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In this paper we work out some basic results concerning heterotic
string compactifications on stacks and, in particular, gerbes. A
heterotic string compactification on a gerbe can be understood as,
simultaneously, both a compactification on a space with a restric-
tion on nonperturbative sectors, and also, a gauge theory in which
a subgroup of the gauge group acts trivially on the massless mat-
ter. Gerbes admit more bundles than corresponding spaces, which
suggests they are potentially a rich playground for heterotic string
compactifications. After we give a general characterization of het-
erotic strings on stacks, we specialize to gerbes, and consider three
different classes of ‘building blocks’ of gerbe compactifications. We
argue that heterotic string compactifications on one class is equiv-
alent to compactification of the same heterotic string on a dis-
joint union of spaces, compactification on another class is dual to
compactifications of other heterotic strings on spaces, and com-
pactification on the third class is not perturbatively consistent, so
that we do not in fact recover a broad array of new heterotic com-
pactifications, just combinations of existing ones. In appendices we
explain how to compute massless spectra of heterotic string com-
pactifications on stacks, derive some new necessary conditions for
a heterotic string on a stack or orbifold to be well-defined, and also
review some basic properties of bundles on gerbes.
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1. Introduction

The compactification of heterotic superstrings on smooth Calabi-Yau three-
folds has led to realistic N = 1 supersymmetric particle physics in four-
dimensions. For the E8 × E8 heterotic string, the generic structure of such
vacua was presented in [1–4]. Building upon these results, many phenomeno-
logically relevant low-energy theories with MSSM-like matter spectra have
been constructed, see for example [5–12] for constructions and related work.
However, the limitation of these vacua to equivariant vector bundles over
smooth Calabi-Yau manifolds seems overly restrictive, and it is of consid-
erable interest to try to construct heterotic vacua over more general back-
grounds.

The purpose of this paper is to outline basic results and general issues
in making sense of heterotic string compactifications on stacks, generalized
spaces admitting metrics, spinors, and all the other items needed to make
sense of a string compactification. This essentially completes a program
started many years ago to understand the basics of string compactifications
on stacks, see e.g. [13–23]. The original hope of this program was to find new
SCFT’s, new string compactifications, arising from these generalized spaces.
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Although that has not proven to be the case, much has been learned about
the structure of string compactifications, as we shall review.

One of the most physically interesting kinds of stacks are known as
gerbes. The worldsheet theory of a string compactification on a gerbe can
be understood in two more or less1 equivalent ways:

• as a sigma model on a space, but with a (combinatorial2) restriction
on allowed nonperturbative sectors, or

• as a gauge theory in which a (finite) subgroup of the gauge group acts
trivially on the massless matter.

Viewed from the first perspective, it is clear that there is a potential
problem with cluster decomposition in these theories. For (2, 2) SCFT’s, this
issue was addressed in [17], where it was argued that the SCFT is equivalent
to that on a disjoint union of spaces with variable B fields, a result listed
there as the ‘decomposition conjecture.’ A sigma model on a disjoint union
also violates cluster decomposition, but in an extremely mild fashion, easily
understood. This duality has since proven crucial for understanding physics
issues in many GLSM’s, see e.g. [18, 24–28], and also has been used to make
predictions for Gromov-Witten invariants of gerbes, predictions which have
been checked in e.g. [29–34].

Viewed from the second perspective, there are analogous issues concern-
ing whether and how physics can see a trivially-acting finite group. This
was addressed in [14–16], and will be reviewed later in this paper. Mass-
less spectra of (2, 2) SCFT’s are computed3 to contain multiple dimension
zero operators, another sign of cluster decomposition issues. These multi-
ple dimension zero operators are (discrete Fourier transforms of) identity
operators counting the number of components in the corresponding disjoint
union of spaces [17].

1 Mathematically, the second description, as a gauge theory in which a finite
subgroup acts trivially, implies the first, together with a small amount of additional
information, a certain trivialization, which we have suppressed from the description
of the first, so we should be slightly careful in claiming that they are precisely the
same.

2 Meaning, only instantons with degrees satisfying certain divisibility properties
are included.

3 The papers [14–16] contain consistency checks of this computation. Ultimately,
demanding modular invariance forces the spectrum to contain multiple dimension
zero operators.
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These ideas have also been recently been applied to four-dimensional
supergravity theories4 [36–39]. For example, gerbes admit line bundles with
fractional Chern classes, so the Bagger-Witten [40] quantization condition on
cohomology classes of Kähler forms is modified when the supergravity mod-
uli space admits a gerbe structure. More generally, a general introduction
to four-dimensional supergravities whose moduli spaces are stacks (generic
in Calabi-Yau compactification) is in [39]. Furthermore, it was shown in
[41][Appendix B] that four-dimensional supergravity anomalies have a nat-
ural description in terms of stacks. See for example [42, 43] for other appli-
cations.

This paper is concerned with heterotic string compactifications on stacks
and, in particular, gerbes. As the introduction above alludes, there are
many more bundles on gerbes than on corresponding spaces, which naively
suggests that there could be a rich new landscape of (0, 2) SCFT’s and
heterotic string compactifications obtainable from heterotic compactifica-
tions on gerbes. Our results break into three fundamental building blocks or
classes:

• For heterotic compactifications on gerbes in which the gauge bundle
is a pullback from the base (equivalently, when the group that acts
trivially on the base, also acts trivially on the bundle), the heterotic
string compactification is consistent, and is equivalent to a compact-
ification on a disjoint union of spaces. Compactifications of this form
are discussed in Section 3.

• For heterotic compactifications on Z2 gerbes in which the Z2 acts non-
trivially on a rank 8 bundle, these compactifications do not decompose,
and (we conjecture) are T-dual to ordinary heterotic compactifica-
tions (on spaces) with a different left-moving GSO. In other words,
a Spin(32)/Z2 compactification on such a gerbe is equivalent to an
E8 × E8 compactification on a space. Compactifications of this form
are described in Section 4.

• We conjecture when the bundle is nontrivial over the gerbe, but not
rank 8 or the gerbe is not Z2, a perturbative heterotic string compact-
ification is not consistent. That said, we do provide some seemingly
consistent (0, 2) SCFT’s defined by gerbes and bundles of this form,

4 Another thrust of the same papers is a modern discussion of Fayet-Iliopoulos
parameters in supergravity — it is argued that they can exist and are quantized. See
e.g. [35] for an excellent discussion of old lore on the subject, which is circumvented
in the works above.
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but unfortunately they do not seem to be useful for heterotic string
compactification. Compactifications of this form are discussed in Sec-
tion 5.

In addition, it is also possible to build examples displaying combinations of
these classes, which are discussed in Section 6.

In Appendix A we describe how to compute massless spectra in heterotic
string compactifications on general stacks. Along the way, we derive some
new necessary conditions for well-definedness of a SCFT associated to a
heterotic string on a stack, generalizing old statements that “c1 ≡ 0 mod 2”
for a consistent heterotic compactification. Appendix B describes in some
depth line bundles on gerbes over projective spaces, as a good prototype
for other bundles on more general gerbes. Appendix C discusses how Chern
classes and characters are defined for stacks, and in particular, discusses
crep and chrep, versions of Chern classes and characters which encode infor-
mation about twisted sectors and which play a vital role in index theory.
Appendix D contains a short discussion of roots of canonical bundles on
gerbes, a technical matter that sometimes arises in computations.

One of the original motivations of this work was the hope that the third
class above would yield new consistent heterotic string compactifications and
new consistent (0, 2) SCFT’s. Although it seems there are new consistent
(0, 2) SCFT’s, we will argue that they do not seem to define new consistent
supersymmetric heterotic string compactifications.

In hindsight, we can understand that result as follows5. In an ineffective
orbifold (one in which part of the orbifold group acts trivially on the space),
the twisted sectors contain massless states whose wavefunctions have sup-
port over the entire space. This would seem to imply that there are ‘extra’
ten-dimensional massless states, but this would be a contradiction, since
the ten-dimensional supergravity theory is known and fixed. Furthermore,
so long as we work at low energies and close to large-radius limits, a ten-
dimensional supergravity analysis should be applicable.

In type II strings, this conundrum was implicity solved by the decompo-
sition conjecture [17]: strings on gerbes are the same as strings on disjoint
unions of spaces. The ‘extra’ states are there, but simply fill out copies of
the supergravity theory.

In heterotic strings, we will see a mix of several solutions: in some cases,
an analogue of the decomposition conjecture exists; in other cases, the the-
ory is dual to a compactification on a manifold; in yet other cases, the
compactification does not seem to be consistent.

5 We would like to thank J. Gray for pointing this out to us.
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2. Generalities

2.1. Strings on stacks

Stacks are a form of ‘generalized spaces’ admitting smooth structures, met-
rics, bundles, and other structures needed to define sigma models. In par-
ticular, stacks are defined by the incoming maps from other spaces, making
them a natural setting for defining sigma models.

Stacks have been discussed as target ‘spaces’ for nonlinear sigma mod-
els in a number of references, including6 [13–23] for two-dimensional (2, 2)
supersymmetric and [37, 39] for four-dimensional N = 1 supersymmetric
sigma models. References for physicists on the mathematics of stacks are,
unfortunately, somewhat harder to locate. In the mathematics literature,
standard references on algebraic stacks include [48–50] and good references
on topological stacks include [51–58]. In addition, we have striven to write
our own papers to be reasonably self-contained (see for example [15] for
more information, oriented towards physicsts).

We can make more concrete sense of strings on stacks as follows. Every7

smooth (Deligne-Mumford) stack X has a presentation of the form of a global
quotient [X/G], where X is a smooth manifold and G is a group which need
neither be finite nor act effectively. To such a presentation, we associate a
G-gauged nonlinear sigma model on X.

Now, such presentations are not unique: a given stack can have many
presentations of this8 form. In two dimensional (2, 2) theories, it is believed,
and has been extensively checked, that renormalization group flow ‘washes
out’ such presentation dependence, so universality classes depend only upon
the stack, not any particular presentation. Thus, one can meaningfully asso-
ciate a two-dimensional CFT to a stack, not merely a presentation thereof. In
four dimensions, by contrast, this is not believed to be the case. For example,
although gauge couplings are dynamically generated in two dimensions, they
are not dynamically generated in four dimensions, and the stack does not

6 In addition to the references above on the physics of nonlinear sigma models,
there is also an extensive discussion of Gromov-Witten invariants of stacks in the
math literature, see for example [44–47] for a few representative examples.

7With minor caveats, as discussed in e.g. [15].
8 In addition, stacks can have presentations of other forms. However, realizing

other types of presentations in physics would require a significant generalization
of Faddeev-Popov and Batalin-Vilkovisky gauge-fixing procedures, which we do
not claim to understand, so we do not claim that physics can be associated to all
presentations.
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determine a gauge coupling. Thus, in four dimensions we can not uniquely
associate physics to stacks, though we can certainly do the converse, and use
stacks to understand some parts of the physics of four-dimensional gauge
theories, as in [39].

This paper is concerned with issues around perturbative heterotic strings
on stacks, i.e. (0, 2) SCFT’s. In principle, a perturbative heterotic string will
be defined by a Calabi-Yau stack X together with a gauge bundle E over
the stack, satisfying certain anomaly cancellation conditions. We understand
(0, 2) SCFT’s in the same fashion as above: we pick a presentation of the
stack of the form [X/G]. Given such a presentation, the gauge bundle is
then a G-equivariant bundle E over X. To this data, we associate a G-
gauged heterotic sigma model on X with gauge bundle E . As before, there
can be multiple presentations of a stack with different UV physics, so we
conjecture that renormalization group flow washes out such presentation-
dependence, and only associate universality classes of renormalization group
flow to stacks.

Not every (X, E , G) will define a consistent heterotic string theory; for
example, the data above must satisfy anomaly cancellation. One part of
anomaly cancellation is clear: before gauging, the heterotic sigma model on
X with bundle E must be anomaly-free, meaning that ch2(TX) = ch2(E).

Demanding that the gauge theory be anomaly-free can impose further
constraints. One well-known example is level-matching. As discussed in e.g.
[59], for orbifolds, level-matching is believed to be equivalent to matching of
second Chern classes in equivariant cohomology. (In particular, equivariant
Chern classes can be defined intrinsically on the stack, they are independent
of the choice of presentation and descend to well-defined objects on the
stack.) Equivariant cohomology can be defined on stacks, and in fact forms
the ‘naive’ cohomology theory of a stack. (See Appendix C for more subtle
notions.)

However, level-matching (in the form described in [59]) is not sufficient
to guarantee that a given theory is consistent [60, 61], and we shall see
explicit examples later in Section 5. In Appendix A.4, we discuss another
set of consistency conditions that arise, essentially a generalization of the
statement that “c1 ≡ 0 mod 2.” Specifically, these conditions state that on
each component α of the inertia stack, the 〈α〉-equivariant line bundle

Kα ⊗ det Eα0

admit a square root. We defer further discussion of this condition to Appen-
dix A.4.
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One of the original goals of this project was to find a suitable gen-
eralization of anomaly cancellation, a set of sufficient conditions, valid for
arbitrary stacks, that would guarantee that the resulting G-gauged heterotic
sigma model is consistent, but we have been unable to do this. Instead, we
only have the necessary conditions above. We leave the problem of finding
sufficient conditions for future work.

The most interesting examples of heterotic strings on stacks are the spe-
cial case of strings on gerbes. In previous work [17], it was argued that (2, 2)
supersymmetric strings on gerbes are equivalent to strings on disjoint unions
of spaces. For the heterotic string, we shall argue that such a decomposition
only exists in general if the gauge bundle is a pullback from a bundle on the
base space. More general, ‘twisted’ bundles exist, and at least sometimes
can appear in heterotic compactifications. In fact, it was one of the original
goals of this work to construct new (0, 2) SCFT’s by using twisted bundles,
though as we shall argue later, that does not seem to be the case.

In any event, most of this paper will focus on the special case of heterotic
strings on gerbes, so in the remainder of this section we shall review some
pertinent facts.

2.2. Review of gerbes

So far we have realized heterotic strings on stacks as gauged nonlinear sigma
models. The special case of gerbes is realized when a subgroup of the gauge
group acts trivially on the target space. In this case, even though part of
the gauge group acts trivially on the target, it need not act trivially on the
gauge bundle, and this will be responsible for ‘twisted’ bundles.

For purposes of disambiguation, let us distinguish our usage of the term
from other appearances in the literature. In some papers, gerbes are used for-
mally to describe characteristic classes of B fields, just as principal bundles
can be used to describe characteristic classes of gauge fields, and sometimes
they are used in that sense to help characterize nontrivial B fields.

However, our usage in this paper is different. We are not using the term
‘gerbe’ to describe characteristic classes; instead, we are thinking of gerbes as
analogues of spaces on which strings propagate, just as strings can propagate
on the total space of a principal bundle.

Let us now turn to reviewing gerbes. We review some basics here, see [17]
for another pertinent general description. In general, to specify a G-gerbe
over a space X, given an open cover {Ui} of X, one specifies gijk ∈ G on
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triple overlaps and ϕij ∈ Aut(G) on double overlaps, obeying the constraints

(1) ϕjk ◦ ϕij = Ad(gijk) ◦ ϕik

on triple overlaps and

(2) gjk` gij` = ϕk`(gijk) gik`.

on quadruple overlaps. If we let Out(G) denote the quotient of the group of
all automorphisms of G by inner automorphisms, then the ϕij above descend
to define a principal Out(G) bundle. If that bundle is trivializable, then we
say the gerbe is banded. In this case, the gerbe is effectively specified just by
the gijk’s, which define a characteristic class in H2(X,Z(G)). (For example,
these were the gerbes described in [62].) The more general case, in which
the Out(G) bundle is nontrivial, is known simply as non-banded.

In terms of stacks, a stack [X/G] will be a (K-)gerbe if a nontrivial
subgroup (denoted K) of G acts trivially on X, by which we mean g · x = x
for all x ∈ X and all g ∈ K ⊆ G. (This is known as an non-effective group
action.) Although quotient spaces cannot detect trivial group actions, quo-
tient stacks can, and moreover, so too can the physics9 of gauge theories.
Although such trivial group actions are invisible perturbatively, they show
up nonperturbatively, as has been discussed extensively in e.g. [14–17].

As the physics of strings on gerbes will be important in this paper, let us
briefly review how nonperturbative physics can detect trivial group actions.

One short answer is that working with a gauge theory containing a non-
effective group action is equivalent to restricting the allowed nonperturbative
sectors10. For example, consider the Pn model, described as a supersymmet-
ric U(1) gauge theory with n+ 1 chiral superfields of charge 1, but let us
instead give the fields charge k instead of charge 1. Mathematically, this
means that a Zk subgroup of U(1) acts trivially on the chiral superfields,
and describes the weighted projective stack Pn[k,k,...,k], which is a Zk gerbe on
Pn. Physically, it is straightforward to see that the instantons in this GLSM
are the same as the instantons of degree divisible by k in the original Pn

9 Historically, this was one of several confusing points in understanding whether
strings could be consistently defined on stacks.

