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Horizon instability of extremal black holes

Stefanos Aretakis

We show that axisymmetric extremal horizons are unstable under
scalar perturbations. Specifically, we show that translation invari-
ant derivatives of generic solutions to the wave equation do not
decay along such horizons as advanced time tends to infinity, and
in fact, higher order derivatives blow up. This instability holds in
particular for extremal Kerr–Newman and Majumdar–Papapetrou
spacetimes and is in stark contrast with the subextremal case for
which decay is known for all derivatives along the event horizon.

This result provides a entirely new aspect of the evolution of
solutions to the wave equation along degenerate horizons and has
a wealth of new applications.

1. Introduction

Extremal black holes are central objects of study for high-energy physics
and have attracted significant interest in the mathematical community on
account of their elaborate analytical features. In this paper we will exhibit
instability properties of a general class of extremal black holes with respect
to scalar perturbations. Remarkably, these instabilities are completely deter-
mined by local properties of extremal horizons and hence do not depend on
the global aspects of spacetime. The present work generalises previous results
of the author [2, 3] on extremal Reissner–Nordström backgrounds.

1.1. The main results

Our general set-up is the following. We consider 4-dimensional R× T1-
symmetric Lorentzian manifolds (M, g) containing an extremal horizon H+.
Specifically, we assume that there exist a Killing vector field V which is nor-
mal to a null hypersurface H+ such that the following extremality condition
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is satisfied:

∇V V = 0 : on H+.

We will refer to H+ as the horizon. Note that H+ does not necessarily
have to be the event horizon of a black hole region, i.e. H+ may be an iso-
lated extremal horizon. We also assume that there exists an additional axial
Killing field Φ tangential to H+ with closed orbits. The precise geometric
assumptions on (M, g) are described in Section 2.1.

We then study the behaviour of solutions to the wave equation

(1) �gψ = 0.

We prove that the first order derivatives generically do not decay along
H+, and in fact, that the higher order derivatives asymptotically blow up
along H+ (Sections 3, 4). The genericity here refers to a condition on a
section of H+.

The source of the above instability results is a conservation law that
holds on H+. This conservation law remarkably depends only on the local
geometric properties of the horizon and not on global aspects of the space-
time. Hence we will not impose global hyperbolicity or discuss global well-
posedness of the wave equation (see for example [19]).

These instabilities apply for Majumdar–Papapetrou multi black hole
spacetimes (see Section 5.1) and extremal Kerr backgrounds allowing a cos-
mological constant Λ ∈ R (see Section 5.2). Moreover, for the latter back-
grounds (with Λ = 0) we also prove that the energy of higher order deriva-
tives generically blows up.

The author has previously studied in [1–3] the wave equation on a simpler
model of extremal black holes, namely the spherically symmetric charged
Reissner–Nordström black holes. Solutions on such backgrounds were shown
to exhibit both stability and instability properties. The analogues of the sta-
bility results for extremal Kerr were presented in [4] for axisymmetric solu-
tions. We describe these results in more detail in the next subsection where
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we also put them into context by briefly summarising previous mathematical
work on the linear wave equation on black hole backgrounds.

1.2. The black hole stability problem

The first step in investigating the dynamic stability (or instability) of a
spacetime (see [15]) is by understanding the dispersive properties of the
wave equation (1).

Work on the wave equation on black hole spacetimes began in 1957
for the Schwarzschild case with the pioneering work of Regge and Wheeler
[27], but the first complete quantitative dispersive result was obtained only
in 2005 by Dafermos and Rodnianski [13], where the authors introduced a
vector field that captures in a stable manner the so-called redshift effect on
the event horizon. The origin of their constructions lies in the positivity of
the surface gravity κ given by

∇V V = κV,

where V is Killing and normal to the event horizon. During the last decade
remarkable progress was made and the definitive understanding of decay
on general subextremal Kerr backgrounds was presented in [14] (see also
[12, 20, 28]). All these developments use in one way or another the redshift
effect. For an exhaustive list of references see [15].

The analysis of the wave operator on extremal black holes was initiated
in [2, 3] (see also [1]), where definitive stability and instability results were
obtained for extremal Reissner–Nordström backgrounds. In these space-
times, let Σ0 be a spacelike hypersurface crossing H+ and Στ = ϕVτ (Σ0),
where ϕVτ denotes the flow of V . Let also EΣτ [ψ] denote the energy mea-
sured by a local observer on Στ and Y denote a ϕVτ -invariant transversal to
H+ vector field.
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The main results, for extremal Reissner–Nordström, of the analysis of
[2, 3] include the following:

1. Pointwise decay for ψ: For all solutions ψ to (1) which arise from
initial data with bounded energy we have ‖ψ‖L∞(Στ ) → 0 as τ → +∞.

2. Decay of degenerate (at H+) energy of ψ: If the horizon H+

corresponds to r = M , where M > 0, then EΣτ∩{r≥r0>M}[ψ]→ 0 as τ →
+∞.

3. Non-decay along H+: For generic ψ, we have that |Y ψ| does not
decay along H+.

4. Pointwise blow-up of higher order derivatives along H+: For
generic ψ, we have |Y kψ| → +∞ along H+, for all k ≥ 2, as τ → +∞.

