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RG domain walls and hybrid
triangulations

TUDOR DIMOFTE, DAVIDE GAIOTTO AND ROLAND VAN DER VEEN

This paper studies the interplay between the A/ = 2 gauge theo-
ries in three and four dimensions that have a geometric descrip-
tion in terms of twisted compactification of the six-dimensional
(2,0) SCFT. Our main goal is to construct the three-dimensional
domain walls associated to any three-dimensional cobordism. We
find that we can build a variety of 3d theories that represent the
local degrees of freedom at a given domain wall in various 4d
duality frames, including both UV S-dual frames and IR Seiberg-
Witten electric-magnetic dual frames. We pay special attention to
Janus domain walls, defined by four-dimensional Lagrangians with
position-dependent couplings. If the couplings on either side of the
wall are weak in different UV duality frames, Janus domain walls
reduce to S-duality walls, 7.e. domain walls that encode the proper-
ties of UV dualities. If the couplings on one side are weak in the IR
and on the other weak in the UV, Janus domain walls reduce to RG
walls, i.e. domain walls that encode the properties of RG flows. We
derive the 3d geometries associated to both types of domain wall,
and test their properties in simple examples, both through basic
field-theoretic considerations and via comparison with quantum
Teichmiiller theory. Our main mathematical tool is a parametriza-
tion and quantization of framed flat SL(K) connections on these
geometries based on ideal triangulations.
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1. Introduction

Over the last few years, a wealth of new results and insights about super-
symmetric gauge theories in three and four dimensions have followed from
two main directions of research. Protected quantities such as indices and
correlation functions in curved space were computed exactly, testing known
dualities, and predicting new ones. Moreover, the twisted compactification of
six-dimensional (2,0) superconformal field theories provided an organizing
principle for very large classes of lower dimensional field theories and their
BPS defects and operators. The interplay between these two ideas is strik-
ing: protected calculations in a lower dimensional field theory often manifest
the theory’s six-dimensional origin. The prominent example is the twisted
compactification of the six-dimensional theories on a punctured Riemann
surface, which produces four dimensional theories in “class S” [I, 2]. The
superconformal index and the sphere partition function of a class S the-
ory take the form of two-dimensional correlation functions on the Riemann
surface [3], 4].

The situation in three dimensions is somewhat analogous. It is possible
to give an algebraic definition of a vast class of three-dimensional N = 2
SCFT’s built in such a way that protected quantities have a natural inter-
pretation in terms of the geometry of an auxiliary three-manifold. These
SCFTs have UV Lagrangian descriptions as abelian Chern-Simons-Matter
theories deformed by superpotential terms, which may contain monopole
operators [5l, 6]. The properties of such theories, which we will denote as
“class R,” loosely match what one could expect to obtain from the twisted
compactification of the six-dimensional Ax_; theories on three-manifolds
with networks of line defectSE The expectation was reinforced by the M-
theory analysis of [§], which explains how the abelian CSM structure emerges
in the IR.

However, in order to give a precise six-dimensional construction of a
given class R theory, several subtleties remained to be addressed. In this
paper, we will attempt to clarify them. Our motivation is not just to dot all
i’s and cross all t’s. The three-dimensional theories are expected to define
natural boundary conditions and domain walls for the four-dimensional the-
ories. In order to make these relations manifest, we find it necessary to first
clarify the above-mentioned subtleties.

!The class R of abelian Chern-Simons-Matter theories was defined purely alge-
braically in [5] [7], with no reference to three-dimensional geometries or Lie algebras.
It was then shown (also in [6]) that for Lie algebras g = Ax_1 one can construct
three-manifold theories that belong to this class.
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The six-dimensional intuition predicts that to every cobordism between
two punctured Riemann surfaces, one should be able to associate a natural
domain wall between the corresponding class S theories. Our main result is
that the same domain wall can be given not one but several descriptions as
distinct class R theories, coupled to either a full UV description of the four-
dimensional theories, or to an effective IR Seiberg-Witten description of the
same theories, or to a hybrid mixture. Different descriptions will be useful
in different regions of parameter space, depending on which bulk degrees of
freedom are weakly coupled.

This includes two special cases. The first, which we expected to find from
the beginning, is the class of “S-duality walls,” which implement the equiv-
alence between different S-dual descriptions of the same four-dimensional
theory [9, 10]. The second, which was unexpected, is a class of “RG walls,”
which implement the relation between a UV and an IR description of the
same theory. The discovery of RG walls inspired the related two-dimensional
work of [11]. We also sketch a general argument explaining why such domain
walls for any A/ = 2 theory should admit class R descriptions, with no ref-
erence to six dimensions. This can be thought of as a field theory version of
the arguments in [g].

There are also some ancillary mathematical payoffs to our exploration.
Using S-duality walls, we find a precise 3d interpretation of the integral
kernels that implement the Moore-Seiberg groupoid in Liouville theory,
or, equivalently, a mapping-class-group action on quantized Fenchel-Nielsen
coordinates of Teichmiiller theory. From RG domain walls, we find a 3d
interpretation of the eigenfunctions of geodesic length operators in quan-
tum Teichmiiller theory [I2H15]. For higher-rank Lie algebras Ax_1, these
generalize to operations in Toda theory and higher Teichmiiller theory [16],
respectively.

1.1. Framed 3-manifolds and the six-dimensional
dictionary

The oriented three-manifolds M that label theories in
class R are assembled by gluing together truncated
tetrahedra (Figure (1)) [5, [6]. Some (not necessarily
all) of the big hexagonal faces of tetrahedra are glued
together in pairs, while the small triangular faces at
the truncated vertices are never glued. Therefore, M
acquires two kinds of boundary: a big boundary tiled
by unglued big hexagons, and a small boundary tiled

Figure 1: Truncated
tetrahedron.
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by small triangles. One additionally requires that the small boundary com-
ponents have the topology of discs, annuli, or tori. Every hole in the big
boundary is either filled in by a small disc, or connected to another hole by
a small annulus. One such manifold is shown in Figure

Figure 2: Left: a 3-manifold that admits a decomposition into truncated
tetrahedra. It has two big boundaries (a 4-punctured sphere and a 3-
punctured sphere) with fixed 2d triangulation t; as well as a small disc
(filling in one puncture), three small annuli, and a small torus. Topologi-
cally, this manifold has just two connected boundary components, the torus
and a surface of genus two. Right: schematic of how truncated tetrahedra
are assembled around a small torus boundary.

We say that a three-manifold M whose boundary is separated into big
and small pieces this way is framed. We will only consider framed three-
manifolds in this paper, and will assume that they admit finite decomposi-
tions into truncated tetrahedra

For example, a truncated tetrahedron itself is a framed three-manifold,
whose big boundary is a sphere with four holes, and whose small boundary
consists topologically of four discs that fill in the holes. Another example is
a knot complement, formed by gluing together tetrahedra so that the only
remaining boundary is a small torus.

Notice that the big boundary of such a 3-manifold inherits a 2d ideal
triangulation: a triangulation whose edges all begin and end at holes, or
“punctures.” Then the 3d SCFT associated to M, for any Lie algebra g =
Ak _1, depends on

e the 2d ideal triangulation t of the big boundary; and

2We call our 3-manifolds “framed” because they are perfectly suited for the study
of “framed” flat connections in the sense of Fock and Goncharov [16]. This use of
“framing” should not be confused with a choice of trivialization of the tangent
bundle T'M; the latter will not play an important role here.
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e a choice of polarization II for all boundaries, compatible with this
triangulation.

Thus we can denote the 3d theory as Tk [M;t;II]. Notably, the theory does
not depend on the 3d bulk triangulation of M, as long as that triangula-
tion is compatible with the big-boundary triangulation t. Indeed, different
bulk triangulations lead to mirror-symmetric descriptions of Tk [M;t;II] as
a class-R theory.

Geometrically, 1T is a polarization for an open subset of the symplectic
moduli space of framed flat PGL(K) connections on dM, which we will
review later. For small tori, the polarization is a choice of A and B cycles.
For small annuli, the polarization is canonical — since there is a canonical
non-contractible A-cycle on an annulus. For big boundaries C, however, there
is typically an Sp(2d,Z) worth of choices, where 2d is the dimension of the
moduli space of flat PGL(K') connections on C.

One of the central themes of this paper is that the 3d N =2 theory
Tk [M,t,11] can provide a half-BPS boundary condition for 4d N =2 the-
ories of class S in many different ways. One of these ways was describedﬂ
in [5], and is closely related to constructions of [8]: every big boundary C
of M can be coupled to a 4d Seiberg-Witten theory SWg|[C]. The Seiberg-
Witten theory is the IR description of the non-abelian theory T [C] obtained
by twisted compactification of the 6d Ax_1 theory on C. SWik|[C] has gauge
group U(1)%, and an Sp(2d,Z) electric-magnetic duality group. The gauge
fields of SWk|[C] can be used to gauge abelian flavor symmetries of T [M,
t, IT], after which the dependence on big-boundary polarization II is erasedﬂ
Subsequently, electric BPS hypermultiplets of SWx|[C] can be coupled to chi-
ral operators of T [M, t, I1], after which the dependence on the big-boundary
triangulation t is erased.

We can reproduce this 3d-4d coupling from six dimensions (Figure [3]). To
do so, we first choose a metric on M such that all big boundaries C; are pulled
out to infinity, forming semi-infinite cylindrical regions that asympotitically
take the form Ry x C;. Then we must “remove the regulator” from the
small boundaries of M. That is, we replace each small boundary with a
codimension-two defect of the 6d theory. Each small disc, filling in a hole
on a big boundary C;, becomes a semi-infinite regular line defect stretching

3In [5] mainly the g = A; case was discussed. The generalization to Ax_; is
straightforward following [6].

4More precisely, different choices of polarization become related by Sp(2d,Z)
electric-magnetic duality transformations of the combined 3d-4d system. We will
review how t and II are “erased” in Section
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e (F 3
Lﬁ )}) —~ SW|C1] x SWIC4] T[M]
xR3

Cy (i

Figure 3: Adjusting the metric on the manifold M from Figure[2]and replac-
ing small boundaries with line defects so that the compactification of the 6d
theory on M x R3 produces Seiberg-Witten theories on a half-space coupled
to T [M] as a boundary condition.

out into the corresponding cylindrical region. Each small annulus is shrunk
to a regular line defect connecting punctures in the cylindrical regions. And
each small torus is shrunk to closed regular line defect, in such a way that
the A-cycle of the torus becomes an infinitesimally small loop linking the
defect.

Upon compactifying the 6d Ax_; theory on M x R3 with this metric,
and flowing to the far infrared, one obtains a (non-interacting) product of
Seiberg-Witten theories [, SWk[C;] on a half-space Ry x R3, all coupled
to the theory Tx[M,t,1I] on the boundary R3. The coupling turns out to
be precisely the one described above — we will review how this arises in
Sections The full 3d-4d system does not depend on t or on big-boundary
polarization II.

Now, for this picture to make sense, two things must be true:

1) The regular line defects of the 6d Ax_1 theory must be able to end.
(Otherwise the dictionary between small discs and semi-infinite defects
breaks down.)

2) The abelian flavor symmetries of T [M, t, IT] associated to the A-cycles
of small annuli and tori, a priori U(1)X~!, must be enhancedﬁ to
SU(K). (Because closed or infinite regular defects of the 6d theory
carry non-abelian SU(K) flavor symmetry.) More precisely, these fla-
vor symmetries of Ty [M] must be enhanced after coupling to Seiberg-
Witten theories as above.

5This precise statement holds for mazimal of full defects of the 6d Ax_; theory.
Otherwise one expects enhancement to non-abelian subgroups of SU(K). For K = 2
the regular defects are unique, so there is no ambiguity.
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A large part of this paper will be devoted to understanding the second point,
i.e. the non-abelian enhancement of flavor symmetry and its geometric ori-
gin. Constructions from our work [17] will play a key role. We will mainly
focus on the A; theory, obtaining enhancements from U(1) to SU(2). The
case of general K and maximal defects can begin to be analyzed using meth-
ods of [6].

The first point will not play a further role in this paper. Although we
believe it is likely that codimension-two regular defects can end on a special
quarter-BPS codimension-three defect, we will not attempt to define such an
object here. We will only encounter small disks organized in a very specific
configuration, which will be given an alternative six-dimensional interpreta-
tion in terms of irregular defects. We will explain momentarily that a rank
r irregular defect in the six-dimensional A; theory joining two big bound-
ary components can be naturally “regularized” by gluing the two boundary
components along a 2r-sided polygon with small disks at the vertices.

1.2. Non-abelian couplings

Once we know that the flavor symmetries of T [M, t,1I] that are associated
to small annulus and torus boundaries have non-abelian enhancements, we
can attempt to interpret this 3d theory as a boundary condition for a more
universal 4d bulk.

Let us set K = 2 for concreteness. Then for every small torus boundary,
T5[M,t,101] can provide a quarter-BPS boundary condition for 4d N =4
SU(2) super-Yang-Mills theory T5[T?]. In particular, the SU(2) flavor sym-
metry associated to the A-cycle of the small torus is identified with the gauge
symmetry of T5[T?]. This coupling has a six-dimensional origin that is closely
related to the original argument for the flavor symmetry of defects. After
using the dictionary above to shrink a small torus to closed regular defect
in M x R?, we can choose a metric for M that pulls the closed defect out to
infinity, producing cylindrical regions of the form 72 x R, x R3. Compact-
ification on T2 leads to V' = 4 SYM on a half-space, coupled to To[M, t,I1].

More interesting are the small annuli. Recall that a small annulus con-
nects two punctures (or holes) on the big boundary, which is made of surfaces
C;. After we couple T5[M,t,II] to Seiberg-Witten theories [, SW>[C;], the
SU(2) flavor symmetry associated to an annulus should be identified with
the two SU(2) flavor symmetries of the Seiberg-Witten theories associated
to the big boundaries C; that the annulus ends on. This flavor symmetry can
then be gauged in the product of SW theories in the 4d bulk.
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SU(2)2

Figure 4: Forming a genus-two boundary from two big three-punctured
spheres connected by small annuli. This equivalent to a pants decompo-
sition.

For example, consider a closed topological boundary component Cof M
consisting of a collection of big three-punctured spheres connected by small
annuli (Figure . The separation into big and small pieces is equivalent
to a pair-of-pants decomposition of C. Each big three-punctured sphere is
associated to a free 4d half-hypermultiplet in the tri-fundamental represen-
tation of an SU(2)? flavor group. We can then identify and gauge the pairs
of SU(2) flavor groups associated to punctures that are connected by small
annuli. What we get is precisely the non-abelian UV description of the 4d
class-S theory T3[C], in a UV duality frame corresponding to the given pants
decomposition of C [1]. Now T>[M, t, II] should provide a half-BPS boundary
condition for T5 [C~] ! This can also be motivated with a 6d construction.

