in real coefficients for σ : P →M . The map
which sends a pair (H, ξ) to the class [H] clearly respects the H3(M,R)
actions, so is necessarily a bijection. �

We also need to consider string classes in integral cohomology. For this
suppose the pairing 〈 , 〉 on g is such that the Cartan 3-form ω3 lies in
the image H3(G,Z)→ H3(G,R). Fix a choice of lifting of ω3 to a class in
integral cohomology. For most simple compact connected G this is a trivial
matter as H3(G,Z) = Z. The exceptions are the groups SO(4n)/Z2, n ≥ 2,
which have H3(G,Z) = Z⊕ Z2 [14].

Definition 3.8. For a fixed choice of lift ω3 ∈ H3(G,Z) we will say that
a class h ∈ H3(P,Z) on a principal G-bundle P → X is a string class if h
restricts to ω3 on the fibres of P .
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For the spin groups G = Spin(m), m ≥ 3, it is shown in [23] that string
classes are in bijection with string structures as introduced by Killing-
back [20].

4. Heterotic T-duality

4.1. Review of T-duality

We begin with a brief review of topological T-duality [4],[5],[9],[8],[1],[2]. Let
Tn = Rn/Zn be a rank n torus, T̂n = Rn∗/Zn∗ the dual torus. Let tn = Rn
be the Lie algebra of Tn and tn∗ = Rn∗ the Lie algebra of T̂n. Fix a basis
t1, . . . , tn for tn and dual basis t1, . . . , tn.

Let π : X →M be a principal Tn-bundle over M and π̂ : X̂ →M a prin-
cipal T̂n-bundle over X. Let C = X ×M X̂ be the fibre product, which is
a principal Tn × T̂n-bundle. Let p : C → X, p̂ : C → X̂ be the projections
and set q = π ◦ p = π̂ ◦ p̂. Denote by C∗C the sheaf of smooth C∗-valued func-
tions on C and similarly define C∗X , C∗X̂ . Suppose now that we have classes

h ∈ H3(X,Z) ' H2(X, C∗X), ĥ ∈ H3(X̂,Z) ' H2(X̂, C∗
X̂

). There is a natu-

ral identification of H2(Tn × T̂n,Z) with
(
∧2tn

)
⊕ (tn ⊗ tn∗)⊕

(
∧2tn∗

)
. Let

P ∈ H2(Tn × T̂n,Z) be the class corresponding to the identity in End(t) '
tn ⊗ tn∗. Then P may be thought of as a line bundle on Tn × T̂n which we
call the Poincaré line bundle. Since translations act trivially on H2(Tn ×
T̂n,Z), we find that P defines a class in H0(M,R1q∗(C∗C)) which we con-
tinue to denote by P. Let d2 : H1(M,R1q∗(C∗C))→ H2(M, q∗(C∗C)) denote

the differential d2 : E0,1
2 → E2,0

2 in the Leray-Serre spectral sequence for
q : C →M using the sheaf C∗C . Observe that we have natural pullback maps
p∗ : π∗(C∗X)→ q∗(C∗C), p̂∗ : π̂∗(C∗X̂)→ q∗(C∗C). The following definition is eas-
ily shown to be equivalent to the definition of T-duality in [2].

Definition 4.1. The pairs (X,h), (X̂, ĥ) are T-dual if the following condi-
tions hold:

• h is the image of a class h′ ∈ H0(M,π∗(C∗X)) under the natural map
H2(M,π∗(C∗X))→ H2(X, C∗X).

• Similarly ĥ is the image of a class ĥ′ ∈ H2(M, π̂∗(C∗X̂)).

• The classes h′, ĥ′ may be chosen such that p̂∗(ĥ′)− p∗(h′) = d2P.

In this case we also say that (X̂, ĥ) is a T-dual of (X,h).
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An immediate consequence of this definition is that if (X,h), (X̂, ĥ) are
T-dual then p̂∗(ĥ) = p∗(h), so that h, ĥ coincide on C. Let (X,h) be a pair
consisting of a principal Tn-bundle π : X →M and a class h ∈ H2(X, C∗X).

We say that (X,h) is T-dualisable if there exists a T-dual (X̂, ĥ) of (X,h).
It turns out that (X,h) is T-dualisable if and only if h is in the image of the
natural map H2(M,π∗(C∗X))→ H2(X, C∗X).

A key aspect of T-duality is that it determines an isomorphism of Courant
algebroids. For this suppose that (X,h), (X̂, ĥ) are T-duals over M . Let
θ ∈ Ω1(X, tn) be a Tn-connection for π : X →M and let θ̂ ∈ Ω1(X̂, tn∗) be
a T̂n-connection for π̂ : X̂ →M . Let F ∈ Ω2(M, tn) be the curvature of θ and
F̂ ∈ Ω2(M, tn∗) the curvature of X̂. Write θ = θiti, F = F iti and θ̂ = θ̂it

i,
F̂ = F̂it

i.

Proposition 4.2 ([2]). For any choice of connections θ, θ̂ there exists
a 3-form H ∈ Ω3(M) such that dH + F i ∧ Fi = 0. Define H ∈ Ω3(X), Ĥ ∈
Ω3(X̂) as follows:

H = π∗(H) + π∗(F̂i) ∧ θi

Ĥ = π̂∗(H) + π̂∗(F i) ∧ θ̂i.

Then H, Ĥ are closed forms, which by a suitable choice of H can be made
to represent the cohomology classes h, ĥ. Moreover it follows that

(4.1) π̂∗(Ĥ)− π∗(H) = d(p∗(θi) ∧ p̂∗(θ̂i)).

Equation (4.1) translates the T-duality condition p̂∗(ĥ′)− p∗(h′) = d2P
into a statement involving differential forms.

Given T-duals (X,h), (Ĥ, ĥ) and forms (θ, θ̂,H) as in Proposition 4.2 we
obtain an isomorphism of Courant algebroids as follows. Let E = TX ⊕ T ∗X
be the exact Courant algebroid on X with H-twisted Dorfman bracket and
Ê = TX̂ ⊕ T ∗X̂ the exact Courant algebroid on X̂ with Ĥ-twisted Dorfman
bracket. Then since H, Ĥ are invariant under the torus actions we have
that Tn acts on E and T̂n acts on Ê. Using the connections θ, θ̂ we obtain
identifications

(4.2)
E/Tn = TM ⊕ tn ⊕ (tn)∗ ⊕ T ∗M
Ê/T̂n = TM ⊕ (tn)∗ ⊕ tn ⊕ T ∗M.

Then we define a map φ : E/Tn → Ê/T̂n which up to sign is the map swap-
ping the inner two factors:

(4.3) φ(X, t, u, ξ) = (X,−u,−t, ξ).
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Proposition 4.3 ([12],[2]). The map φ : E/Tn → Ê/T̂n defined by Equa-
tion (4.3) is an isomorphism of Courant algebroids on M .

4.2. Overview of heterotic T-duality

Since ordinary T-duality involves an isomorphism of exact Courant alge-
broids, a natural approach to developing heterotic T-duality is to construct
in a similar manner an isomorphism between heterotic Courant algebroids.
We have established that heterotic Courant algebroids are obtained from
exact Courant algebroids by reduction. Instead of performing the reductions
first and then constructing a T-duality isomorphism of heterotic Courant
algebroids, we will reverse the process, using ordinary T-duality to con-
struct an isomorphism of exact Courant algebroids and then use reductions
to obtain an isomorphism of heterotic Courant algebroids.

Let σ : P → X be a principal G-bundle over X and h ∈ H3(P,R) be a
real string class. Let H be the heterotic Courant algebroid on X associated
to h. Suppose now that X is a principal Tn-bundle π0 : X →M over a
manifold M , where Tn is the rank n torus Tn = Rn/Zn. We seek to promote
the torus action on X to an action on H. For this we assume that the Tn-
action on X lifts to a Tn-action on P by principal bundle automorphisms.
Thus the Tn and G-actions on P commute and we can view P as a principal
Tn ×G-bundle over M . Set P0 = P/Tn, so that P0 is a principal G-bundle
over M . Define π, σ0 to be the projections π : P → P0 and σ0 : P0 →M .
Recall the commutative diagram (2.4). Let E be the exact Courant algebroid
on P with Ševera class h. In order to lift Tn to an action on H we will
consider lifting Tn to an action on E preserving an extended action. Choose
a representative H ∈ Ω3(P ) for h invariant under G× Tn. This is certainly
possible as G× Tn is compact. We can take E = TP ⊕ T ∗P with the H-
twisted Dorfman bracket, then since H is invariant we obtain an action of
G× Tn on E. In order to apply the results of Section 2.5 we need to be
able to choose an extended action α : g→ Γ(E) which maps to Tn-invariant
sections. This will be made clear in Section 4.5.

To implement T-duality we must assume the Ševera class h ∈ H3(P,R)
lifts to an integral cohomology class h ∈ H3(P,Z), thus h is an integral
string class on P . Since P → P0 is a principal Tn-bundle, we may con-
sider T-dualising the pair (P, h) to obtain a T̂n-bundle π̂ : P̂ → P0 and class
ĥ ∈ H3(P,Z). The existence of such a T-dual requires the vanishing of an
obstruction derived from h. If ĥ is a real string class on P̂ then we can
construct a corresponding T-dual heterotic Courant algebroid. There is a
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problem as it can happen that the G-action on P0 does not lift to an action
on P̂ commuting with the T̂n-action. In Section 4.3 we will see that there
is a cohomological obstruction in finding such a lift of the G-action. We will
show that when the obstruction vanishes, we have a G× T̂n-action on P̂
and on setting X̂ = P̂ /G we get a commutative diagram

P
π //

σ

��

P0

σ0

��

P̂
π̂oo

σ̂
��

X
π0 //M X̂

π̂0oo

Let C = P ×P0
P̂ be the fibre product and p : C → P , p̂ : C → P̂ the projec-

tions. One of the requirements of T-duality is that p̂∗(ĥ) = p∗(h). We will
use this to show that ĥ is a string class. In this way we obtain a T-duality
for string classes.

Let H, Ĥ be the heterotic Courant algebroids on X, X̂ corresponding
to the string classes h, ĥ. The existence of torus actions on P and P̂ deter-
mines torus actions on H and Ĥ. We will proceed to show that there is an
isomorphism H/Tn ' Ĥ/T̂n. Let E, Ê be the exact Courant algebroids on
P, P̂ corresponding to h, ĥ. By T-duality of (P, h) and (P̂ , ĥ) there is an
isomorphism φ : E/Tn → Ê/T̂n. Now if we can construct the isomorphism
φ in such a way that it interchanges the extended actions on E and Ê
then it will induce an isomorphism (E/Tn)red ' (Ê/T̂n)red. From this and
Proposition 2.11 we have a series of isomorphisms

H/Tn ' (E/Tn)red ' (Ê/T̂n)red ' Ĥ/T̂n

which will establish the desired isomorphism H/Tn ' Ĥ/T̂n.

