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Supersymmetric gauge theories,
quantization of My,
and conformal field theory

J. TESCHNER AND GG. S. VARTANOV

We will propose a derivation of the correspondence between cer-
tain gauge theories with N = 2 supersymmetry and conformal field
theory discovered by Alday, Gaiotto and Tachikawa in the spirit
of Seiberg-Witten theory. Based on certain results from the liter-
ature we argue that the quantum theory of the moduli spaces of
flat SL(2,R)-connections represents a non-perturbative “skeleton”
of the gauge theory, protected by supersymmetry. It follows that
instanton partition functions can be characterized as solutions to
a Riemann-Hilbert type problem. In order to solve it, we describe
the quantization of the moduli spaces of flat connections explicitly
in terms of two natural sets of Darboux coordinates. The kernel
describing the relation between the two pictures represents the
solution to the Riemann Hilbert problem, and is naturally identi-
fied with the Liouville conformal blocks.
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1. Introduction

This work is motivated by the discovery [AGT] of remarkable relations
between certain N = 2 supersymmetric gauge theories and conformal field
theories. The defining data for the relevant class of gauge theories, nowadays
often called class S, can be encoded in certain geometrical structures asso-
ciated to Riemann surfaces C' of genus g with n punctures [G09]. We will
restrict attention to the case where the gauge group is [SU(2)]?973", for
which the corresponding conformal field theory is the Liouville theory. The
gauge theory corresponding to a Riemann surface C' will be denoted G¢.

The authors of [AGT] discovered relations between the instanton par-
tition functions Z'™'(a,m, T, €,,€,) defined in [N]E| for some gauge theories
Ge of class S on the one hand, and the conformal blocks [BPZ] of the Liou-
ville conformal field theory [TOI] on the other hand. Using this observation
one may furthermore use the variant of the localization technique developed
in [Pe] to find relations between expectation values of Wilson loops in Go
and certain Liouville correlation functions on C. The results of [Pel, [AGT]
were further developed and generalized in particular in [GOP) [HH], and the
results of [AFLT] prove the validity of these relations for the cases where
the Riemann surface C has genus zero or one, and arbitrary number of
punctures.

This correspondence can be used as a powerful tool for the study of non-
perturbative effects in N=2 gauge theories. As an example let us note that
techniques from the study of Liouville theory [T01] can be used to effectively
resum the instanton expansions, leading to highly nontrivial quantitative
checks of the strong-weak coupling conjectures formulated in [G09] for gauge
theories of class S. However, gaining a deeper understanding of the origin
of the relations between N=2 gauge theories and conformal field theories
discovered in [AGT] seems highly desirable.

We will propose a derivation of the relations discovered in [AGT] based
on certain physically motivated assumptions. We will in particular make the
following assumptions:

!Based in parts on earlier work [MNST, [MNS2, [LNS| in this direction.
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e The instanton partition functions Z"*(a, m, 7, €,,€,) are holomorphic
in the UV gauge couplings 7, and can be analytically continued over
the gauge theory coupling constant space. Singularities are in one-to-
one correspondence with weakly-coupled Lagrangian descriptions of

Ge.

e Electric-magnetic duality exchanges Wilson- and 't Hooft loops.

Our approach works for all g and n. One may observe an analogy with the
reasoning used by Seiberg and Witten in their derivations of the prepoten-
tials for certain examples of gauge theories from this class [SW1l,[SW2]. This
is not completely surprising, as the prepotential can be recovered from the
instanton partition functions Z"*(a, m, 7,¢€,,¢,) in the limit €1, ea — 0.

A basic observation underlying our approach is that the instanton par-
tition functions Z'™' can be interpreted as certain wave-functions ¥, (a)
representing states in subspaces H of the Hilbert spaces H defined by study-
ing G on suitable four-manifolds. Indeed, the localization methods used in
[Pel [HH] show that the path integrals representing Wilson loop expecta-
tion values, for example, localize to the quantum mechanics of the scalar
zero modes of Go. The instanton partition functions represent certain wave-
functions in the zero mode quantum mechanics the path integral localizes
to.

Supersymmetric versions of the Wilson- and ’t Hooft loop operators
act naturally on the zero mode Hilbert space Hy, generating a sub-algebra
A, ¢, of the algebra of operators. A key information needed as input for our
approach is contained in the statement that the algebra A, ., is isomorphic
to the quantized algebra of functions on the moduli space Mg,i(C) of flat
SL(2,R)-connections on C. A derivation of this fact, applicable to all theo-
ries Go, was proposed in [NW]. It is strongly supported by the explicit calcu-
lations performed for certain theories from class S in [Pel, [AGT] [GOP], TOT].
A more direct way to understand why the algebra A, ., is related to the
quantization of the moduli spaces Mg,t(C') can propbably be based on the
work [GMN3] which relates the algebra of the loop operators to the quanti-
zation of the Darboux coordinates from [GMNTI].

We view the algebra of supersymmetric loop operators A, and its
representation on Hy as a non-perturbative ”skeleton” of the gauge theory
Gc which is protected by some unbroken supersymmetry. This structure
determines the low-energy physics of G- and its finite-size corrections on
certain supersymmetric backgrounds, as follows from the localization of the
path integral studied in [Pel (GOP] [HH]



8 J. Teschner and G. S. Vartanov

The instanton partition functions Z"%(a, m, 7, €,, €,) may then be char-
acterized as wave-functions of joint eigenstates of the Wilson loop opera-
tors whose eigenvalues are given by the Coulomb branch parameters a. It
follows from our assumptions above that the instanton partition functions
ZInst (a9, m, 75, €4, €,) and Z1%Y(ay, m, 1y, €, €,) associated to two different
weakly-coupled Lagrangian descriptions must be related linearly as

(1.1)  Z28%a,,m, 7, €,€,)

= f(m7T27 €1, fz) /dal K(al7al;m; €1, fz)ZiHSt(ala m771(72)7 €1, 52) .