The general picture now becomes the following. To the boundary of any
framed 3-manifold M we claim that we can associate a universal 4d N' = 2
theory T5[0M], for which T5[M] provides a half-BPS boundary condition.
Each closed topological component of the boundary 0 M contributes an inde-
pendent factor to T3[0M]. Small tori contribute N"=4 SYM factors. The
remaining boundaries C; are decomposed into big punctured surfaces con-
nected by small annuli, and thus contribute products of Seiberg-Witten the-
ories in which pairs of SU(2) flavor groups have been identified and gauged.
Notice that this can be interpreted as the class-S theory T5[C;] after a partial
flow to the IR. In coupling T>[M] to T>[0M], all the flavor symmetries of
T»[M] are gauged, and chiral operators of T»[M] couple via superpotentials
to BPS hypermultiplets of To[0M].

Starting from this general setup, it is easy to recover other boundary
conditions by sending various 4d gauge couplings to zero (and masses to
infinity). We can picture this operation as “cutting” the boundary 0M into
pieces. For example, by cutting all small annuli (sending the couplings of
their SU(2)’s to zero) we recover a boundary condition for a product of
pure Seiberg-Witten theories. Of course, we can also leave some of the small
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annuli intact, leading to boundary conditions for products of pure Seiberg-
Witten theories and non-abelian UV theories.

1.3. Irregular defects

We can even go further and cut the big boundaries of M into pieces along
closed polygonal edge-paths in the boundary triangulation. We require that
the paths’ vertices lie at small discs (not annuli). Cutting C — C; U Cy along
a polygon corresponds to taking a limit in the parameter space of SW3[C]
so that BPS states associated to the edges of the polygon become infinitely
massive while BPS states associated to all other edges (in a triangulation
of C) remain light. Following the 2d dictionary of [1§], the new polygonal
boundaries of C; and Cy should now be interpreted as irregular punctures
in these surfaces. The theory SW5[C| degenerates into a product SW3[C;] x
SW5[Cs], where each SW5[C;] results from compactification of the 6d Ay
theory with irregular defects. The 3d theory T5[M| provides a BPS boundary
condition for the product. The polygon can be thought of as a regularization
of the irregular defect joining the irregular punctures on C; and Cs.

g

N 7

— L\

Figure 5: Cutting the big boundary of a tetrahedron in half along a four-
sided polygon (in blue).

The simplest illustration of this last scenario is for M = A a single tetra-
hedron (Figure [5]). Since the big boundary of A is a four-punctured sphere,
the theory T5[0A] is the Seiberg-Witten description of 4d N =2 Ny =4
SQCD. The IR gauge group is U(1). In a “strong coupling” region of the u-
plane the theory has a finite collection of BPS hypermultiplets with electric,
magnetic, and dyonic charge. Cutting A in half along a 4-sided polygon cor-
responds to taking an Argyres-Douglas type limit, in which only two electric
particles survive. They are the BPS states of two “A;” Argyres-Douglas the-
ories [19]. The tetrahedron theory Ta = T5[A, t,II] then provides a boundary
condition for a product of the two Argyres-Douglas theories — or equiva-
lently a domain wall between one and the other. This domain wall was the
basic object of study in [8]. We will discuss it further in Section
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1.4. Duality and RG domain walls

Notice that a BPS boundary condition for a product of theories T7 x T3 is
equivalent to a BPS domain wall between 77 and T5. Graphically, this might
be thought of as in Figure [6] Therefore, when a 3-manifold M either has
topologically disjoint boundary components or a boundary that has been
“cut” into pieces as above, the theory Tx[M,t,II] should provide a BPS
domain wall. In this interpretation, two particular kinds of 3-manifolds that
were anticipated in [20] play a special role. (For simplicity, we’ll continue to
take K = 2.)

xR3 AW

T[M]
SW[C,] SW[C]

Figure 6: Reinterpreting the boundary condition of Figure [3| as a domain
wall.

Let C be a punctured surface, and construct a “trivial” 3-manifold M =
C x I that has two big boundaries C, C ~ C, and a collection of small annuli
connecting the punctures of C directly to the punctures of C. We consider 0 M
to be “cut” along these annuli. We have claimed that T»[M, t, IT] provides a
boundary condition for SW5[C] x SW5[C], and thus a domain wall between
the 4d Seiberg-Witten theory SW3[C] and itself. It is a totally reflecting
boundary, or a totally transparent domain wall.

To obtain something more interesting, let us choose a pants decompo-
sition p for C (i.e. a maximal set of non-intersecting A-cycles), and form a
new three-manifold My by shrinking the A-cycles, as in Figure [7] Specifi-
cally, although M, and M are equivalent topologically, we have replaced the
boundary C in M by a network of big three-punctured spheres connected
by small annuli. The 4d theory associated to this new boundary is the non-
abelian class-S theory T5[C]. We now expect the 3d theory T5[Mp] to couple
to SW3[C] x T»[C], and thus provide a natural domain wall between IR and
UV descriptions of the same 4d theory — an RG domain wall!
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Figure 7: Left: trivial cobordism M = C x I with C a big punctured torus.
Right: shrinking an A-cycle on the “inner” boundary C to create a new
manifold Mp; its inner boundary is now a big three-punctured sphere with
one puncture connected to the outside and the other two connected to each
other by small annuli.

We will construct RG domain walls in Section [3] purely in field theory
by starting from Janus configurations where 4d parameters vary in space.
In the limit that parameters vary very quickly, over a short interval, we will
recover the 3d domain-wall theory T5[Mp] coupled 4d UV and IR theories
in the bulk.

The most basic property we would expect from a BPS RG domain wall is
that UV bulk BPS line operators brought to the interface should match with
their bulk IR description, brought to the interface from the opposite side.
The correspondence between UV and IR descriptions of a BPS line defect
was discussed in detail in [21], and thus we have in our hands an infinite set
of constraints which the RG domain walls should obey. These constraints
can be made more manageable by inserting the line defects inside a pro-
tected calculation, such as an ellipsoid partition function, or a sphere index.
Alternatively, we can compare their vevs when the theory is compactified
on a circle.

The correspondence between UV and IR operators will work automati-
cally for our candidate RG domain walls, for a simple geometric reason. The
UV line operators are associated to closed loops on the Riemann surface C
[22], and their vevs to the trace of the holonomy along the loops of a flat
PSL(2,C) connection on C [21]. The 3d geometry is selected in such a way
that the same holonomy can be computed along a corresponding loop on the
big boundary region in terms of certain “edge coordinates.” The edge coor-
dinates coincide with the vevs of IR line operators and the relation between
holonomies and edge coordinates is known to encode the relation between
UV and IR line defects [21I]. The role of the 3d geometry is to allow us to
transport the UV line operators from the UV end of the geometry to the IR
end of the geometry, where the triangulation and edge coordinates live.



150 T. Dimofte, D. Gaiotto and R. van der Veen

Figure 8: Shrinking A- and A’-cycles on both the inner and outer boundaries
of M to create Mp . The resulting Mp v here can be thought of as the
complement of a trivalent “Hopf network” in S3. It is the 3-manifold that
gives rise to the theory T[SU(2)].

A closely related modification of the trivial cobordism M = C x [ shrinks
a set of A-cycles on both ends, according to two different pants decomposi-
tions of C: p and p’. Call the resulting manifold My, /. Then the 3d theory
T5[Mp p] couples naturally to two copies of T3[C] in different weakly cou-
pled UV descriptions, corresponding to p and p’. We obtain a concrete
Lagrangian formulation for the domain wall that implements the N = 2
S-duality of [1], in direct analogy with the N'=4 S-duality domain walls
of [9].

The simplest example of such an S-duality domain wall is for 4d N' = 2*
theory. The 3d domain-wall theory is an NV = 2 deformation of the theory
called T[SU(2)] in [9]. We will recover T[SU (2)] as the theory corresponding
to the 3-manifold in Figure[§]. In fact, we will obtain several different mirror-
symmetric descriptions of T'[SU(2)], including one whose SU(2) x SU(2)
flavor symmetry is manifest.

1.5. Organization

Most of this paper will specialize to theories coming from the compactifica-
tion of the A; six-dimensional (2,0) SCFT, i.e. to K = 2.

We begin in Section [2] by reviewing geometric properties of Seiberg-
Witten theories of class S and presenting their natural coupling to 3d the-
ories of class R at IR interfaces. In Section we discuss properties of
Janus configurations for 4d N = 2 theories and explain (in principle) how



RG domain walls and hybrid triangulations 151

to extract from them 3d domain-wall theories and their bulk-boundary cou-
plings. Generalizing the constructions of [8], we interpret Lagrangian defini-
tions of the 3d theories in terms of triangulated 3-manifold geometries.

We apply our understanding of Janus configurations in Section [4] to
build the most fundamental example of an RG domain wall, for pure N' =
2 SU(2) gauge theory. We interpret it in terms of a framed 3-manifold
geometry, establishing the basic geometric properties of UV (non-abelian)
bulk-boundary couplings. Then in Section [5| we generalize the geometry of
UV bulk-boundary couplings to any 4d (A;) theory of class S coupled to a
3d theory of class R. We focus in particular on how the (a priori) abelian
flavor symmetries in 3d get enhanced so that they can be identified with
non-abelian symmetries in a 4d bulk.

Finally, in Sections [6] and [7] we demonstrate our various constructions in
two detailed examples, describing RG walls and duality walls for 4d SU(2)
N = 2* theory (coming from compactification on a punctured torus) and for
4d SU(2) theory with N; = 4 flavors of matter (coming from compactifica-
tion on a four-punctured sphere).

In Appendix [A] we include mathematical definitions of various mod-
uli spaces of framed flat connections used in the paper, their coordinates
(including a novel definition of complexified Fenchel-Nielsen twists), and
their quantization. In Appendix [B] we explain how to build a useful 3d tri-
angulation for any framed 3-manifold corresponding to an RG or duality
wall.

2. The simplest couplings

In this section, we seek to describe the natural couplings between a 3d theory
of class R and an abelian Seiberg-Witten theory of class S. These couplings
are associated to the big boundary of a framed 3-manifold. The main point is
that at fixed values of its moduli a 4d Seiberg-Witten theory SW5[C] comes
with a family of natural WKB triangulations of the surface C, which encode
much of the 4d physics. By matching a WKB triangulation of C with the big-
boundary triangulation t of a 3-manifold M, we can encode the physics of the
coupling between SW>[C] and T>[M,t] — including a proper identification
of gauge and flavor symmetries, and superpotential terms involving BPS
hypermultiplets. We always have K = 2, studying theories coming from the
A1 (2,0) theory in 6d.
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2.1. Big boundaries and Seiberg-Witten theory

We begin by reviewing some basic properties of Seiberg-Witten theories in
class S, and their relation to triangulations and polarizations of surfaces.
These ideas were developed in [1§], following [23H25], [1} 2], and the mathe-
matical constructions of [16].

We would like to consider the six-dimensional A; (2,0) theory in the
background C x R*, where C is a real two-dimensional oriented surfacell]
We allow real codimension-two defects that fill all of R*, and show up as
“punctures” or “holes” on C. An appropriate topological twistﬂ along C
allows eight supercharges to be preserved, along with an SU(2)g x U(1),
R-symmetry. At low energies, we expect to find an effective 4d N/ = 2 theory
T»[C]. It is a superconformal theory, and U(1), remains non-anomalous, as
long as all defects are regular, which we will assume in this discussion.

One may choose an arbitrary background metric for C, though after
flowing to the IR the theory T5[C] only depends on its complex (or conformal)
structure. If C has genus g and h holes, the complex structure moduli space
has complex dimension

(2.1) d=d(g,h) :==3g—3+h.

An additional h parameters are used to prescribe boundary conditions for
the complex structure at the holes. In the limits where C is stretched into
pairs of pants, T5[C] acquires a weakly coupled Lagrangian description as
an SU(2)? gauge theory, with SU(2)" flavor symmetry. The complex struc-
ture of each stretched internal leg in C provides the gauge coupling for a
dynamical SU(2), while each global SU(2) is associated with a bounday
hole.

If we move onto the Coulomb branch and flow further to the infrared,
T5[C] can be described as a Seiberg-Witten theory SW3[C], with gauge
group broken to U(1)4. Of course the SU(2)" flavor symmetry persists.
The Seiberg-Witten curve ¥ is a double cover of C that is branched at
exactly 4g — 4 + 2h = —2x/(C) points. The curve depends on the d marginal
couplings from the UV and h mass parameters, as well as d new Coulomb
moduli.

6We will use both Euclidean and Lorentzian signature at various points, and only
distinguish between the two when necessary. In the case of Lorentzian signature,
time is always one of the directions in R*.

"This twist identifies the SO(2) isometry group of C with the first factor in the
subgroup SO(2)r x SO(3)g of the SO(5)r R-symmetry group of the 6d theory.
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Many properties of SW5[C] can be understood by considering WKB tri-
angulations of C [1§]. These are ideal triangulations of C — meaning that
all edges in the triangulation start and end at holesﬂ — that depend on a
point u on the Coulomb branch and a phase 6. (More generally, the trian-
gulation depends on mass parameters m and marginal UV couplings 7; we
include these parameters in ‘v’.) A WKB triangulation t, ¢ at generic (u,0)
is obtained by looking at trajectories on C such that the Seiberg-Witten
form Agw has constant phase 6; each triangle is a region of C that contains a
unique branch point of the cover ¥ — C and whose boundaries the trajecto-
ries never cross (Figure E[) From a topological perspective, the dependence
of the triangulation on (u,f) is piecewise constant.

Figure 9: A typical WKB triangulation of a part of C. The SW fibration
> — C has a branch point in each triangle, and each edge FE; corresponds
to a constant-phase path ; on 3. Here (for example) (y1,v2) = +1, while

<71773> = 07 ete.

At fixed u, the charge lattice I'c of SW5[C] consists roughly of elements
in Hy(X,Z) that are odd under deck transformationsﬂ It includes a sub lat-
tice I'y ~ Z" of flavor charges, which map to small loops around the punc-
tures of 3. The lattice of gauge charges I'y =T'¢/T'f ~ 7Z2? is the odd part
of H1(X,Z), where ¥ denotes ¥ with its punctures removed. The electric-
magnetic skew-symmetric product (7,~’) is just the intersection product for
1-cycles in 3J; it is non-degenerate on I'y and vanishes for any pure-flavor

8For these triangulations to make sense, we must assume that h > 0: there is
always at least one hole.
9We refer to [21] for a detailed description of the charge lattice.
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charge v € I'y. The central charge of a state with gauge/flavor charge v € I'c
can be written as the period of the SW differential

(2.2) Zy=7-(a,ap,m) = /)\SW,

gl
where m are the complex masses associated with the flavor symmetry. Abel-
ian electric-magnetic duality acts by Sp(2d, Z) transformations on the gauge
lattice I'g, and dual transformations on (a,ap).

Any WKB triangulation t, ¢ of C provides a basis for FCH To under-
stand this, note that any edge E of the triangulation separates two triangles,
each of which contains a branch point. The unique open on C that connects
the branch points and crosses E lifts to a cycle 7g on X, and thus defines a
charge yg. (With some care, the orientation of C can be used to consistently
assign an orientation to g, and thus to fix the sign of vg.) It is not hard to
see that

1) The product (yg,ve) equals the (signed) number of oriented triangles
shared by edges F and E’. Thus (yg,vg) € {0,+1,+2}.