5. Energy blow-up of higher order derivatives: For generic ψ, we
have EΣτ [Y kψ]→ +∞, for all k ≥ 1, as τ → +∞.

We remark that the latter non-decay and blow-up results are in sharp
contrast with the non-extremal case where decay holds for all higher order
derivatives of ψ along H+. Furthermore, we note that sharp quantitative
estimates have been shown in [2, 3] for each angular frequency l ∈ N. In
order, however, to simplify the notation above, we have only presented the
corresponding qualitative results. Results analogous to 1− 2 above have
been shown in [4] for axisymmetric solutions on extremal Kerr backgrounds.
Note, however, that obtaining instability results for non-spherically sym-
metric extremal black holes (which is the topic of the present paper) had
remained an open problem.

For other results regarding extremal black holes see the discussion in
Section 2.3.

2. The geometric set-up

2.1. Assumptions

We consider 4-dimensional Lorentzian manifolds (M, g) which satisfy the
following properties:

A1: (M, g) is R× T1-symmetric, i.e. it admits two commuting Killing
vector fields V,Φ. The vector field V has complete integral curves
homeomorphic to the line R. The vector field Φ has closed spacelike
integral curves and vanishes on a 2-dimensional submanifold A, called
the axis.

A2: There exists a null hypersurface H+, which we will refer to as the
horizon, such that Φ is tangential to H+ and V is normal to H+ and
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also satisfies

(2) ∇V V = 0 : on H+.

The condition (2) captures the extremality of H+.

A3: The topology of the horizon sections is spherical, i.e. H+ contains
a spacelike 2-surface S homeomorphic to the 2-sphere.

A4.: The Killing fields V,Φ satisfy the Papapetrou condition, namely
that the distribution of the planes orthogonal to the planes spanned
by V and Φ is integrable.

2.2. The adapted coordinate system

Under the assumptions A1–A4, we obtain the following

Proposition 2.1. Let (M, g) be a 4-dimensional Lorentzian manifold which
satisfies the assumptions A1−A4 of Section 2.1. Then, there exists a coor-
dinate system (v, r, θ, φ) ∈ (−∞,+∞)× (−ε, ε)× (0, π)× (0, 2π), for some
ε > 0 with H+ = {r = 0}, ∂v = V, ∂φ = Φ and such that if we denote Y =
∂r,Θ = ∂θ then

Θ ⊥ V, Θ ⊥ Φ,

everywhere in the domain of the above system.

Proof. Let A denote the axis of the axisymmetric action, namely the set of
points for which Φ = 0. This is a 2-dimensional timelike manifold.

Let Σ0 be an axisymmetric (i.e. Φ is tangential to Σ0) spacelike hypersur-
face crossing the horizon H+. Since we can write (in a non-unique manner)
Σ0 = (−ε, ε)× S2 where S2 are 2-dimensional axisymmetric surfaces, and Φ
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vanishes exactly at two points on each S2, the intersection of the axis A and
Σ0 is the union of two disjoint curves γ1 and γ2.

Next, we consider the foliation whose leaves are the orthogonal man-
ifolds, i.e. the manifolds whose tangent space at each point is orthogonal
to the plane spanned by the vector fields V,Φ. The existence (and unique-
ness) of this foliation follows from our integrability assumption A4 on the
spacetime geometry. We will show that, although Σ0 can be foliated using
2-dimensional axisymmetric surfaces in many different ways, the integrabil-
ity assumption A4 implies the existence of such a 2-dimensional foliation of
Σ0 with additional properties.

The intersection of the orthogonal integral submanifolds with Σ0 gives
rise to a 1-dimensional foliation F1 of Σ0. Each leaf of this foliation is a
curve whose endpoints are on γ1 and γ2. Indeed, the orthogonal manifolds
are 2-dimensional and also dimΣ0 = 3. Moreover, V is not orthogonal to Σ0

for ε sufficiently small and so the leaves are curves (and not 2-dimensional
manifolds). Clearly, the image of any such leaf under any diffeomorphism
of the flow ϕΦ

s , 0 ≤ s ≤ 2π, of Φ is another leaf of the same foliation of Σ0.
Hence the above 1-dimensional foliation of Σ0 gives rise to a 2-dimensional
foliation F2 of Σ0; the leaves of the latter foliation being the 2-dimensional
images of the leaves of F1 under the flow of Φ.

From now on we consider these 2-dimensional surfaces S2, the leaves of
F2, which we parametrize by a smooth coordinate r. Clearly, the spheres S2

r

are axisymmetric, i.e. Φ is tangential to S2
r . The two points on S2

r where Φ =
0 are called poles of S2

r . We will next define an adapted coordinate system
on Σ0 and also show that one of these surfaces coincides with S = H+ ∩ Σ0.

ax
is

axis
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Consider a leaf γr of the foliation F1 on each S2
r such that γr depends

smoothly on r. We introduce a smooth monotonic coordinate θ on each γr
such that θ = 0 at the north pole and θ = π at the south pole of S2

r . We
extend θ globally on S2

r (and thus on Σ0) under the condition LΦθ = 0.