The a,-independent prefactor f(m,7,,¢€,,€,) describes a possible change of
regularization scheme used in the definition of the instanton partition func-
tions. Knowing the relation between the algebra A., ., and the quantum
theory of Mg, (C') will allow us to determine the kernels K (ag, a1;m;e€,,€,)
in explicitly. These are the main pieces of data needed for the formula-
tion of a generalized Riemann-Hilbert problem characterizing the instanton
partition functions.

The resulting mathematical problem is not of standard Riemann-Hilbert
type in two respects: One is, on the one hand, dealing with infinite dimen-
sional representations of the relevant monodromy groups, here the mapping
class groups of the Riemann surfaces C'. We will, on the other hand, find
that the ag-independent prefactors f(m,7,,€,,¢€,) in can not be elim-
inated in generalﬂ Their appearance is closely related to the fact that the
representation of the mapping class group of C' described by the kernels
K (ag2,a1;m;€,,¢€,) is found to be projective. Without prefactors f(m,7,,€,,
€,) which, roughly speaking, cancel the projectiveness there could not exist
any solution to our generalized Riemann-Hilbert problem.

Working out the kernels K (ag,a1;m;e€,,¢€,) is the content of Part II of
this paper, containing a detailed study of the quantum theory of the relevant
connected component M3 (C) of Mgy, (C). In Part 11T we describe how the
Riemann-Hilbert problem for Z™(a, m, 7, €,,¢,) is solved by Liouville the-
ory. We explain how Liouville theory is related to the quantum theory of
Mgat(C), which is equivalent to the quantum theory of the Teichmiiller
spaces T (C). The relation between Liouville theory and the quantization
of MJ..(C), combined with the connection between instanton partition
functions Z™t(a,m, T, €,,€,) and wave-functions in the quantum theory of

2This is the case for surfaces of higher genus. The prefactors could be eliminated
for the cases studied in [AGT], and some generalizations like the so-called linear
quiver theories.
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M. (C) yields a way to derive the correspondence found in [AGT]. One
of the main technical problems addressed in Part III is the proper char-
acterization of the prefactors f(m,7,,€,,¢€,) in which are related to
the projective line bundle whose importance for conformal field theory was
emphasized by Friedan and Shenker [F'S]. The results obtained in this paper
have interesting connections to the work of Nekrasov, Rosly and Shatashvili
INRS| devoted to the case e2 = 0.

There is an alternative approach towards proving the AGT-
correspondence, which relates the series expansion of Z™%(a,m, T, ¢,,¢,)
defined from the equivariant cohomology of instanton moduli spaces more
directly to the definition of the conformal blocks of Liouville theory obtained
from the representation theory of the Virasoro algebra. Important progress
has been made along these lines. A first proof of the AGT-correspondence
for a subset of gauge theories G from class S was obtained in [AFLT] by
finding closed formulae for the coefficients appearing in the series expansions
of the Liouville conformal blocks that directly match the formulae known
for the expansion coefficients of Z™(a, m, 7, €,,¢€,) from the instanton cal-
culus. An important step towards a more conceptual explanation was taken
by identifying the Virasoro algebra as a symmetry of the equivariant coho-
mology of the instanton moduli spaces [SchV| [MO]. A physical approach to
these results was described in [Tan].

This approach may be seen as complementary to the one used in this
paper: It elucidates the mathematical structure of the perturbative expan-
sion of Z%(a,m,T,€,,¢,) as defined from a given Lagrangian description
for Go. The arguments presented here relate the non-perturbative ”skeleton”
of G¢ to global objects on C' instead.

The results in Parts II and III of this paper are of independent interest.
Part II describes the quantization of M}, (C) using the Darboux variables
which were recently used in a related context in [NRS] E| These results give an
alternative representation for the quantum theory of the Teichmiiller spaces
which is based on pants decompositions instead of triangulations of C', as is
important for understanding the relation to Liouville theory. Our approach
is related to the one pioneered in [F97, [CF1l [Kal] by a nontrivial unitary
transformation that we construct explicitly.

In Part III we extend the relation between quantization of the Teich-
miiller spaces and Liouville theory found in [T03] for surfaces of genus 0 to
arbitrary genus. An important subtlety is to properly take into account the
projective line bundle over moduli space whose relevance for conformal field

3Partial results in this direction were previously obtained in [DG].
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theory was first emphasized in [F'S]. This allows us to find the appropriate
way to cancel the central extension of the canonical connection on the space
of conformal blocks defined by the energy-momentum tensor. Doing this is
crucial for having a solution of the Riemann-Hilbert problem of our interest
at all.

The results of Part III also seem to be interesting from a purely math-
ematical perspective. They amount to an interpretation of conformal field
theory in terms of the harmonic analysis on the Teichmiiller spaces, which
can be seen as symmetric spaces for the group Diffo(S?).

Our work realizes part of a larger picture outlined in [T10] relating the
quantization of the Hitchin moduli spaces, integrable models and conformal
field theory. In order to get a connection to supersymmetric gauge theories
extending the connections discussed here one needs to consider insertions of
surface operators on the gauge theory side. This is currently under investi-
gation [FGT].

Acknowledgements: We would like to thank T. Dimofte, S. Gukov,
R. Kashaev and S. Shatashvili for useful discussions on related topics.

2. Riemann surfaces: Some basic definitions and results

Let us introduce some basic definitions concerning Riemann surfaces that
will be used throughout the paper.