2) The sum vy := > 5 touches » VE Of €dge charges for the edges that touch
a puncture v equals twice the flavor charge associated to that puncture.
Thus (7, *) = 0.

In addition, every edge E of a WKB
triangulation t,¢ that is not the uni-
valent edge in a degenerate triangle
as in Figure also corresponds to a /
BPS hypermultiplet @5 of SW5[C]. The T
hypermultiplet has charge vg and is sta-
ble in a region of the Coulomb branch
that includes u. Geometrically, it arises
because the topological cycle vg C X
can be realized as a unique path of mini- Figure 10: A univalent edge in a
mal length on 3, on which Agy has some degenerate triangle.
constant phase[l]

Sl

10More precisely, the WKB triangulation provides a basis for a sublattice of I'¢
generated by the charges of BPS particles in the theory. Sometimes this is a proper
sublattice of T'c.

UTn the M-theory construction of SW5[C], where an M5 brane wraps ¥ x R*,
M2 branes can end on the cycles 4y without breaking SUSY, giving rise to BPS
particles in R*.
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The univalent edge Ey in a degenerate triangle is somewhat special. It
carries pure flavor charge 2v; associated to the central puncture, in the nor-
malization where a doublet for the SU(2); flavor symmetry at the puncture
has charges 7. There is no BPS hypermultiplet of charge 27, in the spec-
trum of SW5[C], because there is no minimal-length path 75, C ¥ that just
winds around the puncture. Instead, there are two hypermultiplets (®, ® )
with charges v’ & vy, in a doublet of SU(2) ¢, where the charge v =+ — ¢
is naturally associated to the outer edge E’ that surrounds the degenerate
triangle. Notice that the full BPS spectrum of the theory will be SU(2)
invariant only for sufficiently small values of the SU(2); mass parameter.
For general values of the mass parameter, wall-crossing can break the SU(2) s
multiplets. The presence of the doublet of hypers is thus a bit special. To
understand it, and many other facts, we need to review the notion of flip.

Figure 11: A flip of the WKB triangulation. Here the nonzero intersec-
tion products are (Ya,7e) = (Ye; v£) = —1, (W 7E) = (Y, YE) = (Vo Ya) =
(Yes o) = 1. Note how the transformed charges after the flip continue to have
the right intersection products.

As the phase ¢ is varied, a WKB triangulation t, ¢y may jump. In par-
ticular, at a critical value 6* that allows some pair of branch points to
be connected by a phase—6* trajectory, an edge of the WKB triangulation
“flips” (E — E’) as in Figure The BPS hypermultiplets associated to
the edges F, E’ on either side of the flip are a particle/anti-particle pair,
with vg = —vpg; they both correspond to the cycle g of phase 6* on X,
in two opposite orientations. The charges of the four other edges of the
quadrilateral involved in the flip also change by multiples of vg.

There is another special phenomenon, the “pop,” which will happen at
the critical values in 6 aligned with the phase of the mass parameter at a
puncture. It helps understand why the degenerate triangle is associated to
a doublet of hypermultiplets. The pop switches the sign of the flavor charge
¢ and thus exchanges the roles of the two hypers in the doublet as the BPS
particle associated to the edge E’. As we vary 6 by 7, the pop will happen
exactly once, and the triangulation at a pop always includes a degenerate
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triangle at the puncture. If this is our original degenerate triangle, we are
done. If not, a flip must have happened at some point to the edge E’ of
our original degenerate triangle. After that flip, there are two edges going
into the puncture, associated to charges v &7/, and thus we have again the
desired doublet of hypers in the BPS spectrum.

2.1.1. Framed flat connections. We need one more important idea to
relate the combinatorics of theories of class R to boundary SW theories of
class S.

When a theory of class S is compactified on a circle Sé of finite radius,
one obtains in the far infrared a 3d sigma model to a hyperkadhler moduli
space P2(C) of real dimension 4d. There are several nice ways to understand
it. Very roughly P3(C) is obtained by treating the d-complex-dimensional
Coulomb branch of SW5[C] as a real moduli space and using electric and
magnetic Wilson lines around Sé to complexify it again. A more accurate
description is that P2(C) is the SU(2) Hitchin moduli space associated to C.
Indeed, upon compactification on Sé the 6d A; theory becomes maximally
supersymmetric 5d Yang-Mills theory. In the presence of the topological
twist on C, its BPS equations are Hitchin equation for a real SU(2) connec-
tion A and a complex adjoint-valued one-form field .

The complex structure on Py(C) is parametrized by a twistor coordinate
¢ € CP!. The most useful fact for us is that when ¢ # 0,00 the solution to
the Hitchin equations can be repackaged as a flat complex connection

is

(2.3) A=A+

(o +¢P).

We will usually take ¢ = €% to be a pure phase, so that A = A + i Re(¢" o).
Then Py(C) is essentially isomorphic, as a complex symplectic manifold, to
the moduli space of flat PGL(2,C) connections on C. This is how we will
think of it from now on. On smooth parts of the moduli space, the canonical
holomorphic symplectic form is given by the Atiyah-Bott-Goldman formula
[26, 27

(2.4) Q:/TMAA&4
C

The smooth parts of P2(C) have complex dimension 2d = 6g — 6 + 2h.

The isomorphism between P2(C) and the moduli space of flat complex
connections is subject to two important caveats. One will be addressed
in Section R.1.2t we must sometimes consider lifts of flat connections to
SL(2,C), and sometimes connections halfway between PGL(2,C) and
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SL(2,C), depending on the precise choice of UV gauge groups in T3|[C].
The other caveat is that the isomorphism only holds when the space of flat
connections is smooth [

To be more precise, in the presence of punctures, the three real mass
parameters for SW>[C] on R? x S}; associated to the flavor symmetry at each
puncture control the Kéhler class and complex structure of the moduli space.
When complex-structure mass parameters vanish, the standard moduli space
of flat PGL(2,C) connections would develop a singularity; but the additional
nonzero Kéhler mass partially resolves the actual moduli space P2(C). A
simple shortcut to deal with this resolution is to supplement the complex
flat connections by a choice of framing.

Indeed, the eigenvalues of the holonomy around each puncture are fixed
in terms of the complex-structure masses. But in addition we introduce on
C an associated bundle of flags in C2?, and choose in the neighborhood of
each puncture a flat section that is invariant under the PGL(2,C) holon-
omy. Since a flag in C? is just a complex line, this amounts to choosing an
eigenline. Then Py(C) is identified as the space of framed flat connections
on C:

(2.5) Po(C) ~ {framed PGL(2,C) connections on C}.

The choice of framing accomplishes the desired de-singularization of
Po(C). If the squares of the two eigenvalues A\*? at a given puncture are
distinct (i.e. A # 1), the framing just chooses one or the other, so the
framed moduli space is a two-fold cover of the standard one. However, if the
eigenvalues coincide, the choice of framing adds a CP! to the moduli space,
thereby blowing up a singularity. Given an ideal triangulation of C (and a
specific framing), one can define a set of coordinates for a Zariski-open patch
of P5(C) (isomorphic to (C*)2?) that are associated to the edges of a WKB
triangulation [16HE| Mathematically, the coordinate x g for edge F is defined
by taking the cross-ratio of four framing lines at the vertices of the quadri-
lateral containing FE (Figure E Physically, x g is the expectation value of
a half-BPS line operator of charge vg that wraps S}} in the Seiberg-Witten
theory SW5|[C]. Thus, P2(C) is parametrized by vevs of IR line operators.

12We refer again to [2I] for more detailed discussion.

13These are a natural generalization of Thurston’s shear coordinates in 2d hyper-
bolic geometry, thereafter studied by Fock, Penner, and others.

4 Conventions for cross-ratios are as in [6]. In particular, the cross-ratios used
in this paper, which are natural from the 3d perspective, are minus the positive
coordinates of [16].
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The subalgebra of the N' = 2 supersymmetry algebra preserved by the line
operators is characterized by the same phase ( that determined the complex
structure of P2 (C)[]

A C

—~

ANB)(CND,)
ANCYBAD)’

TE

—~

B©° oD

Figure 12: Defining the edge coordinate xg as a cross-ratio of four framing
flags A, B,C, D. The flags must be parallel-transported to a common point
inside the quadrilateral in order to evaluate the cross-ratio.

The holomorphic edge coordinates xr obey Poisson brackets induced
by (2.4), which are simply determined in terms of the electric-magnetic
product. Namely,

(2.6) {zp, 25} = (YvE, v )TEZE .

In particular, the product of the edge coordinates surrounding a given punc-
ture is a central element. It is equal to the square of the PGL(2) eigenvalue
(as chosen by the framing) at that puncture:

(2.7) I (=) =x.

E ending at v

This follows easily by multiplying cross-ratios as in Figure

The line operators can be quantized by adding angular momentum to the
R3 x Sé geometry [21, 28]. One considers a fibered product R x (R? x, Sé)
such that a complex coordinate z on R? undergoes a rotation z — ¢z after a
turn around Sé. An additional R-symmetry twist allows this background to
preserve half the supersymmetry. BPS line operators are then constrained
to live at the origin of R? and any point on R, while wrapping Sé. They
satisfy relations of a quantum torus algebra

(2.8) tpip = qF ) ipip

where the ordering of Zg’s is precisely the ordering of line operators along R.

15Tn contrast to domain walls, BPS line defects typically preserve a full SU(2)z
as well.
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It is often convenient to use formal logarithmic variables Xpg so that
T = exp Xg. Then

(29) [XEWXE’] - <7E77E’>h7 q:eh;

and now there is also a simple formula for the central elements (i.e. pure
flavor Wilson lines)

(2.10) Y (Xp—ir—%)=2A,

FE ending at v

where A = exp A is the holonomy eigenvalue at the puncture v. The factors
of /& (and the less significant i7’s) in this formula arise from the R-symmetry
twist in the physical geometry.

2.1.2. SL(2) vs PGL(2). We mentioned above that the precise moduli
space of (framed) flat connections isomorphic to the space of vacua Py(C)
is sometimes neither an SL(2) moduli space nor a PGL(2) ~ PSL(2) ~
SL(2)/Zy moduli space, but rather a space halfway inbetween. The subtle
choice descends from choices of UV gauge groups.

The simplest example to illustrate this B
is the N' = 2* SU(2) gauge theory, i.e. the A
theory associated to a one-punctured torus. 77
It is well known that S-duality exchanges TE
the theory with SU(2) gauge group and '
the theory with PSU (2) ~ SU(2)/Zs gauge TE
group. S-duality simply exchanges the A- Z > A
and B-cycles of the torus. The expecta-
tion values of Wilson loop operators for
the SU(2) gauge theory wrapping the cir-
cle Szla map to traces of the holonomy of the
flat connection on the A-cycle of the one-
punctured torus in the corresponding rep-
resentations of SL(2). The expectation value of 't Hooft loop operators map
to traces of the B-cycle holonomy.

In the V' = 2* SU(2) gauge theory, the Wilson loop in a fundamental
representation is allowed, but the fundamental 't Hooft loop is not. The
converse is true for a N’ = 2* PSU(2) gauge theory. On the other hand, the
theories have the same set of BPS particles, which have electric and magnetic
charges (associated to IR edge-coordinates xg) with the same quantization
as Wilson and ’tHooft loop operators of integer spin.

Figure 13: Punctured torus,
with triangulation and A,B-
cycles.
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We arrive at the following picture:

e The moduli space of PSL(2) connections on the one-punctured torus is
“too small”: it admits functions that correspond to vevs of Wilson and
"tHooft loop operators of integer spin only. The vevs of these operators
can be expressed as Laurent polynomials in the zg variables for the
three edges of a triangulated one-punctured torus. The intersection

pairing of the yg cycles is even: (vg,vg) = (Vi V5 = (Vi VE) = 2.

e The moduli space of SL(2) flat connections on the one-punctured torus
is “too big”: it admits functions which correspond to vevs of both
fundamental Wilson and ’t Hooft loop operators. These vevs can be
expressed in terms of the z g only if we allow certain square roots of g
monomials. The square roots create sign problems in defining things
like the quantum torus algebra.

e The moduli space of vacua for the N’ = 2* SU(2) gauge theory is an
intermediate quotient of the moduli space of SL(2) flat connections,
where we keep track of the A-cycle holonomy in SL(2), but only of the
PSL(2) image of the B-cycle holonomy. Some square roots of monomi-
als of the X g have to be allowed, but just enough to keep signs under
control, and the quantum torus algebra well defined.

Simple generalizations of these statements hold for Riemann surfaces
of higher genus g. The gauge group has a ZJ center that acts trivially on
matter fields, and thus can be left ungauged or gauged in various patterns.
The moduli space of SL(2) flat connections can quotiented in various ways,
so that one keeps track of holonomies in SL(2) for a maximal set of cycles
with even mutual intersection, and only in PSL(2) for other cycles. The
correspondence between four-dimensional choices of gauge group and two-
dimensional choices of SL(2) vs PSL(2) can be established through the
map between four-dimensional line defects and closed curves in the two-
dimensional geometry [21].

2.2. 3-manifolds and class R

The 3d N = 2 theory in class R associated to a triangulated 3-manifold M
(of the type described in the introduction) is constructed algorithmically in
a way that mimics the construction of framed PGL(2,C) flat connections
on M. We review here the main results of the construction, and the basic
relations between the geometry of flat connections and 3d physics.
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2.2.1. Framed flat connections in 3d. To begin, we recall that in three
dimensions the choice of framing for a flat connection should be associated
to the small boundary of M [5], [6]. Since the small boundaries have abelian
fundamental group, any standard flat connection on M admits a choice of
framing — i.e. a choice of invariant flag on the small boundary. One then
considers several algebraic moduli Spacesﬂ

o Py(0M) = {framed flat PGL(2,C) connections on OM}
o Lo(M) = {framed flat PGL(2,C) connections on M}
)

e Lo(M) = {framed flat connections on M that extend to M}
C P2(OM) .

(2.11)

Notice that Lo(M) is just the image of the natural projection ZQ(M ) —
P2(OM); often Lo(M) and Lo(M) are birationally isomorphic. The space
Lo(M) is ultimately the one we are most interested in. Mathematically, a
certain Zariski-open subset of L9(M) is a Lagrangian submanifold inside
Pa(OM )m Physically, (this subset of) L£2(M) ends up describing the space
of supersymmetric vacua of To[M] on R? x S'. We need a few more details
to state this properly.

Suppose that we fix a 2d ideal triangulation t for the big boundary of M,
whose i-th component has (say) genus g; and h; holes. Suppose also that M
has a small annular boundaries and ¢ small torus boundaries. Then Py (OM)
generically has dimension ), 2d; + 2a + 2t, with d; = 3¢g; — 3 + h; as usual.
Using the triangulation t, the framing data on the boundary can be used
to construct coordinates on an open patch of Py(OM), which we can call
Po(OM,t), that is isomorphic to a complex torus

(2.12) Pa(OM,t) ~ [H(@*)%} x (C*)2a x (C*)2.

