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Quasi-topological gauged sigma models,

the geometric Langlands program,

and knots

Meng-Chwan Tan

We construct and study a closed, 2-dimensional, quasi-topological
(0, 2) gauged sigma model with target space a smooth G-manifold,
where G is any compact and connected Lie group. When the tar-
get space is a flag manifold of simple G, and the gauge group
is a Cartan subgroup thereof, the perturbative model describes,
purely physically, the recently formulated mathematical theory
of “Twisted Chiral Differential Operators”. This paves the way,
via a generalized T -duality, for a natural physical interpretation
of the geometric Langlands correspondence for simply-connected,
simple, complex Lie groups. In particular, the Hecke eigensheaves
and Hecke operators can be described in terms of the correlation
functions of certain operators that underlie the infinite-dimensional
chiral algebra of the flag manifold model. Nevertheless, nonper-
turbative worldsheet twisted-instantons can, in some situations,
trivialize the chiral algebra completely. This leads to a sponta-
neous breaking of supersymmetry whilst implying certain deli-
cate conditions for the existence of Beilinson-Drinfeld D-modules.
Via supersymmetric gauged quantum mechanics on loop space,
these conditions can be understood to be intimately related to a
conjecture by Höhn-Stolz [1] regarding the vanishing of the Wit-
ten genus on string manifolds with positive Ricci curvature. An
interesting connection to Chern-Simons theory is also uncovered,
whence we would be able to (i) relate general knot invariants of
three-manifolds and Khovanov homology to “quantum” ramified
D-modules and Lagrangian intersection Floer homology; (ii) fur-
nish physical proofs of mathematical conjectures by Seidel-Smith [2]
and Gaitsgory [3, 4] which relate knots to symplectic geometry and
Langlands duality, respectively.
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1. Introduction

A closed, two-dimensional, quasi-topological sigma model with (0, 2) super-
symmetry was first constructed by Witten in [5]. It was later studied in much
greater detail in [6], where an attempt to provide a physical interpretation of
the mathematical theory of “Chiral Differential Operators” (CDO’s) defined
in [7], was made. As the aforementioned model did not contain left-moving
fermions, it could only be related to a bosonic specialization of the supersym-
metric sheaf of CDO’s. Shortly thereafter, a generalization of the effort in [6]
to include left-moving fermions appeared in [8], wherein a quasi-topological
heterotic sigma model with (0, 2) supersymmetry was shown to be related to
the complete supersymmetric sheaf of CDO’s. This generalization opened up
the possibility of studying phenomenologically viable string-theoretic mod-
els via the mathematical theory of CDO’s, and vice-versa. Nevertheless, the
model without left-moving fermions has continued to be of great interest
to us, primarily because for a certain class of nonanomalous target spaces,
its chiral algebra furnishes a subset which generates (a completed envelop-
ing algebra of) an affine algebra of a simple, simply-connected, complex Lie
group GC at the critical level — a crucial ingredient in the original mathe-
matical formulation by Beilinson and Drinfeld of the geometric Langlands
program for GC using two-dimensional algebraic conformal field theory [9].

The Langlands program has its origins in number theory [10]. It relates
representations of the Galois group of a number field to automorphic forms
(such as ordinary modular forms of SL(2,Z)). Its geometric analog, which
involves complex curves of genus g instead of number fields, is known as the
geometric Langlands program. In 2006, the geometric Langlands program
was given an elegant physical interpretation [11] by Kapustin and Witten
in terms of a four-dimensional, bounded, topologically-twisted N = 4 Yang-
Mills theory compactified on a complex curve of genus greater than one. In
particular, they showed that the geometric Langlands correspondence which
underlies the program, arises from an S-duality of the N = 4 theory. This
gauge-theoretic interpretation, as elegant as it is, does not shed light on
the utility of two-dimensional algebraic conformal field theory that has been
ubiquitous in the mathematical literature since the seminal work of Beilin-
son and Drinfeld — for a small sample, see [12]-[16]. This is rather puzzling;
afterall, the formal definition of algebraic conformal field theory is rooted
in concepts from physical conformal field theory; one would think that it
would be possible to relate any physical manifestation of the geometric Lang-
lands correspondence to the algebraic formulation by Beilinson and Drinfeld.
There have since been attempts by physicists to fill in this gap through the
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use of four-dimensional N = 2 Yang-Mills theory [17], and two-dimensional
physical conformal field theory [18, 19]. However, these attempts are either
preliminary or restricted to special examples of GC only. Another matter
that was not addressed by Kapustin and Witten is the geometric Langlands
correspondence for g ≤ 1. In fact, Beilinson and Drinfeld’s original formu-
lation excludes complex curves of g ≤ 1, too. Nonetheless, the geometric
Langlands correspondence has been established, at least partially, to also
hold for g ≤ 1 — examples which generalize Beilinson and Drinfeld’s for-
mulation to include complex curves of g = 0 and g = 1 can be found in [16]
and [20–22], respectively.

These outstanding issues prompted us to revisit the (0, 2) sigma model
without left-moving fermions. It was quickly realized that for any phys-
ical model to be relatable to Beilinson and Drinfeld’s algebraic formula-
tion of the geometric Langlands correspondence, it ought to support, in one
way or another, a family of affine algebras of GC at the critical level that
is parametrized by physical quantities associated with the Langlands dual
group LGC. For a target space that is a flag manifold of GC, the (0, 2) sigma
model does support, in its chiral algebra, an affine algebra of GC at the
critical level. That said, this sigma model is actually “rigid”, in the sense
that its affine algebra is unique — i.e., we do not have a family of affine
algebras of GC at the critical level. This suggests that the model to consider
ought not to be the (0, 2) model itself, but rather, a modified version of it.
It soon became clear from the subsequent work [23] of Arakawa et al. which
defines a mathematical theory of “Twisted Chiral Differential Operators”
(TCDO’s), that this modified version of the (0, 2) model should also provide
a physical interpretation of these TCDO’s. The construction of such a sigma
model was the starting point of this paper.

Aside from providing a physical interpretation of (i) the mathematical
theory of TCDO’s, (ii) the algebraic conformal field theoretic formulation of
the geometric Langlands correspondence for any GC, one of the main nov-
elties of our purely two-dimensional sigma model approach is that it would
allow us to deduce some very interesting results about the g ≤ 1 case —
using purely physical arguments, not only can we rederive, in a much more
economical fashion, various mathematical features of the correspondence for
g ≤ 1 as established in the above references, we can also connect them to
a priori unrelated topics in algebraic and geometric topology. Furthermore,
by combining recent insights from higher-dimensional gauge theory [24], we
would be able to also provide physical proofs of far-reaching mathemati-
cal conjectures that relate the geometric Langlands program to symplectic
geometry [2, 25] and knot theory [3, 4] — an end which might prove elusive
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if we were to rely solely on higher-dimensional gauge theory. Let us now
proceed to give a brief summary and plan of the paper.

A brief summary and plan of the paper

First, in §2, we will formulate a non-dynamically G-gauged version of a
twisted (0, 2) sigma model whose target space X is a smooth G-manifold,
where G is any compact and connected Lie group. This gauged twisted
sigma model can be viewed as an ordinary twisted sigma model with a
family of target spaces that are automorphic to X. Then, we will focus on
the relevant local operators of the gauged twisted sigma model, and study
the properties of the holomorphic chiral algebra which they underlie. We will
find, among other things, that the chiral algebra is infinite-dimensional — a
consequence of the fact that the twisted model is actually quasi-topological
and not topological. We will also argue that the moduli of the chiral algebra
can be interpreted in terms of the first Čech-cohomology of the sheaf of
G-equivariant extended holomorphic ∂-closed two-forms on X.

In §3, we will analyze the physical anomalies of the gauged twisted sigma
model. The anomalies are found to be characterized by G-equivariant coho-
mology classes. This means that the anomaly-cancellation conditions are
more stringent in the gauged model than in the ordinary model, as one
might have expected.

In §4, we will introduce the notion of a sheaf of perturbative observables.
An alternative description of the chiral algebra of local operators in terms
of Čech cohomology will also be presented. If the gauge group is an abelian
subgroup of G, the gauged twisted sigma model on any local patch of X can
be described in terms of a perturbed version of a free βγ-system. In order
to obtain a complete description of the model over all of X, one will need
to “glue together” these systems and their corresponding sheaves of chiral
algebras along every pairwise intersection in X; this may be done using
their local symmetries. In doing so, we will see that the purely mathematical
obstruction to a global definition of the sheaf of chiral algebras is nothing
but the physical anomaly of the model itself. As an illuminating application
of our somewhat abstract discussion hitherto, we will, through a convenient
example, demonstrate a novel understanding of the model’s nonzero one-
loop beta function solely in terms of holomorphic data.

In §5, we shall, for concreteness, consider the abelian gauge group to
be a Cartan subgroup of simple G. One can then show that our gauged
twisted sigma model describes, purely physically, the theory of TCDO’s on
flag manifolds of simple, connected, complex Lie groups. If G is also simply-
connected, our analysis of the sheaves of TCDO’s reveals that the chiral
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algebra A of the model would also furnish a family of affine GC-algebras
at the critical level, where GC is a simply-connected, simple, complexified
version of G.

In §6, we will argue that a generalized T -duality of the local gauged
twisted sigma model over the flag manifold of GC, would imply that the
family of affine GC-algebras at the critical level in §5 is parameterized by
LGC-opers on the worldsheet, where LGC is the Langlands dual of GC. This
crucial observation will allow us to furnish, in the next section, a natural
physical interpretation of the geometric Langlands correspondence for GC.

In §7, we will demonstrate, purely physically, a geometric Langlands cor-
respondence between holomorphic LGC-bundles on a complex curve Σ and
Hecke eigensheaves on the moduli space BunGC of holomorphic GC-bundles
on Σ. In essence, the Hecke eigensheaves and Hecke operators of the geomet-
ric Langlands program can be described in terms of the correlation functions
of certain operators which underlie the bosonic sector of the chiral algebra of
the gauged twisted sigma model over the flag manifold of GC. Furthermore,
one can also understand the uniqueness or non-uniqueness property of the
Hecke eigensheaves for various Σ as established purely mathematically, from
the anomaly-cancellation conditions of the model.

In §8, we will analyze the nonperturbative effects of worldsheet twisted-
instantons on the chiral algebra of the gauged twisted sigma model. For
certain worldsheets whereby the flag manifold model is nonanomalous and
isomorphic to its untwisted counterpart, the chiral algebra is completely
trivialized by such instanton effects. This results in a spontaneous breaking
of supersymmetry whilst implying that there can be no Beilinson-Drinfeld
D-modules when Σ is rational with less than three punctures (in agreement
with the mathematical literature [16]). We then go on to interpret this non-
perturbative phenomenon in the context of supersymmetric gauged quantum
mechanics on loop space. In doing so, we will find that (i) there can be no
harmonic spinors on the loop space of flag manifolds of GC, (ii) the afore-
mentioned condition on D-modules is intimately related to a conjecture by
Höhn-Stolz [1] which asserts that the Witten genus must vanish on string
manifolds (i.e., manifolds of zero first Pontraygin class) with positive Ricci
curvature.

And finally in §9, we will first explain why the states of a Chern-Simons
theory of a compact, simply-connected, simply-laced gauge group G, would
be captured by certain correlation functions of the corresponding flag man-
ifold model in the infinite-volume limit. Then, with the aid of Heegaard
splittings, we will explain why knot invariants of three-manifolds ought to be
related to “quantum” ramified D-modules. Next, by specializing to the case
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where G = SU(2) and the underlying three-manifold is S3, we will (i) make
contact with the Jones polynomial of an arbitrary link and its corresponding
Khovanov homology, (ii) furnish a physical proof of a mathematical conjec-
ture by Seidel-Smith [2] which relates the latter to Lagrangian intersection
Floer homology. Lastly, we will demonstrate, via a generalized T -duality of
the flag manifold model in the infinite-volume limit, (i) a ramified geomet-
ric Langlands correspondence for GC (the complexification of G); and (ii)
a correspondence between representations of LGC and “classical” ramified
D-modules on the moduli space of holomorphic parabolic GC-bundles on
a rational curve, where LGC is the Langlands dual of GC; thereby proving
physically a mathematical conjecture by Gaitsgory [3, 4].

A shorter route through this paper

This somewhat lengthy paper, though most coherent when read in its entirety,
can also be approached — depending on the reader’s specific interests — in
the following ways. The reader who is solely interested in the physics of the
perturbative gauged sigma model and how it can be related to the math-
ematical theory of TCDO’s, can just read §1–§5. The reader who wishes
to fully understand the physical interpretation of the geometric Langlands
program for any g, will need to read all of §1–§7. The reader who is solely
interested in instanton effects in the sigma model and how they can lead
to a spontaneous breaking of supersymmetry and a physical proof of the
Höhn-Stolz conjecture, can just read §8. That said, if the reader wishes to
also understand the implications of such instanton effects in the context of
the geometric Langlands program, he or she will also need to read §1–§7.
Last but not least, the reader who is chiefly interested in the connections
between the geometric Langlands program and knots as implied by the rel-
evant physics of the sigma model, can omit §8 altogether.
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2. A quasi-topological gauged sigma model
and its chiral algebra

2.1. A non-dynamically gauged version of a twisted
(0, 2) sigma model

2.1.1. The ordinary (0, 2) sigma model. Let us first recall the ordi-
nary two-dimensional nonlinear sigma model with (0, 2) supersymmetry on
a complex manifold X. It governs maps Φ : Σ→ X, with Σ being the world-
sheet Riemann surface. By picking local coordinates z, z̄ on Σ, and φi, φī

on X, the map Φ can then be described locally via the functions φi(z, z̄)
and φī(z, z̄). Let K be the anti-canonical bundle of Σ (the bundle of (0, 1)-

forms), such that the right-moving spinor bundle of Σ is given by K
1/2

;
let TX and TX be the holomorphic and antiholomorphic tangent bundles
of X; then, the right-moving fermi fields of the model are ψi and ψī, and

they are smooth sections of the bundles K
1/2 ⊗ Φ∗TX and K

1/2 ⊗ Φ∗TX,
respectively. Here, ψi and ψī are superpartners of the scalar fields φi and φī.
Let g be the hermitian metric on X. The classical action is then given by

(2.1) S =

∫
Σ
|d2z| 1

2
gij̄(∂zφ

i∂z̄φ
j̄ + ∂z̄φ

i∂zφ
j̄) + gij̄ψ

iDzψ
j̄ ,

where i, ī = 1, . . . , n = dimCX, and |d2z| = idz ∧ dz̄. In addition, Dz is the ∂

operator on K
1/2 ⊗ φ∗TX using the pull-back of the Levi-Civita connection

on TX. In formulas (using a local trivialization of K
1/2

), we have

(2.2) Dzψ
j̄ = ∂zψ

j̄ + Γj̄
l̄k̄
∂zφ

l̄ψk̄,

where Γj̄
l̄k̄

is the affine connection of X.
The infinitesimal transformation of the fields generated by the super-

charge Q+ under the first right-moving supersymmetry, is given by

δφi = 0, δφī = ε̄−ψ
ī,

δψī = 0, δψi = −ε̄−∂z̄φi;(2.3)

while the infinitesimal transformation of the fields generated by the super-
charge Q+ under the second right-moving supersymmetry, is given by
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δφi = ε−ψ
i, δψī = −ε−∂z̄φī,

δψi = 0, δφī = 0.(2.4)

In the above, (ε̄−)ε− are (anti)holomorphic sections of K
−1/2

.

Twisting the Ordinary (0, 2) Sigma Model

Classically, the action (2.1) and therefore the ordinary sigma model that
it describes, possesses a right-moving R-symmetry, giving rise to a U(1)R
global symmetry group. Denoting q to be the charge of the right-moving
fermi fields under this symmetry group, we find that ψī and ψi will have
charge q = ±1, respectively.

In order to define a twisted variant of the model, the spins of the fermi
fields need to be shifted by a multiple of their corresponding right-moving
charge q under the global U(1)R symmetry group. By considering a shift in
the spin S via S → S + 1

2 [(2s̄− 1)q] (where s̄ is a real number), the fermi

fields ψi and ψī of the twisted model will transform as smooth sections of

the bundles K
(1−s̄) ⊗ Φ∗TX and K

s̄ ⊗ Φ∗TX. Notice that for s = s̄ = 1
2 ,

the fermi fields transform as smooth sections of the same tensored bundles
defining the original (0, 2) sigma model, i.e., we get back the untwisted
model.

For our purposes in this paper, we shall consider the case where s̄ = 0.
Then, the fermi fields of the twisted model will transform as smooth sections
of the following bundles:

ψiz̄ ∈ Γ
(
K

1 ⊗ Φ∗TX
)
, ψī ∈ Γ

(
Φ∗TX

)
.(2.5)

Notice that we have included additional indices in the above fields so as to
reflect their new geometrical characteristics on Σ; the fermi field without
a z̄ index transform as a worldsheet scalar, while the fermi field with a z̄
index transform as a (0, 1)-form on the worldsheet. In addition, as reflected
by the i, and ī indices, all fields continue to be valued in the pull-back of
the corresponding bundles on X. Thus, the action of the twisted variant of
the ordinary (0, 2) sigma model is given by

(2.6) Stwist =

∫
Σ
|d2z| 1

2
gij̄(∂zφ

i∂z̄φ
j̄ + ∂z̄φ

i∂zφ
j̄) + gij̄ψ

i
z̄Dzψ

j̄ .
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A twisted theory is the same as an untwisted one when defined on a Σ
which is flat. Hence, locally (where one has the freedom to select a flat met-
ric), the twisting does nothing at all. However, what happens nonlocally may
be nontrivial. In particular, note that globally, the supersymmetry parame-
ters ε− and ε̄− must now be interpreted as sections of different line bundles;
in the twisted model, the transformation laws given by (2.3) and (2.4) are
still valid, and because of the shift in the spins of the various fields, we find
that for the laws to remain physically consistent, ε̄− must now be a func-

tion on Σ while ε− must be a section of the nontrivial bundle K
−1

. One
can therefore canonically pick ε̄− to be a constant and ε− to vanish, i.e.,
the twisted variant of the ordinary (0, 2) sigma model has just one canon-
ical global fermionic symmetry generated by the supercharge Q+. Hence,
the infinitesimal variations of the (twisted) fields under this single canonical
symmetry must read (after setting ε̄− to 1) as

δφi = 0, δφī = ψī,

δψī = 0, δψiz̄ = −∂z̄φi.(2.7)

From (2.7), one can see that Q
2
+ = 0 (off-shell) on the fields. In addition,

after twisting, Q+ transforms as a scalar. Consequently, we find that the
symmetry generated by Q+ behaves like a BRST-symmetry.

Note at this point that the transformation laws of (2.7) can be expressed
in terms of the BRST operator Q+, whereby δW = {Q+,W ] for any field
W .1 One can then show that the action (2.6) can be written as

(2.8) Stwist =

∫
Σ
|d2z|{Q+, V }+ Stop,

where

(2.9) V = −gij̄ψiz̄∂zφj̄ ,

and

(2.10) Stop =
1

2

∫
Σ
|d2z| gij̄

(
∂zφ

i∂z̄φ
j̄ − ∂z̄φi∂zφj̄

)
is
∫

Σ Φ∗(K), the integral of the pull-back to Σ of the (1, 1)-form K = i
2gij̄dφ

i

∧ dφj̄ .

1In a Z2-graded algebra, the symbol {A,B] denotes AB − (−1)ABBA.
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In the absence of nonperturbative effects, only the degree-zero maps of
the term

∫
Σ Φ∗(K) contribute to the path integral factor e−Stwist ; one can

therefore set
∫

Σ Φ∗(K) = Stop = 0. Notice also that since Q
2
+ = 0, the term

{Q+, V } in (2.8) is invariant under the transformation generated by Q+.
Moreover, for the transformation laws of (2.7) to be physically consistent,
Q+ must have charge q = 1 under the global U(1)R symmetry group. Since
V has a corresponding charge of q = −1, the term {Q+, V } in (2.8) continues
to be invariant under the U(1)R symmetry group (at the classical level). In
summary, the effective perturbative action that is both U(1)R- and Q+-
invariant will be given by

(2.11) Spert =

∫
Σ
|d2z| gij̄(∂z̄φi∂zφj̄ + ψiz̄Dzψ

j̄),

where it can also be written as

(2.12) Spert =

∫
Σ
|d2z|{Q+, V }.

A Family Of Target Spaces for the Twisted (0, 2) Sigma Model

We would now like to generalize the above twisted model with action
Spert, such that it will describe a family of target spaces which are related to
X via its diffeomorphism group, whilst still being Q+- and U(1)R-invariant.
To get an idea what one must do towards this end, first recall that the pair
(φi(z, z̄), φī(z, z̄)) can be viewed as a single-valued function which maps,
in a one-to-one manner, a point in Σ to a point in X; in other words,
(φi(z, z̄), φī(z, z̄)) defines a section of the trivial bundle X × Σ, where X and
Σ are its fiber and base, respectively. That the model of (2.11) has a fixed
target space is reflected in the fact that over all of Σ is a fixed manifold
X in the trivial bundle X × Σ. Therefore, if one would like to describe a
family of target spaces, one ought to generalize (φi(z, z̄), φī(z, z̄)) to define
a section of a nontrivial fiber bundle F , where X ↪→ F → Σ — indeed, one
would have, in this instance, a family of complex manifolds over Σ which
are related to the fixed X via the structure group of F .

In the most general case, one can take the structure group of F to
be the noncompact diffeomorphism group of X. Nevertheless, if X is some
smooth G-manifold, where G is any compact, connected Lie group, a natural
choice for the structure group of F would be G itself. On such an X, the
G-action is infinitesimally generated by a set of vector fields Va on X, where
a = 1, . . . , d = dim G. These are holomorphic vector fields, which means that
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their holomorphic (antiholomorphic) components are holomorphic (antiholo-
morphic) functions, i.e., for Va =

∑dimCX
i=1 V i

a (∂/∂φi) +
∑dimCX

ī=1
V ī
a (∂/∂φī),

we have

(2.13)
∂V i

a

∂φj̄
=
∂V ī

a

∂φj
= 0.

In addition, the Va’s realise a d-dimensional Lie algebra g of G, i.e., they
obey

(2.14) [Va, Vb] = fab
cVc,

where fab
c are the structure constants of G. This can also be explicitly

written in component form as

[Va, Vb]
i = V j

a

(
∂V i

b

∂φj

)
− V j

b

(
∂V i

a

∂φj

)
= fab

cV i
c ,(2.15)

and

[Va, Vb]
ī = V j̄

a

(
∂V ī

b

∂φj̄

)
− V j̄

b

(
∂V ī

a

∂φj̄

)
= fab

cV ī
c .(2.16)

Furthermore, as the G-action on X is supposed to leave fixed its metric, the
vector fields will obey the Killing vector equations

(2.17) ∇iVja +∇jVia = 0, ∇iVj̄a +∇j̄Via = 0,

where ∇ is the covariant derivative with respect to the Levi-Civita connec-

tion on X, while Via = gij̄V
j̄
a and Vj̄a = gij̄V

i
a .

With regard to our generalization of the model, the fact that (φi(z, z̄),
φī(z, z̄)) now defines a section of a nontrivial bundle F with structure group
G means that one must replace all ordinary derivatives of (φi(z, z̄), φī(z, z̄))
with covariant derivatives — the relevant G-connection in this case being
a local one-form gauge field A on Σ with values in g, i.e., the Va’s. The
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components of A obey the usual infinitesimal gauge transformation laws

(2.18) δεA
a
z = ∂zε

a − fbcaεbAcz and δεA
a
z̄ = ∂z̄ε

a + fbc
aεbAcz̄,

where ε is a position-dependent zero-form on Σ with values in g. Under an
infinitesimal gauge transformation, the φ’s, which play the role of coordi-
nates in X, will change as

(2.19) δεφ
i = εaV i

a and δεφ
ī = −εaV ī

a .

This means that a consistent generalization of the twisted model entails
making the replacements

(2.20) ∂z̄φ
i → Dz̄φ

i = ∂z̄φ
i −Aaz̄V i

a and ∂zφ
ī → Dzφ

ī = ∂zφ
ī +AazV

ī
a

in (i) the action (2.11), (ii) the field variations in (2.7), and (iii) V in (2.9). As
required of covariant derivatives, the gauge variations δε(Dz̄φ

i) and δε(Dzφ
ī)

do not contain worldsheet-derivatives of the parameter ε.
On the other hand, under an infinitesimal gauge transformation, the ψ’s,

which play the role of tangent vectors in X, will change as

(2.21) δεψ
i
z̄ = εa∂kV

i
aψ

k
z̄ and δεψ

ī = −εa∂k̄V ī
aψ

k̄.

This means that a consistent generalization of the twisted model entails
making the replacement

(2.22) Dzψ
ī → D̂zψ

ī = Dzψ
ī +Aaz∇k̄V ī

aψ
k̄

in the action (2.11), whereby ∇k̄V ī
a = ∂k̄V

ī
a + Γī

j̄k̄
V j̄
a . As required of covari-

ant derivatives, the gauge variation δε(D̂zψ
ī) does not contain worldsheet-

derivatives of the parameter ε either.
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A Non-Dynamically Gauged Version of the Twisted (0, 2) Sigma Model

Thus, the action of the generalized theory will be given by

(2.23) Sgauged =

∫
Σ
|d2z| gij̄(Dz̄φ

iDzφ
j̄ + ψiz̄D̂zψ

j̄),

and moreover, Sgauged will be invariant under (2.18), (2.19) and (2.21), if

the derivatives ∂k̄V
ī
a = [∂̄Va]

ī
k̄

and ∂kV
i
a = [∂Va]

i
k satisfy [26]

La(∂Vb)− Lb(∂Va) = [∂Va, ∂Vb]− fabc∂Vc
and La(∂̄Vb)− Lb(∂̄Va) = [∂̄Va, ∂̄Vb]− fabc∂̄Vc,(2.24)

where La is the Lie-derivative with respect to the vector field Va. As is
clear from (2.23), one can also interpret the generalized model as a non-
dynamically G-gauged version of the twisted (0, 2) sigma model with a fixed
target space X.

As in the original ungauged model, one can also write

(2.25) Sgauged =

∫
Σ
|d2z|{Q,V },

where

(2.26) V = −gij̄ψiz̄Dzφ
j̄ ,

and where the requisite field variations generated by the scalar supercharge
Q are

δφi = 0, δφī = ψī,

δψī = 0, δψiz̄ = −Dz̄φ
i,(2.27)

δAaz = 0, δAaz̄ = 0.

Using (2.13), one can compute from (2.27) that Q2 = 0 (off-shell) on all
fields. Consequently, from (2.25), one can see that Sgauged is Q-invariant, as

desired. In addition, (2.27) implies that one can assign (Q,ψī, ψiz̄, φ
i, φī, Aaz ,

Aaz̄) to have q-charge (1, 1,−1, 0, 0, 0, 0) under a global U(1)R-symmetry; one
can then see from (2.25) and (2.26) that as desired, Sgauged has vanishing
q-charge and is therefore U(1)R-invariant. Moreover, since Q is nilpotent,
it will mean that one can also define a Q-cohomology of operators in the
theory.

The above model with perturbative gauge-invariant action Sgauged, shall
be our model of interest henceforth.
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2.2. The chiral algebra of the gauged twisted
(0, 2) sigma model

Classically, the gauge twisted model is scale invariant: one can compute that
the trace of the stress tensor from Sgauged vanishes, i.e., Tzz̄ = 0. The rest of
the nonvanishing components of the stress tensor, at the classical level, are
given by

(2.28) Tzz = gij̄∂zφ
iDzφ

j̄ ,

and

(2.29) Tz̄z̄ = gij̄

(
Dz̄φ

i∂z̄φ
j̄ + ψiz̄Dz̄ψ

j̄
)
.

Furthermore, one can go on to show that

(2.30) Tz̄z̄ = {Q,−gij̄ψiz̄∂z̄φj̄},

and

(2.31) [Q,Tzz] = gij̄∂zφ
iD̂zψ

j̄ = 0 (on-shell).

From (2.31) and (2.30), we see that Tzz is an operator in the Q-cohomology
while Tz̄z̄ is Q-exact and thus trivial in Q-cohomology. The fact that Tzz
is not Q-exact even at the classical level implies that the gauged twisted
model is not a 2D topological field theory; rather, it is a 2D quasi -topological
field theory. This is because the underlying model has (0, 2) and not (2, 2)
supersymmetry. On the other hand, the fact that Tz̄z̄ is Q-exact leads to
some nontrivial implications for the nature of the local operators in the
Q-cohomology. Let us elucidate this further.

Consider a local operator O that is inserted at the origin. If it has scal-
ing dimension (n,m), then, under a rescaling z → λz, z̄ → λ̄z (which is a
symmetry of the classical theory), it would gain a factor of λ−nλ̄−m. Classi-
cally, local operators have dimensions (n ≥ 0,m ≥ 0).2 However, only local
operators with m = 0 survive in Q-cohomology, as the rescaling of z̄ is gen-
erated by L̄0 =

∮
dz̄ z̄Tz̄z̄. (Recall from the previous paragraph that Tz̄ z̄ is

of the form {Q, . . . }, so L̄0 = {Q,V0} for some V0. If O is to be admissible

2Anomalous dimensions under RG flow may shift the values of n and m quantum
mechanically, but the spin given by (n−m), being an intrinsic property, remains
unchanged.
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as a local physical operator, it must at least be true that {Q,O] = 0. Con-
sequently, [L̄0,O] = {Q, {V0,O]]. Since the eigenvalue of L̄0 on O is m, we
have [L̄0,O] = mO. Therefore, if m 6= 0, it follows that O is Q-exact and
thus trivial in Q-cohomology.)

By a similar argument, we can show that O, as an element of the Q-
cohomology, varies holomorphically with z. Indeed, since the momentum
operator (which acts on O as ∂z̄) is given by L̄−1, the term ∂z̄O will be
given by the commutator [L̄−1,O]. Since L̄−1 =

∮
dz̄ Tz̄z̄, we will have L̄−1 =

{Q,V−1} for some V−1. Thus, as O is physical such that {Q,O] = 0, it will
be true that ∂z̄O = {Q, {V−1,O]] which hence vanishes in Q-cohomology.

The Quantum Theory

The observations that we have made so far are based solely on classical
grounds. The question that one might then ask is whether these observations
will continue to hold when we eventually consider the quantum theory. The
key point to note is that if it is true classically that a cohomology vanishes,
it should continue to do so in perturbation theory, whence quantum effects
are small enough. Since the above observations about the local operators
were made based on the classical fact that Tz̄z̄ vanishes in Q-cohomology,
they will continue to hold at the quantum level, i.e., the local operators in
the Q-cohomology of the quantum theory continue to vary holomorphically
with z and have dimension (n, 0).

On the other hand, Tzz, which does not vanish in Q-cohomology at the
classical level, can potentially vanish in Q-cohomology at the quantum level.
In fact, one-loop corrections to the action of Q suggest that in the quantum
theory, [Q,Tzz] = U , where U must necessarily be a fermionic operator with
dimension (2, 0) and q = 1. In order to determine the explicit form of U , first
note that from the conservation of the stress tensor, we have ∂z̄Tzz = −∂zTzz̄.
Since Tzz̄ in the quantum theory, while it may no longer be zero, would still
be of the form Tzz̄ = {Q,Gzz̄} for some fermionic operator Gzz̄,

3 for all our
purposes, we can regard ∂zTzz̄ to be Q-exact and therefore, ∂z̄Tzz ∼ 0 in
Q-cohomology. The holomorphy of Tzz will then allow us to make a Laurent
expansion Tzz(z) =

∑n=∞
n=−∞ Lnz

−n−2, where in particular, the operator ∂z =
L−1 =

∮
dz Tzz. Second, since δ(∂zO) = ∂z(δO), it will mean that [Q,L−1] =∮

dz [Q,Tzz] =
∮
dz U = 0; in other words, we ought to have U = ∂z(· · · ).

Third, note that sigma model perturbation theory is local in X and depends
on an expansion of the metric tensor in a Taylor series up to some given

3Since perturbative quantum corrections can only annihilate cohomology classes
and not create them, Tzz̄ must remain trivial in Q-cohomology, i.e., even though
Tzz̄ may no longer be zero, it would still be Q-exact.
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order; i.e., corrections to the action of Q can be constructed locally from
the metric of X appearing in the action. An example of such a correction
is immediately provided by the Ricci tensor Rij̄ of X. Fourth, recall that

ψj̄ , like Q, has q = 1. And lastly, recall that all derivatives of fields must be
covariant. Altogether, this means that one can write U = ∂z(Rij̄Dzφ

iψj̄),
such that at the quantum level,

(2.32) [Q,Tzz] = ∂z(Rij̄Dzφ
iψj̄).

Notice that the term on the RHS of (2.32) cannot be eliminated through the
equations of motion of the theory; neither can we modify Tzz (by subtracting
a total derivative term) such that it continues to be Q-invariant. Thus, in
a “massive” model where Rij̄ 6= 0, Tzz indeed vanishes in Q-cohomology at
the quantum level. Moreover, because (2.32) involves the Ricci tensor of
X, this vanishing of Tzz in Q-cohomology can be interpreted as an effect
that is associated with the one-loop beta function of the sigma model. In
fact, (2.32) is just a gauged generalization of a well-known result for the
ordinary twisted (0, 2) sigma model. In §4.7, we will study more closely from
a different viewpoint, the corrections to the action ofQ in a “massive” model;
there, (2.32) will appear in a different guise such that one can interpret it
in terms of holomorphic data.

At any rate, (2.32) implies that for a “massive” model, operators do not
remain in the Q-cohomology after general holomorphic coordinate transfor-
mations on the worldsheet, i.e., the model is not conformal at the level of
the Q-cohomology. Nevertheless, since [Q,L−1] = 0, the operators remain
in the Q-cohomology after global translations on the worldsheet. In addi-
tion, notice that since Q is a scalar with spin zero in the gauged twisted
model, we ought to have [S,Q] = 0, where the spin operator S = L0 − L̄0;
with the condition that L̄0 = 0 in Q-cohomology, [S,Q] = 0 would imply
that [Q,L0] = 0; i.e., operators remain in the Q-cohomology after global
dilatations of the worldsheet coordinates.

One can also make the following observations about the correlation
functions of these local operators. Firstly, note that 〈{Q,W ]〉 = 0 for any
operator W , and recall that for any local physical operator Oα, we have
{Q,Oα] = 0. As the ∂z̄ operator on Σ is given by L̄−1 =

∮
dz̄ Tz̄z̄, where

Tz̄z̄ = {Q, . . . }, we find that ∂z̄ 〈O1(z1)O2(z2) · · · Os(zs)〉 is given by

∮
dz̄ 〈{Q, . . . } O1(z1)O2(z2) · · · Os(zs)〉 =

∮
dz̄
〈
{Q, . . .

∏
i

Oi(zi)]
〉

= 0,
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i.e., the correlation functions always vary holomorphically with z. Secondly,
Tzz̄ = {Q,Gzz̄} for some Gzz̄ in the quantum theory. Thus, the variation
of the correlation functions due to a change in the scale of Σ will be given
by 〈O1(z1)O2(z2) · · · Os(zs){Q,Gzz̄}〉 = 〈{Q,

∏
iOi(zi) ·Gzz̄]〉 = 0, i.e., the

correlation functions of local physical operators will continue to be invariant
under arbitrary scalings of Σ. In other words, the correlation functions are
always independent of the Kähler structure on Σ and depend only on its
complex structure.

A Holomorphic Chiral Algebra A
Let O(z) and Õ(z′) be two Q-closed operators where their product is

Q-closed as well. Now, consider their operator product expansion or OPE:

(2.33) O(z)Õ(z′) ∼
∑
k

fk(z − z′)Ok(z′).

Here, the explicit form of the coefficients fk must be such that the scaling
dimensions and q-charges of the operators agree on both sides of the OPE.
In general, fk is not holomorphic in z. However, if we work modulo Q-
exact operators in passing to the Q-cohomology, the fk’s which are non-
holomorphic and are thus not annihilated by ∂/∂z̄, drop out from the OPE
because they multiply operators Ok which are Q-exact. This is true because
∂/∂z̄ acts on the LHS of (2.33) to give terms which are cohomologically
trivial.4 In other words, we can take the fk’s to be holomorphic coefficients
in studying the Q-cohomology. Thus, the OPE of (2.33) has a holomorphic
structure.

In summary, we have established that the Q-cohomology of holomor-
phic local operators defines a holomorphic chiral algebra (in the sense of the
mathematical literature) which we shall henceforth call A. It is always pre-
served under global translations and dilatations, though (unlike the usual
physical notion of a chiral algebra) it may not be preserved under general
holomorphic coordinate transformations on the Riemann surface Σ. Like-
wise, the OPE’s of the chiral algebra of local operators are associative and
invariant under translations and scalings of z, although they may not be
invariant under arbitrary holomorphic reparameterizations of z. The local
operators are of dimension (n, 0) for n ≥ 0, and the chiral algebra is in gen-
eral only locally-defined for such operators. Nonetheless, the chiral algebra
can be globally-defined, up to scaling, on a Riemann surface of genus one. To

4Since {Q,O] = 0, we have ∂z̄O(z) = {Q,V (z)] for some operator V (z), as argued
before. Hence ∂z̄O(z) · Õ(z′) = {Q,V (z)Õ(z′)].
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define it globally on a surface of genus g 6= 1 requires further analysis (which
we will go into later), as the physical theory has an anomaly involving c1(Σ)
(and the first G-equivariant Chern class cG1 (X)) that we will compute in §3.
Last but not least, as is familiar for chiral algebras, the correlation functions
of these operators depend on Σ only through its complex structure.

2.3. The moduli of the chiral algebra

Let us now determine the moduli of the chiral algebra A. To this end, first
notice that the metric gij̄ of the target space X manifests in the classical
action Sgauged within a term of the form {Q, . . . }. Hence, in passing to
the Q-cohomology, we find that the chiral algebra is independent of metric
deformations on X.

Next, note that the chiral algebra depends on the complex structure of
X as it is built into the definition of the fields and the fermionic symmetry
transformation laws of (2.27). In fact, the chiral algebra has a purely holo-
morphic dependence on the complex structure of X: one can show, using
the form of Sgauged in (2.25), that if J denotes the complex structure of X,
then ∂Sgauged/∂J̄ is of the form {Q, . . . }.
Adding a Modulus Term to the Action

Now consider adding to Sgauged a term which will serve as a modulus
of the chiral algebra A. In order to ascertain the explicit form of such a
term, first note that it must preserve the classical symmetries of the theory
and be Q- and U(1)R-invariant. Second, it must be marginal with dimension
(1, 1). Third, it must depend on the geometry of X. Since Q2 = 0 while Q
and ψiz̄ have q = 1 and −1, respectively, the only consistent choice (distinct
from Sgauged itself) for such a term (keeping in mind that all field derivatives
must be covariant) is

(2.34) ST =

∫
Σ
|d2z|{Q,Tijψiz̄Dzφ

j},

where T = 1
2Tijdφ

i ∧ dφj is some two-form on X that is of type (2, 0).
Explicitly, we then have

(2.35) ST =

∫
Σ
|d2z|Tij,k̄ψk̄ψiz̄∂zφj −

∫
Σ
|d2z|TijDz̄φ

iDzφ
j ,

where Tij,k̄ = ∂Tij/∂φ
k̄. Apart from beingQ- and U(1)R-invariant, ST — like

the action Sgauged it is supposed to deform — ought to be gauge-invariant
as well. So, is ST gauge-invariant?
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In order to answer this question, let us first look at the first term on the
RHS of (2.35); it is manifestly not gauge-invariant. As such, a consistent
choice of T would be one whereby Tij,k̄ = 0, i.e., T is a holomorphic (2, 0)-
form on X. Thus, by expanding the second term on the RHS of (2.35), we
get

ST = −
∫

Σ
|d2z|Tij∂z̄φi∂zφj(2.36)

+

∫
Σ
|d2z|Tij(∂z̄φiAazV j

a +Aaz̄V
i
a∂zφ

j −Aaz̄V i
aA

b
zV

j
b ).

Next, let us look at the first term on the RHS of (2.36). Note that since
|d2z| = idz ∧ dz̄, we can, assuming that T is globally-defined on X, write
this term (via Stokes’ theorem) as

(2.37) S
(1)
T = − i

2

∫
Σ
Tijdφ

i ∧ dφj = −i
∫

Σ
Φ∗(T ) = −i

∫
C

Φ∗(H).

Here, C is some three-manifold whose boundary is Σ, such that the section
Φ : Σ→ X extends over it, and H = dT is a nonzero three-form flux. As T is
of type (2, 0) such that Tij,k̄ = 0, H must be of type (3, 0). Clearly, dH = 0,
consistent with the fact C cannot be the boundary of a four-manifold.5

Since the G-action generates an automorphism that maps X back to
itself, one can choose H to be G-invariant, i.e., LaH = {d, ιa}H = d(ιaH) =
0, where ιa is a contraction with respect to the vector field Va; Poincaré’s
lemma then tells us that one can write, at least locally on X, the relation
ιaH = dθa for some g-valued holomorphic (1, 0)-form θa.

6 Similarly, since
one can choose LaT = {d, ιa}T = 0, one can easily see from H = dT that
θa = −ιaT ; in component form, this means that θaj = −V i

aTij , where θa =
θajdφ

j is globally-defined on X (because T and V are). By writing (2.36) in
terms of θaj , we have

ST =

∫
Σ
|d2z|

(
Tij∂zφ

i∂z̄φ
j −Aaz̄θaj∂zφj(2.38)

+Aazθaj∂z̄φ
j +Aaz̄A

b
zV

j
b θaj

)
.

5From homology theory, the boundary of a boundary is empty. Hence, since Σ
exists as the boundary of C, the three-manifold C itself cannot be a boundary of a
higher-dimensional four-manifold.

6Since H is a (3, 0)-form, ιaH = dθa will be a (2, 0)-form — i.e., θa must be a
holomorphic (1, 0)-form.
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Granted that

(2.39) Laθbi = fab
cθci and V i

aθbi = −V i
b θai,

ST will indeed be gauge-invariant [27], as desired.
In short, if a G-invariant holomorphic (2, 0)-form T which obeys (2.39)

exists on X, one can define, without any obstruction, a physically consistent
modulus for the chiral algebra of the gauged twisted (0, 2) sigma model
on X.

Geometrical Description of the Modulus

Let us now describe ST in greater detail. Note that from (2.38), one can
(with the aid of (2.37), and (2.39) required for gauge-invariance) also express
ST as

(2.40) ST = i

∫
C

Φ∗(H ),

where

(2.41) H = H + d

(
Aa ∧ θa +

1

2
ιaθbA

a ∧Ab
)
.

Here, dH = 0, and the Aa’s in (2.41) are to be interpreted as g∗-valued
one-forms on X. Because H is G-invariant, (2.41) and (2.39) will then mean
that H represents a (d-closed) G-equivariant extension of the three-form
H ∈ Ω3(X) [28] — in other words, H exists as a basic (i.e., gauge-invariant)
degree-three form in the complex

⊕p=3
p=0 W

p(g)⊗ Ω3−p(X), where the Weil-
algebra W ∗(g) is generated by the Aa’s. What else can one say about H
or ST ?

Well, in the quantum theory, a shift in the (Euclidean) action Sgauged by
an integral multiple of 2πi is physically inconsequential — the path integral
factor is e−Sgauged . Hence, the effective range of the continuous modulus H
would be such that 0 ≤ ST < 2πi. That said, the continuous global U(1)R-
symmetry of the classical theory will reduce to a discrete symmetry in the
quantum theory due to worldsheet twisted-instantons.7 In order for this dis-
crete symmetry to remain anomaly-free, H

2π must be an integral cohomology
class, i.e., 1

2π

∫
C Φ∗(H ) ∈ Z. Thus, the continuous modulus of H , though

present in the perturbative theory, could be absent in the nonperturbative
theory.

7These are classical configurations defined by the relation Dz̄φ
i = 0.
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Also, in writing ST in terms of H in (2.40), we have made the assump-
tion that Φ extends over some three-manifold C with boundary Σ. In the
perturbative theory, one considers only topologically trivial sections Φ which
can be extended over any chosen C; the assumption is therefore valid in this
case. Nonperturbatively however, one must also consider the contributions
coming from topologically nontrivial sections; as such, an extension of Φ over
C may not exist. Therefore, the present definition of ST in (2.40) will not
suffice. Notice too that T = T +Aa ∧ θa + 1

2 ιaθbA
a ∧Ab cannot be com-

pletely determined as a degree-two form in W (g)⊗ Ω(X) by its d-curvature
H = dT , as adding a “flat” (i.e., d-closed) degree-two form to T would
not change H at all. This indeterminacy of T is inconsequential in the per-
turbative theory where ST can be made to depend solely on H via (2.40).
Nonperturbatively on the other hand, because C may not exist, ST can only
be expressed in terms of T and not H , as in (2.38); the explicit details of
T will then be important.

At any rate, note that the basic subcomplex of W (g)⊗ Ω(X) which H
lives in, is isomorphic to the Cartan complex CG(Ω(X)) = (S(g∗)⊗ Ω(X))G,
where S(g∗) is the symmetric algebra on g∗, and the ‘G’ superscript just
denotes the G-invariant elements of the involved complex [29]. In fact, the
cohomologies of the basic and Cartan (sub)complexes are identical; they
actually turn out to be the G-equivariant cohomology HG(X) of X. Con-
sequently, one can identify H — which is a G-equivariant cohomology
class on X — with an element HC ∈ CG(Ω(X)), where dGHC = 0. Here,
dG = 1⊗ d+ F a ⊗ ιa is the differential of the complex CG(Ω(X)), and F a

is a g∗-valued two-form on X that is the curvature of Aa.

Interpretation Via H1(X,Ω2,cl
X,G)

As it will soon prove illuminating to do so, let us now attempt to give
a Čech description of the G-equivariant cohomology class HC . To this end,
let Uα, α = 1, . . . , s be a collection of small open sets that provide a good
cover of X such that their mutual intersections are open sets as well.

As dGHC = 0, it will mean that HC = dGTC locally on X, where TC ∈
CG(X). Thus, on each Uα, we will have an element TC,α of CG, such that
HC,α = dGTC,α. On each open double intersection Uα ∩ Uβ, let us define
TC,αβ = TC,α −TC,β, where

(2.42) TC,αβ = −TC,βα

for each α, β, and

(2.43) TC,αβ + TC,βγ + TC,γα = 0
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for each α, β and γ. Since HC is globally-defined, we have HC,α = HC,β on
the intersection Uα ∩ Uβ — hence, dGTC,αβ = 0. Because TC = TC + faF

a,
where TC ∈ Ω2(X) and fa ∈ Ω0(X), the relation dGTC,αβ = 0 will mean (as
dGF

a = 0) that dTC,αβ + F aιaTC,αβ + (F adfa)αβ = 0, where (F adfa)αβ =
F aαdfa,α − F aβ dfa,β. This condition will be met if (i) dTC,αβ = (∂ + ∂̄)TC,αβ =
0, (ii) ιaTC,α = −dfa,α, and (iii) ιaTC,β = −dfa,β. Relations (ii) and (iii)
together imply that ιaTC,αβ = −dfa,αβ; in turn, since d2 = 0, this will
mean that dιaTC,αβ = 0. Therefore, as dTC,αβ = 0, we have {d, ιa}TC,αβ =
La(TC,αβ) = 0. In short, TC,αβ is a G-invariant holomorphic ∂-closed two-
form on X. Consequently, TC,αβ must be a G-equivariant extension of TC,αβ
on X.

Anyhow, observe that since on each Uα, we have HC,α = dGTC,α, the
shift given by TC,α → TC,α + SC,α, where dGSC,α = 0, leaves each HC,α

invariant. In other words, in describing HC , we have an equivalence relation

(2.44) TC,αβ ∼ T ′C,αβ = TC,αβ + SC,α −SC,β.

From the equivalence relation (2.44), one can see that TC,αβ ∼ 0 if we can
express TC,αβ = SC,β −SC,α in Uα ∩ Uβ. Hence, the nonvanishing TC,αβ’s
are those which obey the identities (2.42) and (2.43), modulo those that can
be expressed as TC,αβ = SC,β −SC,α. This means that TC,αβ is an element

of the Čech-cohomology group H1(X,Ω2,cl
X,G), where Ω2,cl

X,G is the sheaf of G-
equivariant extended (G-invariant) holomorphic ∂-closed two-forms on X.

Now, if HC is globally given by the dG-exact form HC = dGTC , it
would mean that TC is globally-defined and as such, TC,α = TC,β = TC in
each Uα ∩ Uβ, whereupon all TC,αβ’s must vanish. Thus, we actually have
a map between the space of degree-three forms HC ∈ CG(X) modulo forms
that can be globally expressed as dGTC , and the Čech cohomology group
H1(X,Ω2,cl

X,G). Therefore, one can conclude that H in (2.40) — which is a
modulus of the chiral algebra of the gauged twisted (0, 2) sigma model on
X — can be represented by a class in H1(X,Ω2,cl

X,G).

The Ordinary Case

Last but not least, note that the gauge field A can also be interpreted
locally as the pull-back of a connection one-form on P to an open set of
Σ, where P is a principal G-bundle over Σ. Consequently, the φ’s which
are minimally-coupled to A can also be interpreted as sections φ : Σ→ E
of the associated bundle E = P ×G X. Let us now take A→ 0 so that F →
0, whence one would just get back the ordinary ungauged twisted (0, 2)
sigma model on X studied in [6]. Then, from our above discussion, TC,αβ

would reduce to TC,αβ, or rather, the sheaf Ω2,cl
X,G would reduce to the sheaf
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Ω2,cl
X of ordinary holomorphic ∂-closed two-forms on X. In other words,

the corresponding modulus of the chiral algebra of the ordinary twisted
model will be represented by a class in H1(X,Ω2,cl

X ) — a conclusion that is
consistent with the results in [6].

3. Anomalies of the gauged twisted (0, 2) sigma model

In this section, we will study the anomalies of the gauged twisted (0, 2)
sigma model with action Sgauged given in (2.23). In essence, the model will
fail to exist in the quantum theory if the anomaly-cancellation conditions are
not met. We aim to determine what these conditions are. In our discussion,
we shall omit the additional term ST given by (2.40), as the anomalies of
interest do not depend on continuously varying couplings such as this one.

A Relevant Digression

Before we proceed further, let us make a relevant digression to describe
the fermion fields ψī that appear in the gauged action (2.23). In the ungauged
case, ψī must transform, according to (2.5), as a smooth section of the pull-
back bundle Φ∗(TX). Here, Φ is a map Σ→ X, and TX is the antiholomor-
phic tangent bundle over X. On the other hand, in the gauged case, since
Φ is a section Σ→ E of the associated bundle E = P ×G X, where P is a
principal G-bundle over Σ, it would mean that ψī ought to transform as a
smooth section of the pullback of some bundle over E. Indeed, we find that
ψī must transform as a smooth section of the pullback bundle Φ∗(ker dπE),
where ker dπE → E is the sub-bundle of TE → E defined as the kernel of
the derivative of the projection πE : E → Σ [30].

