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Schrödinger-Feynman quantization
and composition of observables in

general boundary quantum field theory
Robert Oeckl

We show that the Feynman path integral together with the Schrö-
dinger representation gives rise to a rigorous and functorial quan-
tization scheme for linear and affine field theories. Since our tar-
get framework is the general boundary formulation, the class of
field theories that can be quantized in this way includes theo-
ries without a metric spacetime background. We also show that
this quantization scheme is equivalent to a holomorphic quantiza-
tion scheme proposed earlier and based on geometric quantization.
We proceed to include observables into the scheme, quantized also
through the path integral. We show that the quantized observables
satisfy the canonical commutation relations, a feature shared with
other quantization schemes also discussed. However, in contrast to
other schemes the presented quantization also satisfies a correspon-
dence between the composition of classical observables through
their product and the composition of their quantized counterparts
through spacetime gluing. In the special case of quantum field the-
ory in Minkowski space this reproduces the operationally correct
composition of observables encoded in the time-ordered product.
We show that the quantization scheme also generalizes other fea-
tures of quantum field theory such as the generating function of
the S-matrix.
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1. Introduction

Quantum field theory is our most successful framework for describing the
phenomena of the physical world at the subatomic scale. In particular, any
quantum theory used to explain physical phenomena is thought of as deriv-
able from (if not identical to) some quantum field theory. On the other hand,
our conceptual framework of what fundamentally constitutes a quantum the-
ory dates from our understanding of non-relativistic quantum phenomena,
before the rise of quantum field theory. There are many quantum theories
that fit into that framework, but that are not fundamental. On the other
hand, quantum field theory can be fit into that framework, too, but it does so
with a certain tension. In particular, there are many features of quantum field
theory that, while compatible with, appear peculiar from the point of view of
that framework. This suggests to rethink what fundamentally constitutes a
quantum theory and in doing so take very serious the lessons quantum field
theory has taught us. In light of the persistent failure to reconcile general rel-
ativity with the traditional framework of quantum theory it is perhaps high
time to do so.

Evidently, a background Minkowski spacetime is not one of the features
that we propose should play a more fundamental role. Rather it is structural
features of quantum field theory that are instrumental to its predictive power,
but that are not part of the traditional conceptual framework of a quantum
theory. In particular, these are features of the S-matrix (such as crossing
symmetry), the particular concept of observable (with its time-ordered prod-
uct), and spacetime locality features (as conveniently encoded in the Feynman
path integral). There is an ongoing effort to abstract these features from their
quantum field theoretic context and make them part of a novel foundational
framework for quantum theory. This is partly the subject of the present paper.
This development can be taken to start in the 1980s with works of E. Witten,
G. Segal and others, leading to topological quantum field theory (TQFT) [1]
and with it a whole new branch of algebraic topology. The relevant features of
quantum field theory abstracted here are locality properties, in particular the
properties of the Feynman path integral. While this has mostly turned into
an area of pure mathematics, G. Segal in particular has developed a version
of TQFT as a basis for conformal field theory [2, 3] and also for 4-dimensional
quantum field theory [4].

A proposal to take this strand of developments as the starting point of
a foundational approach to quantum theory was elaborated in [5] (after ini-
tial suggestions in [6, 7]) under the name of general boundary formulation
(GBF) of quantum theory. Crucially, the relevant ingredients from TQFT are
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complemented in this approach by a generalization of the Born rule for the
extraction of probabilities for measurement processes. This makes possible
a consistent probability interpretation which needs no reference to a metric
spacetime background. In spite of this abstraction from metric spacetime,
relevant features of quantum field theory are realized as fundamental proper-
ties in the GBF precisely in the spirit of our initial comments. In particular,
the GBF inherits from TQFT the particular spacetime locality properties of
amplitudes in quantum field theory usually encoded with the help of the Feyn-
man path integral. Another feature of quantum theory that attains a more
fundamental status in the GBF is crossing symmetry. This was indeed among
the original motivations for introducing the GBF [6] and plays a crucial role
in generalizations of the S-matrix based on the GBF [8–12].

In light of the previous remarks the Feynman path integral suggests itself
as a tool in the quantization of field theories in the GBF. This is naturally
combined with the Schrödinger representation [5, 7]. We shall refer to the
quantization scheme determined by this combination as Schrödinger-Feynman
quantization. This scheme has been extensively used to quantize field theories
in the GBF. However, it has lacked so far a mathematically rigorous footing.
To partially remedy this is one of the purposes of the present paper. Obviously,
this can only be successful if we restrict to a sufficiently simple class of field
theories. To this end we consider here linear field theory and the slightly more
general affine field theory.

We start with a brief review of the geometric (Section 2.1) and algebraic
(Section 2.2) core structures of the GBF in Section 2. The rigorous and func-
torial version of the Schrödinger-Feynman quantization scheme is the subject
of Section 3. To this end we first recall in Section 3.1 an axiomatization
of affine field theory as put forward in [13]. In Section 3.2 the Schrödinger
quantization on hypersurfaces is carried out, by importing the relevant treat-
ment from [14]. The core of this part of the paper is Section 3.3 where the
Feynman path integral is rigorously defined. The key result here is that the
Schrödinger-Feynman quantization scheme defined in this way is equivalent
in a precise sense to the holomorphic quantization scheme put forward in [13].
This ensures on the one hand the functoriality of the former and serves on
the other hand as an a posteriori justification of an ad hoc ingredient in the
latter. In Section 3.4 we discuss the special case of linear field theory which is
thus equivalent to the holomorphic quantization scheme put forward in [15].

Special features of the concept of observable in quantum field theory and
their incorporation into the GBF are the subject of the second part of this pa-
per, consisting of Section 4. A proper concept of quantum observable for the
GBF has been elaborated only recently [16]. It was already suggested there
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that observables of quantum field theory fit more naturally into this concept
than into the traditional one of an operator on Hilbert space. Moreover, it
was suggested there that a striking correspondence between the spacetime
composition of classical observables and their quantized counterparts is a key
feature of quantum field theory. This was termed there composition correspon-
dence. It is reviewed and elaborated on here in Section 4.1. In Section 4.2 the
concept of observable in the GBF and the associated notion of composition is
recalled from [16] and refined. A minimalistic notion of classical observable is
formalized in Section 4.3. In Section 4.4 quantization axioms are formulated
which formalize in particular the notion of composition correspondence.

The core ingredient of this part of the paper is provided in Section 4.5
with the quantization formula for Weyl observables (i.e., observables that
are exponentials of imaginary linear observables), derived from the Feynman
path integral. It is here where results of the first part of the paper (in par-
ticular Section 3.3) are crucially employed. In Section 4.6 an axiomatization
of linear field theory with linear observables is given. The main result of this
part of the paper is Section 4.7, where it is shown that the quantization of
the so formalized classical linear field theory satisfies not only the core ax-
ioms, but also the observable axioms and the quantization axioms, including
composition correspondence. Factorization properties of observable maps are
derived in Section 4.8. These abstract and generalize the generating function
of the S-matrix in quantum field theory. While the treatment is focused on
Weyl observables up to this point, a much more general class of observables
is made accessible in Section 4.9. In Section 4.10 the more conventional op-
erator product is derived for infinitesimal regions and it is shown to satisfy
the canonical commutation relations. A comparison with other quantization
schemes is carried out in Section 4.11. Finally, in Section 5 some conclusions
and a brief outlook are presented.

2. General boundary quantum field theory

In this section we briefly recall the geometric setting as well as the core axioms
of the GBF in the form given in [13, 15]. We shall call a model satisfying the
core axioms a general boundary quantum field theory (GBQFT).

2.1. Geometric data

We recall briefly how in the GBF the structure of spacetime is formalized
in terms of a spacetime system, involving abstract notions of regions and
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hypersurfaces. We follow here closely the presentation in [13]. For further
discussion of the rationale behind this, see in particular [5].

There is a fixed positive integer d ∈ N, the dimension of spacetime. We
are given a collection of oriented topological manifolds of dimension d, possi-
bly with boundary, that we call regions. Furthermore, there is a collection of
oriented topological manifolds without boundary of dimension d− 1 that we
call hypersurfaces. All manifolds may only have finitely many connected com-
ponents. When we want to emphasize explicitly that a given manifold is in
one of those collections we also use the attribute admissible. These collections
satisfy the following requirements:

• Any connected component of a region or hypersurface is admissible.

• Any finite disjoint union of regions or of hypersurfaces is admissible.

• Any boundary of a region is an admissible hypersurface.

• If Σ is a hypersurface, then Σ, denoting the same manifold with opposite
orientation, is admissible.

It will turn out to be convenient to also introduce slice regions.1 A slice region
is topologically simply a hypersurface, but thought of as an infinitesimally thin
region. Concretely, the slice region associated with a hypersurface Σ will be
denoted by Σ̂ and its boundary is defined to be the disjoint union ∂Σ̂ = Σ ∪ Σ.
There is one slice region for each hypersurface (forgetting its orientation).
When an explicit distinction is desirable we refer to the previously defined
regions as regular regions.

There is also a notion of gluing of regions. Suppose we are given a region
M with its boundary a disjoint union ∂M = Σ1 ∪ Σ ∪ Σ′, where Σ′ is a copy
of Σ. (Σ1 may be empty.) Then, we may obtain a new manifold M1 by gluing
M to itself along Σ,Σ′. That is, we identify the points of Σ with corresponding
points of Σ′ to obtain M1. The resulting manifold M1 might be inadmissible,
in which case the gluing is not allowed.

Depending on the theory one wants to model, the manifolds may carry
additional structure such as for example a differentiable structure or a metric.
This has to be taken into account in the gluing and will modify the procedure
as well as its possibility in the first place. Our description above is merely
meant as a minimal one. Moreover, there might be important information
present in different ways of identifying the boundary hypersurfaces that are

1In previous papers slice regions were called empty regions.
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glued. Such a case can be incorporated into our present setting by encod-
ing this information explicitly through suitable additional structure on the
manifolds.

For brevity we shall refer to a collection of regions and hypersurfaces with
the properties given above as a spacetime system. A spacetime system can be
induced from a global spacetime manifold by taking suitable submanifolds.
(This setting was termed a global background in [5].) On the other hand,
a spacetime system may arise by considering regions as independent pieces
of spacetime that are not a priori embedded into any global manifold. In-
deed, depending on the context, it might be physically undesirable to assume
knowledge of, or even existence of, a fixed global spacetime structure.

2.2. Core axioms

A GBQFT on a spacetime system is a model satisfying the following axioms.

(T1) Associated to each hypersurface Σ is a complex separable Hilbert space
HΣ, called the state space of Σ. We denote its inner product by 〈·, ·〉Σ.

(T1b) Associated to each hypersurface Σ is a conjugate linear isometry ιΣ :
HΣ → HΣ. This map is an involution in the sense that ιΣ ◦ ιΣ is the
identity on HΣ.

(T2) Suppose the hypersurface Σ decomposes into a disjoint union of hyper-
surfaces Σ = Σ1 ∪ · · · ∪ Σn. Then, there is an isometric isomorphism of
Hilbert spaces τΣ1,...,Σn;Σ : HΣ1⊗̂ · · · ⊗̂HΣn → HΣ. The composition of
the maps τ associated with two consecutive decompositions is identical
to the map τ associated to the resulting decomposition.

(T2b) The involution ι is compatible with the above decomposition. That is,
τΣ1,...,Σn;Σ ◦ (ιΣ1⊗̂ · · · ⊗̂ιΣn) = ιΣ ◦ τΣ1,...,Σn;Σ.

(T4) Associated with each region M is a linear map from a dense subspace
H◦∂M of the state space H∂M of its boundary ∂M (which carries the
induced orientation) to the complex numbers, ρM : H◦∂M → C. This is
called the amplitude map.

(T3x) Let Σ be a hypersurface. The boundary ∂Σ̂ of the associated slice region
Σ̂ decomposes into the disjoint union ∂Σ̂ = Σ ∪ Σ′, where Σ′ denotes
a second copy of Σ. Then, τΣ,Σ′;∂Σ̂(HΣ ⊗HΣ′) ⊆ H◦

∂Σ̂. Moreover, ρΣ̂ ◦
τΣ,Σ′;∂Σ̂ restricts to a bilinear pairing (·, ·)Σ : HΣ ×HΣ′ → C such that
〈·, ·〉Σ = (ιΣ(·), ·)Σ.
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(T5a) Let M1 and M2 be regions and M := M1 ∪M2 be their disjoint union.
Then ∂M = ∂M1 ∪ ∂M2 is also a disjoint union and τ∂M1,∂M2;∂M (H◦∂M1

⊗H◦∂M2
) ⊆ H◦∂M . Moreover, for all ψ1 ∈ H◦∂M1

and ψ2 ∈ H◦∂M2
,

(1) ρM ◦ τ∂M1,∂M2;∂M (ψ1 ⊗ ψ2) = ρM1(ψ1)ρM2(ψ2).

(T5b) Let M be a region with its boundary decomposing as a disjoint union
∂M = Σ1 ∪ Σ ∪ Σ′, where Σ′ is a copy of Σ. Let M1 denote the gluing
of M with itself along Σ,Σ′ and suppose that M1 is a region. Note
∂M1 = Σ1. Then, τΣ1,Σ,Σ′;∂M (ψ ⊗ ξ ⊗ ιΣ(ξ)) ∈ H◦∂M for all ψ ∈ H◦∂M1

and ξ ∈ HΣ. Moreover, for any ON-basis {ξi}i∈I of HΣ, we have for all
ψ ∈ H◦∂M1

,

(2) ρM1(ψ) · c(M ; Σ,Σ′) =
∑
i∈I

ρM ◦ τΣ1,Σ,Σ′;∂M (ψ ⊗ ξi ⊗ ιΣ(ξi)) ,

where c(M ; Σ,Σ′) ∈ C \ {0} is called the gluing anomaly factor and
depends only on the geometric data.

For ease of notation we will use the maps τ implicitly in the following,
omitting their explicit mention.

3. Schrödinger-Feynman quantization of affine field theory

Most quantum field theories of physical interest are at least in part based
on the quantization of a classical field theory. Such a quantization proceeds
by transforming ingredients of the classical field theory into ingredients of a
quantum field theory, following a more or less heuristic quantization scheme.