2.1. Complex analytic gluing construction

A convenient family of particular choices for coordinates on 7(C) is pro-
duced from the complex-analytic gluing construction of Riemann surfaces C'
from three punctured spheres [Mal [HV]. Let us briefly review this construc-
tion.

Let C be a (possibly disconnected) Riemann surface. Fix a complex
number ¢ with |¢| < 1, and pick two points @1 and Q2 on C together with
coordinates z;(P) in a neighborhood of @;, i = 1,2, such that z;(Q;) =0,
and such that the discs D,

Di:={PF €C;|zu(F)| <lgl2 },
do not intersect. One may define the annuli A;,

A= 1{P eCi; gz < |z(P)| < a7}
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To glue A; to As let us identify two points P, and P, on A; and As, respec-
tively, iff the coordinates of these two points satisfy the equation

(21) Zl(Pl)ZQ(PQ) =4q.

If C' is connected one creates an additional handle, and if C = C7 U Cs has
two connected components one gets a single connected component after
performing the gluing operation. In the limiting case where ¢ = 0 one gets a
nodal surface which represents a component of the boundary OM (C) defined
by the Deligne-Mumford compactification M(C).

By iterating the gluing operation one may build any Riemann surface C
of genus g with n punctures from three-punctured spheres Cj 3. Embedded
into C' we naturally get a collection of annuli A4, ..., Ay, where

(2.2) h:=3g—3+n,

The construction above can be used to define an 3g — 3 + n-parametric fam-
ily or Riemann surfaces, parameterized by a collection ¢ = (q1,...,qn) of
complex parameters. These parameters can be taken as complex-analytic
coordinates for a neighborhood of a component in the boundary dM(C)
with respect to its natural complex structure [Ma].

Conversely, assume given a Riemann surface C' and a cut system, a
collection C = {v1,...,7,} of homotopy classes of non-intersecting simple
closed curves on C. Cutting along all the curves in C produces a pants
decompostion, C'\ C ~ | |, C§ 3, where the C{ 5 are three-holed spheres.

Having glued C from three-punctured spheres defines a distinguished
cut system, defined by a collection of simple closed curves C = {v1,...,7}
such that v, can be embedded into the annulus A, for r=1,..., A.

An important deformation of the complex structure of C is the Dehn-
twist: It corresponds to rotating one end of an annulus A, by 27 before
regluing, and can be described by a change of the local coordinates used
in the gluing construction. The coordinate ¢, can not distinguish complex
structures related by a Dehn twist in A,. It is often useful to replace the
coordinates ¢, by logarithmic coordinates 7, such that g, = e?™. This cor-
responds to replacing the gluing identification by its logarithm. In
order to define the logarithms of the coordinates z; used in , one needs
to introduce branch cuts on the three-punctured spheres, an example being
depicted in Figure

By imposing the requirement that the branch cuts chosen on each three-
punctured sphere glue to a connected three-valent graph I' on C, one gets an
unambiguous definition of the coordinates 7,. We see that the logarithmic
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Figure 1: A sphere with three punctures, and a choice of branch cuts for
the definition of the logarithms of local coordinates around the punctures.

versions of the gluing construction that define the coordinates 7, are param-
eterized by the pair of data 0 = (Cy,I's), where C, is the cut system defined
by the gluing construction, and I', is the three-valent graph specifying the
choices of branch cuts. In order to have a handy terminology we will call
the pair of data o = (C,,I's) a pants decomposition, and the three-valent
graph I'; will be called the Moore-Seiberg graph, or MS-graph associated to
a pants decomposition o.

The gluing construction depends on the choices of coordinates around
the punctures @);. There exists an ample supply of choices for the coordinates
z; such that the union of the neighborhoods U, produces a cover of M(C')
[HV]. For a fixed choice of these coordinates one produces families of Rie-
mann surfaces fibred over the multi-discs U, with coordinates q. Changing
the coordinates z; around ¢; produces a family of Riemann surfaces which
is locally biholomorphic to the initial one [RS].

2.2. The Moore-Seiberg groupoid

Let us note [MS| [BK] that any two different pants decompositions o2, o1
can be connected by a sequence of elementary moves localized in subsurfaces
of Cyp of type Cp3, Cps and C7 1. These will be called the B, F', Z and
S-moves, respectively. Graphical representations for the elementary moves
B, Z, F, and S are given in Figures and [5] respectively.

One may formalize the resulting structure by introducing a
two-dimensional CW complex M(C) with set of vertices M, (C) given by
the pants decompositions o, and a set of edges M,(C) associated to the
elementary moves.
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Figure 2: The B-move

—

Figure 4: The F-move

The Moore-Seiberg groupoid is defined to be the path groupoid of M(C).
It can be described in terms of generators and relations, the generators being
associated with the edges of M(C), and the relations associated with the
faces of M(C). The classification of the relations was first presented in [MS],
and rigorous mathematical proofs have been presented in [FG, BK]. The
relations are all represented by sequences of moves localized in subsurfaces
Cyn with genus g = 0 and n = 3,4, 5 punctures, as well as g =1, n = 1,2.
Graphical representations of the relations can be found in [MS| [FG| BK].
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: .0
—

Figure 5: The S-move

2.3. Hyperbolic metrics vs. flat connections

The classical uniformization theorem ensures existence and uniqueness of a
hyperbolic metric, a metric of constant negative curvature, on a Riemann
surface C. In a local chart with complex analytic coordinates y one may
represent this metric in the form ds? = e??dydjj, with ¢ being a solution to
the Liouville equation 00y = pue??dydj.

There is a well-known relation between the Teichmiiller space 7 (C) and
a connected component of the moduli space Mg,(C) of flat PSL(2,R)-
connections on C. The relevant component will be denoted as M9 . (C).
The relation between 7(C) and MY, (C) may be desrcribed as follows.