The Anomalies

Coming back to our main discussion on the anomalies, let us first note
that in sigma models, they arise because one cannot define the path inte-
gral of the worldsheet fermion fields ψiz̄ and ψi in a physically consistent
manner [31]. Hence, it suffices for us to look at just the kinetic energy term
of the fermions in the action. From Sgauged in (2.23), we see that this term

is given by (ψ, D̂ψ) =
∫
|d2z|gij̄ψiD̂ψj̄ , where D̂ is the ∂ operator on Σ —

constructed using the pull-back of the connection on ker dπE — acting on
sections Φ∗(ker dπE). (Notice that we have omitted the z and z̄ indices of
the fields as they are irrelevant in the present discussion.) By picking a spin
structure on Σ, one can equivalently interpret D̂ as the Dirac operator on Σ
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acting on sections of V = K
−1/2 ⊗ Φ∗(ker dπE),8 where K is the canonical

bundle of Σ and K its complex-conjugate.
Note at this point that the anomaly arises as an obstruction to defining

the functional Grassmann integral of the kinetic term in ψi and ψī, as a
general function on the configuration space C of the underlying model [31].
From our discussion in the previous paragraph, we find that the Grassmann
integral is given by the determinant of D̂. As argued in [31], one must think
of the functional integral as a section of a complex determinant line bundle
L over C. Unless L is trivial, the integral would not be a global section and
therefore a function on C. Hence, the anomaly is due to the nontriviality
of L. The bundle L can be characterized completely by its restriction to a
nontrivial two-cycle in C such as a two-sphere [32].

To be more precise, let us consider a family of sections Φ : Σ→ E,
parameterized by a two-sphere base which we will denote as B. In com-
puting the path integral, we really want to consider the universal family
of all sections from Σ to E. This can be represented by a single section
Φ̂ : Σ×B → E. The quantum path integral is anomaly-free if L, as a com-
plex line bundle over B, is trivial. Conversely, if L can be trivialized by a
local Green-Schwarz anomaly-cancellation mechanism, the quantum theory
will exist.

From the theory of determinant line bundles, we find that the basic
obstruction to triviality of L is its first Chern class. By an application of the
family index theorem to anomalies [33, 34], the first Chern class of L is given
by π(ch2(V)), where π : H4(Σ×B)→ H2(B). Note that the anomaly lives
in H4(Σ×B) and not H2(B): it is clear that π(ch2(V)) vanishes if ch2(V) in
H4(Σ×B) vanishes before it is being mapped to H2(B), but if ch2(V) 6= 0,
then even if π(ch2(V)) = 0 whence L is trivial, it cannot be trivialized by a
Green-Schwarz mechanism. Thus, we need to have ch2(V) = 0 for bona-fide
anomaly-cancellation.

At any rate, note that we have a Chern character identity ch(E ⊗ F) =
ch(E)ch(F), where E and F are any two bundles. Also, note that ch2(E) =

ch2(E), and by tensoring Φ∗(ker dπE) with K
−1/2

to obtain V, we get an
additional term 1

2c1(Σ)c1(ker dπE) in ch2(V). Therefore, the condition ch2(V)

8Firstly, on a Kähler manifold such as Σ, the Dolbeault operator ∂ + ∂† on K
1/2

coincides with the Dirac operator. Secondly, since ψī is a zero-form on Σ, we have
∂†ψī = 0 — in other words, ∂ + ∂† is effectively ∂ when acting on ψī. Altogether,
this means that the action of ∂ on ψī ∈ Γ(Φ∗((ker dπE)) is equivalently to the action

of the Dirac operator on sections of the bundle V = K
−1/2 ⊗ Φ∗((ker dπE).
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= 0 for vanishing anomaly, can also be expressed as

(3.1) 0 =
1

2
c1(Σ)cG1 (X) =

1

2
pG1 (X),

where cG1 (X) and pG1 (X) are the first G-equivariant Chern and Pontryagin
classes of TX, respectively. (In order to arrive at (3.1), we have made use of
the fact [35] that c1(ker dπE) = cG1 (X) and p1(ker dπE) = pG1 (X).) The first
condition in (3.1) just means that we can either consider just Riemann sur-
faces Σ with c1(Σ) = 0 if cG1 (X) 6= 0, or allow Σ to be arbitrary if cG1 (X) = 0.
Another important point to note is that the c1(Σ)cG1 (X) anomaly exists if
and only if K is nontrivial, or equivalently, if there is actually twisting of
the model. On the other hand, the pG1 (X) anomaly always exists, regard-
less of whether there is twisting or not. The former observation regarding
the c1(Σ)cG1 (X) anomaly will be crucial when we later analyze — within
the framework of our physical interpretation of the geometric Langlands
correspondence in terms of our gauged twisted (0, 2) sigma model — the
conditions required for the existence and uniqueness of Beilinson-Drinfeld
D-modules.

Other Potential Anomalies

One might also wonder if the nilpotency of Q would persist in the quan-
tum theory. After all, our entire notion of a Q-cohomology rests upon this
crucial property of Q. If it is really the case that Q2 = 0 in the quantum
theory, there would be no nontrivial (i.e., nonzero at the outset) conserved
charge of dimension (0, 0) and q = 2 (which could therefore potentially serve
as Q2) at the quantum level. It suffices to show this at the classical level, as
quantum corrections can only destroy and not create conservation quanti-
ties.

Now, recall that classically, the fields of the underlying model (φi, φī,
ψiz̄, ψ

ī, Aaz , A
a
z̄) have q = (0, 0,−1, 1, 0, 0). Also, all fields are of dimension

(0, 0) except for ψiz̄ and Aaz̄ which are of dimension (0, 1), and Aaz which is of
dimension (1, 0). A little thought at this point would then reveal that from
the fields φ, ψ and A, one can construct a local nontrivial (i.e., non total-
derivative) antiholomorphic (sinceQ2 is supposedly right-moving) dimension-
one conserved current J(z̄) with resulting charge Q2 =

∮
J(z̄)dz̄ of dimen-

sion (0, 0) and q = 2, in two ways. The first way involves contracting a
covariantly-constant dimension (0, 0) tensor J of X with two ψī fields and a
single Dz̄φ

i or Dz̄φ
ī field. The second way involves contracting a covariantly-

constant dimension (0, 0) tensor J̃ of X with one ψiz̄ field and three ψī fields.
Covariantly-constant tensors such as J̃ or J , which have a mix of ī and i
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indices that are fully antisymmetric or part symmetric part antisymmetric,
respectively, do not, in general, exist for a generic hermitian metric on X. In
other words, there cannot be any nontrivial conserved current with charge
Q2 even at the classical level, i.e., Q2 = 0 holds in the quantum theory. This
claim can be further substantiated when we later show that suitable pertur-
bative corrections to Q can be found in a physically consistent manner such
that the relation Q2 = 0 is maintained at the quantum level.

Last but not least, note that when Σ is curved, the Ricci scalar R of Σ
is nonvanishing. As a result, the quantum expression for Tzz̄ will in general
be modified to

(3.2) Tzz̄ = {Q,Gzz̄}+
c

2π
R,

where c is a nonzero constant related to the central charge of the sigma
model. The second term on the RHS of (3.2), given by a multiple of R,
represents a soft conformal anomaly on the worldsheet due to a curved Σ.
R scales as a (1, 1) operator, as required.

There are implications for the Q-cohomology of operators due to this
additional R-term. Recall from §2.2 that the holomorphy of Tzz holds as
long as ∂zTzz̄ ∼ 0 (where ‘∼’ denotes an equivalence up to Q-exact terms).
However, due to this additional R-term, we now find that ∂zTzz̄ � 0. Hence,
the invariance of the Q-cohomology of operators under translations on the
worldsheet — which requires Tzz to vary holomorphically with z — no longer
holds. Therefore, the local holomorphic operators apparently fail to span a
chiral algebra over Σ, since one of the axioms of a chiral algebra is invariance
under translations on the worldsheet.

However, the additional R-term, being a c-number anomaly, will only
affect the partition function; it will not affect the (normalized) correlation
functions that actually define our chiral algebra. Thus, assuming that (3.1)
holds, one will continue to have a scale-invariant chiral algebra over Σ that,
as argued in §2.2, depends on Σ only via its complex structure (as is expected
of chiral algebras).

4. Sheaf of perturbative observables

In this section, we will analyze in detail, the Q-cohomology of local operators
that define the chiral algebra of the perturbative gauged twisted (0, 2) sigma
model. The second half of this section will be devoted to the abelian case,
so that the relation of the corresponding chiral algebra to the mathematical
theory of TCDO’s can be elucidated in §5, whence a physical interpretation
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of the geometric Langlands correspondence in terms of our abelian model
can be furnished in §7.

4.1. General considerations

In general, a local operator which is defined up to a gauge transformation,
is an operator F that is a function of the fields φi, φī, ψiz̄, ψ

ī, Aaz , A
a
z̄ , and

their derivatives with respect to z and z̄.9 However, as we saw in §2.2, the
Q-cohomology is zero for operators of dimension (n,m) with m 6= 0. Since
ψiz̄, A

a
z̄ and the derivative ∂z̄ both have m = 1, and since a physical operator

cannot have negative m or n (see §2.2), Q-cohomology classes can be built
from just φi, φī, ψī, Aaz and their derivatives with respect to z. Note also that
the equation of motion for ψī is D̂zψ

ī = 0; this means that one can ignore
the z-derivatives of ψī as it can be expressed in terms of the other fields and
their corresponding derivatives. Therefore, a chiral (or Q-invariant) operator
which represents a Q-cohomology class can be written as

(4.1) F(φi, ∂zφ
i, ∂2

zφ
i, . . . ;φī, ∂zφ

ī, ∂2
zφ

ī, . . . ;Aaz , ∂zA
a
z , ∂

2
zA

a
z , . . . ;ψ

ī),

where as indicated, F might depend on the z-derivatives of φi, φī and Aaz of
arbitrarily high order, but not on derivatives of ψī. If the scaling dimension
of F is bounded, it will mean that F (i) depends only on the derivatives
of fields up to some finite order, (ii) is a polynomial of finite degree in
those, and/or (iii) is a polynomial of finite degree in Aaz . Notice that F will
always be a polynomial of finite degree in ψī; this is because ψī is fermionic
whence (ψj̄)2 = 0. However, the dependence of F on φi, φī (as opposed
to their derivatives) need not have any simple form. Nevertheless, we can
make the following observation: from the U(1)R-charges of the fields listed
below (2.27), we see that if F is of degree k in ψī, then it has q = k.

A general q = k operator F(φi, ∂zφ
i, ∂2

zφ
i, . . . ;φī, ∂zφ

ī, ∂2
zφ

ī, . . . ;Aaz ,
∂zA

a
z , ∂

2
zA

a
z , . . . ;ψ

ī) can be interpreted as a (0, k)-form on X valued in a
certain sum of vector bundles. In order to illustrate the general idea behind
this interpretation, let us consider some explicit examples of operators of
dimension (0, 0) and (1, 0). For dimension (0, 0), the most general operator
is F(φi, φī;ψj̄) = fj̄1,...,j̄k(φ

i, φī)ψj̄i · · ·ψj̄k ; i.e., F may depend on φi and φī

9Note that since we are only interested in local operators, we will work locally
on an open set in Σ — isomorphic to an open disc in C — with local parameters z
and z̄. Hence, we can omit in our operators the dependence on the scalar curvature
of Σ.
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but not on their derivatives, and is kth order in ψj̄ . Since the ψj̄ ’s anticom-
mute, one may map ψj̄ to dφj̄ whence such an operator would correspond
to an ordinary (0, k)-form fj̄1,...,j̄k(φ

i, φī)dφj̄1 · · · dφj̄k on X. For dimension
(1, 0), there are two general cases. In the first case, we have an operator
F(φl, φl̄; ∂zφ

i;Aaz ;ψ
j̄) = fi,j̄1,...,j̄k(φ

l, φl̄)Dzφ
iψj̄1 · · ·ψj̄k that is linear in ∂zφ

i

and Aaz , and is independent of any other derivatives. Notice that it can also
be written as F = F1 + F2, where F1 = fi,j̄1,...,j̄k(φ

l, φl̄)∂zφ
iψj̄1 · · ·ψj̄k and

F2 = fa,j̄1,...,j̄k(V
l, φl, φl̄)Aazψ

j̄1 · · ·ψj̄k . Clearly, F1 can be interpreted as a
(0, k)-form on X valued in the holomorphic cotangent bundle T ∗X; alter-
natively, it can be interpreted as a (1, k)-form on X. On the other hand,
F2 can be interpreted as a (0, k)-form on X valued in the bundle E∗ of
rank r = dim g, where the local sections of the dual bundle E are spanned
by Aaz . In the second case, we have an operator F(φl, φl̄; ∂zφ

s̄;Aaz ;ψ
j̄) =

f ij̄1,...,j̄k(φ
l, φl̄)gis̄Dzφ

s̄ψj̄i · · ·ψj̄k that is linear in ∂zφ
s̄, and Aaz and is inde-

pendent of any other derivatives. It can also be written as F = F1 + F2,
where F1 = f ij̄1,...,j̄k(φ

l, φl̄)gis̄∂zφ
s̄ψj̄i · · ·ψj̄k and F2 = fa,j̄1,...,j̄k(Vl, φ

l, φl̄)

Aazψ
j̄i · · ·ψj̄k . Clearly, F1 can be interpreted as a (0, k)-form on X valued in

the holomorphic tangent bundle TX. On the other hand, F2 can be inter-
preted as a (0, k)-form on X valued in the bundle E∗. One can go on to
show, in the same way, that an operator of dimension (n > 1, 0) and charge
q = k can be interpreted as a (0, k)-form on X valued in a certain sum of
vector bundles. But would this claim hold under gauge transformations?

Notice that a local operator F in the Q-cohomology is not necessarily
gauge-invariant: under a gauge transformation with infinitesimal parameter
ε, we have F → F ′ = F + δεF , where δεF does not necessarily vanish. Nev-
ertheless, since a gauge transformation commutes with the action of Q, F ′
will still be a Q-cohomology class of the same dimension and U(1)R-charge
as F . Thus, one can interpret a gauge transformation as a change of basis in
the infinite-dimensional space of Q-closed (modulo Q-exact) local operators
graded by dimension and U(1)R-charge in the perturbative sigma model. In
fact, we will witness an explicit manifestation of this claim when we con-
sider the canonical quantization of the sigma model in §8.4. At any rate, from
(2.18), (2.19) and (2.21), we find that δε(Dzφ

i) = εbAczfbc
aV i

a −Aaz∂kV i
aε
bV k
b

and δε(Dzφ
ī) = −εbAczfbcaV ī

a −Aaz∂k̄V ī
aε
bV k̄
b , along with δεφ

i = εaV i
a , δεφ

ī =

−εaV ī
a , and δεψ

ī = −εa∂k̄V ī
aψ

k̄. Note at this point that εa, just like Aaz , can
be interpreted as a local section of a vector bundle E of rank r. Hence, if F is
a dimension (0, 0) or (1, 0) operator as described in the previous paragraph,
F ′ would also be a sum of operators that each have an interpretation as a
(0, k)-form on X valued in a certain vector bundle. Via a similar analysis,
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one can show that this would also be true if F were to be an operator of
higher dimension. Thus, the claim that an operator of dimension (m, 0) (for
any integer m ≥ 0) and charge q = k can be interpreted as a (0, k)-form
on X valued in a certain sum of vector bundles, always holds. This struc-
ture persists in the quantum theory; however, there could be perturbative
corrections to the complex structures of the bundles.

The Action of Q

The classical action of Q on such operators can be easily described. If
we interpret ψī as dφī, then Q acts on functions of φi and φī, and is simply
the ∂̄ operator on X. This can be seen from the transformation laws δφī =
ψī, δφi = 0, δψī = 0, and δAaz = δAaz̄ = 0. Note that if the antiholomorphic
vector fields generating the G-action on X are covariantly-constant, i.e.,
∇k̄V ī

a = 0, then Q will continue to act as the ∂̄ operator on a more general
operator F(φi, ∂zφ

i, . . . ;φī, ∂zφ
ī, . . . ;Aaz , ∂zA

a
z , . . . ;ψ

ī) that depends on the
derivatives of φi and φī. This is because we have the equation of motion
Dzψ

ī = 0, and this means that one can ignore the action of Q on covariant
derivatives Dm

z φ
ī with m > 0. On the other hand, if ∇k̄V ī

a 6= 0, then Q
will only act as the ∂̄ operator on physical operators that do not contain
covariant derivatives Dm

z φ
ī with m > 0.

At the quantum level, there will be perturbative corrections with regard
to the action of Q. In fact, as briefly mentioned in §2.2, Eq. (2.32) pro-
vides such an example: the holomorphic stress tensor Tzz is no longer Q-
closed because the action of Q has received perturbative corrections. Let us
now attempt to better understand the characteristics of such perturbative
corrections. To this end, let Qcl denote the classical approximation to the
quantum-corrected Q. Then, one can write Q = Qcl + εQ′ +O(ε2), where
the parameter ε governs the magnitude of the perturbative quantum cor-
rections at each order of the expansion. To ensure that we continue to have
Q2 = 0, we require that {Qcl, Q′} = 0. That said, if Q′ = {Qcl,Λ} for some
Λ, then the correction by Q′ can be removed via the conjugation of Q with
exp(−εΛ) (which results in a trivial change of basis in the space of Q-closed
local operators). Hence, Q′ must represent a Qcl-cohomology class. Since
Q′ appears in sigma model perturbation theory, it ought to be constructed
locally10 from the fields appearing in the sigma model action.

10Because sigma model perturbation theory is local in X and involves a Taylor
expansion of fields up to some given order, the perturbative corrections to Qcl will
also be local in X, where order by order, they consist of differential operators whose
degrees depend on the underlying order.
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Note that one can ascertain Q′ explicitly when ∇k̄V ī
a = 0. In such a case,

Qcl will always act as the ∂̄ operator, as argued above. In other words, Q′ will
be given by representatives of ∂̄-cohomology classes on X. An example would
be the Ricci tensor which represents a ∂̄-cohomology class in H1(X,T ∗X)
— it is also constructed locally from the metric of X found in the action.
Hence, it satisfies the conditions required of a perturbative correction Q′.
Another representative of a ∂̄-cohomology class on X which may contribute
as Q′ would be an element of H1(X,Ω2,cl

X,G) (since it can also be interpreted

as an element of H1
∂̄
(Ω2,cl

X,G) via the Čech-Dolbeault isomorphism) — it is also
constructed locally from fields found in the action Sgauged of (2.25), and is
used to deform Sgauged via ST of (2.34). In fact, its contribution as Q′ is con-
sistent with its interpretation as a modulus of the chiral algebra. To see this,
notice that its contribution as Q′ means that it will parameterise a family
of Q = Qcl + εQ′ operators at the quantum level. Since the chiral algebra of
local operators is defined to be closed with respect to the Q operator, it will
vary with the Q operator and consequently with Q′ ∈ H1(X,Ω2,cl

X,G), i.e., one

can associate a modulus of the chiral algebra with a class in H1(X,Ω2,cl
X,G). It

is possible that these classes completely determine Q′, as they are the only
one-dimensional ∂̄-cohomology classes on X which one can construct locally
from the fields found in the action.

The fact that Q does not always act as the ∂̄ operator even at the
classical level, suggests that one needs a more general framework than just
ordinary Dolbeault or ∂̄-cohomology to describe the Q-cohomology of the
gauged twisted (0, 2) sigma model. Indeed, as we will show shortly in §4.3,
the appropriate description of the Q-cohomology of local operators spanning
the chiral algebra will be given in terms of the more abstract notion of Čech
cohomology.

4.2. A topological chiral ring

Next, let us make an interesting and relevant observation about the ground
operators in the Q-cohomology. Note that we had already shown in §2.2, that
the Q-cohomology of operators defines a chiral algebra with holomorphic
operator product expansions. Let the local operators of the Q-cohomology
be given by Fe, Ff , . . . with scaling dimensions (he, 0), (hf , 0), . . . . By
holomorphy, and the conservation of scaling dimensions and U(1)R charges,
the OPE of these operators take the form

(4.2) Fe(z)Ff (z′) =
∑

qg=qe+qf

Cefg Fg(z′)
(z − z′)he+hf−hg

,
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where we have denoted the U(1)R charges of the operators Fe, Ff and
Fg by qe, qf and qg, respectively. Here, Cefg is a structure constant that

is (anti)symmetric in the indices. If F̃e and F̃f are ground operators of
dimension (0, 0), i.e., he = hf = 0, the OPE will then be given by

(4.3) F̃e(z)F̃f (z′) =
∑

qg=qe+qf

Cefg Fg(z′)
(z − z′)−hg

.

Notice that the RHS of (4.3) is only singular if hg < 0. Also recall that all
physical operators in the Q-cohomology cannot have negative scaling dimen-
sion, i.e., hg ≥ 0.11 Hence, the RHS of (4.3), given by (z − z′)hgFg(z′), is non-
singular as z → z′, since a pole does not exist. Note that (z − z′)hgFg(z′)
must also be annihilated by Q such as to live in its cohomology, since F̃e
and F̃f do, too. In other words, we can write F̃g(z, z′) = (z − z′)hgFg(z′),
where F̃g(z, z′) is a nonsingular dimension (0, 0) operator that represents a
Q-cohomology class. Thus, we can express the OPE of the ground operators
as

(4.4) F̃e(z)F̃f (z′) =
∑

qg=qe+qf

Cefg F̃g(z, z′).

Since the only holomorphic functions without any poles on a Riemann sur-
face are equivalent to constants, it will mean that the operators F̃ are inde-
pendent of the coordinate z on Σ. Hence, they are completely independent
of their insertion points and the metric on Σ. Therefore, we conclude that
the ground operators of the Q-cohomology define a topological chiral ring
via their OPE

(4.5) F̃eF̃f =
∑

qg=qe+qf

Cefg F̃g.

In any case, recall that gauge transformations preserve the grading by
dimension and U(1)R-charge of all Q-cohomology classes of the perturbative
sigma model. As such, the ring structure is well-defined under infinitesimal

11As mentioned in footnote 2, for an operator of classical dimension (n,m),
anomalous dimensions due to RG flow may shift the values of n and m in the
quantum theory. However, the spin n−m remains unchanged. Hence, since the
operators in the Q-cohomology of the quantum theory will continue to have m = 0
(due to a Q-trivial antiholomorphic stress tensor Tz̄z̄ at the quantum level), the
value of n is unchanged as we go from the classical to the quantum theory, i.e.,
n ≥ 0 holds even at the quantum level.
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gauge transformations. However, under finite gauge transformations which
induce a change of basis in the infinite-dimensional space of Q-closed (mod-
ulo Q-exact) local operators of the sigma model, the transformed operators
F̃ ′e, F̃ ′f and F̃ ′g do not necessarily satisfy (4.5). In other words, (4.5) will

only be unambiguously-defined if F̃e, F̃f and F̃g are gauge-invariant ground
operators.

Grading of the Ring

In the perturbative theory, the chiral ring will have a Z-grading by the
U(1)R charge of the operators. However, the corresponding operators will
either be non-Grassmannian or Grassmannian, obeying either commutators
or anticommutators, depending on whether they contain an even or odd
number of fermionic fields. Consequently, the Z-grading will be reduced mod
2 to Z2, such that the ring is effectively Z2-graded.

Nonperturbatively, due to worldsheet twisted-instantons, the continuous
U(1)R symmetry will be reduced to a discrete subgroup. Specifically, from
the relevant index theorem of the kinetic operator D̂ of the fermionic fields ψiz̄
and ψī, (assuming, for simplicity of illustration, that there are no zero-modes
for the ψiz̄ fields), we find that a correlation function will be nonvanishing
if and only if there are exactly p insertions of the ψī fields, where (for a
nonanomalous model in which c1(Σ) = pG1 (X) = 0 while cG1 (X) 6= 0)

(4.6) p = 〈cG1 (X),Φ∗(Σ)〉.

(Here, cG1 (X) resides in the second G-equivariant cohomology H2
G(X); Φ∗(Σ)

resides in the second G-equivariant homology HG
2 (X) obtained by a push-

forward by Φ of the fundamental class of Σ; the brackets in (4.6) just denote
the bilinear pairing H2

G(X)×HG
2 (X)→ R.) In the presence of worldsheet

twisted-instantons, p is nonzero, and consequently, any nonvanishing corre-
lation function would pick up a factor of eipq̃ under a U(1)R transformation
of the ψī insertions, where q̃ is the effective U(1)R charge of ψī. Since the
correlation function ought to remain invariant under this U(1)R transforma-
tion, we must have q̃ = 2πl/p, where l ∈ Z. Therefore, the continuous U(1)R
symmetry is broken down to its Zp subgroup. Thus, the initial Z-grading
by the U(1)R charges will be reduced to a Zp-grading. A further reduction
mod 2 as discussed above, will mean that the ring is effectively Z2p-graded
at the nonperturbative level.

The Classical Ring

Recall that any gauge-invariant dimension (0, 0) operator F̃e defined
in (4.5) with qe = k, can be written as F̃e = fj̄1,...,j̄k(φ

i, φī)ψj̄i · · ·ψj̄k . Under
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a gauge transformation with infinitesimal parameter ε, we have, from (2.19)
and (2.21), δε(dφ

ī) = −εa∂k̄V ī
aψ

k̄ and δεψ
ī = −εa∂k̄V ī

aψ
k̄. This means that

an operator of the form fj̄1,...,j̄l(φ
i, φī)ψj̄i · · ·ψj̄l and a (0, l)-form fj̄1,...,j̄l(φ

i,

φī)dφj̄1 ∧ · · · ∧ dφj̄l on X gauge-transform in exactly the same way. Hence,
according to our discussion in §4.1, F̃e would correspond to a gauge-invariant
(0, k)-form fj̄1,...,j̄k(φ

i, φī)dφj̄1 ∧ · · · ∧ dφj̄k on X.
At the classical level (where perturbative corrections are absent), it was

also argued in §4.1 that Q will act on a dimension (0, 0) operator such as
F̃e (which does not contain the covariant derivatives Dm

z φ
i or Dm

z φ
ī with

m > 0) as the ∂̄ operator. Moreover, as elaborated in §2.3, gauge-invariant
forms are also G-equivariant forms. Altogether, this means that the classical
ring is just the graded G-equivariant Dolbeault ring H0,∗

G (X). This ring, for
compact X, is also finite-dimensional.

4.3. A sheaf of chiral algebras

Let us now explain the idea of a “sheaf of chiral algebras” on X. To this end,
note that both the Q-cohomology of local (on the worldsheet Σ) operators
and the supersymmetry generator Q, can be described locally on X. Hence,
one is free to restrict the local operators to be well-defined only on a given
open set U ⊂ X. Since in the perturbative theory, we are considering sections
Φ : Σ→ X with no multiplicities, operator product expansions between local
operators will make sense in U . From here, one can naturally proceed to
restrict the definition of the operators to smaller open sets, such that a
global definition of the operators can be obtained by gluing together the
open sets on their unions and intersections. From this description, in which
one associates a chiral algebra, its OPE’s, and chiral ring to every open set
U ⊂ X, we arrive at what is mathematically understood as a “sheaf of chiral
algebras”. We will call this sheaf Â.

Description of A Via Čech Cohomology

In the perturbative theory, one can also describe the Q-cohomology
classes as a kind of Čech cohomology. Specifically, we will show that the
chiral algebra A of Q-cohomology classses of the gauged twisted (0, 2) sigma
model on X, can be described by the classes of the Čech cohomology of the
sheaf Â of locally-defined chiral operators. To this end, we shall generalize
the argument in §2.3 — which provides a Čech cohomological description of a
∂̄-cohomology — to demonstrate an isomorphism between theQ-cohomology
classes and the classes of the Čech cohomology of Â.
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Let us start by considering a contractible open set U ⊂ X that is home-
omorphic to an open ball in Cn, where n = dimC(X). As explained at the
start of §2.3, the Q-cohomology is independent of metric deformations of
X. Hence, let us, for convenience, pick a metric on U whereby ∇k̄V ī

a = 0.
Then, according to our discussion in §4.1, Q will act classically as the ∂̄
operator on any local operator F in U . In other words, F can be inter-
preted as a ∂̄-closed (0, k)-form valued in a certain vector bundle F̂ over U
— that is, in the absence of perturbative corrections at the classical level,
any operator F in the Q-cohomology will be a class of H0,k

∂̄
(U, F̂ ) on U .

Since U is contractible, F̂ will be a trivial bundle over U . This means that
F̂ will always possess a global section, i.e., it corresponds to a soft sheaf.
Since the higher Čech cohomologies of a soft sheaf are trivial [37], we will
have Hk

Čech
(U, F̂ ) = 0 for k > 0. Mapping this back to Dolbeault cohomol-

ogy via the Čech-Dolbeault isomorphism, we find that H0,k

∂̄
(U, F̂ ) = 0 for

k > 0. Recalling that small quantum corrections in the perturbative limit
can only annihilate and not create cohomology classes, we conclude that
local operators F with q > 0 will necessarily vanish in Q-cohomology on U .

Now define a good cover of X by open sets {Ue}. Since the intersection of
open sets {Ue} also give open sets (homeomorphic to open balls in Cn), {Ue},
as well as all of their intersections, have the same feature as U described
above: Q-cohomology vanishes for q > 0 on {Ue} and their intersections.

Let the operator F1 on X be a Q-cohomology class with q = 1. It is
here that we shall import the usual arguments relating a ∂̄- to a Čech coho-
mology, to demonstrate an isomorphism between the Q-cohomology and a
Čech cohomology. When restricted to an open set Ue, the operator F1 must
be trivial in Q-cohomology since q > 0, i.e., F1 = [Q, Ce], where Ce is an
operator that is well-defined in Ue with q = 0.

Now, since Q-cohomology classes such as F1 — albeit locally-defined
on Σ — can be globally-defined on X, we have F1 = [Q, Ce] = [Q, Cf ] over
the intersection Ue ∩ Uf , so [Q, Ce − Cf ] = 0. Let Cef = Ce − Cf , where Cef
is defined in Ue ∩ Uf . Then, [Q, Cef ] = 0, and over any triple intersection
Ue ∩ Uf ∩ Ug, we have

(4.7) Cef = −Cfe, Cef + Cfg + Cge = 0.

Moreover, for (q = 0) operators Ke and Kf whereby [Q,Ke] = [Q,Kf ] = 0,
we have an equivalence relation

(4.8) Cef ∼ C′ef = Cef +Ke −Kf .
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Note that since [Q, Cef ] = 0 and Cef 6= {Q, . . . ], the collection {Cef} are oper-
ators in the Q-cohomology with well-defined operator product expansions,
and whose dimension (0, 0) subset furnishes a topological chiral ring with
q = 0.

Since the local operators with q > 0 vanish in Q-cohomology on an arbi-
trary open set U , the sheaf Â of the chiral algebra of operators has as its local
sections the ψī-independent (i.e., q = 0) operators F̂(φi, ∂zφ

i, . . . ;φī, ∂zφ
ī,

. . . ;Aaz , ∂zA
a
z , . . . ) that are annihilated by Q. Each Cef with q = 0 is thus a

section of Â over the intersection Ue ∩ Uf . From (4.7) and (4.8), we see that
the collection {Cef} defines the elements of the first Čech cohomology group

H1
Čech

(X, Â).
Recall that the Q-cohomology classes are defined as those operators

which are Q-closed, modulo those which can be globally written as {Q, . . . ]
on X. In other words, F1 vanishes in Q-cohomology if we can write it as
F1 = [Q, Ce] = [Q, Cf ] = [Q, C], i.e., Ce = Cf and hence Cef = 0. Therefore, a
vanishing Q-cohomology with q = 1 corresponds to a vanishing first Čech
cohomology. Thus, we have obtained a map from the Q-cohomology with
q = 1 to a first Čech cohomology.

Similar to the case of relating a ∂̄- to a Čech cohomology, one can also
reverse our arguments and construct an inverse of this map. Suppose we are
given a family {Cef} of sections of Â over the corresponding intersections
{Ue ∩ Uf}, and they obey (4.7) and (4.8) so that they define the elements of

H1
Čech

(X, Â). We can then proceed as follows. Let the set {fa} be partition of
unity subordinates to the open cover ofX provided by {Ue}. This means that
the elements of {fe} are continuous functions on X, and they vanish outside
the corresponding elements in {Ue} whilst obeying

∑
e fe = 1. Let F1,e be a

chiral operator defined in Ue by F1,e =
∑

g[Q, fg]Ceg.12 F1,e is well-defined
throughout Ue, since in Ue, [Q, fg] vanishes wherever Ceg is not defined.
Clearly, F1,e has q = 1, since Ceg has q = 0 and Q has q = 1. Moreover, since
F1,e is a chiral operator defined in Ue, it will mean that {Q,F1,e} = 0 over Ue.
For any e and f , we have F1,e −F1,f =

∑
g[Q, fg](Ceg − Cfg). Using (4.7),

this is
∑

g[Q, fg]Cef = [Q,
∑

g fg]Cef . This vanishes since
∑

g fg = 1. Hence,
F1,e = F1,f on Ue ∩ Uf , for all e and f . In other words, we have uncovered
a globally-defined q = 1 operator F1 where {Q,F1} = 0 on X. Notice that
F1,e and thus F1 is not defined to be of the form {Q, . . . }. Therefore, we

have arrived at a map from the Čech cohomology group H1
Čech

(X, Â) to the
Q-cohomology group with q = 1, i.e., Q-closed q = 1 operators modulo those

12Normal ordering of the operator product between [Q, fc(φ
i, φī)] and Cef is

needed for regularization purposes.
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that can be globally written as {Q, . . . ]. The fact that this map is an inverse
of the first map can indeed be verified.

Since there is nothing unique about the q = 1 case, we can repeat the
above procedure for operators with q > 1. In doing so, we find that the Q-
cohomology coincides with the Čech cohomology of Â for all q. Hence, the
chiral algebra A of the gauged twisted (0, 2) sigma model will be given by⊕

qH
q

Čech
(X, Â) as a vector space. As there will be no ambiguity, we shall

henceforth omit the label ‘Čech’ when referring to the cohomology of Â.

A Sheaf of Vertex Algebras

Note that mathematically, the sheaf Â would be known as a sheaf of
vertex algebras. It would be described purely from the Čech viewpoint: the
field ψī would be omitted and locally on X, one would just consider oper-
ators constructed from φi, φī, Aaz and their z-derivatives as generators of
Â. The chiral algebra A of Q-cohomology classes with q > 0 would then be
constructed as Čech q-cocycles. Notice that in this framework, one would
not need to resort to any computation involving the path integral. Instead,
one would utilize the abstraction of Čech cohomology to define the spectrum
of operators in the quantum sigma model. In this sense, the study of the
sigma model can be made mathematically rigorous.

Unlike its close cousins the sheaf of CDO’s and CDR [7, 38] — which have
been shown to be relevant to the ordinary (heterotic) twisted (0, 2) sigma
model and the half-twisted (2, 2) model, respectively [6, 8, 39] — a mathe-
matical interpretation of the sheaf Â is currently unavailable. Nonetheless,
in the case where the gauge group is an abelian subgroup T ⊂ G, we will
show in §5 that Â for a certain class of X’s is just the sheaf of TCDO’s
recently formulated by Arakawa et al. in [23].

4.4. Relation to a perturbed version of a free βγ system

Let us now provide a useful physical description of the local structure of
the sheaf Â for when the gauge group is an abelian subgroup T ⊂ G. To
this end, we will describe in a novel way the Q-cohomology of operators
which are regular in a small open set U ⊂ X. As before, we assume that U
is homeomorphic to an open ball in Cn and is thus contractible.

Now notice from Sgauged in (2.25) and V in (2.26), that the hermitian
metric on X appears within a {Q, . . . }-term in the action. Thus, any shift
in the metric will also appear within Q-exact (i.e., Q-trivial) terms. Con-
sequently, for our present purposes, we can arbitrarily redefine the values
of the hermitian metric on X, since they do not affect the analysis of the
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Q-cohomology. As such, to describe the local structure, we can always select
a flat hermitian metric on U . As explained in §2.3, the action also contains
terms derived from H1(X,Ω2,cl

X,T ). However, from (2.34), we see that these
terms are likewise Q-exact and therefore, can be ignored in our analysis of
the local structure in U . Thus, noting that ∂kV

i
a = ∂k̄V

ī
a = 0 (whence (2.24)

is trivially satisfied) since the gauge group T is abelian,13 one can write the
local action of the abelian twisted (0, 2) sigma model on U as

I =
1

2π

∫
Σ
|d2z|

∑
i,j̄,a,b

δij̄

(
∂zφ

j̄∂z̄φ
i + ψiz̄∂zψ

j̄
)

(4.9)

+ δij̄

(
∂z̄φ

iAazV
j̄
a −Aaz̄V i

a∂zφ
j̄ −Aaz̄V i

aA
b
zV

j̄
b

)
.

From (4.9), we have, from the equation of motions, the constraints ∂z̄(∂zφ
j̄)

= −(∂z̄A
a
z)V

j̄
a and ∂z̄(∂zφ

i) = (∂zA
a
z̄)V

i
a . These constraints will be satisfied

if ∂zφ
j̄ , Aaz and ∂zφ

i vary holomorphically with z, while Aaz̄ varies antiholo-
morphically with z̄. Then, via integration by parts, and the holomorphy and
antiholomorphy of Aaz and Aaz̄ , one can simplify (4.9) to

(4.10) I =
1

2π

∫
Σ
|d2z|

∑
i,j̄,a,b

δij̄

(
∂zφ

j̄∂z̄φ
i + ψiz̄∂zψ

j̄ −Aaz̄V i
aA

b
zV

j̄
b

)
.

Let us now describe the Q-cohomology classes of operators regular in
U . As explained earlier, these are operators of dimension (n, 0) which vary
holomorphically with z and are independent of ψī. Such operators are of the
form F̂(φi, ∂zφ

i, . . . ;φī, ∂zφ
ī, . . . ;Aaz , ∂zA

a
z , . . . ). Note that because ∇k̄V ī

a =
0 over U (since the Levi-connection Γī

j̄k̄
vanishes for a flat metric on U , in

addition to having the condition ∂k̄V
ī
a = 0), from our discussion in §4.1, we

find that Q will act as the ∂̄ operator at the classical level. In this case, the
Q operator may receive perturbative corrections from ∂̄-cohomology classes
such as the Ricci tensor and classes in H1(X,Ω2,cl

X,T ). However, note that
since we have picked a flat hermitian metric on U , the corresponding Ricci
tensor on U is zero. Moreover, as explained above, classes from H1(X,Ω2,cl

X,T )
do not contribute when analyzing the Q-cohomology on U . Hence, we can

13As the gauge group T is abelian, the structure constants fab
c must vanish for all

a, b, c = 1, 2, . . . , d, where d is the dimension of the group. From (2.15) and (2.16),

we then have the conditions V ja ∂jV
i
b = V jb ∂jV

i
a and V j̄a ∂j̄V

ī
b = V j̄b ∂j̄V

ī
a . Since the

nonzero vector fields that generate the abelian action on X are linearly-independent
in all indices, i.e., V ia 6= V ja , V īa 6= V j̄a , V ja 6= V jb and V j̄a 6= V j̄b , these conditions will

be met by ∂kV
l
c = ∂k̄V

l̄
c = 0 for any component.
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ignore the perturbative corrections to Q in our present discussion. Therefore,
on the classes of operators in U , Q acts as ∂̄ = ψī∂/∂φī, and if F̂ is to
be annihilated by Q, it would mean that as a function of φi, φī, Aaz and
their z-derivatives, F̂ must be independent of φī (but not its derivatives);
in other words, F̂ should depend only on the other variables φi and Aaz , and
the derivatives of φi, φī and Aaz .

14 Hence, the Q-invariant operators take
form F̂(φi, ∂zφ

i, . . . ; ∂zφ
ī, ∂2

zφ
ī, . . . ;Aaz , ∂zA

a
z , ∂

2
zA

a
z , . . . ). In other words, the

operators, in their dependence on φk,k̄, the center of mass coordinates of the
string whose worldsheet theory is the abelian twisted (0, 2) sigma model,
is holomorphic. The local sections of Â are just given by the operators
in the Q-cohomology of the local abelian twisted (0, 2) sigma model with
action (4.10).

Let us set βi = δij̄∂zφ
j̄ and γi = φi, where βi and γi are bosonic operators

of dimension (1, 0) and (0, 0), respectively. Then, theQ-cohomology of opera-
tors that are regular in U can be represented by arbitrary local functions of β,
γ and Aaz of the form F̂(γ, ∂zγ, ∂

2
zγ, . . . , β, ∂zβ, ∂

2
zβ, . . . A

a
z , ∂zA

a
z , ∂

2
zA

a
z , . . . ).

From the flat action (4.10), one can deduce, via standard methods in quan-
tum field theory, that the operator products Aaz · β and Aaz · γ are trivial;15

on the other hand, the products γ · γ and β · β are nonsingular, while

(4.11) βi(z)γ
j(z′) = − δij

z − z′
+ regular.

We can construct an action for the fields β, γ and Aaz , viewed as free ele-
mentary fields, which leads to these OPE’s. It is the following action of a
perturbed version of a free βγ system:

(4.12) Iβγ =
1

2π

∫
|d2z|

∑
i,a,b

(
βi∂z̄γ

i −Aaz̄V i
aA

b
zVib

)
.

Hence, we find that the perturbed free βγ system above reproduces the Q-
cohomology of ψī-independent operators of the abelian twisted (0, 2) sigma
model on U , i.e., the local sections of the sheaf Â.

At this juncture, one can make another important observation about
the relationship between the local abelian twisted (0, 2) sigma model with
action (4.10) and the local (in the sense of the target space) version of the

14Once again, we can disregard the action of Q on z-derivatives of φī as ∂zψ
ī = 0

and δφī = ψī.
15Note that the V ia ’s and V īa ’s are, in the abelian case at hand, independent of

the φi and φī fields. Hence, there are no nontrivial propagators arising from their
presence in the action (4.10).
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perturbed free βγ system of (4.12). To begin with, note that the holomorphic
stress tensor T̂ (z) = −2πTzz of the local sigma model is given by

(4.13) T̂ (z) = −δij̄∂zφj̄∂zφi.

(Here and below, normal ordering is understood for T̂ (z)). Via the identifi-
cation of the fields β and γ with ∂zφ and φ, respectively, we find that T̂ (z)
can also be written as

(4.14) T̂ (z) = −βi∂zγi.

This coincides with the holomorphic stress tensor of the local perturbed
free βγ system. Simply put, the abelian twisted (0, 2) sigma model and the
perturbed free βγ system have the same local holomorphic stress tensor.
This means that locally on X, the sigma model and the βγ system have the
same generators of general holomorphic coordinate transformations on the
worldsheet.

One may now ask the following question: does the βγ system repro-
duce the Q-cohomology of ψī-independent operators globally on X, or just
within a small open set U? Well, the βγ system will certainly reproduce
the Q-cohomology of ψī-independent operators globally on X if there is no
obstruction to defining the system globally on X — i.e., one finds, after mak-
ing global sense of the action (4.12), that the corresponding theory remains
anomaly-free at the quantum level. Let’s study this aspect more closely.

First and foremost, the classical action (4.12) is globally sensible if we
interpret the bosonic fields β and γ correctly. Since γ is not minimally-
coupled to the gauge field A, it ought to be interpreted as a map γ : Σ→ X.
As for β, it ought to be interpreted as a (1, 0)-form on Σ valued in the
pull-back γ∗(T ∗X). As always, the V i

a ’s and Vib’s are to be interpreted as
(co)vector fields, but now, on a (target) space that is not necessarily flat.
With this interpretation, (4.12) becomes the action of what one might call
a nonlinear perturbed βγ system. Nevertheless, by choosing γi to be local
coordinates on a small open set U ⊂ X, one can make the action linear.
In other words, a local version of (4.12) represents the action of a linear
perturbed βγ system.

Now that we have made global sense of the action of the βγ system
at the classical level, we move on to discuss what happens at the quantum
level. To this end, let us first integrate out from the path integral, the non-
propagating fields Aaz and Aaz̄ (which do not affect the anomalies) via their
equations of motion. Next, let us perform an expansion around a classical
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solution of the nonlinear (i.e., global) βγ system given by a holomorphic
map γ0 : Σ→ X, i.e., let γ = γ0 + γ′. Then, the action is (1/2π)(β,Dγ′) to
quadratic order about γ0. The field γ′, being a deformation of the coordinate
γ0 on X, is a section of the pull-back γ∗0(TX). Thus, the kinetic operator of
the β and γ fields which characterizes the anomaly of the βγ system, is the
D operator on sections of γ∗0(TX). Note that D is the complex conjugate of
the D operator in Spert of (2.11). Complex conjugation flips the sign of the
anomalies. That said, the fields involved here are bosonic while in Spert they
are fermionic — this results in a second sign flip. Hence, the anomalies of
the βγ system can be computed as the anomalies of the model with action
Spert.

16 The anomalies for the model with action Spert have been computed
in [6]. The computation is similar to that furnished in §3; one just replaces
the bundle ker dπE therein with the bundle TX, and proceed with the same
calculation (where Φ : Σ→ X is now a map). This gives us the anomaly-
cancellation conditions for the βγ system as c1(Σ)c1(X)/2 = p1(X)/2 = 0.

That being said, note that since the compact, connected T -action is
supposed to leave fixed the metric on X — i.e., the T -action generates an
automorphism that mapsX back to itself — the standard de Rham cohomol-
ogy groups will coincide with the cohomology groups defined by T -invariant
forms on X.17 In other words, c1(X) = [c1(X)]T and p1(X) = [p1(X)]T ,
where the ‘T ’ superscript just indicates that the class is T -invariant. In turn,
because T is abelian, we have [c1(X)]T = cT1 (X) and [p1(X)]T = pT1 (X),
whereby if Hm

T (X) is the degree-m part of the T -equivariant cohomology
of X, cT1 (X) ∈ H2

T (X) and pT1 (X) ∈ H4
T (X).18 Altogether, this means that

16Notice that the D operator in (2.11) acts on sections of the pull-back of the
antiholomorphic bundle TX instead of the holomorphic bundle TX. However, this
difference is irrelevant with regard to anomalies since ch2(E) = ch2(E) for any
holomorphic vector bundle E.

17Since the G-action tg is an automorphism of X, it would induce an auto-
morphism t∗g on the de Rham cohomology groups Hk(X;R). Hence, G acts as a
group of automorphisms on Hk(X;R). Let Hk(X;R)G be the fixed point set of
this action. Also, if [Ωk(X)]G denotes a G-invariant k-form on X, the inclusion
I : [Ωk(X)]G → Ωk(X) induces an isomorphism I∗ : Hk([Ω(X)]G) ∼= Hk(X,R)G.
Since G is connected, tg and the identity map 1X are homotopic, i.e., tg ∼= 1X
for every g ∈ G. This implies that the induced automorphisms are the same, i.e.,
t∗g = Id, where Id is the identity on Hk(X;R). Hence, Hk(X;R)G is the whole
Hk(X;R), and we have an isomorphism I∗ : Hk([Ω(X)]G) ∼= Hk(X,R).

18This is — in the context of our sigma model — an implicit consequence of
the fact that T -invariant forms coincide with T -equivariant forms (see remark 14
of [36]). To understand this explicitly, note that any G′-equivariant cohomology
class Od of degree d can — in the Cartan model of equivariant cohomology —
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one can actually write c1(X) = [c1(X)]T = cT1 (X) and p1(X) = [p1(X)]T =
pT1 (X), whence the anomaly-cancellation conditions for the βγ system are

(4.15) 0 =
1

2
c1(Σ)cT1 (X) =

1

2
pT1 (X).

Notice that (4.15) is exactly (3.1) for gauge group T — i.e., the anomalies
of the abelian twisted (0, 2) sigma model also manifest in the nonlinear per-
turbed βγ system. Furthermore, if (4.15) is satisfied whence the anomalies
vanish, the nonlinear perturbed βγ system will reproduce the Q-cohomology
of ψī-independent operators globally on X. This means that one would be
able to find, without any obstruction, a global section of Â.

Describing A Via the βγ System and Other Relevant Issues

At any rate, notice that the perturbed βγ system lacks the presence of
right-moving fermions and thus, the U(1)R charge q carried by the fields ψiz̄
and ψī of the underlying abelian twisted (0, 2) sigma model. Locally, the Q-
cohomology of the sigma model is nonvanishing only for q = 0. Globally and
generically however, there can be higher degrees in cohomology. Since the
chiral algebra of operators furnished by the linear perturbed βγ system gives
the correct description of the Q-cohomology of ψī-independent operators
on U , one can then expect the globally-defined chiral algebra of operators
furnished by the nonlinear perturbed βγ system to correctly describe the Q-
cohomology classes of zero degree (i.e., q = 0) on X. How then can one utilize
the nonlinear perturbed βγ system to describe the higher cohomology? The
answer lies in the analysis carried out in §4.3. In the βγ description, we lack
a close analog of ∂̄-cohomology at our disposal. Nonetheless, we can exploit
the more abstract notion of Čech cohomology. As before, we begin with a
good cover of X by small open sets {Ue}, and, as explained in §4.3, we can
then describe the Q-cohomology classes of positive degree (i.e., q > 0) by
Čech q-cocycles, i.e., they can be described by the qth Čech cohomology of
the sheaf Â of the chiral algebra of the linear perturbed βγ system with
action being a linearized version of (4.12).

be written as Od = Od +
∑p
i=1

1
i!F

a1 · · ·F ai∆a1···ai , where the forms ∆a1···ap ∈
Ωd−2p(X) are totally symmetric in their indices, F = dA+A ∧A, and Od is a
G′-invariant form on X of degree d [28]. In our abelian case of G′ = T , we have,
from our discussion below (4.9), the constraints ∂zA

a
z̄ = 0 = ∂z̄A

a
z . In turn, this

means that F a = 0 and hence, Od = Od and dC = d, where dC is the differential of
the equivariant cohomology complex. In other words, where our sigma model is con-
cerned, a T -equivariant cohomology class and a T -invariant de Rham cohomology
class can be regarded as one and the same thing.
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Another issue that remains to be elucidated is the appearance of the
various moduli of the sigma model in the nonlinear perturbed βγ system.
Recall from §2.3 that the moduli of the chiral algebra of the sigma model
consist of the complex structure of X and a class in H1(X,Ω2,cl

X,T ). The
complex structure, via the definition of the fields themselves, is automatically
built into the classical action (4.12). However, one cannot incorporate a class
from H1(X,Ω2,cl

X,T ) within the action in this framework. Nevertheless, as we

will explain in §4.6, the modulus represented by a class in H1(X,Ω2,cl
X,T ) can

be built into the definition of certain Čech cocycles through which one can
define a family of sheaves of chiral algebras.