In the case of the general boundary formulation (GBF) the objects that
the quantization scheme has to produce are principally the Hilbert spaces
associated to hypersurfaces and the amplitude maps associated to regions.
Since these structures differ from those usually taken to define a quantum
theory, most quantization schemes are at least not immediately adaptable
to the GBF. An exception is the Schrödinger-Feynman quantization scheme.
Here, the Hilbert space on each hypersurface is constructed according to the
Schrödinger prescription, i.e., as a space of square-integrable functions on the
space of field configurations on the hypersurface. The amplitude map for a re-
gion is constructed as the Feynman path integral over all field configurations
in the region, evaluated with the boundary state inserted. It is fair to say
that this quantization scheme was an essential ingredient in the motivations
that lead to the emergence of the field of topological quantum field theory
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(TQFT) in the 1980s. Since the core axioms of the GBF may be seen as a
specific variant of TQFT, it is unsurprising that Schrödinger-Feynman quan-
tization is a natural candidate for a quantization scheme putting out quantum
theories in GBF form [5, 7]. Indeed, Schrödinger-Feynman quantization has
been successfully implemented in the context of the GBF in various examples
[8–11, 17–19]. However, even when leading to rigorous results in many cases,
the quantization scheme is presented in those papers in a rather heuristic
and non-rigorous form. This impedes its wider applicability, especially in the
context of more complex geometric situations or for more complicated field
theories.

We shall present in this section a fully rigorous and functorial version of
Schrödinger-Feynman quantization for the GBF. Unsurprisingly, this comes
at the cost of specialization on the field theory side. Indeed, we shall limit our
considerations to affine field theory, i.e., where the spaces of local solutions
of the field theory are naturally affine spaces. Linear field theory arises as the
special case where local spaces of solutions have a special point and are thus
linear spaces.

Fortunately, rather than having to construct the quantization scheme from
scratch we can rely on the “hard work” done elsewhere, namely in the papers
[13–15]. Firstly, in [14] a rigorous construction of the Schrödinger representa-
tion was given. This is precisely suitable to construct the Hilbert spaces asso-
ciated to hypersurfaces. Secondly, we show that the heuristic Feynman path
integral prescription leads to a precise definition of the amplitude map for re-
gions. Thirdly, we recall the rigorous and functorial quantization scheme that
was established using the holomorphic representation on hypersurfaces for lin-
ear field theory in [15] and for affine field theory in [13]. Using further results
of [14] we bring the output of the two quantization schemes into a one-to-one
correspondence. This allows us to conclude that the Schrödinger-Feynman
quantization scheme indeed yields a GBQFT, i.e., satisfies the GBF core ax-
ioms as was proven for the holomorphic quantization scheme in [13, 15].

3.1. Encoding classical affine field theory

Recall that a set A is an affine space over a real vector space L if there
is a transitive and free abelian group action L× A→ A, called translation.
As is customary, we shall write this action as addition, i.e, (l, a) 7→ l + a for
l ∈ L and a ∈ A. Also we shall be indiscriminate about the order, writing
l + a = a+ l. Given a base point e ∈ A we obtain a canonical identification
of L with A via l 7→ l + e.
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An affine field theory is a field theory such that the local spaces of so-
lutions are naturally affine spaces. We briefly recall from [13] how such field
theories may be axiomatically formalized given a spacetime system. For each
region M we denote the affine space of solutions in M by AM and the asso-
ciated real vector space by LM . Note that LM is canonically identified with
the tangent space of AM at each point. Similarly, for a hypersurface Σ we
denote the space of (germs of) solutions in a neighborhood of Σ by AΣ. LΣ
denotes the associated real vector space. Given a Lagrangian that induces the
field theory this leads to further natural structures. For each region M this
is the action SM : AM → R. For each hypersurface Σ this is the symplectic
potential θΣ : AΣ × LΣ → R and its exterior derivative, the symplectic form
ωΣ : LΣ × LΣ → R.

The following list of axioms from [13] is meant to capture precisely these
ingredients of affine field theory and their interrelations in a way that is as
universal as possible while being reasonably minimal. We remark that there
is one further ingredient in the axioms below that, rather than being part
of the classical field theory, already is a seed for its quantization. This is a
complex structure JΣ on LΣ for each hypersurface Σ, which also partially
determines the inner products gΣ and {·, ·}Σ. It will be discussed it in the
following section.

(C1) Associated to each hypersurface Σ is a complex separable Hilbert space
LΣ and an affine space AΣ over LΣ with the induced topology. The latter
means that there is a transitive and free abelian group action LΣ ×
AΣ → AΣ which we denote by (φ, η) 7→ φ+ η. The inner product in LΣ
is denoted by {·, ·}Σ. We also define gΣ(·, ·) := <{·, ·}Σ and ωΣ(·, ·) :=
1
2={·, ·}Σ and denote by JΣ : LΣ → LΣ the scalar multiplication with i
in LΣ. Moreover we suppose there are continuous maps θΣ : AΣ × LΣ →
R and [·, ·]Σ : LΣ × LΣ → R such that θΣ is real linear in the second
argument, [·, ·]Σ is real bilinear, and both structures are compatible via

(3) [φ, φ′]Σ + θΣ(η, φ′) = θΣ(φ+ η, φ′) ∀η ∈ AΣ,∀φ, φ′ ∈ LΣ.

Finally we require

(4) ωΣ(φ, φ′) = 1
2[φ, φ′]Σ −

1
2[φ′, φ]Σ ∀φ, φ′ ∈ LΣ.

(C2) Associated to each hypersurface Σ there is a homeomorphic involution
AΣ → AΣ and a compatible conjugate linear involution LΣ → LΣ under
which the inner product is complex conjugated. We will not write these
maps explicitly, but rather think of AΣ as identified with AΣ and LΣ
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as identified with LΣ. Then, {φ′, φ}Σ = {φ′, φ}Σ and we also require
θΣ(η, φ) = −θΣ(η, φ) and [φ, φ′]Σ = −[φ, φ′]Σ for all φ, φ′ ∈ LΣ and η ∈
AΣ.

(C3) Suppose the hypersurface Σ decomposes into a disjoint union of hy-
persurfaces Σ = Σ1 ∪ · · · ∪ Σn. Then, there is a homeomorphism AΣ1 ×
· · · × AΣn → AΣ and a compatible isometric isomorphism of complex
Hilbert spaces LΣ1 ⊕ · · · ⊕ LΣn → LΣ. Moreover, these maps satisfy ob-
vious associativity conditions. We will not write these maps explicitly,
but rather think of them as identifications. Also, θΣ = θΣ1 + · · ·+ θΣn

and [·, ·]Σ = [·, ·]Σ1 + · · ·+ [·, ·]Σn .

(C4) Associated to each region M is a real vector space LM and an affine
space AM over LM . Also, there is a map SM : AM → R.

(C5) Associated to each region M there is a map aM : AM → A∂M and a
compatible linear map of real vector spaces rM : LM → L∂M . We denote
by AM̃ the image of AM under aM and by LM̃ the image of LM under
rM . LM̃ is a closed Lagrangian subspace of the real Hilbert space L∂M
with respect to the symplectic form ω∂M . We often omit the explicit
mention of the maps aM and rM . We also require SM (η) = SM (η′) if
aM (η) = aM (η′), and

(5) SM (η) = SM (η′)− 1
2θ∂M (η, η − η′)− 1

2θ∂M (η′, η − η′) ∀η, η′ ∈ AM .

(C6) Let M1 and M2 be regions and M := M1 ∪M2 be their disjoint union.
Then, there is a bijection AM1 × AM2 → AM and a compatible isomor-
phism of real vector spaces LM1 ⊕ LM2 → LM such that aM = aM1 ×
aM2 and rM = rM1 × rM2 . Moreover these maps satisfy obvious associa-
tivity conditions. Hence, we can think of them as identifications and
omit their explicit mention in the following. We also require SM =
SM1 + SM2 .

(C7) Let M be a region with its boundary decomposing as a disjoint union
∂M = Σ1 ∪ Σ ∪ Σ′, where Σ′ is a copy of Σ. LetM1 denote the gluing of
M to itself along Σ,Σ′ and suppose thatM1 is a region. Note ∂M1 = Σ1.
Then, there is an injective map aM ;Σ,Σ′ : AM1 ↪→ AM and a compatible
injective linear map rM ;Σ,Σ′ : LM1 ↪→ LM such that

(6) AM1 ↪→ AM ⇒ AΣ LM1 ↪→ LM ⇒ LΣ
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are exact sequences. Here, for the first sequence, the arrows on the
right hand side are compositions of the map aM with the projections
of A∂M to AΣ and AΣ′ respectively (the latter identified with AΣ). For
the second sequence the arrows on the right hand side are compositions
of the map rM with the projections of L∂M to LΣ and LΣ′ respectively
(the latter identified with LΣ). We also require SM1 = SM ◦ aM ;Σ,Σ′ .
Moreover, the following diagrams commute, where the bottom arrows
are the projections.

(7) AM1

a
M ;Σ,Σ′

//

aM1
��

AM

aM

��
A∂M1 A∂Moo

LM1

r
M ;Σ,Σ′

//

rM1
��

LM

rM

��
L∂M1 L∂Moo

3.2. Schrödinger quantization on hypersurfaces

In this section we consider the first part of the Schrödinger-Feynman quanti-
zation scheme which consists in associating to each hypersurface Σ a Hilbert
space HS

Σ of states in accordance with the Schrödinger prescription. We differ
here in our notation from that of the core axioms (Section 2.2) to empha-
size that HS

Σ arises from a particular quantization scheme. Nevertheless, it is
understood that HS

Σ is taking the place of HΣ in the core axioms.
The basic idea of the Schrödinger prescription is to construct the Hilbert

space HS
Σ as a space of square-integrable wave functions on the configuration

space associated with the hypersurface Σ. We shall denote this real affine
space of configurations by CΣ in accordance with the notation used in [14].
We recall from [14] that CΣ can be obtained in a simple way from the space AΣ
and the symplectic potential θΣ. Concretely, define the subspaces MΣ ⊆ LΣ
and NΣ ⊆ LΣ as

MΣ := {τ ∈ LΣ : [ξ, τ ]Σ = 0 ∀ξ ∈ LΣ}(8)
NΣ := {τ ∈ LΣ : [τ, ξ]Σ = 0 ∀ξ ∈ LΣ}.(9)

MΣ should be thought of as the subspace of momenta, i.e., those (infinitesi-
mal) solutions where field values vanish on Σ while their derivatives do not.
For this to really make sense we need the additional requirement on the map
[·, ·]Σ thatMΣ and NΣ together generate all of LΣ [14]. This then even implies
LΣ = MΣ ⊕NΣ.
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The configuration space CΣ is the quotient space

(10) CΣ := AΣ/MΣ.

For later use we denote the quotient map by cΣ : AΣ → CΣ. The infinitesimal
version of CM is the linear quotient space

(11) QΣ := LΣ/MΣ.

CΣ is thus an affine space over QΣ. For later use we denote the quotient map
by qΣ : LΣ → QΣ.

In the case of linear field theory (i.e., when CΣ = QΣ) it is well known
that determining the Hilbert space of the Schrödinger representation requires
the additional datum of a vacuum state, see e.g., [20]. It is convenient [14]
to encode this in a symmetric bilinear form ΩΣ : QΣ ×QΣ → C with positive
definite real part. The vacuum state is then determined by the wave function
KS

0 : QΣ → C given by

(12) KS
0 (φ) = exp

(
−1

2Ω(φ, φ)
)
.

In the more general case of affine field theory there is no special vacuum
state. Nevertheless, the Schrödinger representation is still determined by a
symmetric bilinear form ΩΣ : QΣ ×QΣ → C with positive definite real part
[14].

In axiom (C1) we are given the affine space AΣ, the associated linear space
LΣ and the maps θΣ, [·, ·]Σ as well as ωΣ. In order to define the Schrödinger
representation Hilbert space we are then only missing ΩΣ.2 However, it was
shown in [14] that the complex structure JΣ, also provided in axiom (C1), pre-
cisely gives rise to such a bilinear form ΩΣ. Concretely, define jΣ : QΣ → LΣ
to be the unique linear map such that qΣ ◦ jΣ = idQΣ and jΣ(QΣ) = JΣMΣ.
Then,

(13) ΩΣ(φ, φ′) = gΣ(jΣ(φ), jΣ(φ′))− i[jΣ(φ), jΣ(φ′)]Σ

is a bilinear form precisely as required. What is more, in [14] it was shown that
admissible bilinear forms ΩΣ are in one-to-one correspondence to admissible

2We are simplifying the discussion here by omitting another ingredient missing
in axiom (C1). This is the condition MΣ +NΣ = LΣ necessary for the Schrödinger
representation to be well defined. However, since the whole quantization scheme
will turn out to be equivalent to a holomorphic quantization scheme which does
not require this condition, we have omitted it in the axiom in the first place.
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complex structures JΣ precisely via equation (13).3 Thus, the datum of the
complex structure in axiom (C1) is precisely equivalent to the datum of an
admissible bilinear form. Hence, the data of axiom (C1) uniquely determine
a Schrödinger representation Hilbert space HS

Σ.
The precise nature of the construction of the Hilbert space HS

Σ is not
relevant here and we refer the interested reader to [14] for the details. A fact
about the Schrödinger representation that we will make use of, however, is
that HS

Σ contains a dense subspace generated by coherent states. We recall
from [14] that the Schrödinger wave function of the affine coherent state [13]
associated to the local solution ζ ∈ AΣ is given by4

(14) K̂S
ζ (ϕ) = exp

(
i θΣ(ζ, ϕ− cΣ(ζ))− 1

2ΩΣ(ϕ− cΣ(ζ), ϕ− cΣ(ζ))
)
.

As already mentioned, we shall make use of the fact that the Schrödin-
ger representation can be brought into correspondence with the holomorphic
representation. We recall that the Hilbert space of the holomorphic repre-
sentation is a space of square-integrable holomorphic functions on LΣ. The
holomorphic representation arises as a special case of geometric quantization
[21] and depends precisely on an admissible complex structure JΣ on LΣ as
exhibited in axiom (C1). Indeed, the ingredients of axiom (C1) precisely de-
termine a Hilbert space HH

Σ of the holomorphic representation [13]. Now, it
was shown in [14] that the one-to-one correspondence (13) between admissible
bilinear forms ΩΣ and admissible complex structures JΣ induces a canonical
isometric isomorphism of Hilbert spaces B̂Σ : HS

Σ → HH
Σ. This means that on

the level of hypersurfaces and associated Hilbert spaces the present Schrö-
dinger quantization is precisely equivalent to the holomorphic quantization
exhibited in [13]. In particular, core axioms (T1), (T1b), (T2), and (T2b) are
satisfied, as was shown in [13] for the holomorphic quantization.