10 Restricting the allowed instanton sectors ordinarily breaks cluster decomposi-
tion, and understanding how this can be consistent was, historically, another con-
fusing issue that had to be straightened out to make sense of strings on stacks.
Briefly, the answer is that the theory decomposes into a union of theories on ordi-
nary spaces, see e.g. [17, 18, 39] for discussions in two and four-dimensional theories.
We will return to this in Section 4.



i
i

“2-and” — 2015/10/12 — 16:47 — page 541 — #11 i
i

i
i

i
i

Heterotic string compactifications 541

model. As a practical matter, this means that the U(1)A symmetry is broken
to Z2k(n+1) rather than Z2(n+1), for example, and also changes correlation
functions and quantum cohomology rings.

More globally, if the worldsheet is compact, then the proper definition of
the ‘charge’ of a field is in terms of what bundle it couples to. Changing the
bundle changes the allowed zero modes, hence changes anomalies and corre-
lation functions [14]. For a noncompact worldsheet, an analogous result can
be obtained in two dimensions utilizing theta angles. We distinguish ‘gerbe’
cases from ‘non-gerbe’ cases by adding massive minimally-charged fields.
The existence of such fields can be sensed, even if their masses are above
the cutoff, by examining the periodicity of the theta angle. Since the theta
angle acts as an electric field in two dimensions, if we build a capacitor, then
by making the plate separation large, one can excite arbitarily-massive field
configurations, hence theta angle periodicity measures existence of massive
minimally-charged fields [14, 36, 38]. In four dimensions, there are analo-
gous methods, involving for example Reissner-Nordstrom black holes and
Hawking radiation [39].

A simple example in toroidal orbifolds may help clarify the discus-
sion. Consider the orbifold [X/D4], where D4 is an eight-element group
with a Z2 center, such that D4/Z2 = Z2 × Z2. Assume the central Z2 acts
trivially on X. From the general analysis above, one would expect that
[X/D4] 6= [X/Z2 × Z2], i.e. that physics ‘sees’ the trivially-acting Z2, and
that is exactly what happens.

Label the elements of D4 by

{1, z, a, b, az, bz, ab, ba = abz},

where z generates the Z2 center, so that the coset D4/Z2 is given by the
images of 1, a, b, ab, which in the (Z2 × Z2) coset we shall denote {1, a, b, ab}.

The (string) one-loop partition function of [X/D4] is obtained by sum-
ming over twisted sectors defined by all commuting pairs in D4. For example,
there are no (a, ab), (b, ab), (a, b) twisted sectors, as those pairs do not com-
mute in D4. Now, if we compare the Z2 × Z2 partition function, although
individual twisted sector contributions match (as the Z2 acts trivially), the
total number is different. For example, the Z2 × Z2 contains contributions
from (a, ab), (b, ab) and (a, b) twisted sectors, but there are no correspond-
ing (a, ab), (b, ab), (a, ab) contributions in the D4 partition function. Thus,
we see the one-loop partition functions of the D4 and Z2 × Z2 partition
functions are very different, despite the fact that the theories differ by a
trivially-acting gauged Z2.
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In fact, in the example above, one can show that the partition function
of the D4 orbifold is the same as the partition function of a disjoint union of
two Z2 × Z2 orbifolds, one with and the other without discrete torsion. The
one-loop partition function of a disjoint union is the sum of the partition
functions of the components, and discrete torsion adds a sign to the (a, ab),
(b, ab) and (a, b) sectors, so they cancel out of the partition function for the
disjoint union. This is a simple example of the ‘decomposition conjecture’
we review in Section 3.1.

2.3. Notions of twisting

Now that we have outlined gerbes and demonstrated their physical mean-
ingfulness, let us turn to possible bundles over gerbes. A gerbe was defined
by a trivial group action on the base space; however, that same group action
can be nontrivial on the bundle. The resulting bundle is then interpreted as
some sort of twisted bundle, in some sense, as we shall review here.

There are various notions of twisted bundles in the literature. One notion,
discussed for example in [63], is of a twisted bundle in which the twisting
refers to the fact that the transition functions do not quite close on triple
overlaps: instead of

gαβgβγgγα = 1

the transition functions obey

(3) gαβgβγgγα = hαβγI

for some cocycle hαβγ . At the level of the gauge field, such a twisting means
that across coordinate patches, the gauge field receives an affine translation
in addition to a gauge transformation. Such twisted bundles appear physi-
cally on D-branes. After all, under a gauge transformation of the B field, of
the form

B 7→ B + dΛ,

the Chan-Paton gauge field must necessarily transform as

A 7→ A− Λ

in order to preserve gauge-invariance on the open string worldsheet, and
such affine translations correspond, in terms of transition functions, to the
modified overlap condition equation (3). However, although such twistings
are possible for D-branes, no such twisting is ordinarily possible in heterotic
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strings, because the heterotic gauge field never picks up affine translations
across coordinate patches — the heterotic gauge field and the heterotic B
field are related in a very different fashion than in D-branes.

A second notion of twisting appears when discussing gerbes. Consider
the weighted projective stack PN[k,...,k], a Zk gerbe on PN , described physically

by an analogue of the supersymmetric PN model in which chiral superfields
have charge k instead of 1, as discussed earlier. Now, the total space of a
line bundle O(−n)→ PN can be described as a quotient of N + 1 fields φi
and one field p of charges 1, −n, respectively. Consider instead a quotient of
the fields above in which the φi have charge k (and so describe PN[k,...,k]), and
the field p has charge −1. This quotient is the total space of a line bundle
on the gerbe sometimes denoted O(−1/k). (We will discuss line bundles on
gerbes in more detail in Appendix B.)

We can understand this second notion of twisting in much greater gener-
ality, as follows. First, for any stack X presented as X = [X/G] for some space
X and group G, a vector bundle (sheaf) on X is the same as a G-equivariant
vector bundle (sheaf) on X. Now, suppose that G is an extension

1 −→ K −→ G −→ H −→ 1,

where K acts trivially on X, and G/K ∼= H acts effectively. In this case,
X = [X/G] is a K-gerbe. A vector bundle on X is a G-equivariant vector
bundle on X, and as such, the K action is defined by a representation of K
on the fibers of that vector bundle. This is the more general picture of the
second notion of twisting. Any bundle on the gerbe that is not a pullback
from the base, has a nontrivial action of K.

These two notions of twisting are not unrelated. Mathematically, it is a
standard result that the category of sheaves on a gerbe decomposes into dif-
ferent sectors containing twisted sheaves on the underlying space, twisted by
flat B fields. Moreover, this decomposition is complete: there are no nonzero
Ext groups between sheaves in different sectors on the same gerbe. This fact
was one of the inspirations for the ‘decomposition conjecture’ presented in
[17], which said that conformal field theories describing strings on gerbes
should factorize in the same way, that the CFT’s are the same as CFT’s on
disjoint unions of spaces. The resulting factorization of D-branes reflects the
mathematical result above on factorization of sheaves on gerbes.

For completeness, let us discuss this decomposition for the special case
of O(1/k)→ PN[k,...,k]. To be twisted in the first sense we discussed, one can
show that the rank of the twisted bundle must be divisible by the order of
the twisting cocycle’s cohomology class. Here, since O(1/k) has rank one, the
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order of the cocycle must be one. Indeed, the twistings of O(1/k) appearing
involve cocycles with trivial cohomology, so there is no rank restriction.

3. Class I: Gauge bundle a pullback from the base

We have classified heterotic string compactifications on gerbes into three
fundamental classes or ‘building blocks’ from which more general compact-
ifications can be built. In this and the next two sections, we will examine
properties of those classes.

The first class we consider involves the special case that the gauge bundle
is a pullback from the base. This is equivalent to the statement that the
subgroup G of the gauge group that acts trivially on the base, also acts
trivially on the fibers of the gauge bundle.

In this case, we will argue that, at least for banded gerbes, the heterotic
(0, 2) SCFT factorizes — it is equivalent to a heterotic string on a disjoint
union of spaces with bundles, following essentially the same mechanism as
in (2, 2) strings.

3.1. Review of (2, 2) decomposition conjecture

As was reviewed earlier in Section 2.2, gauge theories in which a subgroup
of the gauge group acts trivially on massless matter break cluster decom-
position. However, it was argued in [17] that such theories are equivalent to
tensor products / disjoint unions of cluster-decomposition-obeying theories.
For example, a gauged nonlinear sigma model of this form is equivalent to
a nonlinear sigma model on a disjoint union of ordinary spaces. The latter
violates cluster decomposition, but does so in an obviously trivial fashion,
and so there is no essential difficulty with the quantum field theory.

For (2, 2) supersymmetric gauged nonlinear sigma models in two dimen-
sions, this was encapsulated in [17] in the “decomposition conjecture”, which
we shall generalize to heterotic strings. To make this paper self-contained,
we take a moment here to review the statement of the decomposition con-
jecture.

Suppose we have a K-gerbe over [X/H], defined by the quotient [X/G]
where

1 −→ K −→ G −→ H −→ 1.

Let K̂ denote the set of irreducible representations of K. There is a natural
action of H on K̂, defined as follows: given h ∈ H and ρ ∈ K̂, pick a lift
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h̃ ∈ G of h, and define h · ρ by,

(h · ρ)(g) ≡ ρ(h̃−1gh̃)

for all g ∈ K. If K is abelian, this is well-defined. If K is not abelian, then it
can be shown (see [17][Section 4]) that there exists an operator intertwining
the representations h · ρ defined by any two lifts, hence h · ρ is well-defined
in K̂.

Then, the decomposition conjecture for (2, 2) theories states that a string
on the gerbe [X/G] is the same as a string on the disjoint union of spaces
[(X × K̂)/H], together with a flat B field defined in [17][Section 4].

In the special case that the gerbe [X/G] is banded, the description above
simplifies. In this case, the H action on K̂ is trivial, and so the decomposition
conjecture reduces to the statement that a string on the gerbe [X/G] is the
same as a string on a disjoint union of |K̂| copies of [X/H], in which each
copy comes with a flat B field determined by acting on the characteristic
class of the gerbe with the irreducible representation corresponding to that
copy:

ρ ∈ K̂ : H2([X/H], Z(G)) −→ H2([X/H], U(1)).

Extensive evidence was presented in [17] for this conjecture, ranging from
computations of orbifold spectra and partition functions to GLSM results
and quantum cohomology computations. Other results have appeared since.
For reasons of brevity, we only list two below:

• This conjecture makes a prediction for Gromov-Witten invariants of
stacks, namely that the Gromov-Witten invariants of gerbes are equiv-
alent to Gromov-Witten invariants of disjoint unions of spaces. This
was checked in the mathematics literature in e.g. [29–34].

• This conjecture plays an important role in understanding certain
GLSM’s. Specifically, it was used in [18] to understand Landau-
Ginzburg points of complete intersections of quadrics, resolving some
old unanswered questions, and also providing examples of GLSM’s
that realize geometry in a different way than as a critical locus of a
superpotential, that contain non-birational phases, and in some cases,
that RG flow to ‘noncommutative resolutions’ of singular spaces, pro-
viding the first physical realizations of those mathematical theories in
CFT. The results of [18] have since been checked in e.g. [24, 25] and
further examples discussed in [24, 27, 28]. The same methods have
also been applied to make predictions for Gromov-Witten invariants
of noncommutative resolutions in [26].
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See also the D4 orbifold discussed in Section 2.2 for another example.
The result may seem obscure, but there is a simple physical reason for it,

namely that in the path integral, summing over the elements of the disjoint
union, together with variable B fields, is equivalent to inserting a projec-
tion operator that enforces the requirement that only instantons of certain
degrees contribute to the theory. Schematically, for a nonlinear sigma model,
we can describe the insertion of a projection operator in the form

∫
[Dφ]e−S

(
n−1∑
k=0

eik
∫
φ∗ω

)
=

n−1∑
k=0

∫
[Dφ] exp

(
−S + ik

∫
φ∗ω

)
,

where ω is the Kähler form on the target space. The left-hand side is the
partition function with a projector onto nonperturbative states of certain
degrees; the right-hand side is a partition function for a disjoint union of
n copies of the original target space, each with a rotated B field, rotated
by an amount kω. Nonbanded gerbes merely represent a more complicated
variation.

3.2. Heterotic decomposition conjecture

In this section we will describe the heterotic analogue of the decomposition
conjecture, for banded gerbes. Briefly, given a (0, 2) SCFT defined by a
banded gerbe X over a space (or orbifold) X and bundle E → X, such that
E is a pullback of a bundle on X, then this (0, 2) SCFT is the same as a
(0, 2) SCFT on a disjoint union of copies of X.

Now, let us define terms more precisely. Suppose we have a K-gerbe over
[X/H], defined by the quotient X = [X/G] where

1 −→ K −→ G −→ H −→ 1.

Suppose we also have a holomorphic vector bundle E over [X/G] (i.e. a
G-equivariant bundle on X), defining a consistent (0, 2) SCFT.

We assume that E is a pullback of a bundle E ′ on [X/H]. This can be
understood in several equivalent ways, for example:

• K acts trivially on both X and E ,

• E is in the weight-zero part of the decomposition of sheaves on [X/G],

which imply that the G-equivariant structure on E (as a bundle on X)
descends to an H-equivariant structure.
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The heterotic decomposition conjecture for (0, 2) theories is that, in these
circumstances, if the gerbe is banded, a heterotic string on ([X/G], E) is the
same as a heterotic string on the disjoint union

qK̂ [X/H]

with varying B fields and gauge bundle E ′ on each copy of [X/H].
As a consistency check, in the special case that E = TX (i.e. TX with

its natural G-equivariant structure), then E ′ = TX with its natural H-
equivariant structure, and this reduces to the (2, 2) decomposition conjecture
(for banded gerbes).

Other examples are easy to construct. For example, if we take an
anomaly-free heterotic (0, 2) SCFT defined by a bundle E on a space X,
and take a global orbifold of X by a finite group that acts trivially on both
X and E , it is trivial to see that the twisted sector states will all be copies of
the untwisted sector states, in agreement with the prediction of the decom-
position conjecture above that this (0, 2) SCFT should be the same as that
for a disjoint union of copies of (X, E).

Another set of examples is provided by (0, 2) GLSM’s. Begin with an
anomaly-free (0, 2) GLSM describing a bundle E ′, say,

0 −→ E ′ −→ ⊕aO(na)
F−→ ⊕iO(mi) −→ 0,

over a hypersurface in a weighted projective space Pdw0,...,wd [w0 + · · ·+ wd].
Now, build a new (0, 2) GLSM constructed from the one above by multiply-
ing all gauge charges by an integer k > 0. The result is a bundle E ,

0 −→ E −→ ⊕aO(kna)
F−→ ⊕iO(kmi) −→ 0,

over a hypersurface in a weighted projective stack Pd[kw0,...,kwd][k(w0 + · · ·+
wd)]. The bundle map F and hypersurface polynomial are unchanged. If
one now goes to the Landau-Ginzburg point of this theory and computes
the massless spectrum, it is trivial to see that the spectrum will consist
of k copies of the spectrum of the original theory, in agreement with the
prediction of the decomposition conjecture.

The analogue of the decomposition conjecture for nonbanded gerbes is
not currently known. It is tempting to speculate that it should be the state-
ment that a heterotic string on ([X/G], E) is the same as a heterotic strings
on ([(X × K̂)/H], E), where (as in the (2, 2) case) K̂ is the set of irreducible
representations of K, and we extend E trivially from [X/H] to [(X × K̂)/H].
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However, on the (2, 2) locus, the special case that E = TX with its natu-
ral G-equivariant structure, E reinterpreted as an H-equivariant bundle and
extended trivially over K̂ does not in general11 define the tangent bundle of
[(X × K̂)/H], and so this would not reduce correctly to (2, 2) decomposition.

4. Class II: Dualities

4.1. Basic proposal

In the special case of a heterotic string in which a Z2 that acts nontrivially
on the base, acts nontrivially on a rank 8 bundle, that subgroup of the
gauge group is locally duplicating the effect of one of the ten-dimensional
left-moving GSO projections. If one starts with a Spin(32)/Z2 string, then
the dual looks locally like an E8 × E8 string.

In this section, we will describe12 a precise duality relating such
Spin(32)/Z2 compactifications to ordinary E8 × E8 compactifications, and
discuss some examples.

First, let us consider the easiest case. If the Z2 gerbe is trivial, the
result is automatic: the worldsheet left-moving GSO projection is duplicated
exactly, not just locally. When the gerbe is nontrivial, one must think a little
harder to find a precise duality.

We propose13 a duality to heterotic E8 × E8 strings as follows. To set
conventions, suppose our stack X = [X/G̃], where

1 −→ Z2 −→ G̃ −→ G −→ 1

and Z2 acts trivially on X. Suppose furthermore that E is a bundle on X, i.e.
a G̃-equivariant bundle on X, whose embedding into E8 is via the standard
worldsheet fermionic construction, in which left-moving fermions are in the
fundamental representation of the structure group. Suppose that the Z2 acts
nontrivially on E .

11 Only if K lies in the center of G would the tangent bundle have a trivial
extension over K̂.

12 We have not been able to locate this particular duality in the literature, but
would not be surprised if it has been discussed somewhere previously, presumably
in a different context. The closest of which we are aware is old work on T-duality in
toroidally compactified heterotic strings, relating Spin(32)/Z2 strings and E8 × E8

strings after the gauge group has been Higgsed to a common subgroup, see for
example [64].