Remark 2.1. One ‘Hamiltonian’ way to introduce the coordinate θ is the
following: Let g/ be the induced metric on the spheres S2

r , ε/ the area form
and d/ the exterior derivative. Consider the 1-form α = 2π2

A iΦε/ = 2π2

A ε/ (Φ, ·),
where A =

∫
S2
r
ε/ is the area of S2

r . By Cartan’s formula we have d/α =
2π2

A d/ (iΦε/ ) = 2π2

A LΦε/ , since d/ ε/ = 0. However, LΦε/ = 0, the vector field Φ
being Killing. By virtue of the Poincaré lemma we obtain a globally defined
function θ such that d/ θ = α. We remark that θ is axisymmetric and has
exactly two extremal points precisely at the poles N ,S of S2

r , and by choos-
ing an appropriate additive constant, θ(N ) = 0, θ(S) = π. Moreover, g(Θ,Θ)
= A2

4π4
1

g(Φ,Φ) .

Let also φ denote the affine function of Φ (i.e. Φφ = 1) such that φ = 0
precisely on the curves γr. Note that φ is periodic with period 2π. The
above construction gives rise to a coordinate system (r, θ, φ) of Σ0 such that
∂φ = Φ. Hence, introducing the coordinate vector fields Y,Θ we obtain

Y = ∂r, Φ = ∂φ, Θ = ∂θ.

By construction we have V ⊥ Θ and Φ ⊥ Θ everywhere on Σ0.
We now show that S = H+ ∩ Σ0 coincides with one of the spheres S2

r .
The (orthogonal) Frobenius condition

Φ[ ∧ d/Φ[ = 0

is trivially satisfied. Here g/ denotes the induced metric on S, d/ the exterior
derivative and Φ[ denotes the 1-form on S that corresponds to Φ under g/ .
Hence, there exists a curve γ on S which is orthogonal to Φ and connects the
north pole N and the south pole S of S. We consider now the 2-dimensional
manifold

O =
⋃
t∈R

ϕVt (γ),

where ϕVt is the flow of V . Since V is tangential to H+, we have O ⊂ H+,
and moreover, O coincides with one of the orthogonal integral manifolds.
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Indeed, at each point p ∈ ϕVt (γ) we have

TpO = span
(
V, dϕVt (

.
γ)
)
⊂ TpH+.

Hence, V ⊥ TpO; moreover, Φ ⊥ TpO. Indeed, g(V,Φ) = 0 on H+ and

g
(
Φ, dϕVt (

.
γ)
)

= g
(
dϕVt (Φ), dϕVt (

.
γ)
)

= g(Φ,
.
γ) = 0,

by the construction of
.
γ on S. Note that for the above equality we used

that the flow of the Killing field V consists of isometries and that [V,Φ] = 0.
Hence, the curve γ is a leaf of the foliation F2,O being an orthogonal integral
submanifold, and therefore, indeed S, in view of its axisymmetry, coincides
with one of the spheres S2

r .
Let v denote the affine function of the vector field V , namely a globally

defined coordinate v such that V v = 1 and v = 0 on Σ0 (note that, for small
ε, V is transversal to Σ0). By Lie-propagating Y,Θ,Φ using the flow of V , we
obtain the coordinate system (v, r, θ, φ) defined in a neighbourhood of the
horizon H+. Note that ∂v = V and by virtue of [V,Φ] = 0 we have ∂φ = Φ.
Hence,

V = ∂v, Y = ∂r, Φ = ∂φ, Θ = ∂θ.

Clearly the Lie brackets of the above vector fields vanish.

Note also that Θ ⊥ V and Θ ⊥ Φ, everywhere in the region under con-
sideration. Indeed, by virtue of the fact that V is Killing we have

LV g(Θ, V ) = g(LV Θ, V ) + g(Θ,LV V ) = 0.

Similarly we obtain that g(Θ,Φ) = 0, which completes the proof of the
proposition. �
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Let gWZ = g(W,Z) denote the components of the metric g with respect to
the coordinate basis W,Z ∈ {V, Y,Θ,Φ} and gWZ denote the components
of the inverse metric g−1. Summarising, we have gVΘ = 0, gΦΘ = 0 every-
where; moreover, the following relations hold on the horizon H+:

gV V = 0, gVΘ = 0, gV Φ = 0, gV Y 6= 0,

det(g) = − (gV Y )2 · gΘΘ · gΦ·Φ = − (gV Y )2 · det(g/ ),

gY Y = 0, gYΘ = 0, gY Φ = 0,

gV Y =
1

gV Y
, gΘΘ =

1

gΘΘ
, gΦΦ =

1

gΦΦ
, gΘΦ = 0,

Y (gV V ) = 0, Y (gY Y ) = 0, Y (gYΘ) = 0.

(3)

The last set of equalities is a consequence of the fact that the surface gravity
κ vanishes on H+ and that κ = ΓVV V = − 1

2gV Y
Y (gV V ), where ΓVV V denotes

the Christoffel symbol.

Remark 2.2. Whenever V is timelike one can obtain a local decomposi-
tionM = Γ1 × Γ2, such that dim Γ1 = dim Γ2 = 2 and at each point p ∈M
we have TpΓ1 = span 〈V,Φ〉 and TpΓ1 ⊥ TpΓ2. See [18] for more. Clearly,
however, this decomposition breaks down at the points where V is null and
normal to Φ.

2.3. The vacuum and electrovacuum reduction

We next put in context the relevance of the assumptions A1–A4 in the
framework of General Relativity. Let (M, g) satisfy the Einstein-vacuum
equations or the Einstein–Maxwell equations and the assumptions A1–A2.