4.3. T-duality of string classes

As described in Section 4.2 the starting point for heterotic T-duality is
a principal G× Tn-bundle P over M . Recall again the commutative dia-
gram (2.4), noting that π : P → P0 is a principal Tn-bundle. Let h ∈ H3(P,Z)
be a string class. Suppose that h is T-dualisable and let (P̂ , ĥ) be a T-dual.
Thus P̂ → P0 is a principal T̂n-bundle, where T̂n is the dual torus to Tn and
ĥ ∈ H3(P̂ ,Z). We are interested in the case that P̂ → P0 is the pullback of
a principal T̂n-bundle on M . In general there is an obstruction to doing so.

Definition 4.4. Let P→M be a principal G×Tn-bundle and h∈H3(P,Z).
Set P0 = P/Tn. We say that h is a T-dualisable string class if
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• h is T-dualisable with respect to the Tn-bundle P → P0

• The restriction of h to any fibre G× Tn of P agrees with the class
ω3 ∈ H3(G,Z) ⊂ H3(G× Tn,Z).

If h is T-dualisable then the restriction h|G×Tn of h to a fibre G× Tn
must be a T-dualisable class on the trivial Tn-bundle G× Tn → G. This
means that h|G×Tn must lie in the subgroup H3(G,Z)⊕H2(G,H1(Tn,Z))
of H3(G× Tn,Z). If h is also a string class then the component of h along
the fibre G equals the class ω3. Thus the obstruction for a string class which
is T-dualisable to satisfy Definition 4.4 is the component of h|G×Tn which
lies in H2(G,H1(Tn,Z)).

Proposition 4.5. Let h ∈ H3(P,Z) be a string class which is T-dualisable
with respect to the Tn-bundle P → P0. Restriction of h to the G× Tn-fibres
of P →M defines a class κ ∈ H2(G,H1(Tn,Z)). Then κ = 0 if and only if
for every T-dual (P̂ , ĥ) of (P, h) over P0 the T̂n-bundle P̂ → P0 is the pull-
back under σ0 : P0 →M of a T̂n-bundle X̂ →M . Moreover in the case that
κ = 0 the bundle X̂ such that P̂ = σ∗0(X̂) is unique and ĥ is a T-dualisable
string class.

Proof. Let (P̂ , ĥ) be a T-dual. Restricting the base P0 to a fibre G we get
a pair (P̂ |G, ĥ|G) which is a T-dual to the restriction of (P, h) over G. In
particular this means that κ ∈ H2(G,H1(Tn,Z)) is the Chern class of P̂ |G →
G. If κ 6= 0 then any P̂ |G → G is a non-trivial bundle and P̂ can not be the
pullback of some bundle X̂ →M .

Conversely assume κ = 0. Let (P̂ , ĥ) be a T-dual over P0. Restricting
P̂ over G yields a trivial bundle. By considering the Leray-Serre spectral
sequence for P0 →M with coefficients in H1(Tn,Z) we see that the Chern
class ĉ of P̂ must be a pullback from M , hence P̂ itself is a pullback. From
the spectral sequence and the fact that H1(G,H1(Tn,Z)) = 0 we get that
X̂ is unique. Finally since κ = 0 we see that the restriction of h to G× Tn is
equal to the pullback of ω3 under the projection G× Tn → G. By T-duality
we similarly have that the restriction of ĥ to a fibre G× T̂n equals the
pullback of ω3 under the projection G× T̂n → G, hence ĥ is a T-dualisable
string class. �

Let σ : P → X be a principal G-bundle. Let A be a connection on
P with curvature F . The 4-form c(F ∧ F ) defines a characteristic class
p1 ∈ H4(BG,R) which we refer to as the first Pontryagin class. Given a
faithful representation V of G we can normalise k so that p1 is the usual
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first Pontryagin class of the associated bundle P ×G V but it is not neces-
sary for us to do so. We take ω3 ∈ H3(G,R) to be the transgression of p1,
which we recall is given by the Cartan 3-form (3.11).

Recall that T̂n is defined to be the dual torus to Tn. One way to formalise
this is to take T̂n = H1(Tn,R)/H1(T̂n,Z). In particular this determines a
dual pairing between the lattices H1(Tn,Z) and H1(T̂n,Z), which we denote
by 〈 , 〉.

Proposition 4.6. Suppose that h ∈ H3(P,Z) is a T-dualisable string class.
Let (P̂ , ĥ) be any T-dual and let π̂0 : X̂ →M be the T̂n-bundle over M such
that P̂ → P0 is the pullback of X under σ0 : P0 →M . Let c ∈ H2(M,H1(T̂n,
Z)) and ĉ ∈ H2(M,H1(Tn,Z)) be the Chern classes of X →M and X̂ →M .
The following holds in H4(M,R):

−p1(P0) + 〈c, ĉ〉 = 0.

Proof. Choose a connection A on P0 and pull it back to a connection on P .
We can then represent h by a closed G× Tn-invariant 3-form H ∈ Ω3(P )
such that H = σ∗(H0)− CS3(A) for some H0 ∈ Ω3(X). Now choose a con-
nection θ ∈ Ω1(X, tn) for the principal Tn-bundle X →M , where tn is the
Lie algebra of Tn. Choose a basis t1, . . . , tn for tn with dual basis t1, . . . , tn.
We can identify H1(Tn,Z) with the lattice spanned by t1, . . . , tn in (tn)∗ and
H1(T̂n,Z) with the lattice spanned by t1, . . . , tn in tn. We write θ = θiti. Now
we may decompose H0 as

H0 = π∗0(K0) + π∗0(K1
i )θi +

1

2
π∗0(K2

ij)θ
ij +

1

3!
π∗0(K3

ijk)θ
ijk

where K0,K1
i , . . . ,K

3
ijk are forms on M . Now since H = σ∗(H0)− CS3(A)

is T-dualisable the components K3
ijk must vanish and the components K2

ij ,

must be exact, say K2
ij = dB2

ij . On replacing H0 by H0 − dB and H by

σ∗(H0 − dB)− CS3(A), where B = 1
2B

2
ijθ

ij we may assume that K3
ijk = 0

and K2
ij = 0. Then K1

i is closed, so Kit
i represents a class in H2(M,H1(Tn,

Z)). According to T-duality the dual Chern class σ∗0(ĉ) ∈ H2(P0, H
1(Tn,

Z)) agrees with σ∗0([K1
i t
i]) up to the image of the differential d2 : H0(P0,

H2(Tn,Z))→ H2(P0, H
1(Tn,Z)). Now since σ∗0 : H0(M,H2(Tn,Z))→

H0(P0, H
2(Tn,Z)) is an isomorphism it likewise follows that ĉ ∈ H2(M,

H1(Tn,Z)) agrees with [K1
i t
i] up to the image of the differential d2 : H0(M,

H2(Tn,Z))→ H2(M,H1(Tn,Z)). If c = citi is the Chern class of X →M
then the differential d2 : H0(M,H2(Tn,Z))→ H2(M,H1(Tn,Z)) sends ti ∧
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tj to citj − cjti. Write ĉ = cit
i. It follows that we have an equality

〈c, ĉ〉 = ciĉi = ci[K1
i ].

Let F be the curvature of A and set F i = dθi, so that F i is a closed 2-form
on M representing ci. The equation d(σ∗(H0)− CS3(A)) = 0 gives

dK0 +K1
i F

i − c(FA, FA) = 0

where FA is the curvature of A. Passing to cohomology we obtain −p1(P ) +
[K1

i ]ci = 0 and the result follows. �

4.4. T-duality and fluxes

Let h ∈ H3(P,Z) be a T-dualisable string class. Let (P̂ , ĥ) be a T-dual and
π̂0 : X̂ →M a torus bundle on M which pulls back to P̂ . Let C be the fibre
product C = P ×P0

P̂ and p : C → P , p̂ : C → P̂ the projections. We have a
commutative diagram

(4.4) P

σ

��

π

��

C
poo p̂ // P̂

σ̂
��

π̂

��
X

π0 ��

P0

σ0

��

X̂

π̂0��
M

Let E be the exact Courant algebroid on P with Ševera class h and Ê the
exact Courant algebroid on P̂ with Ševera class ĥ. If we choose invariant
representatives for h, ĥ we get torus actions on E, Ê. By T-duality there is
an isomorphism E/Tn ' Ê/T̂n. We construct heterotic Courant algebroids
H, Ĥ on X and X̂ from extended actions α : g→ Γ(E), α̂ : g→ Γ(Ê). If we
knew that the isomorphism E/Tn ' Ê/T̂n exchanges the extended actions
α, α̂ we could obtain an isomorphism of the form H/Tn ' H/T̂n. In this
section we prove that this is indeed possible and gives rise to the desired
isomorphism of heterotic Courant algebroids.

Let A ∈ Ω1(P, g)) be any Tn-invariant connection for the G-bundle P →
X and Â ∈ Ω1(P̂ , g) any T̂n-invariant connection for the G-bundle P̂ → X̂.
Similarly let θ ∈ Ω1(P, tn) be a G-invariant connection for the Tn-bundle
P → P0 and θ̂ ∈ Ω1(P, (tn)∗) a G-invariant connection for P̂ → P0. We write
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θ = θiti and θ̂ = θ̂it
i. Choose a basis e1, . . . , em for g and dual basis e1, . . . , em

for g∗. Let ψ : g→ Γ(TP ) be the map sending an element of g to the cor-
responding vector field on P and ψ̂ : g→ Γ(T P̂ ) the corresponding map for
P̂ . Recall the operator ι used to define the differential dG = d− ι in the
Cartan model for equivariant cohomology. On P we have ιω = ejiψ(ej)ω and

similarly for P̂ with ψ̂ replacing ψ. Define sections v ∈ Ω0(P, g⊗ tn) and v̂ ∈
Ω0(P̂ , g⊗ (tn)∗) by ιθ = −cv, ιθ̂ = −cv̂, where we view c as a map c : g→ g∗.
More explicitly v = viti and v̂ = v̂it

i, where iψ(ej)θ
i = −c(ej , vi), iψ(ej)θ̂i =

−c(ej , v̂i).

Definition 4.7. A 4-tuple of connections θ, θ̂, A, Â are compatible if on C
we have an equality (omitting pullback notation):

(4.5) Â−A = 〈θ, v̂〉 − 〈θ̂, v〉.

We note that compatible 4-tuples of connections (θ, θ̂, A, Â) always exist
as we can take A = π∗(A0), Â = π∗(A0) for some G-connection A0 on P0

and let θ, θ̂ be pullbacks from X, X̂. Then v, v̂ vanish, so the connections are
compatible.

Proposition 4.8. Let (θ, θ̂, A, Â) be a compatible 4-tuple of connections.
There exists a G-connection A0 on P0, a Tn-connection θ0 on X, a T̂n-
connection on X̂ and a 1-form valued section λ of the adjoint bundle gP0

on
M such that the 4-tuple (θ, θ̂, A, Â) is given by (omitting pullback notation):

(4.6)

θ = θ0 − c(v,A0)− c(v, λ)

θ̂ = θ̂0 − c(v̂, A0)− c(v̂, λ)

A = A0 − 〈θ0, v̂〉
Â = A0 − 〈θ̂0, v〉.