13 We would link to thank J. Distler for suggesting this construction to us.
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In general E will not admit a G-equivariant structure. Nevertheless, at
least in the special case that the Z2 is central in G̃, the bundles E∗ ⊗ E
and ∧evenE will admit a G-equivariant structure, and so can be defined on
[X/G]. Moreover, it was observed in [65] that, for the ‘typical’ worldsheet
embeddings of SU(n) in E8 (including the present one), massless spectra of
heterotic compactifications on smooth spaces can be defined solely in terms
of sheaf cohomology with coefficients in E∗ ⊗ E and ∧evenE ; other sheaf coho-
mology groups are related by Serre duality. There is a good reason for this. In
the heterotic compactifications discussed in [65], the SU(n) gauge bundle is
embedded into E8 by first embedding in Spin(2n) ⊂ Spin(16), projecting to
Spin(16)/Z2 (as a result of the left GSO projection), and then Spin(16)/Z2

naturally embeds into E8 [66]. The only coefficient bundles that survive the
left GSO projection are E∗ ⊗ E and ∧evenE ; they suffice to define an E8

bundle, and that is why they suffice to define massless spectra.
Thus, we propose that a heterotic Spin(32)/Z2 string compactified on a

Z2 gerbe X as above, with the Z2 central, acting by signs on a rank 8 bundle
E → X, embedded in a typical fashion, defines the same SCFT as a heterotic
E8 × E8 string compactified on [X/G] with E8 gauge bundle determined by
E∗ ⊗ E and ∧evenE (which are defined on [X/G], even if E itself is not).

In the special case that the Z2 gerbe is trivial, the dual E8 × E8 string
on [X/G] is defined by the bundle E — in this special case, the E8 bundle
determined by E∗ ⊗ E , ∧evenE is the same determined by the usual embed-
ding of E into E8. More generally, the E8 bundle need not have a description
in terms of a similarly-embedded SU(n) gauge bundle; a direct construction
might have to appeal to the fibered WZW methods discussed in [67–72].

So far we have discussed Spin(32)/Z2 compactifications on a Z2 gerbe
with rank 8 bundle. Now let us briefly consider an E8 × E8 compactification
on a Z2 gerbe with rank 8 bundle. Nearly the same analysis applies as in
the Spin(32)/Z2 case. At the level of SCFT, before imposing the left GSO
projections, the same duality argument we have just given suggests the gerbe
theory should be dual to an E8 bundle, as above. The left GSO for the
corresponding bundle duplicates the gerbe Z2, and so should act trivially
on the theory. The dual should be thus be interpreted as class I, and so the
result should have the form of a disjoint union of two copies of an E8 × E8

compactification. As the details are largely duplicative of the Spin(32)/Z2

case just discussed, and for which we will see examples below, we will not
treat this case further.

We have discussed bundles with structure group SU(n) embedded into
Spin(32)/Z2 and E8 × E8 in the form of the standard worldsheet construc-
tion, but more general embeddings exist, and admit worldsheet descriptions
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[67]. One open question we leave for future work is to generalize the duality
discussed here to more general embeddings.

4.2. Toroidal orbifold example

Consider a Spin(32)/Z2 heterotic string compactified on a Z2 gerbe over
[T 4/Z2], with a rank eight bundle, defined as follows. The Z2 gerbe is
[T 4/Z4], where the Z4 acts on the T 4 by

x 7→ exp

(
2πi(2k)k

4

)
x = (−)kx,

so that there is a trivially-acting Z2 subgroup; only the sectors k = 1, 3 have
twisted bosons. (Mathematically, this is a nontrivial14 Z2 gerbe.) The bundle
is the rank eight bundle O⊕8, on which the Z4 acts (effectively) by fourth
roots of unity.

14 This gerbe is the obstruction to lifting the principal Z2 bundle T 4 → [T 4/Z2]
to a principal Z4 bundle on [T 4/Z2]. But a principal Zk bundle on any space
X is the same thing as a homomorphism π1(X)→ Zk. Therefore, we can study
nontriviality of the gerbe as a question about lifts of group homomorphisms. The
bundle T 4 → [T 4/Z2] corresponds to a homomorphism

φ : π1
(
[T 4/Z2]

)
−→ Z2.

(In particular, since T 4 → [T 4/Z2] is a principal Z2 bundle, we have a long exact
sequence with relevant part

π1(T 4) −→ π1([T 4/Z2)
φ−→ π0 (Z2) (∼= Z2) −→ π0(T 4),

and as T 4 is connected, we see that φ is surjective.) We want to understand whether
φ lifts to a homomorphism

ψ : π1
(
[T 4/Z2]

)
−→ Z4.

First note
π1
(
[T 4/Z2]

)
= Z2 o Z4,

where the nontrivial element in Z2 acts as multiplication by −1 on Z4. The homo-
morphism φ is the projection to Z2. The maximal 2-group quotient of Z2 o Z4 is
Z2 × (Z2)4, so any homomorphism Z2 o Z8 → Z4 will factor through Z2 × (Z2)4.
But in the map Z4 → Z2, the generator of Z4 maps onto the generator of Z2.
Since Z2 × (Z2)4 does not contain any element of order 4, there is no map
Z2 × (Z2)4 → Z4 that lifts the projection onto the first factor. Therefore, the Z2

gerbe is nontrivial. More generally, if [T 4/Z2k] is a Zk gerbe over Z2, where the Z2k

acts by first projecting to Z2, then it is nontrivial.
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We will compute the spectrum, and discover not only that it is consistent,
but in addition that it has the same form as the spectrum of a perturbative
E8 × E8 compactification on a space, as expected from the duality proposal.

We useX3−4 to denote the bosons in the T 4, and ψ3−4 their right-moving
superpartners. We shall use λ1−8 to denote the free left-moving fermions and
λ9−16 to denote the left-moving fermions in the bundle above.

Let us begin the spectrum computation in the untwisted sector.
First, consider (NS, NS) states. Here, the left- and right-moving vacuum

energies are given by Eleft = −1, Eright = −1/2. The Z4-invariant states have
the form

State Count(
λ1−8
−1/2, λ

1−8
−1/2

)2
⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
spacetime vector, valued in adjoint of so(16)

∂X1−2
−1 ⊗

(
ψ1−2
−1/2, ψ

1−2
−1/2

)
gravity, tensor multiplet contribution(

λ9−16
−1/2λ

9−16
−1/2

)
⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
spacetime vector, valued in adjoint, 1 of su(8)

(1 from the trace)

∂X3−4
−1 ⊗

(
ψ3−4
−1/2, ψ

3−4
−1/2

)
16 spacetime scalars (toroidal moduli),

forming 4 hypermultiplets((
λ9−16
−1/2

)2
,
(
λ

9−16
−1/2

)2
)
⊗
(
ψ3−4
−1/2, ψ

3−4
−1/2

)
4 spacetime scalars,

valued in ∧28 = 28, ∧28 = 28 of su(8),
forming 1 hypermultiplet in 28,

another in 28

There are no (R, NS) states in the untwisted sector, since Eleft > 0.
Next, consider the twisted sector k = 1.
In the (NS,NS) sector, fields have the following boundary conditions:

X1−2(σ + 2π) = +X1−2(σ),

X3−4(σ + 2π) = −X3−4(σ),

ψ1−2(σ + 2π) = −ψ1−2(σ),

ψ3−4(σ + 2π) = +ψ3−4(σ),

λ1−8(σ + 2π) = −λ1−8(σ),

λ9−16(σ + 2π) = − exp

(
2πi

4

)
λ9−16(σ).

It is straightforward to compute Eleft = −1/2, Eright = 0. The available field
modes are

X3−4
−1/2, λ

1−8
−1/2, λ

1−8
−1/2, λ

9−16
−1/4, λ

9−16
−3/4.
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There is a multiplicity of right-moving Fock vacua, arising from the
periodicity of ψ3−4. Briefly, the vacua | ± ∓〉 are invariant, and | ± ±〉 get a
sign under the action of the generator of Z4.

In this sector, the Z4- and GSO-invariant states are

State Count

∂X3−4
−1/2 ⊗ | ± ±〉 8 spacetime scalars(

λ9−16
−1/4

)2
⊗ | ± ±〉 2 spacetime scalars valued in ∧28 = 28 of su(8)

There are no massless states in (R, NS) in this sector, as Eleft = +1/2.
Copies of the states in the k = 1 sector occur at each of the sixteen fixed

points, hence the total state count should be obtained by multiplying the
totals for this sector by sixteen.

Next, consider the twisted sector k = 2.
In the (NS, NS) sector, fields have the following boundary conditions:

X1−4(σ + 2π) = +X1−4(σ),

ψ1−4(σ + 2π) = −ψ1−4(σ),

λ1−8(σ + 2π) = −λ1−8(σ),

λ9−16(σ + 2π) = +λ9−16(σ).

It is straightforward to compute Eleft = 0, Eright = −1/2. The available field
modes are

ψµ−1/2, ψ
µ
−1/2, λ

1−8
−1/2, λ

1−8
−1/2.

There is a multiplicity of left Fock vacua, arising from λ9−16. Let |m,n〉
denote a vacuum with m +’s and n -’s (note m+ n = 8), then under the
action of the generator of Z4, it is straightforward to check that |m = 0, 4, 8〉
are invariant, |m = 2, 6〉 get a sign flip, and the others get other fourth roots
of unity.

The Z4- and GSO-invariant states in this sector are of the form

State Count

|m = 0, 4, 8〉 ⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
spacetime vectors, in the 1, 1, ∧48 = 70 of su(8)

|m = 2, 6〉 ⊗
(
ψ3−4
−1/2, ψ

3−4
−1/2

)
1 hypermultiplet in ∧28 = 28, ∧28 = 28 of su(8)
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The (R, NS) sector in k = 2 is closely related. Here, fields have the fol-
lowing boundary conditions:

X1−4(σ + 2π) = +X1−4(σ),

ψ1−4(σ + 2π) = −ψ1−4(σ),

λ1−8(σ + 2π) = +λ1−8(σ),

λ9−16(σ + 2π) = −λ9−16(σ).

Just as in the (NS, NS) sector, Eleft = 0 and Eright = −1/2. Here, the left
Fock vacua form a spinor of the low-energy so(16).

The Z4-invariant states in this sector are of the form

State Count

(spinor)⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
spacetime vector, in chiral spinor of so(16)

Finally, let us consider the k = 3 sector. There are no massless states in
(R, NS), so we only consider (NS, NS). Fields in this sector have the following
boundary conditions:

X1−2(σ + 2π) = +X1−2(σ),

X3−4(σ + 2π) = −X3−4(σ),

ψ1−2(σ + 2π) = −ψ1−2(σ),

ψ3−4(σ + 2π) = +ψ3−4(σ),

λ1−8(σ + 2π) = −λ1−8(σ),

λ9−16(σ + 2π) = exp

(
πi

2

)
λ9−16(σ).

It is straightforward to compute Eleft = −1/2, Eright = 0. The available field
modes are

∂X3−4
−1/2, λ

1−8
−1/2, λ

1−8
−1/2, λ

9−16
−3/4, λ

9−16
−1/4.

Because ψ3−4 is periodic, there is a multiplicity of right Fock vacua. The
states |+−〉, | −+〉 are invariant under the generator of Z4, whereas the
states |+ +〉, | − −〉 get a sign flip.
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Putting this together, we find Z4- and GSO-invariant massless states of
the form:

State Count(
∂X3−4
−1/2, ∂X

3−4
−1/2

)
⊗ | ± ±〉 8 scalars(

λ
9−16
−1/4

)2
⊗ | ± ±〉 2 sets of scalars each in the ∧28 = 28 of su(8)

Furthermore, copies of the states above occur at each fixed point, hence
the total number of states is obtained by multiplying the tally above by
sixteen.

Now, let us summarize our results so far. We have found the following
states:

• 1 gravity multiplet,

• 1 tensor multiplet,

• vector multiplets transforming in the adjoint, chiral spinor of so(16),

• vector multiplets transforming in the adjoint, 70, 1, 1, 1 of su(8),

• 10 hypermultiplets in 28 of su(8) (k = 0, 1, 2),

• 10 hypermultiplets in 28 of su(8) (k = 0, 2, 3),

• 4 (k = 0) plus 32 (k = 1) plus 32 (k = 3) singlet hypermultiplets.

We can describe this spectrum more compactly as follows. First, the vec-
tors transforming in the adjoint and chiral spinor of so(16) clearly combine
to form a vector in the adjoint of e8. Second, under its su(8) subalgebra, the
adjoint representation of e7 decomposes as [73][Table 52]

133 = 63 + 70,

so we see that the remaining non-singlet vectors combine to form the adjoint
of e7. In the same decomposition,

56 = 28 + 28,

so we see that the hypermultiplets in the 28 and 28 combine to form 10
hypermultiplets in the 56 of e7.

Putting this together, we find that the spectrum can be described as
follows:

• 1 gravity multiplet,
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• 1 tensor multiplet,

• vector multiplets transforming in the adjoint of E7 × E8 × U(1)3,

• 10 hypermultiplets in the 56 of E7,

• 68 hypermultiplets that are singlets under E7 × E8.

The number of hypermultiplets is greater than the number of vector multi-
plets by 244, which is a necessary condition for anomaly cancellation.

The duality proposal in this example predicts that the dual is defined
by a heterotic E8 × E8 compactification on [T 4/Z2], with E8 bundle defined
by E∗ ⊗ E , ∧evenE , for E = O8 on T 4, but such that E∗ ⊗ E and ∧evenE are
odd under the action of the Z2 defining [T 4/Z2]. We do not see how such an
E8 bundle on [T 4/Z2] could be obtained from embedding an SU(n) bundle
in the usual fashion, and indeed, as remarked earlier, it need not be, the
duals in general may only be describable by fibered WZW models. That
said, the reader should note that the spectrum computed above is nearly
the same as the massless spectrum of an E8 × E8 string compactified on
a (2, 2) [T 4/Z2], which in general terms is consistent with the existence of
a duality between the current Spin(32)/Z2 gerbe compactification and an
E8 × E8 compactification. So, although we cannot check the details at this
time, certainly in broad brushstrokes this is consistent.

4.3. Examples in Distler-Kachru models

In Table 1 we tabulate the combinatorial data for a number of anomaly-free
Distler-Kachru (0, 2) GLSM’s of the pertinent form. Each describes a bundle
E over a Calabi-Yau hypersurface in a weighted projective stack,

Pn[w0,...,wn][w0 + · · ·+ wn],

a Z2 gerbe over a Calabi-Yau space, where the (rank 8) bundle is given as a
kernel of the form

0 −→ E −→ ⊕aO(na) −→ ⊕iO(mi) −→ 0.

For example, the first entry in Table 1 describes a rank 8 bundle given
as a kernel

0 −→ E −→ ⊕9
1O(1) −→ O(9) −→ 0

over the stack P3
[2,2,2,4][10], a Z2 gerbe over P3

[1,1,1,2][5].
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w0, . . . , w4 na mi

2, 2, 2, 4 19 9
2, 2, 2, 2, 2 19, 9 7, 11
2, 2, 2, 2, 2 39, 19 9, 21
2, 2, 2, 2, 4 39, 27 9, 29
2, 2, 2, 4, 6 18, 52 9, 13
2, 2, 2, 2, 6 19, 9 3, 15
2, 2, 2, 4, 4 19, 15 5, 19

Table 1: This table lists combinatorial data for anomaly-free (0, 2) GLSM’s
describing rank 8 bundles over Z2 gerbes on Calabi-Yau’s.

We list a few rank 9 examples over Z3 gerbes in Section 5.2. These rank
8 examples are listed in this section because we are enumerating rank 8
bundles over Z2 gerbes, and the rank 9 examples are not candidates for the
dualities discussed here.

Curiously, we were unable to find solutions of the combinatorial con-
sistency conditions for GLSM’s for bundles of rank less than 8. We do not
know whether this reflects a fundamental limitation of GLSM’s, or merely
the inadequacy of our parameter space search.

Given a Distler-Kachru model with a phase describing a Landau-
Ginzburg model over an orbifold of a vector space, methods exist to com-
pute the massless spectrum in that Landau-Ginzburg phase [74, 75]. When
these methods are applied to, for example, heterotic Spin(32)/Z2 compact-
ifications on typical examples from the table above, we find a large number
of single vectors and matter representations which likely combine to form
representations of a larger nonabelian gauge symmetry, but unfortunately
the corresponding worldsheet global symmetry does not seem to be visible in
the UV. We conclude that in these examples, much of the needed worldsheet
global symmetry appears in the IR, where we have no direct access. This is
atypical of Distler-Kachru models, where spacetime gauge symmetries typ-
ically appear as worldsheet global symmetries visible in the UV, but is not
contradicted by any physics we know. In any event, spectrum computations
at Landau-Ginzburg points in these theories have not proven insightful.

5. Class III: Twisted bundles

The third fundamental class of examples we shall discuss involve cases in
which the trivially-acting part of the gauge group acts nontrivially on the
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bundle, but is not one of the special cases discussed in Section 4 in which
the effect is merely to recreate part of the ten-dimensional left-moving GSO
projection.