Regarding assumption A3, the null structure equations for the torsion
η (see [9]) coupled with the extremality condition (2) imply that the Euler
characteristic cannot be negative, and moreover, it is equal to 0 only if
the induced metric on the horizon sections is Ricci flat. It is interesting
that no use of the second variation of the area is made in order to restrict
the topology of extremal horizons (indeed, H+ does not have to be the
future boundary of the past of null infinity as Hawking’s topology theorem
requires). On the other hand, Chruściel, Reall and Tod [10] have shown
that there do not exist static vacuum extremal black holes with spherical
topology.

Regarding assumption A4, Papapetrou [26] showed that the assumption
1 and the Einstein equations (allowing for a cosmological constant Λ ∈ R)
imply that the distribution of the planes orthogonal to V,Φ is integrable. The
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Papapetrou theorem has important applications in the black hole uniqueness
problem [18].

Another very remarkable feature of extremal horizons is their limited
dynamical degrees of freedom in the context of General Relativity. In fact,
Háj́ıc̆ek [16] and later Lewandowski and Pawlowski [22] and Kunduri and
Lucietti [21] showed a rigidity result for extremal horizons, namely that
the assumptions A1–A2 and the Einstein equations (either vacuum of elec-
trovacuum) imply that the geometry of the horizon H+ necessarily coincides
with the geometry of the horizon of extremal Kerr (in the vacuum case) or
extremal Kerr–Newman (in the electrovacuum case). More precisely, in the
context of the formulation of [9], the rigidity statement for extremal hori-
zons says that the induced metric g/ of the horizon sections, the torsion η
and the curvature components ρ, σ coincide with those of extremal Kerr
(or Kerr–Newman). On the other hand, the transversal second fundamental
form χ is conserved (i.e. LV χ = 0 on H+) but cannot be fully determined.

3. Conservations law along extremal horizons

We will prove that the degeneracy of redshift gives rise to a conservation
law along H+ for solutions to the wave equation (1).

3.1. The general case

Let (M, g) satisfy the assumptions A1–A4 of Section 2.1. Consider the coor-
dinate system (v, r, θ, φ) of Section 2.2 and let V, Y,Θ,Φ denote the corre-
sponding coordinate vector fields. Let S0 be an axisymmetric section of H+

and denote Sτ = dϕVτ (S0) which are manifestly isometric to S0. We then
have the following

Proposition 3.1. There exist smooth bounded functions α, β, γ on H+ with
LV α = LV β = LV γ = 0 and such that for all solutions ψ to the wave equa-
tion on (M, g) we have that the quantity

(4) H[ψ](τ) =

∫
Sτ

(
Y ψ + α · ψ + β · (V ψ) + γ · (Θψ)

)
is conserved along H+, i.e. LVH = 0. The above integral is taken with respect
to the induced volume form on Sτ .
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Proof. The wave operator is given by

�gψ = trg(∇2ψ)

= gV V
(
V V ψ − (∇V V )ψ

)
+ 2gV Y

(
V Y ψ − (∇V Y )ψ

)
+ 2gVΘ

(
VΘψ − (∇V Θ)ψ

)
+ 2gV Φ

(
V Φψ − (∇V Φ)ψ

)
+ gY Y

(
Y Y ψ − (∇Y Y )ψ

)
+ 2gYΘ

(
YΘψ − (∇Y Θ)ψ

)
+ 2gY Φ

(
Y Φψ − (∇Y Φ)ψ

)
+ gΘΘ

(
ΘΘψ − (∇ΘΘ)ψ

)
+ 2gΘΦ

(
ΘΦψ − (∇ΘΦ)ψ

)
+ gΦΦ

(
ΦΦψ − (∇ΦΦ)ψ

)
.

In view of the properties (3) of the adapted coordinate system we have

gY Y = gYΘ = gY Φ = gΘΦ = 0 : on H+.

Hence, recalling (2) we obtain on H+:

�gψ = gV V · (V V ψ) + 2gV Y
(
V Y ψ − (∇V Y )ψ

)
(5)

+ 2gVΘ
(
VΘψ − (∇V Θ)ψ

)
+ 2gV Φ

(
V Φψ − (∇V Φ)ψ

)
+ gΘΘ

(
ΘΘψ − (∇ΘΘ)ψ

)
+ gΦΦ

(
ΦΦψ − (∇ΦΦ)ψ

)
.

We first prove that the coefficient of Y ψ in the wave operator restricted on
H+ vanishes. Indeed, by expanding the covariant derivatives and, in view of
the (3), we compute the Christoffel symbols

ΓYV Y = 0, ΓYVΘ = 0, ΓYV Φ = 0, ΓYΘΘ = 0, ΓYΦΦ = 0 : on H+.

Note also that

ΓΘ
V Y = −1

2
gΘΘ ·Θ(gV Y ), ΓΘ

VΘ = 0, ΓΘ
V Φ = 0,

ΓΘ
ΘΘ =

1

2
gΘΘ ·Θ(gΘΘ), ΓΘ

ΦΦ = −1

2
gΘΘ ·Θ(gΦΦ).

Hence, the coefficient of Θψ in (5) is

gΘΘ

[
gV Y ·Θ(gV Y )− 1

2
gΘΘ ·Θ(gΘΘ) +

1

2
gΦΦ ·Θ(gΦΦ)

]
=

1
√
g

Θ
(√
g · gΘΘ

)
.