A final remark to be made is that in the study of quantum field the-
ory, one would like to be able to go beyond just defining the Q-cohomology
classes or a sheaf of chiral algebras. One would also like to be able to com-
pute physically meaningful quantities such as the correlation functions of
these cohomology classes of local operators. In the sigma model, the corre-
lation functions can be computed from standard methods in quantum field
theory. But at first sight, there seems to be an obstacle in doing likewise for
the nonlinear perturbed βγ system. This can be seen as follows. Let the cor-
relation function of s local operators O1, O2, . . . , Os on a genus g Riemann
surface Σ be given by 〈O1(z1) · · · Os(zs)〉g, where Oi(zi) has U(1)R charge
qi. Note that due to a U(1)R anomaly, the correlation functions of our per-
turbative model will be nonvanishing if and only if

∑
i qi = n(1− g), where

n = dimCX. Thus, generic nonzero correlation functions require that not all
the qi’s be zero. In particular, correlation functions at string tree level vanish
unless

∑
i qi = n. However, the operators of qi 6= 0 cannot be expressed in

a standard manner in the nonlinear perturbed βγ system. They are instead
expressed in terms of Čech qi-cocycles. This means that in order for one to
compute the corresponding correlation functions using the nonlinear per-
turbed βγ system, one must translate the usual quantum field theory recipe
employed in the sigma model into a Čech language. The computation in the
Čech language will involve products of Čech cohomology groups and their
maps into complex numbers.

An Illuminating Example

A straightforward but illuminating example would be the following com-
putation of a correlation function involving the gauge-invariant local opera-
tor Oi = gkj̄(φ

l, φl̄)Dzφ
kψj̄ on the sphere (i.e., at string tree level). To this

end, first note that one can write Oi = Oi,φ +Oi,A, where Oi,φ = gkj̄(φ
l,

φl̄)∂zφ
kψj̄ and Oi,A = gkj̄(φ

l, φl̄)AazV
k
a ψ

j̄ . Second, recall from §4.1 that a
dimension (1, 0) operator Oi,φ with U(1)R charge qi = 1, can be interpreted
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as a (0, 1)-form valued in the holomorphic cotangent bundle T ∗X; on the
other hand, a dimension (1, 0) operator Oi,A with U(1)R charge qi = 1, can
be interpreted as a (0, 1)-form valued in the bundle E∗ of rank r = dim t,
where t is the Lie algebra of the gauge group T . Despite the nontrivial geo-
metrical interpretation of Oi, one can nevertheless interpret it as a class
in the Čech cohomology group H1(X, Â1), where Â1 is a sheaf whose local
sections are generated by dimension (1, 0) functions of ∂zγ

k, Aaz and γl.
Third, note that the path integral would localize onto supersymmetric con-
figurations characterized by setting the fermionic field variations in (2.27) to
zero [40]; this means that the path integral would boil down to an integral
over the moduli space of solutions to Dz̄φ

l = 0. In this particular case of
the worldsheet being a sphere, a further simplification occurs; one can set
Az = 0 everywhere on Σ via a gauge transformation19 and write Oi as Oi,φ
and Dz̄φ

l = 0 as ∂z̄φ
l = 0; i.e., the path integral would reduce to an integral

over the moduli space of holomorphic maps φl : Σ→ X. That being said,
since we are considering degree-zero maps in the perturbative theory, the
moduli space of holomorphic maps is just X itself; i.e., the path integral
would really be an integral over the target space X. Altogether therefore,
since

∑
qi = n is required for U(1)R anomaly-cancellation, we find that a

nonvanishing perturbative correlation function on the sphere involving just
the dimension (1, 0) operators Oi, can be computed as

(4.16) 〈O1(z1) · · · On(zn)〉0 =

∫
X
Wn,n.

Here, Wn,n is a top-degree (n, n)-form on X which can be interpreted as a
class in the Čech cohomology group Hn(X,KX), and KX is the canonical
sheaf of (n, 0)-forms onX. Explicitly,Wn,n is obtained via the following anti-
symmetric product of Čech cohomology classes H1(X, Â1)1, . . . ,H

1(X, Â1)s
which represent the anticommuting fermionic operators O1, . . . ,Os:

H1(X, Â1)1 ∧ · · · ∧H1(X, Â1)n→̃H1(X,Ω1
X)1 ∧ · · · ∧H1(X,Ω1

X)n(4.17)

→ Hn(X,KX).

19Recall that from our discussion following (4.9), we have the constraints ∂zAz̄ =
∂z̄Az = 0; this implies that F = dA = 0. Since in this case, Σ = S2 is simply-
connected, a vanishing field strength means that one can write the correspond-
ing holomorphic component of the connection one-form A in pure gauge, i.e,
Az = i∂z(U

†)−1 · U†, where U ∈ G and G is abelian. This expression shows that
Az can be set to zero everywhere on Σ by a gauge transformation [41].



i
i

“1-tan” — 2015/2/11 — 17:36 — page 322 — #46 i
i

i
i

i
i

322 Meng-Chwan Tan

In the above, we have made use of the fact that because Â1 (whose local sec-
tions are independent of β, A and their z-derivatives) can be identified with
the sheaf of CDO’s whose local sections are β-independent and of dimension
(1, 0), it is in turn isomorphic to the sheaf Ω1

X of holomorphic one-forms on
X (see §2 of [7]). In this framework, the integral over X in (4.16) just defines
a map Hn(X,KX)→ C. But can one say more? Most certainly.

In fact, since (even-dimensional) T acts freely on X, one can regard X
as a principal bundle X → X/T with fiber T and smooth base X/T , and by
integrating first over the fiber of X, one can reduce the integral over X to
an integral over X/T . Because the T -action generates an automorphism of
X, Wn,n — being a representative of a Čech cohomology class — will be a
T -invariant form on X.20 Hence, the integration over the fiber will just give
a factor proportional to the volume of the group T . In short, one can also
write (4.16) as

(4.18) 〈O1(z1) · · · On(zn)〉0 =

∫
X/T

W d,d

(up to some normalization factor), where d = dimC (X/T ), and W d,d is a
top-degree (d, d)-form on X/T that can be interpreted as a class in the Čech
cohomology group Hd(X,KX/T ).

Although the above procedure involving products of Čech cohomology
groups and their maps into complex numbers is unusual for a physicist, it
has been utilized in [42–44] as a powerful means to compute certain quan-
tum (i.e., nonperturbative) correlation functions in heterotic string theory.
Analogous procedures follow for the computation of correlation functions
involving other types of local operators.

Chiral Equivariant Quantum Cohomology

Last but not least, note that in a non-perturbative computation of any
correlation function of the abelian twisted (0, 2) sigma model, the local oper-
ators will be represented by Čech cohomology classes in the moduli space of
worldsheet twisted-instantons. The current procedure would then serve as a
basis for a chiral generalization of (0, 2) quantum T -equivariant cohomology
involving operators of dimension zero and greater.

20The Čech-Dolbeault isomorphism implies that Wn,n can be interpreted as a
Dolbeault cohomology class. In turn, footnote 17 (which also applies to Dolbeault
cohomology) implies that Wn,n can be interpreted as a T -invariant form.
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4.5. Local symmetries

So far, we have obtained an understanding of the local structure of the Q-
cohomology. We shall now proceed towards our real objective of gaining an
understanding of its global structure. In order to do so, we will need to glue
the local descriptions that we have studied above, together.

To this end, we must first cover X by small open sets {Ue}. Recall here
that in each Ue, the Q-cohomology is described by the chiral algebra of
local operators of a perturbed free βγ system on Ue. We will need to glue
these local descriptions together over the intersections {Ue ∩ Uf}, so that the
global structure of the Q-cohomology can be described via a globally-defined
sheaf of chiral algebras on the entire manifold X.

Note that the gluing has to be carried out using the automorphisms
of the perturbed free βγ system. Thus, one must first ascertain the under-
lying symmetries of the system, which are in turn divided into geometri-
cal and non-geometrical symmetries. The geometrical symmetries are used
in gluing together the local sets {Ue} into the entire target space X. The
non-geometrical symmetries on the other hand, are used in gluing the local
descriptions at the algebraic level.

As usual, the generators of these symmetries will be given by the charges
of the conserved currents of the perturbed free βγ system. In turn, these
generators will furnish the Lie algebra s of the symmetry group. Let the ele-
ments of s which generate the geometrical and non-geometrical symmetries
be written as v and c = (f, e), where as we will explain shortly, v, f, and e
are associated with a vector field V , a t-valued one-form Fa (where t is the
Lie algebra of T ), and a ∂-closed T -equivariant two-form E on X, respec-
tively. Since the conserved charges must also be conformally-invariant, it will
mean that an element of s must be given by an integral of a dimension-one
current, modulo total derivatives. In addition, these currents ought to be
gauge-invariant and covariant under coordinate transformations of X.

A Relevant Digression

Before we proceed to construct the dimension-one gauge-invariant and
covariant currents of the perturbed free βγ system, it would be useful to
discuss the following issues.

Firstly, notice from (2.21) and the fact that ∂kV
i
a = ∂k̄V

ī
a = 0 in our

abelian theory, that components of holomorphic and antiholomorphic vec-
tors are invariant under gauge transformations. As a result, in each Ue where
one has picked the flat metric δij̄ , components of holomorphic and antiholo-
morphic one-forms are also invariant under gauge transformations.
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Secondly, recall from our discussion in §2.3 that gauge-invariant forms
are also T -equivariant forms. However, since T is abelian, these forms are
simply T -invariant (see remark 14 of [36]). Therefore, La(dγi) = {d, ιa}(dγi)
= 0 (as dV i

a = 0), and because (dγi, ∂/∂γk) = δik, it would mean that basis
holomorphic one-forms dγi and tangent vectors ∂/∂γi are gauge-invariant.

Thirdly, note that since βk is a dimension-one elementary field, one can
define its charge as Qβk =

∮
βkdz. Then, from the β-γ OPE in (4.11), we

have [Qβk , γ
i] = δik. This implies that Qβk acts as the ∂/∂γk operator. Hence,

one can regard βk as a basis holomorphic tangent vector ∂/∂γk on X.21

Last but not least, since the structure constants of our abelian gauge
group T vanish, one can see from (2.18)-(2.19) that Dzγ

i = ∂zγ
i −AazV i

a is
gauge-invariant. With these facts in mind, we are now ready to construct
our currents.

The Geometrical Symmetries

Let us now describe the current which is associated with the geometrical
symmetries. Firstly, if we have a holomorphic vector field V on X where
V = V i(γ) ∂

∂γi , one can construct a gauge-invariant and covariant dimension-

one current JV = −V iβi. The corresponding conserved charge is then given
by KV =

∮
JV dz. One can compute that the operator product expansion of

JV with the elementary fields Aaz is trivial, but that with the elementary
fields γ is

(4.19) JV (z)γk(z′) ∼ V k(z′)

z − z′
.

Under the symmetry transformation generated by KV , we have δεγ
k =

iε[KV , γ
k], where ε is an infinitesinal transformation parameter. Thus, from

(4.19), we see that KV generates an infinitesimal diffeomorphism δεγ
k =

iεV k of U . In other words, KV generates the holomorphic diffeomorphisms
of the target space X. Therefore, KV spans the purely geometrical subset
v of s, as claimed. For finite diffeomorphisms, we would have a coordinate
transformation γ̃k = gk(γ), where each gk(γ) is a holomorphic function in
the γks. Since we are using the symmetries of the βγ system to glue the
local descriptions over the intersections {Ue ∩ Uf}, on an arbitrary intersec-
tion Ue ∩ Uf , γk and γ̃k will be defined in Ue and Uf , respectively.

21This has also been the mathematical viewpoint on the subject [7].
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One can also compute the operator product expansion of JV with the
elementary fields β to be

(4.20) JV (z)βk(z
′) ∼ −∂kV

iβi(z
′)

z − z′
.

Under the symmetry transformation generated by KV , we have δεβk =
iε[KV , βk], where ε is an infinitesinal transformation parameter. Thus, from
(4.20), we see that KV generates an infinitesimal change δεβk = −iε∂kV iβi
of the elementary fields β. For finite changes, we would have the transfor-
mation β̃i = Di

kβk, where D is an N ×N (where N = dimCX) matrix such
that [D] = [∂g]−1, i.e., [D−1]i

k = ∂ig
k. This transformation is purely geo-

metrical, and it just tells us how the basis holomorphic tangent vector βk
transforms into β̃i as one goes from the coordinate system in Ue to that in
Uf . Again, this just affirms the fact that KV spans the subset v of s.

Clearly, the symmetry transformations generated by KV are all there are
to the purely geometrical transformations of the holomorphic coordinates γk

and basis tangent vectors βk of X. Hence, one can use the geometrical sym-
metries generated by KV to glue the local sets {Ue} together on intersections
of small open sets to form the entire target space X. Note however, that v is
not a Lie subalgebra of s, but only a linear subspace. This is because v does
not close upon itself as a Lie algebra. This leads to nontrivial consequences
for s. In fact, this property of v is related to the physical anomalies of the
underlying sigma model. We will explain this shortly.

The Non-Geometrical Symmetries

Let us now describe the current that is associated with the non-
geometrical symmetries. Such a current, by virtue that its charge should not
generate any transformation of the coordinates γk, ought to consist only of
the γ and A fields. A little thought would then reveal that if B = Bi(γ)dγi is
a holomorphic (1, 0)-form on X, one can define a gauge-invariant and covari-
ant dimension-one current as JC = BiDzγ

i, where the conserved charge is
KC =

∮
JCdz. Notice that one can also write JC = JF + JE andKC = KF +

KE , where JF = −BiAazV i
a , JE = Bi∂zγ

i, KF =
∮
JFdz and KE =

∮
JEdz.

Let us study JF and KF first. One can compute that the operator prod-
uct expansion of JF with the elementary fields β is

(4.21) JF (z)βk(z
′) ∼ −V

i
a∂kBiA

a
z(z
′)

z − z′
.

Under the symmetry transformation generated byKF , we have δεβk = iε[KF ,
βk], where ε is an infinitesinal transformation parameter. Thus, from (4.21),
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we see that KF generates an infinitesimal change δεβk = −iεV i
a∂kBiA

a
z of the

elementary fields β. Notice at this point that one can interpret (BiV
i
a ) as a

t-valued holomorphic function fa on X. In turn, one can regard V i
a∂kBi =

∂k(BiV
i
a ) = ∂kfa as the Fk,a-component of a t-valued holomorphic one-form

Fa = Fl,a dγ
l = (∂lfa)dγ

l on X. In addition, since [Va, Vb]
i = 0, the V i

a ’s are
only defined up to scaling by a constant. These last two observations together
imply that one can promote δεβk to a finite change δβk = −Fk,aAaz . In this
sense, KF can be understood to span the purely non-geometrical subset f
of s.

Let us now study JE and KE . One can compute that the operator prod-
uct expansion of JE with the elementary fields β is

(4.22) JE(z)βk(z
′) ∼ ∂kBi∂zγ

i(z′)

z − z′
− βk(z

′)

(z − z′)2
.

Under the symmetry transformation generated by KE , we have δεβk =
iε[KE , βk], where ε is an infinitesinal transformation parameter. Thus, from
(4.22), we see that KE generates an infinitesimal change δεβk = iε∂kBi∂zγ

i

of the elementary fields β. Since one is free to rescale the Bi’s by a constant,
one can promote δεβk to a finite change δβk = Eki∂zγ

i, where E = ∂B =
Eki dγ

k ∧ dγi is a holomorphic (2, 0)-form on X and Eki = ∂kBi.
If B is an exact form in Ue, it would mean that Bi = ∂iH in Ue for

some locally-defined function H that is holomorphic in γ. In such a case,∮
JEdz =

∮
∂iH∂zγ

idz. From the action (4.12), we have the equation of
motion ∂z̄γ

i = 0. Hence,
∮
JEdz =

∮
∂iHdγ

i =
∮
dH = 0 by Stoke’s theo-

rem. In other words, the conserved charge KE vanishes if B is exact in Ue
and vice-versa. Via Poincare’s lemma, B is locally exact if and only if B
is a closed form on X, i.e., ∂B = ∂iBj − ∂jBi = 0. Thus, for every nonvan-
ishing holomorphic (2, 0)-form E = ∂B on X, we will have a nonvanishing
conserved charge KE =

∮
JEdz. At any rate, notice that E is annihilated

by ∂ since ∂2 = 0. Moreover, as stated earlier, B and therefore E in Ue are
gauge-invariant; i.e., E when restricted to Ue is T -equivariant. As such, for
every local holomorphic section of the sheaf Ω2,cl

X,T of T -equivariant ∂-closed
two-forms E on X, we have a nonvanishing conserved charge KE . In this
sense, KE can be understood to span the purely non-geometrical subset e
of s.

Local Field Transformations

A summary of how the different fields of the perturbed free βγ system on
U transform locally under its geometrical and non-geometrical symmetries
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generated by KV and KC = KF +KE , respectively, is as follows:

γ̃i = gi(γ),(4.23)

Ãaz = Aaz ,(4.24)

β̃i = Di
kβk + ∂zγ

jEij − Fi,aAaz ,(4.25)

where i, j, k = 1, 2, . . . , N = dimCX. As explained, D and E are N ×N
matrices such that [D] = [∂g]−1 and [E] = ∂B, i.e., [D−1]i

k = ∂ig
k and [E]ij

= ∂iBj ; Fi,a is the ith-component of a t-valued holomorphic one-form Fa =
Fl,a dγ

l = (∂lfa)dγ
l (where fa = V k

a Bk) on X. It can be verified that β̃, γ̃
and Ã obey the correct OPE’s amongst themselves. We thus conclude that
the fields must undergo the above transformations (4.23)-(4.25) when we
glue a local description (in a small open set) to another local description (in
another small open set) over the mutual intersection of open sets using the
automorphisms of the perturbed free βγ system.

A Nontrivial Extension of Lie Algebras and Groups

Last but not least, let us now study the properties of the symmetry
algebra s of the perturbed free βγ system on U . From the analysis thus
far, we find that we can write s = c⊕ v as a linear space, where c = (f, e).
Note that c is a trivial abelian subalgebra of s because the commutator of
KC with itself vanishes: the OPE of JC with itself is nonsingular since the
current is constructed from γk, ∂zγ

k and Aaz only. Hence, s can be expressed
in an extension of Lie algebras as follows:

(4.26) 0→ c→ s→ v→ 0.

In fact, (4.26) is an exact sequence of Lie algebras — in other words, c is
“forgotten” when we project s onto v. This is true because [v, c] ⊂ c. One
can verify this claim as follows.

The action of v on c can be ascertained from the JV (z)JC(z′) OPE

−V iβi(z) ·BjDz′γ
j(z′) ∼ 1

z − z′
[
V i∂iBk +Bi∂kV

i
]
∂z′γ

k(4.27)

− 1

z − z′
[V i∂iBk]A

a
z′V

k
a +

1

(z − z′)2
V iBi.

The commutator of KV with KC , and thus [v, c], is just the residue of the
simple poles on the RHS of (4.27). The numerator of the first term on the
RHS of (4.27), given by V i∂iBk +Bi∂kV

i, is equivalent to (LV (B))k, the kth

component of the one-form that results from the action of a Lie derivative
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of V on B; as such, this term takes values in e. The numerator of the second
term on the RHS of (4.27), given by V i∂iBk, can be interpreted as the kth

component Pk of a one-form P = Pldγ
l = (V i∂iBl)dγ

l; as such, this term
takes values in f. Therefore, we find that [v, c] takes values in e and f; in
other words, [v, c] ⊂ c, as claimed.

Let us now compute the commutator between two elements of v. To
this end, let {V,W} be vector fields on U that are holomorphic in γ. Let V
and W be associated with the currents JV (z) and JW (z′), respectively. The
JV (z)JW (z′) OPE is then computed to be

JV (z)JW (z′) ∼ −(V i∂iW
j −W i∂iV

j)βj
z − z′

− (∂k∂jV
i)(∂iW

j∂z′γ
k)

z − z′
(4.28)

− ∂jV
i∂iW

j(z′)

(z − z′)2
.

The last term on the RHS of (4.28) is a double pole, i.e., it does not con-
tribute to the commutator; thus, we shall ignore it. From the mathemati-
cal relation [V,W ]j = (LV (W ))j = V i∂iW

k −W i∂iV
j , we see that the first

term on the RHS of (4.28) takes values in v. This term results from a sin-
gle contraction of elementary fields in the OPE, and it corresponds to the
Poisson bracket between JV and JW in the classical βγ theory. On the other
hand, the second term on the RHS of (4.28) takes values in c, and is the rea-
son why [v, v] * v. Note that this term results from a multiple contraction
of elementary fields, just like the anomalies of conformal field theory. Hence,
since v does not close upon itself as a Lie algebra, s is not a semi-direct
product of v and c. Consequently, the extension of Lie algebras in (4.26) is
nontrivial. Is the nontriviality of the extension of Lie algebras of the sym-
metries of the βγ system on U , then related to the physical anomalies of the
underlying sigma model? Let us see.

The exact sequence of Lie algebras in (4.26) will result in the following
group extension when we exponentiate the elements of s:

(4.29) 1→ C̃ → S̃ → Ṽ → 1.

Here, S̃ is the symmetry group of all admissible automorphisms of the βγ
system, C̃ is the symmetry group of the non-geometrical automorphisms,
and Ṽ is the symmetry group of the geometrical automorphisms. Just as
in (4.26), (4.29) is an exact sequence of groups, i.e., the kernel of the map
S̃ → Ṽ is given by C̃. This means that the non-geometrical symmetries are
“forgotten” when we project the full symmetries onto the geometrical sym-
metries. Since (4.29) is derived from a nontrivial extension of Lie algebras in
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(4.26), it will be a nontrivial group extension. In fact, since [v, c] ⊂ c means
that C̃ is a Ṽ -module, the nontriviality of the group extension will be cap-
tured by a class in the second Čech cohomology H2(Ṽ , C̃) (see Corollary 9.24
of [45]). Let us now ascertain what this class is.

To this end, first recall that for every local holomorphic section of the
sheaf Ω2,cl

X,T of T -equivariant ∂-closed two-forms E = ∂B on X, we have
a nonvanishing element of e. Next, recall that under the only nontrivial
infinitesimal symmetry generated by f, we have, in Ue, the variation δεβk =
−iεV i

a∂kBiA
a
z . Since B in Ue is gauge-invariant (i.e., T -equivariant) and

is therefore just T -invariant because T is abelian (see remark 14 of [36]),
we have, in Ue, the condition (LVa(B))k = V i

a∂iBk = 0. Thus, if E = ∂B =
∂iBk − ∂kBi = 0, it would mean that V i

a∂kBi = 0 and therefore, δεβk = 0. In
other words, for every local holomorphic section of the sheaf Ω2,cl

X,T , we have
a nontrivial symmetry generated by an element of f. Altogether, one can
conclude that there is a one-to-one correspondence between nonvanishing
local holomorphic sections of the sheaf Ω2,cl

X,T and elements of C̃. Hence, the
class which captures the nontriviality of the group extension ought to come
from H2(Ṽ ,Ω2,cl

X,T ).

Relation to the Anomaly-Cancellation Condition of the Sigma Model

Looking back at (4.28), one can see that the second term on the RHS
— which is solely responsible for the nontriviality of the group extension —
takes values purely in e ⊂ c; in particular, it will remain unchanged as one
varies Aaz . Therefore, one can conveniently set Aaz = 0 via a gauge transfor-
mation (which can always be done since we are working locally on Σ) when
computing the sought-after class in H2(Ṽ ,Ω2,cl

X,T ). At Aaz = 0, the automor-
phism relations given by (4.23) and (4.25) coincide with the automorphism
relations (4.4a)-(4.4b) in [7] of the sheaf of CDO’s. Moreover, as in §2-6 of [7],
our only nontrivial OPE (4.11) is that of a free βγ system. Consequently,
one can repeat the computations that follow (4.4a)-(4.4b) in [7] which even-
tually lead to Theorem 6.2 in loc. cit., whence one would find that the class
characterizing the nontriviality of the group extension is pT1 ∈ H2(Ṽ ,Ω2,cl

X,T ),

where pT1 is the T -equivariant universal first Pontryagin class.22 In turn,
this implies that there is no obstruction to a globally-defined sheaf of chiral
algebras Â if

(4.30)
1

2
pT1 (X) = 0.

22Note that the standard Čech cocycles which represent the universal classes in
H2(Ṽ ,Ω2,cl

X,T ) take values in Ω2,cl
X,T . Hence, the universal classes — like Ω2,cl

X,T — will
be T -equivariant.
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This is exactly the anomaly-cancellation condition of the underlying T -
gauged twisted (0, 2) sigma model computed in (3.1)! (We do not see the
other anomaly involving c1(Σ) because we are working locally on Σ.) In
hindsight, this ‘coincidence’ should not be entirely surprising: note that a
physically valid, anomaly-free sigma model must be defined over all of X
(and Σ), and since a nonzero pT1 (X) captures the obstruction to gluing the
local descriptions together to arrive at a global description, it would mean
that the sigma model — which is described locally by the perturbed free βγ
system on U — cannot be globally-defined over all of X unless (4.30) holds.
Thus, the nontriviality of the extension of Lie algebras of the symmetries
of the βγ system on U , is indeed related to the physical anomaly of the
underlying sigma model.

4.6. Gluing the local descriptions together

Now, we will describe explicitly, how one can glue the local descriptions
together using the automorphisms of the perturbed free βγ system on U to
obtain a globally-defined sheaf of chiral algebras. In the process, we will see
how the cohomology class in (4.30) emerges as an obstruction to gluing the
locally-defined sheaves of chiral algebras globally on X. Moreover, we can
also obtain the other anomaly in (3.1) — which is not captured in (4.30) —
when we consider gluing the sheaves of chiral algebras globally over X and
Σ. In addition, we will see that a modulus of the resulting sheaf emerges as
a Čech cohomology class generated by a relevant Čech cocycle.

As a start, let’s take a suitable collection of small open patches Ue ⊂ Cn,
where n = dimCX. Next, consider the corresponding set of patches {Ue}.
The idea is to glue these patches together to arrive at a good cover of X.
On every Ue is a perturbed free βγ system which defines a sheaf Â of chiral
algebras. In gluing these free conformal field theories together, we will obtain
a globally-defined sheaf of chiral algebras.

It will be convenient for us to first describe how we can geometrically
glue the set of patches {Ue} together to form X. For each e, f , let us pick
a patch Uef ⊂ Ue, and likewise another patch Ufe ⊂ Uf . Let us define a
geometrical symmetry v̂ef (characterized by holomorphic diffeomorphisms
on U) between these patches as

(4.31) v̂ef : Uef ∼= Ufe.

Note that v̂ can be viewed as a geometrical gluing operator corresponding
to an element of the geometrical symmetry group Ṽ . From the above defini-
tion, we see that v̂fe = v̂−1

ef . We want to identify an arbitrary point P ∈ Uef
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with an arbitrary point Q ∈ Ufe, if Q = v̂ef (P ). This identification will be
consistent if for any Ue, Uf , and Ug, we have

(4.32) v̂gev̂fgv̂ef = 1

in any triple intersection Uefg over which all the maps v̂ge, v̂fg and v̂ef are
defined. The relation in (4.32) tells us that the different pieces Ue can be
glued together via the set of maps {v̂ef} to make X. The complex structure
moduli of X will then manifest as parameters in the v̂ef ’s.

Say we now have a sheaf of chiral algebras on each Ue; to get a sheaf
of chiral algebras on X, we will need to glue them together on overlaps.
The gluing must be done using the automorphisms of the conformal field
theories. Thus, for each pair Ue and Uf , we select a conformal field theory
symmetry ŝef that maps the perturbed free βγ system on Ue ∩ Uef , to the
perturbed free βγ system on Uf ∩ Ufe. If

(4.33) ŝgeŝfg ŝef = 1,

i.e., if the gluing is consistent, we get a globally-defined sheaf of chiral alge-
bras. Note that ŝ can be viewed as a gluing operator corresponding to an
element of the full symmetry group S̃. As usual, we have ŝfe = ŝ−1

ef . More-
over, recall at this point that from the exact sequence of groups in (4.29),
we have a map S̃ → Ṽ which “forgets” the non-geometrical symmetry group
C̃ ⊂ S̃. As such, for any arbitrary set of ŝ’s which obey (4.33), the geomet-
rical condition (4.32) will be automatically satisfied, regardless of what the
non-geometrical gluing operator ĉ corresponding to an element of C̃, is.
Hence, every possible way to glue the conformal field theories together via
ŝ, determines the same way to geometrically glue the set of patches {Ue}
together to form X over which the resulting conformal field theory is defined.

The above discussion translates to the fact that for a given set of v̂ef ’s
which obey (4.32), the corresponding set of ŝef ’s which obey (4.33) is not
uniquely determined: for each Uef , we can still pick an element Cef ∈ H0(Uef ,

Ω2,cl
T ) which represents an element of c (as discussed in §4.5), so that exp(Cef )

represents an element of C̃; one can then transform ŝef → ŝ′ef = exp(Cef )ŝef ,
where ŝ′ef is another physically valid gluing operator. The condition that ŝ′

obeys the gluing identity (4.33), i.e., ŝ′geŝ
′
fg ŝ
′
ef = 1, is that in each triple

intersection Uefg, we should have

(4.34) Cge + Cfg + Cef = 0.
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From ŝ′fe = (ŝ′ef )−1, we have Cef = −Cfe. Moreover, C̃ef ∼ Cef + Se − Sf for

some S, in the sense that the C̃’s will obey (4.34) as well. In other words,
the C’s in (4.34) must define an element of the Čech cohomology group
H1(X,Ω2,cl

X,T ). Also, in projecting from ŝ′ef to the geometrical gluing operator
v̂ef , exp(Cef ) is “forgotten”. Therefore, in going from ŝ to ŝ′, the symmetry v̂,
and consequently X, remain unchanged. Now, let us use a specific ŝ operator
to define the specific symmetries of a perturbed free βγ system, which in
turn will define a unique sheaf of chiral algebras. In this sense, with any
sheaf and an element C ∈ H1(X,Ω2,cl

X,T ), one can define a new sheaf by going

from ŝ→ exp(C)ŝ. So, via the action of H1(X,Ω2,cl
X,T ), we get a family of

sheaves of chiral algebras on X. Hence, the modulus of the sheaf of chiral
algebras is represented by a class in H1(X,Ω2,cl

X,T ), in agreement with our
analysis in §2.3.

The Anomaly

We now move on to discuss the case when there is an obstruction to the
gluing. Essentially, the obstruction occurs when (4.33) is not satisfied by ŝ.
In such a case, one generally has, on triple intersections Uefg, the following
relation

(4.35) ŝgeŝfg ŝef = exp(Cefg)

for some Cefg ∈ H0(Uefg,Ω
2,cl
T ). The reason for (4.35) is as follows. First,

note that the LHS of (4.35) projects purely to the group of geometrical
symmetries associated with v̂. If X is to exist mathematically, there will
be no obstruction to its construction, i.e., the LHS of (4.35) will map to
the identity under the projection. Hence, the RHS of (4.35) must represent
an element of the abelian group C̃ (generated by c) whose action on the
coordinates γi of the Ue’s is necessarily trivial.

Recall that the choice of ŝef was not unique. If we transform ŝef →
exp(Cef )ŝef via a (non-geometrical) symmetry of the system, we get

(4.36) Cefg → C′efg = Cefg + Cge + Cfg + Cef .

If one can choose the Cef ’s to set all C′efg = 0, then there is no obstruction
to gluing and one can obtain a globally-defined sheaf of chiral algebras.

In any case, in quadruple overlaps Ue ∩ Uf ∩ Ug ∩ Uh, the C’s obey

(4.37) Cefg − Cfgh + Cghe − Chef = 0.



i
i

“1-tan” — 2015/2/11 — 17:36 — page 333 — #57 i
i

i
i

i
i

Sigma models, Langlands program, and knots 333

Together with the equivalence relation (4.36), this means that the C’s in
(4.37) must define an element of the Čech cohomology group H2(X,Ω2,cl

X,T ).
In other words, the obstruction to gluing the locally-defined sheaves of chiral
algebras is captured by a nonvanishing cohomology class H2(X,Ω2,cl

X,T ). As

discussed at the end of §4.5, this class can be represented by pT1 (X). Thus, we
have obtained an interpretation of the anomaly in the abelian twisted (0, 2)
sigma model in terms of an obstruction to a global definition of the sheaf of
chiral algebras derived from a perturbed free βγ system that describes the
model locally on X.

The Other Anomaly

According to our analysis in §3, the abelian twisted (0, 2) sigma model
ought to possess two anomalies; one involving pT1 (X), and the other involving
c1(Σ)cT1 (X). We have already seen how the first anomaly arises from the
Čech perspective. How then can one observe the second anomaly in the
current framework?

We have hitherto constructed a sheaf of chiral algebras globally on X
but only locally on the worldsheet Σ. Since the canonical bundle K can
be trivialized when one works locally on Σ, one would not see the second
anomaly involving c1(Σ)cT1 (X). This was explained in §3. In any case, note
that the perturbed free βγ system is conformally invariant — in other words,
it can be defined globally on any Riemann surface Σ. But, notice that the
anomaly which we are looking for is given by c1(Σ)cT1 (X). Thus, it will vanish
even if we use a perturbed free βγ system that can be globally-defined on
Σ, if we continue to work locally on X. Therefore, the only way to see the
second anomaly is to work globally on both X and Σ. (In fact, recall that
the underlying sigma model is to be defined on all of Σ and X.) We shall
describe how to do this now.

Let us cover Σ and X with small open sets {Pτ} and {Ue}, respectively.
This will allow us to cover X × Σ with open sets Weτ = Ue × Pτ . On each
Pτ , define a perturbed free βγ system with target Ue. In other words, on each
open set Weτ , define a perturbed free βγ system which in turn furnishes us
with a sheaf of chiral algebras. What we want to do is to glue the sheaves of
chiral algebras on the Weτ ’s together on overlaps, to get a globally-defined
sheaf of chiral algebras that is valid over all of X and Σ. As before, the gluing
ought to be done using the admissible automorphisms of the perturbed free
βγ system.

Recall from §4.5 that the admissible automorphisms are given by the
symmetry group S̃. Note that the set of geometrical symmetries Ṽ ⊂ S̃
considered in §4.5 can be extended to include holomorphic diffeomorphisms
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of the worldsheet Σ — as mentioned above, the perturbed free βγ system,
being conformally invariant, is also invariant under arbitrary holomorphic
reparameterizations of the coordinates on Σ. Previously in §4.5, there was no
requirement to consider and exploit this additional geometrical symmetry
along Σ in gluing the local descriptions together simply because we were
working locally on Σ. There, gluing of the local descriptions at the purely
geometrical level was carried out using Ṽ , where Ṽ consists of the group of
holomorphic diffeomorphisms of X. Now that we want to work globally on Σ
as well, one will need to use the symmetry of the free conformal field theory
under holomorphic diffeomorphisms of Σ to glue the Pτ ’s together to form
Σ. In other words, gluing of the local descriptions at the purely geometrical
level must now be carried out using the geometrical symmetry group Ṽ ′,
where Ṽ ′ consists of the group of holomorphic diffeomorphisms on Σ and
X. Let the conformal field theory gluing map from Weτ to Wfν be given by
ŝeτ,fν . Let the corresponding geometrical and non-geometrical gluing maps
from Weτ to Wfν be given by v̂′eτ,fν and ĉ′eτ,fν , respectively. Since we have
a sensible concept of a holomorphic map γ : Σ→ X, and since X and Σ are
pre-defined to exist mathematically, there is no obstruction to gluing at the
purely geometrical level, i.e.,

(4.38) v̂′gσ,eτ v̂
′
fν,gσv̂

′
eτ,fν = 1

in triple intersections. There will be no obstruction to gluing at all levels if
one has the relation

(4.39) ŝgσ,eτ ŝfν,gσ ŝeτ,fν = 1.

However, (4.39) may not always be satisfied. Similar to our previous argu-
ments concerning the anomaly pT1 (X) ∈ H2(X,Ω2,cl

X,T ), since one has a map
ŝeτ,fν → v̂′eτ,fν in which ĉ′eτ,fν is “forgotten”, in general, we will have

(4.40) ŝgσ,eτ ŝfν,gσ ŝeτ,fν = exp(Ceτfνgσ),

where the Ceτfνgσ’s on any triple overlap defines a class in the 2-dimensional
Čech cohomology group H2(X × Σ,S ). S is a sheaf associated with the
non-geometrical symmetries of the perturbed free βγ system. Being non-
geometrical in nature, these symmetries ought to act trivially on the γi and
z coordinates of X × Σ. Let us now determine what S is.

Earlier on in our discussion, when we worked locally on Σ but globally
on X, we constructed a gauge-invariant and covariant dimension-one cur-
rent JC from a holomorphic (1, 0)-form B on X; its conformally-invariant
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conserved charge KC =
∮
JCdz was shown to generate the non-geometrical

symmetries of the perturbed free βγ conformal field theory. Therefore, if
one wants to work globally on both Σ and X, one would need to con-
struct an analogous gauge-invariant and covariant dimension-one current JC′

from a (1, 0)-form B′ on X × Σ; its conformally-invariant conserved charge
KC′ =

∮
JC′dz would then generate the non-geometrical symmetries in this

particular extended case. To this end, first note that since the dimension-
one current JC′ should have nonsingular OPE’s with the γ fields, it can only
depend linearly on ∂zγ or Aaz , and be holomorphic in γ and z. Next, note
that gauge transformations do not act on the coordinates z of Σ. Last but
not least, note that a holomorphic function which is obtained by contract-
ing a holomorphic vector with a holomorphic one-form is gauge-invariant on
Ue.

23 Bearing these points in mind, we find that JC′ ought to be given by

(4.41) JC′ = B′i(γ, z)Dzγ
i +Bz(γ, z).

Here, B′i and Bz are components of a holomorphic (1, 0)-form B′ = B′idγ
i +

Bzdz on X × Σ, where B′i and Bz have scaling dimension zero and one,
respectively. The γ-dependence of Bz(γ, z) just reflects the fact that it trans-
forms as a holomorphic function of the above-mentioned kind on X whilst
being a component of a (1, 0)-form on Σ. The z-dependence of B′i(γ, z) just
reflects the fact that it transforms as a holomorphic function of the above-
mentioned kind on Σ whilst being a component of a (1, 0)-form on X.

Notice that one can also write JC′ = JE′ + JF ′ + JB and KC′ = KE′ +
KF ′ +KB, whereby JE′ = B′i∂zγ

i, JF ′ = −B′iAazV i
a , JB = Bz,KE′ =

∮
JE′dz,

KF ′ =
∮
JF ′dz and KB =

∮
JBdz. If B′ is exact, i.e, B′ = ∂H ′ for some

local function H ′(γ, z) on X × Σ holomorphic in γ and z, we will have
B′i = ∂iH

′ and Bz = ∂zH
′. As a result, the conserved charge KE′ +KB =∮

(JE′ + JB)dz =
∮

(∂iH
′)dγi + (∂zH

′)dz =
∮
dH ′ = 0 by Stoke’s theorem.

In other words, the conserved charge KE′ +KB vanishes if B′ is exact in
Weτ and vice-versa. Via Poincare’s lemma, B′ is locally exact if and only if B′

is a closed form on X × Σ. Thus, for every nonvanishing holomorphic (2, 0)-
form C ′ = ∂B′ on X × Σ, we will have a nonvanishing conserved charge
KE′ +KB =

∮
(JE′ + JB)dz. At any rate, notice that C ′ is annihilated by ∂

since ∂2 = 0. Moreover, B′ and therefore C ′ in Weτ are gauge-invariant; i.e.,
C ′ when restricted to Weτ is T -equivariant. Hence, for every local holomor-
phic section of the sheaf Ω2,cl

X×Σ,T of T -equivariant ∂-closed two-forms C ′ on
X × Σ, we have a nonvanishing conserved charge KE′ +KB.

23Recall from our discussion in §4.5 that holomorphic vectors and one-forms on
Ue are automatically and separately gauge-invariant under T .
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So what about JF ′ and KF ′? Well, note that under the only nontriv-
ial infinitesimal symmetry generated by KF ′ , we have, in Weτ , the varia-
tion δεβk = −iεV i

a∂kB
′
iA

a
z . According to our discussion in §4.5, since B′ in

Weτ is gauge-invariant (i.e., T -equivariant) and is therefore just T -invariant
because T is abelian (see remark 14 of [36]), we have, in Weτ , the condi-
tions (LVa(B′))k = V i

a∂iB
′
k = 0 and (LVa(B′))z = V i

a∂iBz = 0. Thus, if C ′ =
∂B′ = 0 — which implies that ∂iB

′
k − ∂kB′i = 0 — it would mean that

V i
a∂kB

′
i = 0 and hence, δεβk = 0. In other words, for every local holomorphic

section of the sheaf Ω2,cl
X×Σ,T , we have a nontrivial symmetry generated by

an element of KF ′ .
Therefore, we find that the sheaf S associated with the non-geometrical

symmetries that act trivially on the coordinates (γ, z) can be identified as
Ω2,cl
X×Σ,T . Hence, the obstruction to a globally-defined sheaf of chiral algebras

— with target space X and defined on all of Σ — will be captured by a class
in the Čech cohomology group H2(X × Σ,Ω2,cl

X×Σ,T ). As such, the physical
anomalies of the underlying sigma model ought to be captured by the T -
equivariant cohomology classes which take values in H2(X × Σ,Ω2,cl

X×Σ,T ).

Note at this juncture that one can, on X × Σ, write C ′ = C ′ijdγ
i ∧ dγj +

C ′izdγ
i ∧ dz, where C ′ij(γ, z) = 1

2(∂iB
′
j − ∂jB′i) and C ′iz(γ, z) = (∂iBz − ∂zB′i).

Since gauge transformations never act on the z coordinates, one can, accord-
ing to the explicit form of C ′ given, write Ω2,cl

X×Σ,T = (Ω2,cl
X,T ⊗OΣ)⊕ (Ω1,cl

X,T ⊗
Ω1,cl

Σ ), where OΣ is a sheaf of holomorphic functions in z only on Σ, and Ω1,cl
Σ

is the sheaf of holomorphic one-forms in z only on Σ that are annihilated by
the operator dz ∧ ∂/∂z. Similarly, Ωi,cl

X,T is the sheaf of T -equivariant i-forms
which are holomorphic in γ only on X that are annihilated by the oper-
ator dγi ∧ ∂/∂γi. Thus, on a compact Riemann surface Σ, where the only
globally-defined holomorphic functions in z are equivalent to constants, i.e.,
H0(Σ,OΣ) ∼= C, we have the expansion

H2(X × Σ,Ω2,cl
X×Σ,T )(4.42)

=H2(X,Ω2,cl
X,T )⊕ (H1(X,Ω1,cl

X,T )⊗H1(Σ,Ω1,cl
Σ ))⊕ · · · .

As c1(Σ) ∈ H1(Σ,Ω1,cl
Σ ) and cT1 (X) ∈ H1(X,Ω1,cl

X,T ), the two physical

anomalies pT1 (X) and c1(Σ)cT1 (X) take values in the first and second term on
the RHS of (4.42), respectively.24 Note that the terms on the RHS of (4.42)

24If M is a Kähler manifold, p1(M) would be a (2, 2)-form that is annihilated
by both ∂ and ∂̄; this just reflects the fact that p1(M) represents an element of
H2(M,Ω2,cl

M ). One can also show the latter statement to be true for any complex
manifold X. To this end, choose any connection on the holomorphic tangent bundle
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must independently vanish for H2(X × Σ,Ω2,cl
X×Σ,T ) to be zero. In other

words, we have obtained a consistent, alternative interpretation of the phys-
ical anomalies which arise due to a nontriviality of the determinant line
bundles over the configuration space of the sigma model that are associ-
ated with the Dirac operators of the underlying Lagrangian, in terms of an
obstruction to the gluing of sheaves of chiral algebras.

By extending the arguments surrounding (4.34) to the present context,
we find that for a vanishing anomaly, (apart from the geometrical moduli
encoded in the complex structure of X), the moduli of the globally-defined
sheaf of chiral algebras on Σ, with target space X, must be parameterized
by classes in H1(X × Σ,Ω2,cl

X×Σ,T ).

4.7. The conformal anomaly

To end this section, we shall now present an illuminating application of
our discussion on the sheaves of chiral algebras which has hitherto been
somewhat abstract. In the process, we will be able to obtain a solely physical
interpretation of a purely mathematical result, and vice-versa.

From (2.28), we see that the holomorphic stress tensor T (z) ∼ Tzz of
the abelian twisted (0, 2) sigma model lacks the ψī fields. This means that
it is an operator with q = 0. Hence, from the Q-Čech cohomology dictionary
established in §4.3, if T (z) is to be nontrivial in Q-cohomology, such that
the model and its chiral algebra are conformally-invariant, it will be given
by an element of H0(X, Â) — a global section of the sheaf of chiral algebras
Â. Recall that the local sections of Â are furnished by the physical operators
in the chiral algebra of the perturbed linear βγ system. Since the perturbed
linear βγ system describes a local version of the underlying abelian twisted
(0, 2) sigma model, one can write the local holomorphic stress tensor of the
model as the local holomorphic stress tensor of the perturbed linear βγ

TX where its (0, 1) part is the natural ∂̄ operator of this bundle; since ∂̄2 = 0,
its curvature c1(TX) (abbreviated in this paper as c1(X)), would be a two-form
of type (2, 0)⊕ (1, 1). In turn, this means that ck(X) for k ≥ 0 would be a 2k-
form of type (k, k)⊕ (k + 1, k − 1)⊕ · · · (2k, 0), which therefore implies that it must
represent an element of Hk(X,Ωk,clX ) — indeed, like the sheaf Ωk,clX which generates

Hk(X,Ωk,clX ), ck(X) will be annihilated by both ∂ and ∂̄. Therefore, c1(X) must

represent an element ofH1(X,Ω1,cl
X ), while p1(X) = c21(X)− 2c2(X) must represent

an element of H2(X,Ω2,cl
X ). Similarly, cT1 (X) and pT1 (X) ought to represent elements

of H1(X,Ω1,cl
X,T ) and H2(X,Ω2,cl

X,T ), respectively.
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system, which in turn is given by

(4.43) T (z) = − : βi∂zγ
i :(z).

(See §4.4). Under an automorphism of the βγ system, T (z) will become

(4.44) T̃ (z) = − : β̃i∂zγ̃
i :(z),

where the fields β̃ and γ̃ are defined in the automorphism relations of (4.23)-
(4.25). It is clear that on an overlap Ue ∩ Uf in X, T (z) will be regular in Ue
while T̃ (z) will be regular in Uf . Note that both T (z) and T̃ (z) are at least

local sections of Â. And, if there is no obstruction to T (z) or T̃ (z) being a
global section of Â, it will mean that T (z) is nontrivial in Q-cohomology,
i.e., T (z) 6= {Q, . . . } and [Q,T (z)] = 0, and the abelian twisted (0, 2) sigma
model will be conformally-invariant. For T (z) or T̃ (z) to be a global section
of Â, it must be true that T (z) = T̃ (z) on any overlap Ue ∩ Uf in X. Let us
examine this further with an example.

An Example and the One-Loop Beta Function in Terms of Holomorphic
Data

For ease of illustration, let us consider X = CP1. This example is non-
anomalous as pT1 (X) = 0; it also has a nonvanishing Ricci tensor. Since CP1

can be considered as the complex γ-plane plus a point at infinity, we can
cover it with two open sets, U1 and U2, where U1 is the complex γ-plane,
U2 is the complex γ̃-plane, and γ̃ = 1/γ. Thus, we can write the (normal
ordered) stress tensors in U1 and U2, respectively, as

(4.45) T (z) = −limz′→z
(
β(z′)∂zγ(z)− β(z′) · ∂zγ(z)

)
and

(4.46) T̃ (z) = −limz′→z

(
β̃(z′)∂zγ̃(z)− β̃(z′) · ∂zγ̃(z)

)
.

By substituting the definitions of β̃ and γ̃ from (4.23)-(4.25) into T̃ (z), a
short computation will give25

(4.47) T̃ (z)− T (z) = ∂z

(
∂zγ

γ
− VaA

a
z

γ

)
(z).

25Note that in our computation, we have, for convenience, chosen (i) a point z′

such that γ(z′)→ 0, (ii) the arbitrary local (1,0)-form B(γ)dγ on CP1 (associated
with the current JE of §4.5) to be such that B(γ) = −γ.
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The only consistent way to modify T → T ′ and T̃ → T̃ ′ so that T ′ = T̃ ′ over
U1 ∩ U2 while preserving the stress tensor OPE’s such that T ′ · γ = T · γ
and T̃ ′ · γ = T̃ · γ, is to add to T and T̃ dimension-two terms involving
γ, Aaz , γ̃ or Ãaz only. The RHS of (4.47) is invariant under γ → ζγ and
Aaz → ζAaz , where ζ ∈ C∗. Therefore, the modification ought to preserve this
invariance too; i.e., the dimension-two terms we add must also be invariant
under γ → ζγ and Aaz → ζAaz . Such terms will be given by ∂2

zγ/γ, (∂zγ)2/γ2,
(Va∂zA

a
z)/γ and (VaA

a
z∂zγ)/γ2. To cancel the quantity on the RHS of (4.47),

one will need to add a linear combination of all such terms to T̃ (z)− T (z) on
the LHS of (4.47). Because (∂zγ)2/γ2 = (∂zγ̃)2/γ̃2 and ∂2

zγ/γ = −∂2
z γ̃/γ̃ +

2(∂zγ)2/γ̃2, this linear combination would have a pole at both γ = 0 and
γ̃ = 0. Thus, it cannot be used to redefine T and/or T̃ (which has to be
regular in U1 and/or U2, respectively). Hence, we find that neither T (z)
nor T̃ (z) can be a global section of Â, i.e., T (z), T̃ (z) /∈ H0(CP1, Â). In
other words, T (z) is not in the Q-cohomology of the abelian twisted (0, 2)
sigma model — there is a conformal anomaly. This is consistent with the
observation made in §2.2 via (2.32), where [Q,Tzz] 6= 0 in general but

(4.48) [Q,Tzz] = ∂z

(
Rij̄∂zφ

iψj̄ −Rij̄V i
aA

a
zψ

j̄
)
.

Since Q generates a (BRST-like) symmetry (i.e., an automorphism) of the
abelian twisted model via the field transformations (2.27), (4.47) can be
viewed as an analog in Čech cohomology of (4.48). Indeed, the operator
Rij̄∂zφ

iψj̄ can be shown to correspond exactly to ∂zγ/γ, as follows. Apart
from an obvious comparison of (4.48) and (4.47), note that ∂zγ/γ = −∂zγ̃/γ̃,
i.e., ∂zγ/γ is a holomorphic operator over U1 ∩ U2. Moreover, it cannot be
expressed as a difference between an operator that is holomorphic in U1 and
an operator that is holomorphic in U2. Thus, it is a dimension-one class
in the first Čech cohomology group H1(CP1, Â). Hence, from our Q-Čech
cohomology dictionary, ∂zγ/γ will correspond to a dimension-one operator
in the Q-cohomology of the sigma model with q = 1 — namely, Rij̄∂zφ

iψj̄

(which, according to our discussion in §4.1, indeed takes the correct form of
a Q-invariant, dimension (1, 0) operator with q = 1). As a corollary, we also
find that the operator Rij̄V

i
aψ

j̄ ought to correspond to Va/γ, so that the

operator Rij̄V
i
aA

a
zψ

j̄ ought to correspond to VaA
a
z/γ, as one would expect.