In addition v, v̂ must satisfy a compatibility condition:

(4.7) 〈cv ∧ cv̂〉 = 0

where cv ∧ cv̂ is the section of Ω0(C,∧2g) obtained by pulling back cv and
cv̂ to C, pairing tn and (tn)∗ factors and wedging g factors.

Conversely for any choice of connections (θ0, θ̂0, A0), 1-form valued sec-
tion of the adjoint bundle λ and pair v, v̂ satisfying (4.7) we obtain a com-
patible 4-tuple of connections by (4.6).
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Proof. Starting with Equation (4.5) and contracting with the vector field
associated to ej we obtain 0 = c(ej , v

i)v̂i − c(ej , v̂i)vi. Hence for all j, k we
have c(ej , v

i)c(ek, v̂i)− c(ej , v̂i)c(ek, vi) = 0 which is Equation (4.7).
Let us re-write the compatibility condition (4.5) in the form

A+ 〈θ, v̂〉 = Â+ 〈θ̂, v〉.

Since the left hand side is a form on P and the right hand side a form on P̂ ,
they must both equal a form β ∈ Ω1(P0, g) on P0, thus A = β − 〈θ, v̂〉, Â =
β − 〈θ̂, v〉. Choose a G-connection B0 on P0. Then by the definition of v, v̂
we find that θ, θ̂ admit decompositions θ = θ0 − c(v,B0), θ̂ = θ̂0 − c(v̂, B0),
where θ0 is a Tn-connection on X and θ̂0 a T̂n-connection on X̂.

By (4.7) we have an equality 〈c(v,B0), v̂〉 = 〈c(v̂, B0), v〉. Define an equiv-
ariant 1-form A0 ∈ Ω1(P0, g) by A0 = β + 〈c(v,B0), v̂〉. We then have

A = A0 − 〈θ0, v̂〉
Â = A0 − 〈θ̂0, v〉.

This implies that A0 is a G-connection. Define λ to be the 1-form valued
section of the adjoint bundle on M such that B0 = A0 + λ. Substituting
we obtain (4.6). Conversely given (A0, θ0, θ̂0), a section λ and a pair v, v̂
satisfying (4.7), a direct computation shows that the 4-tuple of connections
given by Equations (4.6) is compatible. �

The following proposition shows that a T-dualisable string class h can
simultaneously be represented in two ways, one reflecting that h is a string
class, the other reflecting that h is T-dualisable:

Proposition 4.9. Let (θ, θ̂, A, Â) be a compatible 4-tuple of connections.
Then the class h is represented by a closed 3-form H ∈ Ω3(P ) such that
there exists a Tn-invariant form H0 ∈ Ω3(X) and a G-invariant form K0 ∈
Ω3(P0) such that

H = H0 − CS3(A)

= K0 + 〈F̂ ∧ θ〉

where F = dθ̂ ∈ Ω2(P0, (t
n)∗) is the curvature of θ̂.

Proof. First of all note that it suffices to show that we can find a Tn-
invariant form H0 ∈ Ω3(X) and a G-invariant form K0 ∈ Ω3(P0) such that
H0 − CS3(A) is closed and H0 − CS3(A) = K0 + 〈F̂ ∧ θ〉. For if we set
H ′ = H0 − CS3(A) then by considering Leray-Serre spectral sequences we
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see that the class δ = h− [H ′] ∈ H3(P,R) is a pullback from M . Let HM be
a closed 3-form on M representing δ. Then h is represented by H ′ +HM =
(H0 +HM )− CS3(A) = (K0 +HM ) + 〈F̂ ∧ θ〉.

By Proposition 4.8 we may write (θ, θ̂, A, Â) in the form (4.6) for some
A0, θ0, θ̂0, λ. We proceed first under the assumption that λ = 0. Choose a
basis t1, . . . , tn for tn with dual basis t1, . . . , tn and write θ = θiti, θ0 =
θi0ti, v = viti. We also let F i = dθi, F i0 = dθi0. Similarly define θ̂i, (θ̂0)i, v̂i,
F̂ i, (F̂0)i. The Chern-Simons 3-form CS3(A) = CS3(A0 − 〈θ0, v̂〉) can be
expanded in terms of the θi0 to obtain:

CS3(A) = CS3(A0)− c(A0, v̂i)F
i
0

+
(
−c(dA0, v̂i) + c(dA0

v̂i, A0) + c(v̂jF
j
0 , v̂i)

)
∧ θi0

+ c(dA0
v̂i, v̂j)θ

ij
0 −

1

3
c(v̂i, [v̂j , v̂k])θ

ijk
0

Now we seek to find a Tn-invariant 3-form H0 on X such that H0 − CS3(A)
is closed and H0 − CS3(A) = K0 + 〈F̂ ∧ θ〉 for some Tn-invariant form K0

on P0. First we write down the most general invariant 3-form on X decom-
posed with respect to θ0:

H0 = H̃0 +H1
i θ
i
0 +

1

2
H2
ijθ

ij
0 +

1

3!
H3
ijkθ

ijk
0 .

The components H3
ijk, H

2
ij , H

1
i are uniquely determined by the condition

that H0 + CS3(A) = K0 + 〈F̂ ∧ θ〉, resulting in:

(4.8)

H3
ijk = −2c(v̂i, [v̂j , v̂k])

H2
ij = −2c(dA0

v̂i, v̂j)

H1
i = −c(dA0, v̂i) + c(dA0

v̂i, A0) + c(v̂jF
j
0 , v̂i) + F̂i.

The expressions in (4.8) for H3
ijk, H

2
ij are manifestly differential forms on

M , however the expression for H1
i a priori appears to only be a form on P0

because of its dependence on A. However using F̂i = (F̂0)i − dc(v̂i, A0) we
find

H1
i = −2c(v̂i, FA0

) + c(v̂jF
j
0 , v̂i) + (F̂0)i,

where FA0
is the curvature of A0. This shows that H1

i is in fact a form on
M . Having made these choices it certainly is the case that H0 − CS3(A) =
K0 + 〈F̂ ∧ θ〉, for some G-invariant form K0 on P0. It remains to show that
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we can choose H̃0 ∈ Ω3(M) such that H0 − CS3(A) is closed. Note first that

H0 − CS3(A) = H̃0 − CS3(A0) + c(A0, v̂i)F
i
0 + 〈F̂ ∧ θ0〉.

On differentiating we find that

d(H0 − CS3(A)) = dH̃0 − c(FA0
, FA0

) + F i0 ∧ (F̂0)i.

From Proposition 4.6 we have the topological condition −p1(P0) + [F0]
i ∧

[(F̂0)i] = 0 ∈ H4(M,R). This shows that we can indeed find H̃0 so that H0 −
CS3(A) is closed. This completes the proof in the case λ = 0. For the more
general case with non-zero λ set π = −c(v, λ), π̂ = −c(v̂, λ). Then (θ − π, θ̂ −
π̂, A, Â) is a 4-tuple of compatible connections for which there is no λ term.
Thus we can find H0,K0 so that H0 − CS3(A) is closed and H0 − CS3(A) =
K0 + 〈d(θ̂ − π̂) ∧ (θ − π)〉. Thus H + d〈π̂ ∧ θ〉 = (H0 − d〈π̂ ∧ θ〉)− CS3(A)
= (K0 − 〈F̂ − dπ̂ ∧ π〉 − 〈π̂ ∧ F 〉) + F̂ ∧ θ has the required form. �

Proposition 4.10. Let (θ, θ̂, A, Â) be a compatible 4-tuple of connections.
The classes h, ĥ admit representatives H ∈ Ω3(P ), Ĥ ∈ Ω3(P ) such that H
has the form H = H0 − CS3(A), where H0 ∈ Ω3(X) is Tn-invariant and
such that on C

Ĥ = H + d〈θ ∧ θ̂〉.

Proof. We may choose H0, Ĥ0,K0, K̂0 as in Proposition 4.9 such that H =
H0 − CS3(A) = K0 + 〈F̂ ∧ θ〉 is a representative for h and Ĥ = Ĥ0 −
CS3(Â) = K̂0 + 〈F ∧ θ̂〉 is a representative for ĥ. As in the proof of [2,
Theorem 4.6] we can find a Tn × T̂n-invariant 2-form B on C such that
K̂0 −K0 = dB and such that when decomposed into forms on P0 using θ, θ̂,
there are no θi ∧ θ̂j-terms. On averaging we can assume that B is actually
G× Tn × T̂n-invariant.

Choose A0 to be a connection on P0 such that Equation (4.6) holds
and define π, π̂ as in the proof of Proposition 4.9. Then from the proof of
Proposition 4.9 we find that Ĥ −H has the form

Ĥ −H = J0 + d〈θ ∧ θ̂〉+ d〈π ∧ θ̂〉 − d〈π̂ ∧ θ〉

where J0 is a 3-form on M . On the other hand we clearly have

Ĥ −H = K̂0 −K0 + d〈θ ∧ θ̂〉.
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Combining these with K̂0 −K0 = dB we get

d(B − 〈π ∧ θ̂〉+ 〈π̂ ∧ θ〉) = J0.

Let B′ = B − 〈π ∧ θ̂〉+ 〈π̂ ∧ θ〉, so that B′ is a G× Tn × T̂n-invariant form
on C which has no θi ∧ θ̂j-terms and dB′ = J0, where J0 is a form on M .

We can use θ, θ̂, A0 to decompose B′ in terms of forms on the base M :

B′ = B0 +B1
i θ
i + (B̂1)iθ̂i +

1

2
B2
ijθ

ij +
1

2
(B̂2)ij θ̂ij

+ (C0, A0) + (C1
i , A0)θ

i + ((Ĉ1)i, A0)θ̂i + (C2, A0 ∧A0).

In this expression the coefficients B0, B1
i , . . . , (B̂

2)ij are forms on M . The
coefficients C0, C1

i , (Ĉ
1)i are forms on M valued in the dual g∗P0

of adjoint
bundle gP0

for P0 →M and C2 is valued in ∧2g∗P0
. We use ( , ) to denote

the dual pairing of gP0
and g∗P0

and extend this to a pairing of ∧2gP0
and

∧2g∗P0
.

Since dB′ is equal to a form onM it must be that the C2-term determines
a class in H0(M,H2(G,R)). However H2(G,R) = 0, so after adding to B′ an
exact term of the form d(D,A0), where D is a 1-form valued section of g∗P0

we may assume C2 = 0. We also have H1(G,R) = 0, so a similar argument
allows us to eliminate the terms C0, C1

i , (Ĉ
1)i by adding exact terms to B′.