7

The first factor simply corresponds to big-boundary moduli spaces, with
coordinates xg as in Section The last factor is completely decoupled,
and is parametrized by A- and B-cycle eigenvalues for each small torus

16A complete summary of these spaces and their coordinates is included in
Appendix

n fact, L2(M) C P2(OM) is a subvariety with the rather special property that
a canonical class in the second algebraic K-theory group of the function field of
P2(OM) vanishes when restricted to Lo(M). Thus it is a “Ky Lagrangian.” This
property is reviewed in [6l 29] and follows immediately from the symplectic reduc-
tion of tetrahedron moduli spaces described below.
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(which are canonically conjugate with respect to the complex symplectic
form on Py (OM)).

The middle factor in is rather more interesting. It is parameter-
ized by a A-cycle eigenvalues along with a canonically conjugate “twist”
coordinates. These are analogous to Fenchel-Nielsen length and twist coor-
dinates in 2d hyperbolic geometry [30, B1]. Since the construction of these
coordinates for framed flat connections has not been fully described before,
we present it in detail in Appendix

A

2 T NE# H(—l’i) _ e, {r,A\} =7\

{r,z;} ={\x;} =0

Z5
x3
X4

Figure 14: Relation between annulus coordinates (length A, twist 7) and
big-boundary eigenvalues.

Note that the length coordinates for each small
annulus (the A-cycle eigenvalues) provide the punc-
ture eigenvalues at the two punctures on the big
boundary where the annulus ends (Figure . From
the perspective of the big boundary, these are fixed.
Moreover, the holonomy around any puncture on the
big boundary that is filled in by a small disc is defined P |
to be unipotent. If it were not so, it would be impos- .
sible to extend flat connections from OM to M. Figure 15: Po(94)

A standard example of a pair Lo(M) C P2(0M) occurs when M = S3\K
is a knot complement [32]. Then Py(0M) ~ C* x C* and Lo(M) is cut out
by a polynomial in two variables, the A-polynomial of the knot [33]. A much
more fundamental example is for M = A a tetrahedron. The tetrahedron
has a canonical boundary triangulation t, leading to a phase space

Pon = Pa(0At) = {z,2/,2" € C*| 22/2" = -1} ~ C* x C*;

(2.13)
{2,2/}y =22/, {2} =22" {2 2} =2"%.

The coordinates z,2’,z” label pairs of opposite edges of the tetrahedron.
The fact that the product equals —1 enforces unipotent holonomy, cf. (2.7)).
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The Lagrangian submanifold is [5], 34]
(2.14) La=Lo(At)={"+271—1=0}.

Notice that the pair LA C Pga would not make sense without the addition
of framing! Indeed, the standard space of flat connections on a tetrahedron
is trivial. In this case, all information lies in the framing, and identifies LA
with the configuration space of four lines in C2.

In general, in each of the complex-torus patches Po(OM,t) of a bound-
ary phase space, labelled by a boundary triangulation t, we can consider the
Lagrangian submanifold Lo(M,t) := Lo(M) NP2(OM,t). A central prop-
erty of the Lagrangian pairs Lo(M,t) C Po(OM,t) is that they can be glued
together by symplectic reduction.

Namely, if one glues together two manifolds M;, Ms along part of a
common big boundary (where their boundary triangulations t;, to agree) to
obtain a new manifold M, then [34]

(2.15) P2(8M7 t) ~ [732(3M1,t1) X 732(8M2’ tQ)] //((C*)# internal edges’

taking a symplectic quotient with respect to a C* ~ GL(1,C) action for
every new internal edge created during the gluing. The products of big-
boundary coordinates x g around these internal edges are the moment maps
for the reduction, which must be set to 1 (since the holonomy of a flat con-
nection around an internal edge is trivial). Similarly, every new external
edge E’ of OM formed by gluing together edges E1, Es gets a C* coordi-
nate rg = rg,x EQE Most importantly, in parallel with the reduction of
boundary phase spaces, the Lagrangian Lo(M,t) is obtained by pulling the
product Lo(My,t1) X Lo(Ma,ts) through the quotient in .

As an application of the gluing formula, one can fully decompose M into
tetrahedra A;, so that

(2.16) Po(OM,t) = [HPBAJ //((C*)# internal edges in M’

while Lo(M, t) is the reduction of a product of canonical Lagrangians (2.14)).
Generically (that is, for suitably refined triangulations) the resulting pair
Lo(M,t) C Pa(OM,t) is independent of how M is decomposed. The very

18Tf new small annuli or tori are created during the gluing, the C* coordinates
associated to them in P2 (OM, t) are also Laurent monomials of the C* coordinates
in Po(OMy,t1) x Pa(0Ma,ta). See Appendix



164 T. Dimofte, D. Gaiotto and R. van der Veen

special symplectic properties of edge-coordinates that underlie the reduc-

tions (2.15)—(2.16)) were first studied in 3d hyperbolic geometry by Neumann
and Zagier [35] (and later Neumann [36]), following work of Thurston [37].

2.2.2. The 3d theories. Now let us take a 3-manifold M with big-
boundary triangulation t. Let d =) ,d; be the dimension of the phase
spaces associated to big boundaries, and let a,t denote the number of small
annuli and tori. Let us also choose a polarization II for Py (OM, t) ~ (C*)?¢ x
(C*)%e x (C*)?, splitting the coordinates in each factor into canonically con-
jugate pairs of positions and momenta, or “electric” and “magnetic” coor-
dinates. For big boundaries, this is equivalent to a splitting of the electric-
magnetic charge lattice Z2¢ from Section

The 3d N =2 superconformal theory T5[M,t,II] := To[M,t,1I] con-
structed in [5] turns out to have the following basic properties.

1) T3[M,t,1I] has a UV Lagrangian description as an abelian Chern-
Simons-matter theory; i.e., it is in class R.

2) Ty[M,t,10] has a manifest U(1)4T9*+ flavor symmetry as well as a
U(1)r R-symmetry. Each U(1) is associated to one of the electric coor-
dinates in the polarization II.

3) Ty[M,t,1I] has a chiral operator O for every edge E on the big bound-
ary of M.
3a. If the edge E is electric (meaning, e.g., that g is a monomial
of purely electric coordinates in the big-boundary phase space) then
Og is an ordinary chiral operator, transforming with charge 4+1 under
the U(1) flavor symmetry corresponding to F.
3b. If E has nontrivial magnetic charge, then O exists in the pres-
ence of a magnetic-monopole background for an appropriate U(1) fla-

vor symmetryH

Note that degenerate edges as in Figure|10|are excluded from property (3)@
We will eventually see that they come with doublets of chiral operators under
enhanced SU(2) flavor symmetries.

Y Background monopole operators like this and their anomalous dimensions were
recently analyzed in [38].

20From a combinatorial 3d perspective, such degenerate edges are excluded
because, no matter how a 3-manifold is triangulated, it is impossible for a degen-
erate edge to contain only electric edges (z and not 2/, 2”) of the individual tetra-
hedra. Then, as discussed in [5, Sec 4.1], it is impossible to define a corresponding
operator OF.
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A change of polarization II — II' is implemented by a symplectic trans-
formation g € Sp(2N,Z), with N = d + a + t. In the context of quantization
(which we shall touch upon momentarily) this can be extended to an affine
symplectic ISp(2N,Z) ~ Sp(2N,Z) x Z*N action that includes multiplica-
tive “shifts” of C* coordinates by —¢'/2. The affine symplectic group also
acts on 3d N =2 SCFT’s with a U(1) g symmetry [39], providing a natural
way to change the polarization of T5[M]:

(2.17) To[M,t,g oIl = g o TH[M, t,11].

Specifically, “T-type” elements of the symplectic group add background
Chern-Simons couplings for flavor symmetries (redefining flavor currents);
“S-type” elements gauge a flavor symmetry, replacing it with a new topo-
logical U(1); global symmetry (then flowing to the IR); while affine shifts
add flavor currents to the R—current@ This action implies an extension of
the standard property (3a) above to the more general statement (3b).

The mathematical operation of symplectic reduction also translates nicely
to 3d N =2 SCFT’s [5]. Basically, a quotient by a C* action as in ([2.15))
becomes the operation of adding an operator to the N’ = 2 superpotential to
break a corresponding U(1) symmetry, then flowing to the IR. (For this to
make sense, one must make sure to use a polarization for which the moment
map of the C* action is electric.) Therefore, gluing together two manifolds
to form M = M; U M, translates to taking a product of theories, changing
polarization if needed, and adding superpotential operators corresponding
to the new internal edges created in the gluing

(2.18) To[M,t,11] = g o (To[My, t1, 1] x T [My, t2,115])

+ {W:%:OE,}.

An immediate consequence of the gluing prescription is that any three-
manifold theory can be glued together from elementary tetrahedron theories

free chiral multiplet ¢ with charges (+1,0)
under U(1) fiqvor x U(1) g symmetry ;

level —1/2 background Chern-Simons term
fOI" (Aflzwor — AR)

(2.19) Th :=To[A,t,11,] :

The canonical tetrahedron polarization II, is chosen so that z is an electric
coordinate and 2" is its magnetic conjugate. Then the operator O, = ¢ is

21See the appendix of [6] for a thorough review.
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associated to the pair of opposite edges of the tetrahedron in Figure [2.2.1
labelled “z”. By gluing T5[M, t,II] from a product of tetrahedron theories,
one naturally finds an abelian class-R Lagrangian in the UV.

fi
Py

W=0g¢
Figure 16: Adding a tetrahedron (with operator ¢) to effect a flip on OM.

Another easy application of the gluing rule is to describe how a theory
changes when an edge of the big-boundary triangulation flips. In 3d, a flip
Fg:t —t' on an edge E is implemented by gluing a tetrahedron onto the
big boundary (Figure[16)). The tetrahedron is glued along two adjacent faces,
so that a new internal edge E7 is created. Working in a polarization so that
E is electric (and using a polarization for the tetrahedron so that its electric
edge is glued to E), we find that the theory T»[M,t,1I] with associated
operator O transforms to

(220) flip: To[M. ¢/ 1] =To[M,t, 1] xTa + {W=0g¢}.

The internal-edge operator we have added is O, = O ¢. The new theory
has an operator O = ¢ corresponding to the flipped edge E’, with charges
exactly opposite those of Op.

@ﬁi

Figure 17: Double-flip, a trivial operation.
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Note that flipping twice is a trivial operation once we flow to the IR.
Indeed, given a superpotential

(2.21) W =0g¢+ o,

where we have in mind that ¢ = Op (the first flip) and ¢’ = Op» (the second
flip), we can simply integrate out the massive fundamental field ¢. We find
that Op = ¢’ = O, reflecting the fact that the doubly-flipped edge E” is
identical to E (Figure [17)).

2.2.3. Line operators. To complete the circle of 3d ideas, let us recall
how the Lagrangian L£o(M,t) arises in 3d theories.

If the theory T,[M,t,1I1] is compactified on a circle Sé, the twisted
masses associated to every U(1) flavor symmetry are complexified by Wil-
son lines, and can directly be identified with the position coordinates in II.
The canonically conjugate momentum coordinates in II are vevs of the com-
plexified moment map operators for these U(1)’s. It is useful to couple the
3d theory supersymmetrically to a N' = 2 abelian four-dimensional gauge
theory defined on half space. Then the coordinates on Py(OM,t) are vevs
of half-BPS flavor Wilson line operators and dual flavor ‘t-Hooft lines in
the four-dimensional theory. They are not independent: we can bring the
four-dimensional operators on the boundary, and there the vevs must lie on
the Lagrangian Lo(M,t), due to the coupling to T3[M, t, II].

Indeed, upon compactification on a circle, the four-dimensional gauge
theory reduces at low energy to a 2d N =4 sigma model whose target
is the complex symplectic manifold P2(0M,t). The boundary condition
defined by coupling to T5[M,t,II] constrains the low energy fields to live
on a Lagrangian submanifold. The boundary condition preserves N = (2, 2)
supersymmetry in two dimension. The generating function of the Lagrangian
Lo(M,t) coincides with the the effective twisted superpotential W for the
two-dimensional degrees of freedom at the boundary, a function of complex
masses = and complex gauge scalars o. Thus the equations for Lo(M, t) arise
as [5, 20]

(2.22) exp (w?f) =p

9

OW /8o=0

where p are the momenta conjugate to x.

The line operators can be “quantized” by adding angular momentum,
changing the geometry to R? Xgq Sé. Then the order in which line oper-
ators are brought to the boundary to act on the three-dimensional theory
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Ty[M, t,I1] matters, and conjugate pairs obey pz = qz:p. Moreover, they sat-
isfy a Ward identity that is a quantization of the Lo(M,t) equations. For
example, for a tetrahedron the Ward identity is

A~

(2.23) Lan: '+ 1-1~0.

It should be viewed as the generator of a left ideal in the operator alge-
bra. Mathematically, the quantization of Lagrangians Lo(M,t) is uniquely
defined by pulling products of LA’s through symplectic reduction.

It is again convenient to work with logarithmic coordinates in order to
properly keep track of ¢ (or A =logq) corrections. In this case, the affine
extension of the symplectic action on polarizations or 3d theories is crucial —
affine shifts correspond to multiplying coordinates powers of g. This is easy
to understand physically, since affine shifts change the R-current and there
is an R-symmetry twist in the geometry R? x Sé. Further details appear
in [5] and the appendix of [6].

2.3. Half-BPS boundary conditions

The properties of the theory T5[M, t, II] suggest a natural way to couple it
to a 4d Seiberg-Witten theory SW3[C] corresponding to the big boundary
of M, as a 3d boundary condition.

A half-BPS boundary condition for a supersymmetric theory generally
splits supermultiplets in half (according to the broken supersymmetry), giv-
ing one half Neumann boundary conditions (N b.c.) and the other half
Dirichlet (D b.c.) [40, [41]. More precisely, half the bosonic fields get N b.c.
and the other half D b.c., while half the fermions are set to zero.

In the present case, we are interested in superconformal boundary con-
ditions for a 4d N = 2 Seiberg-Witten theory, which break SUSY to N =
2 in 3d. The boundary conditions should preserve a U(1)g C SU(2)r R-
symmetry and break U(1),. The breaking pattern is thus characterized by
parameters w € SU(2)g/U(1)g ~ CP! and by a phase ¢ € U(1),.

We put the theory on R3 x Ry, with #3 > 0 parameterizing R, . The
standard Neumann boundary condition for gauge fields essentially gives N
b.c. to the components A of the gauge field parallel to the boundary, and D
b.c. to the component A perpendicular to the boundary. Correspondingly,
the complex scalar ® in the gauge multiplet gets split roughly into real and
imaginary parts, with half N b.c. and half D b.c., so that

(2.24) d3Re(¢T'®)[, =0,  Re(("'7®)|,=0,
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where “|5” denotes restriction to the boundary z3 = qﬂ Altogether, the free
boundary values of the fields A and Re (C _1g0) compose a 3d N = 2 gauge
multiplet. In agreement with the boundary condition on adjoint scalars, the
real 3d central charge of any state that transforms under bulk symmetries
must be

(2.25) Zsq =Re((Z4a) .