One reason for interest is that examples of this form have the potential
to define new heterotic string compactifications. Other reasons also exist,
revolving around making sense of heterotic orbifolds with invariant non-
equivariant bundles. We review such motivations in Subsection 5.1.

In Subsection 5.2, we describe some (indirect) constructions of (0, 2)
SCFT’s of this form, via dimensional reduction of consistent four-dimensional
theories, and via anomaly-free (0, 2) GLSM’s.

Unfortunately, although there seem to exist consistent (0, 2) SCFT’s,
they do not seem to yield consistent perturbative heterotic string compacti-
fications. The essential problem is that any finite group that acts only on left-
movers, locally looks like a modification of the ten-dimensional left-moving
GSO projection, and as the consistent ten-dimensional GSO projections are
already known, if it is not one of them, the results cannot be well-behaved.
We will give several examples of six-dimensional compactifications of this
form, in which the six dimensional theory has anomalies and cannot be con-
sistent. We outline in detail some examples in which heterotic string com-
pactifications on these (0, 2) SCFT’s break down in Subsections 5.3, 5.4,
and 5.5.

That said, it may sometimes be possible to restore these theories by
adding suitable phases to twisted sectors. For example, the ten-dimensional
nonsupersymmetric SO(8)× SO(24) string seems to be obtainable by a pro-
cedure along these lines. Specifically, in the worldsheet theory, if one takes
the Spin(32)/Z2 string and performs an additional left-moving Z2 orbifold on
4 complex fermions, the result satisfies level-matching but does not define a
modular-invariant theory; if one then adds phases to restore modular invari-
ance, the result is the nonsupersymmetric ten-dimensional SO(8)× SO(24)
string. (See e.g. [76, 77], [78][Section 11.3] for more information on this
nonsupersymmetric string.) Unfortunately, we do not have a procedure for
finding such phases (or even checking whether they exist), and if they do,
the previous example suggests that the results will not be supersymmetric.
In addition, see e.g. [79, 80] for a different set of ideas which may be relevant,
though we have not considered them carefully in this context.

In Subsection 5.6 we outline a few attempts to find a way to understand
these issues in terms of some sort of anomaly cancellation.
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5.1. Motivations

One reason for interest in this class of examples is that they potentially
could describe new (0, 2) SCFT’s.

Another reason to be interested in them is that they may give a way
of understanding heterotic compactifications on ordinary spaces but with
non-equivariant bundles. In this section we will explain this motivation.

Let X be a Calabi-Yau manifold, with stable holomorphic vector bundle
E → X satisfying anomaly cancellation, so that the pair (X, E) defines a
consistent large-radius heterotic Calabi-Yau compactification.

Now, suppose a finite group G acts on X. In order to construct a G-
orbifold of the heterotic string on (X, E), we need for the bundle E to admit
a G-equivariantizable structure, which means that for every g ∈ G, we need
a lift g̃ : E → E such that

E g̃ //

��

E

��
X

g // X

and also such that the lifts obey the group law: g̃ ◦ h̃ = g̃h.
We need such an equivariant structure on the bundle E for the following

two reasons:

• In the worldsheet theory, such an equivariant structure enables us to
define a group action on the worldsheet fermions/bosons describing
the bundle, such that summing over twisted sectors in the orbifold
yields an honest projection operator onto G-invariant states.

• In the low-energy supergravity, if E does not have an equivariant struc-
ture, then even if G acts freely, on the quotient X/G the bundle E will
descend to a ‘twisted’ bundle, not an honest bundle, whose transition
functions gαβ obey

gαβgβγgγα = hαβγI

on triple overlaps, and whose gauge field A obeys

Aβ = gαβAαg
−1
αβ + g−1

αβdgαβ + ΛαβI

across intersections, for some affine translation Λαβ. As ten-dimensional
super-Yang-Mills only describes honest bundles and ordinary gauge
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transformations, the structure above cannot be used to define a con-
sistent string compactification.

However, there is a workaround. If the bundle E is invariant (meaning, its
characteristic classes are invariant under the group action), but not equivari-
ant, then we can find a larger group G̃, an extension of G by a trivially-acting
subgroup, such that E does admit a G̃-equivariant structure, and then take
a G′ orbifold. This is precisely an example of a heterotic string on a gerbe,
in this case a gerbe over [X/G].

First, let us review some generalities on the construction of G′. There is
a ‘universal’, ‘maximal’ extension G̃max, which extends G by the group of all
automorphisms of the total space of E that cover the action of the elements
of G on X. It fits into a short exact sequence

1 −→ Aut(E) −→ G̃max −→ G −→ 1,

where Aut(E) is the group of global bundle automorphisms of E . The group
we want, G̃, will necessarily be a subgroup of this universal extension of
G̃max.

In general, the extension defining G̃max will not be central, but if E is
stable or simple then Aut(E) = C×, and the extension is central. The group
G̃max acts by definition on E and so defines an equivariant structure. Every
other group for which one has an equivariant structure will map to G̃max

and the equivariant structure will factor through that map.
Now, clearly, G̃max is not a finite group, and we only want to consider

cases in which the trivially-acting subgroup is finite. If G is finite and E is
stable or simple, then G̃max is a central extension of G by C× and, because

H2(G,C∗) = H2(G,Q/Z)

for G finite, the relevant H2 is finite and so every extension is induced from
some central extension Gmin of G by a finite group of order bounded by the
maximal order of elements in G. In this fashion, we can construct a G̃.

So far, we have described how, given a bundle that is invariant but not
equivariant with respect to an orbifold group G, one can extend G to a larger
finite group G̃, where the extension acts trivially on the base. Now, not any
G̃ will be acceptable: the orbifold by G̃ must, at minimum, satisfy level-
matching, and as discussed earlier, even more in order to define a consistent
heterotic string compactification.

For completeness, let us now consider some possible examples.
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One example is described in the paper [81]. (See also [82–87].) In that
paper, the authors first construct an elliptically-fibered Calabi-Yau three-
fold Z with fundamental group Z2 × Z2, built as a freely-acting15 Z2 × Z2

quotient of a simply-connected Calabi-Yau threefold X:

Z = X/(Z2 × Z2)

together with a bundle V on X that is not quite equivariant with respect to
the Z2 × Z2 action, and so descends to a twisted bundle on Z.

Consider the gerbe presented as [X/G], where

1 −→ Z2 −→ G −→ Z2 × Z2 −→ 1,

with the Z2 kernel acting trivially. (Explicitly, the extension above is the
Heisenberg extension, and G = D4 [89].) The bundle V above descends to a
bundle on a gerbe. Furthermore, the entire bundle is an eigenbundle under
the nontrivial element of the center of D4, with eigenvalue −1 (since it must
square to the identity and can not itself be the identity) [89].

For completeness, let us now work through the example of [81] in more
detail. Their Calabi-Yau manifold X is an elliptic fibration over a rational
elliptic surface, and in fact can be described as the fiber product over P1 of
two rational elliptic surfaces B, B′:

X = B ×P1 B′

where π : X → B′, π′ : X → B, β′ : B′ → P1, β : B → B:

X
π

  B
BB

BB
BB

B
π′

~~}}
}}
}}
}}

B

β   @
@@

@@
@@

@ B′

β′~~}}
}}
}}
}}

P1

15 For further examples of Calabi-Yau threefolds with this property, see e.g. [88].
Examples include P7[2, 2, 2, 2] and (P1)4 with a degree (2, 2, 2, 2) hypersurface. For
both, the restriction of an ambient hyperplane class to the Calabi-Yau defines a
line bundle which is invariant but not equivariant.
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B and B′ are both chosen to admit an automorphism group containing Z2 ×
Z2. A stable rank four vector bundle V → X is constructed as an extension

0 −→ V1 −→ V −→ V2 −→ 0,

where

Vi = π′∗Wi ⊗ π∗Li,

for Wi a pair of rank 2 vector bundles on B and Li a pair of line bundles
on B′.

Briefly, [81] first argues that each Vi is Z2 × Z2-equivariant. As a result,
the group of extensions Ext1(V2, V1) decomposes into subspaces associated
with characters of Z2 × Z2. By picking an extension in a subspace associated
with the trivial representation, we get a bundle V which is at least Z2 × Z2-
invariant, though not necessarily Z2 × Z2-equivariant.

Again, for this example to be physically meaningful, the orbifold group
would have to, at minimum, satisfy level-matching. As our purpose in this
section was merely to outline one of the motivations for considering heterotic
compactifications on gerbes, and we will argue later that these examples are,
in most cases, not physically useful, we will end our discussion here.

5.2. Constructions of consistent CFT’s

In this section, we will describe some constructions of what seem to be con-
sistent (0, 2) SCFT’s describing heterotic strings on gerbes with fractional
gauge bundles. For reasons described elsewhere, these cannot be consistently
used in supersymmetric heterotic string compactifications, but nevertheless
they do seem to be examples of consistent (0, 2) SCFT’s.

Our first example was discussed in [90]. Specifically, in [90][Section 3.1],
an N = 2 gauge theory in four dimensions with hypermultiplets transform-
ing in the R representation of the gauge group, was reduced along a Rie-
mann surface C to a two-dimensional (0, 4) theory, a heterotic nonlinear
sigma model whose target is the Hitchin moduli space MH(G,C) and with
a twisted gauge bundle R, defined by the representation R in which the
hypermultiplets transform. The four-dimensional theory was partially topo-
logically twisted along a U(1)R (and only exists for superconformal field
theories for which that U(1)R is nonanomalous).

In this example, the gauge bundle is twisted, in the sense that the tran-
sition functions only close to a cocycle on triple overlaps. Now, ordinarily
heterotic strings cannot couple to such twisted bundles, only D-branes can
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couple to such twisted bundles, as described in Section 2.3. Despite that fact,
it was claimed in [90][Section 3.1] that the (0, 4) theory nevertheless consis-
tently couples to a twisted gauge bundle. In order to make that possible,
the nonlinear sigma model was restricted to maps such that the pullback of
the twisted bundle, is an honest bundle.

Such nonlinear sigma models, with a restriction on nonperturbative sec-
tors, are equivalent to sigma models on gerbes, as reviewed in e.g. Section 2,
and so this is an example of a heterotic string compactification on a gerbe
with a non-pullback bundle.

More generally, more of the analysis of [90] can also be rephrased in
this language, following a discussion in [17][Section 12.3], which discussed
how gerbes could be used to slightly simplify the analysis of the physical
realization of geometric Langlands. Briefly, Hitchin moduli spaces arising
from G gauge theories are defined by modding out adjoint actions, under
which the center Z(G) is trivial and so formally one can replace them with
moduli stacks which are Z(G)-gerbes. After reduction to two dimensions,
one obtains sigma models on gerbes, which physics sees [17] as a sigma
model on a disjoint union of spaces, matching results of [91].

In any event, after performing the dimensional reduction from a four-
dimensionalN = 2 theory to two dimensions, one gets [90][Section 3.1] a het-
erotic sigma model on the Hitchin moduli space MH(G,C), with a twisted
bundle over that moduli space, twisted by an element of H2(Z(G)). Since
the Hitchin moduli space is defined by modding out the adjoint action of G,
the center is trivial, and so one could naturally replace the Hitchin moduli
space with a moduli stack which is a Z(G) gerbe, just as in [17][Section 12.3].
A heterotic sigma model on such a stack would appear to be a sigma model
on the moduli space but with a restriction on allowed maps, exactly as
described in [90][Section 3.1].

As these two-dimensional (0, 2) theories are constructed by dimensional
reduction of a consistent four-dimensional theory, it is difficult to believe
that they are not consistent.

Other naively-consistent examples can be constructed in (0, 2) GLSM’s.
For example, consider the two examples:

• The rank 9 bundle

0 −→ E −→
9⊕
1

O(1)⊕O(10) −→ O(19) −→ 0

over P4
[3,3,3,3,6][18], a Z3 gerbe over P4

[1,1,1,1,2][6],
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• The rank 9 bundle

0 −→ E −→
9⊕
1

O(1)⊕O(13) −→ O(22) −→ 0

over P3
[3,3,6,9][21], a Z3 gerbe over P3

[1,1,2,3][7].

It is straightforward to check, just at the level of combinatorics, that they
satisfy the usual conditions for a GLSM to be anomaly-free. However, the
usual danger with GLSM’s is that we do not have perfect control over the
RG flow — although we have described them in terms of data associated to
twisted bundles, along the RG flow they might pick up ‘phases’ (as suggested
earlier), for example.

In the next subsections, we shall show explicitly that examples of this
form do not yield consistent supersymmetric heterotic string compactifica-
tions, unfortunately.

5.3. Cautionary example

Let E be a rank 4 bundle on a Calabi-Yau X, defining a consistent (0, 2)
SCFT. Now, consider a Z2 orbifold in which the orbifold group acts trivially
on X, but by a sign flip on E (so that all of E is an eigenbundle of weight
−1).

This example can be shown to satisfy level-matching in the sense of [59],
as well as the conditions in Appendix A.4. However, in principle this theory
is nevertheless deeply suspicious. Since the Z2 acts trivially on right-moving
fields, and only on left-moving fields, we could just as well think of this as a
compactification of a ten-dimensional theory in which the left-moving GSO
projection has been altered. Since the resulting new GSO does not coincide
with either the existing Spin(32)/Z2 or E8 × E8 strings, this theory must be
inconsistent. (Indeed, this is the starting point for one construction of the
ten-dimensional nonsupersymmetric SO(8)× SO(24) string [76–78], though
this orbifold must be supplemented by further phases.)

Another argument for inconsistency arises from considering massless
spectra. Specifically, if we take X to be a K3 surface, and consider a com-
pactification of a ten-dimensional E8 × E8 string, in which the gauge bundle
is embedded in one E8, then the six-dimensional spectrum is anomalous. We
summarize the details below, following the methods outlined in Appendix A.
(The integer n is the dimension of X; we will quickly specialize to n = 2,
but will remain general for as long as possible.)
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Following the appendix, there are two components in the inertia stack,
which are identical:

IX = Xq X.

Below we list results for both states and left and right U(1)R charges.
First, consider the untwisted sector.
In the (R, R) sector, the vacuum energy EId = 0. The massless charged

states are

• Hm(X,∧evenE), charge (even− 2,m− n/2), giving spacetime states
valued in a spinor of so(8).

In the (NS, R) sector, the vacuum energy EId = −1. The massless charged
states are

• Hm(X, E∗ ⊗ E), charge (0,m− n/2), spacetime gauge neutral,

• Hm(X,∧2E), charge (2,m− n/2), spacetime gauge neutral,

• Hm(X,O), charge (0,m− n/2), in the adjoint representation of so(8),

• Hm(X,∧2E∗), charge (−2,m− n/2), spacetime gauge neutral.

Now, consider the twisted sector. Here, all of E is an eigenbundle with
eigenvalue −1.

In the (R, R) sector, E = −1/2. There are no massless charged states in
this sector.

In the (NS, R) sector, E = −1/2. Again, there are no massless charged
states in this sector.

States above are listed with charges (q−, q+). The q+ charge distinguishes
chiral multiplets from vector multiplets; the q− charge is the charge of the
u(1) that combines with so(8) to build so(10).

For a compactification to four dimensions, (n = 3,) states with q+ =
−1/2 would be spacetime fermions in chiral multiplets (and q+ = +1/2 their
antichiral partners); states with q+ = +3/2 would be spacetime fermions in
vector multiplets (and q+ = −3/2 their partners).

For a compactification to six dimensions, (n = 2,) which is the pertinent
case, states with q+ = ±1 are spacetime fermions in vector multiplets; states
with q+ = 0 are spacetime fermions in hypermultiplets.

Since we have a rank 4 bundle, in principle the E8 should be broken
to Spin(10), which in the worldsheet theory will be assembled from repre-
sentations of so(8)× u(1) (the so(8) rotating the remaining free left-moving
fermions in the first E8, and the u(1) being an overall phase rotation on
the bundle fermions, which on the (2, 2) locus would become the left R
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symmetry). Under the so(8)× u(1) subalgebra, representations of so(10)
decompose as follows:

45 = 8−2 ⊕ 280 ⊕ 10 ⊕ 82,

16 = 8−1 ⊕ 8+1,

10 = 1−2 ⊕ 80 ⊕ 12,

1 = 10,

where the subscript indicates the q− charge.
We arrange the (untwisted sector) states into so(10) representations,

with the following results:

• The adjoint of so(10) arises from H∗(X,O). Contributing terms are:
– H∗(X,O) in (R, R), transforming as 8−2,
– H∗(X,∧4E ∼= O) in (R, R), transforming as 8+2,
– H∗(X,Tr E∗ ⊗ E ∼= O) in (NS, R), transforming as 10,
– H∗(X,O) in (NS, R), transforming as 280.

• Copies of 10 of so(10) arise from H∗(X,∧2E). Contributing terms are:
– H∗(X,∧2E) in (R, R), transforming as 80,
– H∗(X,∧2E) in (NS, R), transforming as 12,
– H∗(X,∧2E∗ ∼= ∧2E) in (NS, R), transforming as 1−2.

• Gauge singlets, arising as H∗(X,End E) (where we use End to denote
the traceless endomorphisms), arising in the (NS, R) sector.