Since the Ricci tensor Rij̄ is proportional to the one-loop beta-function of
the sigma model, this correspondence allows one to interpret the one-loop
beta-function purely in terms of holomorphic data. By setting Aaz → 0 so
that one is in the ordinary limit, (4.47) and (4.48) indeed agree exactly with
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(3.2) and (5.17) of [6] where the interpretation of the one-loop beta function
in terms of holomorphic data was first elucidated for the ordinary model.

Higher-Dimensional Examples

One can certainly consider other higher-dimensional examples in a sim-
ilar fashion. It should be possible to show that T̃ (z) 6= T (z) for any X
whose Ricci tensor is nonvanishing. However, for brevity, we shall not pur-
sue this matter further. In summary, we have found that the obstruction
to a globally-defined T (z) operator on X — which is characterized by the
nonvanishing Ricci tensor of X — translates to a lack of invariance under
arbitrary, holomorphic reparameterizations on the worldsheet Σ of the Q-
cohomology of the underlying abelian twisted (0, 2) sigma model with target
space X.

5. Relation to the mathematical theory of TCDO’s

In preparation of our physical interpretation in §7 of the geometric Langlands
correspondence for simply-connected, simple, complex Lie groups via our
abelian twisted (0, 2) sigma model, we will devote this section to elucidating
the relation of the abelian model to the mathematical theory of TCDO’s.
In doing so, we will, among other things, come across a crucial hint to a
purely physical nonperturbative effect — which we will discuss in detail
in §8 — that would imply certain delicate conditions for the existence of
Beilinson-Drinfeld D-modules of the geometric Langlands program.

5.1. Making contact with the sheaf of TCDO’s

Note that if X is a smooth flag manifold of a compact, connected, simple
Lie group G, we have pT1 (X) = 0 (although cT1 (X) 6= 0), where T ⊂ G is an
abelian subgroup. In this case, (3.1) tells us that the T -gauged twisted (0, 2)
sigma model is anomaly-free (assuming c1(Σ) = 0). Moreover, if the gauge
group T = TC , where TC is the Cartan subgroup of G with Lie algebra h
whence dim(h) = r = rank(g), one can regard Aaz (where a = 1, 2, . . . , r) as
an element of (a complexification of) h∗. In turn, since X = G/TC = GC/B,
where GC is the complexification of G, and B ⊂ GC is a Borel subgroup,
the Aaz ’s will be isomorphic to the elements of H1(X,Ω1,cl

X ), where Ω1,cl
X is

the sheaf of holomorphic ∂-closed (1, 0)-forms on X (see (4.20) of [23]). We
shall consider this particular model henceforth.

Let us now see what the general automorphism relations of (4.23)-(4.25)
imply for such a model. To this end, cover X with a set of open patches
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{Ue}, where Ue ⊂ Cn, and n = dimCX. Now, consider a holomorphic vector
field ξ = ξk∂/∂γk on X. Then, over an intersection Ue ∩ Uf , the change in
βk (and hence ∂/∂γk, as explained in §4.5) under the symmetry generated

by KF , would, from (4.25), imply the change δξ = ξkFk,aA
a
z = (ιξλ

(1)
a )Aaz in

ξ, where ιξλ
(1)
a is an antiderivation by ξ of a (complex) h-valued holomorphic

one-form λ
(1)
a on X. Similarly, the changes in β and hence the corresponding

changes in ξ under the symmetries generated by the rest of the conserved
charges KV and KB, can be obtained from the first two terms on the RHS
of (4.25). Since these two terms coincide with the changes in the beta-field
of the sheaf of CDO’s given by the RHS of (4.4b) in [7], we conclude that the
changes in ξ under KV +KE can be obtained solely from the automorphism
relations of the sheaf of CDO’s. For our present purpose, there is no need
for us to detail what these changes in ξ are. The interested reader is invited
to do so him or herself.

Next, consider a holomorphic function O of the coordinates γ of X.
Then, over an intersection Ue ∩ Uf , the changes inO under the full symmetry
generated by KV +KF +KE can be obtained from the RHS of (4.23), which
is a purely geometrical coordinate transformation of γ. Since the RHS of
(4.23) coincides with the changes in the gamma-field of the sheaf of CDO’s
given by the RHS of (4.4a) in [7], the changes in γ under the full symmetry
group can be obtained solely from the automorphism relations of the sheaf
of CDO’s.

Last but not least, consider the gauge field Aaz = λ∗a. Then, over an inter-
section Ue ∩ Uf , the changes in λ∗a under the full symmetry generated by
KV +KF +KE can be obtained from the RHS of (4.24), which is simply
the identity transformation.

In summary, over an intersection Ue ∩ Uf , if gef denotes the unique sym-
metry transformation of the fields implied by the automorphism relations
of the sheaf of CDO’s given by (4.4a)-(4.4b) of [7], and if gtwef denotes the
unique symmetry transformation of the fields implied by the automorphism
relations (4.23)-(4.25), we can write

gtwef |OUe∩Uf = gef |OUe∩Uf ,(5.1)

gtwef (λ∗a) = λ∗a,(5.2)

gtwef (ξ) = gef (ξ)−
∑

a(ιξλ
(1)
a (Ue ∩ Uf ))λ∗a.(5.3)

Moreover, since the underlying theory is anomaly-free, we have, over triple
intersections Ue ∩ Uf ∩ Ug, the relation
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(5.4) gtwef = gtwgf ◦ gtweg .

As λ∗a lives in H1(X,Ω1,cl
X ) (which was explained at the start of this subsec-

tion), (5.1)-(5.4) is exactly Lemma 4.4 of [23]; in other words, the underlying
model describes, purely physically, the sheaf of TCDO’s on X defined by
Arakawa et al. in [23]!

The Chiral Algebra A

With the above-observed connection to the sheaf of TCDO’s, one can
conclude, from our discussion in §4.3, that the chiral algebra A of the per-
turbative TC-gauged twisted (0, 2) sigma model on X can, as a vector space,
be written as

(5.5) A =
⊕
qR

HqR(X, Ω̂ch,tw
X ).

Here, Ω̂ch,tw
X is the sheaf of TCDO’s on X generated by the fields β, γ, Aaz

and their z-derivatives whose automorphism relations over any intersection
Ue ∩ Uf ⊂ X are given by (4.23)-(4.25), and qR is the U(1)R charge of the
corresponding physical operator.

The Elliptic Genus

This brings us now to the elliptic genus of the sigma model. Consider
the canonical quantization of the sigma model on an infinitely long cylinder
R× S1. Let V be the Q-cohomology of states which furnishes a module for
the chiral algebra A . Then, one can form a modular function

(5.6) V (X, q) = q−d/12
∑
n

qn TrVn(−1)F ,

called the elliptic genus. Here, d = dimCX; q is some unit modulus complex
parameter; Vn are the states in V of energy level n; F is the total fermion
number of each state; and TrVn(−1)F is the Witten index that counts the
difference between the number of bosonic and fermionic states of energy
level n.

Notice that the elliptic genus in (5.6) involves the states but not the
local operators of the sigma model. When and how do the local operators
come into the picture? If the Ricci tensor of X vanishes, i.e., if c1(X) = 0,
the sigma model will be conformal (as explained around (2.32)). One can
then proceed to employ the conformal field theory (CFT) state-operator
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isomorphism to relate the above states in (5.6) to the local operators in A
in a one-to-one manner. In this way, one can express the elliptic genus in
terms of a difference between the number of bosonic and fermionic operators
in the Q-cohomology, with the holomorphic (i.e., left-moving) dimension of
the operators n corresponding to the energy level n of the supersymmetric
states that the operators are supposed to be isomorphic to. However, the
reality is that c1(X) 6= 0, and the state-operator correspondence will not be
an isomorphism. Nevertheless, one can — via the description of A in terms
of the Čech cohomology of Ω̂ch,tw

X in (5.5), and the fact that bosonic and
fermionic operators have even and odd values of qR, respectively — define
the following expression in the Q-closed local operators which is analogous
to V (X, q):

(5.7) A(X, q) = q−d/12
∑
qR

∞∑
n=0

(−1)qR dimHqR(X, Ω̂ch,tw
X;n ) qn.

Here, Ω̂ch,tw
X,n is a sheaf of TCDO’s on X whose local sections correspond to

the ψī-independent Q-cohomology classes with dimension (n, 0). Unlike in
the case of V (X, q) (which, if we let q = e2πiτ , can be physically interpret
as a partition function of some sigma model with a toroidal worldsheet of
modulus τ), it is not clear if there exists a natural path integral proof that
A(X, q) must transform as a modular form under SL(2,Z). That being said,
A(X, q) = qd/12A(X, q) has been computed purely mathematically in [46],
where it appears to possess modular properties.

Notice that A(X, q) is Z≥0 × Z≥0 graded by the holomorphic dimension
n and U(1)R charge qR of the Q-closed operators. The grading by dimen-
sion follows naturally from the scale invariance of the correlation functions
that define the chiral algebra A of the sigma model. Note that A(X, q) has
no perturbative quantum corrections.26 However, since cTC1 (X) 6= 0, non-
perturbative worldsheet twisted-instanton corrections can (i) destroy (via
dimensional transmutation) the scale invariance of the correlation functions
and thus, violate the grading by dimension of the operators in A ; (ii) “con-
nect” operators with different values of qR through certain nonperturbative
relations and thus, violate the grading by U(1)R charge of the operators in
A . Consequently, A(X, q) can vanish, as we will see in §8.

26Absence of quantum corrections can be inferred from the fact that both the
scaling dimension (or energy) and the (−1)qR (or (−1)F ) operator that distin-
guishes the bosonic and fermionic operators (or states), are conserved through to
the quantum level.
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5.2. Examples of sheaves of TCDO’s

We will now study in detail, examples of sheaves of TCDO’s and their Čech
cohomologies on smooth flag manifolds of simply-connected, simple, complex
Lie groups GC (whose compact real form is G with Cartan subgroup TC ⊂
G). In the process, we will unravel an important connection between the
chiral algebra A of the underlying TC-gauged twisted (0, 2) sigma model
and a family of affine GC-algebras at the critical level parameterized by its
center. In turn, this connection, together with the results of §6, will allow us
to furnish, in §7, a purely physical interpretation of the geometric Langlands
correspondence for GC.

5.2.1. The sheaf of TCDO’s on the flag manifold of SL(2). For
our first example, we take X to be the flag manifold of GC = SL(2), i.e.,
X = SL(2)/B = CP1, where B ⊂ SL(2) is a Borel subgroup. In other words,
we will be exploring and analyzing the chiral algebra A of local operators
in the TC-gauged twisted (0, 2) model on CP1. To this end, we will work
locally on the worldsheet Σ, where z is the local complex coordinate.

As mentioned before, CP1 can be viewed as the complex γ-plane plus a
point at infinity. Thus, it can be covered using two open charts, U1 and U2,
where U1 is the complex γ-plane, U2 is the complex γ̃-plane, and γ̃ = 1/γ.

Since U1 ' C and dim(h) = 1, where h is the Lie algebra of TC , the sheaf
of TCDO’s in U1 can be described by a single perturbed free βγ system with
action

(5.8) I =
1

2π

∫
|d2z| β∂z̄γ − cAzAz̄,

where c = |V |2 is some complex constant. The relevant fields β, Az and γ
are of dimension (1, 0), (1, 0) and (0, 0), respectively. They obey the usual
free-field OPE’s: there are no singularities in the operator products β · β,
Az ·Az′ , γ · γ, Az · γ and Az · β, while

(5.9) β(z)γ(z′) ∼ − 1

z − z′
.

Similarly, the sheaf of TCDO’s in U2 is described by a single perturbed
free β̃γ̃ system with action

(5.10) Ĩ =
1

2π

∫
|d2z| β̃∂z̄γ̃ − cÃzÃz̄,
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where the relevant fields β̃, Ãz and γ̃ obey the same OPE’s as β, Az and γ.
In other words, the only singular OPE is

(5.11) β̃(z)γ̃(z′) ∼ − 1

z − z′
.

In order to describe a globally-defined sheaf of TCDO’s, one will need
to glue the free conformal field theories with actions (5.8) and (5.10) over
pairwise intersections U1 ∩ U2. To do so, one must use the admissible auto-
morphisms of the free conformal field theories defined in (4.23)-(4.25) to glue
the free-fields together. In the case of X = CP1, the automorphisms will be
given by27

γ̃ =
1

γ
,(5.12)

Ãz = Az,(5.13)

β̃ = −βγ2 + 2∂zγ − γAz(5.14)

As there is no obstruction to this gluing in a sigma model that is nonanoma-
lous, a sheaf of TCDO’s can be globally-defined on its CP1 target space.

Global Sections of the Sheaf

Recall from (5.5) that for a general manifold X of complex dimension n,
the chiral algebra A will be given by A =

⊕qR=n
qR=0 H

qR(X, Ω̂ch,tw
X ) as a vector

space. Since CP1 has complex dimension one, we will have, for X = CP1,
the relation A =

⊕qR=1
qR=0H

qR(CP1, Ω̂ch,tw
CP1 ). Thus, in order to determine the

chiral algebra of the sigma model, one needs only to ascertain the global
sections H0(CP1, Ω̂ch,tw

CP1 ) of the sheaf Ω̂ch,tw
CP1 , and its first Čech cohomology

H1(CP1, Ω̂ch,tw
CP1 ).

First, let us compute the global sections H0(CP1, Ω̂ch,tw
CP1 ). For brevity, we

shall focus on the dimension 0 and 1 operators only; the higher-dimensional
cases can be obtained in a similar manner. At dimension 0, the space of global

27Note that in writing the following relations, we have — in order to facilitate
comparison of our results with those in the mathematical literature — chosen the
arbitrary local (1,0)-form B(γ)dγ on CP1 (associated with the current JE of §4.5)
to be such that B(γ) = 2γ. For the same reason, we have also chosen the arbitrary
local h-valued (1, 0)-form Fa on CP1 (associated with the current JF of §4.5) to
be Fa = γa dγ. (To arrive at our choice of Fa, we have taken the liberty to rescale
Va → γVa since (i) globally-defined holomorphic functions in γ with no poles are
— on the compact Riemann surface CP1 — equivalent to constants, (ii) Va is only
defined up to scaling by a finite constant.)
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sections H0(CP1, Ω̂ch,tw
CP1;0

) must be spanned by regular polynomials in γ, i.e.,

Ω̂ch,tw
CP1;0

is just the sheaf O of regular holomorphic functions in γ on CP1. Since
all globally-defined regular holomorphic functions on a compact Riemann
surface such as CP1 are equivalent to constants, we find that H0(CP1, Ω̂ch,tw

CP1;0
)

is one-dimensional and generated by 1.
What about the space H0(CP1, Ω̂ch,tw

CP1;1
) of global sections of dimension

1? In order to get a global section of Ω̂ch,tw
CP1 of dimension 1, we can act on

a (gauge-invariant) global section of Ω̂ch,tw
CP1 of dimension 0 with the partial

derivative ∂z. Since ∂z1 = 0, this prescription will not apply here.
One could also consider dimension 1 operators of the form f(γ)Dzγ =

f(γ)∂zγ − f ′(γ)Az, where f(γ) and f ′(γ) are globally-defined holomorphic
functions of γ. From (5.13), we immediately see that Az can be globally-
defined over CP1; thus, the operator f ′(γ)Az can be globally-defined over
CP1 too. However, the operator f(γ)∂zγ, by virtue of the way it transforms
purely geometrically under (5.12), would correspond to a section of Ω1

CP1 ,
the sheaf of holomorphic differential one-forms f(γ)dγ on CP1; from the
classical result H0(CP1,Ω1

CP1) = 0, which continues to hold in the quantum
theory, it is clear that f(γ)∂zγ cannot be a dimension 1 global section of
Ω̂ch,tw

CP1 . As such, f(γ)Dzγ /∈ H0(CP1, Ω̂ch,tw
CP1;1

).
The remaining possibility at dimension 1 is to find an operator that con-

tains β. In fact, from the automorphism relation of (5.14), we immediately
find an example since the LHS, β̃, is regular in U2 (by definition), while the
RHS, being a polynomial in γ, β and Az, is manifestly regular in U1. Their
being equal means that they represent a dimension 1 global section of Ω̂ch,tw

CP1

that we will call J−:

(5.15) J− = − : βγ2 : +2∂zγ − γAz = β̃.

Notice that since U1 and U2 are on equal footing, one can also apply the
above construction to the fields which are manifestly regular in U1. In doing
so, we obtain another dimension 1 global section J+:

(5.16) J+ = β = − : β̃γ̃2 : +2∂zγ̃ − γ̃Ãz.

Hence, J+ and J− furnish us with two dimension 1 global sections of the sheaf
Ω̂ch,tw

CP1 . Since these are global sections of a sheaf of chiral vertex operators,
their nontrivial OPE’s would generate other global sections. The J+ · J+
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and J− · J− operator products are trivial (i.e. nonsingular), but

(5.17) J+J− ∼
2J0

z − z′
− 2

(z − z′)2
,

where J0 is another global section of dimension 1 given by

(5.18) J0 =: βγ : +
1

2
Az.

In short, {J+, J−, J0} are bosonic dimension 1 operators that span
H0(CP1, Ω̂ch,tw

CP1;1
), and by a further computation, one can show that they

satisfy the following closed nontrivial OPE algebra:

J+(z)J−(z′) ∼ k

(z − z′)2
+

2J0(z′)

z − z′
, J0(z)J+(z′) ∼ J+(z′)

z − z′
,

J0(z)J−(z′) ∼ −J−(z′)

z − z′
, J0(z)J0(z′) ∼ k/2

(z − z′)2
,(5.19)

where k = −2. Note that (5.19) means that the J ’s actually generate an
affine algebra of SL(2) at the critical level of −2 in the Wakimoto free-field
representation [47], in agreement with Lemma 4.6 of [23]. Since {J+, J−, J0}
are chiral vertex operators holomorphic in z, one can expand them in a
Laurent series that allows an affinization of the SL(2) Lie algebra generated
by their resulting zero modes. Consequently, H0(CP1, Ω̂ch,tw

CP1 ) would be a
Wakimoto module for the affine algebra of SL(2) at level −2, in agreement
with Theorem 6.2 of [23]. {J+, J−, J0} also define a structure of a chiral
algebra although not in the full physical sense — it satisfies all the physical
axioms of a chiral algebra, except invariance under arbitrary holomorphic
reparameterizations of the coordinates on the worldsheet Σ. The fact that
the chiral algebra is not coordinate reparameterization invariant is — as
explained in §4.7 for a general abelian model — due to the fact that A lacks
a quantum stress tensor T (z); i.e., T (z) /∈ H0(CP1, Ω̂ch,tw

CP1 ) (see (4.47)).

The Center of a Chiral Algebra

The absence of T (z) in A can also be understood from a different albeit
relevant viewpoint which we shall now elaborate upon. To this end, first note
that for any affine algebra ĝC of GC at level k 6= −h∨, where h∨ is the dual
Coxeter number of its Lie algebra gC, one can construct the corresponding
quantum stress tensor out of the currents of ĝC via a Segal-Sugawara con-
struction [48]. In our case at hand of ĝC = ŝl2, where h∨ = 2, the quantum
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stress tensor can be constructed as

(5.20) T (z) =
: J+J− + J2

0 : (z)

(k + 2)
.

The shift in the level k → k + h∨ in the denominator of (5.20) as one tran-
sitions from the classical to quantum theory, is due to a renormalization
effect. As required, for every k 6= −2, the modes of the Laurent expansion
of T (z) will span a Virasoro algebra. In particular, T (z) will generate holo-
morphic reparameterizations of the coordinates on the worldsheet Σ. Notice
that this definition of T (z) in (5.20) is ill-defined when k = −2, i.e., at the
critical level. Nevertheless, notice from (5.20) that one can write

(5.21) S(z) = (k + 2)T (z),

where

(5.22) S(z) = : J+J− + J2
0 : (z).

S(z) is commonly known as the Segal-Sugawara tensor. From (5.21), we see
that in the quantum theory, S(z) generates (k + 2) times the field transfor-
mations usually generated by the quantum stress tensor T (z). Therefore, at
the critical level k = −2, S(z) generates no field transformations at all — its
OPE with all other field operators ought to be regular at best. This is equiva-
lent to saying that the quantum stress tensor does not exist at k = −2, since
S(z) is the only well-defined operator at this critical level which can gener-
ate field transformations under arbitrary holomorphic reparameterizations
of the worldsheet coordinates on Σ.

S(z) may or may not vanish identically at k = −2, and if it does not,
it will merely play the role of a classical field (i.e., c-number) that has no
nontrivial interactions with itself and other fields at the quantum level. In
fact, by substituting (5.15), (5.16) and (5.18) in (5.22), a careful computation
with the aid of (5.19) would give

(5.23) S(z) =
1

4
A2
z(z)−

1

2
∂zAz(z).

(Note that the above formula was also computed below (9.3) of [49].) Since
Az is a non-dynamical field which does not have any nontrivial propagators
with itself or with the rest of the fields β and γ (and their z-derivatives)
that define A , S(z) indeed plays the role of a purely classical field.
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The fact that S(z) only has regular OPE’s with all other relevant fields
and with itself implies the following. If we denote by V−2(sl2) the chiral
algebra generated by {J±, J0} and their z-derivatives, and if we denote by
z(V−2(sl2)) its center which is defined to be the set of fields which have regu-
lar OPE’s with all other fields within, we have z(V−2(sl2)) = C[∂mz S(z)]m≥0,
where C[∂mz S(z)]m≥0 is the space of differential polynomials on S(z) with
complex coefficients. This result agrees with Theorem 7 of [49]. In turn,
(5.23) means that z(V−2(sl2)) ⊂ HCP1 , where HCP1 is the space of differen-
tial polynomials on Az with complex coefficients. This result agrees with
Lemma 4.6 of [23]. (Recall from §5.2 that Az corresponds to λ∗ of loc. cit..)

Moreover, notice that since S(z) and the J(z)’s are holomorphic in z
and are of dimension 2 and 1, respectively, one can Laurent expand them as

(5.24) S(z) =
∑
n∈Z

Snz
−n−2 and Jα(z) =

∑
n∈Z

Jαn z
−n−1,

where α = {±, 0}. Again, the fact that S(z) only has regular OPE’s with all
other relevant fields and with itself implies that

(5.25) [Sn, J
α
m] = [Sn, Sm] = 0.

This means that the Sn’s generate the center z(Ũ−2(ŝl2)) of the completed

enveloping algebra Ũ−2(ŝl2) of ŝl2 at critical level −2.

The fact that z(Ũ−2(ŝl2)) ought to also furnish a Poisson algebra —
which is a claim made in (8.14) of [49] — can be understood purely physically
as follows. Firstly, (5.25) means that one can define simultaneous eigenstates
of the Sn and Jαn mode operators. In particular, one would be able to prop-
erly define a general state Ψ = SlSq · · ·Sp|0, η〉, where |0, η〉 is a vacuum state
which is a representation of sl2 labelled by η, such that Jα0 |0, η〉 = ηα|0, η〉.
However, note that any such Ψ will correspond to a null-state, i.e., Ψ decou-
ples from the ultimately relevant Hilbert space of physically inequivalent
quantum states spanned by the representations of sl2 [50]. Therefore, the

Sm’s which generate z(Ũ−2(ŝl2)), can, in this regard, be interpreted as clas-
sical c-numbers which would then generate a Poisson algebra.

The First Cohomology

Let us now proceed to ascertain the first cohomology group H1(CP1,
Ω̂ch,tw

CP1 ). In dimension 0, we can again consider regular polynomials in γ.
However, from ordinary algebraic geometry, we have the classical result
H1(CP1,O) = 0, where O is the sheaf of regular functions over CP1 which
are holomorphic in γ. Since a vanishing cohomology at the classical level
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continues to vanish at the quantum level, it would mean that we cannot
have regular polynomials in γ; i.e., H1(CP1, Ω̂ch,tw

CP1;0
) = ∅.

In dimension 1, one could consider the operator Θ = (Dzγ)/γ = (∂zγ −
Azγ)/γ. Note that (∂zγ)/γ = −(∂zγ̃)/γ̃ and Az = Ãz. As such, Θ has a pole
at γ = 0 and γ̃ = 0, and it cannot be written as a difference of operators
which are regular and holomorphic in U1 and U2, respectively. In other words,
Θ ∈ H1(CP1, Ω̂ch,tw

CP1;1
). Indeed, by comparing Θ and the RHS’s of (4.47) and

(4.48),28 we see that Θ corresponds to the dimension 1 fermionic sigma
model operator R11̄Dzφ

1ψ1̄ of q = 1.
What about in dimension 2? Let us try to differentiate Θ, i.e., let us

consider the operator ∂zΘ. Via (4.47), one can write ∂zΘ = T̃ (z)− T (z),
where T̃ (z) and T (z) are regular and holomorphic in U2 and U1, respectively.
Thus, ∂zΘ /∈ H1(CP1, Ω̂ch,tw

CP1;2
).

Nevertheless, since we have the product formula H1(CP1, Ω̂ch,tw
CP1;l

)⊗
H0(CP1, Ω̂ch,tw

CP1;m
)→ H1(CP1, Ω̂ch,tw

CP1;l+m
), we can act Θ ∈ H1(CP1, Ω̂ch,tw

CP1;1
) on

every other element of H0(CP1, Ω̂ch,tw
CP1 ) to build H1(CP1, Ω̂ch,tw

CP1 ) up: for

example, the first element of H1(CP1, Ω̂ch,tw
CP1 ) is Θ · 1 = Θ of dimension 1,

the second set of elements of H1(CP1, Ω̂ch,tw
CP1 ) is given by Θ · {J+, J−, J0}

of dimension 2, and so on. Thus, we have a one-to-one correspondence
H0(CP1, Ω̂ch,tw

CP1;m
)↔ H1(CP1, Ω̂ch,tw

CP1;m+1
), where m ≥ 0. In turn, this implies

that H0(CP1, Ω̂ch,tw
CP1 ) ∼= H1(CP1, Ω̂ch,tw

CP1 ). Hence, H1(CP1, Ω̂ch,tw
CP1 ) would also

be a Wakimoto module for the affine algebra of SL(2) at level −2. This con-
clusion is in exact agreement with (6.18) and (6.20) of [23].

That being said, our isomorphism involves a shift of conformal weight 1:
H0(CP1, Ω̂ch,tw

CP1 ) starts “growing” at dimension 0 with the operator 1, while

H1(CP1, Ω̂ch,tw
CP1 ) starts “growing” at dimension 1 with the operator Θ. On

the other hand, the isomorphism proved in [23] involves a shift of conformal
weight n+ 1, where n ≥ 0. In other words, our model realizes the n = 0 case
only. Why this is so, can be understood as follows. Firstly, the dimension 1
gauge field Az(z) ought to be physically well-behaved and therefore regular
over all of Σ; in particular, it ought to be nonsingular at the origin z = 0.
In turn, this means that it will take the form Az(z) =

∑
n<0 anz

−n−1 =
a0z
−1 + a−1 + a−2z + · · · , whereby a0 = 0. Since Az(z) also corresponds to

χ(z) of [23], it would mean that we must set χ0 = n = 0 in loc. cit.. In short,
physical consistency requires that n = 0 in our case. Then, Theorem 6.2
of [23] tells us that H0 and H1 must be modules with highest weight 0.

28Because of footnote 27, one must rescaled Va → γVa in (4.47) before making
any comparison with the results in this subsection.
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Indeed, the set {J−, J+, J0} with formulas (5.15), (5.16) and (5.18) which
coincide with (9.3) of [49], would furnish a module with highest weight 0
according to the discussion in §9.6 of loc. cit..

About the Isomorphism Between 1 and Θ

The fact that the isomorphism between the bosonic operator 1 and
fermionic operator Θ violates their grading by dimension, is a classical start-
ing point for a nonperturbative phenomenon — which we will discuss in
detail in §8 — that gives rise to the relation {Q,Θ} ∼ 1 for a worldsheet
that is a cylinder. Because of this relation, the picture changes radically —
as the identity operator itself is Q-exact, the Q-cohomology of local oper-
ators would be empty whence the chiral algebra vanishes! By canonically-
quantizing the theory on the cylinder, one can also see that the relation
{Q,Θ} ∼ 1 implies that the Q-cohomology of states (or the module V of A
described in §5.1) is empty too!

This radical phenomenon will hold not just for X = CP1, but for X being
any flag manifold of GC. In turn, as we shall explain in §8, this would imply
certain delicate conditions for the existence of Beilinson-Drinfeld D-modules
of the geometric Langlands correspondence for GC.

5.2.2. The sheaf of TCDO’s on the flag manifold of SL(3). Let us
move on to our second example and take X to be a flag manifold of GC =
SL(3), i.e., X = SL(3)/B, where B ⊂ SL(3) is a Borel subgroup with Lie
algebra b. In this case, dimC(sl3) = 8 and dimC(b) = 5. Therefore, dimCX =
3, and one can cover X with six open charts Uw, w = 1, 2, . . . , 6, such that
each open chart Uw can be identified with the affine space C3. Consequently,
since dim(h) = 2, the sheaf of TCDO’s in any Uw ⊂ X can be described by
the following perturbed free βγ system with action

(5.26) I =
1

2π

∫
|d2z|

3∑
i=1

βi∂z̄γi − 2∑
a,b=1

AazViaA
b
z̄V

i
b

 ,

where the only singular OPE of this system is

(5.27) βi(z)γ
j(z′) ∼ −

δji
z − z′

.
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Similarly, the sheaf of TCDO’s in a neighboring chart Uw+1 can be
described by the following perturbed free β̃γ̃ system with action

(5.28) Ĩ =
1

2π

∫
|d2z|

3∑
i=1

β̃i∂z̄γ̃i − 2∑
a,b=1

ÃazViaÃ
b
z̄V

i
b

 ,

where the only singular OPE of this system is

(5.29) β̃i(z)γ̃
j(z′) ∼ −

δji
z − z′

.

In order to describe a globally-defined sheaf of TCDO’s, one will need
to glue the free conformal field theories with actions (5.26) and (5.28) over
pairwise intersections Uw ∩ Uw+1 for every w = 1, 2, . . . , 6, where U7 = U1.
To do so, one must use the admissible automorphisms of the free conformal
field theories defined in (4.23)-(4.25) to glue the free-fields together. In the
case of X = SL(3)/B, the relation between the coordinates in Uw and Uw+1

will mean that the γ̃i’s in Uw+1 will be related to the γi’s in Uw via the
relation [γ̃] = [Vw+1]−1[Vw][γ], where the 3× 3 matrices [Vw+1] and [Vw] are
elements of the S3 permutation subgroup of GL(3) matrices associated with
the open charts Uw+1 and Uw, respectively, and [γ] is a 3× 1 column matrix
with the γi’s as entries. By substituting this relation between the γ̃i’s and
γi’s in (4.23)-(4.25), one will have the admissible automorphisms of the
fields which one can then use to glue together the local sheaves of TCDO’s
over pairwise intersections Uw ∩ Uw+1 for every w = 1, 2, . . . , 6. The gluing
relations for the free fields are, in this case, given by

γ̃i = [V −1
w+1 · Vw]ij γ

j ,(5.30)

Ãaz = Aaz ,(5.31)

β̃i = Di
kβk + ∂zγ

jEij − Fi,aAaz ,(5.32)

where i, j, k = 1, 2, 3. Here, D and E are 3× 3 matrices whereby [D−1]i
k =

∂i[V
−1
w+1 · Vw]kj γ

j and [E]ij = ∂iBj ; B = Bldγ
l is the non-closed holomor-

phic (1, 0)-form on X discussed in §4.5; Fi,a is the ith-component of a
(complex) h-valued holomorphic one-form Fa = Fl,a dγ

l = (∂lfa)dγ
l (where

fa = V k
a Bk) on X. Since the underlying sigma model is nonanomalous, one

would be able to define the sheaf of TCDO’s globally on its SL(3)/B target
space. In other words, if we let Rw represent a transformation of the fields
in going from Uw to Uw+1, for appropriate choices of B and Fa, one ought
to be able to show that (R6R5R4R3R2R1) · {γi, βi, Aaz} = {γi, βi, Aaz}.
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Global Sections of the Sheaf

Since X = SL(3)/B has complex dimension three, we will have the
relation A =

⊕qR=3
qR=0H

qR(X, Ω̂ch,tw
X ). Thus, in order to determine the chi-

ral algebra of the sigma model, one needs to ascertain the global sections
H0(X, Ω̂ch,tw

X ) of the sheaf Ω̂ch,tw
X , and its Čech cohomology Hp(X, Ω̂ch,tw

X )
for p = 1, 2, 3.

First, let us compute the global sections H0(X, Ω̂ch,tw
X ). For brevity, we

shall again focus on the dimension 0 and 1 operators only; the higher-
dimensional cases can be obtained in a similar manner. At dimension 0,
the space of global sections H0(X, Ω̂ch,tw

X;0 ) must be spanned by regular poly-

nomials in the γi’s, i.e., Ω̂ch,tw
X;0 is just the sheaf OX of regular holomorphic

functions in the γi’s on X. Since all globally-defined regular holomorphic
functions on a compact, connected, complex manifold such as X are equiv-
alent to constants [51], we find that H0(X, Ω̂ch,tw

X;0 ) is one-dimensional and
generated by 1.

What about the space H0(X, Ω̂ch,tw
X;1 ) of global sections of dimension 1?

In order to get a global section of Ω̂ch,tw
X of dimension 1, we can act on a

(gauge-invariant) global section of Ω̂ch,tw
X of dimension 0 with the partial

derivative ∂z. Since ∂z1 = 0, this prescription will not apply here.
One could also consider dimension 1 operators of the form fi(γ)Dzγ

i =
fi(γ)∂zγ

i +AazV
i
a (γ), where fi(γ) and V i

a (γ) are globally-defined holomor-
phic functions of the γk’s. The operator fi(γ)∂zγ

i, by virtue of the way it
transforms purely geometrically under (5.30), would correspond to a section
of Ω1

X , the sheaf of holomorphic differential one-forms f(γ)dγ on X; from
the classical result H0(X,Ω1

X) = 0, which continues to hold in the quantum

theory, it is clear that fi(γ)Dzγ
i /∈ H0(X, Ω̂ch,tw

X;1 ).
As before, the remaining possibility at dimension 1 is to find operators

that contain the βi’s. In fact, from the automorphism relation of (5.32), we
immediately find an example since the LHS, β̃i, is by definition regular in
Uw+1, while the RHS, being a polynomial in γi, βi and Aaz , is manifestly
regular in Uw. Their being equal means that the β̃i’s represent dimension
1 global sections of Ω̂ch,tw

X . Since the construction is completely symmetric
between Uw and Uw+1, with γi ↔ γ̃i, βi ↔ β̃i and Aaz ↔ Ãaz , a reciprocal
formula would imply that the βi’s also represent dimension 1 global sections
of Ω̂ch,tw

X . As in the previous SL(2) example, one can generate more global
sections by computing the OPE’s between the β̃i’s and βi’s. In the end, we
get the following dimension 1 operators:
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Je1
= β1,

Je2
= β2 − γ1β3,

Je3
= β3,

Jh1
= V 1

a A
a
z + 2γ1β1 − γ2β2 + γ3β3,(5.33)

Jh2
= V 2

a A
a
z − γ1β1 + 2γ2β2 + γ3β3,

Jf1
= −V 1

a A
a
zγ

1 + 3∂zγ
1 + γ3β2 − (γ1)2β1 + γ1γ2β2 − γ1γ3β3,

Jf2
= −V 2

a A
a
zγ

2 + 2∂zγ
2 − γ3β1 − (γ2)2β2,

Jf3
= −V 3

a A
a
zγ

3 − V 2
a A

a
zγ

1γ2 + 3∂zγ
3 + 2γ1∂zγ

2

− γ1γ3β1 − γ2γ3β2 − γ3γ3β3 − γ1(γ2)2β2,

where V 1 = 1√
2
(1,
√

3), V 2 = 1√
2
(1,−

√
3), and V 3 = V 1 + V 2. As usual,

normal-ordering is understood in the above formulas. One can verify that
{Je1

, Je2
, Je3

, Jh1
, Jh2

, Jf1
, Jf2

, Jf3
} indeed satisfy a closed OPE algebra; they

are thus dimension 1 operators which span H0(X, Ω̂ch,tw
X;1 ), as desired. More-

over, the closed OPE algebra in question is that of an affine SL(3)-algebra ŝl3
at the critical level of −3 in the Wakimoto representation; this is in perfect
agreement with Lemma 4.6 of [23]. Since {Je1

, Je2
, Je3

, Jh1
, Jh2

, Jf1
, Jf2

, Jf3
}

are chiral vertex operators holomorphic in z, one can expand them in a
Laurent series that allows an affinization of the SL(3) Lie algebra gener-
ated by their resulting zero modes. Consequently, H0(X, Ω̂ch,tw

X ) would be a
Wakimoto module for the affine algebra of SL(3) at level −3.

The Center of a Chiral Algebra

As in the previous SL(2) example, one can, in our case at hand of ĝC =

ŝl3 whence h∨ = 3, define the quantum stress tensor at level k 6= −h∨ as

(5.34) T (z) =
: dαζJαJζ(z) :

k + 3
,

where dαζ is the inverse of the Cartan-Killing metric of sl3, and α, ζ =
1, 2, . . . ,dimC(sl3) = 8. As required, for every k 6= −3, the modes of the Lau-
rent expansion of T (z) will span a Virasoro algebra. In particular, T (z)
will generate holomorphic reparameterizations of the coordinates on the
worldsheet Σ. Notice that this definition of T (z) in (5.34) is ill-defined
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when k = −3. Nevertheless, one can always associate T (z) with the Segal-
Sugawara operator S(z) that is well-defined at any level, where

(5.35) S(z) = (k + 3)T (z),

and

(5.36) S(z) = : dαζJαJζ :(z).

From (5.35), we see that S(z) generates, in its OPE with other field opera-
tors, (k + 3) times the field transformations usually generated by the stress
tensor T (z). Therefore, at the critical level k = −3, S(z) generates no field
transformations at all — its OPE with all other field operators ought to be
regular at best. This is equivalent to saying that the quantum stress tensor
does not exist in A at k = −3, since S(z) is the only well-defined operator
at this critical level which can generate field transformations under arbitrary
holomorphic reparameterizations of the worldsheet coordinates on Σ. This
observation is consistent with (2.32), as Rij̄(X) 6= 0.

S(z) may or may not vanish identically at k = −3, and if it does not,
it will merely play the role of a classical field (i.e., c-number) that has no
nontrivial interactions with itself and other fields at the quantum level. In
fact, by substituting (5.33) in (5.36), a careful computation (with the aid of
the relevant affine SL(3) OPE algebra at level −3 obeyed by the J ’s) would
give

(5.37) S(z) =
1

2

[
(dabA

a
zA

b
z)(z)−

3∑
i=1

(V i
a∂zA

a
z)(z)

]
,

where a, b = 1, . . . ,dimC(hC) = 2; hC being the Cartan subalgebra of sl3.
Since the Aaz ’s are non-dynamical fields which do not have any nontrivial
propagators with themselves or with the rest of the other fields βi and γi

(and their z-derivatives) that define A , S(z) indeed plays the role of a purely
classical field.

For an affine SL(N)-algebra where N > 2, one can generalize the Sug-
awara formalism to construct higher-spin analogs of the holomorphic stress
tensor using the currents. These higher-spin analogs have conformal weights
3, 4, . . . , N . These higher-spin analogs are called Casimir operators, and were
first constructed in [52].
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In the context of our affine SL(3)-algebra with a module that is furnished
by the global sections of the sheaf of TCDO’s on X = SL(3)/B, a spin-
three analog of the holomorphic stress tensor will be given by the 3rd-order
Casimir operator [53]

(5.38) T (3)(z) =
: d̃αζξ(k)(Jα(JζJξ)) : (z)

k + 3
,

where d̃αζξ(k) is a completely symmetric traceless sl3-invariant tensor of
rank 3 that depends on the level k of the affine SL(3) algebra in question.
d̃abc(k) is also well-defined and finite at k = −3. The superscript on T (3)(z)
just denotes that it is a spin-three analog of T (z).

As with T (z) in (5.34), T (3)(z) is ill-defined when k = −3. Nevertheless,
one can always make reference to a higher-spin analog S(3)(z) of the Segal-
Sugawara tensor that is well-defined for any finite value of k, where

(5.39) S(3)(z) = (k + 3)T (3)(z),

whence

(5.40) S(3)(z) = : d̃αζξ(k)(Jα(JζJξ)) : (z).

From (5.39), one can see that the operator S(3)(z) generates in its OPE with
all other operators of the quantum theory, (k + 3) times the field transforma-
tions typically generated by T (3)(z). Therefore, at the critical level k = −3,
S(3)(z) generates no field transformations at all — its OPE with all other
field operators ought to be regular at best. This is equivalent to saying that
T (3)(z) does not exist as a quantum operator in A at k = −3, since S(3)(z)
is the only well-defined operator at this critical level which can generate the
type of field transformations associated with T (3)(z).

S(3)(z) may or may not vanish identically at k = −3, and if it does not,
it will merely play the role of a classical field (i.e., c-number) that has no
nontrivial interactions with itself and other fields at the quantum level. In
fact, by substituting (5.33) in (5.40), a careful computation (with the aid of
the relevant affine SL(3) OPE algebra at level −3 obeyed by the J ’s) would
give (cf. [53])
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S(3)(z) =

√
− 6

15

∑
i<j<k

((εi ·Az)(εj ·Az)(εk ·Az)) (z)(5.41)

−
∑
i<j

(i− 1)∂z ((εi ·Az)(εj ·Az)) (z)

−
∑
i<j

(j − i− 1)∂z ((εi ·Az)(εj · ∂zAz)) (z)

+
1

2

∑
i

(i− 1)(i− 2)(εi · ∂2
zAz)(z)

− 1

4
∂z(Az ·Az)(z)−

1

2

∑
i

(i− 1)εi ·Az(z),

where the dot-product refers to an inner product with respect to the Cartan-
Killing metric on hC, and {εi, i = 1, 2, 3} is a set of weights of the vector
representation of SL(3) normalized such that εi · εj = δij − 1

3 and
∑

i εi = 0.
Since the Aaz ’s are non-dynamical fields which do not have any nontrivial
propagators with themselves or with the rest of the other fields βi and γi

(and their z-derivatives) that define A , S(3)(z) indeed plays the role of a
purely classical field.

The fact that S(z) and S(3)(z) only have regular OPE’s with all other
relevant fields and with themselves implies the following. If we denote by
V−3(sl3) the chiral algebra generated by the Je’s, Jh’s, Jf ’s and their z-
derivatives, and if we denote by z(V−3(sl3)) its center which is defined to
be the set of fields which have regular OPE’s with all other fields
within, we have z(V−3(sl3)) = C[∂mz S(z) + ∂nz S

(3)(z)]m,n≥0, where C[∂mz S(z)
+ ∂nz S

(3)(z)]m,n≥0 is the space of differential polynomials on S(z) and S(3)(z)
with complex coefficients. This result agrees with Theorem 8 of [49]. In turn,
(5.37) and (5.41) mean that z(V−3(sl3)) ⊂ HX , where HX is the space of
differential polynomials on the Aaz ’s with complex coefficients. This result
agrees with Lemma 4.6 of [23]. (Recall from §5.2.1 that Az corresponds to
λ∗ of loc. cit..)

Moreover, notice that since S(z), S(3)(z) and the J(z)’s are holomorphic
in z and are of dimension 2, 3 and 1, respectively, one can Laurent expand
them as

(5.42) S(z) =
∑
n∈Z

Snz
−n−2, S(3)(z) =

∑
n∈Z

S(3)
n z−n−3, Jα(z) =

∑
n∈Z

Jαn z
−n−1,
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where α = {ei, hj , fi}. Again, the fact that S(z) and S(3)(z) only have reg-
ular OPE’s with all other relevant fields and with themselves implies that

[Sn, J
α
m] = [Sn, Sm] = 0 and(5.43)

[S(3)
n , Jαm] = [S(3)

n , S(3)
m ] = [S(3)

n , Sm] = 0.

This means that the Sn’s and S
(3)
n ’s generate the center z(Ũ−3(ŝl3)) of the

completed enveloping algebra Ũ−3(ŝl3) of ŝl3 at critical level −3. As in the

previous example, z(Ũ−3(ŝl3)) would also furnish a Poisson algebra.

The Higher Cohomologies

Let us proceed to determine the higher cohomology groupsHp(X, Ω̂ch,tw
X )

where p ≥ 1. In dimension 0, we can again consider regular polynomials
in the γi’s. However, from geometric representation theory, we have the
classical result Hp(X ,O) = 0 when p ≥ 1, where O is the sheaf of regular
functions over an arbitrary flag manifold X of GC that are holomorphic in
the γi’s [54]. Since a vanishing cohomology at the classical level continues
to vanish at the quantum level, it would mean that we cannot have regular
polynomials in the γi’s; i.e., Hp(X, Ω̂ch,tw

X;0 ) = ∅. In other words, the higher
cohomologies start “growing” at dimension greater than zero, like in the
previous SL(2) example.

Let us now compute the first cohomology H1(X, Ω̂ch,tw
X;1 ) of operators

of dimension 1. From the fact that Tzz cannot be expressed as a total z-
derivative (else L−1 = 0), and the relation (2.32), we find that the dimen-
sion 1 fermionic sigma model operator Rij̄Dzφ

iψj̄ with q = 1 is not Q-exact.
Moreover, from the nilpotency of Q, and the relation (2.32), we find that
Rij̄Dzφ

iψj̄ is Q-closed. Hence, from our Q-Čech cohomology dictionary, we

find that R ∈ H1(X, Ω̂ch,tw
X;1 ), where R is the Čech cohomology counterpart

of the sigma model operator Rij̄Dzφ
iψj̄ . (R is just the SL(3) analog of Θ

of the previous SL(2) example.) What about the space H1(X, Ω̂ch,tw
X;2 ) of

operators at dimension 2? Let us try to differentiate R, i.e., let us consider
the operator ∂zR. From (2.32), one can see that ∂zR would correspond to
a Q-exact sigma model operator. Thus, from our Q-Čech cohomology dic-
tionary, we conclude that ∂zR /∈ H1(X, Ω̂ch,tw

X;2 ). Nevertheless, since we have

the product formula H1(X, Ω̂ch,tw
X;l )⊗H0(X, Ω̂ch,tw

X;m )→ H1(X, Ω̂ch,tw
X;l+m), we

can act R ∈ H1(X, Ω̂ch,tw
X;1 ) on every other element of H0(X, Ω̂ch,tw

X ) to gen-

erate H1(X, Ω̂ch,tw
X ): for example, R · 1 = R is an element of H1(X, Ω̂ch,tw

X )
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of dimension 1, and R · {Je1
, Je2

, Je3
, Jh1

, Jh2
, Jf1

, Jf2
, Jf3
} is a set of ele-

ments of H1(X, Ω̂ch,tw
X ) of dimension 2, and so on. Hence, H1(X, Ω̂ch,tw

X )

would also be a Wakimoto module for ŝl3 at the critical level.
Let us now compute the second cohomology H2(X, Ω̂ch,tw

X;1 ) of opera-

tors of dimension 1. One could consider operators of the form fi(γ)Dzγ
i =

fi(γ)∂zγ
i +AazV

i
a (γ), where fi(γ) and V i

a (γ) are holomorphic functions of
the γk’s. Note that by virtue of the way AazV

i
a (γ) transforms purely geo-

metrically under (5.30) and (5.31), it would correspond to a section of the
sheaf of holomorphic zero-forms OX on X. By virtue of the way fi(γ)∂zγ

i

transforms purely geometrically under (5.30), it would correspond to a sec-
tion of the sheaf Ω1

X of holomorphic differential one-forms on X. From the
classical result H2(X,Ω1

X) = 0 = H2(X,OX), which continues to hold in the

quantum theory, it is clear that fi(γ)Dzγ
i /∈ H2(X, Ω̂ch,tw

X;1 ).

What about the second cohomologyH2(X, Ω̂ch,tw
X;2 ) of operators of dimen-

sion 2? From footnote 24, we learn that we have a nonzero class cTC2 (X)

∈ H2(X,Ω2,cl
X,TC

). This implies that one can consider dimension 2 gauge-

invariant operators of the form F = fkj(γ)Dzγ
kDzγ

j where ∂[ifkj] = 0. (By
the way these operators transform purely geometrically under (5.30), one
can see that they do indeed correspond to ∂-closed TC-equivariant two-forms
Ω2,cl
X,TC

on X.) Since there are no quantum relations analogous to (4.47) in

the second cohomology, we conclude that F ∈ H2(X, Ω̂ch,tw
X;2 ). How about at

dimension 3? Well, since we have the classical result H2(X,KX) = 0, where
KX is the sheaf of (3, 0)-forms on X, and since a vanishing cohomology at
the classical level continues to vanish at the quantum level, we cannot have
operators of the form fijk(γ)Dzγ

iDzγ
jDzγ

k. Nevertheless, since we have

the product formula H2(X, Ω̂ch,tw
X;l )⊗H0(X, Ω̂ch,tw

X;m )→ H2(X, Ω̂ch,tw
X;l+m), we

can act F ∈ H2(X, Ω̂ch,tw
X;2 ) on every other element of H0(X, Ω̂ch,tw

X ) to gen-

erate H2(X, Ω̂ch,tw
X ): for example, F · 1 = F is an element of H2(X, Ω̂ch,tw

X )
of dimension 2, F · {Je1

, Je2
, Je3

, Jh1
, Jh2

, Jf1
, Jf2

, Jf3
} is a set of elements of

H2(X, Ω̂ch,tw
X ) of dimension 3, and so on. Hence, H2(X, Ω̂ch,tw

X ) would also

be a Wakimoto module for ŝl3 at the critical level.
Similarly, for the third cohomologies H3(X, Ω̂ch,tw

X;1 ) and H3(X, Ω̂ch,tw
X;2 ) of

operators of dimensions 1 and 2, respectively, the classical results H3(X,Ω1
X)

= 0 and H3(X,Ω2
X) = 0 imply that they are empty. What about the third

cohomology H3(X, Ω̂ch,tw
X;3 ) of operators at dimension 3? From the classical

result H3(X,KTC
X ) 6= 0, one could consider gauge-invariant operators of the

form G = fijk(γ)Dzγ
iDzγ

jDzγ
k. As there are no quantum relations analo-

gous to (4.47) in the third cohomology, we conclude that G ∈ H3(X, Ω̂ch,tw
X;3 ).
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Since we have the product formula H3(X, Ω̂ch,tw
X;l )⊗H0(X, Ω̂ch,tw

X;m )→ H3(X,

Ω̂ch,tw
X;l+m), we can act G ∈ H3(X, Ω̂ch,tw

X;3 ) on every other element of H0(X,

Ω̂ch,tw
X ) to generate H3(X, Ω̂ch,tw

X ): for example, G · 1 = G is an element of

H3(X, Ω̂ch,tw
X ) of dimension 3, G · {Je1

, Je2
, Je3

, Jh1
, Jh2

, Jf1
, Jf2

, Jf3
} is a set

of elements of H3(X, Ω̂ch,tw
X ) of dimension 4, and so on. Hence, H3(X, Ω̂ch,tw

X )

would also be a Wakimoto module for ŝl3 at the critical level.
Last but not least, notice that the zeroth, first, second and third coho-

mologies — all of which are Wakimoto modules for ŝl3 at the critical level —
start “growing” at dimensions 0, 1, 2 and 3, respectively. This observation
is also consistent with the representation-theoretic results of [46].29 Further-
more, since ν(z) of loc. cit. can be identified with the holomorphic compo-
nent Az(z) of the gauge field, according to our discussion in the third last
paragraph of §5.2.1, these modules would necessarily have highest weight 0.