3While the exact definition of admissible complex structure is implicit in axiom
(C1), we repeat here the exact definition of admissible bilinear form. ΩΣ : QΣ ×
QΣ → C is admissible if it is a symmetric bilinear form such that its real part is a
positive definite inner product making QΣ into a real Hilbert space and such that
its imaginary part is continuous with respect to this Hilbert space structure.

4While coherent states can be represented by wave functions in this way, this is
not true of all states in the Hilbert space HS

Σ. More generally, HS
Σ should be thought

of as a space of reduced wave functions on a linearized and extended version of CΣ,
see [14]. However, as the only concrete states we need to consider are coherent states
we may ignore these details for the purposes of the present paper.
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3.3. Feynman quantization in regions

In this section we consider the second part of the Schrödinger-Feynman quan-
tization scheme which consists in associating to each region M an amplitude
map ρS

M : HS◦
∂M → C from a dense subspace of the the boundary Hilbert space

HS
∂M to the complex numbers. We shall proceed by heuristically and non-

rigorously following the Feynman path integral prescription. However, this
yields a definite and well defined result which we then take as a definition.

If M is a spacetime region and ψS the wave function of a state in the
Schrödinger representation Hilbert space HS

∂M , its amplitude is given heuris-
tically by the Feynman path integral via

(15) ρS
M

(
ψS
)

=
∫
KM

ψS(η) exp (iSM (η)) dµ(η).

Here KM is the “space of field configurations” inM and µ is supposed to be a
suitable measure on it. We shall assume at least thatKM is a real vector space
and that µ is translation-invariant. Of course, usually no such measure exists
and even the precise definition of the spaceKM may be unclear. As a first step
to improve the situation we assume that there is a correspondence between
field configuration data on the boundary and solutions in the interior, i.e.,KM

splits additively into KM = AM ⊕K0
M , where AM is the space of solutions of

the equations of motion in M while K0
M is the space of field configurations

in M that vanish on the boundary. Then, (15) may be rewritten as

(16) ρS
M

(
ψS
)

=
∫
AM

ψS(η)
(∫

K0
M

exp (iSM (η + ∆)) dµ(∆)
)

dµ(η),

where ∆ ∈ K0
M and the measure has now been split into one on AM and one

on K0
M .

To further improve the situation we use the fact that we are considering
the special case of affine field theory. Thus, AM is an affine space, the action
SM is a polynomial of degree two on KM and by the variational principle we
obtain

(17) SM (η + ∆) = SM (η) + Sq
M (∆) for η ∈ AM , ∆ ∈ K0

M .

Here Sq
M is the quadratic part of the action. In itself it is the action for the

linear field theory with space of solutions in M given by LM . This allows to
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factorize the inner integrand in (16), leading to the expression

(18) ρS
M

(
ψS
)

= NM

∫
AM

ψS(η) exp (iSM (η)) dµ(η),

where the normalization factor NM is given by

(19) NM =
∫
K0

M

exp (iSq
M (∆)) dµ(∆).

Instead of evaluating the amplitude map (18) for any possible state it is
sufficient to consider coherent states since they generate a dense subspace of
HS
∂M . Thus, consider the affine coherent state K̂ζ associated to ζ ∈ A∂M with

Schrödinger wave function K̂S
ζ given by expression (14). Its amplitude is

(20) ρS
M

(
K̂S
ζ

)
= NM

∫
AM

K̂S
ζ (η) exp (iSM (η)) dµ(η).

If AM is finite-dimensional this integral is perfectly well-defined and we shall
proceed as if this was the case. Of course, usually in field theory AM is infinite-
dimensional.

Inserting the explicit wave function (14) of the coherent state K̂ζ yields,

ρS
M

(
K̂S
ζ

)
= NM

∫
AM̃

exp
(

iSM (η) + i θ∂M (ζ, η − ζ)(21)

− 1
2Ω∂M

(
q∂M (η − ζ), q∂M (η − ζ)

))
dµ(η).

Here we have also changed the integration from an integration over AM to an
integration over its image AM̃ under aM since the integrand only depends on
the latter.

In order to evaluate this expression further we recall that the space L∂M
decomposes into a generalized direct sum L∂M = AM̃ ⊕ J∂MLM̃ [13]. Apply-
ing this to ζ we obtain ζ = ζR + J∂Mζ

I with ζR ∈ AM̃ and ζI ∈ LM̃ . Inserting
this decomposition into (21), and using translation invariance of the measure
µ to change the integral to one over the new variable ξ := η − ζR ∈ LM̃ we
obtain

ρS
M

(
K̂S
ζ

)
= NM

∫
LM̃

exp
(

iSM
(
ζR + ξ

)
+ i θ∂M

(
ζR + J∂Mζ

I, ξ − J∂MζI
)(22)

− 1
2Ω∂M

(
q∂M

(
ξ − J∂MζI

)
, q∂M

(
ξ − J∂MζI

)))
dµ(ξ).
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Using property (5) of the action in axiom (C5) leads to,

ρS
M

(
K̂S
ζ

)
=NM exp

(
iSM

(
ζR
)
− i θ∂M

(
ζR, J∂Mζ

I
))

(23) ∫
LM̃

exp
(
− i

2 [ξ, ξ]∂M + i
[
J∂Mζ

I, ξ − J∂MζI
]
∂M

−1
2Ω∂M

(
q∂M

(
ξ − J∂MζI

)
, q∂M

(
ξ − J∂MζI

)))
dµ(ξ).

We use again translation invariance of the measure µ to shift the integration
variable by ξ → ξ + zζI, where z ∈ R is arbitrary. This yields,

ρS
M

(
K̂S
ζ

)
=NM exp

(
iSM

(
ζR
)
− i θ∂M

(
ζR, J∂Mζ

I
))

(24) ∫
LM̃

exp
(
− i

2 [ξ, ξ]∂M + i
[
J∂Mζ

I, ξ − J∂MζI
]
∂M

− 1
2Ω∂M

(
q∂M

(
ξ − J∂MζI

)
, q∂M

(
ξ − J∂MζI

))
− iz

[
ζI, ξ

]
∂M

+ iz
[
J∂Mζ

I, ζI
]
∂M

− zΩ∂M

(
q∂M

(
ζI
)
, q∂M

(
ξ − J∂MζI

))
− iz2

2
[
ζI, ζI

]
∂M

− z2

2 Ω∂M

(
q∂M

(
ζI
)
, q∂M

(
ζI
)))

dµ(ξ).

We make the simple observation that the integrand as a function of z ∈ C
is holomorphic. This implies here that the integral is also holomorphic as a
function of z ∈ C. On the other hand, by construction the integral is constant
for z on the real line. Then, by the Identity Theorem, the integral has to be
constant for all z ∈ C. We may thus fix any convenient value z ∈ C to evaluate
the integrand. It turns out that the convenient choice here is to set z = −i,
leading to considerable simplifications with the result,

ρS
M

(
K̂S
ζ

)
= NMN

′
M exp

(
iSM

(
ζR
)
− i θ∂M

(
ζR, J∂Mζ

I
)

(25)

− i
2
[
J∂Mζ

I, J∂Mζ
I
]
∂M
− 1

2g∂M
(
ζI, ζI

))
.

Here, the normalization factor N ′M corresponds to the remaining integral,

(26) N ′M =
∫
LM̃

exp
(
− i

2 [ξ, ξ]Σ −
1
2ΩΣ(qΣ(ξ), qΣ(ξ))

)
dµ(ξ).
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Since the overall normalization in the Feynman path integral as consid-
ered here is a priori undetermined we may fix it in a convenient way. Indeed,
the unique (region independent) normalization compatible with the core ax-
ioms turns out to be NMN

′
M = 1. What is more, this makes the amplitude

(25) coincide precisely with the amplitude of the holomorphic quantization
scheme as given in Proposition 4.3 of [13]. More precisely, denoting by HS,c

∂M

the subspace of HS
∂M spanned by coherent states, we have ρS

M = ρH
M ◦ B̂∂M

on HS,c
∂M . This implies the complete equivalence of the Schrödinger-Feynman

quantization scheme considered here to the holomorphic quantization scheme
proposed in [13]. In particular, the remaining core axioms (T4), (T3x), (T5a),
(T5b) are also satisfied.

In the following we shall thus omit superscripts that distinguish the dif-
ferent quantization schemes in question and simply write HΣ for the Hilbert
space associated to the hypersurface Σ and ρM for the amplitude map asso-
ciated to the region M . We write the explicit expression of the amplitude on
a coherent state K̂ζ , (25) as

ρM
(
K̂ζ

)
= exp

(
iSM

(
ζR
)
− i θ∂M

(
ζR, J∂Mζ

I
)

(27)

− i
2
[
J∂Mζ

I, J∂Mζ
I
]
∂M
− 1

2g∂M
(
ζI, ζI

))
.

3.4. Linear field theory

Linear field theory arises as a special case of affine field theory, when we are
given a choice of base point “0” in each space AM and AΣ, in a compatible
way.5 This allows to canonically identify AM with LM for every regionM and
AΣ with LΣ for every hypersurface Σ. The axioms of the classical theory can
then be considerably simplified by erasing all separate reference to the spaces
AΣ and AM . Also, we can then consistently set

(28) θΣ(·, ·) := [·, ·]Σ and SM (ξ) := −1
2[ξ, ξ]Σ.

Indeed, it turns out that the explicit mention in the axioms of the symplec-
tic potential θΣ, its linearized version [·, ·]Σ and the action SM is no longer
required. We are left with the axioms for a linear field theory as given in [15].

Unsurprisingly, restricting to the special case of linear field theory pre-
serves the equivalence of the Schrödinger-Feynman quantization scheme with

5Even the existence of such a choice is a non-trivial restriction. Recall the related
discussion in [13].
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the holomorphic quantization scheme. In the linear case the latter was first
proposed in [15]. For completeness, we recall that it is more convenient in the
linear case to use the usual “Fock space” coherent states, or rather their nor-
malized versions. The Schrödinger wave function for the normalized coherent
state K̃τ ∈ HΣ associated to τ ∈ LΣ is then given by [14],

(29) K̃S
τ (φ) = exp

(
i[τ, φ]Σ −

i
2 [τ, τ ]Σ −

1
2ΩΣ (φ− q(τ), φ− q(τ))

)
This is related to (14) through a choice of base point together with a τ -
dependent phase factor, see [13, 14]. Indeed, given a base point 0 ∈ AΣ to
identify AΣ with LΣ and the respective Hilbert spaces we obtain

(30) K̃τ = K̂τ+0 exp
( i

2 [τ, τ ]Σ
)

One may then verify, either by repeating the calculation of Section 3.3 or by
using this relation together with (28) on the result (27) that one obtains for
the amplitude,

(31) ρM
(
K̃τ

)
= exp

(
− i

2g∂M
(
τR, τ I

)
− 1

2g∂M
(
τ I, τ I

))
,

in accordance with Proposition 4.2 in [15]. Here, τ = τR + J∂Mτ
I with τR,

τ I ∈ LM̃ .

4. Observables

4.1. Motivation: Observables in quantum field theory

We recall in this section some basic facts about observables in quantum field
theory that motivate much of the following treatment. The presentation here
may be largely seen as a summary of the more extensive discussion in [16].

In non-relativistic quantum mechanics quantum observables are simply
certain operators on the Hilbert space of the system. They are usually con-
structed through a quantization scheme from classical observables which are
functions on the instantaneous phase space of the system. The operator can
be applied at any time, usually indicating a measurement being performed at
that time. Crucial information is contained in the commutation relations of
these operators, indicating in particular different outcomes of joint measure-
ments when the temporal order of constituent measurements is altered.
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In quantum field theory the situation is quite different.6 The standard
elementary observables, such as field values φ(t, x) are labeled not only with
a position x in space, but also with a time t. They are thus functions not on
phase space, but on a larger space of field configurations in spacetime. While
the quantum observable corresponding to φ(x, t) is still thought of as an
operator on the Hilbert space of the system, the physically relevant operation
for combining such quantum observables does not require the full operator
algebra structure. Rather, the physically relevant composition of quantum
observables is given by the commutative time-ordered product, which orders
the operators according to their time labels. This strongly suggests that the
operator point of view is not the most natural one here.

Indeed, the relation between the time-ordered product and the Feynman
path integral suggests a different point of view. Suppose for simplicity that
we are working with a real scalar field theory in Minkowski space. Consider
a region M = [ta, tb]× R3, where ta < tb and denote by K[ta,tb] the space of
field configurations in M . Consider a classical observable K[ta,tb] → R that
encodes an n-point function,

(32) φ 7→ φ(t1, x1) · · ·φ(tn, xn),

where t1, . . . , tn ∈ [ta, tb]. Given an initial state ψ ∈ Hta at time ta and a final
state η ∈ Htb at time tb, the corresponding matrix element of the time-ordered
product of (32) can be expressed by the Feynman path integral,7

(33)
〈
η,T φ̃(t1, x1) · · · φ̃(tn, xn)ψ

〉
=
∫
K[t1,tb]

ψ(φ|ta)η(φ|tb)φ(t1, x1) · · ·φ(tn, xn) exp
(
iS[ta,tb](φ)

)
dµ(φ).

Here, ψ, η inside the integral are the Schrödinger wave functions of the re-
spective states, φ̃(ti, xi) are the usual quantizations of the classical observables
φ 7→ φ(ti, xi) and T signifies time-ordering. When initial and final states are
taken to be the vacuum, (33) recovers the usual quantum n-point function
that is at the heart of the predictive power of quantum field theory.

The quantization occurring here may thus be seen as the conversion of
a classical observable F : K[ta,tb] → R to a “modified evolution operator” F̂ :

6It should be emphasized that we refer here to the text-book approach to quantum
field theory as it is used for example in high energy physics.

7We use on the left-hand side a notation employing the Heisenberg picture, as is
usual in standard text books on quantum field theory.
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Hta → Htb with matrix elements,

(34)
〈
η, F̂ψ

〉
=
∫
K[ta,tb]

ψ(φ|ta)η(φ|tb)F (φ) exp
(
iS[ta,tb](φ)

)
dµ(φ).

More in line with a GBF perspective we may also view this as a “modified
transition amplitude” ρF[ta,tb] : Hta ⊗H∗tb → C,

(35) ρF[ta,tb](ψ ⊗ ι(η)) =
〈
η, F̂ψ

〉
.