In addition, there is one vector in the adjoint representation of the second
E8, which is always present in computations of the form of Appendix A.

In any event, altogether in this six-dimensional theory we have

• h0(X,O) = 1 vector multiplets in the adjoint of Spin(10),

• One vector multiplet in the adjoint of E8,

• h1(X,∧2E) = 36 half-hypermultiplets16 in the 10 of Spin(10),

• 20 singlet hypermultiplets for K3 moduli,

• h1(End E) = 162 singlet half-hypermultiplets for bundle moduli17,

16 The dimension of this sheaf cohomology group can be determined from index
theory, and applies to any stable irreducible rank 4 bundle E on a K3 surface.

17 It is a standard result that the moduli in an irreducible rank r vector bundle E
on K3 with c1(E) = 0, c2(E) = c2(TK3) is encoded in 24r + 1− r2 hypermultiplets,
or 2(24r + 1− r2 half-hypermultiplets. Here, r = 4.
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so that we find

nV = 45 + 248 = 293,

nH = (1/2) ((36)(10) + 162) + 20 = 281,

nH − nV = −12 6= 244,

and so we see that this cannot satisfy anomaly cancellation, mechanically
verifying our previous observation that this theory cannot be consistent.

More generally, any heterotic compactification on a gerbe, in which the
bundle is twisted, will be of this same general type, unless the bundle has
rank 8 and the trivially-acting group is Z2. Locally each theory will look
like a compactification of a ten-dimensional theory with an altered GSO
projection, and except for the case that the GSO projection switches between
Spin(32)/Z2 and E8 × E8, the resulting theory cannot be consistent.

For purposes of comparison, and to help illuminate the methods encoded
in Appendix A, let us also outline the results in a closely related consistent
compactification. If we did not orbifold, if we took a compactification of an
E8 × E8 heterotic string on a smooth large-radius K3 with a rank 4 vector
bundle, then from a similar computation we would find

• h0(X,O) = 1 vector multiplets in the adjoint of Spin(10),

• One vector multiplet in the adjoint of E8,

• h1(X, E) = 16 half-hypermultiplets in the 16 of Spin(10),

• h1(X,Λ2E) = 36 half-hypermultiplets in the 10 of Spin(10),

• h1(X,Λ3E = E∗) = 16 half-hypermultiplets in the 16 of Spin(10),

• 20 singlet hypermultiplets for K3 moduli,

• h1(End E) = 162 singlet half-hypermultiplets for bundle moduli,

where the representations of Spin(10) are constructed in the same fashion.
Altogether, we find that

nV = 45 + 248 = 293,

nH = (1/2) ((16)(16) + (36)(10) + (16)(16) + 162) + 20 = 537,

nH − nV = 244,

consistent with anomaly cancellation, in that standard compactification.
Unfortunately, our gerbe example is not so well-behaved.
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5.4. Second cautionary example

For completeness, we give here a second cautionary example, here involving
a heterotic Spin(32)/Z2 compactification on a nontrivial toroidal orbifold.
This will involve a rank 10 bundle over a Z2 gerbe on [T 4/Z2], and although
level matching holds, the spectrum is anomalous in six dimensions.

The Z2 gerbe is defined by [T 4/Z4], where the Z4 acts on the T 4 by

x 7→ exp

(
2πi(2k)k

4

)
x = (−)kx,

so that there is a trivially-acting Z2 subgroup. (This is the same Z2 gerbe
discussed in a different context in Section 4.2.) The gauge bundle is a rank
10 bundle, where the generator of Z4 acts on an O⊕2 factor by multipli-
cation by exp(2πi(2/4)) = −1, and on the O⊕8 factor by exp(2πi/4). It is
straightforward to check that this satisfies level-matching, in the sense of
[59], as well as the conditions in Appendix A.4.

Let us now outline the massless spectrum.
In the untwisted sector, there are massless states in the (NS, NS) sector.

It is straightforward to compute Eleft = −1, Eright = −1/2, and one has Z4-
invariant states of the form

State Count(
λ1−6
−1/2, λ

1−6
−1/2

)2
⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
spacetime vector,

valued in adjoint of so(12)

∂X1−2
−1 ⊗

(
ψ1−2
−1/2, ψ

1−2
−1/2

)
gravity, tensor multiplet contributions(

λ7−14
−1/2λ

7−14
−1/2

)
⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
spacetime vector,

valued in adjoint, 1 (trace) of su(8)(
λ15−16
−1/2 , λ

15−16
−1/2

)2
⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
spacetime vector,

valued in adjoint of so(4)(
λ1−6
−1/2, λ

1−6
−1/2

)(
λ15−16
−1/2 , λ

15−16
−1/2

)
⊗
(
ψ3−4
−1/2, ψ

3−4
−1/2

)
4 sets of scalars,

valued in (12,4) of so(12)× so(4)

∂X3−4
−1 ⊗

(
ψ3−4
−1/2, ψ

3−4
−1/2

)
16 scalars (toroidal moduli)((

λ7−14
−1/2

)2
,
(
λ

7−14
−1/2

)2
)
⊗
(
ψ3−4
−1/2, ψ

3−4
−1/2

)
4 sets of scalars,

valued in ∧28 = 28, ∧28 = 28 of su(8)

There are no massless states in the untwisted (R, NS) sector, and in fact
also no massless states in the k = 1 or k = 3 sectors.
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All of the remaining massless states are in the k = 2 sector. In the
(NS, NS) sector, fields have the following boundary conditions:

X1−2(σ + 2π) = +X1−2(σ),

X3−4(σ + 2π) = +X3−4(σ),

ψ1−2(σ + 2π) = −ψ1−2(σ),

ψ3−4(σ + 2π) = −ψ3−4(σ),

λ1−6(σ + 2π) = −λ1−6(σ),

λ7−14(σ + 2π) = − exp

(
2πi

2

4

)
λ7−14(σ) = +λ7−14(σ),

λ15−16(σ + 2π) = −λ15−16(σ).

It is straightforward to compute that Eleft = 0, Eright = −1/2. There is a
multiplicity of left vacua, arising from λ7−14. Let |m〉 denote a vacuum with
m +’s and 8−m -’s, i.e. annihilated by m λ’s and 8−m λ’s, then under the
action of the generator of Z4, it is straightforward to check that |m = 0, 4, 8〉
are invariant, |m = 2, 6〉 get a sign flip, and the others are multiplied by
various fourth roots of unity.

The Z4-invariant states in this sector are of the form

State Count

|m = 0, 4, 8〉 ⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
spacetime vector, valued in 1, 1, ∧48 = 70 of su(8)

|m = 6, 2〉 ⊗
(
ψ3−4
−1/2, ψ

3−4
−1/2

)
4 sets of scalars, in ∧28 = 28, ∧28 = 28 of su(8)

In the k = 2 (R, NS) sector, fields have the following boundary condi-
tions:

X1−2(σ + 2π) = +X1−2(σ),

X3−4(σ + 2π) = +X3−4(σ),

ψ1−2(σ + 2π) = −ψ1−2(σ),

ψ3−4(σ + 2π) = −ψ3−4(σ),

λ1−6(σ + 2π) = +λ1−6(σ),

λ7−14(σ + 2π) = + exp

(
2πi

2

4

)
λ7−14(σ) = −λ7−14(σ),

λ15−16(σ + 2π) = +λ15−16(σ).

It is straightforward to compute that Eleft = 0, Eright = −1/2. There is a
multiplicity of left vacua, as λ1−6 and λ15−16 are periodic. In particular,
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| ± ∓〉15−16 are invariant under Z4, whereas | ± ±〉15−16 get a sign flip. There-
fore, the Z4-invariant massless states are of the form

State Count

| ± · · · ±〉1−6| ± ∓〉15−16 ⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
spacetime vector

in (32,2) of so(12)× so(4)

| ± · · · ±〉1−6| ± ±〉15−16 ⊗
(
ψ3−4
−1/2, ψ

3−4
−1/2

)
4 sets of scalars

in (32′,2′) of so(12)× so(4)

We can rearrange the spacetime vectors more sensibly as follows. The
so(12)× so(4) ∼= so(12)× su(2)× su(2) is enhanced to an e7 × su(2), using
the fact that the adjoint representation of e7 decomposes under so(12)×
su(2) as [73][Table 52]

133 = (66,1)⊕ (32,2)⊕ (1,3).

The 66 is the adjoint representation of so(12), which arises in k = 0, as does
the 3 of su(2) (half of the adjoint representation of so(4)), and the (32,2)
arises in the sector k = 2. Similarly, the su(8) is enhanced to e7. The adjoint
representation of e7 decomposes under su(8) as [73][Table 52]

133 = 63⊕ 70.

The 63 arises in the k = 0 sector, and the 70 in k = 2. In addition, there are
three remaining vector multiplets, in the k = 0 and k = 2 sectors. Therefore,
the complete gauge (algebra) symmetry in this compactification is e7 × e7 ×
su(2)× u(1)3.

The matter fields align themselves with the gauge algebra above. In
the k = 0 and k = 2 sectors, the hypermultiplets valued in 28, 28 of su(8)
form hypermultiplets in the 56 of e7, using the fact that under the su(8)
subalgebra [73][Table 52],

56 = 28⊕ 28.

Similarly, since under the so(12)× su(2) subalgebra [73][Table 52],

56 = (32′,1)⊕ (12,2),

the k = 0 hypermultiplet valued in (12,4) of so(12)× so(4) and the k = 2
hypermultiplet valued in (32′,2′) form a hypermultiplet valued in (56,2) of
e7 × su(2).

Let us summarize our results so far. We have found the following states:
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• 1 gravity multiplet,

• 1 tensor multiplet,

• 1 vector multiplet in the adjoint representation of e7 × e7 × su(2)×
u(1)3,

• 2 hypermultiplets in the (56,1,1) of e7 × e7 × su(2),

• 1 hypermultiplet in the (1,56,2) of e7 × e7 × su(2),

• 4 singlet hypermultiplets.

It is straightforward to compute that there are 272 vector multiplets and 228
hypermultiplets. Since the difference is not 244, this six-dimensional theory
is anomalous.

5.5. Third cautionary example

Now consider an E8 × E8 string on a Z3 gerbe over a different [T 4/Z2], con-
structed as [T 4/Z6]. Let the generator g of Z6 act on the T 4 with coordinates
(X3, X4) as

g :
(
X3, X4

)
7→ (exp(+4πi/3), exp(−4πi/3)) .

Define a rank 2 bundle over this stack by taking O⊕2 over T 4, and let g act
with eigenvalues

(exp(−2πi/3), exp(−4πi/3)) .

It is straightforward to check that this satisfies anomaly cancellation in the
sense of [59], and also the constraints in Appendix A.4.

In an E8 × E8 compactification, we can describe this as the following
action on fields:

g ·X1−2 = +X1−2,

g ·X3 = exp(+4πi/3)X3,

g ·X4 = exp(−4πi/3)X4,

g · ψ1−2 = +ψ1−2,

g · ψ3 = exp(+4πi/3)ψ3,
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g · ψ4 = exp(−4πi/3)ψ4,

g · λ1−6 = +λ1−6,

g · λ7 = exp(−2πi/3)λ7,

g · λ8 = exp(−4πi/3)λ8.

Let us now outline the massless spectrum.
In the untwisted sector, there are massless states in the (NS, NS) sector.

It is straightforward to compute that Eleft = −1, Eright = −1/2, and one has
Z6-invariant states of the form

State Count

∂X1−2
−1 ⊗

(
ψ1−2
−1/2, ψ

1−2
−1/2

)
gravity, tensor multiplet contributions(

λ1−6
−1/2, λ

1−6
−1/2

)2
⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
vector in adjoint of so(12)(

λ7
−1/2λ

8
−1/2, λ

7
−1/2λ

8
−1/2

)
⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
vectors in adjoint of U(1)2(

λ7
−1/2λ

7
−1/2, λ

8
−1/2λ

8
−1/2

)
⊗
(
ψ1−2
−1/2, ψ

1−2
−1/2

)
vectors in adjoint of U(1)2

λ8
−1/2

(
λ1−6
−1/2, λ

1−6
−1/2

)
⊗
(
ψ3
−1/2, ψ

4
−1/2

)
half-hypermultiplet in 12 of so(12)

λ
8
−1/2

(
λ1−6
−1/2, λ

1−6
−1/2

)
⊗
(
ψ

3
−1/2, ψ

4
−1/2

)
half-hypermultiplet in 12 of so(12)

λ7
−1/2

(
λ1−6
−1/2, λ

1−6
−1/2

)
⊗
(
ψ

3
−1/2, ψ

4
−1/2

)
half-hypermultiplet in 12 of so(12)

λ
7
−1/2

(
λ1−6
−1/2, λ

1−6
−1/2

)
⊗
(
ψ3
−1/2, ψ

4
−1/2

)
half-hypermultiplet in 12 of so(12)(

∂X3, ∂X
4
)
⊗
(
ψ

3
−1/2, ψ

4
−1/2

)
1 singlet hypermultiplet(

∂X
3
, ∂X4

)
⊗
(
ψ3
−1/2, ψ

4
−1/2

)
1 singlet hypermultiplet

λ7
−1/2λ

8
−1/2 ⊗

(
ψ3
−1/2, ψ

4
−1/2

)
1/2 singlet hypermultiplet

λ
7
−1/2λ

8
−1/2 ⊗

(
ψ

3
−1/2, ψ

4
−1/2

)
1/2 singlet hypermultiplet

There are no massless states in the untwisted (R, NS) sector, and no
massless states in k = 1, k = 2 sectors. The k = 3, 4, 5 sectors are copies of
the k = 0, 1, 2 sectors, respectively. Thus, altogether, the spectrum is two
copies of the states above.

Note that since there are no (R, NS) states, the nonabelian gauge sym-
metry is only so(12); it is not enhanced to e7. Also, since the spectrum is
two copies of the states above, the spectrum contains two gravitons, and
hence would be a likely candidate for decomposition.

Unfortunately, the spectrum is also anomalous. The gauge symmetry
is so(12)× e8 × u(1)4 (including the second E8, which until now has been
suppressed), so the total number of vector multiplets is 318, and the number
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of hypermultiplets is 27. Clearly nH − nV 6= 244, so this model is anomalous
in six dimensions.

5.6. Potential refinements of anomaly cancellation

So far we have described some consistent (0, 2) SCFT’s of the class III form,
and also illustrated in detail how theories of this form cannot be consis-
tently used in supersymmetric heterotic string compactifications. This begs
the question of whether there exists a criterion, perhaps a generalization of
anomaly cancellation, that can be used to distinguish theories of this form.
In this section, we will examine one such possibility.

In Appendix C we describe a modified notion of Chern classes and char-
acters, labelled crep and chrep, that contain extra information in twisted
sectors. It is tempting to speculate that one might be able to use these to
obtain additional finite-group anomaly constraints on theories by demanding
matching chrep

2 ’s. Let us check this by studying GLSM’s, for which anomaly
cancellation conditions are more or less well understood. We will argue that
although chrep’s play a vital role in index theory, confusingly they do not
seem to define any new anomaly-cancellation conditions.

Consider a (0, 2) theory over the hypersurface X = Pn[k,k,...,k][d], with
gauge bundle E :

0 −→ E −→ ⊕aO(na) −→ O(m) −→ 0.

It is straightforward to compute that

crep
1 (TX)|α = (n+ 1)

k

k
J − d

k
α−dJ,

chrep
2 (TX)|α = chrep

2 (⊕n+1O(k))|α − chrep
2 (O(d))|α,

=
1

2
(n+ 1)

(
k

k
J

)2

− 1

2

(
d

k
J

)2

α−d,

and for the bundle E ,

crep
1 (E)|α =

∑
a

na
k
Jα−na − m

k
Jα−m,

chrep
2 (E)|α = chrep

2 (⊕aO(na))|α − chrep
2 (O(m))|α,

=
1

2

∑
a

(na
k
J
)2
α−na − 1

2

(m
k
J
)2
α−m.
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By contrast, anomaly cancellation in the GLSM is merely the statement
that ∑

a

n2
a −m2 = (n+ 1)k2 − d2,

a much weaker statement than demanding chrep
2 (E) = chrep

2 (TX) in each
sector α. Anomaly cancellation in the GLSM is well-understood — in the
present case, this is just the gauge anomaly in a U(1) gauge theory, which is
under extremely good control. Demanding matching chrep’s gives a stronger
condition — some theories that would satisfy GLSM anomaly cancellation,
would not satisfy the constraint of matching chrep’s.

For this reason, we do not believe that one should demand matching
chrep

2 ’s. This is a somewhat puzzling conclusion, as these are not only the
most natural notion of Chern classes on stacks, but they are also vital in
index theory, which ordinarily would be a route to deriving their utility.
(On the other hand, we briefly remark on a possible application of crep

1 in
Appendix A.4.)

6. Combinations

So far we have discussed three fundamental classes of examples of heterotic
string compactifications on gerbes.

Those three classes do not exhaust all possibilities; rather, one should
think of them as ‘building blocks’ that can be used to assemble more com-
plicated possibilities.