Since exact terms do not change dB′ we still have dB′ = J0. Now we may
write B′ = b̂− b, where

b = −B0 −B1
i θ
i − 1

2
B2
ijθ

ij

b̂ = (B̂1)iθ̂i +
1

2
(B̂2)ij θ̂ij

Note that b is an invariant 2-form on X and b̂ is an invariant 2-form on X̂.
Then since dB′ = J0 we have

db̂ = J0 + db.

The left hand side is a form on X and the right hand side a form on X̂,
so db and db̂ must be forms on M . We have that K̂0 −K0 = dB and B =
b̂− b+ 〈π ∧ θ̂〉 − 〈π̂ ∧ θ〉, so

K0 − d(b+ 〈π̂ ∧ θ〉) = K̂0 − d(b̂+ 〈π ∧ θ̂〉).

The left hand side is a form on P while the right hand side is a form on P̂ , so
they must both equal forms on P0. Thus d(b+ 〈π̂ ∧ θ〉) and d(b̂+ 〈π ∧ θ̂〉) are



i
i

“3-bar” — 2015/10/12 — 16:56 — page 651 — #39 i
i

i
i

i
i

String structures and T-duality 651

forms on P0. However, b+ 〈π̂ ∧ θ〉 is a form on X so d(b+ 〈π̂ ∧ θ〉) is a form
on both X and P0, so it is actually a form on M . Similarly d(b̂+ 〈π ∧ θ̂〉)
must actually be a form on M . Replacing H by H − d(b+ 〈π̂ ∧ θ〉) and Ĥ
by Ĥ − d(b̂+ 〈π ∧ θ̂〉) completes the proof of the proposition. �

The compatibility condition (4.5) can be conveniently rewritten in the
form:

Â−A = −ι〈θ ∧ θ̂〉.

Let H, Ĥ,H0, Ĥ0 be as in Proposition 4.10, so that in particular Ĥ =
H + d〈θ ∧ θ̂〉. Set Φ = H + ξ, Φ̂ = Ĥ + ξ̂, where ξ = −cA, ξ̂ = −cÂ. Then
combining the above results we have:

Φ̂ = Φ + dG〈θ ∧ θ̂〉.

By assumption H has the form H = H0 − CS3(A), so from Proposition 3.3
we get that Φ is a solution of dGΦ = c. From the above we obtain dGΦ̂ = c,
so that Φ̂ determines an extended action and Ĥ has the form Ĥ = Ĥ0 −
CS3(Â) for some T̂n-invariant form Ĥ0 ∈ Ω3(X̂). We now observe the fol-
lowing: let (θ, θ̂, A, Â) be any compatible 4-tuple of connections, H ∈ Ω3(P ),
Ĥ ∈ Ω3(P̂ ) any pair of 3-forms such that Ĥ + ξ̂ = H + ξ + dG〈θ ∧ θ̂〉, then
necessarily H, Ĥ are real string classes and satisfy the conditions of Propo-
sitions 4.9, 4.10.

Definition 4.11. We say that the data (θ, θ̂, A, Â,H, Ĥ) satisfies heterotic
T-duality if (θ, θ̂, A, Â) is a compatible 4-tuple of connections and

Ĥ + ξ̂ = H + ξ + dG〈θ ∧ θ̂〉.

We have established the following existence result:

Proposition 4.12. Let P →M be a principal G× Tn-bundle and h ∈
H3(P,Z) a T-dualisable string class. Let (P̂ , ĥ) be a T-dual to (P, h) over
P0 and π̂0 : X̂ →M a torus bundle on M which pulls back to P̂ . For any
compatible 4-tuple of connections (θ, θ̂, A, Â) there exists forms H, Ĥ repre-
senting h, ĥ and such that (θ, θ̂, A, Â,H, Ĥ) satisfies heterotic T-duality.

4.5. T-duality commutes with reduction

Suppose that we have a principal G× Tn-bundle P →M and T-dualisable
string class h ∈ H3(P,Z). As usual let (P̂ , ĥ) be a T-dual and suppose
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the data (θ, θ̂, A, Â,H, Ĥ) satisfies heterotic T-duality according to Defi-
nition 4.11. In particular we have Ĥ = H + d〈θ ∧ θ̂〉, which we recall deter-
mines an isomorphism of exact Courant algebroids.

Let E = TP ⊕ T ∗P be the exact Courant algebroid on P with H-twisted
Dorfman bracket and Ê = T P̂ ⊕ T ∗P̂ be the exact Courant algebroid on P̂
with Ĥ-twisted Dorfman bracket. Then since H, Ĥ are invariant under the
torus actions we have that Tn acts on E and T̂n acts on Ê. Recall that using
the connections θ, θ̂ we obtain the identifications given in Equation (4.2).
According to Proposition 4.3 we have an isomorphism of Courant algebroids
φ : E/Tn → Ê/T̂n given by (4.3).

Let ψ : g→ Γ(TP ) be the map which associates to an element of g the
corresponding vector field on P and similarly define ψ̂. Note that since the
actions of G on P and P̂ cover the action of G on P0 we have a commutative
diagram

(4.9) Γ(TP ) // Γ(TP0) Γ(T P̂ )oo

g

ψ

ee

ψ0

OO

ψ̂

99

where ψ0 : g→ Γ(TP0) is the map corresponding to the action of G on P0.
Let α : g→ Γ(E), α̂ : g→ Γ(Ê) be the extended actions determined by the
connections A, Â. Thus α = (ψ, ξ) , α̂ = (ψ̂, ξ̂) where ξ = −cA, ξ̂ = −cÂ.
Since A, Â are Tn-invariant we have that α maps to Tn-invariant sections
of E and α̂ maps to T̂n-invariant sections of Ê. Let H = Ered be the reduc-
tion of E by the extended action α and Ĥ = Êred be the reduction by the
extended action α̂. Thus H is a heterotic Courant algebroid on X and Ĥ
is a heterotic Courant algebroid on X̂. According to Proposition 2.11 the
Tn-action on E naturally defines a Tn-action on H and similarly we obtain
an action of T̂n on Ĥ. We have from Proposition 2.11 that the extended
actions α, α̂ naturally define extended actions on E/Tn, Ê/T̂n and that
H/Tn ' (E/Tn)red, Ĥ/T̂n ' (Ê/T̂n)red.

Proposition 4.13. The isomorphism φ exchanges extended actions α, α̂ in
the sense that we have a commutative diagram

g
α //

α̂   

Γ(E)

φ
��

Γ(Ê)
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It follows that φ descends to an isomorphism φ : (E/Tn)red → (Ê/T̂n)red.
Composing with the natural identifications H/Tn ' (E/Tn)red, Ĥ/T̂n '
(Ê/T̂n)red given in Proposition 2.11 we obtain an isomorphism of heterotic
Courant algebroids H/Tn ' Ĥ/T̂n.

Proof. Recall the compatibility condition for the connections (θ, θ̂, A, Â),
namely

Â−A = 〈θ, v̂〉 − 〈θ̂, v〉.

As in the proof of Proposition 4.8 we find there is a form β ∈ Ω1(P0, g)
defined on P0 such that:

(4.10)
A = β − 〈θ, v̂〉
Â = β − 〈θ̂, v〉.

Using the decompositions of (4.2) together with (4.9),(4.10) we find that the
extended actions α, α̂ take the form

α = (ψ0,−cv, cv̂,−cβ)

α̂ = (ψ0,−cv̂, cv,−cβ).

The relation α̂ = φ ◦ α directly follows. From here the proposition is imme-
diate. �

5. Examples

5.1. A general class of examples

Suppose that M is simply connected and that H2(M,Z) is torsion free and
finitely generated, for example ifM is a simply connected finite CW complex.
Choose c ∈ H2(M,Z) and let π0 : Xc →M be the corresponding principal
circle bundle. Let G be a compact, connected, simply connected simple Lie
group and σ0 : Pa →M a principal G-bundle with characteristic class a ∈
H4(M,Z) corresponding to the generator of H4(BG,Z) = Z. Let Qa,c be
the fibre product of Xc and Pa. We have a commutative square

Qa,c
π //

σ

��

Pa

σ0

��
Xc

π0 //M.
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Assume a is not a torsion class. By the Leray-Serre spectral sequence for
Pa→M we get H1(Pa,Z)=0, H2(Pa,Z)=H2(M,Z), H3(Pa,Z)=H3(M,Z),
H4(Pa,Z)=H4(M,Z)/〈a〉. Moreover we find that σ∗0 : H i(M,Z)→H i(Pa,Z)
is an isomorphism for i = 2, 3 and a surjection for i = 4.

Define

Ann(c) = {ĉ ∈ H2(M,Z) | c ` ĉ = 0},
Ann(c mod a) = {ĉ ∈ H2(M,Z) | c ` ĉ = 0(mod a)}.

Note that since H2(M,Z) is finitely generated and torsion free, the same is
true for the above two groups. Then by the Gysin sequence for Qa,c → Pa
we find:

H3(Qa,c,Z) = H3(M,Z)⊕Ann(c mod a).

Classes in H3(M,Z) ⊆ H3(Qa,c,Z) are pulled back from M and the fibre
integration π∗ : H3(Qa,c,Z)→ H2(Pa,Z) is projection to Ann(c mod a) fol-
lowed by the inclusion Ann(c mod a) ⊆ H2(M,Z) = H2(Pa,Z). Thus a class
h ∈ H3(Qa,c,Z) consists of a pair h = (hM , ĉ) where hM ∈ H3(M,Z) and
ĉ ∈ H2(M,Z) with c ` ĉ = 0(mod a). For heterotic T-duality we need h to
be a string structure.

Lemma 5.1. If a is not in the image of c` : H2(M,Z)→ H4(M,Z) then
there are no string structures on Qa,c. If a is in the image of c` :H2(M,Z)→
H4(M,Z) then h = (hM , ĉ) is a string structure if and only if c ` ĉ = a.

Proof. Using the Gysin sequence for Xc →M followed by the Leray-Serre
spectral sequence for Qa,c → Xc we obtain an exact sequence

0→ H3(M,Z)⊕Ann(c)→ H3(Qa,c,Z)
i∗→ H3(G,Z) = Z a→ H4(M,Z)/〈c〉

where i : G→ Qa,c is the inclusion of a fibre. If a is not in the image
of c` : H2(M,Z)→ H4(M,Z) then by exactness 1 ∈ Z = H3(G,Z) is not
in the image of i∗ and there are no string structures. Suppose now that
a is in the image of c` : H2(M,Z)→ H4(M,Z). In this case the map
i∗ : H3(Qa,c,Z)→ H3(G,Z) = Z may be described as follows. Represent a
class h ∈ H3(Qa,c,Z) as a pair h = (hM , ĉ) where hM ∈ H3(M,Z) and c `
ĉ = ka for some k ∈ Z. Then i∗(h) = k. The result follows on noting that
string structures are the classes such that i∗(h) = 1. �

Fix a choice of principal G-bundle Pa → X with non-torsion character-
istic class a ∈ H4(M,Z). Then a circle bundle Qa,c → Pa with T-dualisable
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string class corresponds to a triple

(hM , c, ĉ) ∈ H3(M,Z)⊕H2(M,Z)⊕H2(M,Z)

such that c ` ĉ = a. We have established that in this instance heterotic T-
duality is given by the involution (hM , c, ĉ) 7→ (hM , ĉ, c).