A remarkable property of quantum field theory is a correspondence be-
tween the composition of classical and of quantum observables in this quan-
tization prescription. This was termed composition correspondence in [16]
and comes from a generic property of the path integral. Concretely, consider
times ta < tb < tc. Let F : K[ta,tb] → R be a classical observable in the re-
gion [ta, tb]× R3 and G : K[tb,tc] → R be a classical observable in the region
[tb, tc]× R3. We can extend both F and G trivially to classical observables
K[ta,tc] → R in the region [ta, tc]× R3 and multiply them there as functions.
We call the resulting observable G · F : K[ta,tc] → R. The prescription (34)
then leads to the identity

(36) Ĝ · F = Ĝ ◦ F̂ .

That is, there is a direct correspondence between the classical composition of
observables (via multiplication of functions) and the quantum composition of
observables (via multiplication of operators).

Note that locality properties of the observables are crucial for the corre-
spondence (36). The prescription given above allows only observables with
disjoint supports in spacetime to be composed in this way. Conversely, it
is easy to see that a correspondence as in (36) requires the observables to
be functions on some spacetime configuration space rather than on phase
space (or the space of solutions). For suppose that observables were defined
as functions on the space of solutions. Then, in the above example, the com-
posed classical observable G · F “forgets” the spacetime localization of F and
G, leading essentially to an equality of the type Ĝ · F = F̂ ◦ Ĝ in addition to
Equation (36).8 This in turn would essentially imply Ĝ ◦ F̂ = F̂ ◦ Ĝ, meaning
that all quantum observables, viewed as operators commute, in contradiction
to what we know about quantum (field) theory.

8There are some inessential subtleties to the argument that we are glossing over
here, involving additional relative time-translations.
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It is important to distinguish the composition correspondence (36) from
the much more established Dirac quantization condition relating the commu-
tator of observables quantized as operators to the quantization of the Poisson
bracket of the observables. In the latter, classical observables are necessarily
understood as functions on phase space. For observables D,E this takes the
form

(37) Ẽ ◦ D̃ − D̃ ◦ Ẽ = −i (̃E,D),

where the bracket indicates here the Poisson bracket and quantization is de-
noted with a tilde. In quantum field theory elementary observables at equal
times can also be viewed as functions on phase space and as such realize the
condition (37) in the form of the canonical commutation relations.

4.2. Observables in the GBF

The properties of quantum field theory discussed in the previous section are
suggestive of a concept of quantum observable, introduced in [16], that nat-
urally integrates into the GBF. We elaborate on this in the following.

A quantum observable O is associated to a spacetime regionM and takes
the form of a linear map, called observable map

(38) O : H◦∂M → C,

similar to the amplitude map for the regionM . The most important operation
performed with observables is composition, generalizing the temporal compo-
sition discussed in Section 4.1. This is exactly analogous to the composition
of amplitudes arising from the gluing of regions in the core axioms (T5a)
and (T5b) of Section 2.2. Also, to make the concept of observable useful it is
necessary to consider the space of observables OM for each spacetime region
M . This together with a closedness condition under composition is expressed
through the following axioms, slightly modified from [16].

(O1) Associated to each spacetime region M is a real vector space OM of
linear mapsH◦∂M → C, called observable maps. In particular, ρM ∈ OM .

(O2a) Let M1 and M2 be regions and M = M1 ∪M2 be their disjoint union.
Then, there is an injective bilinear map � : OM1 ×OM2 ↪→ OM such
that for all O1 ∈ OM1 and O2 ∈ OM2 and ψ1 ∈ H◦∂M1

and ψ2 ∈ H◦∂M2
,

(39) O1 �O2(ψ1 ⊗ ψ2) = O1(ψ1)O2(ψ2).
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This operation is required to be associative in the obvious way.

(O2b) Let M be a region with its boundary decomposing as a disjoint union
∂M = Σ1 ∪ Σ ∪ Σ′ and M1 given as in (T5b). Then, there is a linear
map �Σ : OM → OM1 such that for all O ∈ OM and any orthonormal
basis {ξi}i∈I of HΣ and for all ψ ∈ H◦∂M1

,

(40) �Σ (O)(ψ) · c(M ; Σ,Σ′) =
∑
i∈I

O(ψ ⊗ ξi ⊗ ιΣ(ξi)).

This operation is required to commute with itself and with (O2a) in the
obvious way.

We note that the maps � and �Σ are defined in such a way that Equa-
tion (1) in axiom (T5a) can be rewritten as ρM = ρM1 � ρM2 . Similarly, Equa-
tion (2) in axiom (T5b) can be rewritten as ρM1 = �Σ(ρM ).

4.3. Classical observables

We provide in this section a minimal axiomatization of classical observables.
We merely suppose that they form a commutative algebra for each region,
and are subject to the natural operations coming from the gluing of regions.

(CO1) Associated to each spacetime region M is a real unital algebra CM ,
called observable algebra.

(CO2a) Let M1 and M2 be regions and M = M1 ∪M2 be their disjoint union.
Then, there are injective algebra homomorphisms l(M1;M) : CM1 ↪→ CM
and l(M2;M) : CM2 ↪→ CM . This operation is required to be associative in
the obvious way.

(CO2b) Let M be a region with its boundary decomposing as a disjoint union
∂M = Σ1 ∪ Σ ∪ Σ′ and M1 given as in (T5b). Then, there is an alge-
bra homomorphism l(M ;Σ,Σ′) : CM → CM1 . This operation is required to
commute with itself and with (CO2a) in the obvious way.

4.4. Quantization axioms and composition correspondence

So far we have taken from Section 4.1 only the motivation for the general
structure of quantum observables in the GBF. We shall now proceed to “im-
port” and generalize the composition correspondence of quantum field theory,
expressed in Equation (36), into the GBF. Indeed, switching from evolution
operators to amplitudes, it is quite clear how this should be done. We shall
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give a formulation in line with the structure of the core axioms (T5a) and
(T5b).

(X1) Associated to each spacetime region M there is a linear map QM :
CM → OM , called quantization map. Moreover, QM (1) = ρM .

(X2a) Let M1 and M2 be regions and M = M1 ∪M2 be their disjoint union.
Then, the following diagram commutes.

(41) CM1 × CM2

QM1×QM2 //

l(M1;M)×l(M2;M)
��

OM1 ×OM2

�

��

CM × CM
·
��
CM QM

// OM

(X2b) Let M be a region with its boundary decomposing as a disjoint union
∂M = Σ1 ∪ Σ ∪ Σ′ and M1 given as in (T5b). Then, the following dia-
gram commutes.

(42) CM
QM //

l
(M ;Σ,Σ′)

��

OM
�Σ
��

CM1 QM1

// OM1

Axiom (X1) merely establishes the existence of a quantization map. The
composition correspondence is encoded in the combination of axiom (X2a)
and (X2b). In the concrete example of Section 4.1 this can be seen as follows.
In a first step defineM1 = [ta, tb]× R3,M2 = [tb, tc]× R3 and choose F ∈ CM1

and G ∈ CM2 . We apply axiom (X2a). This leads to the formally disjoint union
M = [ta, tb]× R3 ∪ [tb, tc]× R3. In a second step we apply axiom (X2b). That
is, we glue M to itself along the hypersurface Σ = tb × R3 and its copy Σ′.
Call the resulting region M3 = [ta, tc]× R3. This yields the identity

(43) QM3

(
l(M ;Σ,Σ′)

(
l(M1;M)(F ) · l(M2;M)(G)

))
= �Σ (QM1(F ) � QM2(G)) ,

which is equivalent to (36).
Contrary to superficial appearance, the essence of composition correspon-

dence is contained in axiom (X2b) rather than in axiom (X2a). Indeed, axiom
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(X2a) may be interpreted as merely stating that quantization in disjoint re-
gions is independent. This is a generic property that should be expected of
any quantization scheme. Indeed, it is easy to verify axiom (X2a) explicitly
for all quantization schemes for the GBF that were introduced in [16]. In
particular, this includes quantization schemes based on observables defined
on spaces of solutions. As we saw already in Section 4.1 these cannot satisfy
the composition correspondence. We shall come back to this in Section 4.11.

4.5. Feynman quantization of Weyl observables

There is a further element of quantum field theory as discussed in Section 4.2
that we wish to realize in the GBF. This is the concrete prescription for
the quantization of observables via the Feynman path integral exhibited in
expressions (33) and (34). It is straightforwardly generalized to the GBF.

LetM be a region, KM be the configuration space inM and F : KM → R
a classical observable. The quantization of F is then the linear map ρFM :
H∂M → C given by

(44) ρFM (ψ) =
∫
KM

ψ (φ|∂M )F (φ) exp (iSM (φ)) dµ(φ).

The difficulty here is of course in making this integral and its ingredients well
defined. Recall, however, that we have made sense of just such an integral in
Section 3.3 in a very special case. To take advantage of this we restrict from
here onwards to affine field theory.

The second restriction we shall perform is to a special type of observable.
Namely, we consider observables of the form

(45) F (φ) = exp (iD(φ)) ,

where D : KM → R is a linear observable. We shall refer to observables of the
form (45) as Weyl observables.9 The path integral (44) then takes the form

(46) ρFM (ψ) =
∫
KM

ψ (φ|∂M ) exp (i (SM (φ) +D(φ))) dµ(φ).

The peculiarity of this path integral is that we may view the sum SM +D
as a new action. From this point of view we have a path integral without
an observable, but for a new theory. However, the action SM determining an

9We take the name from the Weyl relations, which are about exponentials of
imaginary quantized linear observables, see also Section 4.10.
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affine field theory is polynomial of degree two, so SM +D is still polynomial
of degree two and determines thus another affine field theory. Thus, the path
integral (46) is just a version of the path integral (15). However, for ψ a
coherent state we have given a precise meaning to the latter in Section 3.3.

Indeed, for an affine coherent state K̂ζ ∈ H∂M with ζ ∈ A∂M the observ-
able map (46) should thus be given by expression (27), with the corresponding
substitution of the action,

ρFM

(
K̂ζ

)
= exp

(
iSM

(
ζR
)

+ iD
(
ζR
)
− i θ∂M

(
ζR, J∂Mζ

I
)

(47)

− i
2
[
J∂Mζ

I, J∂Mζ
I
]
∂M
− 1

2g∂M
(
ζI, ζI

))
.

However, recall that we fixed a normalization factor NMN
′
M = 1 to arrive

at this result. In Section 3.3 this was justified by the fact that neither NM

nor N ′M depended on ζ. Here, however, we also need to take into account a
possible dependence of the factors NM and N ′M on the observable D or on the
space AM which in turn depends on D. However, inspecting Equations (19)
and (26) we see that there is no such dependence. (Sq

M in Equation (19)
corresponds to SM here.) This justifies the normalization also in the present
case.

Note that we have assumed implicitly here that the structure of the theory
at the boundary is unaltered by the addition of the linear observable D to the
action SM . This is justified if the observable vanishes in a neighborhood of the
boundary. Since KM is a space of local field configurations this requirement
makes sense. On the other hand, if observables are sufficiently regular it should
not matter if they are altered in an arbitrarily small neighborhood, suggesting
that this requirement can be dropped. In any case this issue turns out not to
matter from the axiomatic perspective taken in the following.

While it is possible to carry through all of the following in affine field
theory, we restrict for simplicity to linear field theory. Then, we have the
substitutions (28) and switch to the normalized “Fock” coherent states (29)
via (30). For the normalized coherent state associated to τ ∈ L∂M we thus
obtain,

ρFM

(
K̃τ

)
= exp

(
iSM

(
τR
)

+ iD
(
τR
)

+ i
2[τR, τR]∂M(48)

− i
2g∂M

(
τR, τ I

)
− 1

2g∂M
(
τ I, τ I

))
.
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Despite superficial appearance, the difference to formula (31) is not only in an
additional phase factor that only depends on τR. Crucially, the decomposition
τ = τR + J∂Mτ

I depends itself on D. This is because τR, τ I are determined
by the requirement τR ∈ AD

M̃
and τ I ∈ LM̃ . And here AD

M̃
is the space of

boundary images of solutions in M of the theory with action SM +D.
The expression (48) can be further simplified by noticing that in the

linear setting the action can be defined in terms of the other structures. For
the action evaluated on solutions of the linear theory this was already used
in Section 3.4 with the corresponding expression given in (28). In the present
setting with observables this generalizes to,

(49) SM (η) = −1
2[η, η]∂M −

1
2D(η),

where η ∈ ADM , i.e., η is a solution of the theory with action SM +D. We may
take this as a definition of the action here, although it is possible to derive
this equation under mild assumptions from Lagrangian field theory (compare
equation (116) in [13]). We may now simplify expression (48) to obtain,

(50) ρFM

(
K̃τ

)
= exp

( i
2D

(
τR
)
− i

2g∂M
(
τR, τ I

)
− 1

2g∂M
(
τ I, τ I

))
.

There is an additional datum that we will need to capture axiomatically.
Recall that in the affine theory axiom (C5) makes a crucial statement about
the action in the form of relation (5). In the present context this amounts to
a statement not only about the action, but also about the linear observables
D. Taking into account (28) it is easily seen that (5) is here equivalent to,

(51) SM (η + ξ) +D(ξ) = SM (η) + SM (ξ)− [η, ξ]∂M ∀η ∈ ADM ,∀ξ ∈ LM ,

where ADM is the space of solutions in M of the theory with action SM +D.
Comparison with expression (49) for the action, evaluated on η on the one
hand and on η + ξ on the other hand yields the identity

(52) D(ξ) = 2ω∂M (ξ, η) ∀η ∈ ADM ,∀ξ ∈ LM .

This might look surprising at first since the left hand side does not depend
on η. However, we recall that any other element η′ ∈ ADM is related to η by an
element of LM which does not contribute in the symplectic form with another
element of LM since LM is isotropic in L∂M . It is easy to see that given (49)
the relations (51) and (52) are actually equivalent.

Note also that property (52) implies that D evaluated on any configura-
tion that is a solution associated with some linear observable only depends



i
i

“2-oec” — 2015/3/6 — 17:24 — page 478 — #28 i
i

i
i

i
i

478 Robert Oeckl

on the boundary image in L∂M of that configuration. In particular the first
term in the exponential on the right-hand side of (50) is well defined. Another
consequence of (52) is a continuity property of D: Noting the equality

(53) D(ξ) = 2ω∂M (ξ, η) = g∂M (ξ,−J∂Mη)

we see that D is continuous on the space LM ⊆ KM with topology induced
from LM̃ , by the Riesz representation theorem for real Hilbert spaces.