5.2.3. The sheaf of TCDO’s on the flag manifold of GC. What
if X is a flag manifold of an arbitrary GC with Lie algebra gC of rank l?
From a Cartan decomposition, we can write gC = n+ ⊕ b, where b is a Borel
subalgebra, and n+ is the subalgebra of upper triangular nilpotent matrices.
Since X = GC/B, where B ⊂ GC is the Borel subgroup with Lie algebra b,
we have dimCX = dimC(n+) = |∆+|, where ∆+ is the set of positive roots
of gC. Thus, each chart U in X can be identified with the affine space C|∆+|.
Consequently, the sheaf of TCDO’s in any U ⊂ X can be described by the
following perturbed free βγ system with action

(5.44) I =
1

2π

∫
|d2z|

|∆+|∑
i=1

βi∂z̄γi − l∑
a,b=1

AazViaA
b
z̄V

i
b

 ,

29To understand this claim, first note that the series A(X, q) =∑dimCX
i=0 (−1)i[

∑
n≥0 q

ndimHi(X, Ω̂ch,twX;n )] just corresponds to χ(Lchν(z)) =∑
w∈W (−1)l(w)chWw

ν(z) of (4.6) of [46], where W is the Weyl group of gC, l(w) = i is
the length of w ∈W , and chWw

ν(z) is the character of the w-twisted Wakimoto mod-
ule Ww

ν(z) of critical level and central character ν(z) = ν0/z + ν−1 + ν−2z + · · · .
For y, v ∈W , l(y) = l(v) + 1 means that y > v; moreover, if y > v, the conformal
weight of the highest weight vector 1y◦ν0 ∈W

y
ν(z) is strictly greater than the

conformal weight of the highest weight vector 1v◦ν0
∈Wv

ν(z). Altogether, this

implies that the lowest (scaling) dimension of operators in Hi(X, Ω̂ch,twX ) increases
with increasing cohomological degree i.
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where the only singular OPE of this system is

(5.45) βi(z)γ
j(z′) ∼ −

δji
z − z′

.

Similarly, the sheaf of TCDO’s in a neighboring intersecting chart Ũ ⊂ X
can be described by the following perturbed free β̃γ̃ system with action

(5.46) Ĩ =
1

2π

∫
|d2z|

|∆+|∑
i=1

β̃i∂z̄γ̃i − l∑
a,b=1

ÃazViaÃ
b
z̄V

i
b

 ,

where the only singular OPE of this system is

(5.47) β̃i(z)γ̃
j(z′) ∼ −

δji
z − z′

.

In order to describe a globally-defined sheaf of TCDO’s, one will need to
glue the free conformal field theories with actions (5.44) and (5.46) over all
pairwise intersections U ∩ Ũ . To do so, one must again use the admissible
automorphisms of the free conformal field theories defined in (4.23)-(4.25) to
glue the free-fields together. Since the underlying sigma model is nonanoma-
lous, one ought to be able to define the sheaf of TCDO’s globally on X.

Global Sections of the Sheaf

As X = GC/B has complex dimension |∆+|, we have

A =

qR=|∆+|⊕
qR=0

HqR(X, Ω̂ch,tw
X ).

Thus, in order to determine the chiral algebra of the sigma model, one
needs to ascertain the global sections H0(X, Ω̂ch,tw

X ) of the sheaf Ω̂ch,tw
X , and

its Čech cohomology Hp(X, Ω̂ch,tw
X ) for p = 1, 2, . . . , |∆+|.

First, let us compute the global sections H0(X, Ω̂ch,tw
X ). For brevity, we

shall again focus on the dimension 0 and 1 operators only; the higher-
dimensional cases can be obtained in a similar manner. At dimension 0,
the space of global sections H0(X, Ω̂ch,tw

X;0 ) must be spanned by regular poly-

nomials in the γi’s, i.e., Ω̂ch,tw
X;0 is just the sheaf OX of regular holomorphic

functions in the γi’s on X. Since all globally-defined regular holomorphic
functions on a compact, connected, complex manifold such as X are equiv-
alent to constants [51], we find that H0(X, Ω̂ch,tw

X;0 ) is one-dimensional and
generated by 1.
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What about the space H0(X, Ω̂ch,tw
X;1 ) of global sections of dimension 1?

In order to get a global section of Ω̂ch,tw
X of dimension 1, we can act on a

(gauge-invariant) global section of Ω̂ch,tw
X of dimension 0 with the partial

derivative ∂z. Since ∂z1 = 0, this prescription will not apply here.
One could also consider dimension 1 operators of the form fi(γ)Dzγ

i =
fi(γ)∂zγ

i +AazV
i
a (γ), where fi(γ) and V i

a (γ) are globally-defined holomor-
phic functions of the γk’s. The operator fi(γ)∂zγ

i, by virtue of the way it
transforms purely geometrically under (4.23), would correspond to a section
of Ω1

X , the sheaf of holomorphic differential one-forms f(γ)dγ on X; from
the classical result H0(X,Ω1

X) = 0, which continues to hold in the quantum

theory, it is clear that fi(γ)Dzγ
i /∈ H0(X, Ω̂ch,tw

X;1 ).
As before, the remaining possibility at dimension 1 is to find operators

that contain the βi’s. To this end, consider the operators

Jeαi = βαi +

|∆+|∑
j=1

: P ij (γ)βj :, i = 1, 2, . . . , l;

Jha = −
|∆+|∑
j=1

Dj : γjβj : +Aaz , a = 1, 2, . . . , l;(5.48)

Jfαi =

|∆+|∑
j=1

: Qij(γ)βj : +Ci∂zγ
αi +Aazγ

αi , a = i = 1, 2, . . . , l.

Here, αi ∈ ∆+ are simple roots, the Di’s and Ci’s are complex constants,
and for appropriate choices of the polynomials P ij (γ) and Qij(γ), the set
{Jeαi , Jha , Jfαi} furnishes an OPE algebra of an affine GC-algebra ĝC (in
the Chevalley basis) at the critical level −h∨ in the Wakimoto representa-
tion (see Theorem 4.7 of [55]). However, does the set {Jeαi , Jha , Jfαi} span

H0(X, Ω̂ch,tw
X;1 )? The answer according to Lemma 4.6 of [23], is “yes”. More-

over, since {Jeαi , Jha , Jfαi} are chiral vertex operators holomorphic in z, one
can expand them in a Laurent series that allows an affinization of the under-
lying Lie algebra gC generated by their resulting zero modes. Consequently,
H0(X, Ω̂ch,tw

X ) would be a Wakimoto module for ĝC at level −h∨.

The Center of a Chiral Algebra

As in the previous SL(2) and SL(3) examples, one can, in the general
case at hand, define the quantum spin-2 stress tensor at level k 6= −h∨ as

(5.49) T (2)(z) =
: dαζJαJζ :

k + h∨
,
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where dαζ is the inverse of the Cartan-Killing metric of gC, and Jα and Jζ
are currents of ĝC expressed in the standard basis. As required, for every
k 6= −h∨, the modes of the Laurent expansion of T (2)(z) will span a Virasoro
algebra. In particular, T (2)(z) will generate holomorphic reparameterizations
of the coordinates on the worldsheet Σ. Notice that this definition of T (z)
in (5.49) is ill-defined when k = −h∨. Nevertheless, one can always associate
T (2)(z) with the spin-2 Segal-Sugawara operator S(2)(z) that is well-defined
at any level, where

(5.50) S(2)(z) = (k + h∨)T (z),

and

(5.51) S(2)(z) = : dαζJαJζ :(z).

From (5.50), we see that S(2)(z) generates, in its OPE with other field opera-
tors, (k + h∨) times the field transformations usually generated by the stress
tensor T (2)(z). Therefore, at the critical level k = −h∨, S(2)(z) generates no
field transformations at all — its OPE with all other field operators ought to
be regular. This is equivalent to saying that the quantum stress tensor does
not exist in A at k = −h∨, since S(2)(z) is the only well-defined operator at
this critical level which can generate field transformations under arbitrary
holomorphic reparameterizations of the worldsheet coordinates on Σ. This
observation is consistent with (2.32), as Rij̄(X) 6= 0.

One can generalize the Sugawara formalism to construct higher-spin
analogs of the holomorphic stress tensor T (2)(z) by using the currents of
ĝC. These higher-spin analogs are called Casimir operators. In particular, a
spin-si analog will be given by the si

th-order Casimir operator [53]

(5.52) T (si)(z) =
: d̃ζ1ζ2ζ3···ζsi (k)(Jζ1Jζ2 · · · Jζsi )(z) :

k + h∨
,

where d̃ζ1ζ2ζ3···ζsi (k) is a completely symmetric traceless gC-invariant tensor
of rank si that depends on the level k of ĝC. d̃ζ1ζ2ζ3···ζsi (k) is also well-defined
and finite at k = −h∨. Note that i = 1, 2, . . . , l, and the spins si = 1 + ei,
where the ei’s are the exponents of gC. Thus, one can have l of these Casimir
operators, and the spin-2 Casimir operator is just the holomorphic stress
tensor T (2)(z) from the usual Sugawara construction. For example, in the
SL(2) and SL(3) cases of l = 1 and l = 2 discussed earlier, the exponents
are e1 = 1 and {e1, e2} = {1, 2}, respectively. Consequently, we had, in the
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SL(2) case, T (2)(z) = T (z) given in (5.20); we also had, in the SL(3) case,
T (2)(z) = T (z) and T (3)(z) given in (5.34) and (5.38).

As with T (2)(z) in (5.49), T (si)(z) is ill-defined when k = −h∨. Never-
theless, one can always make reference to a spin-si analog S(si)(z) of the
Segal-Sugawara tensor that is well-defined for any finite value of k, where
its relation to T (si)(z) is given by

(5.53) S(si)(z) = (k + h∨)T (si)(z),

so that

(5.54) S(si)(z) =: d̃ζ1ζ2ζ3···ζsi (k)(Jζ1Jζ2 · · · Jζsi )(z) : .

From (5.53), one can see that the operator S(si)(z) generates in its OPE
with all other operators of the quantum theory, (k + h∨) times the field
transformations typically generated by T (si)(z). Therefore, at the critical
level k = −h∨, the S(si)(z)’s generate no field transformations at all — their
OPE’s with all other field operators ought to be regular. This is equivalent
to saying that the T (si)(z)’s do not exist as quantum operators in A at k =
−h∨, since the S(si)(z)’s are the only well-defined operators at this critical
level which can generate the type of field transformations associated with
the T (si)(z)’s.

The fact that the l number of S(si)(z)’s only have regular OPE’s with
all other relevant fields and with themselves at k = −h∨, implies the fol-
lowing. If we denote by V−h∨(gC) the chiral algebra generated by the J ’s
in (5.48) and their z-derivatives, and if we denote by z(V−h∨(gC)) its center
which is defined to be the set of fields which have regular OPE’s with all
other fields within, we have z(V−h∨(gC)) = C[∂mz S

(si)(z)]i=1,...,l;m≥0, where
C[∂mz S

(si)(z)]i=1,...,l;m≥0 is the space of differential polynomials on the
S(si)(z)’s with complex coefficients. This result agrees with Theorem 8 of [49].
Since the Aaz ’s are non-dynamical fields which do not have any nontrivial
propagators with themselves or with the rest of the fields β and γ (and their
z-derivatives) that define A , it ought to be the true that z(V−h∨(gC)) ⊂ HX ,
where HX is the space of differential polynomials on the Aaz ’s with complex
coefficients. This last claim has indeed been proved as Lemma 4.6 in [23].
(Recall from §5.2.1 that Az corresponds to λ∗ of loc. cit..) Consequently,
z(V−h∨(gC)) would define a space of purely classical (c-number) fields.

Moreover, notice that since the S(si)(z)’s and the J(z)’s are holomorphic
in z and are of dimensions si and 1, respectively, one can Laurent expand
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them as

(5.55) S(si)(z) =
∑
n∈Z

S(si)
n z−n−si , Jα(z) =

∑
n∈Z

Jαn z
−n−1,

where α = {eαi , ha, fαi}. The fact that the S(si)(z)’s only have regular OPE’s
with all other relevant fields and with themselves implies that

(5.56) [S(si)
n , Jαm] = [S(si)

n , S(si)
m ] = 0.

This means that the S
(si)
n ’s generate the center z(Ũ−h∨(ĝC)) of the com-

pleted enveloping algebra Ũ−h∨(ĝC) of ĝC at critical level k = −h∨. As before,
z(Ũ−h∨(ĝC)) would also furnish a Poisson algebra.

The Higher Cohomologies

Let us proceed to determine the higher cohomology groupsHp(X, Ω̂ch,tw
X )

where p ≥ 1. In dimension 0, we can again consider regular polynomials
in the γi’s. However, from geometric representation theory, we have the
classical result Hp(X ,O) = 0 when p ≥ 1, where O is the sheaf of regular
functions over an arbitrary flag manifold X of GC that are holomorphic in
the γi’s [54]. Since a vanishing cohomology at the classical level continues
to vanish at the quantum level, it would mean that we cannot have regular
polynomials in the γi’s; i.e., Hp(X, Ω̂ch,tw

X;0 ) = ∅. In other words, the higher
cohomologies start “growing” at dimension greater than zero.

Let us now compute the first cohomology H1(X, Ω̂ch,tw
X;1 ) of operators

of dimension 1. From the fact that Tzz cannot be expressed as a total z-
derivative (else L−1 = 0), and the relation (2.32), we find that the dimen-
sion 1 fermionic sigma model operator Rij̄Dzφ

iψj̄ with q = 1 is not Q-exact.
Moreover, from the nilpotency of Q, and the relation (2.32), we find that
Rij̄Dzφ

iψj̄ is Q-closed. Hence, from our Q-Čech cohomology dictionary, we

find thatR ∈ H1(X, Ω̂ch,tw
X;1 ), whereR is the Čech cohomology counterpart of

the sigma model operator Rij̄Dzφ
iψj̄ . (R is just the GC generalization of R

and Θ of the SL(3) and SL(2) examples discussed earlier.) What about the
space H1(X, Ω̂ch,tw

X;2 ) of operators at dimension 2? Let us try to differentiate
R, i.e., let us consider the operator ∂zR. From (2.32), one can see that ∂zR
would correspond to a Q-exact sigma model operator. Thus, from our Q-
Čech cohomology dictionary, we conclude that ∂zR /∈ H1(X, Ω̂ch,tw

X;2 ). Never-

theless, since we have the product formula Hq(X, Ω̂ch,tw
X;l )⊗Hp(X, Ω̂ch,tw

X;m )→
Hq+p(X, Ω̂ch,tw

X;l+m), we can act R ∈ H1(X, Ω̂ch,tw
X;1 ) on every other element of
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H0(X, Ω̂ch,tw
X ) to generate H1(X, Ω̂ch,tw

X ): for example, R · 1 = R is an ele-

ment of H1(X, Ω̂ch,tw
X ) of dimension 1, and R · {Jeαi , Jha , Jfαi} is a set of

elements of H1(X, Ω̂ch,tw
X ) of dimension 2, and so on. Hence, H1(X, Ω̂ch,tw

X )
would also be a Wakimoto module for ĝC at the critical level −h∨.

Let us now compute the second cohomology H2(X, Ω̂ch,tw
X;1 ) of operators

of dimension 1. The arguments are similar to those employed in our ear-
lier discussion of the SL(3) case. In particular, since one has the classical
result Hp(X,Ωq

X) = 0 if p 6= q, and since a vanishing cohomology at the

classical level continues to vanish at the quantum level, H2(X, Ω̂ch,tw
X;1 ) = ∅.

What about the second cohomology H2(X, Ω̂ch,tw
X;2 ) of operators of dimen-

sion 2? From footnote 24, we learn that there is a nonzero class cTC2 (X) ∈
H2(X,Ω2,cl

X,TC
). As in the SL(3) case, since there are no quantum relations

analogous to (4.47) in the second cohomology, the fact that H2(X,Ω2,cl
X,TC

) 6=
0 implies that F ∈ H2(X, Ω̂ch,tw

X;2 ), where F = fkj(γ)Dzγ
kDzγ

j and ∂[ifkj] =
0. How about at dimension 3? As in the case of the first cohomology, we
can act F ∈ H2(X, Ω̂ch,tw

X;2 ) on every other element of H0(X, Ω̂ch,tw
X ) to gen-

erate H2(X, Ω̂ch,tw
X ): for example, F · 1 = F is an element of H2(X, Ω̂ch,tw

X )

of dimension 2, F · {Jeαi , Jha , Jfαi} is a set of elements of H2(X, Ω̂ch,tw
X ) of

dimension 3, and so on. Hence, H2(X, Ω̂ch,tw
X ) would also be a Wakimoto

module for ĝC at the critical level −h∨.
Similarly, for the higher cohomologies Hq(X, Ω̂ch,tw

X;n ) of operators of

dimension n, where q ≥ 3, the classical result Hq(X,Ωp
X) = 0 when q 6= p

implies that Hq(X, Ω̂ch,tw
X;n ) = ∅ if n 6= q. Nevertheless, we have the classical

resultHq(X,Ωq
X,TC

) 6= 0, and since there are no quantum relations analogous

to (4.47) in the higher cohomologies, we conclude that Gq ∈ Hq(X, Ω̂ch,tw
X;q ),

where Gq = fk1k2···kq(γ)Dzγ
k1Dzγ

k2 · · ·Dzγ
kq . Again, we can act Gq ∈ Hq(X,

Ω̂ch,tw
X;q ) on every other element of H0(X, Ω̂ch,tw

X ) to generate Hn(X, Ω̂ch,tw
X ):

for example, Gq · 1 = Gq is an element of Hq(X, Ω̂ch,tw
X ) of dimension q,

Gq · {Jeαi , Jha , Jfαi} is a set of elements of Hq(X, Ω̂ch,tw
X ) of dimension q + 1,

and so on. Hence, Hq(X, Ω̂ch,tw
X ) would also be a Wakimoto module for ĝC

at the critical level −h∨.
Last but not least, notice that the zeroth, first, second and higher coho-

mologies — all of which are Wakimoto modules for ĝC at the critical level
−h∨ — start “growing” at dimensions 0, 1, 2 and so on. This observation is
also consistent with the representation-theoretic results of [46]. (See foot-
note 29.) Furthermore, since ν(z) of loc. cit. can be identified with the holo-
morphic component Az(z) of the gauge field, according to our discussion
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in the third last paragraph of §5.2.1, these modules would necessarily have
highest weight 0.

6. T -duality and the appearance of the Langlands
dual group LGC

In this section, we will show how a generalized T -duality of the local gauged
twisted sigma model on flag manifolds of GC — where GC is any simply-
connected, simple, complex Lie group — leads naturally to an isomorphism
of W-algebras which involves the Langlands dual Lie algebra LgC. In the
context of the global sigma model with chiral algebra A however, only the
classical limit of this isomorphism is found to be physically valid. Together
with the results of the previous section, this means that A would furnish
a family of affine GC-algebras at the critical level parameterized by LGC-
opers on the worldsheet, where LGC is the Langlands dual of GC. This crucial
fact would then allow us to furnish, in the next section, a natural physical
interpretation of the geometric Langlands correspondence for GC.

6.1. T -duality and an isomorphism of W-algebras

6.1.1. TheGC = SL(2) case. As a start, let us consider the local gauged
twisted sigma model on the flag manifold X of SL(2) of rank l = 1 and Lie
algebra sl2. For convenience, let us, as was done in §4.4, pick a hermitian
metric that is flat when restricted to the underlying local patch U ⊂ X over
which the local model is defined. Since for any flag manifold M , we have
H1(M,Ω2,cl

M,T ) = 0, we can, according to our discussion at the beginning of
§4.4, write the action of the local sigma model as (cf. (4.10))

(6.1) Ilocal =
1

2π

∫
Σ
|d2z| δ11̄

(
∂zφ

1̄∂z̄φ
1 + ψ1

z̄∂zψ
1̄ −Az̄V 1AzV

1̄
)
.

Let the worldsheet Σ be the complex plane with the origin z = 0 removed.
In this case, the condition stipulated in §5.2.1 that Az(z) be regular over
all of Σ would still be met even if we expand Az(z) in all powers of z,
i.e., Az(z) =

∑
m amz

m−1. Since F = dA = 0 in our case, one can express
the (locally-defined) gauge field as A = dY (z, z̄), where Y (z, z̄) is a zero-
form in Σ. In turn, because ∂z̄Az = 0 = ∂zAz̄, it would mean that one
can write Y (z, z̄) = YL(z) + YR(z̄) such that Az = ∂zY (z, z̄) = ∂zYL(z) =∑

m amz
m−1 and Az̄ = ∂z̄Y (z, z̄) = ∂z̄ȲR(z̄) =

∑
m āmz̄

m−1. Thus, if we let
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δ11̄∂zφ
1̄ = β, φ1 = γ, ψz̄1̄ = ψ̄z̄, ψ

1̄ = ψ̄, one can re-express (6.1) as

(6.2) Ilocal =
1

2π

∫
Σ
|d2z|

(
β∂z̄γ + ψ̄z̄∂zψ̄ − V 1V1∂z̄Y ∂zY

)
.

Since V 1, V1 ∈ C, we indeed have ∂z̄(∂zY ) = ∂z̄Az = 0 and ∂z(∂z̄Y ) = ∂zAz̄
= 0 from the equations of motion. From Ilocal, the singular OPE’s of the
local model are found to be given by

β(z)γ(z′) ∼ − 1

z − z′
,(6.3)

(
√

2 · YL)(z)(−
√

2 · YL)(z′) ∼ 2 ln(z − z′),(6.4)

(
√

2 · YR)(z̄)(−
√

2 · YR)(z̄′) ∼ 2 ln(z̄ − z̄′),(6.5)

ψ̄z̄(z̄)ψ̄(z̄′) ∼ 1

z̄ − z̄′
,(6.6)

where we have chosen the normalization V 1V1 = −1/2. (Recall that V 1 and
V1 are only defined up to scaling by a nonzero constant.) Clearly, Ilocal
represents an action of a conformal field theory (CFT) that is a tensor
product of the βγ–ψ̄z̄ψ̄ CFT and the Y –Y CFT.

Note at this point that Σ is conformally equivalent to a semi-infinite
cylinder. This means that Ilocal can be interpreted as an action of a closed
string theory. Morever, notice that Ilocal is invariant under the translations
γ → γ + const and Y → Y + const; in particular, one is free to make the
identifications γ ∼= γ + 2πR and Y ∼= Y + 2πR. Thus, γ and Y can also be
interpreted as angular variables which characterize a compact direction in
target space with radius R that the closed string may then wind around.
However, as the target space of the βγ–ψ̄z̄ψ̄ CFT is a local patch U ⊂ X,
such a generalization is only possible in the Y –Y CFT (whose target space
remains global even in the local sigma model). The most general boundary
condition for the Y -field of the local sigma model can therefore be written
as

(6.7) Y (σ + 2π, t) = Y (σ, t) + 2πwR,

where σ and t are the spatial and temporal directions along the semi-infinite
cylinder, and w is the winding number of the string. As Az = ∂zY is indexed
in the (dual of the) Cartan subalgebra of sl2, one may therefore interpret
the compactified target space of the Y –Y CFT to be the maximal torus S1

with radius R.
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Notice that (6.7) implies the relation

(6.8) 2πwR =

∮
(dz ∂zY + dz̄ ∂z̄Y ) =

∮
A.

Notice also that the RHS of (6.8) defines — via the holonomy exp(i
∮
A) —

a map π1(Σ)→ U(1) which characterizes a nontrivial flat U(1) connection
over Σ. Thus, even though our above generalization to a compact target
space of the Y –Y CFT seemed rather ad-hoc, it is clear that the condition
w 6= 0 — which implies that the target space ought to be given by S1, as
argued — is necessary for the flat U(1) gauge field A to be nontrivial.

The underlying identification Y ∼= Y + 2πR also implies that the states
of the Y –Y CFT ought to map back to themselves under translations by
2πR of the Y field of the worldsheet theory; i.e., exp(2πip̂) = 1, where p̂ is
the momentum operator of the Y –Y CFT associated with the symmetry
transformation Y → Y + const. Hence, if p is the momentum of the string
along S1, we necessarily have p = n/R, where n ∈ Z. Consequently, one can
write p = 1

2(pL + pR), where

(6.9) pL =
n

R
+ wR, pR =

n

R
− wR.

As such, wR = 1
2(pL − pR), and from (6.8), we have 2πp =

∮
(dz ∂zY −

dz̄ ∂z̄Y ).

The Linear Dilation Theory Behind the Y –Y CFT

The Y –Y theory, being a theory of a free, massless scalar field Y , has
a huge underlying symmetry. For example, with the same Y –Y action in
(6.2) and the OPE’s it implies, one can construct — independently in the
holomorphic and antiholomorphic sectors — a family of stress tensors which
generate a family of Virasoro algebras with different central charges. In
other words, one can associate with the Y –Y theory not one but a family of
holomorphic and antiholomorphic conformal symmetries.

Let us then consider the model whereby the holomorphic sector of the
Y –Y theory is described by a linear dilaton theory (see §2.5 of [56]) with
holomorphic conformal stress tensor

(6.10) T (z) = −1

2
: ∂zYL∂zYL : +V ∂2

zYL,

whence for different values of the 1-vector V , there are different (holomor-
phic) conformal symmetries which therefore define different CFT’s behind
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the Y –Y theory. Assuming that the antiholomorphic stress tensor is the
usual one given by

(6.11) T̃ (z̄) = −1

2
: ∂z̄YR∂z̄YR :,

the V = 0 case just gives us the standard CFT associated with the Y –Y
action.

T -Duality of the Linear Dilaton Y –Y CFT

Next, note that the Hamiltonian of the linear dilaton Y –Y CFT can be
written as

H =
1

8

( n
R

+ wR
)2

+
1

8

( n
R
− wR

)2
(6.12)

+

∞∑
m=1

(α−mαm) +

∞∑
m=1

(ᾱ−mᾱm) + i
V

2
(
n

R
+ wR) + aY ,

where (αm, ᾱm) = i(am, ām), and aY is a normal-ordering constant. Let us
choose V = −i(Rρ− 1

Rρ
∨), where R = 1/

√
k + 2 for some integer k whose

role will be understood shortly, and the constants ρ = ρ∨ = 1/
√

2. Notice
that the spectrum (6.12) is invariant under n↔ w, R→ 1/R, ρ→ −ρ∨,
and ρ∨ → −ρ; moreover, this exchange leaves V fixed but maps pL → pL and
pR → −pR, and consequently, Y → Y ′, where Y ′ = YL(z)− YR(z̄). As Y ′ has
the same OPE’s and stress tensors as Y , one can conclude that the linear
dilaton Y ′–Y ′ CFT with target space radius R′ = 1/R, p′L,R parameters

(n′, w′) = (w, n), and V ′ parameters (ρ′, ρ∨′) = (−ρ∨,−ρ), is dual to the
linear dilaton Y –Y CFT with parameters (R,n,w, ρ, ρ∨). This duality of
the Y –Y theory is also known as T -duality. As mentioned earlier, since the
local sigma model is a tensor product of the βγ–ψ̄z̄ψ̄ CFT and the Y –Y
CFT, this T -duality is also a duality of the local sigma model itself.

A W-Algebra

Let us now consider a relevant application of this T -duality. From (6.10),
the underlying holomorphic stress tensor will be given by

(6.13) TR(z) = −1

2
: ∂zYL∂zYL : −

(
Rρ− 1

R
ρ∨
)
i∂2
zYL.

As the local sigma model is a tensor product of the βγ–ψ̄z̄ψ̄ CFT and the
Y –Y CFT, its overall holomorphic stress tensor will be given by Tσ(z) =
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Tβγ(z) + TR(z), where Tβγ(z) = −β∂zγ is the holomorphic stress tensor of
the βγ–ψ̄z̄ψ̄ CFT. Thus, we have

(6.14) Tσ(z) = − : β∂zγ : −1

2
: ∂zYL∂zYL : −

(
Rρ− 1

R
ρ∨
)
i∂2
zYL.

Next, consider the local holomorphic operator

(6.15) VR(z) = : e−i2Rρ·YL(z) : .

By a short computation using (6.3)–(6.4), we find that VR(z) has conformal
dimension 1 with respect to Tσ(z). As such,

(6.16) Q =

∮
dz VR(z)

would be a conformally-invariant, left-moving charge associated with the
dimension 1 current VR(z). Since Q is also conserved (a property which
is implied by its conformal invariance), by Noether’s theorem, Q ought to
generate a symmetry transformation of the local sigma model. In particular,
its vacuum state |1〉 ought to be invariant under this symmetry, i.e., Q|1〉 =
0. This statement is exact as there are no nonperturbative corrections to
the local sigma model by worldsheet instantons that are necessarily global
in X.

What can we say about the Q-invariant spectrum HQ spanned by left-
moving, non-vacuum states |O〉 which obey Q|O〉 = 0? Because the local
sigma model is a CFT, we have a state-operator isomorphism, i.e., |O〉 ∼= O ·
|1〉, where O is the corresponding local holomorphic operator. Hence, since
Q|1〉 = 0, the condition that Q|O〉 = 0 is equivalent to the condition that
[Q,O]|1〉 = 0. Therefore, the states in HQ are in one-to-one correspondence
with the local holomorphic operators O that commute with Q. As the local
sigma model is a tensor product of the βγ–ψ̄z̄ψ̄ and the Y –Y theories, HQ
would be composed of three distinct sectors:

(6.17) HQ = Hβγ ⊕Hβγ⊗YL ⊕HYL ,

where states in the sectors Hβγ , Hβγ⊗YL and HYL correspond to local holo-
morphic operators given by z-differential polynomials on the (β, γ), (β, γ, YL)
and YL fields, respectively, which all commute with Q. In particular, it is
well-established that HYL can be identified with the local holomorphic oper-
ators whose Laurent expansion coeffcients generate a W-algebra Wk(sl2) at
level k (see [53] and references within).
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T -Duality and an Isomorphism of W-Algebras

Let us now consider the T -dual picture of things in the (n,w) = (1, 1)
sector. T -duality does not act on β or γ, but maps YL → YL, R→ 1/R, and
(ρ, ρ∨)→ (−ρ∨,−ρ). Therefore, the T -dual holomorphic stress tensor will
be given by

(6.18) T ′σ(z) = − : β∂zγ : −1

2
: ∂zYL∂zYL : −

(
Rρ− 1

R
ρ∨
)
i∂2
zYL.

This actually coincides with the original holomorphic stress tensor Tσ(z).
Also, the T -dual of the local holomorphic operator VR(z) will be given by

(6.19) V ′R(z) = : ei
2

R
ρ∨·YL(z) : .

Again, a short computation using (6.3)–(6.4) would reveal that V ′R(z) has
conformal dimension 1 with respect to T ′σ(z). As such,

(6.20) Q′ =
∮
dz V ′R(z)

would be a conformally-invariant, left-moving charge associated with the
dimension 1 current V ′R(z) that is the T -dual of Q. Likewise, the Q′-invariant
spectrum HQ′ spanned by left-moving, non-vacuum states |O ′〉 which obey
Q′|O ′〉 = 0 can be written as

(6.21) HQ′ = H′βγ ⊕H′βγ⊗YL ⊕H
′
YL ,

where states in the sectors H′βγ , H′βγ⊗YL and H′YL correspond to local holo-
morphic operators given by z-differential polynomials on the (β, γ), (β, γ, YL)
and YL fields, respectively, which commute with Q′.

Since ρ = ρ∨, we have V ′R(z) = VLR(z) where LR = −1/R; and since Q′
acts on the same fields (β, γ and YL) as Q, the observations about HYL
— albeit with effective parameter LR = 1/

√
Lk + 2 instead of R — apply

exactly to H′YL . Moreover, since sl2 is a simply-laced Lie algebra, we have

an identification sl2 ∼= Lsl2 of Lie algebras, where Lsl2 is the Langlands dual
of sl2. Altogether, this means that H′YL can be identified with the local
homorphic operators whose Laurent expansion coeffcients generate a W-
algebra WLk(

Lsl2) at level Lk, where 1/(Lk + 2) = (k + 2).
The Q-invariant spectrum of states ought to map back to itself under

any duality of the local sigma model. Therefore, under the T -duality of the
model, we ought to have an isomorphism HQ ∼= HQ′ . As the distinct sec-
tors of both HQ and HQ′ do not mix, the isomorphism HQ ∼= HQ′ would
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imply the isomorphisms Hβγ ∼= H′βγ , Hβγ⊗YL ∼= H′βγ⊗YL , and HYL ∼= H′YL . In
particular, we find that the isomorphism HYL ∼= H′YL — taking into consid-
eration our above analysis of HYL and H′YL and their relations toW-algebras
— can also be expressed as

(6.22) Wk(sl2) ∼=WLk(
Lsl2) where (k + h∨) = (Lk + Lh

∨
)−1.

Here, the dual Coxeter numbers h∨ and Lh
∨

of sl2 and Lsl2, respectively,
are given by h∨ = Lh

∨
= 2. This isomorphism of W-algebras in (6.22) —

which has been shown here to be a direct consequence of T -duality — has
also been derived via a similar albeit abstract algebraic CFT approach in
§8.5 of [49].

6.1.2. The arbitrary GC case. Now, let us consider the local gauged
twisted sigma model on the flag manifold X of an arbitrary GC of rank l
and Lie algebra gC. A generalization of (6.2) to the present case gives us the
action of the local sigma model as
(6.23)

Iloc−gen =
1

2π

∫
Σ
|d2z|

|∆+|∑
i=1

βi∂z̄γi + ψiz̄∂zψi −
l∑

a,b=1

V i
aVib∂z̄Y

a∂zY
b

 ,

where Y a(z, z̄) = Y a
L (z) + Y a

R(z̄). From Iloc−gen above, the singular OPE’s
of the local model are found to be given by

βi(z)γ
j(z′) ∼ −

δji
z − z′

,(6.24)

(αi · YL)(z)(αi · YL)(z′) ∼ −κc(αi, αi) ln(z − z′),(6.25)

(αi · YR)(z̄)(αi · YR)(z̄′) ∼ −κc(αi, αi) ln(z̄ − z̄′),(6.26)

ψiz̄(z̄)ψj(z̄
′) ∼

δij
z̄ − z̄′

,(6.27)

where (αi · YL,R) =
∑l

a=1 α
i
aY

a
L,R, (αi · YL,R) =

∑l
b=1 αibY

b
L,R, αia = k1V

i
a ,

αi,b = k2Vib, and −2κc(α
i, αi) = k1k2 for some k1, k2 ∈ R. Since the V i

a ’s and
Vib’s are constants defined up to scaling only, with the appropriate scalings,
one can interpret the αi’s and αi’s as the |∆+| positive and negative roots
of gC, respectively, with corresponding scalar product κc(α

i, αi), where κc
is the Killing form of gC. As an example, consider the earlier SL(2) case
where i, l = 1, V 1V1 = −1/2, and there is just one positive and negative
(simple) root α1 and α1; comparing (6.4)–(6.5) with (6.25)–(6.26), we have
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α1α1 = k1k2V
1V1 = −k1k2/2 = −2, which implies that κc(α

1, α1) = −2, as
it should. At any rate, it is clear that Iloc−gen represents an action of a con-
formal field theory (CFT) that is a tensor product of the βγ–ψz̄ψ CFT and
the Y –Y CFT.

Also, as in the SL(2) case, we have, in writing the above equations,
assumed that the worldsheet Σ is (conformally equivalent to) a semi-infinite
cylinder. This means that Iloc−gen can be interpreted as an action of a closed
string theory. Morever, notice that Iloc−gen is invariant under the translations
γi → γi + const and Y a → Y a + const; in particular, one is free to make
the identifications γi ∼= γi + 2πRi and Y a ∼= Y a + 2πRa. Thus, γi and Y a

can also be interpreted as angular variables which characterize the compact
directions in target space with radii Ri and Ra, respectively, that the closed
string may then wind around. However, as the target space of the βγ–ψz̄ψ
CFT is a local patch U ⊂ X, such a generalization is only possible in the Y –
Y CFT (whose target space remains global even in the local sigma model).
The most general boundary condition for the Y a-fields of the local sigma
model can therefore be written as

(6.28) Y a(σ + 2π, t) = Y a(σ, t) + 2πwaRa,

where σ and t are the spatial and temporal directions along the semi-
infinite cylinder, and wa is the winding number of the string along the ath

compact direction. Since a runs from 1 to l, one may therefore interpret
the compactified target space of the Y –Y CFT to be the maximal torus
T l = S1 × · · · × S1 with radii {R1, . . . , Rl}.

For our purpose, it suffices to consider the case where the radii {R1, . . . ,
Rl} are all the same and given by R, so that (6.28) implies the relation

(6.29) 2πwaR =

∮
(dz ∂zY

a + dz̄ ∂z̄Y
a) =

∮
Aa.

Notice also that the RHS of (6.29) defines — via the holonomy exp(i
∮
A) —

a map π1(Σ)→ U(1)l which characterizes a nontrivial flat U(1)l connection
over Σ, where U(1)l is the Cartan subgroup of G. Thus, even though our
above generalization to a compact target space of the Y –Y CFT seemed
rather ad-hoc, it is clear that the condition wa 6= 0 — which implies that
the target space ought to be given by T l, as argued — is necessary for the
flat U(1)l gauge field A to be nontrivial.

The underlying identification Y a ∼= Y a + 2πRa also implies that the
states of the Y –Y CFT ought to map back to themselves under transla-
tions by 2πRa of the Y a fields of the worldsheet theory; i.e., exp(2πip̂a) = 1,
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where p̂a is the ath-momentum operator of the Y –Y CFT associated with
the symmetry transformation Y a → Y a + const. Hence, if pa is the momen-
tum of the string along the ath-direction, we necessarily have pa = na/R,
where na ∈ Z. Consequently, one can write pa = 1

2(paL + paR), where

(6.30) paL =
na

R
+ waR, paR =

na

R
− waR.

As such, waR = 1
2(paL − paR), and from (6.29), we have 2πpa =

∮
(dz ∂zY

a −
dz̄ ∂z̄Y

a).

The Linear Dilation Theory Behind the Y –Y CFT

The Y –Y theory, being a theory of free, massless scalar fields Y a, has a
huge underlying symmetry, as discussed in the SL(2) case. With the same
Y –Y action in (6.23) and the OPE’s it implies, one can construct — inde-
pendently in the holomorphic and antiholomorphic sectors — a family of
stress tensors which generate a family of Virasoro algebras with different
central charges. In other words, one can associate with the Y –Y theory not
one but a family of holomorphic and antiholomorphic conformal symmetries.

Let us then consider the model whereby the holomorphic sector of the
Y –Y theory is described by a linear dilaton theory (see §2.5 of [56]) with
holomorphic conformal stress tensor

(6.31) T (z) = −1

2
: ∂zYL · ∂zYL : +V · ∂2

zYL,

where ∂zY · ∂zY =
∑l

a=1 ∂zY
a∂zY

a and V · ∂2
zY =

∑l
a=1 V a∂2

zY
a. For dif-

ferent values of the 1-vector V , there are different (holomorphic) conformal
symmetries which therefore define different CFT’s behind the Y –Y theory.
Assuming that the antiholomorphic stress tensor is the usual one given by

(6.32) T̃ (z̄) = −1

2
: ∂z̄YR · ∂z̄YR :,

the V = 0 case just gives us the standard CFT associated with the Y –Y
action.

T -Duality of the Y –Y CFT

Next, note that the Hamiltonian of the linear dilaton Y –Y CFT can be
written (up to a normal ordering constant) as
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H =

l∑
a=1

[
1

8

(
na

R
+ waR

)2

+
1

8

(
na

R
− waR

)2

(6.33)

+

∞∑
m=1

(αa−mα
a
m) +

∞∑
m=1

(ᾱa−mᾱ
a
m) + i

V a

2
(
na

R
+ waR)

]
,

where ∂zY
a
L = −i

∑
m

αam
zm+1 and ∂z̄Y

a
R = −i

∑
m

ᾱam
z̄m+1 . Let us choose V =

−i(Rρ− 1
Rρ
∨), where R = 1/

√
k + h∨ for some integer k whose role will be

understood shortly; h∨ is the dual Coxeter number of gC; ρ = 1
2

∑
α∈∆+

α

and ρ∨ = 1
2

∑
α∈∆+

α∨ are the Weyl vector of gC and its dual, respectively;
and α∨ = 2α/κc(α, α) is the coroot associated with the root α. Notice that
the spectrum (6.12) is invariant under na ↔ wa, R→ 1/R, ρ→ −ρ∨, and
ρ∨ → −ρ; moreover, this exchange leaves V fixed but maps paL → paL and
paR → −paR, and consequently, Y a → Y a′, where Y a′ = Y a

L (z)− Y a
R(z̄). As

Y a′ has the same OPE’s and stress tensors as Y a, one can conclude that the
linear dilaton Y ′–Y ′ CFT with target space radius R′ = 1/R, pa

′

L,R param-

eters (na
′
, wa

′
) = (wa, na), and V ′ parameters (ρ′, ρ∨′) = (−ρ∨,−ρ), is dual

to the linear dilaton Y –Y CFT with parameters (R,na, wa, ρ, ρ∨). This is
a T -duality of the Y –Y theory. As mentioned earlier, since the local sigma
model is a tensor product of the βγ–ψ̄z̄ψ̄ CFT and the Y –Y CFT, this
T -duality is also a duality of the local sigma model itself.

A W-Algebra

Let us now consider a relevant application of this T -duality. From (6.31),
the underlying holomorphic stress tensor will be given by

(6.34) TR(z) = −1

2
: ∂zYL · ∂zYL : −(Rρ− 1

R
ρ∨) · i∂2

zYL.

As the local sigma model is a tensor product of the βγ–ψ̄z̄ψ̄ CFT and the
Y –Y CFT, its overall holomorphic stress tensor will be given by Tσ(z) =

Tβγ(z) + TR(z), where Tβγ(z) = −
∑|∆+|

i=1 βi∂zγ
i is the holomorphic stress

tensor of the βγ–ψ̄z̄ψ̄ CFT. Thus, we have

(6.35) Tσ(z) = −
|∆+|∑
i=1

: βi∂zγ
i : −1

2
: ∂zYL · ∂zYL : −(Rρ− 1

R
ρ∨) · i∂2

zYL.

Next, consider the l local holomorphic operators

(6.36) V s
R(z) = : e−iRα

s·YL(z) :, where s = 1, . . . , l,



i
i

“1-tan” — 2015/2/11 — 17:36 — page 377 — #101 i
i

i
i

i
i

Sigma models, Langlands program, and knots 377

and where α1, . . . , αl are simple (positive) roots of gC. By a computation
using (6.24)–(6.25), it can be shown that the V s

R(z)’s have conformal dimen-
sion 1 with respect to Tσ(z). As such,

(6.37) Qs =

∮
dz V s

R(z) for s = 1, . . . , l,

would be conformally-invariant, left-moving charges associated with the
dimension-one V s

R(z) currents. Since the Qs’s are also conserved (a prop-
erty which is implied by their conformal invariance), by Noether’s theorem,
each of the Qs’s ought to generate a symmetry transformation of the local
sigma model. In particular, its vacuum state |1〉 ought to be invariant under
these symmetries, i.e., Qs|1〉 = 0 for all s. This statement is exact as there
are no nonperturbative corrections to the local sigma model by worldsheet
instantons that are necessarily global in X.

Note that all the Qs’s commute with one another.30 Simultaneous eigen-
states of these charge operators therefore exist. In particular, there ought to
be simultaneous left-moving zero-eigenstates |O〉 which obey Qs|O〉 = 0 for
all s. These zero-eigenstates span a {Q1, . . . ,Ql}-invariant spectrum which
we shall denote as HQ̃. Because the local sigma model is a CFT, we have a
state-operator isomorphism, i.e., |O〉 ∼= O · |1〉, where O is the correspond-
ing local holomorphic operator. Hence, since Qs|1〉 = 0, the condition that
Qs|O〉 = 0 is equivalent to the condition that [Qs,O]|1〉 = 0. Thus, the states
in HQ̃ are in one-to-one correspondence with the local holomorphic opera-
tors O that commute with all the Qs’s. As the local sigma model is a tensor
product of the βγ–ψ̄z̄ψ̄ and the Y –Y theories, HQ̃ would be composed of
three distinct sectors:

(6.38) HQ̃ = H
β̃γ
⊕H

β̃γ⊗ỸL ⊕HỸL ,

where states in the sectors H
β̃γ

, H
β̃γ⊗ỸL , and H

ỸL
correspond to local

holomorphic operators given by z-differential polynomials on the (βi, γ
i),

(βi, γ
i, Y a

L ) and Y a
L fields, respectively, which all commute with the Qs’s. In

particular, it is well-established that H
ỸL

can be identified with the local
holomorphic operators whose Laurent expansion coefficients generate a W-
algebra Wk(gC) at level k (see [53] and references within).

30From the OPE in (6.25), and the explicit formula for V sR(z) in (6.36), it is clear
that [Qm,Qn] =

∮
dw
2πiResz→wV

m
R (z)V nR (w) = 0 if m 6= n. However, for m = n, we

have the nontrivial OPE V mR (z)V mR (w) ∼ (z − w)R
2|αm|2V m2R(w); nevertheless, since

R2|αm|2 > 0, we have [Qm,Qm] =
∮
dw
2πiResz→wV

m
R (z)V mR (w) = 0. In short, all the

Qs’s commute with one another.
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T -Duality and an Isomorphism of W-Algebras

Let us now consider the T -dual picture of things in the (na, wa) = (1, 1)
sector. T -duality does not act on β or γ, but maps Y a

L → Y a
L , R→ 1/R, and

(ρ, ρ∨)→ (−ρ∨,−ρ). Therefore, the T -dual holomorphic stress tensor will
be given by

(6.39) T ′σ(z) = −
|∆+|∑
i=1

: βi∂zγ
i : −1

2
: ∂zYL · ∂zYL : −(Rρ− 1

R
ρ∨) · i∂2

zYL.

This actually coincides with the original holomorphic stress tensor Tσ(z).
Also, the T -dual of the local holomorphic operator V s

R(z) will be given by

(6.40) V s′

R (z) : e
i

R
α∨

s ·YL(z) : .

Again, a computation using (6.24)–(6.25) would reveal that the V s′

R (z)’s have
conformal dimension 1 with respect to T ′σ(z). As such,

(6.41) Qs′ =

∮
dz V s′

R (z) for s = 1, . . . , l,

would be conformally-invariant, left-moving charges associated with the
dimension one V s′

R (z) currents that are the T -duals of the Qs’s.
Now let us take a closer look atQs′ via its current V s′

R (z) = : e
i

R
α∨

s ·YL(z) :.
To this end, note that α∨

s

=
√
r∨ Lαs, where r∨ is the lacing number of gC

(equal to the maximal number of edges connecting two vertices of the Dynkin
diagram of gC), and Lαs is a simple (positive) root of the Langlands dual
Lie algebra LgC corresponding to the simple (positive) root αs of gC. Thus,
one can write

(6.42) V s′

R (z) = V s
LR(z) = : e−i

LR Lαs·YL(z) :,

where LR = −
√
r∨/R.

Notice at this point that the T -dual of the original Y –Y CFT action can
be written as

(6.43) I ′Y−Y = − 1

2π

∫
Σ
|d2z|

|∆+|∑
s=1

∂z̄(V
s · Y s′)∂z(Vs · Y s′),

where Y s′(z, z̄) = Y ′(z, z̄) = YL(z)− YR(z̄). Recall at this point that αsa =
k1V

s
a , αs,a = k2Vsa, and −2κc(α

s, αs) = k1k2; as a result, from I ′Y−Y above,
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and the fact that Lκc(
Lαs, Lαs) = κc(

Lαs, Lαs), where Lκc is the Killing
form of LgC,31 we compute the holomorphic Y –Y OPE of the T -dual theory
to be

(Lαs · YL)(z)(Lαs · YL)(z′) ∼ −Lκc(Lαs, Lαs) ln(z − z′),(6.44)

for s = 1, . . . , l, . . . , |∆+|.

Repeating the analysis in footnote 30 here where we have (6.42) and
(6.44) instead, we find that all the Qs′ ’s commute with one another. Then,
the {Q1′ , . . . ,Ql′}-invariant spectrum H′

Q̃
spanned by left-moving, non-

vacuum states |O ′〉 which obey Qs′ |O ′〉 = 0 for all s, can be written as

(6.45) H′Q̃ = H′
β̃γ
⊕H′

β̃γ⊗ỸL
⊕H′

ỸL
,

where states in the sectors H′
β̃γ

, H′
β̃γ⊗ỸL

, and H′
ỸL

correspond to local

holomorphic operators given by z-differential polynomials on the (βi, γ
i),

(βi, γ
i, Y a

L ) and Y a
L fields, respectively, which all commute with the Qs′ ’s.

According to our above discussion of H
ỸL

, and a comparison of (6.42) with
(6.36), we find that H′

ỸL
can be identified with the local holomorphic oper-

ators whose Laurent expansion coefficients generate a W-algebra WLk(
LgC)

at level Lk, where (Lk + Lh∨)−1 = LR
2

= r∨(k + h∨), and Lh∨ is the dual
Coxeter numbers of LgC.

The {Q1, . . . ,Ql}-invariant spectrum of states ought to map back to
itself under any duality of the local sigma model. Therefore, under the T -
duality of the model, we ought to have an isomorphism HQ̃ ∼= H

′
Q̃

. As the

distinct sectors of both HQ̃ and H′
Q̃

do not mix, the isomorphism HQ̃ ∼= H
′
Q̃

would imply the isomorphisms H
β̃γ
∼= H′

β̃γ
, H

β̃γ⊗ỸL
∼= H′

β̃γ⊗ỸL
, and H

ỸL
∼=

H′
ỸL

. In particular, we find that the isomorphism H
ỸL
∼= H′

ỸL
— in view of

our above analysis of H
ỸL

and H′
ỸL

and their relations toW-algebras — can

31Why Lκc(
Lαs, Lαs) = κc(

Lαs, Lαs) can be seen as follows. First, note that one
can write Lα

s
=
∑l
a=1

Lα
a
V sa , where the Cartan generators satisfy [V sa , V

s
b ] = 0 for

all s = 1, . . . , l, . . . , |∆+|. Second, this means that κc(
Lαs, Lαs) = −κc(Lαs, Lαs) =

−
∑l
a,b=1(Lα

aLα
b
)κc(V

s
a , V

s
b ) = −

∑l
a=1

Lα
aLα

a
, since κc(V

s
a , V

s
b ) = δab by defi-

nition. Therefore, as −
∑l
a=1

Lα
aLα

a
= Lκc(

Lαs, Lαs), we have Lκc(
Lαs, Lαs) =

κc(
Lαs, Lαs), as claimed.
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also be expressed as

(6.46) Wk(gC) ∼=WLk(
LgC) where (Lk + Lh∨)−1 = r∨(k + h∨).