In addition, each hypermultiplet @ is split into a pair of chiral /anti-chiral
fields (X, YT) with well-defined U (1) charges +1 and identical flavor quan-
tum numbers. More commonly, we write this as a pair of chirals (X,Y") with
R =1 and opposite flavor symmetry. Then the basic boundary conditions,
chosen independently for each hyper, are to give N b.c. to (the bosonic fields
in) X and D b.c. to Y, or vice versa. We’ll denote this as (¢f. [17])

BX|p=0 iYlg=0
(2.26) By Xl o By BVl
Y0|ip=0 Xle=0

From a 3d perspective, the theory on R* has a crucial N' = 2 superpotential

(2.27) W= /[ XY=-] XoY.
R, R,

which shows how 03X appears as the F-term in the chiral multiplet whose
lowest component is Y and 03Y as the F-term for X. This explains the
complementary pairs of boundary conditions.

The basic boundary conditions just described for a bulk N' = 2 theory
Tiuk can be deformed in the presence of a 3d A/ = 2 theory Tj bdy on the
boundary. First, any flavor symmetries of T},q, may be either gauged in the
bulk or identified with bulk flavor symmetries. That is, we can identify 3d
background vector multiplets with boundary values of the pieces of 4d vector
multiplets (dynamical or background) that have N b.c.

Thereafter, we may use boundary superpotentials to couple the bound-
ary value of any bulk chiral X or Y that has N b.c. to a chiral operator of

22For standard Dirichlet b.c. for the gauge fields, the role of the two parts of ®
are exchanged
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Tiay with dual gauge/flavor charges:
(2.28) Whay = X|o - O or Whay =Y]o-O".

Due to the superpotential , a boundary coupling Wiqy = X1 - O actu-
ally forces the D b.c. on Y to be relaxed to Y|y = O, and similarly for
X < Y. Altogether, the deformed b.c. for bulk hypermultiplets in the pres-
ence of Tj,q, may be summarized as

(93X‘a = FO
Yipg=0

83Y’3 = FO'

(2.29)  Bx|O)] : { Xy O

or By O] : {

Now, suppose that our bulk theory is STW5|C] and that our boundary
theory is To[M, t,1I], where C is a big boundary of M. The properties sum-
marized in Sections [2.1H2.2| suggest a natural way to couple the two.

Let us choose any point u on the Coulomb branch of SW5[C] (again we
include masses and marginal UV couplings in ‘u’) and an angle 6 so that
the WKB triangulation t, ¢ of C agrees with t. We consider the bulk theory
in an electric-magnetic duality frame that agrees with the polarization II on
the big boundary. Then:

1) We break 4d N = 2 supersymmetry in the bulk to a 3d N =2 sub-
algebra characterized by the phase ¢ = ¥ (and w € CP') and impose
the basic boundary conditions (2.24]) for the (electric) bulk vector mul-
tiplets.

2) We use the surviving 3d N/ = 2 U (1) gauge multiplets at the boundary
to gauge d corresponding U(1) flavor symmetries of T»[M, t,I1].

3) The bulk theory has BPS hypers &5 = (Xg, Yg) of charge v for every
edge F in the WKB triangulation. We impose N b.c. for the chiral
halves Xp (say) of these multiplets with charge —yg. Then we add a
coupling Bx,[Og] to the chiral operators O with charge +vg that
must exist in T>[M, t, I1].

The third item in this list requires a little explanation. Obviously, there is
no IR Lagrangian description of SW theory that can simultaneously accom-
modate all BPS hypermultiplets as elementary fields. At most, we can pick
a maximal set of electric BPS particles in an adequate duality frame, maybe
adjust the parameters so that these electric particles are much lighter than
other dyonic particles, and include them in the effective Lagrangian. Then
it makes sense to give them boundary conditions and couple them to the
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chiral operators for electric edges. On the other hand, heavy dyonic particles
behave as line defects in the bulk SW theory. It makes sense to ask if such
line defects can end supersymmetrically on the boundary, where they look
like monopole operators for a flavor symmetry of the 3d boundary theory.
The coupling Bx,[Op] for the corresponding edges should be interpreted as
allowing such line defect to end on Op.

Away from loci where electric particles are light, we can adopt the
line-defect point of view for all edge couplings. It smoothly reduces to the
Lagrangian description of the coupling in the regions of parameter space
with mutually local light particles. However, Argyres-Douglas regions of
parameter space [19, [42], where mutually non-local particles are light, lack
a complete Lagrangian description in the bulk; then we cannot hope to fully
describe a boundary condition in an elementary way.

We should also note that the charges vg do not exhaust the charges of all
BPS particles. Rather, the charges of all BPS particles in the theory can be
written as a linear combination of v with non-negative coefficients [21]. In
a certain sense (made precise by the BPS quivers program [43] [44], [45]) all
BPS particles can be thought as bound states of the ones with vg charges.
We should probably think that the bound states of charges ), ngygp will
couple to operators [ [, OF" at the boundary. This ansatz is compatible with
the results of our next section, where we demonstrate that our couplings are
covariant under changes of triangulation.

Finally, in order to define couplings as above, it is not really necessary
for t to agree with a WKB triangulation of C: any triangulation whose edges
are associated to a positive basis of bulk BPS states will do. However, the
WKB triangulation is especially natural, and leads to a nice interpretation
of boundary conditions in terms of Janus configurations (Section .

The couplings we have described may, in general, break the SU(2) flavor
symmetries of the bulk to U(1)’s. The U(1) subgroups should be identified
with U(1) flavor symmetries of T5[M, t,1I] coming from annuli of M (that
attach to holes on C). We will eventually argue in Section [5 that whenever
a hole of C is attached to an annulus (as opposed to being capped off by a
small disc), full SU(2) flavor symmetry of the coupled 3d-4d system is in
fact restored.

2.3.1. Dissolving polarization and triangulation. Given any three-
manifold M with big boundary C, or possibly a disjoint union of multiple
big boundaries, the above rules define a boundary coupling between SW5[C]
and Ty[M,t,1I]. We could call the full 3d-4d theory Bsw[M,t,II]. Quite
pleasantly, however, it turns out that in the IR the coupled system depends
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neither on a choice of big-boundary triangulation nor on a choice of polar-
ization [0]. Thus, it may unambiguously be called Bgw [M].

Let us try to understand why this is true. First, looking only at gauge
multiplets, consider what happens if we act with electric-magnetic dual-
ity on a combined 3d-4d system. The bulk electric-magnetic duality group
Sp(2d, Z) simply acts by changing polarization on the boundary. This is pre-
cisely how the Sp(2d,7Z) action on 3d CFT’s was obtained in [39]. Therefore,
the two coupled systems

(2.30) SWo[C]—T2[M, t,1]] ~ g o SWa[Cl—T5[M, t, g oII]

are equivalent in the IR. In one case, bulk electric U(1)’s gauge boundary
flavor symmetries; while in the other case bulk magnetic U(1)’s gauge “dual”
boundary flavor symmetries.

dualize R
SW[C] S gl SWI[C]| SW[C] —> go SW[C]
g € Sp(2d,Z)

T[M, t,11] Tlg] T[M,¢t,10] T[M,t,g oI

Figure 18: Passing a duality wall through the 3d-4d system.

A nice way to picture the equivalence is by starting with SW5[C] coupled
to To[M, t,1I] on a half-space, then dualizing the bulk theory on a slightly
“smaller” half-space, as in Figure This is equivalent to coupling the
magnetic theory on the far left to an appropriate 3d abelian Chern-Simons
theory on a BPS domain wall, then coupling the domain wall to a slice of
the original electric theory on its right. For example, for a standard g = S =
(9 4') action, the duality domain wall is “theory” of two background U (1)
flavor multiplets with a mixed Chern-Simons coupling A’dA. After flowing
to the IR, the duality domain wall collides with the boundary condition,
effecting a change of polarization on the boundary.

Keeping track of hypermultiplets and their couplings to chiral operators
in the electric-magnetic duality requires a little extra care. For fixed trian-
gulation t, the duality action changes the set of edges that are electric, and
thus the subset of couplings that can (and do) appear in a bulk-boundary
superpotential.

For example, suppose that an electric hyper (X,Y) of SW5[C] couples
to a chiral operator O of T5[M, t,II], with Wyay = X |5 O. Let us dualize the
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system by passing an S duality wall through the bulk and colliding it with
the boundary, as in Figure In addition to carrying an abelian Chern-
Simons theory, the duality wall has the property that a magnetic line defect
of S o SW5|C] on the left can end on a chiral operator X |y on the right —
put differently, that magnetic BPS particles passing through from the left
become electric particles on the right. After colliding the duality wall with
the boundary, we simply find that magnetic line defects in the bulk can end
on a new chiral operator O’ in T5[M, t,S o II].

Similarly, when we collide an S-wall with the boundary, any magnetic
line defect of SW>[C] that can end on both the boundary and the duality wall
becomes trapped. It combines with the magnetic operator Oy, of T»[M, t,1]]
that it ends on to form a new electric operator O, of To[M,t,S o II]. This
operator O, is coupled to an electric hyper (X', Y”) of S o SW5[C]. Such
mechanisms, involving line defects, demonstrate that bulk-boundary super-
potential couplings transform covariantly, as desired, under a change of
polarization.

To see that the system Bgy [M,t,I1] is independent of triangulation as
well as polarization, we consider how the flip of an edge in t acts on our
standard couplings [I7]. Suppose that the flipped edge E is electric (we can
adjust the polarization to make it so), and that before the flip half of a 4d
hyper (X,Y) is coupled to O via the superpotential Wy, = X‘a Op. After
the flip, we introduce a new 3d chiral ¢ (from a tetrahedron theory) and the
superpotential becomes

(2.31) Wbdy:Y‘a(ﬁJrquE.

Note how the flip effectively switches N and D b.c. for the bulk hyper,
so that the field Y, which carries (minus) the 4d charge of the flipped edge
—~g = g can couple to the new boundary operator O = ¢. Concurrently,
due to the bulk superpotential we find modified D b.c. X |y = ¢. The
coupling , however, has made the 3d field ¢ massive. Flowing to the
IR we may integrate it out, and simply get back to the original coupling
Whay = X‘a Opg. Therefore, Bsw [M, t,1I] = Bsw [M, t', I1].

There is an interesting subtlety at play here, concerning the charges
of magnetic chiral operators before and after the flip. For example, in the
present A; case the flip of an edge of the triangulation modifies the charges
carried by the nearby edges in a specific way. Physically, adding a chiral
field charged under a flavor symmetry modifies the quantum numbers of
monopole operators for that flavor symmetry because of the quantization of
fermionic zero-modes. It would be interesting to study these charge shifts in
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half-flip pjp N g
swiegc, M| > |swi | swigg| — | Swl D
T[M,t,1I] Tan T[M,t,10] T[M,t' 1]

Figure 19: Flipping the 3d-4d system.

a general theory, and to reproduce the expected transformation of charges
of fundamental BPS particles, encoded by a tropical cluster mutation.

We can picture the action of a flip using duality walls, in much the
same way that we understood changes of polarization. Namely, we note that
the tetrahedron theory TA can trivially be inserted as a wall in any theory
SW5]C], coupling to some hypermultiplet (X,Y") via

(2.32) Wyan =Y |,0+0Y'|,.

Here Y, Y/ denote the half-hypers with Neumann b.c. on the two sides of
the wall; their superpartners have Dirichlet b.c. X|y = ¢ = X'|9. After inte-
grating out ¢ in the IR, this wall becomes trivial. By inserting a TA wall
into a theory on a half-space (Figure and colliding it with the boundary,
we effectively perform a boundary flip.

We have shown that the coupled system Bgy [M] only depends on the
topology of M and its separated big/small boundary. Nevertheless, it should
be clear that any Lagrangian realization of this theory does require a choice
of t and II. For example, if we ever want to make the 4d bulk theory infinitely
weakly coupled, so that we just leave behind a dynamical 3d boundary
theory, we must choose an electric-magnetic duality frame II. These choices
then appear as data for the 3d theory T5[M,t,II] that remains.

3. Janus domain walls in 4d N = 2 gauge theories

In this section, we would like to review the idea of BPS Janus configu-
rations for four-dimensional A/ = 2 theories. Janus configurations provide
the simplest examples of domain walls and boundary conditions associated
to 3-manifolds. Moreover, in special limits, one can sometimes extract the
field content of an effective 3d boundary theory from the data of a Janus
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configuration — thus confirming our more abstract, combinatorial construc-
tions of 3-manifold theories. For example, in Section [3.3] we will use a Janus
configuration to rediscover the basic boundary couplings in a 3d-4d system
Bsw[M]. Later in Section 4] we will introduce Janus configurations for RG
walls.

3.1. General concepts

A BPS Janus configuration for a four-dimensional N = 2 gauge theory is
a modification of the Lagrangian (assuming one exists) that allows the
gauge couplings 7 and mass parameters m to vary in an arbitrary way
along a direction x3, preserving three-dimensional A" = 2 supersymmetry.
The three-dimensional superalgebra has real central charges that are the
real part of the four-dimensional central charges (2.25). (We'll set ( = 1 for
simplicity.) In a supersymmetric vacuum, the 3d central charges must be
constant. Then the equations

(3.1) 03 Re Z;ld (u(mS),m(ac3),T(x3)) =0

fix the allowed evolution of the Coulomb-branch moduli v as a function of
z3. Indeed, the number of real constraints equals the real dimension of
the Coulomb branch.

Janus configurations have a well-defined limit to a domain-wall configu-
ration where the jumps in m, 7 occurs suddenly. Furthermore, it is useful to
observe that many protected quantities are homotopy invariant, unaffected
by continuous deformations of the path m(z?), 7(2%). This includes sphere
partition functions and indices, and (we expect) the infrared SCEFT limits
of the 3d theories themselves that become trapped on domain walls.

In [8] a special case of Janus domain walls was considered, the “R-flow”
where the variation of m,7 was arranged in such a way that the relative
order of the phases of the Z;ld central charges would be constant, and the
Z;ld would go to infinity at large positive or large negative 2. In this and
later sections we will not impose such a constraint, but we will still take
inspiration from the R-flow analysis.

The notion of Janus domain wall is intimately related to the notion
of S-duality wall. If we take a Janus configuration that flows from a weak
coupling region to a region where an S-dual weak coupling description exists,
it is natural to act with S-duality on a half-space, and have a domain wall
interpolating between different weakly coupled descriptions of the theory. Up
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to D-term deformations, we will have a duality wall for each element of the S-
duality groupoid of the theory, and duality walls will compose appropriately
by collision.

As the four-dimensional theories on the two sides are weakly coupled, we
can sensibly talk about degrees of freedom living at the wall, and describe
the duality wall as a specific 3d N =2 SCFT coupled to the two dual
descriptions of the same four-dimensional theory. The canonical example
is (mass deformed) T'[G], a 3d theory which appears on the S-duality wall
between N = 2* SYM with a gauge groups G and its Langlands dual G.
For G = SU(2), T[SU(2)] is simply N' = 4 SQED with Ny = 2, a self-mirror
theory with two SU(2) flavor symmetries, acting on the Coulomb and Higgs
branches respectively. The two bulk theories couple to these two SU (2) flavor
symmetries.