5.2. Case of a trivial G-bundle

Consider the case of a principalG-bundle P0 = M ×G→M over a spaceM .
Let Xc →M be a principal circle bundle with Chern class c ∈ H2(M,Z) and
Q0,c = Xc ×M P0 = Xc ×G the fibre product. Assume that G is compact,
simple and simply connected. Then H3(Q0,c,Z) = H3(Xc,Z)⊕H3(G,Z).
Let ω3 denote the generator of H3(G,Z) = Z, let πG : Q0,c → G be the
projection to G and σc : Q0,c → Xc the projection to Xc. Then a class
h ∈ H3(Q0,c,Z) is a string class if and only if it is of the form h = σ∗c (h0) +
π∗G(ω3) for a class h0 ∈ H3(Xc,Z) which is uniquely determined from h. It is
then easy to see that heterotic T-duality for the pair (Xc, h) reduces to ordi-
nary T-duality for the pair (Xc, h0). In other words, if (Xĉ, ĥ) is a second pair
consisting of a principal circle bundle Xĉ with Chern class ĉ ∈ H2(M,Z) and
string class ĥ ∈ H3(Q0,ĉ,Z) with ĥ = σ∗ĉ (ĥ0) + π∗G(ω3), then (Xc, h), (Xĉ, ĥ)

are heterotic T-duals if and only if (Xc, h0), (Xĉ, ĥ0) are ordinary T-duals.
This argument extends easily to the case of higher rank torus bundles.

5.3. 4-manifolds

Suppose that M is a compact simply connected 4-manifold. Then H4(M,Z)
= Z and the cup product of degree 2 cohomology classes defines an inter-
section form 〈 , 〉 on H2(M,Z). Let G be a compact, simple and simply
connected Lie group and fix a principal G-bundle P0 →M and let a ∈
Z = H4(M,Z) be the characteristic class corresponding to the generator
of H4(BG,Z). If a 6= 0 then from Section 5.1 we have that pairs consist-
ing of a principal circle bundle X →M and T-dualisable string class h
on P = P0 ×M X correspond to pairs (c, ĉ) ∈ H2(M,Z)⊕H2(M,Z) such
that 〈c, ĉ〉 = a. Repeating the analysis of Section 5.1 in the case of a trivial
G-bundle, where a = 0 we find that T-dualisable pairs (X,h) correspond
to pairs (c, ĉ) ∈ H2(M,Z)⊕H2(M,Z) such that 〈c, ĉ〉 = 0. As explained in
Section 5.2, this is precisely the condition for ordinary T-duality.

In summary ordinary T-duality on M corresponds to solutions of 〈c, ĉ〉 =
0, while heterotic T-duality gives the more general equation 〈c, ĉ〉 = a. This
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extends the applicability of T-duality to a larger class of examples and allows
for more flexibility in the possible changes in topology under T-duality. For
example in the case M = CP2 any solution to 〈c, ĉ〉 = 0 must have c = 0 or
ĉ = 0, while if a 6= 0 we obtain many solutions to 〈c, ĉ〉 = a for which c, ĉ are
both non-zero.

Suppose in addition that M is spin and let F →M be the principal
spin frame bundle. We can extend the analysis of Section 5.1 to the case
of a principal G× Spin(4)-bundle. If P →M is a principal G-bundle with
characteristic class a ∈ H4(M,Z) then consider the fibre product P ×M F →
M . As explained in Section 7 the replacement of P with P ×M F is necessary
for the anomaly cancellation condition (7.5). Now the equation for a T-
dual pair becomes 〈c, ĉ〉 = a− 1

2p1(TM), or using the signature theorem
this becomes 〈c, ĉ〉 = a− 3

2τ , where τ is the signature of M .

5.4. Higher dimensional lens spaces

Consider the case M = CPn. Then H2(M,Z) = Z, H3(M,Z) = 0, H4(M,Z)
= Z and the cup product H2(M,Z)⊗H2(M,Z)→ H2(M,Z) is multiplica-
tion. Thus for a given 0 6= a ∈ Z we are looking for integers c, ĉ such that
cĉ = a. Let S2n+1 → CPn be the Hopf fibration. This has Chern class 1, so
the lens space Zc\S2n+1 has Chern class c, where Zc acts as a finite subgroup
of the circle action.

The tangent bundle of S2n+1 descends to a rank 2n+ 1 bundle V over
CPn. Since V = TCPn ⊕ R, the first Pontryagin class of V coincides with
the first Pontryagin class of TCPn which is (n+ 1)ω2, where ω is the Kähler
form on CPn. Suppose that n is odd, so that CPn is a spin manifold. Then
V admits a spin structure. Recall that the characteristic class generating
H4(BSpin(k),Z) for k ≥ 4 is the fractional Pontryagin class 1

2p1. For n ≥
3 odd we consider the spin bundle P → CPn of V which has fractional
Pontryagin class 1

2p1(V ) = 1
2(n+ 1)ω2. The pullback of P to S2n+1 is the

spin bundle of S2n+1, the total space of which is isomorphic to Spin(2n+ 1).
Thus if c, ĉ are integers with cĉ = 1

2(n+ 1), then with respect to the principal
Spin(2n+ 1)-bundle P , the lens spaces Zc\S2n+1, Zĉ\S2n+1 are heterotic T-
duals.

We examine this example in more detail showing that the lens spaces
Zc\S2n+1 are naturally solutions to the heterotic equations of motion (see
Section 7.3). The action of scalar multiplication by unit complex numbers on
Cn+1 defines a homomorphism φ : U(1)→ SO(2n+ 2). If n is odd φ induces
a trivial homomorphism on fundamental groups, so that we may lift to a
homomorphism φ̃ : U(1)→ Spin(2n+ 2). Using φ̃ the actions of the cyclic
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groups Zc,Zĉ on S2n+2 lift to the spin bundle. From this we can argue that
the pullback of P to Zc\S2n+1 is the spin bundle of Zc\S2n+1. Since the
group Zc lifts to a subgroup of Spin(2n+ 2) we have that the pullback of
P to Zc\S2n+1 can be identified with Zc\Spin(2n+ 2).

Consider the affine connection ∇L on Spin(2n+ 2) given by left trans-
lation. This is a flat connection which preserves the metric on Spin(2n+ 2)
defined by the Killing form and has torsion given by the Cartan 3-form.
By left invariance ∇L descends to a flat connection with torsion on the
quotient Zc\Spin(2n+ 2). Since this connection is flat it determines a solu-
tion to the type II equations of motion (7.1). Furthermore from Proposi-
tion 7.1 it follows that the lens space Zc\S2n+1 equipped with the principal
Spin(2n+ 1)-bundle Zc\Spin(2n+ 2) is a solution to the heterotic equa-
tions of motion (7.3). In this example we see that heterotic T-duality sends a
solution of the heterotic equations of motion on the lens space Zc\Spin(2n+
2) to another solution on a different lens space Zĉ\Spin(2n+ 2). In Section 7
we will show this is a general feature of heterotic T-duality.

5.5. Further homogeneous examples

Let G be a compact, simple, simply connected Lie group and ω3(G) the
generator of H3(G,Z) = Z. Given a closed subgroup φ : H → G, where H
is also compact, simple and simply connected, we may view G→ G/H
as a principal H-bundle. Let ω3(H) be the generator of H3(H,Z). Then
i∗(ω3(G)) = jφω3(H), where jφ is the Dynkin index of φ. Thus ω3(G) is a
string class for the principal H-bundle G→ G/H precisely when the sub-
group H ⊂ G has Dynkin index 1. For example the following inclusions
have Dynkin index 1: SU(n) ⊂ SU(n+ 1), Spin(n) ⊂ Spin(n+ 1), Sp(n) ⊂
Sp(n+ 1), SU(3) ⊂ G2, G2 ⊂ Spin(7), Spin(9) ⊂ F4, F4 ⊂ E6, E6 ⊂ E7,
E7 ⊂ E8. Many more examples can be obtained by composing these inclu-
sions. We will consider here the case Sp(n) ⊂ Sp(n+m).

Let Hk denote k-dimensional quaternionic space. Under the decomposi-
tion Hn+m = Hn ⊕Hm we obtain an inclusion Sp(n)× Sp(m) ⊂ Sp(n+m).
Let U(1) ⊂ Sp(n+m) be the subgroup corresponding to the diagonal inclu-
sion U(1)→ Tm of U(1) into a maximal torus in the Sp(m) factor. This
corresponds to a decomposition Hn+m = Hn ⊕ Cm ⊕ Cm∗. Set M = Sp(n+
m)/Sp(n)× U(1) and X = Sp(n+m)/Sp(n). Then X is a principal cir-
cle bundle over M with Chern class ω, which by the Leray-Serre spectral
sequence is found to be a generator of H2(M,Z) = Z. Associated to the
fundamental representation of the Sp(n)-factor is a rank 2n complex vec-
tor bundle E on M and associated to the U(1)-factor is a complex line
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bundle L. We then have C2n+2m = E ⊕ (L⊕ L∗)⊗ Cm. Moreover L is the
line bundle associated to X, so c1(L) = ω and it follows that c2(E) = mω2.
Let P0 →M be the principal Sp(n)-bundle corresponding to E →M . So
P0 = Sp(n+m)/U(1). Since the characteristic class c2 corresponds to the
generator of H4(BSp(n),Z), we are looking for solutions to cĉ = m. Let
Xc →M be the principal circle bundle over M with Chern class cω. Then
it follows that Xc = Sp(n+m)/Sp(n)× Zc and the pullback of P0 to Xc

is given by Sp(n+m)/Zc. Arguing as in Section 5.4, we obtain on Xc a
solution of the heterotic equations of motion. This gives many examples of
T-dual pairs satisfying the heterotic equations.

5.6. A universal construction

We again take G to be a compact, simple, simply connected Lie group. Let
X be the principal K(Z, 3)-fibration over K(Z, 2)×K(Z, 2)×BG classified
by c ` ĉ− p, where c, ĉ are the universal Chern classes for the two K(Z, 2)-
factors and p is the characteristic class generating H4(BG,Z) = Z. The uni-
versal G-bundle EG→ BG pulls back to a principal G-bundle P0 → X with
characteristic class the pullback of p to H4(X,Z). Then since X is simply
connected and p ∈ H4(X,Z) is non-torsion, we are in the setting of Sec-
tion 5.1. On X we have c ` ĉ = p, so this gives a pair of heterotic T-dual
spaces which may be considered as a universal example. Given any homo-
topy class of maps Y → X we may pullback to produce a heterotic T-dual
pair over Y . Conversely given a space Y , a principal G-bundle P over Y with
characteristic class p ∈ H4(Y,Z) and Chern classes c, ĉ ∈ H2(Y,Z) such that
c ` ĉ = p, then the classifying map Y → K(Z, 2)×K(Z, 2)×BG classifying
(c, ĉ, P ) lifts to a map Y → X.