To a hyperbolic metric ds? = e*?dydy let us associate the connection
V=V +V" and

(23  V'=d, V' =0+Mydy, M@):(? ‘Ot),

with t constructed from ¢(y, ) as
(2.4) t:=—(0yp)* + 0Jp.

This connection is flat since 8,050 = pe?# implies 9t = 0. The form (2.3)) of
V is preserved by changes of local coordinates if ¢t = ¢(y) transforms as

(25) o) = (& w)Hly(w) + 5 (v}

where the Schwarzian derivative {y,w} is defined as

(7)1



Supersymmetric gauge theories 15

Equation is the transformation law characteristic for projective con-
nections, which are also called sls-opers, or opers for short.

The hyperbolic metric ds? = e*?dydy can be constructed from the solu-
tions to Vs = 0 which implies that the component y of s = (7, x) solves a
second order differential equation of the form

(2.7) (82 +t(y))x = 0.

Picking two linearly independent solutions x4+ of (2.7) with x/, x— — x_ x4+ =
1 allows us to represent €*? as €2? = —(x1X_ — x_¥+) 2. The hyperbolic
metric ds? = e??dydy may now be written in terms of the quotient A(y) :=

X+/X~ as
0AOA
(Im(A))?

It follows that A(y) represents a conformal mapping from C to a domain (2
in the upper half plane U with its standard constant curvature metric. C' is
therefore conformal to U/I', where the Fuchsian group I is the monodromy
group of the connection V.

(2.8) ds® = e*Pdydy =

2.4. Hyperbolic pants decomposition and
Fenchel-Nielsen coordinates

Let us consider hyperbolic surfaces C' of genus g with n holes. We will assume
that the holes are represented by geodesics in the hyperbolic metric. A pants
decomposition of a hyperbolic surface C' is defined, as before, by a cut system
which in this context may be represented by a collection C = {~1,...,y,} of
non-intersecting simple closed geodesics on C. The complement C \ C is a
disjoint union | |, Cf 5 of three-holed spheres (trinions). One may reconstruct
C from the resulting collection of trinions by pairwise gluing of boundary
components.

For given lengths of the three boundary geodesics there is a unique hyper-
bolic metric on each trinion Cf 5. Introducing a numbering of the boundary
geodesics 7v;(v), i = 1,2, 3, one gets three distinguished geodesic arcs ;;(v),
1,7 = 1,2, 3 which connect the boundary components pairwise. Up to homo-
topy there are exactly two tri-valent graphs I'}. on Cf 5 that do not intersect
any 7;j(v). We may assume that these graphs glue to two connected graphs
'y on C. The pair of data 0 = (Cy, '), where I, is one of the MS graphs I'y
associated to a hyperbolic pants decomposition, can be used to distinguish
different pants decompositions in hyperbolic geometry.
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The data 0 = (C,,I'5) can also be used to define the classical Fenchel-
Nielsen coordinates for 7(C') as follows. Note that the edges e of ', are in
one-to-one correspondence with the curves v, in C,. To each edge e let us
first associate the length [, of the geodesic 7.

In order to define the Fenchel-Nielsen twist variables we need to consider
two basic cases: Either a given v, € C separates two different trinions 06’713
and Cé’g, or it is the result of the identification of two boundary components
of a single trinion. In order to fix a precise prescription in the first case let us
assume that C' and the edge e are oriented. One may then define a numbering
of the boundary components of the four-holed sphere C’é”lj obtained by gluing
03713 and C’gf3: Number 1 is assigned to the boundary component intersecting
the next edge of I'; on the right of the tail of the edge e, number 4 to the
boundary component intersecting the next edge of I', to the left of the tip of
e. There are geodesic arcs y4¢(vz2) and y1e(v1) on Cpy and Gy’ that intersect
Ye in points Pj, and P», respectively. This set-up is drawn in Figure [6]

3 2

‘ )
4 .\e

Figure 6: A four-holed sphere with MS graph (blue) and the geodesics used
in the definition of the Fenchel-Nielsen coordinates (red).

The twist variable k. is then defined to be the geodesic distance between
Py, and P, and the twist angle 6. = 27k, /l.. The second case (gluing of two
holes in one trinion gives sub-surface C. of type C 1) is treated similarly.

We see that the role of the MS-graph ', is to distinguish pants decom-
positions related by Dehn-twists, corresponding to 6. — 0. + 2.

2.5. Trace coordinates
Given a flat SL(2, C)-connection V = d — A, one may define its holonomy

p() along a closed loop v as p(v) =P exp(fﬂf A). The assignment v — p(7)
defines a representation of 7 (C') in SL(2, C), defining a point in the so-called
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character variety
(2.9) MG,..(C) := Hom(m; (C), PSL(2,C))/PSL(2,C) .

The Fuchsian groups I represent a connected component ./\/llfﬁgr(C) ~ T(C)
in the real character variety

(2.10) ME . (C) := Hom(m (C), PSL(2,R))/PSL(2, R) .

char

which will be of main interest here. M% = (C) is naturally identified with the

char

moduli space Mgat(C) of flat PSL(2,R) connections on C, and M5° (C)

char

represents the so-called Teichmiiller component M9, (C) within Mg, (C).

2.5.1. Topological classification of closed loops. With the help of
pants decompositions one may conveniently classify all non-selfintersecting
closed loops on C' up to homotopy. To a loop v let us associate the collection
of integers (r, s.) associated to all edges e of I', which are defined as follows.
Recall that there is a unique curve 7, € C, that intersects a given edge e on
I', exactly once, and which does not intersect any other edge. The integer r
is defined as the number of intersections between v and the curve ~.. Having
chosen an orientation for the edge e, we will define s, to be the intersection
index between e and ~.