The correspondence between Janus domain walls and S-duality walls
is an exact UV statement. It is also useful to ask in general how a Janus
configuration would look in the IR Seiberg-Witten description of the theory.
There are a few things that can be said in complete generality (in particular,
without specializing to theories of class §), and we would like to point out
some interesting facts and open questions.

The abelian gauge field Lagrangian simply has a profile of the IR gauge
coupling determined by u(z?) and m(x3), 7(z3). The massive BPS particles
have a more interesting behavior: for generic 3, they are not BPS anymore,
as their mass |Z,| is larger than the 3d central charge Re Z;ld. But at the
special locations where Im Z;ld =0, a 4d BPS particle has a chance to be
trapped, and behave as a 3d BPS particle. We expect that a 4d BPS hyper-
multiplet of charge v, for example, will give rise to a 3d chiral multiplet
of charge £+, depending on the sign of d3ImZ,. It would be interesting to
verify this statement with a detailed calculation.

We can use these observations to argue that the 3d A/ = 2 theories pro-
duced from Janus domain walls in 4d N' = 2 gauge theories should always
have a mirror description as abelian Chern-Simons-matter theories, i.e., the-
ories of class R ! Indeed, the IR description of the Janus configuration can be
easily converted to an abelian Chern-Simons-matter description. The chiral
matter arises from the trapped 4d BPS particles. We need to make each BPS
particle locally electrically charged. This can be accomplished by picking an
appropriate electric-magnetic duality frame in the neighborhood of the wall
Im Zéd = 0, such that  is electric. Changes in the electric-duality frame for
the four-dimensional gauge fields are implemented by abelian duality walls,
which add appropriate Chern-Simons couplings to the abelian gauge fields.
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Thus the matter content and the gauge Lagrangian of the 3d theories are
easily derived in terms of the 23 dependence of the Z~. The latter may be
hard to derive from 7(z%) though, which was one reason for the restrictions
imposed on R-flows in [8]. Furthermore, there is a final, crucial ingredient to
be derived: the superpotential couplings. From the four-dimensional point of
view, these should arise from non-local instanton effects that allow the chiral
matter at different locations to interact. We do not know how to derive such
contributions in general, and we feel it is a very interesting open problem.
We owe much of our intuition on such instantonic processes to an ongoing
project on Janus domain walls in 2d field theories [46].

It is easy to argue that such instanton effects must be present: they
implement homotopy invariance for the Janus configuration. We can give two
illuminating examples. First, consider a homotopy that interpolates between
a Janus configuration where, for some ~, Im Zfid is positive in a certain
region, and a Janus configuration where Im Z;ld becomes negative and then
immediately positive again in the same region, so that we have two locations
with Im Z,%d = 0, hosting two chiral particles ¢+ of opposite charge. It is clear
that in order to have homotopy invariance, the second configuration should
include a superpotential coupling ¢ ¢_, which makes the particles disappear
in the IR. Such a superpotential may arise from an instanton process, where
a 4d particle moves from one of the two locations.

A second example is a homotopy that crosses a basic wall of marginal
stability for four-dimensional BPS particles, interpolating between a config-
uration with two relevant BPS particles, of charges v; and 79, giving rise to
two 3d chirals, and a configuration with three relevant 4d BPS particles, of
charges 71, 2 and y1 + 72, giving rise to three 3d chirals. As observed in [§],
a natural way to insure homotopy invariance is to have a superpotential
coupling of the XY Z type between the three chirals, related by the basic
3d mirror symmetry to the configuration of two chirals.

A full analysis of this setup would hopefully give the broadest possible
generalization of our results. Leaving that for future work, we specialize now
to four-dimensional theories in class S.

3.2. Janus configurations for class S

We briefly review a few facts about the 6d interpretation of the IR descrip-
tion of Januses, along the lines of [§].

The Seiberg-Witten curve ¥ of a 4d theory SWik|[C] of class S is naturally
expressed as a K-fold branched cover of the UV curve C, as discussed in
Section In turn, a Janus configuration for SWg|[C] amounts to varying
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the cover ¥ %5 C in the 23 direction, so as to sweep out a cover
(3.2) ME M

of a 3-manifold M that topologically is equivalent to C x R.
As the 4d central charges are periods of the Seiberg-Witten differential
Asw, the condition (3.1]) implies that the real part of d3Agw is exact, i.e.

(3.3) O3Re Agw = dp
for some real function p. In other words, the 1-form
(3.4) v = Re A\sw + pdz®

is closed. Notice that v can be viewed either as a single-valued 1-form on
M, or a multi-valued 1-form on M.

The 1-form v parameterizes the Coulomb branch of the twisted 6d SCF'T
on M. Indeed, the twisting makes three of the scalar fields of the abelian 6d
theory into a 1-form v’ in the same cohomology class as v. Given a metric g
on M, the BPS equations of the 6d theory imply that v’ is harmonic

(3.5) dxgv' =0,

i.e. v’ is the harmonic representative of [v] € H'(M,R). The three compo-
nents of v/ parameterize the deformations of the cover M in the cotangent
bundle T*M. In regions of M where the cover becomes independent of 3,
so that 030" = 0, we simply have v = v = Re Agw, and the holomorphic
Seiberg-Witten form Agw on X can be reconstructed from its real part.

We can also understand the harmonic v" in terms of an M-theory com-
pactification. If we wrap K M5 branes on the supersymmetric cycle M x R3
in the 11d geometry 7T*M x R®, with any given metric g on M, then at
low energies the branes may separate in the fibers of the cotangent bundle,
recombining (say) into a K-fold cover M of M. In order to preserve super-
symmetry, this cover, just like M, must be a special Lagrangian submanifold
in T* M. Deformations of special Lagrangians, however, are precisely param-
eterized by harmonic 1-forms — in the present case, the 1-form v’.

If we compactify the entire setup on a circle in R?, we can even find
a non-abelian origin for v/. We end up with D4 branes wrapping M x R?,
which support a twisted 5d super-Yang-Mills theory. The BPS equations are
3d analogues of Hitchin equations along M, just as in Section They
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can be written compactly as
(3.6) [D;,D;]=0,  ¢“[D; D] =0,

where D =d+ A is a covariant derivative on M formed from the com-
plexified SL(K) connection A = A+ iReyp as in . In components, the
equations read F4 = [p, ¢] and dap = da * ¢ = 0, and thus imply that the
adjoint-valued 1-form ¢ is covariantly harmonic. If we are able to diagonal-
ize @ locally — corresponding to a well-defined separation of the D4 branes
in T*M — then the eigenvalues of ¢ become a standard (multivalued) har-
monic 1-form v" on M.

Now let us follow the analysis of [§] further, recast in a field-theory lan-
guage, to describe the BPS content of an effective theory T [M]. First, recall
that four-dimensional BPS particles are represented by (webs) of strands of
6d BPS strings. In 2d compactifications, the BPS strings follow trajecto-
ries of constant phase of Agw, ending at branch points where two sheets of
the branched cover ¥ — C meet. These trajectories lift to 1-cycles in %, cf.
Figure [0}

In a 3d compactification, the BPS strings must follow trajectories on
which the harmonic 1-form v’ restricts to the volume form, in a given
background metric. These trajectories end on the branch-lines of the cover
M — M, swept out by the 22 evolution of branch points on C. They lift to
minimum-volume, or “calibrated” 1-cycles on M. In the limit where C varies
slowly, the minimum-volume condition reduces to the Im Z;ld = 0 condition
for a trapped BPS state. The wrapped BPS strings then give rise to 3d chiral
multiplets.

An important payoff of the 6d description is that the instantons that give
rise to superpotential terms can also be described in terms of BPS strings
that trace out minimum-volume discs in M. These discs have boundary along
branch lines and along the minimum-volume trajectories that gave rise to
BPS states. In principle, by fully analyzing the allowed configurations of 6d
BPS strings, one can recover a full abelian Chern-Simons-matter description
of a domain-wall theory.

In practice, in order to be able to identify BPS cycles, one must judi-
ciously choose the profile m(x3), 7(23), or the background metric on M, or
both. In particular, it is useful to arrange that branch lines be well separated
throughout most of M, and only coming close together briefly. Then each
region of M where a pair of branch lines pass near each other supports a
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single BPS chiral — and can be shown to map to one of the combinato-
rial tetrahedra@ reviewed in Section [2| Of course, there may be many ways
to put the branch lines in such a “nice” configuration, just as there are
many ways to triangulate a 3-manifold; the different Chern-Simons matter
Lagrangians obtained should all be related by 3d mirror symmetry, flowing
to the same IR SCFT.

3.3. Seiberg-Witten walls and couplings

To be a little more specific, let us review the basic IR Janus configuration
of [8], and show how it generalizes to a T duality wall in a 3d-4d system,
with couplings as in Section [2.3]

We can model a local region of M where a pair of branch lines come
close together by evolving the Seiberg-Witten curve

(3.7) Y owi=-224m, Asw =wdz.

The curve is fibered over the z-plane, which represents an open neighborhood
of C. This happens to be the Seiberg-Witten curve of the A; Argyres-Douglas
theory [19].

For fixed m, there is an obvious trajectory of constant phase that con-
nects the branch points at z = ++/m, and lifts to a 1-cycle v in X. Thus the
4d theory SW5]|C] has a BPS hypermultiplet ® = (X,Y") of central charge

1 9 [Vm
(3.8) Z;*d:fAsw:/ Asw =m,
T ~ ™ _\/fn

and mass |m|. The hyper is charged under a U(1) flavor symmetry (which
could be gauged in the global Seiberg-Witten theory SW5[C]).
We may form a Janus configuration by giving m a profile

(3.9) m(x3) = mg + ix3,

for fixed real myg. This is an R-flow configuration. There is a trapped 3d BPS
chiral ¢ = X (say) at 2> = 0, where Im Zéd = 0. Its 3d central charge is my.
Since |m| — oo as 2% — 400, the 4d bulk theory completely decouples on
either side of the domain wall and we are left with an effective 3d theory
Th. If we had set m(:r3) = mo — iz° instead, we would have obtained a 3d
chiral ¢’ =Y of opposite charge, and 3d central charge —my.

23For K > 2, these regions maps to octahedra in the K-decomposition of a tetra-
hedron, as described in [6].



RG domain walls and hybrid triangulations 181

g

Figure 20: Left: the branch lines in a double cover A of the tetrahedron.
Right: schematic 2d slice of the cover A and the minimal-volume cycle giving
rise to a 3d chiral ¢.

The Janus configuration leads to the local geometry M— M rep-
resented by a tetrahedron, with four branch points on its boundary (one on
each face) connected pairwise by branch lines, as in Figure It is helpful
to note that the WKB triangulation of C in the neighborhood of our two
branch points looks like a square (see Figure 11| on page . Indeed, this
is triangulation of the UV curve of the A; Argyres-Douglas theory, which
is just a disc with an irregular singularity/puncture on its boundary [18§].
There are two choices for how the square is triangulated, one appropriate for
Imm > 0 and one for Imm < 0. The 3d tetrahedron flips the triangulation,
as in Figure [I6]

By introducing a more complicated profile for the Janus configuration

(3.10) m(z®) =mg +1i [c— (:L‘3)2] ,

which is no longer an R-flow, but still has |m| — oo asymptotically, we
find more interesting trapped 3d theories. Now for ¢ < 0 the theory has no
trapped 3d particles (it is impossible to satisfy Imm = 0); while for ¢ > 0
there are two BPS chirals ¢ and ¢’ of opposite charge, because the locus
Imm = 0 is crossed twice. In the latter case, there is also an instanton that
mediates an interaction between these chirals coming from a 6d BPS string
that wraps an annulus in M (a disc in M), as in Figure |21, The instanton
generates the 3d superpotential

(3.11) W =o¢¢',
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so that ultimately, in the IR, the 3d theory is again empty. This exam-
ple demonstrates the basic homotopy invariance that was discussed in Sec-

tion B.11

¢

W =X|o-¢+ ¢X'|o+

Figure 21: Schematic 2d slices of the covers M for flows corresponding to
m(z®) = mo + i[c — (2°)?] with ¢ >0 (left) and m(z®) = mg + i tanh(z?)
(right).

Finally, suppose that we do not send |m| — oo asymptotically, so that
we do not decouple the 4d bulk. We could have a profile

(3.12) m(x3) = mo + i tanh(z?).

We cross Imm = 0 once, so we get a 3d BPS chiral ¢ ~ Y|,s—¢, but we still
keep the 4d hypermultiplet in the asymptotic regions x> — +o00. Let us call
the 4d hyper ® = (X,Y) at 23 < 0 and & = (X, Y') at 2° > 0. Now in
the 6d theory there are two BPS strings that wrap annuli with one bound-
ary on the minimal-volume cycle v, and another boundary in an asymptotic
region. In a limit where the jump in the Janus configuration happens instan-
taneously, we find two copies of the 4d theory SW5[C] on half-spaces 2% < 0
and 23 > 0, along with bulk-boundary superpotential couplings generated
by the string-instantons:

(3.13) Wyan = X‘xszo—é + ¢Xl}m3=0+ :

This are precisely the kind of couplings we described combinatorially in Sec-
tion and specifically correspond to the Ta wall discussed around ([2.32]).

4. RG walls

We now turn to RG domain walls and the framed 3-manifolds that give
rise to them. The basic manifold Mgrg defining an RG wall for pure SU(2)
Seiberg-Witten theory will turn out to play a crucial role in the construction
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of more general RG and S-duality walls, and the general analysis of enhanced
flavor symmetry for theories of class R.

One way to define an RG domain wall is by using Janus configurations.
For example, in a 4d N = 2 theory with an asymptotically free gauge group,
we can fix an energy scale p at which to observe the theory and vary the
strong coupling scale A(z?) from zero to infinity relative to u (Figure ,
while preserving the BPS condition . At 23 < 0, with A < p, the theory
is effectively non-abelian; while at 3 > 0, with A >> u, the theory will best
be described as an abelian Seiberg-Witten theory far out on its Coulomb
branch. We will quantify the latter claim in Section

log(A/p)

A

Figure 22: Schematic Janus configuration corresponding to an effective RG
flow.

More generally, one can consider any 4d N’ = 2 theory and vary a com-
bination of marginal UV couplings 7(x3), strong-coupling scales A(2?), and
masses m(z3), in such a way that at 23 < 0 the theory is near the origin of
the Coulomb branch for a chosen set of gauge groups, while at 23 > 0 the
theory is far out on the Coulomb branch. In this case, what we are calling
an RG wall might also be termed an “abelianization” wall.

In the limit that the jump in A (or other parameters) occurs very quickly,
and effective gauge couplings become very weak at 23 < 0 and 2> > 0, one
might hope to trap a well-defined 3d ' = 2 theory at 2® = 0. The 3d theory
should have both abelian and non-abelian flavor symmetries to allow it to
couple to the 4d bulk. Moreover, it should also have electric and magnetic
chiral operators that couple to bulk BPS hypermultiplets on the abelian
side, as in Section On the non-abelian side, we similarly expect to find
additional chiral operators in non-trivial flavor multiplets that couple to the
bulk hypermultiplets in the UV Lagrangian.
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In Section [£.2] we will argue on general grounds that, in the infrared, the
3d RG-wall theory associated to the breaking G — T of a gauge group to its
maximal torus is roughly a G/T sigma-model. For example, for pure SU(2)
Seiberg-Witten theory in the bulk, we expect a 3d CP! sigma-model. In this
description, however, the abelian flavor symmetries of the 3d theory are not
entirely manifest.