Therefore, there exist functions A = A(θ), B = B(θ) such that

�gψ = V
(
gV V · (V ψ) + 2gV Y · (Y ψ) + 2gVΘ · (Θψ) + 2gV Φ · (Φψ) +A · ψ

)
+ Φ

(
gΦΦ · (Φψ) +B · ψ

)
+

1
√
g

Θ
(√
g · gΘΘ · (Θψ)

)
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on the horizon H+. We observe that∫
Sτ

1√
g/

Θ
(√
g · gΘΘ · (Θψ)

)
= 2π

∫ π

0
Θ
(√

g ·
√
gΘΘ ·

(√
gΘΘΘ

)
ψ
)
dθ = 0,

since
√
gΘΘΘ is a unit vector field and

√
g ·
√
gΘΘ = gV Y ·

√
g/ ·
√
gΘΘ = gV Y ·

√
gΦΦ → 0

as θ → 0 or θ → π. Moreover we have
∫
Sτ

Φf = 0, for any sufficiently regular
function f on H+. Therefore, by integrating gV Y · (�gψ) over Sτ and using
that gV Y · gV Y = 1, we deduce that there exist smooth bounded functions
α, β, γ (which depend only on θ) such that

V

∫
Sτ

(
Y ψ + α · ψ + β · (V ψ) + γ · (Θψ)

)
= 0,

which completes the proof. �

We remark that the extremality condition (2) is the key ingredient in obtain-
ing the vanishing of the coefficient of Y ψ in the wave operator (see (5))
on H+.

3.2. A hierarchy of conservation laws in spherical symmetry

In case the spacetime metric is spherically symmetric (i.e. the rotation group
SO(3) acts on (M, g) by isometry), then the conservation law of Proposi-
tion 3.1 can be interpreted as a conservation law for the spherical mean
of ψ. (The spherical mean of a function is defined to be the projection of
the function on the kernel of the spherical Laplacian 4/ . In this case, the
spheres are the orbits of the SO(3) action). It turns out that in spherically
symmetric spacetimes one can extend this result to obtain a conservation
law along H+ for each of the projections of ψ on the eigenspaces of 4/ , i.e. a
conservation law for each angular frequency of ψ. Indeed, the metric on such
backgrounds can be expressed in the form [8]:

(6) g = −D(v, r)dv2 + 2dvdr +K−1 gS2 ,

where K = K(r) denotes the Gaussian curvature K of the spheres and gS2

the standard metric on the unit sphere S2. As in the previous section, we
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denote

V = ∂v, Y = ∂r.

Assuming stationarity then

(7) D(v, r) = D(r) = −gV V .

We suppose that the hypersurface r = rH+ is null and that D(rH+) = 0 on
H+. Then the extremality condition ∇V V = 0 along H+ is incorporated in
the condition

(8) D′(rH+) = Y
(
gV V

)
= 0 on H+.

Let, moreover, ψl denote the projection of ψ on the eigenspace of 4/ which
corresponds to the eigenvalue −l(l + 1). If ψ solves the wave equation (1)
and (M, g) is spherically symmetric, then ψl also solves the wave equation.
We now extend the Proposition 3.1 to a hierarchy of conservation laws for
spherically symmetric spacetimes:

Proposition 3.2. Let (M, g) be a spherically symmetric spacetime such
that the metric g satisfies the conditions (6), (7) and the extremality con-
dition (8). Then for all l ∈ N there exist constants βi, i = 0, 1, . . . , l, which
depend only on l, such that for all solutions ψ of the wave equation the
quantity

(9) Hl[ψ] = Y l+1ψl +

l∑
i=0

βi ·
(
Y iψl

)
is conserved along the null geodesics of H+, provided the following relation
holds on H+:

(10) D′′(rH+) = Y Y (gV V )|r=rH+ = 2K(rH+).

In other words, in this case, Hl[ψ] is conserved as a function on the sec-
tions Sτ .

Proof. We compute

�gψ = D · (Y Y ψ) + 2(V Y ψ) + β · (V ψ) +R · (Y ψ) +K ·
(
4/ S2ψ

)
,

where β = Y K−1

K−1 and R =
[
Y K−1

K−1 D + Y D
]
.
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For l = 0 then4/ S2ψ0 = 0, and sinceD(rH+) = (Y D)(rH+) = 0 we obtain

V (Y ψ + β0ψ) = 0 : on H+,

where β0 =
(
Y K−1

2K−1

)∣∣
r=rH+

. For l ≥ 1 we need the condition (10). First note

that

0 = Y k
(
�gψl

)
= D · (Y k+2ψl) + 2Y k+1V ψl + V

(
Y k(βψl)

)
(11)

+R · (Y k+1ψl) +

k∑
i=1

(
k

i

)(
Y iD

)
·
(
Y k−i+2ψl

)
+

k∑
i=1

(
k

i

)(
Y iR

)
·
(
Y k−i+1ψl

)
− l(l + 1) · Y k

(
K · ψl

)
.

The coefficients of Y k+2ψl, Y
k+1ψl vanish on H+. In view of (10), the coef-

ficient of Y kψl on H+ is equal to(
k

2

)
·D′′ +

(
k

1

)
·R′ − l(l + 1) ·K =

(
k + 1

2

)
·D′′ −

(
l + 1

2

)
·D′′,

and, hence, is non-zero if and only if l 6= k. Therefore, using an inductive
argument, one can easily see that for k ≤ l − 1 there exist constants αki , i =
1, . . . , k + 1, which depend only on l, such that

(12) Y kψl =

k+1∑
i=0

αki · (V Y iψl).