Dehn’s theorem (see [DMQ] for a nice discussion) ensures that the curve
v is up to homotopy uniquely classified by the collection of integers (r,s),
subject to the restrictions

(i) re >0,
(ii) if 7e=0 = 5. >0,

2.11
( ) (iii) re, +7e, + e, € 2Z whenever 7e,,7Ve,, Ve, bound the

same trinion.

We will use the notation 7, s for the geodesic which has parameters (r, s) :
e (Te, Se).

2.5.2. Trace functions. The trace functions

(2.12) Ly = vytr(p(v))

represent useful coordinate functions for M$ _ (C). The signs v, € {+1, —1}

char

in the definition (2.12]) will be specified shortly. Real values of the trace
functions L, characterize MY (C).
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If the representation p is the one coming from the uniformization of C|
it is an elementary exercise in hyperbolic geometry to show that the length
[, of the geodesic 7 is related to L. by

(2.13) |Ly| = 2cosh(l,/2).
Representing the points in ./\/lﬂf}’lgr(C) by representations p : w1 (C) — SL(2,
R), we will always choose the sign v, in (2.12)) such that L, = 2cosh(l,/2).

We may then analytically continue the trace functions L. defined thereby
to coordinates on the natural complexification M5° (C) c ME _(C) of

char char

MEY (). The representations p : m (C) — PSL(2,C) that are parameter-

char

ized by MEL (C) are called quasi-Fuchsian. It is going to be important for

char

us to have coordinates L. that are complex analytic on Mfﬂgr(C) on the

one hand, but positive (and larger than two) when restricted to the real slice
MED (C) on the other hand.

char
2.5.3. Skein algebra. The well-known relation tr(g)tr(h) = tr(gh)+
tr(gh~') valid for any pair of SL(2)-matrices g, h implies that the geodesic
length functions satisfy the so-called skein relations,
(2.14) Ly, Ly, = Ls(y, ) »
where S(v1,72) is the loop obtained from 71, 2 by means of the smoothing

operation, defined as follows. The application of S to a single intersection
point of v1, 72 is depicted in Figure[7] below. The general result is obtained

Figure 7: The symmetric smoothing operation

by applying this rule at each intersection point, and summing the results.

The coordinate functions L., generate the commutative algebra A(C') ~
Fun®®( Mg, (C)) of functions on Mg, (C). As set of generators one may
take the functions L, ;) = L, . The skein relations imply various relations
among the L, 5. It is not hard to see that these relations allow one to express
arbitrary L, ) in terms of a finite subset of the set of L, ).
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2.5.4. Generators and relations. The pants decompositions allow us to
describe A(C) in terms of generators and relations. Let us note that to each
interna]ﬁ edge e of the MS-graph I', of o there corresponds a unique curve
Ye in the cut system C,. There is a unique subsurface C, < C isomorphic
to either Cp 4 or C71 that contains 7. in the interior of Ce. The subsurface
C. has boundary components labeled by numbers 1,2, 3,4 according to the
convention introduced in Subsection if Ce >~ Cp4, and if Cc ~ C11 we
will assign to the single boundary component the number 0.

For each edge e let us introduce the geodesics 7f which have Dehn
parameters (7¢,0), where 15, = 20, ¢ if Ce > Cp 4 and 15 = ¢ ¢ if Ce >~ Cy 5.
These geodesics are depicted as red curves on the right halfs of Figures
and [5| respectively. There furthermore exist unique geodesics v, with Dehn
parameters (r¢,s®), where s, = dc . We will denote L§ = [tr(v)|, where
k€ {s,t,u} and v¢ = .. The set {LE, L§, LS ; 7. € Cs} generates A(C).

These coordinates are not independent, though. Further relations follow
from the relations in m1(C). It can be shown (see e.g. [Go09] for a review)
that any triple of coordinate functions L, L§ and L¢, satisfies an algebraic
relation of the form

(2.15) PuLE, L, 15) = 0.
The polynomial P, in (2.15) is for C. ~ Cy 4 explicitly given asﬁ

(2.16) P.(Ls, L, Ly,)
i=— LyL4Ly + L2 + L} + L
+ LS(L3L4 + LlLQ) + Lt(L2L3 + L1L4) + Lu(Lng + L2L4)
— 4+ L3+ L3+ L3+ L3 + L1 LoL3 Ly,

while for C. ~ C1,1 we take P to be
(2.17) P.(Lg, Ly, Ly) == L> 4+ L? + L? — LyLiLy + Lo — 2.

In the expressions above we have denoted L; := |Tr(p(v;))|, ¢ =0,1,2,3,4,
where 7 is the geodesic representing the boundary of C 1, while v;, i =
1,2,3,4 represent the boundary components of Cp 4, labelled according to
the convention above.

4An internal edge does not end in a boundary component of C.
SComparing to [Go09] note that some signs were absorbed by a suitable choice

of the signs v, in (2.12).
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(%) 60

Figure 8: The anti-symmetric smoothing operation

2.5.5. Poisson structure. There is also a natural Poisson bracket on
A(C) [Go86], defined such that

(218) {L’h ) L’YQ } = LA(’Yle) )

where A(v1,72) is the loop obtained from 71, 72 by means of the anti-
symmetric smoothing operation, defined as above, but replacing the rule
depicted in Figure [7] by the one depicted in Figure
The resulting expression for the Poisson bracket { LS, L¢ } can be written
elegantly in the form
0

(219) {Lgny} = @PB(L;L?LZ)'

u

It is remarkable that the same polynomial appears both in and
in , which indicates that the symplectic structure on Mg, is com-
patible with its structure as algebraic variety.

This Poisson structure coincides with the Poisson structure coming from
the natural symplectic structure on Mg,¢(C) which was introduced by Atiyah
and Bott.