In Sections we will introduce a fundamental framed 3-manifold
My, and show that the 3d theory To[My] derived from it combinatorially has
all the right properties to be the RG-wall theory for pure SU(2) Seiberg-
Witten theory in the bulk. Later, we will look at more complex examples of
theories with flavors.

4.1. Janus attractors

The best way to understand some of the expected properties of RG Janus
configurations is to study a simple, concrete example. We focus here on pure
SU(2) N = 2 gauge theory in four dimensions.

Recall that this is a 4d theory of class S, whose UV curve C is a sphere
with two irregular punctures of the mildest possible type [2) [I8]. One might
also describe C as an annulus. The square of the Seiberg-Witten differential
is

@

A?
2 (2 2
(4.1) ASw = ( . +2u+ A z) R

with strong-coupling scale A and Coulomb modulus u = (Tr ®2). Here the
z-plane C has rank 1/2 irregular singularities at z = 0 and z = oo.

The abelian charge lattice of SW3[C] consists only of gauge charges. We
call the fundamental magnetic, dyonic, and electric charges v, Y4, and e,
with

(42) Ym + Yd = 2/76 s <7m7 '7d> =2.

BPS states only carry even electric charge, so the BPS lattice is generated by
Ym, Yq alone. In the u-plane, there are two stability chambers separated by
(roughly) an ellipsoidal curve of marginal stability as in Figure defined
by the condition

(4.3) arga = argap =:0,



RG domain walls and hybrid triangulations 185

u

Figure 23: The u-plane and line of marginal stability, for A = 1.

where a and ap are the electric and magnetic central charges. The point
on the curve of marginal stability where (4.3]) holds for fixed € lies approxi-
mately at polar angle 26 — 7.

Vd

12

>

Figure 24: WKB triangulation of the annulus C, with branch points at z =

—a £V -1, @ :=u/A%

All WKB triangulations t, ¢ of the curve C look identical topologically
— there really exists only one triangulation for the annulus, shown in Fig-
ure The two vertices of the triangulation lie on the S' boundaries of the
annulus, in accordance with the fact that there are rank-1/2 irregular singu-
larities there. There are two non-boundary edges in the triangulation, which
separate the two branch points of Agw. If u is inside the curve of marginal
stability, the two non-boundary edges are simply labelled by charges £+,
and +74 (the precise assignment depends on ). These charges correspond
to magnetic and dyonic cycles in the double cover ¥ — C. When u is outside
the curve of marginal stability, the edges of the WKB triangulation can also
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correspond to pairs +((n + 1)vm + ny4, nym + (0 — 1)74), n € Z, reflecting
the fact that there are now an infinite number of BPS states. Notice that
flips of the WKB triangulation, which do not affect its topological type, do
change n.

We could distinguish “different” triangulations by holding the S* bound-
aries of C fixed, and not allowing them to rotate with respect to each other.
Then performing pairs of consecutive flips is equivalent to twisting the annu-
lus by full turns.

Now let us imagine varying A(z?) from zero to infinity, while keeping
Re(e™?a) and Re(e~"ap) fixed, so as to build an RG Janus configuration.
We allow ourselves an extra phase ¢ = €'’ in selecting which 3d V' = 2 super-
algebra to preserve. The central charges can be written as

a(u, A) = [ Asw = A f(u/A?),
(4.4) 7
aD(u, A) = / )\SW = AfD(u/AQ)

m

for some (locally) holomorphic functions f, fp. It follows generically from
this that no matter what values of a,ap we take at #3 < 0 (when A < p),
after sending A/p — oo we will find |al|, |ap| ~ A > p. Thus an RG Janus
configuration necessarily forces the theory far onto the Coulomb branch.

We can actually do much better, and identify precisely where on the
Coulomb branch we land. In terms of the dimensionless variable @ := u/A?,
we want to find @(2® = 0o). Writing 03a = Af/(@) O3t + f(@) O3A and simi-
larly for ap, we easily obtain from the Janus condition d3Re (™ !(a,ap) = 0
that

Re) _ (—Re(¢”'f")  Im(¢™'f) )" ( Re(¢™'f) A
150 (1n5) = (e 7p) imc0) (rec 1) 21

This flow equation has an obvious fixed point given by Re(¢™!f (%)) =
Re(¢"1fp(@)) = 0, which turns out to be the unique fixed point in the @
plane, and is attractive for increasing A. Moreover, by comparison to ,
this fixed point must lie precisely on the curve of marginal stability, with
phase ¢ = €¥! Thus as A — oo, all flows are attracted to marginal stability.

For example, when ( = +1, the attractor point is at the dyon point
%= —1 or u = —A?. The exact flows to the dyon point are shown in Fig-
ure 25 Since f is nonvanishing here, we necessarily have |a| ~ A|f(=1)| ~ A
as A — oo. Thus the theory T>[C] — SW>[C] is abelianized as promised. The
attractor moreover identifies a natural Sp(2,7Z) abelian duality frame for
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Figure 25: Janus flows to the dyon point.

SW5[C]: it is the frame in which the light dyon becomes a fundamental
“electric” hypermultiplet.

Some basic aspects of this RG flow attractor mechanism remain true for
any domain wall that scales to infinity in a uniform way all the dimensional
couplings of a generic N' = 2 theory (masses and asymptotically free gauge
couplings). If we write all coupling as A; = ¢;A(23)% in terms of constant
dimensionless ratios ¢;, and the Coulomb branch parameters in terms of
dimensionless parameters as as u; = #;A(x3)", we can write the periods as
Zy = Azy(@, c) and the BPS condition will force the flow to be attracted to
the point Re(¢"'z,) = 0.

This is a rather interesting point, which plays a key role in the recent
work by Kontsevich [45] on wall-crossing. It is the unique fixed point for the
gradient flow of an interesting function on the Coulomb branch. The useful
role in wall-crossing follows from the observation that the central charge of
all BPS particles is aligned at this point, and thus all BPS particles can be
seen as marginal bound states of a basic set of stable objects.

In a sense, this property supports our strategy to build the couplings
of domain wall theories to the IR Seiberg-Witten theory by specifying only
the couplings to the basic set of stable objects, which is in correspondence
to the edges of the WKB triangulation.
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4.2. Trapped Goldstone bosons

We can use a simple thought exercise to guess what 3d degrees of freedom
might be trapped on an RG domain wall. In order to isolate a 3d theory, we
want to send the dynamical 4d gauge couplings to zero on both sides of the
wall — for a gauge group G on the UV side and its maximal torus T on the
IR side. Suppose that we do this first on the UV side, 2® < 0. Then the G
gauge symmetry becomes a flavor symmetry. As we move onto the Coulomb
branch on the IR side, this flavor symmetry is broken to T, and we might
expect to find trapped Goldstone bosons at the wall itself, parametrizing a
G /T moduli space.

We can make this a little more concrete by starting with nonabelian G
gauge theory on the whole 4d space, and replacing the region z3 < 0 with a
half-BPS Dirichlet boundary condition for the gauge fields. This should have
the same effect as sending the UV gauge coupling to zero there. As reviewed
in Section the basic supersymmetric Dirichlet boundary condition pairs
the three components A of the gauge field parallel to the boundary with
the real part of Higgs field P, settingiﬂ

(4.6) Ayl,=0,  Re®|,=0,

while giving Neumann b.c. to Re 7y ®. (For clarity, we will just set ¢ =1
here.)

In order to find the effective degrees of freedom on the RG wall, we ask:
how does the UV Dirichlet boundary condition look in the IR? We can move
onto the Coulomb branch by turning on the Cartan part of the Higgs field
at infinity, compatibly with the with Neumann-Dirichlet boundary condi-
tions at 23 = 0. In the 4d bulk (23 > 0), this is a standard Higgsing, and
Goldstone bosons are eaten up by gauge fields to give massive W-bosons. At
the boundary, however, the gauge field A is frozen, so massless Goldstone
bosons survive, parametrizing the desired G/T.

We can see evidence of the boundary degrees of freedom if we look at
the moduli space of supersymmetric vacua of the theory. In the UV, the
boundary condition at infinity forces the boundary value of Re 7y ® to lie
in a specific conjugacy class, but different points inside that G//T manifold
correspond to different vacua of the theory. Thus in the IR we need to have
some boundary degrees of freedom which reproduce this space of vacua. The
precise set of degrees of freedom depends on the choice of IR duality frame.

240ne could also deform the Dirichlet b.c. on the Higgs field to Re ®|s = const,
which introduces mass terms for the G/T sigma models discussed below.
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Consider the simplest example, G = SU(2). The most obvious way to
obtain a CP! moduli space of vacua is to couple the IR theory to a 3d CP*
sigma-model, with N = 2 supersymmetry. There is also a more subtle way.
We need to remember the boundary conditions imposed by coupling the IR
gauge fields to some matter: the vev of Rea‘ o acts as a 3d mass parameter,
while Rea D’ o acts as an FI parameter

(4.7) ReaD|8:u,

where g is the moment map for the 3d flavor symmetry we are gauging.
Thus if the boundary theory consisted, say, of a doublet of chiral fields g, of
charge —1 under the gauge group, the moment map condition together with
the U(1) gauge symmetry would reproduce precisely a CP! moduli space of
vacua.

In order to test this simple candidate theory we can couple it to both
a non-abelian SU(2) gauge theory and the abelian U(1) gauge theory in
order to engineer a potential RG domain wall. This chiral doublet inter-
face between the non-abelian theory and the abelian IR theory gives rather
reasonable boundary conditions. For example, we have

(4.8) Re v ®asl, = G(als) Reapl, = |q*,

which insures that ¢® and ¢* are eigenvectors of Re 7y ® with eigenvalues
Reap. As the eigenvalues of 1y ® are essentially the classical values of
ap, this condition agrees well with the condition that Reap should remain
constant from the UV to the IR side of a Janus.

On the other hand, in order to allow the g, vevs without breaking SUSY,
we need the 3d mass matrix

(4.9) Re@agla—Reaew!a,

to have q, as a zero eigenvector. Thus Re a must coincide with an eigenvalue
of Re @ and we recover the condition that Re a should remain constant from
the UV to the IR side of a Janus.

If we move to other IR duality frames, which are more natural if the
attractor RG fixed point is close to the monopole ({ ~ i) or dyon ({ ~
1) points, we should do an appropriate Sp(2,Z) transformation on the 3d
degrees of freedom. This will produce a 3d GLSM: a theory of two chiral
multiplets ¢1, ¢ with an axial U(1) symmetry that has been gauged. The
remaining flavor symmetry is SU(2) (rotating the chirals as a doublet) times
a topological U(1);. The U(1); will be coupled to the gauge fields in the
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new duality frames. The abelian boundary conditions are covariant under
Sp(2,Z) transformations, and thus the new setups will work as well to mimic
the desired boundary conditions.

In our later analysis based on the explicit RG manifold, we will recover
these descriptions of the RG domain wall, and thus automatically test it
further, by insuring the existence of appropriate couplings to the monopole
and dyon particles and the correct behavior of line defects at the interface.
This will provide rather robust evidence that the chiral doublet interface
reflects faithfully the low energy properties of the RG domain wall.

4.3. The basic RG manifold M,

The framed 3-manifold M that representes the RG domain wall for pure
SU(2) theory should interpolate between an annulus C “in the UV” and
an annulus “in the IR” (Figure . In the IR, we represent C as a big
boundary with a WKB triangulation t, coupling to abelianized Seiberg-
Witten theory as discussed in Section [2.3] In the UV, however, we shrink
the annulus into a small boundary, which should couple to the nonabelian
SU(2) theory. In the limit of infinite shrinking, the small annulus represents
a defect, corresponding to Dirichlet b.c. for the UV gauge fields. The small
annulus must be attached to two big cones at its ends, triangulated with
degenerate triangles, which carry the irregular singularities of C.

boundary

Figure 26: The RG manifold for pure SU(2) theory, and its IR (abelian)
and UV (nonabelian) boundaries.

Topologically, the 3-manifold My is equivalent to C x I. Its boundary
OMj is the union of the IR and UV boundaries, which have been “cut”
along the two irregular singularities. Notice that 0 My contains two small disc
boundaries (on the irregular singularities) in addition to the small annulus.

To describe the space P2(0My,t) of framed flat connections on My,
we choose cross-ratio coordinates x,,, x4 for the magnetic and dyonic edges
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on the big boundary. We also use a holonomy eigenvalue A for the holon-
omy around the (oriented) A-cycle of the small annulus, and a canonically
conjugate twist 7. Thus the nonvanishing Poisson brackets are

(4.10) {log zg,log z} = 2, {log T,log A} =1.

Notice that by using A rather than A? as a coordinate, we have partially lifted
from a moduli space of flat PGL(2) connections to flat SL(2) connections.
It is also useful to introduce an electric coordinate x, = —\/@;,74.

The twist 7 is described carefully in Appendix[A.2] Its definition requires
us to choose a path v, from one end of the small annulus to the other. At
each end of this path, the framing flags for a flat connection on the small
annulus can be normalized by using the additional framing flags from the
small discs of dMy. Then the ratio of normalizations is 7. Changing the
path 7, by a full twist around the annulus (equivalent to twisting the entire
3-manifold, c¢f. Section simply rescales 7 — A27. Here, it will turn out
to be more symmetric to choose two paths 71, v2 related by a full twist, and
toset 7= /T2 = A1y = Ay

Td

back (IR)
—>
front (UV)
T = R/ TITO

Figure 27: Triangulation of the RG manifold, showing how coordinates on
the big and small annuli are related to tetrahedron parameters.

The 3-manifold My can be triangulated as shown in Figure 27} First two
tetrahedra are glued together along a common face to form a bipyramid.

25 Square roots like this can be made sense of in two ways: either by using loga-
rithmically lifted coordinates as discussed in Appendix[A] or breaking 3d symmetry
slightly and imposing a positive structure as in [I6].
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Then two more faces (labelled A) are identified to form My. The small
square of boundary at the front of the bipyramid gets rolled up into the
small annulus of My, while the big square at the back turns into the IR
boundary of Mjy. Labeling the tetrahedra with edge parameters z, 2/, z” and
w,w’,w” as in the figure, and choosing 7 paths as shown, we find that

T =20, xq=7"0", xz.= :
V2w
(4.11)
9 2 2w "
AN=—y 7= //7/:)\ 7
w w" z

The rules for obtaining A and 7 are summarized in Appendix[A.3.3} basically
one draws paths 7y, 7, on the small boundary and multiplies or divides
(according to orientation) by the edge parameters on angles subtended by
the paths.

In order to define a 3d theory T»[My, t, IT], we must choose a polarization
IT for P2(0M,t) and then compare the position coordinates in II to the
positions/momenta of tetrahedra to figure out what symmetries get gauged.
(Since there are no internal edges in the triangulation of My, there will be
no superpotential terms.) For the UV boundary, we canonically choose A to
be a position and 7 its conjugate momentum. For the IR boundary, there
are three natural choices of polarization:

a = (). = (). e ()

so that the position coordinates (the top components of these vectors) are
the electric, magnetic, and dyonic z’s, respectively.