Applying now (11) for k = l, we have that the coefficients of Y l+2ψl, Y
l+1ψl,

Y lψl vanish on H+. Therefore, only the terms V Y jψl, j = 0, 1, . . . , l + 1 and
Y jψl, j = 0, 1, . . . , l − 1 remain. Applying (12) completes the proof of the
conservation law for ψl, l ≥ 1. �

We remark that the conservation law for the spherical mean does not
require the condition (10). Note also that extremal Reissner–Nordström sat-

isfies the condition (10), since D(r) =
(
1− M

r

)2
,M > 0, and K(r) = 1

r2 .
These conservation laws (as well as the trapping effect on H+) are in fact
one of the main obstructions to obtaining the stability results of [2, 3].

In fact, we could have generalised Proposition 3.2 so as to include more
general axisymmetric extremal horizons by imposing additional geometric
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conditions similar to that of (10). However, in order not to obscure the
main ideas with technicalities, we established the hierarchy of conservation
laws only in the spherically symmetric setting. We will derive an analogous
hierarchy of conservation laws for extremal Kerr backgrounds.

We next show non-decay and blow-up results that follow from the con-
servation laws.

4. Non-decay and blow-up along H+

Consider the general setting of Section 2. We have the following

Theorem 1. (Non-Decay) Let (M, g) satisfy the assumptions A1–A4 of
Section 2.1 and V, Y,Θ,Φ be the vector fields defined in Section 2.2. Then,
for all solutions ψ to the wave equation either the non-generic condition
H[ψ] = 0 is satisfied (where H[ψ] is defined in Proposition 3.1) or the quan-
tity ∫

Sτ

(
|ψ|+ |Y ψ|+ |Θψ|+ |V ψ|

)
does not decay along H+.

Proof. Immediate from Proposition 3.1. �

We next show that if we impose an additional geometric condition on the
horizon (which holds for all known extremal black holes in general relativity),
then either ψ does not decay or the higher order derivatives of ψ blow up
along the horizon H+.

Theorem 2. (Blow-up) Assume (M, g) is as in Theorem 1 and moreover
such that

(13) g(Y,Θ) = 0

everywhere on H+ and such that

(14) gV Y ·
(
Y Y

(
gY Y

))
is constant and non-zero along H+. Then, unless ψ and the tangential to
H+ derivatives of ψ do not decay and H[ψ] = 0, there is a second order
derivative of ψ which blows up along the horizon H+.



i
i

“1-are” — 2015/9/23 — 0:02 — page 522 — #16 i
i

i
i

i
i

522 Stefanos Aretakis

Proof. We have:

Y
(√
g · (�gψ)

)
= Y V (

√
g · gV V · V ψ) + Y V (

√
g · gV Y · Y ψ)

+ Y V (
√
g · gVΘ ·Θψ) + Y V (

√
g · gV Φ · Φψ)

+ Y Y (
√
g · gY V · V ψ) + Y Y (

√
g · gY Y · Y ψ)

+ Y Y (
√
g · gYΘ ·Θψ) + Y Y (

√
g · gY Φ · Φψ)

+ YΘ(
√
g · gΘV · V ψ) + YΘ(

√
g · gΘY · Y ψ)

+ YΘ(
√
g · gΘΘ ·Θψ) + YΘ(

√
g · gΘΦ · Φψ)

+ Y Φ(
√
g · gΦV · V ψ) + Y Φ(

√
g · gΦY · Y ψ)

+ Y Φ(
√
g · gΦΘ ·Θψ) + Y Φ(

√
g · gΦΦ · Φψ)

First observe that (13) implies that Y Y (gYΘ) = 0 on H+. Since Y Y (gV V ) 6=
0 on H+, the only terms that do not involve the V or Φ derivative are
precisely the following:

√
g ·
(
Y Y (gY Y )

)
· Y ψ, ΘY (

√
g · gΘΘ ·Θψ).(15)

Therefore, since ∫
Sτ

1√
g/
· Y
(√
g · (�gψ)

)
= 0,

all the terms involving the Φ derivative and the second term in (15) involv-
ing the ΘY derivative vanish on H+. Hence, by integrating along the null
geodesics of H+ we obtain an integral identity of the form

(16)

∫ τ

0

∫
Sτ

V
(
f [ψ,Dψ,DDψ]

)
dg/ Sτdτ +

∫ τ

0

∫
Sτ

(Y ψ) dg/ Sτdτ = 0,

where Dψ, DDψ are expressions of the first and second order derivatives of
ψ, respectively. Hence, if ψ and its tangential to H+ derivatives decay along
H+ then

∫
Sτ
Y ψ → ` = H[ψ], and therefore, if H[ψ] 6= 0 then the second

term in (16) blows up. Applying the fundamental theorem of calculus along
the null geodesics of H+ for the first term in (16) we obtain that the higher
order derivatives of ψ blow up asymptotically along H+. �

We have shown that under fairly general assumptions on extremal hori-
zons H+, scalar perturbations generically do not decay and the higher order
derivatives blow up pointwise along H+. The following question, however,
arises: What can we say about the energy of ψ on the spacelike hypersur-
faces Στ = ϕVτ (Σ0) that cross H+? It turns out that proving blow-up for the
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energy of higher order derivative of ψ requires showing dispersion of ψ away
from H+. This can, of course, only be done once other analytical features
have been completely understood, such as the trapping and superradiance.
See [14, 15]. For this reason, in the next section, we focus on the fundamental
extremal black holes which arise in the context of General Relativity.