2.6. Darboux coordinates for Mg, (C)

One may express L§, L§ and L, in terms of the Fenchel-Nielsen coordinates
le and k. [Go09]. The expressions are

(2.20a) LS =2cosh(l./2),

and for Ce ~ Cy 1,

(2.20b) LE((L8)? — 4)* = 2cosh(ke/2)y/ (L)2 + L — 2
(2.20¢) L5 ((L9)2 — 4)7 = 2cosh((le + ke) /2)1/ (L)% + L§ — 2,
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while for C, ~ Cy 4,

(2.20d) L§((LS)? —4) = 2(LSL§ + LSLS) + LE(LSLS + L5LS)
+ 2 cosh(ke)v/c12(LE)caa(LE) ,
(2.200)  LE((LS)? —4) = LE(LSLE + L§L) + 2(L5 LS + L5LS)
+ 2C08h((2k‘6 — le)/2) 612(L5)034(L§) ,

where LY = 2 cosh %, and c¢;j(Ls) is defined as

2.21)  ¢;(Ls) = L2+ L7+ L3 + LyL;L; — 4
J S 1 J

= 2cosh “2 cosh 522 cosh S 2 cosh B

These expressions ensure that the algebraic relations P.(Lg, Ly, Ly) = 0 are
satisfied.

The coordinates [, and k. are known to be Darboux-coordinates for
Mg (C), having the Poisson bracket

(2.22) {le, ke } = 26,00 .

This was recently observed and exploited in a related context in [NRS].
Other natural sets of Darboux-coordinates (l¢, k.) can be obtained by

means of canonical transformations k. = k. + f(I). By a suitable choice of

f(1), one gets Darboux coordinates (I, k.) in which, for example, the expres-

sion for L{ in ([2.20)) is replaced by

(2.23)  L{((LE)* —4)
= 2(L5LS + LSLY) + LE(LYLS + LSLY)
+ 2coshl +l 59 cosh & +l L9 cosh L=l +l L9 cosh LEtlazl +l —l§ otk

l l 1$— l l ,e—e _K
+ 2 cosh Lt +2QCosh 2 i 129 cosh &F +42 Sh%e ks

The Darboux coordinates (e, ke) are equally good to represent the Poisson
structure of Mg (Cp4), but they have the advantage that the expressions
for L¢ do not contain square-roots. This remark will later turn out to be
useful.
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Part I. Supersymmetric gauge theories

Summary:

Review of SUSY gauge theories G¢ of class S on 4d ellipsoids.

The path integrals representing supersymmetric observables on 4d
ellipsoids localize to the quantum mechanics of the scalar zero modes
of gc.

The instanton partition functions can be interpreted as certain wave-
functions ¥, (a) in the zero mode quantum mechanics.

The Wilson and 't Hooft loops act nontrivially on the wave-functions
V. (a).

Algebra A, ., generated by supersymmetric Wilson and 't Hooft loops
is isomorphic to the quantized algebra of functions on a component of

Mﬂat(c)‘

Physical reality properties of Wilson and ’t Hooft loops = Relevant
for Go is the component MY . (C) C Mgat(C) isomorphic to the
Teichmiiller space T (C).

Analyticity + behavior under S-duality = Instanton partition func-
tions can be characterized as solutions to a Riemann-Hilbert type prob-
lem.

3. Quantization of Mg,:(C) from gauge theory

To a Riemann surface C of genus g and n punctures one may associate
[GO9] a four-dimensional gauge theory Go with A/ = 2 supersymmetry, gauge
group (SU(2))3973+" and flavor symmetry (SU(2))". In the cases where
(g,m) = (0,4) and (g,n) = (1,1) one would get the supersymmetric gauge
theories commonly referred to as Ny =4 and N = 2*-theory, respectively.
The aim of this introductory section is to review the relation between C' and
G along with recent exact results on expectation values of certain super-
symmetric observables in G¢.
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3.1. Supersymmetric gauge theories of class S

The gauge theory G¢ has a Lagrangian description for each choice of a pants
decomposition o. We will now describe the relevant parts of the mapping
between geometric structures on C' and the defining data of G¢.

The field content of G¢ is determined as follows. To each internal edge
e € I', there is an associated N = 2 vector multiplet containing a vector
field A7, two fermions A, Xe, and two real scalars ¢, ¢o. Matter fields are
represented by (half-)hypermultiplets associated to the vertices v of T',. They
couple only to the gauge fields associated to the edges that meet at the vertex
v. There are n mass parameters associated to the boundary components of
C'. We refer to [HKS2] for a description of the necessary building blocks for
building the Lagrangian of Go associated to a pants decomposition o.

The Lagrangian for G¢ will include kinetic terms for the gauge fields Ay,
with gauge coupling constants g., and it may include topological terms with
theta angles 6.. These parameters are related to the gluing parameters ¢. as

- dri 0
(3.1) e = ¥ Te = ik £

73 o

In order to define UV couplings constants like g2 one generically needs to
fix a particular scheme for calculating amplitudes or expectation values.
Using a different scheme will lead to equivalent results related by analytic
redefinitions of the coupling constants. This ambiguity will be mapped to the
dependence of the coordinates ¢, for 7(C') on the choices of local coordinates
around the punctures. Equation describes the relation which holds for a
particular scheme in G¢, and a particular choice of local coordinates around
the punctures of Co 3.

Different Lagrangian descriptions are related by S-duality. It follows from
the description of the gauge theories Go from class S given in [G09] that
the groupoid of S-duality transformations coincides with the Moore-Seiberg
groupoid for the gauge theories of class S.