4.6. Encoding classical linear field theory with
linear observables

To formalize the setting of Section 4.5 on the classical side we have to add two
ingredients to the axioms of linear classical field theory as given in [15] (or as
obtained by reducing the axioms of Section 3.1 according to Section 3.4). The
first is the space of field configurations KM for each region M . The second
is a space Clin

M of linear observables KM → R for each region M . Moreover,
recalling the discussion of the observable map (50), we need to somehow
assign its space AM of modified solutions in M to every linear observable. To
this end it makes sense to assume that AM is a subspace of KM . Moreover,
recall that AM is an affine space over the vector space LM of solutions of the
linear theory in M . Thus AM , corresponds to a point in the quotient space
KM/LM .

Using generic properties of the action including the variational principle
for classical solutions it is easy to see the following: Given a solution η1 of the
the theory determined by the action SM +D1 and a solution η2 of the theory
determined by the action SM +D2 the configuration η1 + η2 is a solution of
the theory determined by the action SM +D1 +D2. This implies that the
map Clin

M → KM/LM considered above is linear.

(C1) Associated to each hypersurface Σ is a complex separable Hilbert space
LΣ. The inner product in LΣ is denoted by {·, ·}Σ. We also define
gΣ(·, ·) := <{·, ·}Σ and ωΣ(·, ·) := 1

2={·, ·}Σ and denote by JΣ : LΣ →
LΣ the scalar multiplication with i in LΣ. Moreover we suppose there
is a continuous bilinear map [·, ·]Σ : LΣ × LΣ → R such that

(54) ωΣ(φ, φ′) = 1
2[φ, φ′]Σ −

1
2[φ′, φ]Σ ∀φ, φ′ ∈ LΣ.

(C2) Associated to each hypersurface Σ there is a conjugate linear involution
LΣ → LΣ under which the inner product is complex conjugated. We will
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not write these maps explicitly, but rather think of LΣ as identified with
LΣ. Then, {φ′, φ}Σ = {φ′, φ}Σ and we also require [φ, φ′]Σ = −[φ, φ′]Σ
for all φ, φ′ ∈ LΣ.

(C3) Suppose the hypersurface Σ decomposes into a disjoint union of hyper-
surfaces Σ = Σ1 ∪ · · · ∪ Σn. Then, there is an isometric isomorphism of
complex Hilbert spaces LΣ1 ⊕ · · · ⊕ LΣn → LΣ. Moreover, these maps
satisfy obvious associativity conditions. We will not write these maps
explicitly, but rather think of them as identifications. Also, [·, ·]Σ =
[·, ·]Σ1 + · · ·+ [·, ·]Σn .

(C4) Associated to each region M is a real vector space KM and a subspace
LM . Also, there is a real vector space Clin

M of linear maps KM → R as
well as an injective linear map sM : Clin

M ↪→ KM/LM .

(C5) Associated to each region M there is a linear map of real vector spaces
kM : KM → L∂M . We denote by LM̃ the image of the subspace LM un-
der kM . LM̃ is a closed Lagrangian subspace of the real Hilbert space
L∂M with respect to the symplectic form ω∂M . We often omit the ex-
plicit mention of the maps kM . We also require for all D ∈ Clin

M that

(55) D(ξ) = 2ω∂M (ξ, η) if ξ ∈ LM and η ∈ sM (D).

(C6) Let M1 and M2 be regions and M := M1 ∪M2 be their disjoint union.
Then, there is an isomorphism of real vector spaces KM1 ×KM2 → KM

restricting to an isomorphism of subspaces LM1 × LM2 → LM and in-
ducing an isomorphism of complex vector spaces L∂M1 × L∂M2 → L∂M
such that the following diagram commutes.

(56) KM1 ×KM2
//

kM1×kM2
��

KM

kM

��
L∂M1 × L∂M2

// L∂M

Also, there are induced linear injections Clin
M1

↪→ Clin
M and Clin

M2
↪→ Clin

M in
the obvious way. Moreover, the following diagram commutes for i = 1, 2.

(57) Clin
Mi

sMi //

��

KMi/LMi

��
Clin
M sM

// KM/LM
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Furthermore, all these maps satisfy obvious associativity conditions.

(C7) Let M be a region with its boundary decomposing as a disjoint union
∂M = Σ1 ∪ Σ ∪ Σ′, where Σ′ is a copy of Σ. LetM1 denote the gluing of
M to itself along Σ,Σ′ and suppose thatM1 is a region. Note ∂M1 = Σ1.
Then, there is an injective linear map kM ;Σ,Σ′ : KM1 ↪→ KM such that
kM ;Σ,Σ′(LM1) ⊆ LM and

(58) KM1 ↪→ KM ⇒ LΣ as well as LM1 ↪→ LM ⇒ LΣ

are both exact sequences. Here, the arrows on the right hand sides are
compositions of the map kM with the projections of L∂M to LΣ and LΣ′

respectively (the latter identified with LΣ). Moreover, the following di-
agram commutes, where the bottom arrow is the orthogonal projection.

(59) KM1

k
M ;Σ,Σ′

//

kM1
��

KM

kM

��
L∂M1 L∂Moo

Also, there is an induced linear map Clin
M → Clin

M1
in the obvious way and

the following diagram commutes.

(60) Clin
M

sM //

��

KM/LM

Clin
M1 sM1

// KM1/LM1

OO

Note that the spaces of linear observables we have considered here do not
satisfy the axioms of Section 4.3. This is not surprising since they are not
closed under multiplication. However, the observables we actually want to
quantize are not the linear observables, but the Weyl observables. We define
for each region M ,

(61) CWeyl
M :=

{
φ 7→ exp(iD(φ)) : D ∈ Clin

M

}
.

These are not algebras either, but rather multiplicative groups. We can make
them into algebras, however, by allowing linear combinations. Thus, we define

(62) CM :=
{

n∑
i=1

λiFi : λi ∈ C, Fi ∈ CWeyl
M

}
.
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The spaces CM so defined do satisfy the axioms (CO1), (CO2a), (CO2b) of
Section 4.3 with the detail that they are actually complex algebras of complex
observables rather than real algebras of real observables.

4.7. GBQFT of linear field theory with Weyl observables

The quantization of a classical field theory described in terms of the axioms
of Section 4.6 is now straightforward. The Hilbert spaces associated to hy-
persurfaces and the amplitude maps associated to regions are as described in
Section 3, specialized to linear field theory, see in particular Section 3.4. As
already shown in [15] these satisfy the core axioms of the GBF (Section 2.2).

The new ingredients are the observables with their quantization performed
as described in Section 4.5. That is, for each region M we define a linear map
QM : CM → OM as follows. Since CM is the space of linear combinations of
Weyl observables, it is sufficient to define QM on those and extend it to
CM as a complex linear map. Now, for F ∈ CWeyl

M there is D ∈ Clin
M such that

F = exp (iD). We then define QM (F ) := ρFM , where ρFM : H◦∂M → C is given
on coherent states by expression (50) as follows. First note that by axiom
(C4) associated to D is an element sM (D) in the quotient space KM/LM .
As explained previously, this is equivalent to an affine subspace of KM which
we shall denote by ADM . We denote its image in L∂M under kM by AD

M̃
.

Then, L∂M can be decomposed as a generalized direct sum L∂M = AD
M̃
⊕

J∂MLM̃ (compare Lemma 3.2 in [13]). That is, given τ ∈ L∂M , there are
unique elements τR ∈ AD

M̃
and τ I ∈ LM̃ such that τ = τR + J∂Mτ

I. Then, we
define

(63) ρFM

(
K̃τ

)
:= exp

( i
2D

(
τR
)
− i

2g∂M
(
τR, τ I

)
− 1

2g∂M
(
τ I, τ I

))
.

This yields a definition of the quantization map QM for the region M
as well as of the set of observable maps OM as its image. Moreover, the
constant function with value 1, F = 1 is a Weyl observable obtained from the
linear function with value 0 for which formula (63) just yields the ordinary
amplitude (31). In particular, 1 ∈ CM and QM (1) = ρM . Thus axioms (O1)
and (X1) are satisfied.

Consider now two regionsM1,M2 and their disjoint unionM = M1 ∪M2.
Let D1 ∈ Clin

M1
and D2 ∈ Clin

M2
. According to axiom (C6) the linear observables

obtained by extending the domains of D1 and D2 from KM1 and KM2 to
KM = KM1 ×KM2 in the obvious way are contained in CM and so is thus
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their sum, which we shall denote by D. Explicitly,

(64) D(φ1, φ2) = D1(φ1) +D2(φ2) ∀φ1 ∈ KM1 , ∀φ2 ∈ KM2 .

The corresponding Weyl observables F1 = exp (iD1), F2 = exp (iD2) and
F = exp (iD) are thus elements of the respective spaces F1 ∈ CWeyl

M1
, F2 ∈

CWeyl
M2

, F ∈ CWeyl
M and we have

(65) F (φ1, φ2) = F1(φ1) · F2(φ2) ∀φ1 ∈ KM1 , ∀φ2 ∈ KM2 .

Now by axiom (C6) we have AD
M̃

= AD1
M̃1
× AD2

M̃2
. In particular the decom-

position L∂M = AD
M̃
⊕ J∂MLM̃ splits into a corresponding decomposition for

each of the regions M1, M2 separately. We also recall [15] that given τ =
τ1 + τ2 with τ ∈ L∂M , τ1 ∈ L∂M1 , τ2 ∈ L∂M2 the normalized coherent state
K̃τ ∈ H∂M factorizes as

(66) K̃τ = K̃τ1 ⊗ K̃τ2

with K̃τ1 ∈ H∂M1 and K̃τ2 ∈ H∂M2 . Thus, the observable map (63) obtained
by quantizing F factorizes completely,

ρFM (K̃τ1 ⊗ K̃τ2) = ρFM (K̃τ ) = ρF1
M1

(K̃τ1)ρF2
M2

(K̃τ2)(67)
=
(
ρF1
M1
� ρF2

M2

)
(K̃τ1 ⊗ K̃τ2).

Since coherent states are dense in the boundary state spaces and Weyl ob-
servables generate the observable algebras as vector spaces, this is sufficient
to prove that axioms (O2a) and (X2a) hold.

As explained in Section 4.4 the most interesting and non-trivial axiom is
(X2b) as this encodes composition correspondence. We proceed to prove it in
the present context, together with (O2b). First we need a special identity.

Lemma 4.1. Let M be a region and D ∈ Clin
M . Define F ∈ CWeyl

M as F :=
exp (iD). Given η ∈ AD

M̃
and ξ ∈ L∂M the following identity holds,

(68) ρFM

(
K̃η+ξ

)
= ρM

(
K̃ξ

)
exp

( i
2D(η) + iω∂M (ξ, η)

)
.

Proof. Let ξ = ξR + J∂Mξ
I be the decomposition of ξ such that ξR, ξI ∈ LM̃ .

Then, η + ξ = (η + ξR) + J∂Mξ
I with η + ξR ∈ AD

M̃
. Thus, with expression (63)
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we obtain,

ρFM

(
K̃η+ξ

)
= exp

( i
2D

(
η + ξR

)
− i

2g∂M
(
η + ξR, ξI

)
− 1

2g∂M
(
ξI, ξI

))
(69)

= ρM
(
K̃ξ

)
exp

( i
2D

(
η + ξR

)
− i

2g∂M
(
η, ξI

))
= ρM

(
K̃ξ

)
exp

( i
2D (η) + iω∂M

(
ξR, η

)
− i

2g∂M
(
η, ξI

))
= ρM

(
K̃ξ

)
exp

( i
2D (η) + iω∂M (ξ, η)

)
.

Here we have used the identity (55) of axiom (C5). �

Proposition 4.2. Let M be a region with its boundary decomposing as a
disjoint union ∂M = Σ1 ∪ Σ ∪ Σ′ and M1 given as in (T5b). Let D ∈ Clin

M

and define F ∈ CWeyl
M by F = exp (iD). Also we denote by D1 the induced

element in Clin
M1

and define F1 ∈ CWeyl
M1

by F1 = exp (iD1). Given, moreover,
an orthonormal basis {ξi}i∈I of HΣ we have for all ψ ∈ H◦Σ1

,10

(70) ρF1
M1

(ψ) · c(M ; Σ,Σ′) =
∑
i∈I

ρFM (ψ ⊗ ξi ⊗ ιΣ(ξi)) .

Proof. Since the space spanned by coherent states is dense in H◦Σ1
it will

be enough to take ψ to be a coherent state. To this end choose η1 ∈ AD1
M1

:=
sM1(D1). According to diagram (60) in axiom (C7) there is η ∈ ADM1

:= sM (D)
such that η = kM ;Σ,Σ′(η1). That is, we choose a solution η1 of the theory
determined by SM1 +D1 in M1. This induces a solution η of the theory with
action SM +D in M . This should really be thought of as the same solution,
just living in the larger configuration space KM rather than in KM1 . Indeed,
diagram (60) ensures that the boundary image on Σ1 is the same for η and
η1. We denote this boundary image by η̃1. Similarly, we denote the boundary
images of η on Σ and Σ′ by η̃Σ and η̃Σ′ . The left hand diagram of (58)
then ensures the intuitively obvious equality η̃Σ = η̃Σ′ . We then obtain for all

10We refer to [15] for details concerning the integral and related notation.
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δ ∈ LΣ1 the following equality, equivalent to (70).

∑
i∈I

ρFM

(
K̃η̃1+δ ⊗ ξi ⊗ ιΣ(ξi)

)
(71)

=
∫
L̂Σ

ρFM

(
K̃η̃1+δ ⊗ K̃τ ⊗ K̃τ

)
exp

(1
2gΣ(τ, τ)

)
dνΣ(τ)(72)

=
∫
L̂Σ

ρFM

(
K̃η̃1+δ ⊗ K̃η̃Σ+τ ⊗ K̃η̃Σ+τ

)
exp

(1
2gΣ(τ, τ)

)
dνΣ(τ)(73)

= exp
( i

2D (η) + iωΣ1 (δ, η̃1)
)

∫
L̂Σ

ρM
(
K̃δ ⊗ K̃τ ⊗ K̃τ

)
exp

(1
2gΣ(τ, τ)

)
dνΣ(τ)(74)

= exp
( i

2D (η) + iωΣ1 (δ, η̃1)
)∑
i∈I

ρM
(
K̃δ ⊗ ξi ⊗ ιΣ(ξi)

)
(75)

= exp
( i

2D1 (η1) + iωΣ1 (δ, η̃1)
)
ρM1

(
K̃δ

)
c(M ; Σ,Σ′)(76)

= ρF1
M1

(
K̃η̃1+δ

)
c(M ; Σ,Σ′).(77)

We recall from [15] that the sum over an orthogonal basis in (71) can be
replaced by an integral over coherent states. For normalized coherent states
this takes the form (72). We refer the reader to [15] for more details about
the integral involved as well as the notation used. The step from (72) to (73)
is an application of Proposition 3.11 of [15], that consists in a “shifting of the
integrand”. Applying Lemma 4.1 then yields expression (74). Note here that
the contribution from Σ and Σ′ to ω∂M cancel each other due to the opposite
orientations, leaving only a ωΣ1-term. We proceed to replace the integral with
a sum over an orthonormal basis to obtain (75). Applying now axiom (T5b)
yields (76). Here we have also used D(η) = D1(η1). Finally, applying again
Lemma 4.1 yields (77). �

We note that in terms of the notation introduced in axiom (O2b), expres-
sion (70) can be written as,

(78) ρF1
M1

= �Σ
(
ρFM

)
.