The above isomorphism ofW-algebras — which has been shown here to be a
direct consequence of T -duality — has also been derived via a similar albeit
abstract algebraic CFT approach in §8.6 of [49].

Validity of W-Algebra Isomorphism on Arbitrary Worldsheets

Last but not least, note that the explicit expressions of the stress tensors
T (z) and T̃ (z̄) in (6.31) and (6.32) imply that the Y –Y CFT they describe
actually leads to an underlying local theory whose overall action can also be
written as

Iequiv =
1

π

∫
Σ
|d2z|√g e−2σ(z,z̄)

[ |∆+|∑
i=1

{
βi∂z̄γ

i + ψiz̄∂zψi(6.47)

+ ∂z̄(V
i · Y )∂z(Vi · Y )

}
+Rz̄z(V · YL)

]
.

Here, gzz̄ = gz̄z = 2e−2σ(z,z̄) — with σ(z, z̄) being a function of z and z̄ — are
the nonzero components of the metric on the arbitrary worldsheet Σ whose
determinant is g, and Rz̄z is the Ricci curvature of Σ. As such, even though
(6.46) appears a priori to have been derived under the assumption that the
worldsheet is a flat semi-infinite cylinder, it really holds for arbitrary (and
thus possibly curved) worldsheets. This should come as no surprise since the
intrinsic definition of aW-algebra depends only on the local coordinate z on
Σ — i.e., it must be insensitive to the global topology of Σ. Moreover, Iequiv

describes a local sigma model with target space a contractible patch U ⊂ X
over which any bundle can be trivialized; hence, as explained in §4.6, one
does not “see” the other anomaly c1(Σ)cT1 (X) — i.e., Iequiv is, as required,
a physically valid action for any Σ.

6.2. Affine GC-algebras at critical level parameterized
by LGC-opers on the worldsheet

What we have discussed so far in this section pertains to the local sigma
model over a local patch U of the target space X. However, what is ulti-
mately relevant is the global sigma model over all of X. The question then
is whether our above result in (6.46) — on the isomorphism of W-algebras
— would also hold in the global model. Given that the large symmetry of



i
i

“1-tan” — 2015/2/11 — 17:36 — page 381 — #105 i
i

i
i

i
i

Sigma models, Langlands program, and knots 381

the free, massless Y –Y theory of the local model would be partially or per-
haps even fully broken upon “lifting” to the global model, one can, at best,
expect (6.46) to hold for certain values of the parameters k and Lk only.

The W-Algebra Isomorphism in the Global Sigma Model

For one, recall that X = GC/B — where B ⊂ GC is a Borel subgroup
— is a homogeneous space whence there is a global GC-action which serves
as an automorphism that maps X back to itself. This means that there
necessarily is a GC-symmetry in the global sigma model, and by Noether’s
theorem, there ought to be dimension-one currents whose conserved charges
generate this symmetry. In particular, one should be able to find a set of
bosonic dimension-one currents {JGC} — that would furnish an affine GC-
algebra at some level k — whereby the corresponding conserved charges
QGC span a gC Lie algebra. Also, as the chiral algebra A of the global sigma
model is expected to map back to itself under this symmetry, it should be
true that [Q, JGC ] = 0, where Q is the scalar supercharge whose cohomology
defines A . Furthermore, since the GC-symmetry is nontrivial and hence,
would not act as an identity transformation on the elements of A , it should
also be true that JGC 6= {Q, . . . }. These last two observations imply that
JGC ∈ A .

As A is a holomorphic chiral algebra, {JGC} would be a set of holo-
morphic currents whose conserved charges can then be expressed as QGC =∮
dz JGC(z). In addition, from our Q-Čech cohomology dictionary estab-

lished in §4, one can conclude that {JGC} should contain only an even
number of ψī fields. As there can only be at most one ψī field in the
operators that span A when X = SL(2)/B, and since the expressions of
{JGC} for other higher-dimensional examples of X (like the expressions of
the holomorphic stress tensors Tσ(z) which generate the conformal sym-
metries of the local model) would just be generalizations of the expres-
sion of {JGC} for X = SL(2)/B, one can also conclude that the set {JGC}
would be ψī-free, always. According to our Q-Čech cohomology dictionary
again, this last fact then means that {JGC} ∈ H0(X, Ω̂ch,tw

X ) for any X, where

A =
⊕qR=|∆+|

qR=0 HqR(X, Ω̂ch,tw
X ). In other words, the JGC currents are global

sections of the sheaf Ω̂ch,tw
X of TCDO’s which is described locally by the

local sigma model over U ⊂ X. This implies that among the (continuous
family of) CFT’s (parameterized by the 1-vector V in (6.31)) which under-
lie the local model, only those CFT’s which allow for a construction of affine
GC currents {JGC} out of the holomorphic bose fields {βi, γi, Y a

L } and their
z-derivatives, would survive the “lift” to the global model.
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A direct way to determine for what value(s) of V would the resulting
CFT underlying the local model allow for a construction of {JGC}, is to
check if the corresponding holomorphic stress tensor Tσ(z) is amenable to a
Sugawara construction involving a set of affineGC currents which we can nat-
urally identify as {JGC}. With regard to this, note that out of the (βi, γ

i, Y a
L )

fields (whose OPE’s are given in (6.24)–(6.25)) and their z-derivatives, one
can define a holomorphic stress tensor

(6.48) Tsug(z) = −
|∆+|∑
i=1

: βi∂zγ
i : −1

2
: ∂zYL · ∂zYL : −Rρ · i∂2

zYL

which is amenable to a Sugawara construction at level k, where R = 1/√
k + h∨ [53]. Comparing Tsug(z) with Tσ(z) in (6.35), one can see that the

sought-after CFT which would survive (at least classically) the “lift” to the
global model is the one in which the value of V gives 1/R =

√
k + h∨ = 0,

i.e., k = −h∨. Therefore, the particular W-algebra isomorphism in (6.46)
that would also hold in the global model is the one whereby k = −h∨ and
Lk =∞, i.e.,

(6.49) W−h∨(gC) ∼=W∞(LgC).

It also means that the set {JGC} ∈ A would furnish an affine GC-algebra
at the critical level k = −h∨ — a conclusion which is consistent with our
results in §5.

Affine GC-Algebras At Critical Level Parameterized by LGC-Opers on the
Worldsheet

Now recall from the last subsection thatWk(gC) is generated by the Lau-
rent expansion coefficients of the holomorphic fields which define H

ỸL
for

arbitrary level k. Also, note that the minimum (conformal) dimension of the
holomorphic fields whose Laurent expansion coefficients spanWk(gC), is two;
the dimension-two field in question is TR(z) (given in (6.34)), and its Lau-
rent expansion coefficients generate a Virasoro subalgebra of Wk(gC) [53].
These last two facts imply that the set of holomorphic fields which underlies
Wk(gC) must be spanned by certain z-differential polynomials on the ∂zY

a
L ’s

or rather, the Aaz ’s. At k = −h∨, recall from §5 that the center z(V−h∨(gC))
— of the chiral algebra V−h∨(gC) generated by {JGC} and their z-derivatives
— is spanned by certain z-differential polynomials on the Aaz ’s. The ques-
tion then is whether the set of holomorphic fields which underliesW−h∨(gC)
can actually be identified with z(V−h∨(gC)); the answer according to [49], is
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“yes”. Also established in loc. cit. is the fact that the set of holomorphic fields
which underlies W∞(LgC) can be identified with the algebra Fun OpLgC(D)
of functions on the space of LGC-opers on a disc D ⊂ Σ.32 For all our pur-
poses, an LGC-oper on Σ can be understood to define the triple (E,∇, ELB),
where E is a principal LGC-bundle on Σ, ∇ a holomorphic connection on E,
and ELB a reduction of E to an LB-bundle (LB being a Borel subgroup of
LGC). Altogether, one can conclude that (6.49) implies that

(6.50) z(V−h∨(gC)) ∼= Fun OpLgC(D).

This result is also proved as Theorem 9 in loc. cit..
Note at this point that LGC-opers on D can actually be represented

explicitly by the operator (see §9.3 of [49])

(6.51) ∂z + p−1 +

l∑
i=1

〈S(si)(z)O(w)〉 pi,

where here, one recalls from §5 that the space C[∂mz S
(si)]i=1,...,l;m≥0 (of dif-

ferential polynomials on the holomorphic spin-si fields S(si) with complex
coefficients) gives z(V−h∨(gC)); O(w) ∈ V−h∨(gC); w is an arbitrary point in
D; and p−1 and pi are constant matrices associated with the generators of
LgC. As the S(si)’s have regular OPE’s with all elements of V−h∨(gC),33 the

32In general, Fun OpLgC
(D) is the algebra of functions on the space of LgC-opers

on a disc D ⊂ Σ. However, since GC is simply-connected and so, LGC is of adjoint-
type, an LgC-oper is the same as an LGC-oper [9].

33The alert reader would have noticed that a priori, the OPE’s of ∂zY
a
L = Aaz

with themselves are not regular, which contradicts our present claim that the
S(si)’s — which are z-differential polynomials in Az — have regular OPE’s with
all fields, including themselves. There is actually no contradiction here, as we shall
now explain. Firstly, as R→∞ when k → −h∨, (6.29) implies (since wa 6= 0) that
Aa →∞. However, this is unphysical, which means that the physically effective
gauge field at k = −h∨ must actually be a rescaled version of Aa that is finite. An
immediate example of such an effective gauge field would be given by Ã = −A/R.
(According to our identification of A = dY , such a rescaling can be understood
as a trivial redefinition of the constants V iaVib in the action (6.23).) Indeed, from
(6.29), we find that

∮
Ãa = −2πwa, which implies that Ã is finite; moreover, from

(6.25), we have Ã(z)Ã(w) ∼ regular, as required. Last but not least, note that the
Sugawara tensor associated with Tsug(z) is Ssug(z) = − 1

2 Ãz · Ãz + ρ · i∂zÃz, and in
both the GC = SL(2) and SL(3) cases (where we have explicit formulas to compare
with), the expressions of Ssug(z) coincide (up to irrelevant overall constants) with
(5.23) and (5.37), as they should. (Note that it is implicit in (5.23) and (5.37) that
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correlation function 〈S(si)(z)O(w)〉 will be regular in (z − w). Because reg-
ular, holomorphic functions on a compact Riemann surface Σ are equivalent
to constants which are thus globally-defined, and because 〈S(si)(z)O(w)〉 can
always be regarded as a restriction to D of some regular holomorphic func-
tion on Σ, it will mean that the definition of 〈S(si)(z)O(w)〉 can be extended
to the whole of Σ. Consequently, an LGC-oper on D — as given by (6.51)
— can, in our case, be extended to an LGC-oper on Σ.

So, via (6.50) and our analysis in the previous paragraph, we can con-
clude that the set {Jeαi , Jha , Jfαi} of local operators in (5.48) — through

their dependence on the Aaz ’s and therefore the S(si)’s — are parameterized
by LGC-opers on Σ. In turn, since the set {Jeαi , Jha , Jfαi} furnishes — for

each set of values of the Aaz ’s and therefore S(si)’s — an OPE algebra of an
affine GC-algebra (in the Chevalley basis) at critical level (in the Wakimoto
representation), we effectively have a family of affine GC-algebras at critical
level parameterized by LGC-opers on the worldsheet Σ.

7. Physical interpretation of the geometric Langlands
correspondence for GC

We are now ready to furnish in this section, a purely physical interpretation
of the geometric Langlands correspondence for GC, where GC is any simply-
connected, simple, complex Lie group. Firstly, we will show that our con-
cluding result in §6 — that there is, within the context of the gauged twisted
sigma model over the flag manifold of GC, a family of affine GC-algebras at
critical level parameterized by LGC-opers on the worldsheet Σ — can lead
us to a natural correspondence between holomorphic LGC-bundles on Σ and
Hecke eigensheaves on the moduli space BunGC of holomorphic GC-bundles
on Σ; in particular, we will argue that one can interpret the Hecke eigen-
sheaves as the correlation functions of certain local operators which underlie
the bosonic sector of the chiral algebra of the flag manifold model. Then,
we will argue that one can interpret the Hecke operators as certain nonlocal
sigma model operators which are constructed out of the local affine GC cur-
rents that also span the chiral algebra of the flag manifold model. Along the
way, we will also get to understand, from a purely physical perspective, the
uniqueness or non-uniqueness property of the Hecke eigensheaves for various

the gauge field in the formulas is the effective one.) In short, when k = −h∨, Aaz is
implicitly the physically effective gauge field Ãaz whence our present claim is in fact
consistent.
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Σ as established mathematically, from the anomaly-cancellation conditions
of the model.

7.1. A geometric Langlands correspondence for GC

Before we proceed any further, let us first state certain facts which have
important implications for our analysis throughout this section. One, if the
genus of Σ is g, then the dimension of the space of (unramified) LGC-opers on
Σ of g = 0, 1 and ≥ 2 are, 1, rank LGC and dimLGC(2g − 1), respectively;
this means that our result from §6 - that there is a family of affine GC-
algebras at critical level parameterized by LGC-opers on the worldsheet Σ
- holds true for any g. Two, recall from our analysis in §3 and §5 however,
that the flag manifold model has an anomaly quantified by 1

2c1(Σ)cTC1 (X),
where X is the flag manifold of GC, and TC is the Cartan subgroup of the
compact real form of GC; thus, since cTC1 (X) 6= 0, the flag manifold model
is actually anomalous when g 6= 1. Three, the last statement being made,
notice from our analysis in §3 that the 1

2c1(Σ)cTC1 (X) anomaly arises due to
the nontriviality of the canonical bundle K over Σ; hence, our model can still
be physically well-defined for arbitrary g if one introduces the right num-
ber of punctures on Σ whence the resulting K is effectively trivial. Finally,
note that in the theory of Riemann surfaces, punctures are also known as
marked points which can be realized by fixing the positions of local opera-
tors that may be defined over them.34 Altogether therefore, let us assume
that all correlation functions considered henceforth contain the right num-
ber of fixed-positioned local operators whence the model is nonanomalous
and thus physically consistent.

Holomorphic GC-bundles on Σ

Let us now begin this subsection proper by explaining how holomorphic
GC-bundles on Σ can be defined in the presence of an affine algebra ĝC of
GC in the flag manifold model. Recall that for the flag manifold model, we
have (in the standard basis) the current-current OPE

(7.1) Ja(z)Jb(w) ∼ − h∨dab
(z − w)2

+
∑
c

fab
c Jc(w)

(z − w)
,

34The flag manifold model is not conformal and so, we do not have a CFT state-
operator isomorphism whence we can replace an arbitrary puncture with a local
operator. Nevertheless, since there are an infinite number of choices of punctures
on Σ, let us, for convenience, choose those that can be replaced by local operators.
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where a, b = 1, . . . ,dim(gC). Here, gC is the Lie algebra of GC; fab
c are the

structure constants of gC; dab is the Cartan-Killing metric of gC; and h∨ is
the dual Coxeter number of gC. Note also that since the above dimension-
one current operators are holomorphic over Σ, they can be expanded in a
Laurent expansion around the point w in Σ as

(7.2) Ja(z) =
∑
n

Jna (w)(z − w)−n−1.

Consequently, from the above current-current OPE, we will get the commu-
ator relation

(7.3) [Jna (w), Jmb (w)] =
∑
c

fab
cJn+m
c (w)− (h∨dab) n δn+m,0.

As such, the Lie algebra gC generated by the zero-modes of the currents will
be given by

(7.4) [J0
a (w), J0

b (w)] =
∑
c

fab
cJ0
c (w).

One can then exponentiate the above generators that span gC to define an
element of GC; since these generators depend on the point w in Σ, it will
mean that one can, via this exponential map, consistently define a nontrivial
principal GC-bundle over all of Σ. Moreover, this bundle will be holomorphic
as the underlying generators vary holomorphically in w over Σ.

About the Moduli Space BunGC of Holomorphic GC-bundles on Σ

Now that we have seen how holomorphic GC-bundles on Σ can be natu-
rally defined in the flag manifold model, let us review certain technical facts
about their moduli space BunGC which will be essential to our forthcoming
discussions. Firstly, note that we have the identification (see (7.8) of [49])

(7.5) BunGC
∼= GCout\GC((t))/GC[[t]],

where t is a local coordinate around a point x ∈ Σ; GC((t)) is the corre-
sponding loop group characterizing the space of continuous maps S1 → GC;
GCout is the group of algebraic maps Σ\x→ GC; and GC[[t]] is the group of
GC matrices whose entries are elements of the ring of formal power series
in t. Secondly, as a consequence of (7.5), the tangent space TPBunGC to the
point in BunGC corresponding to a GC-bundle P is isomorphic to the double
quotient gCout\gC((t))/gC[[t]]; thus, any element η(t) = ηaJa(t) of the loop
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algebra gC((t)) — where one sums over the index a, and where ηa is a t-
dependent c-number — would give rise to a tangent vector ν in TPBunGC ;
in turn, this means that the variation of some local holomorphic operator
S(si)(x) (of say, scaling dimension si) at x under an infinitesimal deformation
of P moving along BunGC would be given by

(7.6) δνS
(si)(x) =

∮
C
ηa(t){Ja(t) · S(si)(x)} dt,

where C is a small loop around the point x, and Ja(t) · S(si)(x) denotes the
OPE between Ja and S(si). Note that (7.6) applies to correlation functions
of operators as well, i.e., for a one-point correlation function 〈Φ0(x)〉 of
some local holomorphic operator Φ0(x) inserted at x, its variation under an
infinitesimal deformation of P moving along BunGC would be given by

(7.7) δν
〈
Φ0(x)

〉
=
〈 ∮
C
ηa(t){Ja(t) · Φ0(x)} dt

〉
.

The above formula also has an obvious mutli-point generalization.

Local Primary Field Operators From the Chiral Algebra

As we will explain briefly, the sought-after Hecke eigensheaves on BunGC

can be interpreted as the correlation functions of certain local primary field
operators of the flag manifold model. As such, it would be useful to describe
these particular operators first. By definition, the holomorphic primary field
operators Φλ

s (z) of any theory with a holomorphic affine GC OPE algebra
obey (in the standard basis) the following OPE relations with the holomor-
phic currents [57]:

(7.8) Ja(z)Φ
λ
r (z′) ∼ −

∑
s

(tλa)rs Φλ
s (z′)

z − z′
,

where tλa is a matrix in the representation of gC with highest weight λ;
r, s = 1, . . . ,dim|λ|; and a = 1, . . . ,dim(gC).

Note that the scaling dimension hλ of the local operators Φλ
s (z) obeys

the formula [57]

(7.9) 2(k + h∨)hλ = (λ, λ+ 2ρ),

where k is the level of the affine algebra ĝC of GC; h∨ is the dual Coxeter
number; and ρ is the Weyl vector. In the flag manifold model, the level is
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critical at k = −h∨; therefore, (7.9) will imply that λ = 0 while hλ can be
arbitrary. For λ = 0, we have dim|λ| = 1; thus, from (7.8), we ought to have

(7.10) Ja(z)Φ
0(z′) ∼ −(t0a) Φ0(z′)

z − z′
,

where Φ0(z) is the sole, bosonic, holomorphic primary field operator of the
flag manifold model, and the t0a’s are just constants.

In §5, we saw that the global sections H0(X,Ωch,tw
X ) of the sheaf of

TCDO’s furnish a module of ĝC at k = −h∨ with highest weight 0. Thus,
a candidate for Φ0(z) would be a (bosonic) local operator that corresponds
to some element of H0(X,Ωch,tw

X ). Since Φ0(z) is the sole primary field

operator, it should correspond to an element in H0(X,Ωch,tw
X,0 ) — the one-

dimensional subspace of H0(X,Ωch,tw
X ) whose sole element corresponds to a

scaling dimension 0 (bosonic) local operator in the Q-cohomology. Hence,
one can regard Φ0(z) as a scaling dimension 0 local operator in the chiral
algebra of the flag manifold model.

A Sheaf of Correlation Functions Over BunGC

Now consider the n-point correlation function
〈
Φ0(z1) · · ·Φ0(zn)

〉
, where

the zi’s are n fixed and distinct points in Σ. This correlation function of
purely bosonic operators with zero U(1)R-charge is nonvanishing in the the-
ory at hand: since the relevant set of (degree-one) twisted holomorphic maps
is empty when there are n marked points on Σ, p in (4.6), which is the
U(1)R-charge a correlation function is required to have in order for it to be
nonvanishing, is zero. From the multi-point generalization of (7.7) and the
OPE relation (7.10), we find that the variation of the n-point correlation
function under an infinitesimal deformation of P would be given by

δν
〈
Φ0(z1) · · ·Φ0(zn)

〉
= −

n∑
k=1

1

2πi

∮
Ck

dz

z − zk
ηa(z) t0a

〈
Φ0(z1) · · ·Φ0(zn)

〉
= −

n∑
k=1

ηa(zk) t
0
a

〈
Φ0(z1) · · ·Φ0(zn)

〉
.(7.11)

The second equality follows because Ck is a small loop around the point zk.
Since the zk’s are pre-specified, the expression ηa(zk)t

0
a is just some nonzero

number; in other words, the variation of the n-point correlation function is
just some multiple of itself. Hence, as we move along BunGC when we deform
P infinitesimally, the n-point correlation function Ψn =

〈
Φ0(z1) · · ·Φ0(zn)

〉
changes as Ψn → Ψ′n, where Ψ′n = αΨn for some constant α. In this sense, we
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have a one-dimensional sheaf of n-point correlation functions in the primary
field operators Φ0(z) over BunGC , and its section is given by Ψn.

One can also make the following physical observation. Notice that
δν
〈
Φ0(z1) · · ·Φ0(zn)

〉
=
〈 ∮

C dz η
aJa(z) · Φ0(z1) · · ·Φ0(zn)

〉
can also be inter-

preted (to lowest order in sigma-model perturbation theory) as the varia-
tion in the n-point correlation function due to a marginal deformation of
the sigma-model action by the term

∮
dz ηaJa(z). Since a deformation of

the action by the dimensionless term
∮
dz ηaJa(z) is tantamount to a dis-

placement in the moduli space of the sigma-model itself, it will mean that
δν
〈
Φ0(z1) · · ·Φ0(zn)

〉
is also the variation in the n-point correlation function

due to a change in the moduli of the sigma-model. This implies that BunGC

will at least correspond to a subspace of the entire moduli space of the flag
manifold model. This last statement should come as no surprise since P is
actually derived from the affine GC-algebra of the flag manifold model (as
explained above) whose realization in turn does depend on the moduli.

D-Modules on BunGC

At any rate, it can be shown that Ψn actually represents a D-module
on BunGC — where D is a free polynomial algebra in certain holomorphic
differential operators on BunGC — as follows. For ease of illustration, let us
first consider the case where GC = SL(2). An important point to note at
this juncture is that the OPE in (7.8) has an alternative representation as

(7.12) Ja(z)Vλ(x, z′) ∼ DaVλ(x, z′)

z − z′
,

where Vλ(x, z′) is some polynomial function in a complex variable x which
represents the primary field operator Φλ

r (z′) inserted at z′, and the Da’s are
differential operators given by

D+ = −x2∂x +
√

2λx,(7.13)

D0 = −x∂x +
λ√
2
,(7.14)

D− = −∂x.(7.15)

For the flag manifold model, we have λ = 0; thus, Φ0(z′) would be repre-
sented by V0(x, z′), and the corresponding differential operators would be
given by
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D+ = −x2∂x,(7.16)

D0 = −x∂x,(7.17)

D− = −∂x.(7.18)

From (i) the expression of the spin-2 Segal-Sugawara stress tensor S(2)(z) =
S(z) in (5.22), (ii) the relation (7.12), and (iii) the formulas (7.16)–(7.18),
it is clear that one can interpret the n-point correlation function Ψn =〈
Φ0(z1) · · ·Φ0(zn)

〉
as some polynomial function Ψn(x1|z1, . . . , xn|zn) in the

variables xi (and constants zi) which S(z) acts on as a second-order dif-
ferential operator. Since Ψn is also a section of a sheaf over BunSL(2), one
can regard the xi’s as holomorphic coordinates on BunSL(2). This means
that one can interpret S(z) — via its action on Ψn(x1|z1, . . . , xn|zn) — as
a (second-order) holomorphic differential operator on (some line bundle on)
BunSL(2).

35

The arguments for groups other than SL(2) are analogous; for example,
see §15.7.4 of [57] for the SL(3) case. In short, for general GC, the spin-si
tensors S(si)(z) — whose expressions are given in (5.54) — in their action on

Ψn(x1
1|z1, . . . , x

|∆+|
1 |z1, . . . , x

1
n|zn, . . . , x

|∆+|
n |zn) — the corresponding n-point

correlation functions for general GC with |∆+| number of positive roots —
can be interpreted as sth

i -order holomorphic differential operators on (some
line bundle on) BunGC .

That said, recall from our analysis in §5 that because the level of the
underlying affine GC-algebra is critical, the S(si)(z)’s are actually purely
classical, c-number fields — in other words, the S(si)(z)’s effectively mul-
tiply the (correlation functions of) local operators by a c-number in their
action on them. Since each S(si)(z) can either transform as a projective con-
nection or degree-si differential on Σ depending on whether si = 2 or si > 2,
respectively [49], our discussions in this and the previous paragraph imply
that

(7.19) Dsi ·Ψn(x1
1|z1, . . . , x

|∆+|
n |zn) = Ωsi

Σ Ψn(x1
1|z1, . . . , x

|∆+|
n |zn),

where Dsi is an sth
i -order holomorphic differential operator on (some line

bundle on) BunGC , and Ωsi
Σ is a c-number that is determined either by a

35Why S(z) in its action on Ψn must be interpreted as a holomorphic differential
operator on some line bundle on BunSL(2) and not just on BunSL(2), will be clarified
shortly. For now, and similarly in the next few paragraphs, we shall just accept this
to be true.
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projective connection or degree-si differential on Σ that is associated with
S(si)(z). From (7.19), it is clear that Ψn is a D-module on BunGC , where
D is a free polynomial algebra in the Dsi-operators. Alternatively, one can
interpret Ψn as a simultaneous eigenvector of the Dsi-operators with eigen-
values Ωsi

Σ .

A Geometric Langlands Correspondence for GC

We are now finally ready to demonstrate, purely physically, a geometric
Langlands correspondence for GC. To this end, first note that since all the
S(si)’s have regular OPE’s with the set {Ja}, the formula (7.6) tells us that
the S(si)’s are constant over all of BunGC ; this means that the corresponding
differential operators Dsi are globally well-defined. Second, since the S(si)’s
are effectively c-number fields, they and therefore the corresponding differ-
ential operators Dsi , ought to commute with one another. Third, note that
except for the constant functions, there are no global commuting differential
operators on BunGC ; thus, each Dsi is necessarily a holomorphic differential
operator F acting on some line bundle L on BunGC . To ascertain what L is,
let s and u be compactly-supported sections of L and L−1 ⊗ ω, respectively,
where ω is the canonical bundle of (middle-dimensional forms on) BunGC .
Then, uFs is a section of ω which one can integrate over any real slice Z of
the complex manifold BunGC to define the inner product 〈u|F |s〉 =

∫
Z uFs.

Via integration by parts, one can always introduce the transpose operator
F t — defined by 〈u|F |s〉 = 〈s|F t|u〉 — via the relation

∫
Z uFs =

∫
Z(F tu)s.

Clearly, F t ought to act on L−1 ⊗ ω. At any rate, because the differential
operators Dsi commute with one another, F can be represented by a purely
diagonal matrix whose transpose is itself, i.e., F = F t. This means that F
and F t must act on bundles which are isomorphic, i.e., L ∼= L−1 ⊗ ω; this
implies that L = ω

1

2 . Fourth, note that because each S(si) either transforms
as a projective connection or degree-si differential on Σ, for g > 1, the space
of all S(si)’s would be given by Proj(Σ)×⊕li=2H

0(Σ,Ω⊗ei+1) of dimension∑l
i=1(2ei + 1)(g − 1) = dimGC(g − 1), where Proj(Σ) is a projective con-

nection on Σ; si = ei + 1; ei is an exponent of GC; and l is the rank of GC.
In other words, there are altogether dimGC(g − 1) holomorphic differen-
tial operators Dsi which obey (7.19). Since dim BunGC = dimGC(g − 1), it
would mean that the system of differential equations defined by (7.19) and
consequently Ψn, is holonomic. In summary, for g > 1, Ψn is a holonomic
D-module on BunGC defined by the system of differential equations in (7.19),
where D is a polynomial algebra in the global commuting holomorphic differ-
ential operators Dsi on the line bundle ω

1

2 on BunGC . Moreover, from (i) the
isomorphism in (6.50), (ii) the observation made thereafter that LGC-opers



i
i

“1-tan” — 2015/2/11 — 17:36 — page 392 — #116 i
i

i
i

i
i

392 Meng-Chwan Tan

on the disc D ⊂ Σ can be extended to LGC-opers on Σ, and (iii) the fact
that the LHS of (6.50) can be identified with the polynomial algebra in the
S(si)’s, we have the identification Fun OpLgC(X)−̃→D. As such, for g > 1,
Ψn can be identified with the Hecke eigensheaf of the geometric Langlands
program defined by Beilinson and Drinfeld in [9]. (In what sense is Ψn an
eigensheaf of a Hecke operator will be explained shortly.) In addition, notice
that since Ψn is the n-point correlation function in the dimension 0 bosonic
local operators Φ0(z) of the chiral algebra of the flag manifold model, (7.10)
would imply that the realization of Ψn depends on the realization of the set
{Ja}. Notice also that our concluding result in §6 — which states that we
have a family of {Ja}’s parameterized by LGC-opers on Σ — implies that for
each choice of a holomorphic LGC-bundle (with an oper structure) on Σ, we
have a realization of the set {Ja}. Altogether therefore, our analysis in this
paragraph tells us that for every holomorphic LGC-bundle on Σ with g > 1,
there corresponds a Hecke eigensheaf Ψn on BunGC . This is nothing but
the statement by Beilinson and Drinfeld in [9] of the geometric Langlands
correspondence for GC!

The Geometric Langlands Correspondence for g ≤ 1

So far, we have described the geometric Langlands correspondence for
g > 1. What about for g ≤ 1? Well, for g = 0, if there are no punctures on
Σ, because it is simply-connected (i.e., its fundamental group is trivial), all
holomorphic (i.e., flat) LGC-bundles on Σ are trivial; the correspondence is
thus vacuous in this case. This observation is consistent with the fact that
the flag manifold model is anomalous for g = 0 with no punctures (as the
resulting canonical bundle K of Σ is nontrivial). What if we add punctures?
The flag manifold model is certainly nonanomalous for g = 0 with one or
more punctures (as K will be trivial). On the other hand, it is a mathemat-
ically established fact that the relevant moduli spaces which support the
Hecke eigensheaves that underlie the geometric Langlands correspondence
for g = 0, vanish when there are two or less punctures [16]; i.e., the corre-
spondence is also vacuous for g = 0 unless one has three or more punctures.
Note that there is no contradiction between the last two statements here: as
we shall elaborate in §8, taking into account worldsheet twisted-instanton
contributions in the full physical theory, we find that the chiral algebra will
be trivial if Σ has g = 0 with two or less punctures, and from the interpreta-
tion of Ψn as a correlation function of the Φ0(z) fields in the chiral algebra,
this would mean that there are no Hecke eigensheaves for such a Σ. In short,
the physics of our flag manifold model implies that the geometric Langlands
correspondence for general GC ought to hold for g = 0 with three or more
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punctures. In the case where GC = SL(N), a geometric Langlands corre-
spondence for g = 0 with three or more punctures has been demonstrated
purely mathematically in [16].

For g = 1, Σ is nonsimply-connected for any number of punctures (i.e., its
fundamental group is never trivial). Thus, all holomorphic LGC-bundles on
Σ will be nontrivial, although they might be reducible. Moreover, the flag
manifold model is always nonanomalous in this case. As such, from a purely
physical standpoint of our flag manifold model, one would expect the corre-
spondence to hold for g = 1, always. Indeed, for certain Lie groups, a geo-
metric Langlands correspondence for g = 1 with and without punctures has
been demonstrated purely mathematically in [20, 21] and [22], respectively.

7.2. Uniqueness or non-uniqueness property of
the Hecke eigensheaves

Let us now discuss the uniqueness or non-uniqueness property of the Hecke
eigensheaves. Recall that it was mentioned at the start of §7.1 that the flag
manifold model is anomalous unless the correlation functions contain the
right number of fixed-positioned local operators. This number is determined
by the number of marked points required to trivialize the canonical bundle
K on Σ. For g = 0, 1 and > 1, this number is ≥ 1, ≥ 0 and 2g − 2, respec-
tively.36 Together with our analysis in §4.2 — which tells us that any cor-
relation function purely in the local ground operators of the Q-cohomology
such as Φ0 would be independent of their respective positions zi on Σ — this
would mean that for g > 1, for each choice of a holomorphic LGC-bundle on
Σ, there is only one (up to isomorphism) Hecke eigensheaf given by Ψ2g−2.
This claim is consistent with the mathematical results of Beilinson and Drin-
feld in [9]. On the other hand, this also means that for g = 0 (with three or
more punctures) and g = 1 (with any number of punctures), for each choice
of a holomorphic (parabolic) LGC-bundle on Σ, there are many distinct
Hecke eigensheaves given by Ψ1,Ψ2, . . . and Ψ0,Ψ1, . . . , respectively. This
second claim is also consistent with the mathematical results of [16, 20–22].
In fact, for g = 1 with no punctures, because the fundamental group of Σ
is abelian, all LGC-bundles on Σ will be reducible; in the case where the
bundle is reducible to its Cartan subgroup LTC ⊂ LGC, the corresponding
Hecke eigensheaves have been shown to be given by the geometric Eisenstein
series [22], and in the best case scenario, they can be regarded as direct sums

36I would like to thank C.W. Chin for a detailed explanation of this mathematical
fact.
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of infinitely many irreducible perverse sheaves on BunGC .37 In terms of our
flag manifold model, these irreducible perverse sheaves on BunGC have a
physical interpretation as the (infinitely numerous set of) correlation func-
tions in an arbitrary number of Φ0(z) fields with variable positions z: such
correlation functions, and their direct sums, also satisfy (7.19) to be admis-
sible as holonomic D-modules or Hecke eigensheaves on BunGC , and further-
more, by the Riemann-Hilbert correspondence, these holonomic D-modules
are also perverse sheaves on BunGC .

7.3. Hecke operators and the Hecke modification
and correspondence

So far, we have shown that Ψn can be interpreted as a Hecke eigensheaf on
BunGC . That being said, what, in the context of our flag manifold model,
is the Hecke operator that acts on Ψn, and what is its corresponding eigen-
value, one might ask. Let us now, in this final subsection, address these
questions, and expound on the related concepts of a Hecke modification
and correspondence, so as to complete our physical interpretation of the
geometric Langlands correspondence for GC.

The Hecke Operator

Consider an irreducible representation VLw of LGC of highest (dominant
integral) weight Lw = (Lw1, . . . ,Lwr), where the integers Lwi are the Dynkin
labels and r is rank(LGC) = rank(GC). Consider the nonlocal operator

(7.20) HLw,p =

∮
Cp
ρiLw(z)Ji(z) dz

inserted near the local operator Φ0(p) of position p ∈ Σ that is encircled
by the closed loop Cp in the n-point correlation function Ψn =

〈
Φ0(z1), . . . ,

Φ0(p), . . . ,Φ0(zn)
〉
, where one sums over the index i = 1, . . . , r; here, the Ji’s

are the subset of affine GC currents that are associated with the maximal
torus TC ⊂ GC, and ρiLw(z) = Lwif i(z) (no sum over index i), where the
f i(z)’s are certain nowhere-vanishing, regular, holomorphic functions in z
that are c-numbers.

The dimension of the representation VLw is known to be given by the for-
mula dimVLw =

∏
Lα>0 fLα(Lwi) [57], where the fLα(Lwi)’s are polynomial

37I would like to thank A. Beilinson for illuminating exchanges regarding this
point.
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functions in the Lwi’s which are labeled by the roots Lα of LgC. Therefore,
notice from (7.10) that for a choice of z-functions ρiLw such that

(7.21) t0i ρ
i
Lw(p) = dimVLw,

(which should hold for any p since the ρiLw’s — being nowhere-vanishing,
regular, and holomorphic in z — can be treated as global constants over Σ),
the action of HLw,p on Ψn at p can be expressed as

(7.22) HLw,p ·Ψn = Ψn + · · ·+ Ψn︸ ︷︷ ︸
dimVLw times

.

Also, as mentioned in the last subsection, Ψn does not depend on the inser-
tion position p; in other words, p is irrelevant and if (7.22) holds for some
p, it would also hold for any other point in Σ. Therefore, given that we can
interpret Ψn as a sheaf on BunGC , one can also write (7.22) as

(7.23) HLw ·Ψn = ELw ⊗Ψn,

where ELw is a vector space of dimension dimVLw which can be associated
with a holomorphic LGC-bundle on Σ.38 It is in the sense of (7.23) that Ψn

is a Hecke eigensheaf of the Hecke operator HLw with eigenvalue ELw, as
defined by Beilison and Drinfeld in [9].

A Hecke Modification

What else can one say about the action of HLw,p, in particular, with
regard to the underlying GC-bundle P? Now that we have implicitly made
a choice in the maximal torus TC ⊂ GC in defining, via (7.20), the Hecke
operator HLw,p inserted at position p, we can, at p, decompose the fiber of
P in some representation R as PR|p = ⊕wPR,w|p, where PR = P ×GC R and
R = ⊕wRw is the decomposition of R in weight spaces Rw (all but finitely
many of which vanish). If we take Rw to be the weight space associated with
a simple (positive) root w of GC, we can write

(7.24) P|p = ⊕ri=1Li

in the vicinity of p, where Li is a line bundle on Σ corresponding to the
ith-circle of TC ∼= (C∗)r with first Chern class c1(Li) obeying

∫
Σ c1(Li) = qi.

38For each representation VLw of LGC, one can always construct an associated
vector bundle P to an LGC-bundle E on Σ, where P = E ×LGC VLw. Hence, since
p ∈ Σ is irrelevant — i.e., ELw does not vary with p — one can always associate
the vector space ELw with a holomorphic (i.e., flat) LGC-bundle on Σ.
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Notice from (7.20) that the action of the Hecke operator HLw,p on Ψn

involves inserting a local operator ρiLwJi(z) in Σ before taking a contour
integral around it as z → p. Via the interpretation of the current zero modes
J0
i as the generators of the Lie algebra tC of TC (see (7.4)), and the fact that

one can therefore exponentiate the J0
i ’s to generate TC, the insertion of

the operator ρiLwJi(p) in Σ is — according to how we first defined P in

§7.1 — tantamount to the modification Li → Li ⊗O(Lwif iqi)
p at p, where

Op is a line bundle whose holomorphic sections are functions holomorphic
away from p with a possible single pole at p: the ith generator of tC gets
multiplied by a factor of

(
1 + Lwif i

)
as the “effective” affine TC current at

p becomes (1 + ρiLw)Ji(p) upon inserting the operator ρiLwJi(p) in Σ, and
this means that the tC-valued curvature two-form of Li and hence

∫
Σ c1(Li),

gets modified from qi → qi + Lwif iqi, i.e., we effectively have a modification

from Li → Li ⊗O(Lwif iqi)
p at p.

Let us now make a relevant digression. Note at this point that we have
a group homomorphism Lw : C∗ → TC; however, it does not make sense to
think of Lw as a homomorphism until a local coordinate, say y, on Σ, is
chosen. Assuming that this has been done, we may write [58]

(7.25) Lwi(y) = y
Lwi .

If z is some other choice of local coordinate, then

(7.26) y = y(z) = zg(z)

for some nowhere-vanishing holomorphic function g(z). This means that we
may also write

(7.27) Lwi(y(z)) = Lwi(z)Lwi(g(z)).

In sum, (7.25)-(7.27) imply that for a choice of local coordinate z whereby
g(z) = z(f iqi−1), we have

(7.28) (Lwif iqi)(z) = Lwi(y).

Coming back to our main discussion, the implication of (7.28) is that if
we adopt the local coordinate y around the point p, we can re-express the
modification of the line bundle Li at p — discussed in the paragraph before
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the previous — as

(7.29) Li → Li ⊗O〈
Lw,w〉
p ,

where 〈Lw,w〉 = Lwi is the scalar product between the (dominant) coweight
Lw of GC and the simple (positive) root w. Thus, the action of HLw,p with
regard to P, is to induce the modification (7.29). Note that (7.29) just
coincides with the mathematical description [59] of a Hecke modification of
type Lw of a holomorphic GC-bundle P at a point p ∈ Σ.

A Hecke Correspondence

Of the Hecke modification of the bundle P which results from the inser-
tion of the Hecke operator HLw,p at p, one can say more as follows. Firstly,
let the bundle P “before” and “after” the insertion of HLw,p be P− and P+,
respectively; then, we have an isomorphism

(7.30) σ : P−|Σ\p −̃→ P+|Σ\p.

Since each σ corresponds to a way of obtaining P+ from P− via a Hecke
transformation of type Lw at p, the space of all possible σ’s is in one-to-one
correspondence with the space of all possible Hecke modifications of P at p.

Secondly, recall that the Hecke operator HLw,p is parameterized by Lw
— a highest weight of LGC — which classifies conjugacy classes of homomor-
phisms ζC : C∗ → GC. In turn, ζC defines a point in the affine Grassmannian

(7.31) GrGC = GC((y))/GC[[y]],

where GC((y)) is the corresponding loop group that characterizes the space
of continuous maps S1 → GC, and GC[[y]] is the group of GC matrices whose
entries are elements of the ring of formal power series in y. Thus, the space
of all possible Hecke operators HLw,p would be given by GrGC .

Alternatively, notice that the definition of HLw,p in (7.20) implies that
it would correspond to an element of the Lie algebra gC((y)) of GC((y)); in
turn, via the exponential map, it would correspond to an element of GC((y)).
Since it is the orbit in GC((y)) under the action of GC[[y]] that depends on
the conjugacy class of ζC that Lw — which enters explicitly in the definition
of HLw,p in (7.20) — classifies, the space of all possible Hecke operators
HLw,p would be given by GC((y))/GC[[y]] = GrGC . Consequently, the space
of all Hecke modifications at p would also be given by GrGC .

Finally, let us now consider the moduli space of triples (P−,P+, σ). Since
P−,P+ ∈ BunGC , one can regard this moduli space as a variety Heckep that
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maps to BunGC × BunGC with fiber over P− × P+ ∈ BunGC × BunGC being
the space of all σ’s. In other words, from our discussion in the previous
three paragraphs, the variety Heckep is just a fibration over BunGC × BunGC

with fiber GrGC . This description of Heckep coincides with the mathematical
description [49] of a Hecke correspondence for GC at a point p ∈ Σ. Thus,
we have demonstrated, purely physically, the Hecke correspondence of the
geometric Langlands program for GC.

8. Nonperturbative effects, Beilinson-Drinfeld D-modules,
and the geometry of loop spaces of flag manifolds of GC

In our analysis of the gauge twisted (0, 2) sigma model carried out hitherto,
we have ignored nonperturbative effects which are nonetheless important for
a complete study of the model. In this section, we shall take into account
such nonperturbative contributions. In doing so, we will find that when the
string described by the sigma model propagates freely without any inter-
actions over a flag manifold of any simply-connected, simple, complex Lie
group GC, nonperturbative worldsheet twisted-instantons can radically alter
the picture and trivialize the chiral algebra completely, thereby resulting in a
spontaneous breaking of supersymmetry. This trivialization also implies that
(i) there can be no Beilinson-Drinfeld D-modules when the underlying curve
is rational with less than three punctures, in accordance with the mathe-
matical literature [16]; (ii) A(X, q) of (5.7) must vanish nonperturbatively
in such a situation. We then interpret this nonperturbative phenomenon in
the context of supersymmetric gauged quantum mechanics on loop space.
In doing so, we will find that (i) there can be no harmonic spinors on the
loop space of flag manifolds of GC, (ii) the aforementioned condition on
D-modules is intimately related to a conjecture by Höhn-Stolz [1] which
asserts that the Witten genus is zero on string manifolds with positive Ricci
curvature.

8.1. Nonperturbative effects in the CP1 model

Let us now revisit the CP1 model whose perturbative aspects were dis-
cussed in detail in §4.7 and §5.2.1. In §5.2.1, we saw that there exists an
isomorphism between the bosonic operator 1 and fermionic operator Θ of
the chiral algebra A . The fact that the isomorphism between the operators
1 and Θ violates their grading by dimension suggests that nonperturbative
worldsheet twisted-instantons — which through dimensional transmutation
destroy the scale invariance of correlation functions by which operators are
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dimensionally graded — can induce a relation of the form {Q,Θ} ∼ 1 that
would then account for their apparent isomorphism. A further indication
that nonperturbative worldsheet twisted-instantons can induce a relation
of the form {Q,Θ} ∼ 1, is the fact that the isomorphism between 1 and
Θ also violates their grading by U(1)R charge: since cT1 (CP1) 6= 0 (where
T = U(1) in this case), from our discussion in §4.2 surrounding (4.6), world-
sheet twisted-instantons also destroy the continuous U(1)R symmetry by
which operators are U(1)R charge graded.

If we do have the relation {Q,Θ} ∼ 1, it would mean that the identity
operator is Q-exact and therefore, all operators in A would also be Q-exact:
for any operator O ∈ A whence {Q,O] = 0, we would have O = O · 1 ∼
O · {Q,Θ} = {Q,OΘ], i.e., O = {Q, . . . ]. Thus, if we do have the relation
{Q,Θ} ∼ 1, the chiral algebra A of the CP1 model would be completely
trivialized! Such a radical phenomenon was first conjectured by Witten in [6]
for the ordinary CP1 model. This conjecture was subsequently proved by
the author and Yagi in [60, 61], where it was shown that a relation of the
form {Q, . . . } ∼ 1 indeed exists if worldsheet instanton contributions are
taken into account. Shortly thereafter, the conjecture was also proved purely
mathematically by Arakawa and Malikov using the technology of vertex
algebras [62].

For the rest of this subsection, we shall prove that the operator relation
{Q,Θ} ∼ 1 can indeed be induced by worldsheet twisted-instantons in our
gauged CP1 model — i.e., we shall now proceed to show, via an explicit path
integral computation, that

(8.1)
〈
{Q,Θ}

〉
∼
〈
1
〉

holds to lowest order in sigma model perturbation theory around worldsheet
twisted-instantons characterized by classical, Q-fixed, field configurations
ψiz̄,0 and φi0 which obey δψiz̄;0 = −Dz̄φ

i
0 = 0. (See (2.27), and recall that

to lowest order in sigma model perturbation theory, the path integral will
localize onto Q-fixed points since the action is Q-exact.)

Some Preliminary Remarks

To this end, first let us consider our defining worldsheet to be Σ = S2 −
{0,∞}, i.e., the Riemann sphere with two punctures, one at each pole. In
this case, the canonical bundle K of Σ is trivial, and from our analysis in
§3, we find that the model is nonanomalous even though cT1 (CP1) 6= 0. In
addition, since K is trivial, the twisted model is the same as the untwisted
model.
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Second, with the previous point about the twisted model being equal to
the untwisted model in mind, let us recall from (2.23) that the action (in
the absence of moduli deformation) can be written as

(8.2) Sgauged =

∫
Σ
|d2z| gij̄(Dz̄φ

iDzφ
j̄ + ψiD̂zψ

j̄),

where from (2.20) and (2.22), we have

Dz̄φ
i = ∂z̄φ

i −Aaz̄V i
a , Dzφ

j̄ = ∂zφ
j̄ +AazV

j̄
a ,(8.3)

D̂zψ
j̄ = ∂zψ

j̄ + Γj̄
l̄k̄
Dzφ

l̄ψk̄,

(since ∂k̄V
j̄
a = 0 in the flag manifold model). Note that since the target

space X = CP1, we actually have i = 1, ī = 1̄, and a = 1. As one can write
the quantum fields φ and ψ as φ = φ0 + ϕ and ψ = ψ0 + η, where (φ0, ψ0)
and (ϕ, η) are associated with the zero and nonzero eigenfunctions of the
Laplacians of the kinetic operators in (8.2), respectively, for an appropriately
chosen coordinate, one can expand the target space metric as

(8.4) gij̄(φ
l, φl̄) = δij̄ +Rij̄km̄(φ0)ϕkϕm̄ +O(ϕ3).

Using (8.4), let us now expand (8.2) around worldsheet twisted-instantons

φj̄0 defined by Dzφ
l̄
0 = 0. Since the magnitudes of the fluctuating fields ϕ and

η are themselves small by definition, in the large but finite X-volume limit
— i.e., to lowest order in sigma model perturbation theory — whence the
effective magnitude of Rij̄km̄ is also small, one can, to a good approximation,
write the expanded action as

(8.5) Sgood =
1

2π

∫
Σ
|d2z| δij̄

(
∂z̄ϕ

i∂zϕ
j̄ + ηi∂zη

j̄
)

+ Iint,

where

Iint = δij̄

(
∂z̄ϕ

iAazV
j̄
a −Aaz̄V i

a∂zϕ
j̄ −Aaz̄V i

aA
b
zV

j̄
b + ψi0∂zη

j̄(8.6)

+ ψi0Γj̄
l̄k̄

(φ0)∂zϕ
l̄ηk̄ + ψi0Γj̄

l̄k̄
(φ0)AazV

l̄
aη

k̄ + ηiΓj̄
l̄k̄

(φ0)AazV
l̄
aη

k̄
)

can be regarded as interaction terms in a quantum field theory of the dynam-
ical φ and ψ fields.

Third, notice that since one can bring down Iint via an expansion of
e−Sgood in any path integral computation, an arbitrary correlation function
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in operators Oi, Oj , . . . ,Ok can be expressed as

〈
OiOj · · · Ok

〉
=
〈
OiOj · · · Ok

〉
CFT

(8.7)

+

∞∑
n=1

(−2π)−n

n!

〈
OiOj · · · Ok · (

∫
Σ
|d2z| Iint)n

〉
CFT

,

where the subscript “CFT” means that the correlation functions are to be
computed with respect to the purely kinetic action

(8.8) SCFT =
1

2π

∫
Σ
|d2z| δij̄

(
∂z̄ϕ

i∂zϕ
j̄ + ηi∂zη

j̄
)
.

Fourth, notice that SCFT, being a free-field action in the ϕ and η fields,
is an action of a CFT. Thus, in computing

〈
OiOj · · · Ok

〉
via (8.7), one is

free to exploit arguments from CFT. In particular, by the state-operator
correspondence in CFT, one can insert additional local operators over the
two punctures in Σ in (8.7), whereby the worldsheet is now effectively a
complete sphere.