3.2. Supersymmetric gauge theories on ellipsoids

It may be extremely useful to study quantum field theories on compact
Euclidean space-times or on compact spaces rather than flat R*. Physical
quantities get finite size corrections which encode deep information on the
quantum field theory we study. The zero modes of the fields become dynam-
ical, and have to be treated quantum-mechanically.
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In the case of supersymmetric quantum field theories there are not many
compact background space-times that allow us to preserve part of the super-
symmetry. A particularly interesting family of examples was studied in [HH],
generalizing the seminal work of Pestun [Pe].

3.2.1. The four-dimensional ellipsoid. Let us consider gauge theories
Gc on the four-dimensional ellipsoid

(32) Bl ={(20,... xa) |2f + € (aF + 23) + &5 (af +2f) =1}

4

> ., are defined as
1,€2

Useful polar coordinates for E

T = efl cos p cosf cos,
-1 .

) T9 = €; €osp cosf siny,
(3.3) 20 = sinp, L IRp e
3 =€y cosp sinf cosy,

Ty = 62_1 cos p sin@ sin x .

It was shown in [Pel [HH] for some examples of gauge theories G that one
of the supersymmetries () is preserved on Eﬁhq. It should be possible to
generalize the proof of existence of an unbroken supersymmetry @Q to all
gauge theories Go of class S.

3.2.2. Supersymmetric loop operators. Supersymmetric Wilson loops
can be defined adf]

(3.4a) We, :=Trp Pexp (z /S1 de (AZ - Ell(ﬁbe + &e))) )
(3.4b) We,, := Trp Pexp (2 /S dx (A; — elz(qﬁe - q%))) )

with traces taken in the fundamental representation of SU(2), and contours
of integration being

(3.5) Si:={(x0,...,24) = (77/2,61_1 cos ¢, 61_1 sinp,0,0), ¢ € 0,27) },
(3.6) S3:={(20,...,24) = (1/2,0,0,¢5  cos x,e; ' sinx), x €[0,27) }.

The 't Hooft loop observables T¢ ;, i = 1,2, can be defined semiclassically
for vanishing theta-angles 8, = 0 by the boundary condition

B, ‘

x .
(37) Pj(_3 ~ Iel]kwdxk A d,fL'J ,

6We adopt the conventiones used in [HH].
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near the contours Sll, i = 1,2. The coordinates z* are local coordinates for
the space transverse to S}, and B, is an element of the Cartan subalgebra
of SU(2),. In order to get supersymmetric observables one needs to have a
corresponding singularity at S} for the scalar fields ¢, ¢.. For the details
of the definition and the generalization to 6. # 0 we refer to [GOP].

It is shown in [Pe, [HH| [GOP] that these observables are left invariant

by the supersymmetry @ preserved on E2

€1,€2°

3.2.3. Expectation values on the ellipsoid. Interesting physical quan-
tities include the partition function Zg,_, or more generally expectation val-
ues of supersymmetric loop operators £, such as the Wilson- and 't Hooft
loops. Such quantities are formally defined by the path integral over all fields
on E} _ . It was shown in a few examples for gauge theories from class S
in [Pe, [HH] how to evaluate this path integral by means of the localization
technique. A variant of the localization argument was used to show that the
integral over all fields actually reduces to an integral over the locus in field
space where the scalars ¢, take constant values ¢, = ¢, = %aeag = const,
and all other fields vanish. This immediately implies that the path integral
reduces to an ordinary integral over the variables a.. It seems clear that this
argument can be generalized to all theories of class S.

A more detailed study [Pel [HH] then leads to the conclusion that the
Wilson loop expectation values have expressions of the form

(38) < We,i >E;L . = /dﬂ(a) ’ZinSt(aa m,T; €1, 62)’2 2 cosh(Zwae/ei) )

where i = 1,2. Ziyg(a, m, T; €1, €2) is the so-called instanton partition func-
tion. It depends on Coulomb branch moduli a = (a1, ...,ap), hypermul-
tiplett mass parameters m = (mq,...,my), UV gauge coupling constants
7= (11,...,7), and two parameters €1, e2. We will briefly summarize some
relevant issues concerning its definition in Subsection below.

A rather nontrivial extension of the method from [Pe] allows one to
treat the case of 't Hooft loops [GOP| as well, in which case a result of the
following form is found
(3.9)

<Tez /d,u Zinst CL m,T; 61a€2))*De,i : Zinst(aa m,T; 61762)7

with D, ; being a certain difference operator acting only on the variable a,
which has coefficients that depend only on a, m and ¢;, in general.
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3.3. Instanton partition functions - scheme dependence

Let us briefly discuss some relevant aspects concerning the definition of
Z0st(q, m, T; €1, €2). This function is defined in [N] as a partition function of
a two-parametric deformation G& of Go on R*. The theory G& is defined
by deforming the Lagrangian of Go by (€1, €2)-dependent terms which break
four-dimensional Lorentz invariance, but preserve one of the supersymme-
tries of Go on R*. The unbroken supersymmetry allows one to localize the
path integral defining Zist(a, m, T;€1,€2) to a sum over integrals over the
instanton moduli spaces.

Subsequent generalizations to gauge theories from class S [AGT) [HKST),
HKS?2] of linear quiver type lead to expressions of the following form,

(3.10)  Z™(a,m,Tier, €2) = 2P Y gt gt 20 (a,ms e, €0)
ke(Z20)

Let us first discuss the terms Zli(nSt(a, m; €1, €2) summed in l} These
terms can be represented as multiple (h-fold) integrals over the moduli spaces
M}cngt of SU(2)-instantons of charge k.

3.3.1. UV issues in the instanton corrections. It isimportant to bear
in mind that the integrals defining Zli(nst (a,m;e€r, e2) are UV divergent due to
singularities caused by pointlike, and possibly colliding instantons, see e.g.
[DHKM]. Possible IR divergencies are regularized by the above-mentioned
(€1, €2)-dependent deformation of the Lagrangian [N].