5. Scalar instability of extremal black holes
in general relativity

We next specialise the theory developed in previous sections to the case
of vacuum and electrovacuum horizons. However, in view of our discussion
in Section 2.3, any degenerate electrovacuum horizon must be isometric to
the event horizon of a member of the extremal Kerr–Newman family. More-
over, Chruściel and Tod [11] proved that all static electrovacuum black hole
spacetimes are isometrically diffeomorphic to the Reissner–Nordström or the
standard Majumdar–Papapetrou spacetime.

The case of extremal Reissner–Nordström was treated in [2, 3]. For ref-
erence, if M > 0 denotes the mass parameter, then the quantity

HRN
0 [ψ] = Y ψ +

1

M
ψ

is conserved along H+ for all spherically symmetric solutions ψ to the wave
equation.

We next consider the case of Majumdar–Papapetrou and extremal Kerr
spacetimes.

5.1. Majumdar–Papapetrou multi black holes

The Majumdar–Papapetrou multi black hole spacetimes (see [17]) constitute
a family of solutions to the Einstein–Maxwell equations with N extremal
black holes, for some N ∈ N. The mass Mi enclosed by a section of H+

i is
equal to the charge ei inside the same surface, i.e., the black holes remain
in equilibrium by the consequent balance of their electrostatic repulsion and
gravitational attraction.

The Majumdar–Papapetrou spacetimes are static with defining Killing
vector field V ; the vector field V being normal on each of the degenerate
event horizons H+

i , i = 1, . . . , N (and thus ∇V V = 0 on H+
i ) and timelike in

the exterior region. These spacetimes are not spherically symmetric or even
axisymmetric; however, each of the horizons H+

i is spherically symmetric. In
fact, for each H+

i , there is a coordinate system (v, ri, θ, φ) ∈ R× (−ε, ε)×
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(0, π)× (0, 2π) covering a neighbourhood of H+
i such that H+

i = {ri = 0}
and ∂v = V (see [17]). Denoting

Y = ∂ri , Θ = ∂θ, Φ = ∂φ

we also have

Θ ⊥ V, Θ ⊥ Y, Φ ⊥ V, Φ ⊥ Y

everywhere in the domain of the system. Furthermore, Θ,Φ are tangential
to sections Sτ of H+

i and Killing on H+
i . Moreover, we have

LY g/ = 0, LY det(g) = 0 : on H+
i ,

where g/ denotes the induced metric on the (θ, φ) spheres. The above prop-
erties of the metric allow us to apply our framework and hence we conclude
that there exists a bounded function α such that LV α = 0 and such that
the quantity

HMP
0 [ψ](τ) =

∫
Sτ

(
Y ψ + α · ψ

)
is conserved along H+. Hence, by virtue of the above properties, Theorems 1
and 2 hold for the Majumdar–Papapetrou spacetimes.

Obtaining, however, dispersive estimates (even away from H+
i for all

i = 1, . . . , N) remains an open problem.

5.2. Extremal Kerr

In view of the results discussed in Section 2.3, extremal Kerr satisfies all the
assumptions of Section 2.1. Of course, one could verify this by inspection of
the metric, which in ingoing Eddington–Finkelstein coordinates (v, r, θ, φ∗)
takes the form

g = gvvdv
2 + 2gvφ∗dvdφ

∗ + gφ∗φ∗(dφ
∗)2 + gθθdθ

2 + 2gvrdvdr + 2grφ∗drdφ
∗,

where

gvv = −
(

1− 2Mr

ρ2

)
, gφ∗φ∗ =

(r2 + a2)2 − a2∆ sin2 θ

ρ2
sin2 θ,

gθθ = ρ2, gvr = 1, gvφ∗ = −2M2r sin2 θ

ρ2
, grφ∗ = −M sin2 θ,

(17)
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with M > 0 a constant and

(18) ∆ = (r −M)2, ρ2 = r2 +M2 cos2 θ.

The event horizon H+ corresponds to r = M . For completeness, we include
the computation for the inverse of the metric in (v, r, θ, φ∗) coordinates:

gvv =
M2 sin2 θ

ρ2
, grr =

∆

ρ2
, gφ

∗φ∗ =
1

ρ2 sin2 θ
, gθθ =

1

ρ2

gvr =
r2 +M2

ρ2
, gvφ

∗
=
M

ρ2
, grφ

∗
=
M

ρ2
,

The metric is indeed stationary and axisymmetric and the corresponding
quantity (14) is constant. Note that the vector field ∂v is not null on the
horizon H+. If we denote T = ∂v, Y = ∂r, Θ = ∂θ, Φ = ∂φ, then the vector
field V = T + 1

2MΦ is null and normal to H+. It follows that the Papapetrou
condition A4 is satisfied.

The wave operator is given by

�gψ =
M2

ρ2
sin2 θ (TTψ) +

2(r2 +M2)

ρ2
(TY ψ) +

∆

ρ2
(Y Y ψ)(19)

+
2M2

ρ2
(TΦψ) +

2M

ρ2
(Y Φψ) +

2r

ρ2
(Tψ)

+
∆′

ρ2
(Y ψ) +

1

ρ2
4/ (θ,φ∗)ψ,

where 4/ (θ,φ∗)ψ denotes the standard Laplacian on S2 with respect to (θ, φ∗).