6. Generalised metrics and reduction

6.1. Generalised metrics

Definition 6.1. Let E be a transitive Courant algebroid on M where M
has dimension n. We define a generalised metric on E to be a rank n negative
definite subbundle E− ⊆ E. Following [15], we say the generalised metric is
admissible if the restriction ρ|E− of the anchor of E to E− is a bundle
isomorphism ρ|E− : E− → TM .

Given a generalised metric E− ⊆ E we let E+ = E⊥− be the orthogonal
complement with respect to the pairing on E, so we have an orthogonal
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decomposition E = E− ⊕ E+. Admissibility is equivalent to the condition
ρ∗(T ∗M) ∩ E+ = {0}.

An admissible generalised metric determines a section s = (ρ|E−)−1 :
TM → E of the anchor such that the image s(TM) = E− is negative definite
with respect to the pairing 〈 , 〉 on E. An admissible generalised metric then
defines a Riemannian metric g on M by the relation

(6.1) g(X,Y ) = −〈s(X), s(Y )〉.

It is possible to define an indefinite signature notion of generalised metrics.
For this one takes E− ⊆ E to be a rank n subbundle which is non-degenerate
with respect to the pairing on E. We may again say that E− is admissible if
ρ|E− : E− → TM is an isomorphism and in this case we obtain an indefinite
signature metric g on M by (6.1).

In the case where E is an exact Courant algebroid on M a generalised
metric on E is equivalent to an orthogonal decomposition E = E− ⊕ E+

into maximal positive and negative definite subspaces and is automatically
admissible. Identifying E with TM ⊕ T ∗M we have that there exists a Rie-
mannian metric g and a 2-form B on M such that

E+ = {X + gX +BX | X ∈ TM}
E− = {X − gX +BX | X ∈ TM}.

Moreover the metric g coincides with the induced metric (6.1).
Next we consider generalised metrics on heterotic Courant algebroids.

Let g be the Lie algebra of G and suppose that c = 〈 , 〉 is a non-degenerate
invariant bilinear form on g. Let σ : P → X be a principal G-bundle on X
with Atiyah algebroidA. The invariant pairing c on g givesA the structure of
a quadratic Lie algebroid. Let H be a heterotic Courant algebroid associated
to A. ThusH is a transitive Courant algebroid on X such that the associated
quadratic Lie algebroid H/T ∗X is A. Let ρ : H → TX be the anchor and
set K = Ker(ρ). Then we have exact sequences (3.3), (3.4). Recall that we
may split the sequences so that as a vector bundle H = TX ⊕ gP ⊕ T ∗X
with anchor given by (3.6) and pairing by (3.7). Suppose H− ⊆ H is an
admissible generalised metric. By admissibillity H− can be expressed as the
graph of a map TX → gP ⊕ T ∗X and it follows that H+,H− have the form

(6.2)
H+ = {X + a+ gX +BX + 〈2a+AX,A〉 | X ∈ TX, a ∈ gP }
H− = {X −AX − gX +BX − 〈AX,A〉 | X ∈ TX}.
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where A ∈ Ω1(X, gP ), B ∈ Ω2(X) and g is the induced Riemannian metric
on X. Conversely such a triple (g,A,B) defines a generalised metric by (6.2).
If the pairing c( , ) on g is positive definite then H+ is positive definite, so
in this case a generalised metric is a decomposition into maximal positive
and negative definite subspaces and is automatically admissible.

Given a generalised metric H− ⊆ H define an endomorphism G : H → H
to be multiplication by ±1 on H±. We obtain a symmetric non-degenerate
pairing G( , ) on H by setting G(a, b) = 〈Ga, b〉. Using G( , ) we may split
exact sequences (3.3) and (3.4) to obtain a decomposition H = TX ⊕ gP ⊕
T ∗X with pairing and anchor as usual. Define πgP

: H → gP and πT ∗X : H →
T ∗X as the projections to the second and third factors. With respect to this
splitting we find thatH− is given as in (6.2) with A = 0, B = 0. The splitting
of H induced by G in this manner defines a G-connection ∇ and a 3-form
H on X as follows:

(6.3)
∇Xa = πgP

([X, a]H) ,

iY iXH = πT ∗X([X,Y ]H).

Let F denote the curvature of ∇. As usual we have the relation dH =
c(F, F ). We have thus shown:

Proposition 6.2. Let H be a heterotic Courant algebroid associated to the
Atiyah algebroid A and H− ⊆ H an admissible generalised metric. Let g be
the Riemannian metric induced by H−. There exists a G-connection ∇ with
curvature F , a 3-form H with dH = 〈F, F 〉 and a splitting s of H such that
in the decomposition (3.5) given by s, the Dorfman bracket is given by (3.8)
and H− is given by

H− = {X − gX | X ∈ TX}.

Moreover the triple (g,∇, H) is uniquely determined by the pair (H,H−).

Proposition 6.2 shows that a generalised metric on H determines a triple
(g,∇, H) consisting of a Riemannian metric g, a G-connection ∇ with curva-
ture F and a 3-form H with dH = 〈F, F 〉. This is precisely the bosonic field
content of the low energy limit of heterotic string theory, or of gauged super-
gravity. Conversely, such a triple (g,∇, H) determines a Courant algebroid
structure on H = TX ⊕ gP ⊕ T ∗X.

We have established that with respect to a fixed decomposition H =
TX⊕gP⊕T ∗X, a generalised metric corresponds to a triple (g,A,B) accord-
ing to (6.2). From Proposition 3.2 such a splitting determines a G-connection
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∇0 and 3-form H0 according to (3.8). On the other hand we have just seen
in Proposition 6.2 that the generalised metric corresponding to (g,A,B)
determines a different splitting of H and hence a different G-connection
∇ and 3-form H as in (6.3). Using (3.9),(3.10) we find ∇ = ∇0 +A, H =
H0 + dB + 2〈A ∧ F 0〉+ 〈A, d∇0A〉+ 1

3〈A ∧ [A ∧A]〉, where F 0 is the curva-
ture of ∇0.

6.2. Generalised metrics and reduction

Let σ : P → X be a principal G bundle and E an exact Courant algebroid
on P . Suppose that E− ⊆ E is a G-invariant generalised metric on E. Then
we obtain a 3-form H on P and a Riemannian metric g such that E = TP ⊕
T ∗P with H-twisted bracket and E− = {X + gX | X ∈ TP}. Now suppose
that ξ is an extended action which we take to be of the form ξ = −cA
for a connection A on P . Suppose at first that c is positive definite. We
have seen that such a ξ is an extended action if and only if H is of the
form H = σ∗(H0)− CS3(A) with H0 a 3-form on X. The extended action
ξ gives a map ξ : g→ Γ(T ∗P ) such that the image of ξ defines a subbundle
K ⊂ E. Moreover the generalised metric defines a map s : TP → E given by
the inverse of ρ|E− : E− → TP . We say that (E−, ξ) are compatible if the
following diagram commutes:

g
ξ //

��

K

��
TP

s // E.

Using the metric g on TP we obtain an orthogonal splitting TP = σ∗(TX)⊕
g and on composing with s : TP → E we obtain a map s′ : σ∗(TX)→ E. If
(E−, ξ) are compatible it follows that the image of s′ is contained in the com-
plement K⊥. Factoring by the G-action we obtain a map s′ : TX → K⊥/G =
H, where H is the heterotic Courant algebroid obtained as the reduction of
the extended action. It follows that s′ : TX → H defines an admissible gener-
alised metricH− onH. It is clear also that (E−, ξ) are compatible if and only
if g has the form g = σ∗(g0) + 〈A,A〉 for a Riemannian metric g0 on TX.
Then (H,H−) correspond to the triple (g0, A,H0). Conversely such a triple
(g0, A,H0) can be lifted to a generalised metric on TP corresponding to the
metric g = σ∗(g0) + 〈A,A〉 and 3- form H = σ∗(H0)− CS3(A). In this way
we see that admissible generalised metrics on H are obtained by reduction
of generalised metrics on the corresponding exact Courant algebroid on P .
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The above results extend to the case where c is indefinite. The only mod-
ification is to note that the metric g = σ∗(g0) + c(A,A) has indefinite sig-
nature. As discussed in Section 6.1 the notion of generalised metric extends
to the indefinite signature case without difficulty. Thus we may continue
to interpret generalised metrics on heterotic Courant algebroids as being
obtained through reduction, even when c has indefinite signature.

6.3. The global Buscher rules

In order to understand T-duality of generalised metrics on heterotic Courant
algebroids, we first need to consider the exact case. Thus suppose we have
rank n torus bundles π : X →M , π̂ : X̂ →M which are T-dual in the ordi-
nary sense. In particular there are classes h ∈ H3(X,Z), ĥ ∈ H3(X̂,Z) which
are the Dixmier-Douady classes for bundle gerbes on X, X̂. Let hR, ĥR be
the images of h, ĥ in real cohomology and E, Ê the exact Courant algebroids
associated to hR, ĥR. Define Tn, T̂n, tn, (tn)∗ as in Section 4. We consider X
as a principal Tn-bundle and X̂ as a principal T̂n-bundle. Also fix a basis
t1, . . . , tn for tn and dual basis t1, . . . , tn.

Let E− ⊆ E be a Tn-invariant generalised metric on E and suppose
(E,E−) corresponds to the pair (g,H). Then g determines a Tn-connection
θ = θiti and a metric g on M such that g,H have the form g = g + gijθ

iθj ,
H = H +Hiθ

i + 1
2Hijθ

ij where we have used the fact that H is a closed
Tn-invariant form representing the trivial cohomology class on the fibres of
X →M to deduce that there are no θijk-terms in the expansion of H.