For one example, consider a string on a Z4 gerbe, of which a Z2 subgroup
acts on a rank 8 bundle, but the Z2 coset leaves the bundle invariant. A
version of the decomposition conjecture should apply here, relating this (0, 2)
SCFT to a disjoint union of two (0, 2) SCFT’s, each of which would involve a
heterotic string on a Z2 gerbe with a nontrivial action on the gauge bundle.
Those individual SCFT’s might be dual to a different string compactification
(class II), or might not define a consistent heterotic string compactification
(class III).

It is straightforward to assemble more complicated possibilities, following
similar patterns.

7. Conclusions

In this paper we have examined general aspects of heterotic string compacti-
fications on generalized spaces known as stacks, focusing on the particularly
interesting special case of stacks that are gerbes.
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Briefly, we have described how heterotic string compactifications on
gerbes are built from three basic classes:

• In the special case that the gauge bundle on the gerbe is a pullback
from an underlying space, the heterotic theory on the gerbe is equiva-
lent to a heterotic theory on a disjoint union of spaces, the same sort
of decomposition as type II strings on gerbes [17].

• In the special case that the gauge bundle on the gerbe is twisted in such
a way as to locally duplicate a different ten-dimensional GSO projec-
tion, the gerbe compactification seems to be dual to a compactification
of the corresponding different heterotic string.

• In other cases in which the gauge bundle is different from a pullback
from the base, although at least sometimes one can define consistent
(0, 2) SCFT’s, there do not seem to be any viable perturbative het-
erotic string compactifications.

There are several open questions that would be interesting to pursue.
For example,

• We have not identified a complete set of sufficient conditions for a stack
X with bundle E → X to define a consistent heterotic string compacti-
fication. We have identified a number of necessary conditions, such as
anomaly cancellation on the cover and level-matching in orbifolds, we
have derived additional necessary conditions from well-definedness of
Fock vacua, but we have also observed that these conditions do not suf-
fice in general. We have speculated on some enhancements of anomaly
cancellation (involving the chrep’s that can be defined on stacks), but
do not at this time have any definitive statements to make.

• We have discussed a heterotic analogue of the decomposition conjec-
ture for banded gerbes, with bundle a pullback from the base. We do
not at this time have an analogue for nonbanded gerbes.

These questions are left for future work.
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Appendix A. Massless spectra of heterotic strings on stacks

A.1. Basic definitions

In this section, we will describe the computation of the massless spectrum of
a perturbative heterotic E8 × E8 string compactified on a smooth Deligne-
Mumford stack X with suitable gauge bundle E → X, following (in spirit
when not detail) [65] and [92]. Not only will this be useful for computations,
but the existence of such a computational method is a good consistency
check for the existence of heterotic string compactifications on stacks.

Let X be a smooth Deligne-Mumford stack of complex dimension18 n ≤
4, and E a holomorphic vector bundle over X of rank r, satisfying suitable
anomaly-cancellation conditions. We will embed the bundle in one of the
E8’s of the ten-dimensional heterotic string, so we will assume that r < 8.
As in [65], all our computations will be in a right-moving R sector (hence,
spacetime fermions), but spacetime supersymmetry can be used to derive
the NS sector (spacetime bosons) in principle.

Let IX denote the inertia stack associated to X. Roughly speaking, the
inertia stack is a geometric mechanism for encoding twisted sectors; it has
multiple components, each of which corresponds to a twisted sector in a
standard global orbifold. For example, if X = [C2/Z2], where the Z2 acts by
sign flips, then

IX = [C2/Z2]q [point/Z2].

18 For simplicity, as we wish to work in light-cone gauge, we will assume that the
complex dimension is bounded by 4.
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For another example, if X = [C/Z3], where the Z3 acts by multiplying by
phases, then

IX = [C/Z3]q [point/Z3]q [point/Z3].

For yet another example, if X = [C/Z2], where the Z2 acts trivially (so that
all of C is fixed), then

IX = [C/Z2]q [C/Z2].

(See e.g. [48–51, 53–58] for more information on the inertia stack.) In general,
points in the inertia stack are pairs (x, α), where x is a point of X, and α
is an automorphism of x, which for an orbifold [Y/G] by G a finite group,
would define the twisted sectors. In the [C3/Z3] example, if g generates Z3,
then the two copies of [point/Z3] correspond to α = g, g2. The inertia stack
IX always contains a copy of X as one component, corresponding to α = Id.

Let us describe how to compute the spectrum on each component α of
IX. (We will use α to denote both a component of IX and the automorphism
defining that component.)

First, let q : IX → X denote the natural projection onto a single compo-
nent, and for α 6= Id, decompose the pullback bundles into eigenbundles19

of 〈α〉:

q∗TX|α = ⊕nTαn ,
q∗E|α = ⊕nEαn .

Define tα to be the order of the corresponding automorphism, and take Tαn
and Eαn to be associated with character

exp(2πin/tα).

By this we mean that the (R-sector) worldsheet fermions corresponding to
Tαn and Eαn have boundary conditions of the form

ψ(σ + 2π) = exp(2πin/tα)ψ(σ).

We will denote fermions couplings to Tαn (respectively, Eαn ) by ψ+,n (respec-
tively, λ−,n).

19 Since α leaves the points invariant, this component of the inertia stack must
have a 〈α〉 gerbe structure, and bundles on such gerbes have an eigenbundle decom-
position as given here.



i
i

“2-and” — 2015/10/12 — 16:47 — page 577 — #47 i
i

i
i

i
i

Heterotic string compactifications 577

Let us pause to briefly discuss some concrete examples, to illuminate
these abstract definitions. For global orbifolds by finite groups, it should
hopefully be clear that the description above is an abstraction of the stan-
dard prescription for distinguishing various worldsheet fermions with differ-
ent boundary conditions. Let us turn to an example which does not have
such a realization, but which is relevant to (0, 2) GLSMs. Take X = P4

[1,1,1,2,2],
with bundle

0 −→ E −→ ⊕aO(na)
Fa−→ O(m) −→ 0

where det E∗ ∼= KX: ∑
na −m = 7,

and second Chern classes match:∑
n2
a −m2 = 11.

This is not Calabi-Yau, so it would not be directly useful for a string com-
pactification, but can help illuminate some general aspects. This stack has
a P1 of Z2 orbifolds, so the inertia stack has the form

IX = Xq P1
[2,2].

On the nontrivial component P1
[2,2], call it α, we can work out the decom-

position of the gauge bundle. Suppose, for example, that m is odd. For any
given a, if na is even, then Fa is odd, so Fa = 0; if na is even on the other
hand, there is no constraint on Fa. In this case, we can decompose

q∗E|α = E+ ⊕ E−,

where E+ is invariant, E− anti-invariant under Z2, and specifically

E+ = ⊕O(na even),

E− = ker (⊕O(na odd) −→ O(m)) .

A closely related decomposition exists for m even.
Now that we have illuminated the definitions, let us return to our descrip-

tion of the general procedure for spectrum computation. At this point, the
computation of spectra becomes more or less identical to that in an ordinary
global orbifold by a finite group, if we think of α as denoting a twisted sec-
tor. We will walk through the details, as there are a few important subtleties
for general cases not usually discussed in the literature, especially regarding
Fock vacua, but the rest of the computation is nearly standard, once one
masters the description.
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A.2. Vacuum energies

We need to compute left- and right-moving zero point energies in each
twisted sector. Recall that a complex worldsheet fermion ψ with boundary
conditions

ψ(σ + 2π) = exp(i(π + θ))ψ(σ), −π ≤ θ ≤ π

contributes

− 1

24
+

1

8

(
θ

π

)2

to the vacuum energy, and a complex boson with the same boundary con-
ditions contributes with the opposite sign.

Let θT,αn denote the θ corresponding to worldsheet fermions associated
with Tαn , and θE,αn denote the θ corresponding to worldsheet fermions associ-
ated with Eαn . For the moment, we will assume that we are in an (R, R) sector
(meaning, left-moving fermions in the first E8 and right-moving fermions in
an R sector, second E8 will be held fixed in an NS sector). In an (NS, R) sec-
tor (left-moving fermions in the first E8 in an NS sector instead), we would
modify the θ’s for left-moving worldsheet fermions to take into account an
extra sign in boundary conditions.

Then, in an (R, R) sector, the left-moving vacuum energy is

E(R,R),Id = 8

(
− 1

24

)
+ 8

(
+

1

12

)
+ 4

(
− 1

12

)
,

= 0,

in the untwisted sector (α = Id) and in twisted sectors,

E(R,R),α = 8

(
− 1

24

)
+
∑
n

(rk Eαn )

− 1

24
+

1

8

(
θE,αn
π

)2
+ (8− r)

(
+

1

12

)

+
∑
n

(rkTαn )

+
1

24
− 1

8

(
θT,αn
π

)2
+ (4− n)

(
− 1

12

)
,

=
n− r

8
+

1

8

∑
n

(rk Eαn )

(
θE,αn
π

)2

− 1

8

∑
n

(rkTαn )

(
θT,αn
π

)2

.

In all cases the right-moving vacuum energy vanishes, since the right-moving
bosons and fermions make equal and opposite contributions.
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Vacuum energies in (NS, R) sectors (meaning, left-moving fermions of
the first E8 in an NS sector) can be computed similarly. For completeness,
we list them below: in an untwisted sector,

E(NS,R),Id = 8

(
− 1

24

)
+ 8

(
− 1

24

)
+ 4

(
− 1

12

)
,

= −1,

and in a twisted sector,

E(NS,R),α = 8

(
− 1

24

)
+
∑
n

(rk Eαn )

− 1

24
+

1

8

(
θ̃E,αn
π

)2
+ (8− r)

(
− 1

24

)

+
∑
n

(rkTαn )

+
1

24
− 1

8

(
θT,αn
π

)2
+ (4− n)

(
− 1

12

)
,

= −1 +
n

8
+

1

8

∑
n

(rk Eαn )

(
θ̃E,αn
π

)2

− 1

8

∑
n

(rkTαn )

(
θT,αn
π

)2

,

where θ̃ denotes θ’s as modified to include a sign in the boundary conditions.
Vacuum energies in (NS, R) sectors (meaning, left-moving fermions of the
first E8 in an NS sector) can be computed similarly.

A.3. Fock vacua

The fractional charges of the Fock vacua can and should be understood in
terms of coupling to nontrivial bundles. Recall (see e.g. [74]) that a complex
left-moving fermion λ with boundary conditions

λ(σ + 2π) = e−iθλ(σ)

contributes fractional fermion number

θ

2π
−
[
θ

2π

]
− 1

2

and a complex right-moving fermion ψ with the same boundary conditions
contributes fractional fermion number

−
(
θ

2π
−
[
θ

2π

]
− 1

2

)
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In the present case, in the sector defined by automorphism α, we have com-
plex left-moving fermions λ−,n coupling to bundle Eαn , with boundary con-
ditions

λ−,n(σ + 2π) = exp (2πin/tα)λ−,n(σ)

and complex right-moving fermions ψ+,n coupling to bundle Tαn , with bound-
ary conditions

ψ+,n(σ + 2π) = exp (2πin/tα)ψ+,n(σ)

Putting this together, we see that from each set of λ−,n, the Fock vacuum
couples to

(A.1) (det Eαn )
− n

tα
−
[
− n

tα

]
− 1

2

and from each set of ψ+,n, the Fock vacuum couples to

(A.2) (detTαn )
n

tα
+
[
− n

tα

]
+ 1

2

Since the α-sector has components which are tα gerbes, tα-th roots of
bundles might exist, though not necessarily. (See Appendix D for examples
of bundles on Zn-gerbes which do and do not admit nth roots.) Existence of
these roots is a necessary condition for the existence of the physical theories.
When multiple roots exist, as will happen if the components are not simply-
connected, the roots must be specified as part of the data defining the sigma
model.

When there are periodic fermions, there are multiple Fock vacua, each
with different (fractional) charges. The different Fock vacua are defined by
which subset of the fermi zero modes annihilate. In our case, we will work
in conventions in which our Fock vacuum |0〉 has the properties

λa−,0|0〉 = 0 = ψı+,0|0〉.

As before, reflecting the fact that the λ’s and ψ’s couple to nontrivial
bundles, this Fock vacuum is itself a section of a line bundle. From those
periodic fermions, the Fock vacuum behaves as a section of a square root of
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the determinant of the periodic modes, specifically,

(A.3)
√
Kα ⊗ det Eα0 ,

(square root chosen with periodic boundary conditions), where

Kα = det(Tα0 )∗

i.e. the canonical bundle of the α component of IX. (Note that in an (NS, R)
sector, the ‘invariant’ subbundle E0 is defined to be invariant under the
combination of spacetime group action and spin state boundary condition,
and hence will be different from the E0 in an (R, R) sector.) If the square
root above does not exist, then the orbifold is not well-defined, which we
shall come back to after we derive the expression above.

We can derive the result above for periodic fermions as follows. Differ-
ent choices of Fock vacua act as sections of different line bundles, related
by fermions acting as raising and lowering operators. Just as in fractional
charges, the square root and bundles above are constrained by the fact that
the set of Fock vacua must be consistent with those raising and lowering
operations. For example, the ‘opposite’ Fock vacuum |0〉op is defined by
applying raising operators maximally:

|0〉op = λa1

−,0 · · ·λ
ar
−,0ψ

i1
+,0 · · ·ψ

id
+,0|0〉,

(where r is the rank of Eα0 and d the rank of Tα0 ), so if our Fock vacuum |0〉
couples to a line bundle L, then the opposite or dual Fock vacuum above
must couple to

(det Eα∗0 )⊗ (detTα0 )⊗ L,

which, by symmetry, should also be the same as L∗. In other words,

(det Eα∗0 )⊗ (detTα0 )⊗ L ∼= L∗

or more simply

L2 ∼= (det Eα0 )⊗ (detTα∗0 ) = Kα ⊗ det Eα0 ,

from which our claim is derived. In particular, taking L = O will not, in
general, be consistent.
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In passing, note that the set of all Fock vacua in sector α form a vector
bundle

(∧•Eα∗0 )⊗ (∧•Tα0 )⊗
√
Kα ⊗ det Eα0

⊗⊗n>0

(
(det Eαn ) (detTαn )−1

)− n

tα
−
[
− n

tα

]
− 1

2

over IX|α, taking into account contributions from all boundary conditions.
The phenomenon of Fock vacua coupling to nontrivial bundles has also

been noted in this context in [92], [93][Section 2.1]. However, aside from those
two sources, we are not aware of many discussions of Fock vacua as sections
of line bundles over target spaces20 in the literature, so it is perhaps useful to
elaborate on this point. As we shall see in the present case and also in [92], it
plays a crucial role in closing the spectrum under Serre duality of the sheaf
cohomology groups, a basic symmetry of the spectra discussed in [65]. The
same behavior also arises elsewhere. For example, in open string theories,
the Fock vacuum also transforms as a section of a line bundle, a square root
of the canonical bundle of the D-brane worldvolume B (assumed Spin), if
the D-brane worldvolume is not Calabi-Yau. This can be understood simply
from the matter representations: a spinor in the worldvolume theory can be
represented mathematically in the form [96]

(∧•TB)⊗
√
KB.

In terms of the worldsheet RNS formalism, perturbative modes realize the
TB factors, and the

√
KB is implemented by the Fock vacuum itself. This

phenomenon is also reminiscent of factors arising from the Freed-Witten
anomaly [97, 98], though we shall not pursue that direction here.

A.4. Consistency conditions derived from existence of Fock vacua

In some cases, the tαth roots (A.1), (A.2) or the square root (A.3) might
not21 exist as honest equivariant line bundles. In such a case, the heterotic
string on the stack is not well-defined. In an ordinary orbifold, this is the

20 Fock vacua have been much more commonly described in terms of sections of
bundles over CFT moduli spaces, see e.g. [94, 95], but descriptions as sections of
bundles over target spaces are much more rare.

21 Since the α-sector has components which are tα gerbes, tα-th roots of bundles
might exist, though not necessarily. (See Appendix D for examples of bundles on
Zn-gerbes which do and do not admit nth roots.)
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case that the Fock vacua (and hence perturbative states built from them)
form a merely projective representation of the orbifold group, instead of an
honest representation, and the projection operator built implicitly in the
structure of the string one-loop partition function no longer functions. This
condition represents a new (to our knowledge) consistency condition, so let
us take a few paragraphs to elaborate on this point.

At least morally, this condition is a generalization to stacks of the old
requirement that “c1 ≡ 0 mod 2” for bundles embedded in E8 in the standard
fashion. That constraint could be understood in two ways:

• In low-energy supergravity, this is ultimately the statement that the
U(n) bundle can be lifted to Spin(16), realized by the left GSO projec-
tion, whose embeddeding into E8 then factors through Spin(16)/Z2,

• On the worldsheet, this is the statement that the Fock vacua are well-
defined in a left R sector. The Fock vacua couple to a square root of
the gauge bundle; that square root will exist if and only if “c1 ≡ 0 mod
2.”

(For another recent discussion of constraints of this form, see for example
[28].)