In the polarization Il., the positions A and z. are just composed of tetra-
hedron positions z,w. So nothing gets gauged. We end up with a theory of
two chirals ¢,, ¢, with charges (—1, —1) under a U(1), flavor symmetry and
charges (1, —1) under a U(1), flavor symmetry, which is manifestly enhanced
to SU(2) . This is the nonabelian symmetry associated to the small annulus.
Being more careful to keep track of background Chern-Simons levels (which
depend on the precise choice of conjugate momenta, here z,,,7) and U(1)r
charges (which result from a logarithmic lift of tetrahedron parameters, see
Section , the full theory can be described as
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(4.13)
To[ My, t,11,] :
Two chirals ¢, ¢y, with U(2) ~ SU(2), x U(1). flavor symmetry,
| ¢z v e AR
charges i -1 - - , abelian CS matrix /e\ (1) 8 (1)
R| O 0 R|1 0| %

We do not specify an R-R Chern-Simons term, since it is not uniquely deter-
mined by the geometry.

U(Ll)e or U(1),, or U(1)y

Figure 28: Symmetries associated to boundaries and operators associated
to edges, in To[ My, t, *].

We can couple Tz[My, t,I1.] to nonabelian SU(2) gauge theory on one
side and an electric U(1) gauge theory on the other to obtain a full 3d-4d
system with a half-BPS domain wall By[Mp]. The abelian coupling is just
as discussed in Section [2| In addition to gauging the U(1). symmetry in the
bulk, we note that the theory T»[My, t, II.] has two chiral operators O,,, O4
on which magnetic and dyonic 't Hooft lines from the bulk Seiberg-Witten
theory can end. From a 3d point of view, these operators only exist in the
presence of monopole flux configurations for a background U (1), gauge field.
The nonabelian coupling similarly gauges SU(2), in the bulk. But there
exists a 3d SU(2), doublet (q1,q2) = (¢, ) of chiral operators as well.
The doublet is associated to either of the two degenerate edges at the end
of the small annulus. Had there been any hypermultiplets in the bulk SU(2)
theory (there aren’t here), they could have coupled to (g1, g2) at the wall.

Of course, we know from the analysis of Janus attractors that magnetic
or dyonic duality frames, rather than an electric frame, are more natural for
a weakly coupled U(1) bulk theory. Correspondingly, we should look at 3d
theories in polarizations II,, or I14. The 3d axial U(1), symmetry must now
be gauged and replaced by topological flavor symmetries U(1),, or U(1)4.
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The difference between the two cases is that we gauge U (1), at bare Chern-
Simons level +1 or —1. We find

(4.14a)
TQ[M07 t7 Hm] :
Two chirals ¢, ¢y, with U(1), gauge and SU(2), x U(1),, flavor,
¢z ¢w Om (& m A R
e | -1 -1 0 e 1 -1 0|1
charges m | 0 0 1 , abelian CSmatrix m|-1| 0 0] 0
A O - A 0 0 010
R| O 0 0 R 1 0 0| %
(4.14b)
TQ[M07 t, Hd] :
Two chirals ¢, ¢y, with U(1), gauge and SU(2), x U(1)4 flavor,
¢:  duw | Od e |d N R
e | -1 -1 0 e| —-1|1 0] -1
charges d| 0 0 | 1 , abelian CSmatrix d| 1 [0 0] 0
A g - A 0O 0| O
R| O 0 0 R|-1]0 O *

These theories are basically the GLSM descriptions of the CP! sigma-model
that we anticipated in Section[4.2] aside from the bare Chern-Simons terms.
By coupling —b) to respective magnetic and dyonic Seiberg-Witten
theories in the IR bulk (and the standard SU(2) theory in the UV bulk) we
obtain alternative descriptions of the full 3d-4d system By[Mjy]. Indeed, as
discussed in Section choices of big-boundary triangulation and polar-
ization get dissolved after coupling to the bulk.

We note that Ts[My, t,I1,,] now has a standard (dynamical) monopole
operator O,,, which couples via a superpotential to the fundamental mag-
netic hypermultiplet of the bulk Seiberg-Witten theory. Similarly, T5[My,
t,I1,,] has a standard anti-monopole operator O, with the right charge to
couple to a fundamental bulk dyon. The existence of these operators can
be justified using the techniques of [47] — it requires a careful analysis of
Chern-Simons terms and parity anomalies.

4.4. Line operators
As an application of the 3-manifold geometry My, we can derive the Ward

identities for line operators hitting the RG wall. We add an angular momen-
tum fugacity to the 3d-4d system, as discussed briefly in Section SO
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that generators of the line operator algebra g-commutation relations. The
resulting Ward identities reproduce known relations between cross-ratio and
Fenchel-Nielsen coordinates in quantum Teichmiiller theory [12} [15].

To quantize, we must work in logarithmic coordinates, as reviewed in
Appendix Logarithmic coordinates also allow an unambiguous defini-
tion of square roots. First, we express the basic relations between boundary

and bulk coordinates (4.11)) as

~

W', Xg=Z"+W", X.=-3(Z+W);

(4.15) X,

>
Il

YTy, T=Z2"—W'+A=—Z W —A.

The LHS of these expressions should all be viewed as operators in an algebra
generated by Z, 2", 2", W, W' , W" so that

(4.16) (2,2 =[2',2" = 2",Z) = h,

and similarly for the W’s, with Z + 2/ + 2/ = W + W' + W" = in + b We
can unambiguously exponentiate to find

=
<

>

I
Q\

>

1
A~ Al AL A a1 A1 -,
(4.17) &y, = 20", zg=2"0", Z.= , A=

and the inverse relations

1 1 =
, z:qé —VZm, w':qé\&\/;\/im,

(4.18) =3 L VAR, 0 =g iV ﬁ,

where ¢ = e” and all the exponentiated operators g-commute: e.g. &,3q =
¢ Taim, A= q%;\, etc.

Next, we use the Ward identities for tetrahedra to relate the UV and IR
sides. They are 2” + 271 — 1~ 0and @” + @~ — 1 ~ 0, where “~ 0” means
“annihilates a partition function.” By substituting into these Ward
identities and simplifying we find
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< 11
(4.19a) Wilson: A+ A'=d.+— — —aq
Te Te
A A/, §
~ 3:';7,7’3 l‘d g4 i qfi jg 1
gi NEANED 7

q s 1 —~ =1 1T
4.19b 't Hooft: f(ifi ) = - AN Tm
A9 A IA V7 v
. qé W 1 1 ~ gt 1
(419C) dyonlc. m <\/X T \/X\/?—) ~ q \/j\jid .

The first equation relates the fundamental (spin 1/2) SU(2) Wilson line in
the UV to electric and dyonic U(1) line operators in the IR. The other two
equations relate the spin-1/2 UV ’t Hooft line and dyonic ('t Hooft-Wilson)
line to IR line operators. These relations were discussed from a purely 4d
point of view in [20], 21]

Note that in an honest 4d SU(2) gauge theory, the basic 't Hooft (and
dyonic) line operators are in the spin-1 representation rather than the spin-
1/2 as above; in the spin-1 Ward identities, the square roots of 5\, Ty Tm, Tq
would disappear. Alternatively, in a PSU(2) ~ SU(2)/Zz theory we should
keep spin-1/2 magnetic operators but only use spin-1 Wilson lines.

The Ward identities do not require any choice of polarization: they
are valid in any duality frame describing the domain wall Ba[Mp]. On the
other hand, if we wanted to write down partition functions of an isolated 3d
theory on Sg or S? Xq S I we would need to choose a big-boundary duality
frame. In polarization II, the rules of [5, 34, 48] compute an S} partition
function that beautifully reproduces the cross-ratio/Fenchel-Nielsen kernel
of [12]:

(4.20) Zn(A, X,) = eanWHFREFRXCrM) g, (i 4 B4 A 4 X,)
P (im+ & — A+ Xe)

. h
(X2 42X A+ (X +A) (2mi+h)) Op(im + 5 + A+ Xe)
Op(—im—L+A-X,)’

1
—= €2h

26For comparison, we should note that our edge coordinates on a big boundary are
related to those used more commonly in quantum Teichmiiller theory by (e.g.) Fock
and Goncharov and in [18, 21] as XFG = Xhere —4m — h/2, or in exponentiated form
Trg = —q_%;%here. Our convention is a little more natural from a 3d perspective.
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with the quantum dilogarithm ®;, defined in Appendix [C] This wavefunction

is annihilated by (4.19).

5. Non-abelian symmetry enhancement

We saw in Section [ that the 3d theory trapped on the RG wall for 4d
SU(2) Seiberg-Witten theory should have a non-abelian SU(2), flavor sym-
metry. We associated this theory to a framed 3-manifold My (Figure ,
constructing it using the class-R rules of [5]. Despite the fact that class-
R constructions naively lead to theories with abelian flavor symmetry, we
found a manifest enhancement U(1)y — SU(2), for the symmetry associ-
ated to the small annulus of My. We would now like to argue that such an
enhancement occurs for the symmetries associated to small annuli in any
3d-4d boundary condition based on a framed 3-manifold.

The basic idea is simple. First, let M be a framed 3-manifold whose small
boundary contains a small annulus, and assume that the annulus is attached
to degenerate triangles on the big boundary (as in the UV part of Figure.
Then choose a 3d triangulation tsg of M such that the neighborhood of the
small annulus looks like the basic RG manifold M. This lets us decompose
M = M'U My as in Figure where M’ contains a big annular region on
its big boundary, and gluing in M, effectively shrinks this big annulus to a
small one.

Now we may construct the 3d theory associated to M by gluing together
the theories associated to M’ and My, in such a way that the SU(2)) sym-
metry of My is inherited. Physically, we are taking the theory associated
to M’ and colliding it with a basic RG wall (in the IR—UV direction) to
recover the theory associated to M. The RG wall provides the SU(2), flavor
symmetry.

To be more specific, we have to choose some polarizations. Let II,, be
the magnetic polarization for 0 My, so that one of the edges on its big annu-
lus carries a position coordinate. Then Ts[Mj,I1,,] is basically the GLSM
description of a CP! sigma-model, as in ), with SU(2) x U(1),, flavor
symmetry. For M’ we can choose a similar polarization II/, for the annular
part of its big boundary (mirroring the polarization II,, of dMj), and any
other polarization IT away from this annulus. Then T5[M’,II x II/ ] contains
a U(1)!, symmetry associated to its big annulus. We form the glued the-
ory To[M,1I] by taking a product of the component theories, gauging the
anti-diagonal combination U(1)y of U(1),, x U(1)],, and adding two super-
potential terms that break the diagonal of U(1),, x U(1),, and the topolog-
ical symmetry U(1); associated to U(1)y. A few more details will be given
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Mo

Figure 29: Cutting out a basic RG manifold Mj to isolate a small annulus,
leaving behind a big annulus in a modified manifold M’.

in Section The point, however, is that this gluing operation does not
disturb the SU(2), flavor symmetry of T5[My, II,,], which now becomes a
flavor symmetry of To[M, 11].

This argument shows that whenever a small annulus attaches to the cen-
ters of degenerate triangles on the big boundary of M, its flavor symmetry
is promoted from U(1) to SU(2). If the big-boundary triangulation t is such
that the annulus attaches in any other way, the flavor symmetry will gener-
ally not be enhanced in the isolated 3d theory T»[M,t,II]. This is easy to
see by starting with a degenerate triangulation and using flips (Figure [L6]) to
change it. In the course of flipping, an SU(2) doublet ¢, of chirals associated
to a degenerate triangle gets split, with only one of g1, gs coupling to the
flip operator; thus SU(2) is explicitly broken. This is explained further in
Section

Fortunately, we already know how to remedy this problem. If we cou-
ple To[M, t,1I] to an abelian 4d N = 2 theory SW5[0M] associated to its
big boundary, creating a boundary condition Bgw[M], the dependence on
triangulation t and polarization II disappears. We can first implement the
coupling with a choice of t so that SU(2) flavor symmetry is already man-
ifest in the 3d theory alone, and preserved by the coupling, proving that
the full 3d-4d system Bgw|[M] has SU(2) symmetry. Then, by arguments of
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Section the SU(2) symmetry must actually be restored when coupling
in a 4d duality frame specified by any other t and II.

We arrive at the following picture. Given a framed 3-manifold M with a
small annuli, we can always construct a boundary condition Bsw[M | whose
flavor symmetry contains a subgroup SU(2)®. If we want an isolated 3d the-
ory instead, we must choose a big-boundary triangulation t and polarization
II. For every annulus that ends in degenerate triangles of t, the 3d theory
T5[M, t,I1] will retain an SU(2). This may not be possible for all annuli.
At the “non-enhanced” annuli, the expected SU(2) symmetry is broken by
superpotential couplings involving (halves of) chiral doublets.

Note that once we have a system Bgw[M] with non-abelian SU(2)®
symmetry, we may proceed to couple it to non-abelian (or “UV”) 4d theories
as well, just as we described in the introduction. The basic RG wall was one
example of this, and more will come later.

In the remainder of this section, we fill in a few of the details from above,
and also comment on symmetry enhancement and breaking at small torus
boundaries.

5.1. Gluing in the RG manifold Mj

We begin by spelling out some of the details of the process in Figure
reconstructing the theory associated to M by colliding a basic RG wall into
the theory associated to a modified manifold M’.

Consider first the phase spaces associated to the big boundary of My
and the annular region on the big boundary of M’. They are parameterized
by edge coordinates x,, x4 and x/,, z/;, respectively, with

(5.1) {log xp, logxg} = —{logz),, logz);} = 1.

Note that the bracket has opposite sign for M’ due to the reversed orienta-
tion.

Two new internal edges are created in the gluing of My to M’, with
gluing functions ¢, = Ty, and cq = x4z, Geometrically, we want to use
Cm,Cq as moment maps for a symplectic reduction, enforcing the gluing
constraints ¢, = ¢q = 1. Correspondingly, the glued of gauge theories must
involve the addition of two operators to the superpotential. In order to
identify these operators, it is convenient to choose polarizations for the big-
boundary phases spaces so that either z,,, ), or x4,/ are positions. (It is
impossible to choose all four edge coordinates as positions, since they do
not commute.) We therefore take a magnetic polarization I1,,, for My and
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a mirror “magnetic” polarization II/,, for OM:

/
I ! xm

5.2 1L, = 1, I, = ,

(5:2) " <5U€1> " <x/e>

with ze = —\/Tnq, 2, = —\/},2, as usual. We supplement II;,, with some
other polarization II for the part of the boundary phase space away from the
annular region. (And of course we supplement II,, with the usual length-
twist pair (A, 7).)

With these polarizations, the RG theory T>[ My, I1,,,] has SU(2)y x U(1)p,
flavor symmetry and a standard (monopole) operator O, charged under
U(1)p; while To[M', 11 x 1T/, ] has U(1)/, x (...) symmetry and must have a
similar chiral operator O