By linearity, this equation holds for all observables F ∈ CM and not only
for the Weyl observables. Thus, Equation (78) is precisely equivalent to the
commutative diagram of (X2b), demonstrating the validity of the axiom. The
validity of the much weaker statement of axiom (O2b) is then implied.
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This concludes the rigorous demonstration that the GBQFT with observ-
ables obtained by applying the proposed quantization scheme to the axiom
system of Section 4.6 satisfies in addition to the core axioms (Section 2.2) not
only the observable axioms (Section 4.2), but also the quantization axioms
(Section 4.4), including the important principle of composition correspon-
dence.

4.8. Factorization

A powerful tool in deriving properties of quantum field theory (for example
Feynman rules) is the “generating function” or “kernel” of the S-matrix, see
e.g. [22, 23]. This is essentially the S-matrix of free quantum field theory
modified by a source field and evaluated between initial and final coherent
states. Using the notation for a real Klein-Gordon theory for simplicity this
takes the form

(79) 〈K̃τout , Sµ K̃τin〉 = 〈K̃τout , K̃τin〉

exp
(

i
∫
µ(x)τ̂(x) dx

)
exp

( i
2

∫
µ(x)GF (x, x′)µ(x′) dxdx′

)
.

Here µ is the source field, GF is the Feynman propagator and τ̂ is a com-
plex solution of the Klein-Gordon equation determined by initial and final
boundary conditions given by τin and τout respectively.

From a GBF point of view Sµ determines an amplitude ρµM of the theory
with source. For comparison we denote the amplitude for the theory without
source by ρM . The coherent states can be combined into a single boundary
coherent state K̃τ = K̃τin ⊗ K̃τout . Equality (79) thus takes the form

(80) ρµM (K̃τ ) = ρM (K̃τ )

exp
(

i
∫
µ(x)τ̂(x) dx

)
exp

( i
2

∫
µ(x)GF (x, x′)µ(x′) dxdx′

)
.

Here we may think of M as determined by the asymptotic limit tin → −∞,
tout →∞ of the region [tin, tout]× R3 in Minkowski space.

Intriguingly, it was found in [8, 9] that the very same expression (80)
describes the (asymptotic limit for R→∞ of the) amplitude for a region
of the form M = R×B3

R. Here, B3
R denotes the ball of radius R in space,

centered at the origin. This was at the heart there of the proof that this
asymptotic amplitude is equivalent to the usual S-matrix in Minkowski space.
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Indeed, as was already shown in [13] (from a slightly different perspective
than the one we shall take here) the identity (80) is merely the incarnation of
a much more general identity in the GBF. To see this we think of the source
field µ as determining a linear function from field configurations to the real
numbers,

(81) D(φ) :=
∫
µ(x)φ(x) dx.

While in [13] this was considered as modifying the action, here we consider
it as giving rise to a Weyl observable F := exp(iD). Of course, we know
from Section 4.5 that both points of view are intimately related. Indeed, the
following identity is essentially equivalent to equation (119) in [13].

Proposition 4.3. LetM be a region, D ∈ Clin
M , F := exp(iD), and τ ∈ L∂M .

Define τ̂ ∈ LC
∂M as τ̂ := τR − iτ I, where τ = τR + J∂Mτ

I and τR, τ I ∈ LM̃ .
Then,

(82) ρFM

(
K̃τ

)
= ρM (K̃τ )F (τ̂) ρFM

(
K̃0
)
.

Moreover, we have

(83) ρFM

(
K̃0
)

= exp
( i

2D(ηD)− 1
2g∂M (ηD, ηD)

)
,

where ηD ∈ ADM̃ ∩ J∂ML∂M is unique.

Proof. We start with the second identity (83) and the special element ηD. The
existence and uniqueness of ηD can be seen by taking any element φ ∈ AM̃
and decomposing it as φ = φR + J∂Mφ

I with φR, φI ∈ L∂M . Then, it is easy
to see that ηD = J∂Mφ

I is unique. We apply now Lemma 4.1 with η := ηD
and ξ := −ηD. Combining this with the amplitude map (31) yields (83).

We turn to the first identity (82). We set in Lemma 4.1 η := ηD and
ξ := τ − ηD. Thus,
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ρFM

(
K̃τ

)
= ρM

(
K̃τ−ηD

)
exp

( i
2D(ηD) + iω∂M (τ − ηD, ηD)

)
(84)

= ρM
(
K̃τ

)
exp

(
iω∂M

(
τR, J∂Mτ

I
)

+ 1
2g∂M

(
J∂Mτ

I, J∂Mτ
I
)
− iω∂M

(
τR, J∂Mτ

I − ηD
)

− 1
2g∂M

(
J∂Mτ

I − ηD, J∂Mτ I − ηD
)

+ i
2D(ηD) + iω∂M

(
τR, ηD

))
= ρM

(
K̃τ

)
exp

(
2iω∂M

(
τR, ηD

)
+ 2ω∂M

(
τ I, ηD

))
exp

( i
2D(ηD)− 1

2g∂M (ηD, ηD)
)

Here we have used expression (31) for the respective amplitudes in the first
step. It remains to observe that with (83) and (55) from axiom (C5) we obtain
expression (82). �

Let us emphasize that the three factors on the right hand side of (82)
reproduce precisely the three factors on the right hand side of (80) in the
example at hand. In particular, τ̂ in (80) is precisely given by the equation
τ̂ = τR − iτ I induced by the decomposition L∂M = LM̃ ⊕ J∂MLM̃ . The only
factor for which the coincidence is not so obvious is the “vacuum expectation
value” of the Weyl observable (83). To see this, we rewrite (83) as follows,

ρFM

(
K̃0
)

= exp
( i

2D(ηD)− ω∂M (ηD, J∂MηD)
)

(85)

= exp
( i

2D (ηD − iJ∂MηD)
)
.

In the second line we have applied relation (55) of axiom (C5) and taken
the liberty of extending D complex linearly to complexified configurations.
Now, note that J∂MηD ∈ LM̃ since ηD ∈ J∂MLM̃ . That is ηD − iJ∂MηD is still
a solution, now complex, of the inhomogeneous Klein-Gordon equation with
source µ. Moreover, on the boundary ofM we have ηD − iJ∂MηD ∈ P+(L∂M ),
where P+(L∂M ) ⊆ LC

∂M is the polarized subspace of the complexified bound-
ary solution space defined by

(86) P+(L∂M ) := {ξ − iJ∂Mξ : ξ ∈ L∂M}.
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This is precisely the Feynman boundary condition. That is, ηD − iJ∂MηD as
a spacetime configuration takes the form,

(87) (ηD − iJ∂MηD)(x) =
∫
GF (x, x′)µ(x′) dx′.

Combining this with (85) and (81) yields the third factor in (80).
It was shown in [16] that a related identity holds for a much larger class

of observables. This was termed the coherent factorization property as it ap-
plies to coherent states. Concretely, it was suggested in [16] that Schrödinger-
Feynman quantization exhibits this property. On the other hand, for two
other quantization schemes (Berezin-Toeplitz and normal ordering) it was
rigorously shown to hold.

Proposition 4.4 (Coherent Factorization Property). Let M be a regu-
lar region, F ∈ CM and τ ∈ L∂M . Define τ̂ ∈ LC

∂M as τ̂ := τR − iτ I, where τ =
τR + J∂Mτ

I and τR, τ I ∈ LM̃ . Define F ′ ∈ CM by F ′(ξ) := F (ξ + τ̂). Then,

(88) ρFM

(
K̃τ

)
= ρM

(
K̃τ

)
ρF

′

M

(
K̃0
)
.

Proof. Since F ∈ CM there are D1, . . . , Dn ∈ Clin
M such that F =

∑n
k=1 λkFk

with Fk = exp(iDk). Moreover, we have

(89) F ′ =
n∑
k=1

λkF
′
k =

n∑
k=1

λkFk (τ̂)Fk

since the Fk are Weyl observables. Now by linearity of the quantization map
QM together with identity (82) we have

ρFM

(
K̃τ

)
=

n∑
k=1

λk ρ
Fk
M

(
K̃τ

)
= ρM

(
K̃τ

) n∑
k=1

λk Fk (τ̂) ρFk
M

(
K̃0
)

(90)

= ρM
(
K̃τ

) n∑
k=1

λk ρ
F ′

k
M

(
K̃0
)

= ρM
(
K̃τ

)
ρF

′

M

(
K̃0
)
.

�

Note that the argument of Proposition 4.4 is reversible. Using linearity of
the quantization mapQM we can deduce (82) from (88) for Weyl observables.
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4.9. More general observables

Weyl observables have another advantage besides that exploited in Section 4.5:
They may serve as generators for other types of observables. Indeed, a linear
observable D ∈ Clin

M may be obtained as the first derivative of a corresponding
Weyl observable with a parameter λ ∈ R inserted. Concretely,

(91) D = −i ∂
∂λ

exp (iλD)
∣∣∣∣
λ=0

Since the quantization map QM is linear we may commute it with the deriva-
tive. Defining F := exp (iλD) we thus have,

(92) ρDM = −i ∂
∂λ
ρFM

∣∣∣∣
λ=0

.

In fact it is easy to evaluate this using Proposition 4.3. Thus, Equations (82)
and (83) yield,

ρDM

(
K̃τ

)
= −i ∂

∂λ
ρM (K̃τ ) exp

(
iλD(τ̂) + i

2λ
2D(ηD)− 1

2λ
2g∂M (ηD, ηD)

)∣∣∣∣
λ=0

= ρM (K̃τ )D(τ̂).(93)

Not unexpectedly, the quantization of a linear observable is particularly
simple.

Polynomial observables can be generated similarly. Thus, suppose we are
interested in the product observable D1 · · ·Dn, where D1, . . . , Dn ∈ Clin

M are
linear observables. Then,

(94) D1 · · ·Dn = (−i)n ∂

∂λ1
· · · ∂

∂λn
exp

(
i
n∑
k=1

λkDk

)∣∣∣∣∣
λ1=0,...,λn=0

.

Setting

(95) G := D1 · · ·Dn and F := exp
(

i
n∑
k=1

λkDk

)
,

linearity of the quantization map QM may be used again, yielding

(96) ρGM = (−i)n ∂

∂λ1
· · · ∂

∂λn
ρFM

∣∣∣∣
λ1=0,...,λn=0

.

To evaluate this, one may again use Proposition 4.3, although the result will
be more complicated due to the contribution from the “vacuum expectation
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value” (83) which becomes non-trivial. We merely exhibit the quadratic case
n = 2 here,

ρD1D2
M

(
K̃τ

)
= ρM

(
K̃τ

)(
D1(τ̂)D2(τ̂)− i

2D1(ηD2)− i
2D2(ηD1)(97)

+ g∂M (ηD1 , ηD2)
)
.

We may also straightforwardly combine Weyl observables with polynomials.
It is easily seen that all the axioms are compatible with an extension of

the observable algebra CM from linear combinations of Weyl observables to,
say, all possible products of polynomials with Weyl observables. This comes
really all down to the linearity of the quantization map. Worries about the well
definedness of observable maps do not arise since, as we have seen, evaluations
on coherent states are always well defined. Thus, even though we have confined
ourselves thus far mainly to Weyl observables, the principal results (axioms
of Sections 4.3 and 4.4 and Proposition 4.4) hold for a much wider class of
observables.

As a basic example of the identity (97) we consider the relation between
the vacuum expectation value of the time-ordered two-point function and the
Feynman propagator in quantum field theory. To this end, we specialize the
identity (97) to the vacuum state and rewrite it, using (55) of axiom (C5),

ρD1D2
M

(
K̃0
)

= − i
2D1(ηD2)− i

2D2(ηD1) + g∂M (ηD1 , ηD2)(98)

= − i
2D1(ηD2)− i

2D2(ηD1) + ω∂M (ηD1 , J∂MηD2)

+ ω∂M (ηD2 , J∂MηD1)

= − i
2D1 (ηD2 − iJ∂MηD2)− i

2D2 (ηD1 − iJ∂MηD1) .

Here we have extended D1 and D2 to complex linear observables on the
complexified configuration space.

As in the example of Section 4.8 we consider a real Klein-Gordon field
in Minkowski space and take a region M = [t, t′]× R3 determined by a time
interval [t, t′]. The observables of interest are now the point-wise evaluations,

(99) D1(φ) = φ(x1), D2(φ) = φ(x2),

where x1, x2 ∈ [t, t′]× R3. Even though these observables are not continuous
and thus not elements of Clin

M , we may treat them in a distributional sense,
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with certain limitations. The associated inhomogeneous Klein-Gordon equa-
tions have δ-function sources at x1 and x2 respectively. Thus, ηD1 − iJ∂MηD1

and ηD2 − iJ∂MηD2 are corresponding fundamental solutions. Moreover, they
satisfy precisely the Feynman boundary conditions. (Compare the discussion
in Section 4.8.) Thus, they are versions of the Feynman propagator,

(100) (ηD1 − iJ∂MηD1)(x) = GF (x, x1), (ηD2 − iJ∂MηD2)(x) = GF (x, x2).

Inserting this into (98) and taking into account the symmetry of the Feynman
propagator yields the expected result,

(101) 〈K̃0,Tφ(x1)φ(x2)K̃0〉 = ρD1D2
M (K̃0) = −iGF (x1, x2).

4.10. Canonical commutation relations

So far we have not mentioned the Dirac quantization condition (37) of Sec-
tion 4.1. The main reason for this is that we have focused so far on Weyl
observables. In quantum field theory these do not satisfy the Dirac quanti-
zation condition. With the considerations of Section 4.9 we also have at our
disposal linear observables, for which the Dirac quantization condition re-
duces to the canonical commutation relations. These are satisfied in quantum
field theory. We shall show in this section that they can be made sense of also
in the present setting and are indeed satisfied for linear observables.