If Sτ are the sections v = τ of H+ we then obtain that the quantity

(20) HKerr
0 [ψ](τ) =

∫
Sτ

(
M sin2 θ (Tψ) + 4M (Y ψ) + 2ψ

)
is conserved along H+ (note that the volume form of Sτ is 2M sin θ dθ dφ∗).
In fact, we can also obtain a hierarchy of conservation laws analogous to that
of Proposition 3.2 for the spherically symmetric case. Let El = El(θ, φ

∗) be
an eigenfunction of 4/ with corresponding eigenvalue equal to −l(l + 1). By
restricting Y (ρ2�gψ) = 0 on H+, multiplying with E1 and using Stokes’
theorem we obtain∫

Sτ

([
M2 sin2 θ (TTY ψ) + 4M2 (TY Y ψ)

+ 2M(TY ψ) + 2(Y ψ)
]
· E1 + (Y ψ) · 4/E1

)
= 0.
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Since 4/E1 = −2E1, we end up only with terms which involve the T deriva-
tive. Hence, the quantity

HKerr
1 [ψ](τ) =

∫
Sτ

( [
4M (Y Y ψ) +M sin2 θ (TY ψ) + 2(Y ψ) + 2ψ

]
· E1

)
is conserved along H+. Similarly we obtain the following

Proposition 5.1. Let l ∈ N and El denote a spherical harmonic such that
4/El = −l(l + 1)El. For any function f we also denote fl = f · El. There
exist constants α, βi, i = 0, 1, . . . , l + 1 which depend only on M such that
for all solutions ψ to the wave equation on extremal Kerr backgrounds, the
quantity

HKerr
l [ψ](τ) =

∫
Sτ

(
Y l+1ψl + α ·

(
sin2 θ · TY lψ

)
l
+

l∑
i=0

βi Y
iψl

)

is conserved along H+, i.e. it is independent of τ .

In order to obtain definitive instability results for extremal Kerr we use
the results of [4] which we recall below:

1. Pointwise decay for ψ: For all axisymmetric solutions ψ which
arise from regular initial data we have ‖ψ‖L∞(Στ ) → 0 as τ → +∞. Here

Στ = ϕVτ (Σ0) and Σ0 is a spacelike hypersurface which crosses H+.
2. Decay of degenerate (at H+) energy of ψ: For all axisymmetric

solutions ψ which arise from regular initial data we have EΣτ∩{r≥r0>M}[ψ]→
0 as τ → +∞.

Combining the methods of [3], the results of the present paper (note, in
particular, that the condition (13) holds on extremal Kerr) and [4] and by
projecting to the zeroth azimuthal frequency we obtain the following

Theorem 3. (Scalar Instability of Extremal Kerr) There exists a
constant c > 0 which depends only on M such that for all solutions to the
wave equation on extremal Kerr we have

1) Non-decay:

sup
Sτ

∣∣Y ψ∣∣ ≥ c∣∣H0[ψ]
∣∣,

along H+ and H0[ψ] is a constant which depends only on the initial
data and is generically non-zero.
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2) Pointwise blow-up:

sup
Sτ

∣∣Y kψ
∣∣ ≥ c∣∣H0[ψ]

∣∣τk−1,

asympotically along H+ for all k ≥ 2.

3) Energy blow-up: For generic solutions ψ to the wave equation we
have

EΣτ [ψ] =

∫
Στ

〈
JN [Y kψ], nΣτ

〉
−→ +∞,

for all k ≥ 2, as τ → +∞. Here JN is the natural energy current and
nΣτ is the unit normal to Στ .
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7. Addendum

Since the first appearance of the present paper on the arXiv there have been
rapid developments regarding instabilities of extremal black holes. These
developments were motivated by the analysis of the present paper and for
this reason we summarize some of these contributions below:

1. Lucietti and Reall [24] have extended the conservation laws of the
present paper to electromagnetic and linearized gravitational perturbations
on extremal Kerr backgrounds.

2. Murata [25] has generalized the conservation laws for scalar, electro-
magnetic and linearized gravitational perturbations on extremal horizons in
vacuum in arbitrary dimensions.

3. Bizon and Friedrich [7] have shown that the conservation laws of the
present paper on exactly extremal Reissner–Nordström correspond to the
Newman-Penrose constants at null infinity under a conformal transformation
of the background which exchanges the (future) event horizon with (future)
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null infinity. The authors made similar comments for the conservation laws
on extremal Kerr.

4. The relation between the conserved quantities of the present paper and
the Newman–Penrose constants was also independently observed by Lucietti,
Murata, Reall and Tanahashi [23]. The same authors studied analytically
and numerically the late time behavior of massive and massless scalars on
extremal Reissner–Nordström. An important conclusion of their numerical
analysis is that scalar instabilities are present even if the scalar perturbation
is initially supported away from the horizon (in which case all the conserved
quantities are zero).

5. The author rigorously showed in [5] that perturbations which are ini-
tially supported away from the horizon indeed (generically) develop insta-
bilities in the future confirming the numerical analysis of [23].

6. Using the results of the present paper, the author has shown in [6] that
extremal black holes exhibit a genuine scalar non-linear instability which is
not present for subextremal black holes or the Minkowski spacetime.
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