Fifth, note that on a simply-connected Riemann surface such as a com-
plete sphere, one can go to a pure gauge everywhere (see footnote 19). This
means that after inserting the additional local operators over the two punc-
tures in Σ, one can set A = 0 throughout our computation of

〈
OiOj · · · Ok

〉
in (8.7). Assuming that we adopt this particular gauge henceforth, φi0 —
which a priori represents a twisted-instanton characterized by Dz̄φ

i
0 = 0

— will now represent an ordinary instanton characterized by ∂z̄φ
i
0 = 0.

Furthermore, from (8.6), we see that Iint in (8.7) will vanish except for

the term ψj̄,0(∂zη
j̄ + Γj̄

l̄k̄
(φ0)∂zϕ

l̄ηk̄). Also, the right-moving supercurrent of

the supercharge Q will now be given by G(z̄) = gij̄∂z̄φ
iψj̄ , while Θ(z) =

Rij̄∂zφ
iψj̄ .

Last but not least, note that in the pure gauge A = 0, the zero modes

ψj̄,0 and ψj̄0 — which are intrinsically worldsheet spinors — obey

(8.9) Dzψj̄,0 = Dzψ
j̄
0 = 0,

where Dz is the Dirac operator on Σ twisted by the Levi-Civita connection
on X. After taking the complex conjugate of (8.9), one can see that the zero
modes are respectively holomorphic sections of S ⊗ φ∗0T ∗X and S ⊗ φ∗0TX,
where S is the spin bundle on the worldsheet. If the worldsheet is effectively a
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complete sphere, S = O(−1);39 for degree-one instantons, φ∗0TX = O(2) and
φ∗0T

∗X = O(−2); since the relevant zeroth Hodge numbers are h0(O(1)) = 2
and h0(O(−3)) = 0, we have, in this instance, two ψj̄ zero modes and no ψj̄
zero modes. This means that Iint in (8.7) actually vanishes completely, and
the correlation function

〈
OiOj · · · Ok

〉
CFT

in (8.7) can only be nonvanishing

if it contains operators with exactly two ψj̄ zero modes and no ψj̄ zero
modes.

The Explicit Computation

We are now ready to perform an explicit computation of 〈{Q,Θ}〉 on
Σ = S2 − {0,∞}. Altogether from the six points above, and the fact that
G(z̄)Θ(z) contains exactly two ψj̄ zero modes and no ψj̄ zero modes, we can
write

(8.10)
〈
{Q,Θ}(1)

〉
Σ

=

〈
1(∞)

∮
dz̄ G(z̄)Θ(1) 1(0)

〉
CFT;S2

,

where for convenience, we have put the operator {Q,Θ} at z = 1. Here, 1(0)
and 1(∞) are the Q-closed unit operators that represent respectively the per-
turbative supersymmetric ground state in the far past and the perturbative
supersymmetric de-excited state in the far future of the freely propagat-
ing string described by the sigma model.40 As the subscripts indicate, the
expression on the RHS of (8.10) is to be computed on S2 with respect to
the action (8.8). The computation is also to be carried out to lowest order
in sigma model perturbation theory around worldsheet instantons φ0 which
satisfy ∂zφ

ī
0 = 0 and ∂z̄φ

i
0 = 0.

With these considerations in mind, first note that the automorphism
group of S2 is given by the Möbius group PGL(2,C). Thus, we can use a
Möbius transformation on S2 to map the three points (0, 1,∞) to (z1, z2,∞),

39The notation here is standard: O(n) refers to a holomorphic line bundle whose
sections are functions homogeneous of degree n in the homogeneous coordinates of
the effective worldsheet Σ̂ = CP1. In particular, O(0) = O is a trivial complex line
bundle.

40The operators Vp(0) and Vf (∞) which actually represent the perturbative
supersymmetric ground state in the far past and the perturbative supersymmetric
de-excited state in the far future of the string, respectively, are supposed to be
dimension-zero, ψ-free local operators in the perturbative chiral algebra A . Hence,
they ought to be given by regular, non-differential polynomials in φ which are holo-
morphic in the coordinate z of S2. Since S2 is a compact Riemann surface, all
regular holomorphic functions in z over it are equivalent to constants. Thus, we can
write (up to irrelevant constants) Vp(0) = 1(0) and Vf (∞) = 1(∞).
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where z1 and z2 can take any desired value other than ∞. Let us therefore
use a particular transformation on S2 whereby one can rewrite the RHS
of (8.10) as

(8.11)

〈
1(∞) 1(1)

∮
dz̄ G(z̄)Θ(0)

〉
CFT;S2

.

Next, recall that we have two ψj̄ zero modes. This means that one can
write

(8.12) ψj̄0 = c1
0u
j̄
0,1 + c2

0u
j̄
0,2,

where the u0’s are the zero eigenfunctions of the Laplacian of the Dirac
operator in (8.9), and the c’s are anticommuting Grassmann coefficients.
Therefore, by performing in (8.11) the Gaussian integration over the nonzero
modes ϕ and η with purely kinetic action, up to a ratio of fermionic to
bosonic determinants, we are left with the following integral over the zero
modes:

(8.13)

∫
dM1 dc

1
0 dc

2
0

∮
dz̄ [G(z̄)Θ(0)]OPE 1(1) 1(∞).

Here, M1 is the one-instanton moduli space parameterized by the bosonic
zero modes φ0, and the subscript “OPE” just means that one is to compute
the OPE of G(z̄)Θ(0) using the following propagator relations derived from
the effective free-field action in (8.8):

(8.14) ϕi(z, z̄)ϕj̄(0) ∼ −δij̄ ln |z|2 and ηi(z̄)ηj̄(0) ∼ δij̄

z̄
.

Now observe that what we should be looking for in order to prove (8.1)
is an antiholomorphic single pole in [G(z̄)Θ(0)]OPE. Up to quadratic order
in the fluctuating fields at the lowest order in sigma model perturbation
theory, we have

G(z̄) ·Θ(0) =
(
δij̄∂z̄ϕ

i(ψj̄0 + ηj̄)
)

(z̄)(8.15)

·
(
Rlk̄(φ

m
0 , φ

m̄
0 )(∂zφ

l
0 + ∂zϕ

l)(ψk̄0 + ηk̄)
)

(0).

However, as explained above, since only the part which contains exactly two
ψj̄ zero modes will contribute nonvanishingly to the calculation, in comput-
ing [G(z̄)Θ(0)]OPE, we can take



i
i

“1-tan” — 2015/2/11 — 17:36 — page 404 — #128 i
i

i
i

i
i

404 Meng-Chwan Tan

(8.16) G(z̄) ·Θ(0) =
(
δij̄∂z̄ϕ

iψj̄0

)
(z̄) ·

(
Rlk̄(φ

m
0 , φ

m̄
0 )(∂zφ

l
0 + ∂zϕ

l)ψk̄0

)
(0).

We can further simplify (8.16) by expanding ψj̄0(z̄) around z̄ = 0 to get

G(z̄) ·Θ(0) =
(
δij̄∂z̄ϕ

i
)

(z̄)
(
ψj̄0(0) + z̄ (∂z̄ψ

j̄
0)(0) + · · ·

)
(8.17)

·
(
Rlk̄(φ

m
0 , φ

m̄
0 )(∂zφ

l
0 + ∂zϕ

l)
)

(0)ψk̄0 (0).

Due to the Grassmannian nature of the ψ zero modes, we have ψj̄0(0)ψk̄0 (0) =
0 (since j̄ = k̄ = 1̄). Therefore, to a good approximation at lowest order in
z̄ � 1, (8.17) is in fact

G(z̄) ·Θ(0) =
(
z̄δij̄∂z̄ϕ

i
)

(z̄)(8.18)

·
(
Rlk̄(φ

m
0 , φ

m̄
0 )(∂zφ

l
0 + ∂zϕ

l)∂z̄ψ
j̄
0ψ

k̄
0

)
(0).

In light of the nontrivial propagator relations in (8.14), one can see that the
ϕi and ϕl fields in (8.18) will not interact. Hence, for the purpose of our
computation, we can discard the ∂zϕ

l term in (8.18) (which will eventually
contribute to higher orders in the fluctuations anyway), and reduce (8.18)
to

(8.19) G(z̄) ·Θ(0) =
(
z̄δij̄∂z̄ϕ

i
)

(z̄) ·
(
Rlk̄(φ

m
0 , φ

m̄
0 )∂zφ

l
0∂z̄ψ

j̄
0ψ

k̄
0

)
(0).

Looking at (8.19), we now know that because of the extra z̄ variable in the
first term, if there is to be a single antiholomorphic pole in [G(z̄)Θ(0)]OPE,
there ought to be a double antiholomorphic pole coming from the contrac-
tions of the rest of the fields. From (8.19), this appears to be impossible, or
is it?

Note that the Laplacian of the Dirac operator in (8.9) and therefore
its nontrivial eigenfunctions un, depend on the quantum fields φl and φl̄;
in turn, this means that the mode expansion of ψj̄ — defined with respect
to a spectral decomposition of this Laplacian — would also depend on the
quantum fields φl and φl̄. Thus, one can, in general, write the zero modes of
ψj̄ as

(8.20) ψj̄0(z, z̄;φ) = c1
0 u

j̄
0,1(z, z̄, φl0, φ

l̄
0, ϕ

l, ϕl̄) + c2
0 u

j̄
0,2(z, z̄, φl0, φ

l̄
0, ϕ

l, ϕl̄).
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Consequently, ψ0 can actually participate in a contraction with ϕ in (8.19).
Hence, it is still possible that an antiholomorphic double pole can be found
after contracting the aforementioned fields with each another.

In order to ascertain whether the relevant contractions would yield an
antiholomorphic double pole or not, we have to determine the explicit depen-

dence of ψj̄0 on the fluctuating bosonic field ϕ. To this end, let us first expand
ψj̄ explicitly in the eigenfunctions un of the Laplacian of the Dirac operator
in (8.9) as

(8.21) ψj̄(z, z̄;φ) =

2∑
r=1

cr0u
j̄
0,r(z, z̄;φ) +

∑
n

cnuj̄n(z, z̄;φ).

Next, note that for some point φ in the neighborhood M′1 of the instan-
ton moduli space M1 ⊂ Map1(S2, X) — where Map1(S2, X) is the space
of all degree-one (anti)holomorphic maps from S2 to X = CP1 — one can
expand its fluctuation ϕ near and orthogonal to an instanton φ0 ∈M1 in
the eigenfunctions of the Laplacian of the Dolbeault operator on Σ as41

(8.22) ϕi(z, z̄;φ0) =
∑
n

anuin(z, z̄;φ0), ϕj̄(z, z̄;φ0) =
∑
n

ānuj̄n(z, z̄;φ0).

Now, let the set of complex parameters {ζ0,r} be holomorphic coordinates
onM1; let the set of complex parameters {ζn⊥} be holomorphic coordinates
in the space normal to M1 ⊂M′1; then, we can write the point φ in M′1
as φi(z, z̄; ζ, ζ⊥). Also, for an instanton φ0 that necessarily lies along M1,
we can (recalling that ∂z̄φ

i
0 = 0) write φi0(z; ζ). Via the fact that (i) for a

nearby instanton φ̃j̄0 = φj̄0 + δφj̄0 which obeys ∂zφ̃
j̄
0 = 0, we have Dz(δφ

j̄
0) = 0

(to lowest order in δφj̄0), where Dz is exactly the differential operator in (8.9)
which defines the zero modes of ψj̄ ; (ii) the nonzero modes of any quantum
field are orthogonal to the zero modes; one can view ψj̄ as an odd vector in
TφM′1 with the following general expansion

(8.23) ψj̄(z, z̄;φ) =

2∑
r=1

c̃r0
dφj̄

dζ̄0,r
+
∑
n

c̃n
dφj̄

dζ̄n⊥
,

41Notice that the ψ’s and ϕ’s have the same nonzero eigenfunctions un. This is
because (i) the canonical bundle on Σ is trivial and hence, the Dirac and Dolbeault
operators are one and the same thing; (ii) the fluctuations ϕ define variations of the
coordinates φ(z, z̄) of X around φ0(z, z̄) and therefore, can be viewed as tangent
vectors in X, like the ψ’s.
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where (d/dζ̄0,r, d/dζ̄n⊥) ∈ TφM′1. Again, the c̃’s are anticommuting Grass-
mannian coefficients. By comparing (8.23) with (8.21), we see that in an

appropriate basis whereby c̃ = c, we necessarily have dφj̄/dζ̄0,r = uj̄0,r and

dφj̄/dζ̄n⊥ = uj̄n.
Note at this juncture that a one-instanton maps the S2 effective world-

sheet to the CP1 target space in a one-to-one manner; this means that the

function φj̄0(z̄; ζ̄) is invertible, i.e., we can write z̄(φj̄0; ζ̄). In turn, we can
express φj̄ as

(8.24) φj̄(z, z̄; ζ̄, ζ̄⊥) = φ̂j̄(φi0(z; ζ), φī0(z̄; ζ̄); ζ̄, ζ̄⊥).

Using (8.24), we can write (8.23) as

(8.25) ψj̄(z, z̄;φ) =

2∑
r=1

c̃r0

(
∂φ̂j̄

∂φı̄0

∂φı̄0
∂ζ̄0,r

+
∂φ̂j̄

∂ζ̄0,r

)
+
∑
n

c̃n
dφ̂j̄

dζ̄n⊥
.

Since ∂z̄φ
j̄ = (∂φ̂j̄/∂φı̄0)∂z̄φ

ı̄
0, assuming that we choose a basis whereby c̃ = c,

from (8.25), the zero modes of ψj̄(z, z̄;φ) are determined to be

(8.26) ψj̄0(z, z̄, φ) =

2∑
r=1

cr0

(
∂z̄φ

j̄

∂z̄φı̄0
uī0,r(z, z̄, φ0) +

∂φ̂j̄

∂ζ̄0,r
,

)
,

where we have used the fact that uī0,r(z, z̄, φ) = dφj̄/dζ̄0,r, so uī0,r(z, z̄, φ0) =
dφı̄0/dζ̄

0,r = ∂φı̄0/∂ζ̄
0,r.

Now that we have obtained the explicit dependence of ψj̄0(z, z̄, φ) on the
fluctuating quantum field φj̄ in (8.26), we are ready to compute (8.19). By
inspecting (8.26) and (8.19), it is not hard to see that the relevant term in
(8.26) which can possibly contribute to an antiholomorphic double pole is

(8.27) ψk̄0 =

2∑
r=1

cr0
∂z̄ϕ

k̄

∂z̄φ
p̄
0

up̄0,r(z, z̄, φ0).

Indeed, by substituting (8.27) into (8.19), we have a term involving ∂z̄ϕ
i(z̄)

∂z̄ϕ
k̄(0) which upon using (8.14), gives us an antiholomorphic double pole.

Consequently, up to quadratic order in fluctuations, we have

(8.28) [G(z̄)Θ(0)]OPE =
1

z̄

(
Rij̄(φ

m
0 , φ

m̄
0 )
∂zφ

i
0

∂z̄φ
p̄
0

∂z̄ψ
j̄
0ψ

p̄
0

)
(0) + · · · ,
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where the fermionic zero modes ψ l̄0(0, 0;φi) are to be evaluated at φi = φi0,
and where the ellipsis represents terms that are either regular or have poles
of degree greater than one.

To complete the computation, we will need the explicit form of ψ l̄0. To
this end, note that since our one-instanton φi0 is a biholomorphic map from
the efffective worldsheet Σ̂ = CP1 to a target space X = CP1, it will be given
by a Möbius transformation:

(8.29) φ1
0(z) =

az + b

cz + d
; ad− bc = 1.

(Recall that the indices (i, ī) only take the values of (1, 1̄) since X = CP1.)
As such, we have

(8.30) ψ1̄
0 = c1

0u
1̄
0,1 + c2

0u
1̄
0,2,

where u1̄
0,1 and u1̄

0,2 are [63]

(8.31) u1̄
0,1(z̄) =

1

c̄z̄ + d̄
, u1̄

0,2(z̄) =
1

c̄(c̄z̄ + d̄)2
.

If we now substitute the expressions (8.28), (8.30) and (8.31) in (8.13), and
carry out the contour integral in the complex variable z̄ plus the integration
over the Grassmannian variables c1

0 and c2
0, we will get (up to a constant)

(8.32) e−t(µ)

∫
dM1

(
iR11̄(φ1

0, φ
1̄
0)∂zφ

1
0∂z̄φ

1̄
0

)
(0) 1(1) 1(∞),

where we have included the nonzero sigma model contribution

(8.33) t(µ) =

∫
Σ̂
φ∗0K(µ)

due to worldsheet instantons. Here, K(µ) = K0 + ln(µ/Λ) c1(X) is the effec-
tive Kähler class at energy scale µ; Λ is a scale parameter; andK0 ∈ H2(X,R)
is the “bare” Kähler (1, 1)-form onX. In terms of the pointsX0, X1, X∞ ∈ X
which 0, 1,∞ ∈ Σ̂ are mapped to by one-instantons, a conformally invariant
measure on M1 can also be written (up to an overall constant) as [64]

(8.34) dM1 =
d2X0d

2X1d
2X∞

|X0 −X1|2|X1 −X∞|2|X∞ −X0|2
.



i
i

“1-tan” — 2015/2/11 — 17:36 — page 408 — #132 i
i

i
i

i
i

408 Meng-Chwan Tan

The parameterization of M1 by X0, X1, X∞ allows us to identify M1 with
(CP1)3. Substituting (8.34) in (8.32) while using the formula

(8.35) ∂zφ
1
0(0) =

(X∞ −X0)(X0 −X1)

(X1 −X∞)
,

we then have
(8.36)

e−t(µ)

∫
CP1

d2X0 iR11̄(X0, X̄0)

∫
(CP1)2

d2X11(X1, X̄1))

|X1 −X∞|4
d2X∞ 1(X∞, X̄∞).

The X0-integral is the evaluation of 2πc1(CP1) = iR11̄ dX0 ∧ dX̄0 on CP1;
this just gives a constant of 4π. The X1-integral diverges, reflecting the
noncompactness of M1; nevertheless, by imposing a lower bound on the
distance between X1 and X∞ measured with the target space metric, i.e.,
g11̄(X∞, X̄∞)|X1 −X∞|2 ≥ l2 for some l2 > 0, the integral can be regular-
ized as

(8.37)

∫
CP1

d2X11(X1, X̄1))

|X1 −X∞|4
≤ g11̄(X∞, X̄∞)

l2
.

Since any flag manifold model can undergo RG flow whence the effective size
of the target space X varies proportionally with the energy scale, one can
interpret g11̄(X∞, X̄∞)/l2 on the RHS of (8.37) as the effective metric at an
energy scale that differs from that implied by the large metric g11̄(X∞, X̄∞)
whenever l2 6= 1. That being said, since we ought to choose l2 � 1 to best
approximate the integral, keeping the integral nonetheless finite by asserting
that l > 0 is tantamount to staying within the large but finite X-volume
limit assumed throughout our computation. Indeed if one were to let l→ 0
so as to allow the integral per se to diverge, because we will be in the infinite
X-volume limit, φ0 would just be a constant map (i.e., dφ0 = 0) whence the
integral over M1 would actually be an integral over X — in other words,
the question of a divergent result due to the X1-integral would be irrelevant
to begin with. Thus, it is clear that the regularization in (8.37) would be
necessary if our instanton computation is to make any physical sense. Since
anything less than the upper bound of the X1-integral is just a number (that
is less than 1) times the RHS of (8.37), we finally have

(8.38) l−2

(
Λ

µ

)2

e−t0
∫
CP1

d2X∞ g11̄(X∞, X̄∞) 1(X∞, X̄∞)
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up to a constant, where t0 =
∫

Σ̂ φ
∗
0(K0). (Note that we have made use of the

fact that
∫

Σ̂ φ
∗
0(c1(X)) = 2 in writing the above equation.)

A few remarks concerning (8.38) are in order. First, note that since a flag
manifold has positive Ricci curvature, its sigma model is asymptotically-free,
i.e., the effective size of X increases or decreases as µ increases or decreases;
because l is inversely proportional to the effective size of X, and because l
and µ have dimensions of length and length−1, respectively, one can identify
l with µ−1. Second, notice that the X∞-integral is performed overM0

∼= X
— the zero-instanton moduli space — with respect to the natural volume
(1, 1)-form g11̄ dX∞ ∧ dX̄∞. Third, recall that there is actually a ratio of
fermionic to bosonic determinants in the overall (omitted) constant which
accompanies (8.38); these determinants can be expressed as Gaussian inte-
grals over the non-zero fermionic and bosonic modes η and ϕ, respectively.
Fourth, note that there are no fermionic zero modes for degree zero instan-
tons; in particular, the Grassmannian variables (c1

0, c
2
0) will not appear in

the path integral measure in the zero-instanton sector. In sum, this means
that one can also write (8.38) as the following partition function on S2 with
respect to the action (8.8) in the zero-instanton sector:

(8.39) Λ2 e−t0 〈1(∞)〉CFT;S2 .

By inserting unit operators at z = 0, 1 which would not change our result,
we can also write (8.39) as

(8.40) Λ2 e−t0 〈1(∞) 1(1) 1(0)〉CFT;S2 .

Can more be said about (8.40)? Most certainly. From the state-operator
isomorphism in CFT which allows us to exchange a local operator on the
worldsheet for a puncture which represents a corresponding state, we find
that (8.40) can actually be recast as

(8.41) Λ2 e−t0 〈1(1)〉Σ ,

where Σ = S2 − {0,∞} is the defining worldsheet of the freely propagating
string that we started with. Since (8.41) is, up to a constant, just the RHS
of (8.10), we conclude that in the large but finite X-volume limit — i.e., to
lowest order in sigma model perturbation theory — whence t0 <∞ so (8.41)
does not vanish, we have, in a one-instanton background,

(8.42) 〈{Q,Θ}〉Σ ∼ 〈1〉Σ .

This coincides with our claim in (8.1).
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Computation for Other Worldsheets

What about for other choices of Σ? Would the computation also hold?
Let us consider another nonanomalous example: Σ = S2 − {∞}. In this case,
the computation is exactly the same as above except that in (8.10), the unit
operator 1(0) is now being inserted as a dummy operator while the unit
operator 1(∞) actually represents the de-excited state in the far future of
the underlying string which is propagating freely from the unknown past.
Consequently, we would still end up with (8.40) but without the 1(0) opera-
tor. Thus, we again have 〈{Q,Θ}〉Σ ∼ 〈1〉Σ. Therefore, we have the operator
relation {Q,Θ} ∼ 1 whence the chiral algebra A will be completely trivial-
ized, if Σ is a genus zero complex curve with two or less punctures.

As discussed in the previous section, the physical model would be non-
anomalous as long as Σ is an S2 with one or more punctures. Therefore, let
us proceed to consider the computation in the case where there are three or
more punctures. When there are three or more punctures, the RHS of (8.10)
will contain four or more operator insertions, including 1(0),

∮
dz̄ G(z̄)Θ(1)

and 1(∞). Note at this juncture that (i)M1 (or rather, its compactified ver-
sion) as expressed via the measure (8.34), is actually the same as the moduli
space of (stable) maps Mg,n(X, d) of genus g = 0, degree d = 1, with n = 3
identified points (i.e., 0, 1,∞); (ii) the complex dimension of Mg,n(X, d)
is given by dM =

∫
Σ̂ φ
∗
0c1(X)− 2(1− g) + n;42 (iii) since the number of ψ

zero modes here is the same as in the previous case with two or less punc-
tures, in order to have a nonvanishing result, one cannot insert ψ-dependent
local operators over any of the punctures; (iv) from the fact that (8.41) is
just the RHS of (8.10), we actually have, up to a dimensionless constant,
〈{Q,Θ}〉Σ = Λ2 e−t0 〈1(1)〉Σ, where Λ2, like the operator {Q,Θ}, has scaling
dimension 2.43 From (i)-(iv), we can deduce the following. First, from (i)
and (ii), we know that the computation will eventually involve an integra-
tion over dM variables X1, . . . , Xdm , where dm = p+ 1 and p is the number
of punctures. Second, from (iii), it will mean that we can only insert over the
additional punctures either unit operators or operators which are composed
of the φ fields and possibly their worldsheet derivatives. Third, if unit oper-
ators are inserted over the extra punctures at pi 6= 0, 1,∞, one would need
to regularize the corresponding Xi-integrals as was done in (8.37), where

42Indeed, since
∫

Σ̂
φ∗0c1(X) = 2 when d = 1 and Σ̂ = S2, the complex dimension

of M1 according to this formula will be 3, consistent with (8.34).
43The local operator [{Q,Θ}] will have scaling dimension 2 because the under-

lying model is effectively untwisted, i.e., Q and Θ will have scaling dimensions 1/2
and 3/2, respectively.
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each regularized integral would introduce an inverse length scale of scaling
dimension 2; inserting operators that are worldsheet derivatives of the φ
fields over the extra punctures pi 6= 0, 1,∞, would only serve to add on to
the scaling dimension of the final answer. Hence, from (iv) — which tells us
that our final answer ought to have scaling dimension exactly 2 — and the
aforementioned three points, it would mean that we can only consider oper-
ators which are regular, non-differential polynomials in φ over the additional
punctures pi 6= 0, 1,∞. These local operators over the additional punctures
ought to be from the perturbative chiral algebra A since they are supposed
to represent perturbative supersymmetric states of the string. This means
that they will be holomorphic in the coordinate z of the effective worldsheet
Σ̂ = S2. At any rate, since Σ̂ is a compact Riemann surface, all regular holo-
morphic functions in z over it must be constants; in other words, these local
operators which are regular, non-differential polynomials in φ are actually
equivalent (up to irrelevant constants) to the unit operator. In sum, due
to a mismatch in scaling dimensions, we cannot have the operator relation
{Q,Θ} ∼ 1 on a Σ that is an S2 with three or more punctures. Hence, we
conclude that the operator relation {Q,Θ} = 0 will continue to hold if Σ is
a genus zero complex curve with three or more punctures.

Other choices of Σ that lead to a nonanomalous physical model include
the torus T2 with any number of punctures, and a genus g > 1 Riemann
surface Σg with 2g − 2 punctures. If Σ is a T2 with no punctures, there
are no degree-one holomorphic maps from Σ to X = CP1, for if there are,
Σ would be isomorphic to X, which is not the case. Now a worldsheet
twisted-instanton φ0 is defined by ∂z∂z̄φ

l
0 = ∂zA

a
z̄V

l
a and ∂z̄∂zφ

l̄
0 = −∂z̄AazV l̄

a .

Because the previous point implies that ∂z∂z̄φ
l,l̄
0 6= 0 while a vanishing field

strength implies that ∂zA
a
z̄ = ∂z̄A

a
z = 0, it would mean that there can be

no worldsheet twisted-instantons and therefore, one cannot have the oper-
ator relation {Q,Θ} ∼ 1 on a Σ that is a T2 with no punctures. If Σ were
to be a T2 with p > 0 number of punctures at positions z1, . . . , zp, we can
first replace the p punctures with certain state-representing local operators
V1(z1), . . . ,Vp(zp), as was done in the earlier case of the sphere with punc-
tures. Because we now have a complete T2, the aforementioned arguments
follow, whence we find that we cannot have the operator relation {Q,Θ} ∼ 1.
Therefore, we conclude that the operator relation {Q,Θ} = 0 will continue
to hold if Σ is a genus one complex curve with any number of punctures.

What about when Σ is Σg with 2g − 2 punctures? Before we answer
this question, observe that Σg is just g number of T2’s connected pairwise
by g − 1 tubes. Under a conformal change of metric whereby these tubes
degenerate and pinch off, we will have g independent T2’s with punctures at
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Figure 1: a) A genus 2 surface; b) Degeneration into a pair of T2’s

the degeneration points. The g = 2 case is illustrated in fig. 1. Conversely,
one can construct Σg by sewing in (g − 1) tubes at pairs of punctures on
adjacent T2’s. This observation about Riemann surfaces has been exploited
by string theorists to calculate higher genus amplitudes from lower genus
ones via what is by now well-known as the factorization formula in CFT:

〈. . .1 . . .2 . . . . . .g〉Σg =
∑

a1a2···a2g−2

〈
. . .1 A (z1)

a1

〉
T2

1

Ga1a2

〈
A (z2)
a2

. . .2 A (z3)
a3

〉
T2

2

· · ·
〈
A (z2g−2)
a2g−2

. . .g

〉
T2
g

.(8.43)

Here, T2
k denotes the k-th T2; the ellipsis ‘. . .k’ represents the operators

inserted in T2
k away from the degeneration points; the A

(zi)
ai ’s are the local

operators placed over the degeneration points zi on the indicated two-torus;

and Gaiai+1 is an inverse metric defined by Gaiai+1

〈
A

(u)
ai+1 A

(v)
am

〉
S2

= δaiam .

The factorization for a g = 2 surface is illustrated in fig. 2. Since we are
free to employ CFT arguments in our computation via (8.7), from (i) the
CFT state-operator correspondence which allows us to trade a puncture
for a local operator; (ii) the fact established in the last paragraph that
〈{Q,Θ} · · · 〉CFT;T2 = 0, where the ellipsis refers to arbitrary operator inser-
tions, some of which are placed over punctures of the defining worldsheet Σ;
and (iii) the factorization formula of (8.43); it is thus clear that the operator
relation {Q,Θ} = 0 will continue to hold if Σ is a genus g > 1 complex curve
with 2g − 2 punctures.

Alternatively, note that there are no degree-one holomorphic maps from
Σg to X = CP1, for if there are, Σg would be isomorphic to X, which is not
the case. Thus, as in the situation where Σ is a torus with any number of
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Figure 2: Factorization for genus 2 surface. The punctures at the left and
right degeneration points u and v can be represent by the states |Ai〉 and
〈A i|; one must sum over all pairings of |Ai〉 and 〈A i| since the underlying
path integral is defined over the entire genus 2 surface; the state-operator

isomorphism in CFT then allows us to express this sum as
∑

ij A
(u)
i GijA

(v)
j .

punctures, there are no worldsheet twisted-instantons, and the conclusion
in the previous paragraph follows.

Higher Degree Instanton Contributions

What about contributions from higher degree instantons? How will it
affect our above conclusions? To address these questions, first notice from
(8.41) that in the presence of degree-one instantons, when Σ is a genus zero
complex curve (with two or less punctures), we actually have the relation

(8.44) [{Q,Θ}] ∼ Λ2e−t0 [1],

where [{Q,Θ}] and [1] are local operators; here, Λ has dimensions of length−1,
which means that Λ2 would have scaling dimension 2, consistent with the
fact that [{Q,Θ}] has scaling dimension 2 (see footnote 43). Second, recall
that instanton-induced relations ought to violate the U(1)R charge and scal-
ing dimension gradings of local operators; indeed, in the above degree-one
instanton case, the local operator [{Q,Θ}] has U(1)R charge and scaling
dimension equal to 2 while the identity operator [1] has U(1)R charge and
scaling dimension equal to 0 and not 2. Third, note that the violation by
degree-k instantons Φ0 in the U(1)R charge grading is given by the index∫

Σ̂ Φ∗0(c1(X)) = 2k. Fourth, note that the violation by degree-k instantons
in the scaling dimension grading is captured by a factor involving the dimen-
sionful scale Λ2k. In order to determine what this factor involving Λ2k is, one
just needs to observe that (i) the complex dimension of the moduli space of
instantons is 2k − 1 + q (where q ≥ 2 is related to the number of punctures
on the defining worldsheet Σ) and hence, the integration over the moduli
space in the computation of the correlation function would entail an integra-
tion over 2k − 1 + q complex variables which correspond to points on X; (ii)
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since the moduli space of instantons is noncompact, one would need to regu-
larize at least one of the 2k − 1 + q integrals; (iii) each regularization would
introduce an overall factor of l−2 to the final result, l being a length scale.
Altogether therefore, recalling that one can identify l−1 with the energy scale
µ of (8.33), we can, in the presence of nonzero degree instantons, write the
general relation

(8.45) [{Q,Θ}] =

∞∑
k=1

l2(k−n)Λ2ke−kt0 [1],

where the integer n > 0 is the number of regularized integrals, and [1] is
supposed to have U(1)R charge and scaling dimension equal to 2− 2k and
2− 2n, respectively. Notice that the identity operator [1] cannot have any
value other than 0 for its U(1)R charge and scaling dimension. Thus, only
the k = n = 1 part of the sum survives, giving us (8.44). Hence, our above
conclusions about whether {Q,Θ} ∼ 1 or 0 when Σ is a genus zero complex
curve, holds, regardless of the presence of higher degree instantons.

What about the case where Σ is a complex curve of genus one? Although
there are no worldsheet twisted-instantons at degree-one, there will be world-
sheet twisted-instantons at degrees two and higher. This is a consequence
of the fact that holomorphic maps from genus one to zero Riemann surfaces
exist only for degrees two and higher.44 What this means is that instead of
[{Q,Θ}] = 0, one can potentially have a relation similar to (8.45) with con-
tributions coming from degree-two or higher instanton sectors. To ascertain
the exact form of this relation, first note that in this case, the violation by
degree m ≥ 2 twisted-instantons φ0 in the U(1)R charge grading is given by
the index

(8.46)
〈
cT1 (X), φ0(T2)

〉
=

∫
T2

Φ∗0(c1(X)) = 2m,

where Φ0 : T2 → X is a regular holomorphic map of degree-m. To obtain
the first equality in (8.46), one simply needs to recall from our discussion
in §4.4 that the T -equivariant first Chern class cT1 (X) can be regarded as
c1(X) in the flag manifold model; to obtain the second equality in (8.46),
one just needs to know that

∫
T2 Φ∗0(c1(X)) is equal to the degree r of the

pullback Φ∗0(c1(X)), and since c1(X) = 2H, where H is the hyperplane of
X, we have r = deg(2H) · deg(Φ0) = 2m. Second, note that the equivalent

44I would like to thank D.Q. Zhang for a detailed explanation of this mathemat-
ical fact.
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here of t(µ) in (8.33) is

(8.47)
〈
KT (µ), φ0(T2)

〉
=

∫
T2

Φ∗0(K(µ)),

where K(µ) = K0 + ln(µ/Λ) c1(X) is the effective Kähler class at energy
scale µ; K0 ∈ H2(X,R) is the “bare” Kähler (1, 1)-form on X; and KT (µ)
is the T -equivariant version of K(µ). To obtain the equality in (8.47), one
simply needs to know that K(µ), like c1(X), is a class in the de Rham
cohomology group H2(X,R), and according to our discussion in §4.4, its T -
equivariant version KT (µ), like cT1 (X), can be regarded as K(µ) in the flag
manifold model. Third, note that the complex dimension d of the moduli
space of twisted-instantons is given by d =

〈
cT1 (X), φ0(T2)

〉
− 1 + q = 2m−

1 + q (c.f. [65] and (8.46)), where q is related to the number of punctures on
the defining worldsheet Σ; hence, the integration over the moduli space in
the computation of the correlation function would entail an integration over
2m− 1 + q complex variables which correspond to points on X. Fourth, note
that since the moduli space of twisted-instantons is noncompact, one would
need to regularize at least one of the 2m− 1 + q integrals; each regularization
would introduce an overall factor of l−2 to the final result, l here being a
length scale identifiable with µ−1. In sum, one can write the equivalent of
(8.45) for genus one as

(8.48) [{Q,Θ}] =

∞∑
m=2

l2(m−s)Λ2me−mt0 [1],

where the integer s > 0 is the number of regularized integrals, and [1] is
supposed to have U(1)R charge and scaling dimension equal to 2− 2m and
2− 2s, respectively. As mentioned, since the identity operator [1] cannot
have any value other than 0 for its U(1)R charge and scaling dimension, m
and s can only be equal to 1. Although it is possible to have s = 1 in (8.48),
it is not possible to have m = 1. As such, the relation (8.48) cannot be true.
Hence, our above conclusion that {Q,Θ} = 0 if Σ is a genus one complex
curve with any number of punctures, holds, regardless of the presence of
higher degree instantons.

The analysis for when Σ is a complex curve of genus greater than one fol-
lows, via the discussion surrounding (8.43), from the analysis in the previous
paragraph; in particular, we find that our above conclusion that {Q,Θ} = 0
if Σ is a genus g > 1 complex curve with 2g − 2 punctures, holds, regardless
of the presence of higher degree instantons.
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8.2. Nonperturbative effects in the flag manifold model
and Beilinson-Drinfeld D-modules

Let us now extend our analysis in the previous subsection to general flag
manifold target spaces X = GC/B, where B is a Borel subgroup of GC. From
§5.2.3, we have an isomorphism between the perturbatively Q-closed local
operators 1 and R, where R = Rij̄Dzφ

iψj̄ is the arbitrary GC generalization
of Θ for GC = SL(2). If dimCX = d and rank(gC) = r, we have i = 1, . . . , d,
j̄ = 1̄, . . . , d̄, and a = 1, . . . , r. According to our explanations at the start
of the previous subsection, which can be applied here since cT1 (X) 6= 0, the
isomorphism between 1 and R implies that one can expect a relation of
the form {Q,R} ∼ 1 to be induced by nonperturbative worldsheet twisted-
instantons, at least in certain situations. We shall now show this to be true.

Nonperturbative Effects at Genus Zero

To this end, let us first assume that the defining worldsheet is Σ =
S2 − {0,∞}. In this case, recall that the key property of the CP1 model
which allowed us to obtain the relation {Q,Θ} ∼ 1, is that there are precisely
two ψ1̄ zero modes and no ψ1̄ zero modes in the one-instanton sector. These
numbers depend crucially on the fact that for one-instantons characterized
by degree-one holomorphic maps φ0 : S2 → CP1, we have φ∗0TCP1 = O(2).
Hence, since the only degree-one holomorphic maps from S2 are to genus
zero rational curves, the aforementioned observation suggests that in order
to have the instanton-induced relation {Q,R} ∼ 1 in the GC/B model, there
ought to be in X at least one rational curve L such that φ∗0TL = O(2). If
there exists such a rational curve L ⊂ X, then only the field components
tangent to L — since they are the only ones related to instantons — will con-
tribute to {Q,R}. Consequently, if there are no ψj̄ zero modes whence Iint
of (8.6) vanishes (after going to pure gauge A = 0 on the simply-connected
S2 effective worldsheet), our computation will be the same as that in the
CP1 case, and the integration over the two ψb̄ zero modes will turn {Q,R}
into the pullback of the Kähler form Rab̄(φ0)∂zφ

a
0∂z̄φ

b̄
0, where the indices

a, b̄ refer to directions along L ⊂ X. The subsequent integration over the
parameters of the instanton φ0 then becomes an integration over L. So, the
critical question to ask is whether X fulfills these requirements or not.

To shed light on the matter, we will now need to make a brief technical
excursion. Note that if M is a target Kähler manifold of complex dimension d
that contains at least one rational curve L, and φ0 is as before a holomorphic
map from S2 to L, we can decompose the tangent bundle of M in the vicinity
of L as TM = TL⊕NL, where NL is the normal bundle of L in M . For
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degree-one maps, the pullback bundle is φ∗0TL = O(2), and φ∗0NL further
splits into a direct sum of line bundles; for example, if

∫
S2 φ

∗
0c1(M) = k, we

can write, in the vicinity of L,

(8.49) φ∗0TM
∼= O(2)⊕O(p1)⊕ · · · ⊕ O(pd−1),

where p1 + · · ·+ pd−1 = k − 2. For such a target manifold, the number of ψj̄

or ψj̄ zero modes can be found from the splitting type (8.49). According to
the formula

(8.50) h0
(
O(n)

)
=

{
n+ 1 for n ≥ 0;

0 for n < 0,

and the fact that the relevant spin bundle S is given by O(−1), each O(n)
with n > 0 in (8.49) will contribute h0(S ⊗O(n)) = n number of ψj̄ zero
modes (since ψj ∈ S ⊗ φ∗TM). We also know from the index theorem of
the differential operators in (8.9), that there are

∫
S2 φ

∗
0c1(M) = k more ψj̄

zero modes than ψj̄ zero modes.
Coming back to our main discussion, note that it is well-known [66] that

c1(GC/B) = 2(x1 + · · ·+ xr), where each independent cohomology class xi
is dual to a rational curve Li; in other words, X contains r rational curves
whose associated pullbacks of the first Chern class

∫
S2 φ

∗
0,ic1(M) — where

φ0,i is a degree-one holomorphic map from S2 to Li — are all equal to 2.
As such, by the arguments of the previous paragraph, the splitting type of
φ∗0,iTX in the vicinity of each Li would be given by

(8.51) φ∗0,iTX
∼= O(2)⊕O(0)⊕ · · · ⊕ O(0).

Moreover, for each of the r one-instantons φ0,i, we have two ψj̄ zero modes

ψb̄0,i coming from the O(2) factor along the Li-directions, and no ψj̄ zero
modes. Thus, X fulfills the requirements spelt out in the paragraph before
the previous, and the contribution from each one-instantons φ0,i is the same
as that in the CP1 case!

However, there is a caveat here, since Li is not a rigid curve if the splitting
type of φ∗0,iTX around Li is as given in (8.51). An infinitesimal deformation
of Li is given by a holomorphic section of φ∗0,iNLi; in the case of the splitting
type (8.51), the normal bundle NLi is trivial and we have d− 1 independent
deformations, one for each normal direction. Therefore, the instanton φ0,i

— because it actually wraps around Li — can be infinitesimally translated
in every possible direction in the target space. This generates a family of
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instantons with d− 1 complex parameters over which we still have to inte-
grate after the integration over Li is done; as the instanton can be translated
freely, it would mean that we would have to integrate over the target space
as well. Nevertheless, as in the CP1 case, one would, in the end, still get the
relation {Q,R} = Ci, where Ci is some constant operator.

In short, for each one-instanton φ0,i wrapping Li, we get a contribution
{Q,R} = Ci to the final answer. Summing up the r contributions, we end
up with {Q,R} ∼ 1. The calculation for when the defining worldsheet is
Σ = S2 −∞ is similar, so we can conclude that we will have the operator
relation {Q,R} ∼ 1 if Σ is a genus zero complex curve with two or less
punctures.

As for when Σ is a genus zero complex curve with three or more punc-
tures, since the computation on X eventually boils down to the computation
on each rational curve CP1 ⊂ X, the arguments for the existence or lack
thereof of the relation {Q,R} ∼ 1 follow those given in the CP1 example.
Hence, we can conclude that the operator relation {Q,R} = 0 will continue
to hold if Σ is a genus zero complex curve with three or more punctures.

Nonperturbative Effects at Genus One

How about when Σ is a T2 with any number of punctures? First, note
that the only two-cycles in X are the r rational curves dual to the xi’s,
i.e., there are no two-cycles of nonzero genus in X. Second, as explained
in the third paragraph after (8.42), there are, in this case, no worldsheet
twisted-instantons because the target of φ0 is a rational curve. Hence, the
computation on each rational curve CP1 ⊂ X would give a vanishing result.
Therefore, we can conclude that the operator relation {Q,R} = 0 will con-
tinue to hold if Σ is a genus one complex curve with any number of punctures.

Nonperturbative Effects at Genus g > 1

And what if Σ is a genus g > 1 Riemann surface with 2g − 2 punctures?
Once again, since there are no two-cycles of nonzero genus in X, according
to our explanations in the paragraph before that which discusses (8.44),
there are, in this g > 1 case, no worldsheet twisted-instantons either. Thus,
we can conclude that the operator relation {Q,R} = 0 will continue to hold
if Σ is a genus g > 1 complex curve with 2g − 2 punctures.

Higher Degree Instanton Contributions

The analysis for the higher degree instanton contributions is the same
as that for the CP1 case except for one subtlety. As pointed out above,
because each instanton can be swept throughout X, one needs in this case
to also integrate over X in the computation. Nevertheless, since X — unlike
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the moduli space of instantons involved — is compact, one would not need
to regularize the integral associated with it. As such, no additional length
scales would be introduced, and the relations (8.45) and (8.48), as well as
the discussion surrounding them, would apply to the computation on each
rational curve CP1 ⊂ X. Hence, we find that all our earlier conclusions hold
regardless of the presence of higher degree instantons.

Certain Delicate Conditions for the Existence of Beilinson-Drinfeld
D-Modules

When we do have the relation {Q,R} ∼ 1, the identity operator would
be Q-exact and therefore, all operators in the chiral algebra A of the GC/B
model would also be Q-exact: for any operator O ∈ A whence {Q,O] = 0,
we would have O = O · 1 ∼ O · {Q,R} = {Q,OR], i.e., O = {Q, . . . ]. Thus,
from our above results, we find that A would be completely trivialized if
Σ is a genus zero complex curve with two or less punctures! In turn, this
implies that A(X, q) of (5.7) must vanish nonperturbatively, at least in these
situations.

Recall at this point from §7.1 our interpretation of the Beilinson-Drinfeld
D-modules of the geometric Langlands program for GC as correlation func-
tions Ψn of the Φ0(z) fields in the chiral algebra A ; what this trivialization
of A also means is that there can be no Beilinson-Drinfeld D-modules when
the underlying complex curve Σ is rational with less than three punctures.
Hence, the physics of our flag manifold model implies, among other things,
that the geometric Langlands correspondence for GC would be non-vacuous
at genus zero if and only if there are three or more punctures. This physically
derived result is also consistent with the mathematical literature [16].

8.3. Spontaneous supersymmetry breaking

The trivialization of the chiral algebra A also leads to nontrivial con-
sequences for the supersymmetric spectrum of the flag manifold model.
Before we elucidate what these consequences are, first note that in any
two-dimensional theory with (0, 2) supersymmetry such as our flag manifold
model, we have, from its supersymmetry algebra, the relation

(8.52) {Q,Q†} = HR,

where the second supercharge Q† is the hermitian conjugate of Q, and HR

is the right-moving half of the Hamiltonian operator whose eigenvalue is the
right-moving energy level of a state. Second, notice that any supersymmetric
state |Ψ〉 must be annihilated by both Q and Q†; this means that |Ψ〉 must
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be in the kernel of {Q,Q†}, and that HR|Ψ〉 = 0. Third, recall from §4.1
that Q will act as some differential operator on the compact target space X;
thus, one can regard {Q,Q†} as a Laplace-Beltrami operator for Q, whence
|Ψ〉 will be a harmonic element with respect to Q; in turn, this means that
|Ψ〉 will span the Q-cohomology of states.

Now consider the string described by the flag manifold model to be
propagating freely either from the unknown past into the far future or from
the far past into the far future; since we are taking the large but finite X-
volume limit, according to our analysis in §8.1, one can regard the string’s
worldsheet Σ to be a sphere with either one or two punctures, respectively.
Then, in the presence of worldsheet twisted-instantons, we have

(8.53) |Ψ〉 = 1 · |Ψ〉 ∼ {Q,R}|Ψ〉 = Q
(
R|Ψ〉

)
.

Hence, |Ψ〉, though Q-closed, is now also Q-exact; i.e., |Ψ〉 is trivial in Q-
cohomology. This means that there are actually no supersymmetric states
in the full quantum theory! Therefore, since 〈0|O′|0〉 = 〈0|{Q, . . . }|0〉 6= 0
for some bosonic operator O′ ∈ A , where |0〉 is the vacuum state, one can
conclude that supersymmetry is spontaneously broken!

The above observation thus implies the following. From the defining
condition HR|Ψ〉 = 0, supersymmetric states are necessarily right-moving
ground states. Nevertheless, they can be nonperturbatively “lifted” in boson-
fermion pairs by instantons such that eventually, HR|Ψ〉 6= 0, thereby result-
ing in a spontaneous breaking of supersymmetry. We will now turn to the
canonical quantization viewpoint involving supersymmetric gauged quan-
tum mechanics on loop space, and investigate what this purely physical
phenomenon implies for the geometry of loop spaces of flag manifolds of
GC, among other things.

8.4. Supersymmetric gauged quantum mechanics and
loop space geometry

The worldsheet Σ of a string which propagates freely over a Kähler manifold
X = GC/B either from the unknown past into the far future or from the far
past into the far future, can be modeled by an infinitely-long cylinder S1 × R
with coordinates (σ, τ), where σ ∼ σ + 2π. Let us equip Σ with a com-
plex structure by setting ∂z = ∂σ − i∂τ ; then H and P of HR = (H − P )/2
in (8.52) are the generators of translations in time τ and space σ, respec-
tively. Given that the T -equivariant Kähler form on X is KT = igij̄Dφ

i ∧
Dφj̄/2 (where we recall that T is the Cartan subgroup of the compact real
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form of GC), the action, including worldsheet twisted-instanton contribu-
tions, will be given by (c.f. (2.25)-(2.27))

Sgauged =
1

2π

∫
Σ
dσdτ

{
Q,−gij̄ψi(Dτ + iDσ)φj̄

}
+

1

2π

∫
Σ
φ∗KT

=
1

2π

∫
Σ
dσdτ

(
gij̄(Dτφ

iDτφ
j̄ +Dσφ

iDσφ
j̄)− igij̄ψi(D̂τ + iD̂σ)ψj̄

)
,

(8.54)

where the gauge-covariant derivatives D and D̂ are defined by

Dτ,σφ
i = ∂τ,σφ

i ±Aaτ,σV i
a ,

Dτ,σφ
j̄ = ∂τ,σφ

j̄ +Aaτ,σV
i
a ,

D̂τ,σψ
j̄ = ∂τ,σψ

j̄ + Γj̄
īk̄
∂τ,σφ

ı̄ψk̄ +Aaτ,σΓj̄
īk̄
V ī
aψ

k̄.

(8.55)

Supersymmetric Gauged Quantum Mechanics on Loop Space

Working on S1 × R, it is very natural to choose the temporal gauge
Aaτ = 0. Doing so, the action can be simplified to

S =
1

2π

∫
S1×R

dσdτ
(
gij̄(∂τφ

i∂τφ
j̄ +Dσφ

iDσφ
j̄)(8.56)

− igij̄ψi(Dτ + iD̂σ)ψj̄
)
,

where Dτψ
j̄ = ∂τψ

j̄ + Γj̄
īk̄
∂τφ

ı̄ψk̄. Notice that at each time τ , the bosonic

field φ : S1 × R→ X specifies a point φτ in the loop space LX of smooth
maps S1 → X via φτ (σ) = φ(σ, τ). Similarly, the fermionic fields specify ψiτ
and ψj̄τ , which, via ψiτ (σ) = ψi(σ, τ) and ψj̄τ (σ) = ψj̄(σ, τ), we may identify
respectively with vectors in TLX |φτ ∼= Γ(φ∗τTX) and TLX |φτ ∼= Γ(φ∗τTX). In
what follows, we will fix a time τ and write these simply as φ, ψi, and
ψj̄ . As is clear from this description, the theory may now be viewed as
supersymmetric gauged quantum mechanics on LX with action

(8.57) SQM =

∫
R
dτ L(φ, ψ, ∂τφ, ∂τψ, τ),

where

L(φ, ψ, ∂τφ, ∂τψ, τ) =
1

2π

∫
S1

dσ
(
gij̄(∂τφ

i∂τφ
j̄ +Dσφ

iDσφ
j̄)(8.58)

− igij̄ψi(Dτ + iD̂σ)ψj̄
)

is the corresponding quantum mechanical Lagrangian.
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Let us now canonically quantize the theory on LX. The canonical con-
jugate πψ to ψ will be given by δL/δ(∂τψ); from (8.58), we have

(8.59) πψj̄ =
δ

δψj̄
=

i

2π

∫
S1

dσ gij̄ψ
i.