In toroidal orbifolds, this constraint is very mild, but illustrates an
important point: not only the bundle must admit a square root, but also
the equivariant structure. For a typical toroidal orbifold, the bundle factors
are all trivial, only the equivariant structures are nontrivial. In typical such
orbifolds, Kα is the trivial line bundle with trivial connection, but although
det Eα0 is a trivial bundle, the equivariant structure may be nontrivial. In
left R sector, Eα0 describes couples to fermions that are both periodic and
invariant under the orbifold group, so the equivariant structure is trivial. In
a left NS sector, on the other hand, Eα0 describes periodic fermions, which
are anti-invariant under the orbifold group. In a left NS sector, if the rank
of Eα0 is even, the induced equivariant structure on det Eα0 is trivial; if the
rank of Eα0 is odd, then the induced equivariant structure is nontrivial, and
does not admit a square root, hence there is an obstruction to the existence
of the orbifold in this case.

We can build an example of a toroidal orbifold in which this condition
appears nontrivially as follows. Consider an E8 × E8 string on a [T 4/Z6]
orbifold, in which the generator g of Z6 act on T 4 by multiplication by −1.
Define a rank 4 bundle over this stack by taking O⊕4 over T 4, and let g act
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with eigenvalues

(exp(6πi/6) = −1, exp(4πi/6) = exp(2πi/3), exp(2πi/3), exp(−2πi/6)) .

It is straightforward to check that this satisfies level-matching, in the sense
of [59]. In the g-twisted left NS sector, there will be one periodic fermion,
which is problematic as above.

It is tempting to speculate that a necessary condition for the existence
of the square root (A.3) can be written in the form

crep
1 (E) ≡ crep

1 (TX) mod 2

applying the Chern-rep’s discussed in Sections 5.6 and Appendix C. We will
leave such an interpretation to future work.

A.5. Spectrum result and Serre duality

Finally, we are ready to associate sheaf cohomology groups to elements of
the spectrum. A general element of the spectrum will have the form

λa1

− · · ·λ
am
− ψı1+ · · ·ψ

ık
+ |0〉,

where each λ and ψ has some unspecified moding, such that the sum of the
modings equals the vacuum energy computed earlier. Canonical commuta-
tion relations descend to statements of the form

{λap, λb−p} ∝ hab, {ψip, ψ

−p} ∝ gi,

where p is a moding. So long as the modings are all negative, both holo-
morphic and antiholomorphic-indexed fermions can appear in states. For
zero modes, our Fock vacuum conventions are such that only λa−,0 and ψi+,0
contribute.

In any event, it should now be clear, following [65], that on component
α, states of the form22

∏
n

(
λa1

−,n · · ·λ
amn
−,n λ

b1
−,n · · ·λ

bpn
−,nψ

j1
+,n · · ·ψ

j`n
+,nψ

ı1
+,n · · ·ψ

ıkn
+,n

)
|0〉,

22 We have omitted modings for reasons of notational sanity.
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(where the fermion modings add up to the vacuum energy in the α sector)
are counted by the sheaf cohomology group

(A.4) Hk0
(
IX|α, (∧m0Eα∗0 )⊗n>0

(
∧mnEαn⊗∧pnEα∗n ⊗∧`nTαn ⊗∧knTα∗n

)
⊗F

)
,

where

Fα =
√
Kα ⊗ det Eα0 ⊗n>0

(
(det Eαn ) (detTαn )−1

)− n

tα
−
[
− n

tα

]
− 1

2

(reflecting the Fock vacuum). Strictly speaking, not all states need be of the
form above — for example, one might also be able to multiply in bosonic
∂φ modes. As their inclusion is standard and their treatment should now be
clear, for reasons of brevity we shall move on.

For example, if IX|α = [point/Z2], then this becomes

Hk0
(

point, (∧m0Eα∗0 )⊗n>0

(
∧mnEα∗n ⊗∧pnEα∗n ⊗∧`nTαn ⊗∧knTα∗n

)
⊗Fα

)Z2

.

(Taking group invariants is encoded implicitly in taking sheaf cohomology
on the quotient stack.) This group vanishes if k0 6= 0, and when k0 = 0, is
the dimension of the Z2-invariant part of the vector space fibers.

Finally, in a physical computation, one must impose the left- and right-
GSO projections. For states of the form above, this will amount to a chirality
constraint on k0 and m0. As the procedure is standard, we will say no more.

One of the central observations of the heterotic spectrum computation
on smooth manifolds in [65] is that it is closed under Serre duality. The
same is true here. First, for any component of the inertia stack indexed by
an automorphism α, there is another (not necessarily distinct) component
indexed by α−1, which is isomorphic:

IX|α ∼= IX|α−1 .

Eigenbundle decompositions are closely related:

Tα
−1

n
∼= Tα−n, Tα

−1

0
∼= Tα0 ,

Eα−1

n
∼= Eα−n, Eα−1

0
∼= Eα0 ,

(in conventions where −n denotes the component associated to the character
of the inverse). Let us now consider the following factor in the Fock vacuum
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bundle,

Fα+ = ⊗n>0

(
(det Eαn ) (detTαn )−1

)− n

tα
−
[
− n

tα

]
− 1

2

(where the tensor product runs over all nontrivial representations of Ztα).
Using relations such as Eα−1

n
∼= Eα−n, we see that each factor in Fα−1

+ is equiv-
alent to a factor in Fα+, but with an exponent of the opposite sign, hence

(A.5) Fα−1

+
∼=
(
Fα+
)∗
.

As the combinatorics in these exponents is slightly complicated, let us con-
sider some special cases to explicitly confirm this prediction. When tα = 2,

Fα+ =
(

(det Eα1 ) (detTα1 )−1
)− 1

2
−[− 1

2 ]− 1

2

,

=
(

(det Eα1 ) (detTα1 )−1
)0 ∼= O ∼=

(
Fα−1

+

)∗
.

When tα = 3,

Fα+ =
(

(det Eα1 ) (detTα1 )−1
)− 1

3
−[− 1

3 ]− 1

2 ⊗
(

(det Eα2 ) (detTα2 )−1
)− 2

3
−[− 2

3 ]− 1

2

,

=
(

(det Eα1 ) (detTα1 )−1
)+1/6

⊗
(

(det Eα2 ) (detTα2 )−1
)−1/6

,

and

Fα−1

+ =

((
det Eα−1

1

)(
detTα

−1

1

)−1
)+1/6

⊗
((

det Eα−1

2

)(
detTα

−1

2

)−1
)−1/6

,

=
(

(det Eα2 ) (detTα2 )−1
)+1/6

⊗
(

(det Eα1 ) (detTα1 )−1
)−1/6

,

=
(
Fα+
)∗
.

In this fashion we confirm equation (A.5) explicitly.
Vacuum energies are invariant: if a fermion boundary condition in sector

α is determined by θ, then in α−1 it is determined by −θ, but vacuum
energies only depend upon (θ)2, and so are invariant. Contributions to the
spectrum from sector α are matched by Serre duals in sector α−1. In terms of
global quotients by finite groups, this means the untwisted sector closes into
itself under Serre duality, but twisted sectors are exchanged. For example,
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the Serre duals to (A.4) are given by

Hdim−k0
(
IX|α, (∧m0Eα0 )⊗n>0

(
∧mnEα∗n ⊗ ∧pnEαn ⊗ ∧`nTα∗n ⊗ ∧knTαn

)
⊗(Fα+)∗ ⊗

√
K∗α ⊗ det Eα∗0 ⊗Kα

)∗
= Hdim−k0

(
IX|α−1 ,

(
∧rk−m0Eα−1

0

)
⊗n>0

(
∧mnEα−1∗

n ⊗ ∧pnEα−1

n ⊗ ∧`nTα−1∗
n ⊗ ∧knTα−1

n

)
⊗Fα−1

+ ⊗
√
Kα−1 ⊗ det Eα−1

0

)∗
,

which is of the same form as equation (A.4), as desired. Note that the Fock
vacuum contribution is essential for the spectrum to close under Serre duality
in this fashion: otherwise, Serre duality would generate a factor of Kα in the
coefficients, unmatched by anything else, and which is nontrivial if the α
component is not Calabi-Yau23. Our computations so far have focused on
the (R, R) sector, but one should note that identical considerations hold in
the (NS, R) sector as well.

In the special case that the stack X is a smooth Calabi-Yau manifold X,
these computational methods reduce to those of [65]. In this case, the inertia
stack IX has no nontrivial components: IX = X. Furthermore, we typically
take det E to be trivial, so the Fock vacuum is a section of a trivial line
bundle.

In the special case that the stack X is a toroidal orbifold, again these
methods reduce to known results. In this case, all of the bundles involved
are trivial, so sheaf cohomology is nontrivial only in degree zero, and sheaf
cohomology on a stack just takes group invariants of the coefficients.

A less trivial example is discussed in Section 5.3. Further examples and
computational techniques will appear in [92].

Just as in [65], in principle the number of generations can be computed
as an index based on the spectrum. We shall not work through details here,
but Appendix C contains general results on index theory computations on
stacks.

23 To make it clear that this condition is nontrivial, here is an example of a global
orbifold in which a twisted sector has support on a non-Calabi-Yau subvariety. Let
X be a branched double cover of Pn, branched over a degree 2n+ 2 locus. Now,
orbifold by the globally-acting Z2 that exchanges the sheets of the cover. This leaves
invariant the degree 2n+ 2 branch locus, which is not Calabi-Yau.
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A.6. A/2 model spectra

In this appendix we have focused on physical heterotic string spectra. It
is possible to apply the same methods to the A/2 model to formulate a
mathematical theory of sheaf cohomology of orbifolds, and this has been
done in [92].

Briefly, the A/2 model is a heterotic analogue of the A model topological
field theory. If X is a smooth space and E → X a holomorphic vector bundle,
then the A/2 model is well-defined if both24

ch2(E) = ch2(TX) and det E∗ ∼= KX .

See e.g. [99–107] for more information on the A/2 and B/2 models. As this
is no longer a physical theory, constraints on the dimension of X and rank of
E are dropped. When X is smooth, the massless spectrum consists of sheaf
cohomology groups of the form

H•(X,∧•E∗)

When X is a stack X, reference [92] applies methods similar to those in
this appendix (modulo restricting to (R, R) sector states and omitting the
GSO projections) to define a generalization, which broadly speaking adds
in various sheaf cohomology groups associated to twisted sectors (nontrivial
components of the inertia stack).

Appendix B. Line bundles on gerbes over projective spaces

For any stack X presented as X = [X/G] for some space X and group G,
a vector bundle (sheaf) on X is the same as a G-equivariant vector bundle

24 The second condition arises from the need to make the path integral measure
a scalar, ultimately. On stacks, one might wonder whether one should impose an
analogous condition in each individual twisted sector, something of the form

det Eα∗0
∼= Kα.

Reference [92] does not impose a stronger condition of this sort. One reason is that
there is no analogue of such a condition in GLSM’s (whereas the original condition
det E∗ ∼= KX on the entire stack does manifest in GLSM’s). In terms of making
sense of path integral measures, in twisted sectors one must insert twist fields to
get nonzero results, and which would modify any such constraint one wished to
impose on individual twisted sectors.
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(sheaf) on X. Suppose that G is an extension

1 −→ K −→ G −→ H −→ 1,

where K acts trivially on X, and G/K ∼= H acts effectively. In this case,
X = [X/G] is a K-gerbe. A vector bundle on X is a G-equivariant vector
bundle on X, and as such, the K action is defined by a representation of K
on the fibers of that vector bundle.

In this section, we will discuss in greater detail the special case of line
bundles on gerbes over projective spaces.

B.1. Generalities

Let us first review some basic properties of line bundles on gerbes over
projective spaces, and then we will outline their sheaf cohomology.

First, let us consider some simple explicit examples. The total space of
the line bundle O(−m) over the projective space Pn can be described25 by
a gauged linear sigma model with fields of U(1) charges

x1 · · · xn+1 p

1 · · · 1 −m

Now, a Zk gerbe over Pn can be described by a gauged linear sigma model
in which the n+ 1 fields/homogeneous coordinates have weight k instead of
weight 1, as discussed in e.g. [16]. Then, for example, the GLSM with fields
and U(1) charges

x1 · · · xn+1 p

k · · · k −k

is surely going to be the pullback of O(−1)→ Pn to the gerbe.
However, how does one interpret GLSM’s defined by, for example:

x1 · · · xn+1 p

k · · · k −1

25For m > 0. The total spaces of line bundles of positive degree over projective
spaces do not seem to admit a GLSM description, even though they are toric
varieties — they can be described as GIT quotients of open subsets of Cn+2 by
C×, but not as a GIT quotient of the full complex vector space, and they naturally
compactify to Pn+1

[1,...,1,m]. We would like to thank D. Skinner for asking a question
that made this manifest.
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This is the total space of what is sometimes referred to as the “O(1/k)” line
bundle over the Zk gerbe Pn[k,...,k]. It is an example of a line bundle on the
gerbe that is not a pullback of a line bundle on the base space — the gerbe
has more bundles than the base space. More to the point, it can only be
understood as the total space of a line bundle on a gerbe — so a physicist
who was very careful in a study of GLSM’s would eventually be forced to
discover gerbes in order to make sense of this example.

In addition to being a line bundle over the stack, the total space of the
O(1/k) line bundle is also a fibered orbifold over the projective space Pn — it
is a type of fiber bundle over Pn, in which the fibers are the orbifolds [C/Zk].
For this reason, these are sometimes known as ‘orbibundles;’ see e.g. [108]
for references to the literature under this name. (This same structure has
also been discussed in connection with interpreting hybrid Landau-Ginzburg
models, see e.g. [109].)

Not all Zk gerbes on projective spaces are of the form of weighted pro-
jective stacks. A more general class was discussed in e.g. [16][Section 3.3],
and, roughly, are given by C× quotients of principal C× bundles over Pn.
Specifically, consider a GLSM with fields xi, z, and two C× actions, as fol-
lows:

xi z

λ 1 −n
µ 0 k

The first C×, λ, defines the total space of a line bundle on Pn of degree −n.
The second C×, µ, quotients out the fibers, leaving a Zk kernel. The result is
a Zk gerbe over Pn, of characteristic class−n mod k. The weighted projective
stacks we have been discussing correspond to an alternative presentation in
the special case that n = 1. One can define line bundles over these gerbes in
the obvious fashion.

The notation O(1/k), while initially catchy, is unfortunately ambiguous
— for example, it does not distinguish a twisted bundle of c1 = k over the
gerbe from the pullback from Pn of an ordinary line bundle of c1 = 1. Let
us introduce a more precise notation.

We will use “OΛ(m)” to denote a line bundle defined by a superfield of
charge m. For bundles on, say, ordinary projective spaces, the k = 1 case, a
superfield of charge m couples to the line bundle O(m).

To understand the meaning of this notation, let us first consider a Z2

gerbe over Pn defined by the weighted projective stack Pn[2,2,...,2]. Let GPn
denote the gerbe, and π : GPn → Pn the natural projection from the gerbe
onto the underlying projective space.
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Now, coherent sheaves on the gerbe decompose into twisted sheaves on
the underlying space (see Section 2.3 or [17]). Formally, if α ∈ H2(Pn,Z2) is
the characteristic class of the gerbe, then

Coh(GPn) = Coh(Pn, 1(α)) ∪ Coh(Pn, χ(α)),

where Coh(X,λ) denotes coherent sheaves on X twisted by a 2-cocycle λ.
In the notation above, 1 and χ are the two irreducible representations of Z2,
so 1(α) is the vanishing 2-cocycle and χ(α) is a cocycle that does not vanish
identically. Note that both cocycles are cohomologous to the identity —
both components of Coh(GPn) are isomorphic to ordinary coherent sheaves
Coh(Pn). (This resolves a potential contradiction, in that the rank of a
bundle twisted by a cohomologically nontrivial cocycle, must be divisible by
the order of the cocycle, and so here would need to be divisible by k — truly
twisted line bundles do not exist.)

In this language, we can immediately read off that

OΛ(k) =

{
Coh(Pn, 1(α)) k even,

Coh(Pn, χ(α)) k odd.

In other words, if k is even, then OΛ(k) is a pullback to the gerbe from a
line bundle on the base. For other values of k, the bundle is twisted by an
action of the Z2.

Now, the projection map π : GPn → Pn defines a functor

π∗ : Coh(Pn)
∼−→ Coh(Pn, 1(α)).

In addition, there is another functor

π∗1 ≡ π∗ ⊗OΛ(1) : Coh(Pn)
∼−→ Coh(Pn, χ(α)).

(In fact, there is an analogue of π∗1 for every OΛ(odd).)
To determine π∗O(m) in terms of OΛ’s, consider the commutative dia-

gram

Cn+1−0
C×

//

��

Cn+1−0
C×

��
GPn // Pn
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The line bundle O(k), defined by weights 1, . . . , 1, k, pulls back to weights
2, . . . , 2, 2k, from which we deduce that

π∗O(k) = OΛ(2k),

which implies

π∗1O(k) = OΛ(2k + 1).

Note that although π∗ preserves tensor products, π∗1 does not preserve
tensor products:

π∗1 (O(k)⊗O(m)) ∼= π∗1O(k +m),
∼= OΛ(2k + 2m+ 1),

6∼= OΛ(2k + 2m+ 2) ∼= (π∗1O(k))⊗ (π∗1O(m)) .

Indeed, this is an immediate consequence of the definition of π∗1. In addition,
for the same reason, π∗1 does not commute with duality of bundles

π∗1
(
L∨
)
6∼= (π∗1L)∨ .