Proposition 6.3. There exists an isomorphism φ : E/Tn → Ê/T̂n of Cour-
ant algebroids such that Ê− = φ(E−) is an invariant generalised metric on
Ê corresponding to a pair (ĝ, Ĥ) such that (g,H), (ĝ, Ĥ) are related as fol-
lows. There exists a T̂n-connection θ̂ = θ̂it

i on X̂, with curvature F̂ iti such
that ĝ = g + ĝij θ̂iθ̂j, Ĥ = H + Ĥ iθ̂i + 1

2Ĥ
ij θ̂ij and there exists sections B =

1
2Bijt

i ∧ tj∈Γ(M,∧2(tn)∗), B̂= 1
2B̂

ijti ∧ tj∈Γ(M,∧2tn) satisfying the rela-
tions

ĝij + B̂ij = (gij +Bij)
−1

Hi = F̂i −BijF̂ j

Ĥ i = F i − B̂ijF̂j

Hij = dBij

Ĥ ij = dB̂ij .



i
i

“3-bar” — 2015/10/12 — 16:56 — page 663 — #51 i
i

i
i

i
i

String structures and T-duality 663

Proof. Choose a connection θ̂0i t
i on X̂ with curvature F̂ 0

i t
i. From [2] we have

that there exists a 3-form H
0

such that hR is represented by H ′ = H
0

+

F̂ 0
i ∧ θi and ĥR is represented by Ĥ ′ = H

0
+ F iθ̂0i . Thus E is isomorphic

to TX ⊕ T ∗X with H ′-twisted bracket. With respect to this decomposition
of E we have that E− = {X − gX +B′X | X ∈ TX} for some invariant 2-

form B′. We decompose B′ with respect to θ to obtain B′ = B
′
+Bi ∧ θi +

1
2Bijθ

ij . On performing a B-shift by e−B
′

and replacing H0 by H0 + dB
′
,

we may assume B
′
= 0. Let θ̂ be given by θ̂i = θ̂0i +Bi and let F̂it

i be the

curvature of θ̂. Then ĥR is represented by H
0

+ Fiθ̂
0
i = (H

0 −Bi ∧ F i) +

F i ∧ θ̂i = H + F i ∧ θ̂i where H = H
0 −Bi ∧ F i. Composing with e−Biθi we

may replace H ′ by H ′ + d(Biθ
i) = H + F̂ iθi and E− is then given as the

graph of −g + 1
2Bijθ

ij .

Observe that dH + F i ∧ F̂i = 0. It follows from [2] that there is an
isomorphism φ : E/Tn → Ê/T̂n defined as follows. We write E = TX ⊕
T ∗X with (H + F̂i ∧ θi)-twisted bracket and Ê = TX̂ ⊕ T ∗X̂ with (H +
F i ∧ θ̂i)-twisted bracket. Then using θ, θ̂ to split TX, TX̂ we have E/Tn =
TM ⊕ tn ⊕ (tn)∗ ⊕ T ∗M , Ê/T̂n = TM ⊕ (tn)∗ ⊕ tn ⊕ T ∗M and φ is given
by φ(X,u, v, ξ) = (X,−v,−u, ξ). Let Ê− = φ(E−). It follows that Ê− is
given by the graph of −ĝ + 1

2B̂
ij θ̂ij where ĝ = g + ĝij θ̂iθ̂j and (ĝij + B̂ij)

is the inverse matrix of (gij +Bij). The proposition follows by noting that

H = H + F̂i ∧ θi + d(12Bijθ
ij), Ĥ = H + F i ∧ θ̂i + d(12B̂

ij θ̂ij). �

We say that pairs (g,H), (ĝ, Ĥ) related as in Proposition 6.3 satisfy the
global Buscher rules.

6.4. The global heterotic Buscher rules

Suppose we are in the setting of heterotic T-duality so we have spaces form-
ing the commutative diagram (4.4) and heterotic Courant algebroids H, Ĥ
on X, X̂. Let H− ⊆ H be a Tn-invariant admissible generalised metric on
H and suppose (H,H−) corresponds to the triple (g,A,H). Then g deter-
mines a Tn-connection θ = θiti a metric g on M and a G-connection A0 on
P0 such that (g,A,H) have the form g = g + gijθ

iθj , A = A0 +Aiθ
i, H =

H +Hiθ
i + 1

2Hijθ
ij + 1

3!Hijk. Consider the symmetric matrix hij = gij +
〈Ai, Aj〉. We say that the generalised metric is T-dualisable if hij is posi-
tive definite, in particular this implies that for any skew-symmetric matrix
Bij , the matrix hij +Bij is invertible.

Proposition 6.4. Suppose H− is T-dualisable. There exists an isomor-
phism φ : H/Tn → Ĥ/T̂n of Courant algebroids such that Ĥ− = φ(H−) is an
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invariant generalised metric on Ĥ corresponding to a triple (ĝ, Â, Ĥ) related
to (g,A,H) as follows. There exists a T̂n-connection θ̂ = θ̂it

i on X̂, with
curvature F̂ iti such that ĝ = g + ĝij θ̂iθ̂j, Â = A0 + Âiθ̂i, Ĥ = H + Ĥ iθ̂i +
1
2Ĥ

ij θ̂ij+
1
3!H

ijkθ̂ijk and there exists sections B= 1
2Bijt

i∧tj∈Γ(M,∧2(tn)∗),

B̂ = 1
2B̂

ijti ∧ tj ∈ Γ(M,∧2tn) satisfying the relations

ĝij + B̂ij + 〈Âi, Âj〉 = (gij +Bij + 〈Ai, Aj〉)−1

Âi = Aj(ĝ
ji + B̂ji + 〈Âj , Âi〉)

Hi = F̂i −BijF̂ j + 〈Ai, AjF j + 2FA0〉
Ĥ i = F i − B̂ijF̂j + 〈Âi, ÂjF̂j + 2FA0〉
Hij = dBij + 〈∇0Ai, Aj〉 − 〈∇0Aj , Ai〉
Ĥ ij = dB̂ij + 〈∇0Âi, Âj〉 − 〈∇0Âj , Âi〉
Hijk = 2〈Ai, [Aj , Ak]〉
Ĥ ijk = 2〈Âi, [Âj , Âk]〉,

where ∇0 is the covariant derivative associated to A0 and FA0 the curvature
of A0.

Proof. The proof is almost the same as that of Proposition 6.3. Using the
same arguments we can choose connections θ, θ̂, A0 such that H is isomor-
phic to TX ⊕ gP ⊕ T ∗X using connection A0 and 3-form H + F̂ i ∧ θi. Tak-
ing advantage of A- and B-shifts we can choose the connections so that
in addition H− corresponds to the graph in TX ⊕ gP ⊕ T ∗X of a triple
(g,Aiθ

i, 12Bijθ
ij). �

Triples (g,A,H), (ĝ, Â, Ĥ) related in this manner will be said to satisfy the
global heterotic Buscher rules.

Remark 6.5. The requirement that gij + 〈Ai, Aj〉 be positive definite is
equivalent to requiring that the lifted metric g + 〈A,A〉 is positive definite
along the fibres of P → P0.

Next we observe that the heterotic Buscher rules are compatible with
the ordinary Buscher rules in the following sense. Suppose that we are in
the setting of Proposition 6.4 so that in particular we have generalised met-
rics H− ⊆ H, Ĥ− = φ(H−) ⊆ Ĥ corresponding to triples (g,A,H), (ĝ, Â, Ĥ)
satisfying the global heterotic Buscher rules. Let E be the exact Courant
algebroid on P such thatH is obtained from E by reduction and similarly let
Ê be the exact Courant algebroid on P̂ for which Ĥ is obtained by reduction.
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According to Section 6.2 we have that the generalised metric H− is obtained
by reduction of a corresponding generalised metric E− ⊂ E and likewise Ĥ−
is obtained from a generalised metric Ê− ⊂ Ê. Recall that E− corresponds
to the pair (g′, H ′) where g′ = g + 〈A,A〉, H ′ = H − CS3(A) and similarly
let Ê− correspond to (ĝ′, Ĥ ′).

Proposition 6.6. The pairs (g′, H ′), (ĝ′, Ĥ ′) satisfy the global Buscher rules.

Proof. Let θ′ = θ′iti be the Tn-connection for P → P0 such that g′ = g′ +
hijθ

′iθ′j for some hij . Write H ′ as H ′ = H
′
+H ′iθ

′i + 1
2H
′
ijθ
′ij + 1

3!H
′
ijkθ

′ijk.

We have that hij = gij + 〈Ai, Aj〉. Similarly we obtain a T̂n-connection θ̂′

such that ĝ′ = g′′ + ĥij θ̂′iθ̂
′
j , Ĥ

′ = H
′′

+ Ĥ ′iθ̂′i + 1
2Ĥ
′ij θ̂′ij + 1

3!Ĥ
′ijkθ̂′ijk. Since

(g,A,H) was assumed T-dualisable we have that hij is positive definite. Let

hij be the inverse matrix and similarly let ĥij be the inverse of ĥij . Then θ′i =

θi + δi, where δi = hij〈Aj , A0〉 and θ̂′i = θ̂i + δ̂i, where δ̂i = ĥij〈 hatAj , A0〉.
We find

g′ = g + 〈A0, A0〉 − hijδiδj

H
′
= H − CS3(A0)− F i ∧ δ̂i − F̂i ∧ δi − hijdδi ∧ δj + 1

2dBij ∧ δ
ij

H ′i = (F̂i + dδ̂i)−Bij(F j + dδj)

H ′ij = dBij

H ′ijk = 0,

with similar identities for g′′, H
′′
, Ĥ ′i, Ĥ ′ij , Ĥ ′ijk. In order to verify the

Buscher rules for the pairs (g′, H ′), (ĝ′, Ĥ ′) it remains only to show that g′ =

g′′ and H
′
= H

′′
. These identities follow by straightforward computation.

�

7. Heterotic equations of motion and T-duality

7.1. Heterotic equations by reduction

Given a metric g (not necessarily positive definite) and 3-form H on X
we let ∇g denote the Levi-Civita connection and define ∇g,H by ∇g,HX Y =
∇gXY + 1

2g
−1(iY iXH). Let Rg,H denote the curvature of ∇g,H and Ricg,H

the Ricci curvature defined by Ricg,H(X,Y ) = Tr(Z 7→ Rg,H(Z,X)Y ). If ϕ
is a function on X we consider the following equation for the triple g,H, ϕ

(7.1) Ricg,H + 2∇g,Hdϕ = 0.
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These equations occur in the low energy limit of type II string theories [11].
We refer to ϕ as the dilaton and (7.1) as the type II equations of motion.
Solutions are called strong if in addition the 3-form H is closed. One also
considers the following equation arising from variation of the dilaton [11]:

(7.2) sg + 4∆gϕ− 4|dϕ|2 + 1
2 |H|

2 = 0,

where sg is the scalar curvature of g, ∆gf = gµν∇gµ∇gνf the Laplacian and
|H|2 = 1

3!HαβγH
αβγ .

The heterotic equivalent of these equations are as follows. Let P → X be
a principal G-bundle and fix an invariant symmetric non-degenerate pairing
c( , ) on g. Consider a 4-tuple (g,A,H, ϕ) consisting of a metric g on X a
G-connection A, a 3-form H on X and a function ϕ on X. Let F be the
curvature of A. Consider the following equations:

(7.3)
Ricg,Hµν + 2∇g,Hµ (dϕ)ν − c(Fµα, Fνα) = 0

−d∗A(F )µ + 2Fµ
α∂αϕ− 1

2HµαβF
αβ = 0.

We refer to (7.3) as the heterotic equations of motion. Solutions are called
strong if in addition we have dH = c(F ∧ F ). Once again we may consider
an additional equation arising from the dilaton:

(7.4) sg + 4∆gϕ− 4|dϕ|2 + 1
2 |H|

2 − 1

2
〈Fαβ, Fαβ〉 = 0.