From the equal-time canonical commutation relation {πψk̄τ (σ′), ψj̄τ (σ)} =

iδj̄
k̄
δ(σ − σ′), we get

(8.60)
1

π

∫
S1

dσ {ψiτ (σ), ψj̄τ (σ′)} = 2gij̄δ(σ − σ′).

This is the loop space version of the Clifford algebra {Γi,Γj̄} = 2gij̄ , in which
ψi, ψj̄ play the roles of the gamma matrices Γi, Γj̄ , with extra continuous
indices σ and σ′ parametrizing the directions along the loop. States furnish
a representation of this algebra, so they are spinors on LX.

On the other hand, the canonical conjugate πφ to φ will be given by
δL/δ(∂τφ); from (8.58), we have

πφi =
δ

δφi
=

1

2π

∫
S1

dσ gij̄∂τφ
j̄ and(8.61)

πφj̄ =
δ

δφj̄
=

1

2π

∫
S1

dσ gij̄∂τφ
i − 2i

π

∫
S1

dσ ωj̄ ,

where ωj̄ = i
2Γij̄k̄Σ

ik̄ and Σik̄ = −i[ψi, ψk̄]/4. Given the interpretation of ψi,

ψj̄ as the gamma matrices Γi, Γj̄ , it is thus clear that ωj̄ must be a spin
connection on X.

Now consider the covariant functional derivative on LX

(8.62)
D

δφj̄
=

δ

δφj̄
+

2i

π

∫
S1

dσ ωj̄ .

Notice from (8.61) that one can also write

(8.63)
D

δφj̄
=

1

2π

∫
S1

dσ gij̄∂τφ
i.

Thus, in terms of the (covariant) functional derivatives D/δφj̄ on LX, the
supercharges Q can be expressed as

Q =
1

2π

∫
S1

dσ gij̄ψ
j̄(i∂τ +Dσ)φi = Q0 +

1

2π

∫
S1

dσ gij̄ψ
j̄Dσφ

i,(8.64)
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where

(8.65) Q0 = iψj̄
D

δφj̄
.

From (8.62), and the fact that ωj must be a spin connection on X, it is
clear that Q can be interpreted as the antiholomorphic half Q0 of the Dirac
operator on LX twisted by the term 1/2π

∫
S1 dσ gij̄ψ

j̄Dσφ
i.

An important point to note at this juncture is the following. Let h
be some function on LX. As h is a scalar on LX, the covariant func-
tional derivative will simply act as the functional derivative; in particu-
lar, Dh/δφj̄ = δh/δφj̄ . Bearing this in mind, it will mean that from (i) the
Baker-Campbell-Hausdorff formula eXY e−X = Y − [Y,X] + · · · for opera-
tors X and Y , and (ii) the action of Q0 as indicated in (8.65), we can write

(8.66) Qh = eih/2πQ0e
−ih/2π = Q0 +

1

2π
ψj̄

δh

δφj̄
.

Hence, for the right choice of h, we can have Qh = Q. Moreover, since Qh and
Q0 are related by a similarity transformation, it will also mean that for the
right choice of h, the Q-cohomology of states will just be the Q0-cohomology
of states. Let us now determine what this choice of h must be.

First, we pick a fixed, base loop φ0 in each connected component of LX.
Then, for a given loop φ in that component, we choose a homotopy φ̂ that
connects φ0 to φ. Namely, φ̂ = φ̂(σ, τ) is a map φ̂ : [0, 1]× S1 → X such that
φ̂(σ, 0) = φ0(σ) and φ̂(σ, 1) = φ(σ). Now consider the area

(8.67) A(φ̂) = −2

∫
[0,1]×S1

φ̂∗KT .

Note that this area formula will make sense as long as we choose φ̂ such that
φ̂∗([0, 1]× S1) is a T -equivariant cycle in X. (An immediate example of such
a two-cycle would be given by the dual of the non-vanishing T -equivariant
first Chern class cT1 (X).) Since the gauge field strength F is zero, i.e., F =

D2 = 0, we can write φ̂∗KT = igij̄D(φ̂i ∧Dφ̂j̄)/4− igij̄D(Dφ̂i ∧ φ̂j̄)/4. As
such, we have

(8.68) A(φ̂) =

∫
S1

dσ gij̄

(
Dσφ̂

iφ̂j̄ − φ̂iDσφ̂
j̄
)
|τ=1
τ=0.
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Under a variation of φ̂, A(φ̂) will change by

(8.69) δA(φ̂) =

∫
S1

dσ gij̄

(
Dσφ

iδφj̄ − δφiDσφ
j̄
)
,

where we have used the constraint that φ̂|τ=0 is fixed to be φ0 and thus,
δφ̂|τ=0 = 0. Notice that (8.69) will imply that

(8.70)
δA(φ̂)

δφj̄
=

∫
S1

dσ gij̄Dσφ
i.

If we let h = A(φ̂) and substitute (8.70) in (8.66), one can see by comparing
with (8.64) that indeed Qh = Q.45

Implications for the Geometry of Loop Spaces of Flag Manifolds of GC

Thus, the right choice of h would be A(φ̂) whence the Q-cohomology
of states equals the Q0-cohomology of states. Moreover, notice that a gauge
transformation would change the second term in the second equality of (8.66)
(as this term is not gauge-invariant); hence, one can conclude that a gauge
transformation would effect — via a similarity transformation of Q — a
change of basis in the Q-cohomology of operators, as deduced earlier in
§4.1.

At any rate, note that LX, like X, is also Kähler; as such, the Q0-
cohomology — which is the cohomology of the antiholomorphic half of the
Dirac operator on LX — actually coincides with the cohomology of the full
Dirac operator on LX. In turn, this means that the Q-cohomology of states
is simply the space of harmonic spinors on LX. Therefore, the trivialization
of the Q-cohomology of states by worldsheet twisted-instantons discussed in
the previous subsection, implies that there can be no harmonic spinors on
LX!

The Höhn-Stolz Conjecture and the Existence of Beilinson-Drinfeld
D-Modules

Finally, we come to the intimate relation between the Höhn-Stolz conjec-
ture in algebraic topology and the delicate conditions unraveled in §8.2 for
the existence of Beilinson-Drinfeld D-modules in the geometric Langlands
correspondence for GC.

45In order to arrive at this result, we have used integration by parts to cal-
culate that

∫
S1 dσ ψ

j̄gij̄Dσφ
i = ψj̄

∫
S1 dσ gij̄Dσφ

i −
∫
S1 dσ ∂σψ

j̄(
∫
dσ′ gij̄Dσ′φ

i) =

ψj̄
∫
S1 dσ gij̄Dσφ

i; the last equality was obtained using integration by parts again

and the fact that
∫
S1 dσ ∂σψ

j̄ = 0.
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The Höhn-Stolz conjecture can be stated as follows [1]: the Witten genus

(8.71) ΦW (M) = η(q)d V (M, q)

of a closed manifold M of real dimension d and p1(M)/2 = 0, where η(q) =
q1/24

∏∞
m=1(1− qm) is Dedekind’s η-function and V (M, q) is the elliptic

genus in (5.6), vanishes if the Riemannian metric on M admits a Ricci
curvature that is positive.46 An example of such an M would be given by
X, where ΦW (X) indeed vanishes because the Q-cohomology of supersym-
metric states counted by V (X, q) is empty. In fact, our above conclusion
that there are no harmonic spinors on LX affirms Stolz’s heuristic “proof”
(see §4 of [1]) which asserts that the Höhn-Stolz conjecture ought to be true
because (i) the Witten genus depends on the (S1-equivariant) index of the
Dirac operator in LM ; (ii) the Ricci scalar of LM is positive as the Ricci
curvature of M is positive; (iii) one can apply Lichnerowicz’ theorem in
LM , whence the previous point would mean that there can be no harmonic
spinors in LM , i.e., the (S1-equivariant) index of the Dirac operator in LM
must be zero.

As explained in §8.3, the Q-cohomology of states is empty as a conse-
quence of the trivialization of the perturbative chiral algebra A by world-
sheet twisted-instantons. Thus, from our ending remarks in §8.2, and the
discussion in the last paragraph, it is clear that the fact that there can be
no Beilinson-Drinfeld D-modules at genus zero when there are two or less
punctures will imply the Höhn-Stolz conjecture for GC/B! One can also make
the following statement — there can be no harmonic spinors in the space
of smooth maps S1 → GC/B because there can be no Beilinson-Drinfeld D-
modules at genus zero when there are two or less punctures!

9. Chern-Simons theory, knot invariants, and
Langlands duality

In this final section, we will first elucidate the connection between our flag
manifold model in the infinite-volume limit and a WZW model for com-
pact, simply-connected, simply-laced Lie groups G. Exploiting the fact that
states of a Chern-Simons theory on a three manifold M with gauge group
G and Wilson lines in some representation of G, can be captured by the
conformal blocks of a G-WZW model “living” on a certain Riemann surface

46The conjecture is actually formulated for M of real dimension d = 4n, where
n is an integer. However, since the Witten genus automatically vanishes if d 6= 4n,
we have, for convenience, stated the conjecture for arbitrary d.
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Σ̂ ⊂M , we will show — via the interpretation of the conformal blocks as cer-
tain correlation functions of the flag manifold model in the infinite-volume
limit — how knot invariants of M can be related to “quantum” ramified
D-modules. Next, we will specialize to the case whereby G = SU(2) and
M = S3, whence we will (i) see that the Jones polynomial of an arbitrary
link [67] and its corresponding Khovanov homology [68] ought to be captured
by various interesting features of these aforementioned “quantum” ramified
D-modules, (ii) furnish a physical proof of a mathematical conjecture by
Seidel-Smith [2] which relates Lagrangian intersection Floer homology [69]
to Khovanov homology. Lastly, we will demonstrate, via a generalized T -
duality of the flag manifold model in the infinite-volume limit, (i) a ramified
geometric Langlands correspondence for GC (the complexification of G); and
(ii) a correspondence between representations of LGC and “classical” ram-
ified D-modules on the moduli space of holomorphic parabolic GC-bundles
on a rational curve, where LGC is the Langlands dual of GC; thereby proving
physically a mathematical conjecture by Gaitsgory [3, 4].

9.1. The infinite-volume limit of the flag manifold model
and Chern-Simons theory

Consider the flag manifold model with target space X = GC/B. (Recall that
GC is a simple, simply-connected, complex Lie group, and B ⊂ GC is a Borel
subgroup.) Let us take the infinite X-volume limit; then, the Ricci curvature
Rij̄ of X as “seen” by the sigma model, vanishes. In turn, this means that
(i) one can regard the anomaly measured by c1(Σ)cT1 (X) — where T is the
Cartan subgroup of the compact real form G of GC — to be zero, i.e., one
can consistently define the model on any Σ, with any number of punctures;
(ii) (2.32) ought to be replaced by [Q,Tzz] = 0 and thus, from our analysis
in §4.7 and our Q-Čech cohomology dictionary, the level k that appears in
§5.2 and §6.1 cannot be equal to h∨, where h∨ is the dual Coxeter number
of the Lie algebra gC of GC.

Note at this point that our aforementioned flag manifold model whose
target space has infinite volume can also be viewed as the local flag manifold
model introduced in §6.1. Bearing this in mind, now recall from our discus-
sion following (6.33) that T -duality of the model leaves V = −i(Rρ− 1

Rρ
∨)

invariant, where R = 1/
√
k + h∨ and {ρ, ρ∨} are the Weyl vector of the Lie

algebra gC of GC and its dual, respectively; on the other hand, it maps
Y a = Y a

L (z) + Y a
R(z̄) to Y a′ = Y a

L (z)− Y a
R(z̄). Let V ′ be the T -dual of V ;

then, since T -duality ought to leave the scalar product V · Y invariant, i.e.,
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V · Y = V ′ · Y ′, from the previous point, we would have V · YR = 0. (This
can be regarded as an a priori account of the asymmetry between (6.31) and
(6.32).) Consequently, if we henceforth restrict our analysis to simply-laced
GC so that ρ = ρ∨, from (6.47), we can write the action of the flag manifold
model in the infinite-volume limit as

I∞ =
1

π

∫
Σ
|d2z|√g e−2σ(z,z̄)

[ |∆+|∑
i=1

{
βi∂z̄γ

i + ψiz̄∂zψi + ∂z̄(V
i · Y )∂z(Vi · Y )

}(9.1)

− iRz̄z√
k̂ + h∨

(ρ · Y )

]
,

where

(9.2)
1√

k̂ + h∨
= R− 1

R
.

Let us express the field Y in terms of its constant and fluctuating
parts Y0 and Ỹ , i.e., let us write Y = Y0 + Ỹ . Then, notice that the last
term in I∞ would weight the (Minkowskian) path integral by a factor of

exp
(
−2π(2− 2g)ρ · Y0/

√
k̂ + h∨

)
, where g is the genus of Σ.47 Thus, from

the viewpoint of the string theory described by the flag manifold model, one
can interpret this factor as g2−2g

s , where

(9.3) gs = exp

(
− 2πρ · Y0√

k̂ + h∨

)

is the string coupling. Hence, by tuning gs, we can vary k̂ and vice-versa.
In the limit k → −h∨ whence R→∞, we also have, from (9.2), k̂ → −h∨
and therefore gs → 0. One can therefore interpret the “classical” Langlands
duality limit of k → −h∨ as the zero coupling, classical limit of the string.
(The rationale for the word “classical” is that the isomorphism (6.46) ofW-
algebras at k 6= −h∨ underlies — according to [70] — what is mathematically
termed as the “quantum” geometric Langlands correspondence.)

At any rate, let us, for simplicity, consider Σ = S2 − {p1, p2, . . . , pn},
where pi represents the i-th point deleted; in this case, the canonical bundle

47One can see this by noting that (i) |d2z| = idz ∧ dz̄, 2πc1(Σ) = −iRz̄zdz ∧ dz̄,∫
Σ
c1 = 2− 2g, (ii) Wick rotating the action back to Minkowskian signature involves

multiplying the action by i.
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K of Σ will be trivial. Since we are in the infinite X-volume limit where
there can be no worldsheet instanton contributions, the triviality of K and
(4.6) will mean that there can be no ψ zero modes either. One can then
integrate out the ψ fields that appear in (9.1) by performing the Gaussian
integral over its nonzero modes, and effectively write I∞ as

I∞,eff =
1

π

∫
Σ
|d2z|√g e−2σ(z,z̄)

[ |∆+|∑
i=1

{
βi∂z̄γ

i + ∂z̄(V
i · Y )∂z(Vi · Y )

}
(9.4)

− i Rz̄z√
k̂ + h∨

(ρ · Y )

]
.

If we consider values of gs such that k̂ is an integer,48 according to [71],
I∞,eff is just the action of a WZW model for simply-connected, simply-laced

G at level k̂! (The reason why the gauge group is G and not GC is because
the topological term in the WZW model dictates that the gauge group be a
compact, simple Lie group whenever the level k̂ is an integer [48].)

Conformal Blocks of the WZW Model

As there is an affine algebra ĝ of G at level k̂ from our effective theory
with action (9.4), we have the relation

(9.5) Ja(z)Φ
λ
r (z′) ∼ −

∑
s

(tλa)rs Φλ
s (z′)

z − z′
,

where the J ’s are dimension-one currents of ĝ; the Φ’s are local, holomorphic,
bosonic primary field operators of ĝ; tλa is a matrix in the representation
of the Lie algebra g of G with highest weight λ; r, s = 1, . . . ,dim|λ|; and
a = 1, . . . ,dim(g).

Note that the scaling dimension hλ of the operator Φλ
s (z) obeys the

formula [57]

(9.6) 2(k̂ + h∨)hλ = (λ, λ+ 2ρ).

Since k 6= −h∨ in the infinite-volume limit of the flag manifold model and
therefore, k̂ 6= −h∨ in the effective WZW model, if λ = 0, we have hλ = 0
and dim|λ| = 1 — i.e., we have a sole operator Φ0(z), and the t0a’s in (9.5)

48One could of course consider non-integer values of k̂, but this would involve
certain technical subtleties which would take us beyond the scope of the present
paper.



i
i

“1-tan” — 2015/2/11 — 17:36 — page 429 — #153 i
i

i
i

i
i

Sigma models, Langlands program, and knots 429

S

C

M

Figure 3: Path integral over whole of M

are just constants. If λ 6= 0, then we ought to have hλ 6= 0, and because
dim|λ| > 1, we have not one but a set of operators Φλ

s (z) of positive scaling
dimension. As the model is now conformal, one can always employ the CFT
state-operator isomorphism and replace the n punctures on Σ with these Φ
operators to obtain an effective worldsheet Σ̂ that is an S2.

Since G is a simply-connected, simply-laced group, the corresponding
WZW model is diagonal and factorizes into a holomorphic and an antiholo-
morphic sector. Because these sectors are identical, it suffices to focus only
on the holomorphic half of the theory. Let us therefore focus on the holo-
morphic conformal blocks of the WZW model. According to the previous
paragraph, we can express the holomorphic conformal blocks as

(9.7) C = 〈Φ(z1) · · ·Φ(zn)〉Σ̂ ,

where the local operator Φ(z) can either be Φ0(z) or Φλ
s (z).

States of the Corresponding Chern-Simons Theory

Observe that since Φ0(z) ought to be given by a regular, holomorphic
function in the coordinate z on the compact Riemann surface Σ̂ = S2, it can
be viewed as a constant; in particular, one can regard Φ0(z) as the identity
operator 1(z). Thus, if Φ(zi) = Φ0(zi) for all i = 1, . . . , n in (9.7), we have

(9.8) C = Cempty =
〈
Φ0(z1) · · ·Φ0(zn)

〉
Σ̂

= 〈1〉Σ̂ .

On the other hand, if say p of the n number of Φ’s in (9.7) are given by
the Φλ

s operators, because of what we said in the last paragraph, we have

C = Cknots =
〈

Φλ1
s1

(z1) · · ·Φλp
sp (zp)Φ

0(zp+1) · · ·Φ0(zn)
〉

Σ̂
(9.9)

=
〈

Φλ1
s1

(z1) . . .Φλp
sp (zp)

〉
Σ̂
.
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We shall now elucidate the meaning of the subscripts “empty” and
“knots”. To this end, note that it was first established by Witten in [72]
that if one can Heegaard split some three manifold M along Σ̂ ⊂M , then
the states in the Hilbert space H of the Chern-Simons theory on M with
gauge group G and inverse coupling k̂, will correspond, in a one-to-one man-
ner, to the conformal blocks of the WZW model for G at level k̂ on Σ̂. If
there are no Wilson lines in M , the states of the Chern-Simons theory will
be captured by Cempty — hence, the subscript “empty”. However, if there
are Wilson lines in M in various highest dominant weight representations
that pierce through Σ̂ at the points z1, . . . , zp which, according to [72], can
also be interpreted as knots in M , the states of the Chern-Simons theory
will be captured by Cknots — hence, the subscript “knots”. For example, in
fig. 3, there is a Wilson line or knot C in some highest dominant weight rep-
resentation λ of G that pierces through S = Σ̂ at four points, z1, z2, z3, z4;
in this case,

(9.10) Cknots = C λ
knots =

〈
Φλ
s1

(z1) Φλ
s2

(z2) Φλ̄
s3

(z3) Φλ̄
s4

(z4)
〉

Σ̂
,

where λ̄ is the representation dual to λ. The λ and λ̄ representations are
associated with the points where the Wilson line or knot pierces into and
out of S, respectively.

9.2. “Quantum” ramified D-modules, Khovanov homology, and
Langrangian intersection Floer homology

According to [72–74], the states in the Hilbert space H of the Chern-Simons
theory on M with gauge group G in the presence of Wilson lines that pierce
through Σ̂ ⊂M at points z1, . . . , zp in the representations λ1, . . . , λp, respec-

tively, are — once a complex structure on Σ̂ is picked — in one-to-one cor-

respondence with the elements of H0(MG;z1,...,zp ,L
k̂). Here, MG;z1,...,zp is

the moduli space of flat G-bundles on Σ̂\{z1, . . . , zp} whose connection has
monodromy around the point zi given by

(9.11) gλi = exp

(
−2πiλ∗i

k̂

)
,

where

(9.12) gλ1
· · · gλp = 1;
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L is a line bundle whose first Chern class generates the second cohomology
of MG;z1,...,zp ; and λ∗i is the dual of λi in the following sense: using the
quadratic form −Tr on g to identify the dual t∗ of its Cartan subalgebra t
as the Langlands-dual Cartan subalgebra Lt, λi ∈ Lt maps to λ∗i ∈ t.

So, if there are no Wilson lines or knots in M , in which case one would
have to replace the operators Φλ1

s1
(z1), . . . ,Φλ1

s1
(zp) in (9.9) with Φ0(z1), . . . ,

Φ0(zp), we have Cknots → Cempty and gλi = g0 = 1 for all i = 1, . . . , p.

“Quantum” Ramified D-Modules

A useful fact to note at this juncture is that in the quantum geometric
Langlands correspondence for G with tame ramification, “quantum” rami-
fied D-modules would be given by sections of the line bundle L c−h∨ over
MG;z1,...,zp , where the nonzero integer c = k̂ + h∨ [75]. Second, based on
the analysis in §4 of [76], we find that Cknots ⊂ H ⊂ H∗, where H∗ is the
space of (Bcc,B) strings in a topological A-model on the parabolic Hitchin
fibration π : Y → B with Lagrangian fiber F (along which a restriction ωJ |F
of a certain two-form ωJ is nonvanishing); Bcc is a space-filling canonical
coisotropic brane (endowed with a unitary line bundle L with connection
whose curvature is ωJ); and B is a brane which wraps F. In turn, noting
the fact that c is an integer, based on the analysis in §11.3 of [11] and
that in §4.4 of [77] (with α 6= 0; β = γ = η = 0; and θ 6= 0 which ensures
that ωJ |F is nonvanishing), we find that H∗ would correspond to the space
of “quantum” tamely-ramified D-modules. Third, just like there is sup-
posed to be not one but a category of distinct “quantum” ramified D-
modules [75], for each set of representations λ1, . . . , λp, there is not one
but several distinct Cknots’s due to the extra si-index which runs from
0, . . . ,dim|λi| > 1. Fourth, in the c→ 0 limit whence the operators Φ(z) =
Φ0(z) in (9.7) are, according to our analysis in §5, Q-cohomology classes,
according to our analysis in §7, Cempty =

〈
Φ0(zp+1) · · ·Φ0(zn)

〉
Σ̂

would just
be an ordinary “classical” D-module. Consequently, this means that Cknots =〈

Φλ1
s1

(z1) · · ·Φλp
sp (zp)Φ

0(zp+1) · · ·Φ0(zn)
〉

Σ̂
would actually generate — accord-

ing to the abstract algebraic CFT prescription in §9.8 of [49] — the category
of “classical” D-modules with tame ramification at points z1, . . . , zp. Last
but not least, note that a connection between Chern-Simons theory and
a “quantum” geometric Langlands correspondence has also been unraveled
recently by Witten in [24], albeit via a gauge-theoretic approach; in loc. cit.,
the geometric Langlands parameter and its dual are respectively Ψ = k̂ + h∨

and LΨ = −1/Ψ, whereby a “classical” geometric Langlands correspondence
for G is achieved in the limits LΨ→∞ and Ψ→ 0, i.e., c→ 0, in perfect
agreement with our results obtained hitherto. Altogether, the above five
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ML MR

Figure 4: Path integral over ML and MR

points imply that we can interpret Cknots as a “quantum” (tamely) ramified
D-module Dcmod(MG;z1,...,zp) on MG;z1,...,zp with twist parameter c.

Relation to Knot Invariants of Three-Manifolds

In [72], it was argued that the states of the Chern-Simons theory with
Wilson lines can be related to knot invariants of three-manifolds; in turn, this
means that these knot-invariants can also be related to the above-mentioned
“quantum” ramified D-modules. For example, in fig. 3, the Chern-Simons
path integral over the whole of M with Wilson line or knot C in some
highest weight representation λ of G, would be given, as shown in fig. 4, by
a path integral over the interior three-ball MR whose boundary is S = Σ̂,
followed by a path integral over the complicated exterior piece ML whose
boundary is also Σ̂ but with orientation reversed. The former path integral
would result in a state |ψ〉 ∈ HR, while the latter path integral would result
in a state |χ〉 ∈ HL. Since the Hilbert spaces HL,R are determined by the

corresponding boundary theories on Σ̂, the fact that the orientations of Σ̂
associated with HL and HR are opposite to each other means that HL is
canonically dual to HR. Hence, we can express the complete path integral
over M as the pairing of states

(9.13) ZλM (C) = 〈χ|ψ〉 = (χ, ψ).

The LHS of the above relation is a knot-invariant of M , while ψ and χ on the
RHS can be identified as “quantum” ramified D-modules Dcmod(MG;z1,...,z4

)
given by C λ

knots of (9.10).
As χ and ψ are vectors in a finite-dimensional space H, we can expand

them as

(9.14) χ =

dimH∑
s=1

asχ Ds and ψ =

dimH∑
s=1

asψ Ds,

where the coefficients asχ and alψ are complex numbers (some of which may
be zero), while Ds ∈ Dcmod(MG;z1,...,z4

) spans an orthogonal basis in H, i.e.,
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(Dm,Dn) = δmn. Thus, we can also express (9.13) as

(9.15) ZλM (C) =

dimH∑
s=1

asχa
s
ψ.

Notice that the sth term on the RHS of (9.15) would vanish if the sth com-
ponent of either χ or ψ were to be zero. Hence, we can interpret the RHS of
(9.15) as a (weighted) count of the number of components of χ and ψ that
coincide.

The Jones Polynomial and Khovanov Homology

Let us now specialize to the case where M = S3 and G = SU(2); let
λ label the two-dimensional fundamental representation 2 of SU(2). Then,
Z2
S3(C) is simply the Jones polynomial of the knot C [72]. In turn, if the

finite-dimensional vector space

(9.16) K(C) = ⊕a,bKa,b(C)

is the corresponding bi-graded Khovanov homology, we can, according to [68],
rewrite (9.15) as

(9.17)
∑
a,b

(−1)aqb dimKa,b(C) =
∑
c∈C

acχa
c
ψ,

where C is the set of components of χ and ψ that coincide, and

(9.18) q = exp

(
2πi

k̂ + h∨

)
.

Thus, from (9.17), we learn that a (weighted) count of the Khovanov homol-
ogy of the knot C would be given by a (weighted) count of the number of
components of the “quantum” ramified D-modules χ and ψ that coincide.

Relation to Lagrangian Intersection Floer Homology

Now notice that we can also write

(9.19)

dimH∑
n=1

dimH∑
m=1

δnm〈χ|Dm〉〈Dn|ψ〉 = (χ, ψ).

In terms of the vectors ϕn, ϕm ∈ H, where ϕn =
∑dimH

n=1 Dn and ϕm =∑dimH
m=1 Dm, this is

(9.20) δnm (χ, ϕm)(ϕn, ψ) = (χ, ψ).
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Compare this with the relation between Lagrangian intersection Floer homol-
ogy groups

(9.21) HF ∗symp(L0, L1)⊗HF ∗symp(L1, L2)→ HF ∗symp(L0, L2),

where the pairwise Li’s are intersecting Lagrangian submanifolds of some
underlying symplectic manifoldMsymp, and the vector spaceHF ∗symp(Li, Lj)
is generated and counted by the intersection points of Li and Lj . Since ϕm =
ϕn, and since for any ζ1, ζ2 ∈ H, the pairing (ζ1, ζ2) counts (with weights)
the number of components of ζ1 and ζ2 that coincide, the similarity between
(9.20) and (9.21) suggests that we can interpret χ and ψ as Lagrangian
submanifolds Lχ and Lψ ofMsymp that have nonzero intersection with each
other. In turn, since the RHS of (9.17) is equal to (χ, ψ), it would mean that
we can write

(9.22)
∑
a,b

(−1)aqb dimKa,b(C) =
∑
c∈C

Ic,

where C is now the set of intersection points of Lχ and Lψ in Msymp, and
Ic is some complex number whose value depends on the point c. In light of
the fact that (i) χ and ψ can be regarded as “quantum” ramified D-modules,
(ii) every Lagrangian brane of an A-model underlies a “quantum” ramified
D-module if the target is the parabolic Hitchin fibration MH ,49 one can
deduce that Msymp =MH .

A Gauge-Theoretic Approach

We will now rederive (9.22) via four-dimensional gauge-theory, and in
the process, obtain an explicit formula for Ic. The relevant gauge theory for
this purpose is GL-twisted N = 4 SYM on the four-manifold V = W × R+

with a surface operator, where W = S3 and R+ is the half-line y ≥ 0 that
one can interpret as the Euclidean “time” direction.

According to §4.2 of [24], the LHS of (9.22) would be given by the path
integral of this N = 4 theory with (i) gauge group SU(2); (ii) GL-twist
parameter t = 1; (iii) theta-angle θ 6= 0; and (iv) a surface operator of the
form D = R+ × C with (classical) monodromy parameter α = λ∗/k̂, where
C ⊂W . This path integral counts (with appropriate weights) the number of
solutions to the localization equations defined by setting the supersymmetric
variation of the fermionic fields to zero.

49To see this, repeat the analysis in §4.4 of [77] using α 6= 0, β = η = γ = 0, and
θ 6= 0.
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Figure 5: a) Heegaard Split of W ; b) Heegaard Split of V

The above being said, note that it was also shown in §2 of loc. cit.,
that the four-dimensional path integral is actually equivalent to a three-
dimensional path integral on W , i.e., it is in fact independent of “time”. As
such, the Hamiltonian of the four-dimensional path integral — which gen-
erates field variations under “time” translations — is effectively zero. Since
each solution to the localization equations gives rise to a quantum super-
symmetric state, the vanishing of the effective Hamiltonian would mean that
the four-dimensional path integral really counts (with appropriate weights)
the number of quantum supersymmetric ground states of the N = 4 theory.

In order to describe these ground states, we will first need to make the
following observation. Just as an S2 can be obtained by gluing a pair of
two-discs D2 along their common S1 boundaries, one can also obtain an S3

by gluing a pair of three-discs D3 along their common S2 boundaries. In
particular, this means that S3 can be Heegaard split into W1 and W2 along
the two-surface Σ̂, as shown in fig. 5a, where Σ̂ = S2 is just the equator of S3.
Consequently, one can also Heegaard split V into a pair of four-manifolds
with corners W1 × R+ and W2 × R+ along the three-surface Σ̂× R+, as
shown in fig. 5b.

We are now ready to describe the ground states. According to [78],
in the situation given by fig 5, the space of ground states would coincide
with the space of certain open strings that end on the branes B1 and B2

associated with the three-manifolds W1 and W2. These open strings are
described by a topological A-model of type K (since t=1) whose target is
the parabolic Hitchin fibration π :MH → B with Lagrangian fiber F. The
branes B1 and B2 are consequently A-branes of type K, and they are neces-
sarily Lagrangian.

For a single knot in W , we can write B2 = φ̃n(B1), where φ̃n represents
an autoequivalence action on the Fukaya category of B1 branes by some
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Figure 6: The (2, k) torus knot in W = S3 obtained via a union of branes
B1 and B2 = φk4(B1). The vertical lines correspond to Σ̂ which divides W
into W1 and W2. As shown, there are on Σ̂ four distinct points where the
knot or surface operator pierces through.

element of the braid group on n letters; since C in this case cuts S = Σ̂ at
four points as shown in fig. 3, we have n = 4. For example, if C is a (2, k)
torus knot and φ̃4 = φ4, where φ4 corresponds to a half-twist or an element
of the braid group which exchanges the first two letters, we can view C in
W as a union of the branes B1 and B2 = φk4(B1), as explained in fig. 6. If
C is the unknot, one would have in fig. 6 a single twist instead of three
half-twists; C in W can then be viewed as a union of the branes B1 and
B2 = φ4(B1).

In short, the space of ground states would be given by the space of
(B1, φ̃4(B1)) strings, where φ̃4 depends on the details of the knot C. A useful
result [78] to state at this point is that the space of (B1, φ̃4(B1)) strings
is also the Lagrangian intersection Floer homology HF ∗symp(B1, φ̃4(B1)); in

particular, the dimension of HF ∗symp(B1, φ̃4(B1)) is counted by the number

of intersection points of B1 and φ̃4(B1) inMH . In all, we can write (cf. [24])

(9.23)
∑
a,b

(−1)aqb dimKa,b(C) =
∑
c∈C

(−1)gcqnc ,

where C is the set of intersection points of B1 and φ̃4(B1) in MH , while gc
and nc are integers whose values are a and b.

The relation (9.23) is indeed consistent with (9.22) because (i) like Lψ
and Lχ, the branes B1 and φ̃4(B1) are associated with the three-spaces

interior and exterior to Σ̂ in S3; (ii) like Lψ and Lχ, B1 and φ̃4(B1) are
Lagrangian A-branes of type K inMH which consequently underlie “quan-
tum” ramified D-modules onMSU(2);z1,...,z4

; (iii) like Ic of (9.22), (−1)gcqnc

of (9.23) is a complex number. In sum, this implies that we can identify
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B1, φ̃4(B1) and (−1)gcqnc with Lψ, Lχ and Ic, respectively, whence (9.23)
would just coincide with (9.22).

Explicit Check of Relation (9.23)

Let us now subject (9.23) and therefore (9.22) to an explicit check. As
mentioned, gc and nc are integers whose values are a and b; validity of (9.23)
would then imply that the total number of points spanning the set C is equal
to
∑

a,b dimKa,b(C) =
∑

a,b rkKa,b(C), where rkKa,b(C) is the rank of the

group Ka,b(C). Let us, for convenience, verify this for the (2, k) torus knot,
since its Khovanov homology is known. According to Prop. 35 of [68], if C2,k

is a (2, k) torus knot (where k is odd), K∗,∗(C2,k) = Zk+1 ⊕ (Z/2)(k−1)/2.
Thus,

∑
a,b rkKa,b(C2,k) = k + 1, and if (9.23) is to be true, B1 and φk4(B1)

ought to intersect at k + 1 points in MH .
In order to ascertain the number of intersection points of B1 and φk4(B1)

in MH , first note that hyperkähler MH (in one of its three complex struc-
tures) can be described as the affine cubic [78]

(9.24) x1x2x3 +

3∑
i=1

(x2
i − θixi) + θ4 = 0,

where (x1, x2, x3) ∈ C3, and the θi’s are constants that depend on the mon-
odromy (9.11) associated with the knot. Second, notice from fig. 6 that the
brane B1 on the left identifies the monodromies around points 1 and 4 (resp.
2 and 3). As such, B1 can be described as the degenerate quadric [78]

(9.25) (x2 + x3 − a2)2 = 0,

where a is also a constant that depends on the monodromy (9.11) associated
with the knot. Note that because of the double degeneracy of the quadric,
B1 must be viewed as a stack of two coincident branes supported along
x2 + x2 = a2. Third, note that one can explicitly show [78] that there are
(k + 1)/2 distinct sets of triples (x1, x2, x3) which simultaneously solve the
polynomial equations that describe B1 and φk4(B1). Since B1 is actually a
stack of two coincident branes, the last statement means that B1 and φk4(B1)
effectively intersect at k + 1 points in MH , as anticipated. This completes
our explicit check of relation (9.23).

Some Common Examples

Let us consider some common examples for illustration purposes. Take
the unknot C2,1. It is such that Ka,b(C2,1) = Z for a = 0 and b± 1, and is
zero otherwise; in other words, K∗,∗(C2,1) = Z2, and

∑
a,b rkKa,b(C2,1) = 2.
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On the other hand, it can be verified [78] that (x1, x2, x3) = (2, 2, a2 − 2)
simultaneously solves the polynomial equations that describe B1 and φ4(B1).
Hence, B1 and φ4(B1) effectively intersect at 2 points in MH , in agreement
with the fact that

∑
a,b rkKa,b(C2,1) = 2.

Next, take the trefoil knot C2,3. In this case, K0,−1(C2,3) = K0,−3(C2,3) =
K−2,−5(C2,3) = K−3,−9(C2,3) = Z, and K−2,−7(C2,3) = Z/2, and is zero oth-
erwise; in other words, K∗,∗(C2,3) = Z4 ⊕ Z/2, and

∑
a,b rkKa,b(C2,3) = 4.

On the other hand, it can be verified [78] that (x1, x2, x3) = (2, 2, a2 − 2)
and (x1, x2, x3) = (2, a2 − 1, 1)) simultaneously solve the polynomial equa-
tions that describe B1 and φ4(B1). Hence, B1 and φ3

4(B1) effectively intersect
at 4 points in MH , in agreement with the fact that

∑
a,b rkKa,b(C2,3) = 4.

Relation to the Moduli Space of Hecke Modifications

As explained in detail in §3.6.2 of [24], the underlying localization equa-
tions whose solutions (in the presence of a surface operator along R+ × C)
are algebraically counted by the four-dimensional path integral on the RHS
of (9.23), are just the extended Bogomolny equations described in Eq. (10.36)
of [11]. The moduli space of (singular) solutions to these equations is also
the moduli space GrSU(2) of Hecke modifications of an SU(2)-bundle on

Σ̂ [11]. This means that we can replace MH in our above discussion with
GrSU(2), in which case the Lagrangian A-brane B1 would just correspond to

an element in its middle-dimensional cohomology Hmid(GrSU(2)). Since B1

underlies the “quantum” ramified D-module ψ of (9.13), and since ψ can be
represented by C λ

knots of (9.10), we have

(9.26) Hmid(GrLSU(2)) ∼=
〈

Φ2
s1

(z1) Φ2
s2

(z2) Φ2̄
s3

(z3) Φ2̄
s4

(z4)
〉

Σ̂
.

(We have made use of the fact that GrSU(N) = GrLSU(N) to arrive at the
above expression.) Note that (9.26) is just a physical manifestation for G =
SU(2) of Proposition 2.8 of [25]!

Relation to a Conjecture by Seidel and Smith

In [2], Seidel and Smith conjectured that

(9.27)
⊕
l

HF l+2+w
symp (B1, φ

k
4(B1)) =

⊕
l

⊕
i−j=l

Ki,j(C2,k),

where w is the number of positive minus the number of negative crossings
of the knot C2,k. (To arrive at the above expression, we have made use of
the result in [25] that the symplectic manifold M of [2] coincides, in this
case, with GrSU(2).) This conjecture was proved for the trefoil knot C2,3
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Figure 7: A link L in S3

via Proposition 61 of [2]. However, it remains an outstanding mathematical
problem to prove it for all k, although a first effort in this direction recently
appeared in [79].

That said, note that (9.23) asserts, at least on purely physical grounds,
that the conjecture ought to hold for all k: the derivation of (9.23) depends
squarely on the observation that the solutions to the four-dimensional local-
ization equations — which represent the time-invariant states of a five-
dimensional Yang-Mills theory that generate K∗,∗(C2,k) (see [24], §4.2) —
actually correspond to four-dimensional ground states which can be captured
by HF ∗symp(B1, φ

k
4(B1)), i.e.,

⊕
mHF

m
symp(B1, φ

k
4(B1)) =

⊕
a,bKa,b(C2,k)

whence (9.27) immediately follows. Thus, we have found a physical proof
of the above conjecture by Seidel and Smith in relation (9.23), or equiva-
lently, in relation (9.22)!

Generalization to an Arbitrary Link

One can of course generalize C in fig. 3 to an arbitrary link L =
∑n−1

i=1 Ci
composed of n− 1 components Ci each in the representation labeled by λi.
Then, according to the analysis in [72], if M = S3 as shown in fig. 7, the
corresponding link invariant would be given by

(9.28) Z
λ1···λn−1

S3 (L) =
∑
j

S0
jτj(B̂).

The above formula can be explained as follows. The index “j” labels the
highest dominant weight representations of G; τj(B̂) is the trace of the

operator B̂ in the Hlibert space Hj of states which can be represented by
the “quantum” ramified D-modules

(9.29) C j
knots =

〈
Φλ1
s1

(z1) · · ·Φλn−1
sn−1

(zn−1) Φλj
sn(zn)

〉
Σ̂
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on MG;z1,...,zn−1,zn ; B̂ is a representation of the subgroup B of the mapping
class group M for S2 with n marked points which leaves fixed the nth point;
and S0

j are certain functions in k̂ which represent in the Hilbert space a
modular transformation S : τ → −1/τ of a two-torus embedded in S3 with
complex structure τ .

A useful result to quote at this point is the following. Elements of the

mapping class group M generate automorphisms of the line bundle L k̂ on
MG;z1,...,zn−1,zn [80]. Since the “quantum” ramified D-modules C j

knots cor-
respond to sections of the aforementioned line bundle, and since they are
objects which span a category C, it would mean that elements of B ⊂M
generate autoequivalences of C. This is also reflected in the fact that B̂ :
Hj → Hj . Hence, we can also write

(9.30) Z
λ1···λn−1

S3 (L) =
∑
j

S0
j

dimHj∑
sj=1

(D
sj
j , φB̂(D

sj
j )),

where the D
sj
j ’s are “quantum” ramified D-modules Dcmod(MG;z1,...,zn−1,zn)

that span an orthogonal basis in Hj ; ( , ) is the usual natural pairing in

Hj ; and φB̂ is the operator B̂ — with eigenvector D
sj
j — representing an

autoequivalence of C. Thus, the link invariant Z
λ1···λn−1

S3 (L) just counts (with
appropriate weights) the number of linearly-independent “quantum” rami-
fied D-modules D

sj
j .

Let us again specialize to the case where G = SU(2); let all the λi’s
label the two-dimensional fundamental representation 2 of SU(2). Then,
Z2,...,2
S3 (L) is simply the Jones polynomial of the link L [72]. In turn, if the

finite-dimensional vector space

(9.31) K(L) = ⊕a,bKa,b(L)

is the corresponding bi-graded Khovanov homology, we can, according to [68],
rewrite (9.30) as

(9.32)
∑
a,b

(−1)aqb dimKa,b(L) =
∑
j

S0
j

dimHj∑
sj=1

(D
sj
j , φB̂(D

sj
j )),

where

(9.33) q = exp

(
2πi

k̂ + h∨

)
.
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Thus, from (9.32), we learn that a (weighted) count of the Khovanov homol-
ogy of the n− 1 component link L would be given by a (weighted) count of
the number of linearly-independent “quantum” ramified D-modules D

sj
j on

MSU(2);z1,...,zn−1,zn .

9.3. Langlands duality and representations of
complex Lie groups

Consider the flag manifold model of §9.1. Furthermore, consider its R→
0 limit. From (9.2) and (9.3), one can see that its corresponding action
IR→0
∞,eff describes the worldsheet theory of a string whose coupling strength is

infinitely large, i.e., we are now considering the ultra-quantum limit of the
string. From (9.4), (9.2), and R = 1/

√
k + h∨, we can write IR→0

∞,eff as50

IR→0
∞,eff = − 1

π

∫
Σ
|d2z| √g e−2σ(z,z̄)

[ |∆+|∑
i=1

{
βi∂z̄γ

i − ∂z̄(V i · Y )∂z(Vi · Y )
}

(9.34)

+ i
Rz̄z√
k̂ + h∨

(ρ · Y )

]
,

where

(9.35) k̂ + h∨ =
1

k + h∨
.

Recall that since the flag manifold model of §9.1 can be viewed as the
local flag manifold model of §6.1, and since we consider GC to be simply-
laced in this section whence ρ = ρ∨, the action IR→0

∞,eff enjoys a generalized
T -duality which maps R→ 1/R, ρ→ −ρ and YR(z̄)→ −YR(z̄), where Y =
YL(z) + YR(z̄). Thus, since ρ · YR = 0 (see discussion above (9.1)), and since
Lρ = ρ∨ = ρ, where Lρ is the Weyl vector of LGC, it is clear that IR→0

∞,eff is
the T -dual of the action

LIR→0
∞,eff = − 1

π

∫
Σ
|d2z| √ge−2σ(z,z̄)

[ |∆+|∑
i=1

{
βi∂z̄γ

i + ∂z̄(V
i · Y )∂z(Vi · Y )

}
(9.36)

− i Rz̄z√
Lk̂ + Lh∨

(Lρ · Y )

]
,

50To arrive at the following expression, we have made the following trivial field
redefinitions: β → iβ, γ → iγ, and Y → −Y .
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where

(9.37) Lk̂ + Lh
∨

= k + h∨ =
1

k̂ + h∨
.

Here, we have conveniently defined Lh∨ to be the dual Coxeter number of
the Lie algebra LgC of LGC.

Another consequence of GC being simply-laced is that the total number
of positive roots |∆+| associated with GC and LGC are the same. Moreover,
GC and LGC have the same rank, regardless. As such, restricting to integer
values of Lk̂, one can (up to an overall sign) also interpret LIR→0

∞,eff as the

action of a WZW model for LG (the real, compact form of LGC) at level
Lk̂. (See discussion following (9.4).) In short, T -duality of the flag manifold
model in the infinite X-volume limit implies that when R→ 0, the WZW
model for G at level k̂ that it describes can be regarded as a WZW model
for LG at level Lk̂, where k̂ and Lk̂ are related as shown in (9.37).

A Ramified Geometric Langlands Correspondence for GC

Now consider a general holomorphic conformal block of the LG-WZW
model at level Lk̂ in the holomorphic primary field operators Φ

Lλ
s (z) associ-

ated with the highest dominant weight Lλ:

LCknots =
〈

Φ
Lλ1
s1

(z1) · · ·ΦLλp
sp (zp)Φ

0(zp+1) · · ·Φ0(zn)
〉

Σ̂
(9.38)

=
〈

Φ
Lλ1
s1

(z1) · · ·ΦLλp
sp (zp)

〉
Σ̂
.

(The reason for the second equality is given above (9.8).) By repeating
our analysis in the first, second and third paragraphs of §9.2 but with G
replaced by LG, and by noting a theorem of Mehta and Seshadri in [74]
regarding the one-to-one correspondence betweenMLG;z1,...,zp and the mod-
uli space BunLGC;z1,...,zp of (stable) holomorphic parabolic LGC-bundles on

the rational curve Σ̂ whose structure group reduces at the points z1, . . . , zp
to the Borel subgroup LB ⊂ LGC, we learn that (i) LC knots must be given
by elements of H0(BunLGC;z1,...,zp ,L

Lc−Lh∨), where Lc = Lk̂ + Lh∨, and L
is a line bundle whose first Chern class generates the second cohomology of
BunLGC;z1,...,zp ; (ii) we can interpret LCknots as a “quantum” (tamely) ram-

ified D-module DLc
mod(BunLGC;z1,...,zp) on BunLGC;z1,...,zp with twist parame-

ter Lc.
On the other hand, recall from (9.9) that a general holomorphic confor-

mal block of the T -dual G-WZW model at level k̂ can be written as

(9.39) Cknots =
〈

Φλ1
s1

(z1) · · ·Φλp
sp (zp)

〉
Σ̂
.
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Cknots can similarly be interpreted as a “quantum” (tamely) ramified D-
module Dcmod(BunGC;z1,...,zp) on BunGC;z1,...,zp with twist parameter c, where
(9.37) means that

(9.40) Lc =
1

c
.

Note at this point that (6.46) (which is valid for arbitrary values of k
denoted therein) tells us that T -duality leads to the identification of W-
algebras

(9.41) W
k̂
(gC) ∼=WLk̂

(LgC),

where the relation between k̂ and Lk̂ is as given in (9.37). Note also that one
can identify the (generators of the)W-algebras with C[∂mz S

(si)(z)]i=1,...,l;m≥0

— the spaces of differential polynomials on the S(si)(z)’s in (5.54) with
complex coefficients. And, from our discussion leading up to (7.19), we find
that the differential polynomials spanning C[∂mz S

(si)(z)]i=1,...,l;m≥0 which
correspond to W

k̂
(gC) and WLk̂

(LgC), actually act as differential operators
on Cknots and LCknots, respectively. In sum, T -duality implies that we can
identify Cknots with LCknots. Since our discussion assumes the R→ 0 limit,
and since we have Lc→∞ and c→ 0 when R→ 0,51 it would mean that
we have the following correspondence:

(9.42) D0
mod(BunGC;z1,...,zp)←→ D∞mod(BunLGC;z1,...,zp).

According to our earlier discussions, D0
mod(BunGC;z1,...,zp) is a “classical”

ramifiedD-module on BunGC;z1,...,zp . On the other hand,D∞mod(BunLGC;z1,...,zp)
is known to be a quasi-coherent sheaf on BunLGC;z1,...,zp [70], where the con-
nection of the holomorphic parabolic LGC-bundle has unipotent monodromy
around the points z1, . . . , zp.

52 In other words, T -duality in the R→ 0 limit
implies the statement (9.42) of the “classical” tamely-ramified geometric
Langlands correspondence for GC!

Relation to Representations of LGC

According to our analysis in §9.2, LCknots on the RHS of (9.42) can be
related to knot invariants of three manifolds M , where M can be Heegaard

51 Because Lh∨ = h∨ and thus, from (9.37), we have Lk̂ = k, when R→ 0, i.e.,
k →∞, we have Lc→∞ and c→ 0.

52Since the highest dominant weights Lλi and hence their duals Lλ∗i are finite
while Lk̂ →∞, the monodromy of the underlying LGC-connection around the point
zi — gLλi = exp(−2πi Lλ∗i /

Lk̂) — approaches 1, i.e., it is unipotent.
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split along Σ̂ ⊂M , and where the colored knots pierce through Σ̂ at the
points z1, . . . , zp in the highest dominant weight representations labeled by
Lλ1, . . . ,

Lλp. This means that one can make the identification [81]

(9.43) LC knots ←→ RepLλ1
(Uq(

LgC))⊗ · · · ⊗ RepLλp(Uq(
LgC)),

where RepLλi(Uq(
LgC)) is an irreducible representation of the quantum group

Uq(
LgC) that is associated with the Lλi-representation of LG, and

(9.44) q = exp

(
iπ

Lk̂ + Lh∨

)
= exp(iπc).

(The second equality is due to the fact that Lc = Lk̂ + Lh∨ and Lc−1 = c.)
Note that in the R→ 0 limit whence c→ 0 and q → 1, we have U1(LgC)→
LgC. Also, RepLλi(

LGC) is just the integrated form of RepLλi(
LgC). Conse-

quently, in addition to (9.42), T -duality in the R→ 0 limit also implies that
we have the following correspondence:

(9.45) D0
mod(BunGC;z1,...,zp)←→ RepLλ1

(LGC)⊗ · · · ⊗ RepLλp(
LGC),

where RepLλi(
LGC) is the Lλi-representation of LGC. This correspondence

has also been mathematically conjectured by Gaitsgory in §4.3 of [3] (as
a “classical” c→ 0 limit of the correspondence in Conjecture 0.13 of [4]).
Thus, we have in the above a purely physical proof of Gaitsgory’s conjecture
for GC.53
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