Now, for any finite gerbe over any space, the tangent bundle of the gerbe
is just the pullback (under π) of the tangent bundle to the space. One way
to see this is to work locally on the atlas, which is just a finite cover, and
so the tangent bundle should be the same. We can see this explicitly in the
present case as follows. For the Z2 gerbe GPn = Pn[2,...,2], the tangent bundle
seen by the gauged linear sigma model is

0 −→ OΛ −→ OΛ(2)n+1 −→ TGPn −→ 0.

Using the isomorphisms above, we see this short exact sequence is the same
as

0 −→ π∗O −→ π∗O(1)n+1 −→ TGPn −→ 0,

which is just π∗ of the Euler sequence for the tangent bundle

0 −→ O −→ O(1)n+1 −→ TPn −→ 0.

For Zk gerbes over Pn built as the weighted projective stack Pn[k,...,k], there
is a closely analogous story. Here, coherent sheaves on GPn decompose as

Coh(GPn) = ∪χCoh(Pn, χ(α)),
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where the union is over irreducible representations of Zk, and there are k
different pullbacks, first the canonical

π∗ : Coh(Pn)
∼−→ Coh(Pn, 1(α)),

followed by π∗i (−) ≡ π∗(−)⊗OΛ(i). Identifying π∗0 with π∗, we have the
general relation

π∗iO(m) = OΛ(km+ i).

An argument nearly identical to the one above shows that the tangent bundle
TGPn seen by a gauged linear sigma model is given by π∗TPn, exactly as
must be true on general grounds.

B.2. Sheaf cohomology

On a global quotient stack X = [X/G], for G finite, given a vector bundle
E → X, (equivalently, a G-equivariant bundle on X,)

H•(X, E) = H•(X, E)G.

In our discussion of massless spectra of heterotic strings on stacks, this is
ultimately the reason why in orbifolds one gets G-invariants.

Now, nontrivial gerbes over projective spaces have a global quotient
description as some [X/G] forG nonfinite, and the simple description of sheaf
cohomology above in terms of G-invariants is only valid for G finite, so for
general cases a different approach is required. For example, let X = Pn[k,...,k],

and OX(m) as above, then

H i(X,OX(m)) =

{
0 k - m,
H i(Pn,OPn(m/k)) k | m.

For m ≥ 0, we can check this as follows. First,

H i (X,OX(m)) = H i
C×
(
Cn+1 − {0},O

)
,

where the O coefficients have weight m under the C×. In principle, there is
a spectral sequence converging to the right-hand side, with level-two terms

Hp
(
C×, Hq

(
Cn+1 − {0},O

))
,

but Hq(Cn+1 − {0},O) = 0 for q 6= 0, n, and

H0
(
Cn+1 − {0},O

)
= C[x0, . . . , xn].
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(The degree n cohomology is also nonzero and infinite-dimensional, but it
will not contribute any invariants for m ≥ 0, only for m < 0, so we omit it
from this discussion.) For λ ∈ C×, the representation

ρ : C× −→ GL(C[x0, . . . , xn])

is defined by

ρλ(f(x)) = λ−mf(λkx0, . . . , λ
kxn).

The group Hp(C×, (C[x0, . . . , xn], ρ)) is zero unless p = 0, since it is a reduc-
tive group, and for p = 0 is given by the invariants.

Next, let us compute the invariants. Decompose

f = f0 + · · ·+ fN ,

where fd denotes a homogeneous polynomial of degree d. Under the C×
action,

ρλ(f) = λ−mf0 + λ−m+kf1 + · · ·+ λ−m+kNfN .

Thus, C× invariants only exist in the case that k divides m, and in that
case, are counted by degree m/k polynomials in n+ 1 variables.

Now, let us compare to the original claim. It is a standard result that
for ` > 0,

H i(Pn,OPn(`)) =

{
0 i 6= 0,

Sym`Cn+1 i = 0.

In other words, the only nonzero cohomology is in degree zero, and in that
degree, it is counted by homogeneous polynomials of degree ` in n+ 1 vari-
ables. The desired result follows.

Appendix C. Chern classes on the inertia stack

As we are manipulating bundles on stacks, it is worth spending a little
time reviewing corresponding Chern classes. It is possible to define Chern
classes on a stack itself; for example, Chern classes of a vector bundle E on
a quotient stack [X/G] are simply G-equivariant Chern classes of E on X.
However, these Chern classes do not always behave well under mathemati-
cal manipulations, and in any event a different notion of Chern classes and
Chern characters, denoted crep and chrep, exists and is relevant for index
theory. These alternative notions of Chern classes do not live in the coho-
mology of the original stack, but rather of the inertia stack, which encodes
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twisted sectors of string orbifolds. (See Appendix A for more information on
the inertia stack.)

In this section, we will illustrate how to compute such Chern classes
and characters (denoted crep and chrep) and describe their appearance in
index theory in some examples. It is tempting to wonder whether one could
derive extra anomaly constraints on orbifolds from these stack Chern classes
over nontrivial components of the inertia stack, but we argue that does not
seem to happen in heterotic compactifications in Section 5.6 (though see
Section A.4 for a possible application of crep

1 ).
For any stack X, let V be a vector bundle over X, and IX the inertia

stack of X. Let q : IX → X denote the natural projection operator onto one
component.

We define Chern classes of V as follows. First, pullback V to IX along
q. Then, on each component α of IX, q∗V will decompose into eigenbundles
of the action of the stabilizer for that component:

q∗V |α = ⊕χVα,χ.

(When α is the identity, our conventions are that there is only one compo-
nent, associated to the trivial character.) Define chrep(V ) over a component
α to be

chrep(V )|α ≡
⊕
χ

ch(Vα,χ)⊗ χ,

where χ is the eigenvalue of that component of q∗V under the stabilizer, and
ch denotes the naive notion of Chern classes, living in equivariant cohomol-
ogy pertinent to the stack itself. (These seem to be the same as the Chern
classes in “delocalized cohomology” described in e.g. [110–112], though our
starting point is different.)

Intuitively, the idea is that on any component of the inertia stack deter-
mined by some generic automorphism, the bundle should decompose into
eigenbundles, and χ is the eigenvalue associated with the action of that
automorphism on the bundle. Slightly more generally, one can define a “diag-
onalization map”

d : K0(IX)⊗ C −→ K0(IX)⊗ C,

which on a component α maps a sheaf F to its isotypic decomposition,
weighted by characters:

d([F ])|α =
∑
χ

Fα,χ ⊗ χ.
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In this language,

chrep(V ) = ch(d(q∗V )).

To clarify these ideas, let us work through some examples.
First, we shall consider a vector bundle on a trivial gerbe. Consider a

vector bundle V → X ≡ X ×BZk, so V = p∗1E ⊗ p∗2ζ for some bundle E →
X and representation ζ ∈ Z∨k .

The inertia stack IX is given by

IX =
∐
g∈Zk

X ×BZk × {g}.

There is a forgetful map q : IX → X ×BZk.
Consider

q∗V = ⊕χ∈Z∨k Vχ,

where Vχ is the χ eigenspace for the g action on q∗V :

q∗V |X×BZk×{g} = V,

Vχ|X×BZk×{g} =

{
V if χ(g) = ζ(g),

0 else.

Now, we want to compute chrep(V ) ∈ H•(IX,C).

V 7→ q∗V = ⊕χVχ 7→ ⊕χVχ ⊗ χ,

where Vχ ⊗ χ ∈ K0(IX)⊗ C. (We think of Vχ ∈ K0(IX), and χ ∈ C.)
Then,

chrep(V ) = ch (⊕χVχ ⊗ χ) ∈ H•(IX,C) = ⊕gH•(X),

Vχ ⊗ χ|X×BZk×{g} =

{
V ⊗ χ if χ(g) = ζ(g),

0 else.

Putting this together, we find

chrep(V ) =
(
chrep(V )|(g)

)
g∈Zk

,

where

chrep(V )|(g) = ⊕χs.t.χ(g)=ζ(g)ch(V )⊗ χ.

Similarly,

chrep(TX)|(g) = ⊕χs.t.χ(g)=1ch(TX)⊗ χ.
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For g = 1,

chrep(V )|(1) = ⊕χch(V )⊗ χ,

and similarly for chrep(TX)(1).
Now, suppose k is prime. Then χ(g) = 1 implies χ = 1. Thus,

chrep(V )|(g) = ch(V )⊗ ζ(g),

chrep(TX)|(g) = ch(TX)⊗ 1,

for all g.
Next, let us consider a line bundle on a nontrivial gerbe. Consider the

prototypical example of a Zk gerbe on Pn: X = Pn[k,k,...,k]. Let OX(m) denote

the holomorphic line bundle defined by C× weight −m. In other words, if
m is divisible by k, then OX(m) is the pullback of OPn(m/k) under the
projection map from the gerbe X to the underlying space Pn.

The components of the inertia stack are labelled by kth roots of unity
(not characters, but group elements). The Chern classes chrep have k com-
ponents, each component in a cohomology class (with complex coefficients)
on the stack. If we let α denote a kth root of unity, then on that component
of the inertia stack,

crep
1 (OX(m))|α =

m

k
α−mJ,

where J is the pullback to the gerbe of the hyperplane class, and the total
Chern character is

chrep(OX(m))|α = α−m exp
(m
k
J
)
.

To derive this, remember that for a line bundle L over the stack X, if π :
IX → X denotes the projection from the inertia stack to X, then the Chern
characters are

chrep(L)|X×{α} = π∗ ch (L)|X×{α} ⊗ χ,

where χ is the eigenvalue of the stabilizer α on π∗L|X×{α}. Here, χ = α−m.
More generally, over all components, we write

crep
1 (OX(m)) =

(m
k
J, . . . ,

m

k
α−mJ, . . .

)
.

Multiplication of components of chrep multiplies not only the cohomology
classes, but also the coefficients. For example,(

crep
1 (O(m))|X×{α}

)2
=
(m
k
J
)2
α−2m.
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Now, for a line bundle L on an ordinary space,

ch2(L) = (1/2)c2
1(L),

but here, by contrast,

chrep
2 (O(m))|X×{α} =

1

2

(m
k
J
)2
α−m

= α+m 1

2

(
crep

1 (O(m))|X×{α}
)2
,

so that the usual relation between Chern classes and Chern characters is
modified on a stack. (In fact, if we were computing Chern classes of a bundle
that split as several different eigenbundles, the relation would be much more
complicated than just an additional complex phase.)

As a consistency check, let us compute the index of this line bundle,
using Hirzebruch-Riemann-Roch. For any bundle E → X, the Hirzebruch-
Riemann-Roch index theorem says

χ(E) =

∫
IX

chrep(E)Td(X)

where

χ(E) =
∑
i

(−)ihi(X, E),

and

Td(X) = α−1
X Td(TIX),

where

αX = ch(d(λq)), λq =
∑
k

(−)k ∧k N∗q ,

for Nq the normal bundle. (As λq is not a pullback from X, but rather
is defined intrinsically on IX, chrep(λq) is not well-defined, so instead the
pertinent Chern character is defined via the diagonalization map d.)

In the present case, since each component of the inertia stack IX is
isomorphic to the original stack X, the normal bundle Nq vanishes, and
each component of ch(d(λq)) is 1. Furthermore, as X is essentially a k-fold
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quotient of Pn, ∫
X

=
1

k

∫
Pn
.

Plugging into the index formula,∫
IX

chrep(OX(m))Td(TIX) =
∑
α

∫
X

α−mch(OX(m))Td(TX),

=
∑
α

α−m
∫
X

∑
i

chi(OX(m))Tdn−i(TX).

Now, since α is a kth root of unity, the sum∑
α

α−m

will vanish unless m is divisible by k. Thus, if m is not divisible by k, we
find that χ(OX(m)) vanishes. Next, suppose that m = nk for some integer
n. Then,∫

IX

chrep(OX(m))Td(IX) =
∑
α

∫
X

α−mch(OX(m))Td(TX),

=
∑
α

∫
X

π∗ch(OPn(n))Td(TPn),

=
∑
α

1

k

∫
Pn

ch(OPn(n))Td(TPn),

=

∫
Pn

ch(OPn(n))Td(TPn),

= χ (Pn,OPn(n)) .

Now, let us compare to expectations. In the present case, if m is not
divisible by k, then all the sheaf cohomology groups of OX(m) should vanish,
so the Euler class χ(OX(m)) should vanish, exactly as we have computed.
If m is divisible by k, then χ(OX(m)) = χ(OPn(m/k)), again matching the
result of the computation.

Another example26 will be handy to understand.

26 We would like to thank T. Pantev for explaining this example to us.
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Take X = [T 4/Z2], where the Z2 acts by sign flips (and so has 16 fixed
points). Let us compute

χ (OX[0]) , χ (OX[1/2]) ,

where OX[0] denotes the structure sheaf with trivial Z2-equivariant struc-
ture, and OX[1/2] denotes the structure sheaf with nontrivial equivariant
structure. For this X, IX has 17 components: one copy of X, and 16 copies
of [pt/Z2]. From the definition

chrep(L)|α = π∗ch(L)|α ⊗ χ,

where α is a component of IX and χ the eigenvalue of α’s stabilizer on π∗L,
it is straightforward to compute that

chrep(O[0]) = (1,~0, 0; 1, . . . , 1),

chrep(O[1/2]) = (1,~0, 0;−1, . . . ,−1),

where the leading three entries are for the X component, corresponding
to elements of H0(X) = C, H2(X) = C6, H4(X) = C, respectively, and the
remaining sixteen entries are each for a copy of [pt/Z2].

The normal bundle N is 0 for the trivial component [T 4/Z2] of IX, and
is C2 with Z2 acting by sign flips for the other components of IX. From that,
we read off that

ch(d(∧0N)) = (1,~0, 0; 1, . . . , 1),

ch(d(N)) = (0,~0, 0;−2, . . . ,−2),

ch(d(∧2N)) = (0,~0, 0; 1, . . . , 1),

ch(d(∧kN)) = 0 for k > 2.

From this we find

αX = ch(d(λq)) = ch

(
d

(∑
i

(−)i ∧i N∗
))

= (1,~0, 0; 4, . . . , 4).

In addition,

chrep(Td(TIX)) = (1,~0, 0; 1, . . . , 1),

hence

Td(X) = α−1
X Td(TIX) = (1,~0, 0; 1/4, . . . , 1/4).
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Putting this together, we find

χ (OX[0]) =

∫
IX

chrep(OX[0])Td(X)

=

∫
[T 4/Z2]

(1)(1) + 16

∫
[pt/Z2]

(1)(1/4),

= 0 + 4

∫
[pt/Z2]

1,

= 4

(
1

2

)
= 2,

χ (OX[1/2]) =

∫
IX

chrep(OX[1/2])Td(X)

=

∫
[T 4/Z2]

(1)(1) + 16

∫
[pt/Z2]

(−1)(1/4),

= 0− 4

∫
[pt/Z2]

1,

= −4

(
1

2

)
= −2.

Let Y denote a minimal resolution of T 4/Z2. Applying the McKay cor-
respondence [113], it can be shown [89] that the bundle OX[0] maps to
OY , and OX[1/2] maps to OY (−(1/2)

∑
Ea) where the Ea are the excep-

tional divisors. Furthermore, it can be shown that on Y , χ(OY ) = +2 and
χ(OY (−(1/2)

∑
Ea)) = −2, matching the Euler characteristics above.

So far we have discussed the index of the operator ∂. We are not aware
of rigorous results concerning the Dirac index, which would be of direct
relevance for physics. That said, it is very natural to conjecture that, by
analogy with smooth manifolds, the Dirac index is computed by a closely
analogous expression, except that Td(TIX) is replaced by

Td(TIX) exp

(
−1

2
crep

1 (TIX)

)
,

following the usual pattern that

Â(M) = Td(M) exp(−(1/2)c1(M))

for a smooth manifold M .
See also e.g. [114–116] and references therein for more information on

index theorems on stacks.
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Appendix D. Roots of canonical bundles

On a Zk gerbe, sometimes there exist kth roots of the canonical bundle,
and sometimes not, depending upon the gerbe. Let us work through some
examples.

First, consider a nontrivial Zk gerbe over P1. In particular, let us consider
the gerbe defined by the quotient

C2 − 0

C×
,

where the C× acts with weight k. We will show that the pullback of any line
bundle on P1 to this gerbe does admit a kth root.

A line bundle over this gerbe will have a total space of the form

(C2 − 0)× C
C×

,

where C× acts on ([x, y], z) as

([x, y], z) 7→ ([λkx, λky], λnz),

and n classifies the line bundle. The pullback of O(m) on P1 to the gerbe
has n = km, so a line bundle on the gerbe with n = m has the property that
its kth tensor power with itself is the pullback of O(m).

Thus, on this Zk gerbe, kth roots of pullbacks of any line bundle on the
base space do exist.

Next, let us consider the trivial Zk gerbe over P1. Here, the total space
any line bundle over this gerbe can be described as

(TotL)× C×

C×
,

where L is a line bundle on P1, and the C× acts only on C×. Here, there is
clearly no way to construct a kth root of L (unless L already had a kth root
on P1).
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