An immediate observation about the relation (37) is that from the GBF
perspective it is a statement for “infinitesimally thin” regions. This is so
because the relation pretends to compose a region (where D lives) with a
copy of itself (where E lives) to obtain the same region again (where the
observable on the right hand side lives). We recall from Section 2.1 that these
regions are called slice regions. Consider the slice region Σ̂ associated to the
hypersurface Σ with boundary ∂Σ̂ = Σ ∪ Σ′, where Σ′ is a copy of Σ. For
D,E ∈ Clin

Σ̂ the relation (37) can be transcribed as,11

(102) ρEΣ̂ �Σ ρ
D
Σ̂ − ρ

D
Σ̂ �Σ ρ

E
Σ̂ = ρKΣ̂ .

Here K is given as

(103) K = −i (E,D),

11Note that we are committing slight abuse of notation here. The term ρE
Σ̂ �Σ ρ

D
Σ̂

should strictly speaking be written as �Σ
(
ρE

Σ̂ � ρ
D
Σ̂

)
etc.
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where the bracket is supposed to be the Poisson bracket. This seems to raise a
difficulty. The observables here are not functions on the phase space LΣ̂, where
the Poisson bracket is defined, but on the larger space KΣ̂. Simply restricting
the observables E,D to the subspace LΣ̂ ⊆ KΣ̂ makes their Poisson bracket
(E,D) well defined. However, (E,D) is then a function on LΣ̂ and not on KΣ̂.
But E and F are linear, so their Poisson bracket is a constant function on
LΣ̂ which we extend to a function with the same constant value on KΣ̂. So,
with these details understood, the canonical commutation relations do make
sense.

We take the structure of LΣ̂ as a symplectic vector space to come from
identifying LΣ̂ with LΣ (rather than with LΣ′). For the orderings in (102) to
correspond to the orderings (37) this means that in ρEΣ̂ �Σ ρ

D
Σ̂ the Σ-side of Σ̂

in the first term has to be glued to the Σ′-side of Σ̂ in the second term. For a
linear observable D, the Hamiltonian vector field xD is translation invariant
and may thus be identified with an element in LΣ̂. Concretely, xD is defined
by the equation,

(104) D(ξ) = 2ωΣ(ξ, xD) ∀ξ ∈ LΣ̂.

This equation is reminiscent of Equation (55) in axiom (C5). Indeed, writing
the latter using ηD as defined in Proposition 4.3 we obtain a simple relation
between xD ∈ LΣ and ηD ∈ L∂Σ̂ = LΣ × LΣ′ :

(105) ηD =
(1

2xD,−
1
2xD

)
.

To see this relation we first note that while L ˜̂Σ ⊆ L∂Σ̂ consists of the elements
(ξ, ξ), the space J∂Σ̂L ˜̂Σ ⊆ L∂Σ̂ consists precisely of the elements (ξ,−ξ) for
ξ ∈ LΣ. Thus, both sides of (105) are elements of J∂Σ̂L ˜̂Σ ⊆ L∂Σ̂. It remains
to verify that (104) and (55) are equivalent, given (105),

(106) 2ωΣ(ξ, xD) = 2ωΣ

(
ξ,

1
2xD

)
+ 2ωΣ′

(
ξ,−1

2xD
)

= 2ω∂Σ̂(ξ, ηD).

Equipped with the Hamiltonian vector fields the Poisson bracket can be
conveniently expressed in terms of the symplectic structure,

(107) (E,D) = 2ωΣ (xE , xD) .

So we can write the canonical commutation relations (102) as follows,

(108) ρEΣ̂ �Σ ρ
D
Σ̂ − ρ

D
Σ̂ �Σ ρ

E
Σ̂ = −2iωΣ (xE , xD) ρΣ̂.
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In order to prove that they hold it will be convenient to explore the operator
product of observables first for Weyl observables.

Proposition 4.5. Let Σ be a hypersurface and Σ̂ the associated slice region.
Let D,E ∈ Clin

Σ̂ and xD, xE ∈ LΣ the associated Hamiltonian vector fields.
Define F := exp(iD), G := exp (iE) and the order of composition as specified
previously. Then,

(109) ρFΣ̂ �Σ ρ
G
Σ̂ = exp

(
− i

2D(ηE)− i
2E(ηD) + iωΣ(xD, xE)

)
ρF ·GΣ̂ .

Proof. As usual we demonstrate this on coherent states. We remark that
(xE , 0) ∈ AEΣ̂ and (0,−xD) ∈ ADΣ̂ and thus by linearity of sΣ̂, (xE ,−xD) ∈
AD+E

Σ̂ . Then, given τ1, τ2 ∈ LΣ we have,(
ρFΣ̂ �Σ ρ

G
Σ̂

) (
K̃τ1+xE

⊗ K̃τ2−xD

)
(110)

=
∫
L̂Σ

ρGΣ̂

(
K̃τ1+xE

⊗ K̃ξ

)
ρFΣ̂

(
K̃ξ ⊗ K̃τ2−xD

)
exp

(1
2gΣ(ξ, ξ)

)
dνΣ(ξ)(111)

= exp
( i

2E ((xE , 0)) + i
2D ((0,−xD))

+ iω∂Σ̂ ((τ1, ξ), (xE , 0)) + iω∂Σ̂ ((ξ, τ2), (0,−xD))
)

∫
L̂Σ

ρΣ̂

(
K̃τ1 ⊗ K̃ξ

)
ρΣ̂

(
K̃ξ ⊗ K̃τ2

)
exp

(1
2gΣ(ξ, ξ)

)
dνΣ(ξ)(112)

= exp
(
− i

2D ((xE , 0))− i
2E ((0,−xD))

)
exp

( i
2(D + E) ((xE ,−xD))(113)

+ iω∂Σ̂ ((τ1, τ2), (xE ,−xD))
)
ρΣ̂

(
K̃τ1 ⊗ K̃τ2

)
= exp

(
− i

2D ((xE , 0))− i
2E ((0,−xD))

)
ρF ·GΣ̂

(
K̃τ1+xE

⊗ K̃τ2−xD

)
(114)

= exp
(
− i

2D
((1

2xE ,−
1
2xE

))
− i

2E
((1

2xD,−
1
2xD

))
− i

4D ((xE , xE)) + i
4E ((xD, xD))

)
ρF ·GΣ̂

(
K̃τ1+xE

⊗ K̃τ2−xD

)
(115)

= exp
(
− i

2D (ηE)− i
2E (ηD)

− i
2ωΣ (xE , xD) + i

2ωΣ (xD, xE)
)
ρF ·GΣ̂

(
K̃τ1+xE

⊗ K̃τ2−xD

)
(116)
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The first step from (110) to (111) is given by the definition of the gluing opera-
tion for observable map. Here this is really the combination of two operations.
The first is the gluing of two copies of Σ̂ to their disjoint union (defined as
in axiom (O2a)), the second is the gluing of this region to itself (defined as
in axiom (O2b)) to obtain a single copy of Σ̂. Note that the gluing anomaly
factor in this case is unity as follows from core axiom (T3x). (112) is obtained
by applying Lemma 4.1 to both observable maps. To obtain (113) core axiom
(T5a) combined with (T5b) is applied. At the same time the argument of the
exponential factor is manipulated in a straightforward way. Then, Lemma 4.1
is applied again to yield expression (114). In the following steps relation (106)
is used as well as Equation (104). �

Before proceeding, let us remark on the possible impression of a tension
between Proposition 4.5 and the Dirac quantization condition on the one hand
and composition correspondence on the other. Indeed, it might appear that
composition correspondence implies that a modified version of Equation (109)
should hold, where the exponential factor is simply removed. Actually, com-
position correspondence does imply a similar relation, which we may write
as,

(117) ρFΣ̂ �Σ ρ
G
Σ̂ = ρF̃ ·G̃Σ̂ .

This follows from axioms (X2a) and (X2b). The definition of F̃ is given by,

(118) F̃ = l(Σ̂∪Σ̂;Σ,Σ′) ◦ l(Σ̂;Σ̂∪Σ̂)(F ).

(The discussion of G̃ is analogous.) Here we have used the notation defined
in axioms (CO2a) and (CO2b) of Section 4.3. To explain, l(Σ̂;Σ̂∪Σ̂) extends
F from KΣ̂ to KΣ̂ ×KΣ̂ trivially, i.e., by ignoring the second factor. Then,
l(Σ̂∪Σ̂;Σ,Σ′) restricts to a dependence on the subspace KΣ̂ ⊆ KΣ̂ ×KΣ̂, ob-
tained as the subspace of those configurations that match at the boundaries
to be glued. This subspace is determined by the inclusion map kΣ̂∪Σ̂;Σ,Σ′ :
KΣ̂ ↪→ KΣ̂ ×KΣ̂ given in axiom (C7). Here, the fact that our observables de-
pend on more general configurations and not merely on classical solutions is
crucial. For, restricting to the latter, the map kΣ̂∪Σ̂;Σ,Σ′ takes the simple form

(119) kΣ̂∪Σ̂;Σ,Σ′(ξ) = (ξ, ξ) ∀ξ ∈ LΣ̂.

This is due to the second of the exact sequences (58) in axiom (C7). As a
consequence,

(120) F̃ (ξ) = F (ξ) ∀ξ ∈ LΣ̂.
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That is, restricted to classical solutions F and F̃ are identical. This does not
mean, however, that they are identical on all configurations nor that their
quantizations coincide (as is made clear by the presence of the factor (83) in
Proposition 4.3). Indeed, take an element ξ ∈ KΣ̂ that has a boundary image
not in the subspace L ˜̂Σ. Then, kΣ̂∪Σ̂;Σ,Σ′ cannot take the form (119) for this
element, as that would violate the first of the exact sequences (58) in axiom
(C7). Thus, F̃ and F are in general not identical. Indeed, Proposition 4.5
precisely quantifies part of this difference.

An immediate consequence of Proposition 4.5 are the Weyl relations,12

(121) ρFΣ̂ �Σ ρ
G
Σ̂ = ρGΣ̂ �Σ ρ

F
Σ̂ exp (2iωΣ(xD, xE)) .

It is also straightforward now, using the derivative method of Section 4.9, to
extract the corresponding result for linear observables from Proposition 4.5.

Proposition 4.6. Let Σ be a hypersurface and Σ̂ the associated slice region.
Let D,E ∈ Clin

Σ̂ and xD, xE ∈ LΣ be the associated Hamiltonian vector fields.
Then,

(122) ρDΣ̂ �Σ ρ
E
Σ̂ = ρD·EΣ̂ +

( i
2D(ηE) + i

2E(ηD)− iωΣ(xD, xE)
)
ρΣ̂.

Proof. We replace in expression (109) of Proposition 4.5, D with λD and E
with µE. Then we take on both sides the derivative

(123) − ∂

∂λ

∂

∂µ

and evaluate at λ = µ = 0. �

Finally, from expression (122) it is immediate to derive the canonical com-
mutation relations in the form (108).

4.11. Comparison with other quantization schemes

In this section we shall compare the Schrödinger-Feynman quantization scheme
for observables with two other natural quantization schemes in the same con-
text of linear field theory. These other quantization schemes are based on
viewing observables as functions on phase space rather than on spacetime

12Note that the Weyl relations are formulated here for quantizations of expo-
nentials of imaginary linear observables rather than for exponentials of imaginary
quantized linear observables as is customary.
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configuration space. Thus, as explained in Section 4.1, composition correspon-
dence must fail for these quantization schemes. We shall be able to quantify
this failure.

The first quantization scheme to be considered is Berezin-Toeplitz quan-
tization. In the context of the GBF this was introduced in [16]. It takes an
extremely simple form in the holomorphic representation. Let M be a re-
gion and F : LM̃ → C be a function (with suitable analyticity properties, see
[16]). Then its Berezin-Toeplitz quantization, denoted here ρJFI

M : H∂M → C,
is given for a state ψ ∈ H∂M by the integral formula,

(124) ρJFI
M (ψ) :=

∫
L̂M̃

ψH(ξ)F (ξ) dνM̃ (ξ).

Here ψH denotes the wave function of the state ψ in the holomorphic rep-
resentation. As shown in [16], this quantization scheme reduces in the case
of a slice region precisely to anti-normal ordering. It was also shown in [16]
that this quantization scheme satisfies the coherent factorization property,
i.e., the analogue of Proposition 4.4. Restricting to Weyl observables yields
the following analogue of the factorization property of Proposition 4.3.

Proposition 4.7. Let M be a region, D : LM → R linear and continuous
and τ ∈ L∂M . Define F : LM → C by F := exp(iD). Define τ̂ ∈ LC

∂M as τ̂ :=
τR − iτ I, where τ = τR + J∂Mτ

I and τR, τ I ∈ LM̃ . Then,

(125) ρJFI
M

(
K̃τ

)
= ρM (K̃τ )F (τ̂) ρJFI

M

(
K̃0
)
.

Moreover, we have

(126) ρJFI
M

(
K̃0
)

= exp (−g∂M (ηD, ηD)) ,

where ηD ∈ J∂ML∂M is uniquely determined by D(ξ) = 2ω∂M (ξ, ηD) for all
ξ ∈ LM .

Proof. The coherent factorization property (i.e., the analogue of relation (88)
of Proposition 4.4) for the Berezin-Toeplitz quantization scheme was proven
in Proposition 4.1 of [16]. Linearity of the quantization scheme then implies
relation (125). We proceed to demonstrate relation (126).
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ρJFI
M

(
K̃0
)

=
∫
L̂M̃

F (ξ) dνM̃ (ξ)(127)

=
∫
L̂M̃

exp (2iω∂M (ξ, ηD)) dνM̃ (ξ)(128)

=
∫
L̂M̃

exp (−i g∂M (ξ, J∂MηD)) dνM̃ (ξ)(129)

= exp (−g∂M (J∂MηD, J∂MηD))(130)
= exp (−g∂M (ηD, ηD))(131)

The notation of the integrals here is as in [15]. The step from (129) to (130)
is performed with techniques as used in that paper. Concretely, the i in the
integrand is replaced with a complex variable, it is noted that the integrand
is holomorphic in this variable. The integral is then performed for real values
of the variable. Since the integral must also be holomorphic, the variable in
the resulting expression is replaced again by i. The integral itself is evaluated
using Proposition 3.11 of [15]. �

The other quantization scheme to be compared here is normal ordered
quantization. This was adapted to the GBF in [16]. It takes a particularly
simple form for coherent states. Thus, given a regionM , a function F : LM̃ →
C (again with sufficient analyticity properties) we denote the quantization of
F by ρ:F :

M : H∂M → C. Given τ ∈ L∂M we then have by definition,

(132) ρ:F :
M

(
K̃τ

)
:= ρM

(
K̃τ

)
F (τ̂).