The relation between Equations (7.3),(7.4) and heterotic string theory de-
serves further clarification. In the low energy limit of heterotic string theory
one has a 4-tuple (g,AG, H, ϕ) and additionally a metric connection ATX

on the tangent bundle. Let FG denote the curvature of AG and RTX the
curvature of ATX . Suppose X has dimension m. Let cg denote an invariant
pairing on g, cso(m) an invariant pairing on so(m) and let α′ be a positive
constant. The equations of motion in the low energy limit of heterotic string
theory are [16],[19]

Ricg,Hµν + 2∇g,Hµ (dϕ)ν + α′cg(FGµα, F
G
ν
α
)− α′cso(m)(R

TX
µα, R

TX
ν
α
) = 0

−d∗AG(FG)µ + 2(FG)µ
α
∂αϕ− 1

2Hµαβ(FG)αβ = 0

−d∗ATX (RTX)µ + 2(RTX)µ
α
∂αϕ− 1

2Hµαβ(RTX)αβ = 0.

In addition solutions are required to satisfy the anomaly cancellation con-
dition

(7.5) dH = −α′cg(FG ∧ FG) + α′cso(m)(R
TX ∧RTX).
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Lastly there is the equation corresponding to dilaton variation:

sg + 4∆gϕ− 4|dϕ|2 + 1
2 |H|

2 +
α′

2
cg

(
FGαβ, F

Gαβ
)

− α′

2
cso(m)

(
RTXαβ, R

TXαβ
)

= 0.

We see that these equations are just a special case of (7.3) with gauge group
G×O(m) and pairing c = α′(−cg + cso(m)). Condition (7.5) is simply the
requirement that solutions are strong. The pairings cg, cso(m) should be
normalised so that at the level of cohomology classes (7.5) becomes the
topological condition p1(P )− p1(TX) = 0.

Proposition 7.1. Let σ : P → X be a principal G-bundle and c( , ) = 〈 , 〉
an invariant pairing on g. A 4-tuple (g′, A,H ′, ϕ) satisfies the heterotic equa-
tions of motion (7.3) if and only if the lifted 3-tuple (g,H, ϕ) satisfies the
type II equations of motion (7.1), where

g = g′ + 〈A,A〉
H = H ′ − CS3(A).

Moreover (g′, A,H ′, ϕ) is a strong solution if and only if (g,H, ϕ) is a strong
solution. Let e1, . . . , ek denote a basis g with structure constants cij

k given
by [ei, ej ] = cij

kek. Use the metric aij = 〈ei, ej〉 to raise and lower indices.
Let βϕ denote the left hand side of (7.2) using (g,H, ϕ) and βϕhet the left
hand side of (7.4) using (g′, A,H ′, ϕ). We have βϕhet = βϕ + 1

12cijkc
ijk.

Proof. Let F denote the curvature of A. Using the connection A we have
a splitting TP = σ∗(TX)⊕ g. With respect to this splitting one finds that
the Levi-Civita connections for g and g′ are related as follows:

∇gµ(∂ν) = ∇g′µ (∂ν)− 1
2Fµν

∇gµ(a) = ∇Aµ (a) + 1
2〈Fµ

ν , a〉∂ν
∇ga(∂µ) = 1

2〈Fµ
ν , a〉∂ν

∇ga(b) = −1
2 [a, b].

where a, b are sections of the adjoint bundle gP and ∇A is the covariant
derivative associated to A. Considering now connections with torsion one
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finds

(7.6)

∇g,Hµ (∂ν) = ∇g′,H′µ (∂ν)− Fµν
∇g,Hµ (a) = ∇Aµ (a) + 〈Fµν , a〉∂ν
∇g,Ha (∂µ) = 0

∇g,ha (b) = 0.

From this it follows that

Ricg,Hµν + 2∇g,Hµ (dϕ)ν = Ricg
′,H′

µν + 2∇g′,H′µ (dϕ)ν − c(Fµα, Fνα)

Ricg,H(∂µ, a) + 2∇g,Hµ (dϕ)(a) = −c(a,−d∗A(F )µ + 2Fµ
ν∂νϕ− 1

2H
′
µαβF

αβ)

Ricg,H(a, ∂µ) + 2∇g,Ha (dϕ)µ = 0

Ricg,H(a, b) + 2∇g,Ha (dϕ)(b) = 0.

Thus (g′, A,H ′, ϕ) satisfies (7.3) if and only if (g,H, ϕ) satisfies (7.1). The
claim about strong solutions follows since dH = dH ′ − c(F ∧ F ). Making
use of (7.6) we obtain the identity βϕhet = βϕ + 1

12cijkc
ijk. �

7.2. Type II equations and T-duality

Suppose (g,H), (ĝ, Ĥ) satisfy the global Buscher rules. Using the connec-
tions θ, θ̂ we have splittings TX = TM ⊕ tn, TX̂ = TM ⊕ (tn)∗. Define iso-
morphisms ψ± : TX → TX̂ by setting ψ±(X, 0) = X, ψ+((0, ti)) = −(gij +
Bij)t

j , ψ−((0, ti)) = (gji +Bji)t
j .

Proposition 7.2. Let ϕ be a function on M and set ϕ̂ = ϕ− 1
2 log(det(gij +

Bij)). Then

(7.7) (ψ∗− ⊗ ψ∗+)(Ricĝ,Ĥ + 2∇ĝ,Ĥdϕ̂) = Ricg,H + 2∇g,Hdϕ.

In particular (g,H, ϕ) is a solution of the type II equations of motion if and
only if (ĝ, Ĥ, ϕ̂) is a solution. Let βϕ denote the left hand side of (7.2) using
(g,H, ϕ) and β̂ϕ̂ the left hand side of (7.2) using (ĝ, Ĥ, ϕ̂). Then βϕ = β̂ϕ̂.

Proof. The proof is by direct calculation of Ricg,H and Ricĝ,Ĥ . First write H
as H = H +Hi ∧ θi + 1

2Hijθ
ij , so Hi = F̂i −BijF j , Hij = dBij and define

f i+ = 1
2(F i − gijHj), f

i
− = 1

2(F i + gijHj) and tµij = 1
2∂µ(gij +Bij). We use

g and gij to raise and lower indices. With respect to the splitting TX =
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TM ⊕ tn one finds:

Ricg,Hµν + 2∇g,Hµ (dϕ)ν = Ricg,Hµν + 2∇g,Hµ (dϕ− 1

2
tλ
k
kdx

λ)ν

− gij(f i+µαf
j
+ν

α
+ f i−µαf

j
−ν

α
)− tµijtνij

Ricg,Hµi + 2∇g,Hµ (dϕ)i = −2gijf
j
+µ

λ
(∂λϕ−

1

2
tλ
k
k) + d∗(gijf

j
+)µ

+
1

2
Hµαβgijf

j
+

αβ
+ tαij(f

j
−µα − f

j
+µα

)

Ricg,Hiµ + 2∇g,Hi (dϕ)µ = −2gijf
j
−µ

λ
(∂λϕ−

1

2
tλ
k
k) + d∗(gijf

j
−)µ

+
1

2
Hµαβgijf

j
−
αβ

+ tαji(f
j
+µα
− f j−µα)

Ricg,Hij + 2∇g,Hi (dϕ)j = 2tλji(∂λϕ−
1

2
tλ
k
k) + gikgjlf

k
−αβf

l
+
αβ

−∇gα(tµji∂µ)α + 2tαkit
α
j
k,

with similar expressions for Ricĝ,Ĥ + 2∇ĝ,Ĥ ϕ̂. From here it is simply a mat-
ter of direct computation to verify the validity of (7.7). Similarly a direct
computation yields the identity βϕ = β̂ϕ̂. �

7.3. T-duality invariance of the heterotic equations

Putting together the results of the previous sections we are at last able to
prove that heterotic T-duality preserves the heterotic equations of motion.
Suppose we are again in the setting of heterotic T-duality and moreover
that we have generalised metrics H−, Ĥ− related as in Proposition 6.4.
Let H− correspond to the triple (g,A,H) and Ĥ− to (ĝ, Â, Ĥ), so that
(g,A,H), (ĝ, Â, Ĥ) satisfy the global heterotic Buscher rules.

Proposition 7.3. Let ϕ be a function on M and set ϕ̂=ϕ− 1
2(log(det(gji+

Bij + 〈Ai, Aj〉))). Then (g,A,H, ϕ) is a solution of the heterotic equations
of motion if and only if (ĝ, Â, Ĥ, ϕ̂) is a solution. Moreover (g,A,H, ϕ)
satisfies (7.4) if and only if (ĝ, Â, Ĥ, ϕ̂) does.

Proof. By Proposition 7.1 we have that (g,A,H, ϕ) satisfies the heterotic
equations if and only if the lift (g + 〈A,A〉, H − CS3(A), ϕ) satisfies the type
II equations. Similarly we lift (ĝ, Â, Ĥ, ϕ̂) to (ĝ + 〈Â, Â〉, Ĥ − CS3(Â), ϕ̂).
From Proposition 6.6 we have that (g + 〈A,A〉, H − CS3(A), ϕ) and (ĝ +
〈Â, Â〉, Ĥ − CS3(Â), ϕ̂) are related by the global Buscher rules, hence by
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Proposition 7.2 one satisfies the type II equations if and only if the other
does. The last statement of the proposition holds by the same argument. �
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[25] P. Ševera and A. Weinstein, Poisson geometry with a 3-form back-
ground. In: Noncommutative geometry and string theory, Progr. The-
oret. Phys. Suppl., 144 (2001), 145–154.

[26] I. Vaisman, Transitive Courant algebroids. Int. J. Math. Math. Sci.,
(2005), no. 11, 1737–1758.

School of Mathematical Sciences, The University of Adelaide

SA 5005 Australia

E-mail address: david.baraglia@adelaide.edu.au

School of Mathematical Sciences, The University of Adelaide

SA 5005 Australia

E-mail address: pedram.hekmati@adelaide.edu.au


	Introduction
	Reduction of Courant algebroids
	Courant algebroids and symmetries
	Simple reduction
	Extended actions
	Reduction by extended actions
	Commuting reductions

	Heterotic Courant algebroids
	Quadratic Lie algebroids
	Atiyah algebroids
	Heterotic Courant algebroids
	Heterotic Courant algebroids by reduction

	Heterotic T-duality
	Review of T-duality
	Overview of heterotic T-duality
	T-duality of string classes
	T-duality and fluxes
	T-duality commutes with reduction

	Examples
	A general class of examples
	Case of a trivial G-bundle
	4-manifolds
	Higher dimensional lens spaces
	Further homogeneous examples
	A universal construction

	Generalised metrics and reduction
	Generalised metrics
	Generalised metrics and reduction
	The global Buscher rules
	The global heterotic Buscher rules

	Heterotic equations of motion and T-duality
	Heterotic equations by reduction
	Type II equations and T-duality
	T-duality invariance of the heterotic equations

	Acknowledgements
	References