In the special case of a slice region this yields precisely the usual concept of
normal ordering. Also this quantization scheme satisfies the coherent factor-
ization property. Moreover, it is immediate to see that for a Weyl observable
F we have the “vacuum expectation value”,

(133) ρ:F :
M

(
K̃0
)

= 1.

Unsurprisingly, all three quantization schemes coincide for linear observ-
ables. Indeed, on coherent states the quantum observable map is in all cases
given by the analogue of expression (93). Thus, in particular, all satisfy the
canonical commutation relations for linear observables, (108). For Weyl ob-
servables the difference between the schemes is given by a constant, depending
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only on the observable. This follows from the coherent factorization prop-
erty. Moreover, considering a suitable class of observables, both, the Berezin-
Toeplitz scheme and the normal ordered scheme are easily seen to satisfy
axioms (O1) and (O2a) of Section 4.2 as well as axioms (X1) and (X2a) of
Section 4.4. We shall now consider axioms (O2b) and (X2b) (composition cor-
respondence). To this end we fix the observable algebras to consist of linear
combinations of Weyl observables. More precisely, we shall assume, for each
quantization scheme, an adapted version of the axioms of Section 4.6.

Proposition 4.8. Let M be a region with its boundary decomposing as a
disjoint union ∂M = Σ1 ∪ Σ ∪ Σ′ and M1 as given in (T5b). Let D ∈ Clin

M and
D1 ∈ Clin

M1
be the induced observable. Define ηD ∈ J∂MLM̃ and ηD1 ∈ J∂M1LM̃1

as previously. Let F , F1 be the corresponding Weyl observables. Then, there
exists ηΣ ∈ LΣ such that (ηD1 , ηΣ, ηΣ)− ηD ∈ LM̃ . Moreover,

�Σ
(
ρJFI
M

)
= ρJF1I

M1
exp

(
iω∂M ((ηD1 , ηΣ, ηΣ), ηD)(134)

+ 1
2g∂M1(ηD1 , ηD1)− 1

2g∂M (ηD, ηD)
)
,

�Σ
(
ρ:F :
M

)
= ρ:F1:

M1
exp

(
iω∂M ((ηD1 , ηΣ, ηΣ), ηD)(135)

− 1
2g∂M1(ηD1 , ηD1) + 1

2g∂M (ηD, ηD)
)
.

Proof. Since the Schrödinger-Feynman quantization scheme satisfies axiom
(X2b), that is the Equation (78), we derive the corresponding equations for
the other quantization schemes by relating them to this scheme through the
coherent factorization property. In this manner of proceeding we make the
implicit assumption that the observable D extends to an observable on the
configuration space KM . However, we shall see that this extension is irrele-
vant.

As for the existence of ηΣ observe that it needs to satisfy the condition

(136) D(ξ) = 2ω∂M (ξ, (ηD1 , ηΣ, ηΣ))

for all ξ ∈ LM̃ . This is automatic for those ξ taking the form (ξ1, ξΣ, ξΣ) as
these are in LM̃1

. It is thus sufficient to satisfy this for ξ taking the form
(ξ1, ξΣ,−ξΣ). Then Equation (136) takes the form

(137) D(ξ) = 2ωΣ1(ξ1, ηD1) + 4ωΣ(ξΣ, ηΣ).
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We note that if ξ = (ξ1, ξΣ,−ξΣ) and ξ′ = (ξ′1, ξΣ,−ξΣ) are both in LM̃ we
would have ξ1 − ξ′1 ∈ LM̃1

and hence D(ξ) = D(ξ′) in the above expression.
Hence, there exists ηΣ such that (137) is satisfied for all ξ = (ξ1, ξΣ,−ξΣ) ∈
LM̃ and thus (136) for all ξ ∈ LM̃ . We proceed to observe that in the
Schrödinger-Feynman setting (ηD1 , ηΣ, ηΣ) ∈ AD

M̃
.

We start by demonstrating (135). Using the coherent factorization prop-
erty we obtain,

�Σ
(
ρ:F :
M

)
= �Σ

(
ρFM

) ρ:F :
M (K̃0)
ρFM (K̃0)

= ρF1
M1

ρ:F :
M (K̃0)
ρFM (K̃0)

(138)

= ρ:F1:
M1

ρ:F :
M (K̃0)ρF1

M1
(K̃0)

ρ:F1:
M1

(K̃0)ρFM (K̃0)
.

Noting (133) it remains to evaluate the quotient,

ρF1
M1

(K̃0)
ρFM (K̃0)

= exp
( i

2D1(ηD1)− i
2D(ηD)(139)

− 1
2g∂M1(ηD1 , ηD1) + 1

2g∂M (ηD, ηD)
)

= exp
( i

2D((ηD1 , ηΣ, ηΣ)− ηD)(140)

− 1
2g∂M1(ηD1 , ηD1) + 1

2g∂M (ηD, ηD)
)

= exp
(

iω∂M ((ηD1 , ηΣ, ηΣ)− ηD, ηD)(141)

− 1
2g∂M1(ηD1 , ηD1) + 1

2g∂M (ηD, ηD)
)

= exp
(

iω∂M ((ηD1 , ηΣ, ηΣ), ηD)(142)

− 1
2g∂M1(ηD1 , ηD1) + 1

2g∂M (ηD, ηD)
)
.

Showing (134) is now straightforward by taking account of the difference
between (126) and (133). �

While this result quantifies the violation of axiom (X2b) by Berezin-
Toeplitz quantization and by normal ordered quantization, at the same time it
shows that these schemes do satisfy axiom (O2b). Indeed, relations (134) and
(135) show that the gluing operation of (T5b) applied to a Weyl observable
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in CWeyl
M yields the multiple of a Weyl observable in CWeyl

M1
. Thus, taking the

spaces CM to consist of all linear combinations of elements of CWeyl
M , i.e. Weyl

observables, yields the closure condition embodied by axiom (O2b). Moreover,
this extends to more general observables generated as in Section 4.9.

5. Conclusions and outlook

The main result of Section 3 of this paper is the constructive demonstration
that the Feynman path integral, together with the Schrödinger representa-
tion, can be made into a rigorous and functorial quantization scheme for
linear and affine field theory in the context of the general boundary formu-
lation (GBF). Moreover, the so defined Schrödinger-Feynman quantization
scheme is shown to be equivalent to the holomorphic quantization scheme
introduced in [13, 15] and based on geometric quantization. Even though we
have not provided the details here it should be clear that this result may also
serve as a rigorous underpinning for previous, more heuristic applications of
Schrödinger-Feynman quantization in the GBF [8–12, 17, 19, 24, 25].

In the spirit of the remarks made at the beginning of the introduction,
one might expect the most useful applications of the presented quantization
scheme to arise precisely in those areas where the conceptual basis of the
standard approach to quantum field theory becomes shaky. One such area is
quantum field theory in curved spacetime. Here we have in mind in particular
settings where spacetime fails to be globally hyperbolic, such as Anti-de Sitter
space [26].

In the second part of the paper, Section 4, we have extended the
Schrödinger-Feynman quantization scheme to include observables. Crucially,
the relevant concept of quantum observable here is that of an observable
map, introduced in [16], and not the more conventional one of an operator
on Hilbert space (although the latter can be recovered from the former). As
was argued already in [16] and was made rigorous here, the former allows us
to capture operationally relevant properties of observables in quantum field
theory which the latter does not. These properties concern the composition
of observables and are manifest in the time-ordered product and conveniently
encoded through the Feynman path integral. In the present framework these
properties are captured through what we have called here composition cor-
respondence, formalized in Section 4.4. We recall that this basically means
that the composition of the quantization of classical observables with disjoint
spacetime support equals the quantization of the ordinary product of the
classical observables.
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For the Feynman quantization of observables we focused first on Weyl
observables (i.e., observables that are exponentials of imaginary linear ob-
servables). On the one hand these have the advantage that a much larger
class of observables can be generated from them by functional differentiation
(Section 4.9). On the other hand, they are simple enough so that we could
derive in Section 4.5 the closed formula (50) for their quantization. The cru-
cial observation here was that from the point of view of the path integral, the
insertion of a Weyl observable is essentially the same thing as modifying the
action by adding a linear term. This allowed us to recur to a corresponding
result of Section 3.3 from the first part of the paper. Based on these ingredi-
ents we were able in Section 4.7 to give a rigorous proof that the so defined
quantization of classical linear field theory with observables defined in Sec-
tion 4.6 satisfies not only the core axioms of the GBF, but also the axioms
concerning quantum observables and their relation to classical observables,
including composition correspondence.

Another property of quantum field theory that generalizes nicely in the
present setting is the form of the “generating function” or “kernel” of the
S-matrix. We showed in Section 4.8 that this is an example of a much more
general factorization formula (Proposition 4.3). As in ordinary quantum field
theory this suggests itself as the starting point of a perturbation theory. Inci-
dentally, this means that even in (general boundary) quantum theories quite
unlike ordinary quantum field theory, e.g., which are not based on a metric
background spacetime, interactions can be expanded in terms of some kind
of Feynman diagrams.

A version (Proposition 4.4) of the mentioned factorization formula which
we call the coherent factorization property was already introduced in [16] and
shown there to hold for two other quantization schemes: Berezin-Toeplitz
quantization and normal ordering. The latter are “simpler” quantization
schemes than the one presented here in the sense that observables there are
only functions on phase space and not on spacetime configuration space. How-
ever, as we argued in Section 4.1 this implies that they cannot satisfy com-
position correspondence. Indeed, we were able to quantify this failure here in
Section 4.11.

As explained in the paper, observables on a slice region, i.e., a region that
is “infinitesimally thin” can be identified with operators on the associated
Hilbert space. We were able to prove in Section 4.10 that linear observables of
this type satisfy the canonical commutation relations in the presented quan-
tization scheme. In the special case of quantum field theory with the slice
region determined by an equal-time hypersurface these are precisely the or-
dinary equal-time commutation relations. This means in particular that we
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recover the ordinary operator product for observables in those “infinitesimal”
regions.

If there is a well-defined notion of time-evolution, such as in Minkowski
space, it is also possible to recover the operator product of general observables.
Fix an equal-time hypersurface Σ1. For simplicity suppose an observable F
of interest has support only in the future of the hypersurface. Say Σ2 is an
equal-time hypersurface in the future of the support of F . Both, the observable
map associated to F and the amplitude map for the so defined region can
be converted to maps HΣ1 → HΣ2 between the boundary component Hilbert
spaces. Call these ρ̌F and ρ̌ respectively. Then the composition ρ̌−1 ◦ ρ̌F yields
an operator on HΣ1 . The operator product induced in this way is precisely
the usual operator product of quantum field theory in the case of Minkowski
space. Note that this method of composing forward and backward propagation
in time is well known in standard quantum theory [27].

In any case, it is clear that the operator product is a less fundamental no-
tion from the present perspective than the time-ordered product. Rather than
a reason for worry this confirms that we are on the right track in extracting
the (operationally relevant) features of observables in quantum field theory.
One may take this as an indication to speculate that perhaps the canoni-
cal commutation relations are not such a natural quantization condition to
impose after all. Perhaps, one should rather take the composition correspon-
dence property more seriously. Of course, this in itself does not seem to be
sufficient to single out “good” quantizations. As a first thought, it might be
complemented by some kind of surjectivity and injectivity conditions for the
quantization map QM from classical to quantum observable spaces, (with
injectivity possibly restricted to the behavior of observables on classical solu-
tions).

A slightly strange aspect of classical observables on a slice region Σ̂ is that
it is unclear what the associated spacetime configuration space KΣ̂ should be.
It can definitely not be made equal to the phase space LΣ̂. One may circum-
vent this problem by simply not defining classical observables on slice regions.
This would have no further effect on any of the axioms or results obtained,
with the exception of the canonical commutation relations of Section 4.10.
However, these could then be recovered by a limit applied to the procedure
outlined above for obtaining operators for regular regions. Even for regular
regions we have made no attempt here to further specify the nature of the
spacetime-configuration spaces KM . However, as shown in the explicit exam-
ples in Sections 4.8 and 4.9, we may be able to clearly characterize observables
of interest without actually specifying the relevant space KM explicitly. An-
other approach to this problem would be to consider KM as the union of all
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the spaces ADM of solutions associated to all possible linear observables D in
the region M .

Let us also mention a weakness of the axiomatic system presented in Sec-
tion 4.6. This has to do with the relation between interior and boundary data
for observables. In most physically sensible situations one should expect a
classical solution near the boundary to have at most one unique prolongation
to all of the interior of the region.13 Indeed, it is conceivable that physically
realistic theories can be formulated exclusively with regions that satisfy this
requirement. Nevertheless, the axioms for linear or affine classical field the-
ory presented here and in [13, 15] allow for the possibility of a degeneracy,
i.e., distinct classical solutions in the interior of a region may not be distin-
guishable near the boundary. One motivation for this degeneracy is to admit
certain topological quantum field theories that are of great mathematical in-
terest. The mentioned situation arises in particular when gluing regions with
boundaries to a region without boundary, for example to obtain invariants of
manifolds. Now axiom (C5) of Section 4.6 requires that the value of observ-
ables on solutions in the interior of a region shall nevertheless only depend
on the behavior of those solutions near the boundary. Indeed, the general
validity of the composition correspondence axiom (X2b) (Section 4.4) hinges
on that assumption. This may severely and unreasonably limit the set of ad-
missible observables in theories where degeneracies are important. One way
to remedy this would be to not require the relation (55) of axiom (C5) for all
observables in a region, but only for a specified subclass. The commutative
diagram of axiom (X2b) would then only hold for those observables which
are in this special class, both for the unglued as well as for the glued region.
On the other hand, axiom (O2b) may still be valid more generally. (Compare
the methods of Section 4.11 for an indication how this might be the case.)

Finally, in case this has not become sufficiently clear, we emphasize again
that all the obtained results apply to ordinary quantum field theory in par-
ticular (at least with admissible hypersurfaces defined to be equal-time hy-
persurfaces in Minkowski space). On the other hand, they also apply to a
potentially much larger class of theories, including theories not based on a
metric background spacetime.
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