The explicit formulae for Zli(nSt(a, m; €1, €2) that were used in the calcu-

lations of expectation values <[,7 > g performed in [Pe, [AGT, [GOP] HH]

have been obtained using particular prescriptions for regularizing the UV-
divergencies which were introduced in [N, [NO] and [NS04]. The approach
of [N, NOJ uses a non-commutative deformation of G which is known
to yield a smooth resolution of the instanton moduli spaces M}gngt [INS98].
Another approach, presented in [NS04], uses a representation of G as the
limit of a five-dimensional gauge theory on R* x S when the radius of the
factor S! vanishes. It was shown in [NS04] that both prescriptions yield
identical results.

These approaches work most straightforwardly for gauge theories with
gauge group (U(2))" rather than (SU(2))". In order to use the known results
for (U(2))", the authors of [AGT] proposed that the instanton partition func-
tions Z"(a, m, T; €1, €2) for gauge group (SU(2))" are related to their coun-
terparts Zli}l(s;) (a,m, T; €1, €e2) defined in theories with gauge group (U(2))"



Supersymmetric gauge theories 27

by splitting off a “U(1)-factor”,

(3.11) Zt (g, m, e, €) = ZZP(‘S (m,T;€1,€) Zi&l(sg)(a, m,T;€1,€2) .

Note that the U(1)-factor lejp(li; (m, T; €1, €2) does not depend on the Coulomb
branch moduli a. However, the precise form of the factor proposed in [AGT]
was so far mainly motivated by the relations with conformal field theory

discorvered there.

3.3.2. Non-perturbative scheme dependence 7. One would expect
that there should be other possibilities for regularizing the UV divergencies
in general. Some examples were explicitly discussed in [HKSI] [HKS2]. One
may, for example, use that Sp(1) ~ SU(2) in order to set up an alternative
scheme for the definition of the instanton partition functions. It was found
to give an answer Z™'(a, m, T;e1, e2) that differs from Z™(a,m, 75 €1, €2)
by factors that do not depend on the Coulomb branch moduli a,

(3.12) ginSt(a, m,T;er,€2) = ZPY(m, T; €1, €2) ZinSt(a, M, T;€1,€2),

together with a redefinition 7 = 7(7) of the UV gauge coupling constants.
The possibility to have redefinitions of the UV gauge couplings in general
is suggested by the structure of the Uhlenbeck-compactification ﬂ}ﬁn;t of
_/\/likngt7

——inst

(3.13) Mia = MU [MPES 5 x R U+ U [Sym*(RY)] .

The factors Z°P" (m, 7; €1, €2) in (3.12)) will be called spurious following
[HKS1, [HKS2]. One way to justify this terminology is to note that such
factors will drop out in normalized expectation values defined as

(3.14) (L3 )ps =) )Ly )

e el es e
as follows immediately from the general form of the results for the expec-
tation values quoted in and . The scheme dependence contained
in the spurious factors Z*P"(m, 7; €1, €2) should therefore be considered as
unphysical.

It would be very interesting to understand the issue of the scheme
dependence, the freedom in the choice of UV regularization used to define
Zst(q. m, T;€1, €2), more systematically. We will later arrive at a precise
description of the freedom left by the approach taken in this paper.
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3.3.3. Perturbative part. The perturbative part ZP°* in (3.10) factor-
izes as Zpert — Ztree Zl—loop'

The factor Z{BS¢ represents the tree-level contribution. It is given by a
simple expression proportional (up to spurious factors) to

(3.15) Ztree _ H g/

ecoy

where o1 is the set of edges of the MS graph I', associated to the pants
decomposition ¢ defining the Lagrangian of G¢.
The factor ZI8¢ is given by certain determinants of differential oper-

1—loop
ators. It has the following form
(3.16) Zl-loop H 257100p<a61(v), Oey(v)s Ges(v)s €15 62) ,

vEOoy

where o is the set of vertices of the MS graph I', associated to the pants
decomposition o, and e;(v),e2(v),e3(v) are the edges of I', that emanate
from v. If an edge e;(v) ends in a boundary component of C, then a,,(,) will
be identified with the mass parameter associated to that boundary compo-
nent.

It should be noted that there is a certain freedom in the definition of
Z171°°P que to the regularization of divergencies in the infinite products
defining Z.7°°P. This issue has a natural resolution in the case of partition
functions or expectation values on Eé@ going back to [Pel: what enters into
these quantities is the absolute value squared |24 '°°P (G, (v) ) Gey (v) > Qg ()5
€1, €2)|? which is unambigously defined [Pe, [HH|. There does not seem to be
a preferred prescription to fix the phase of Zq}_lOOp(ael(U), ey (v)s Qey(v); €15 €2)5
in general, which can be seen as a part of the perturbative scheme depen-
dence.

3.4. Reduction to zero mode quantum mechanics

We may assign to the expecation values (£,) an interpretation in terms of
expectation values of operators L, which act on the Hilbert space obtained
by canonical quantization of the gauge theory G~ on the space-time R x
E3 where E3 _ is the three-dimensional ellipsoid defined as

€1,€2) €1,€2
(3.17) E} o ={(21,...,z0) | (a7 + 23) + 3(23 +2F) = 1}.
4

1., as Euclidean time.
we expect to be able to

This is done by interpreting the coordinate xq for F,
Noting that th , looks near zop = 0 as R x E3

€ €1,€2)
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represent partition functions Zg . (EZ )

or expectation values ( L. ) Go(BL )
C €1,€
as matrix elements of states in the Hilbert space Hg,. defined by canonical

quantization of Go on R X E631,€2‘ More precisely
(318)  Zg(BL)=(rlr),  (L)p =(7IL4l7),

where (7] and |7) are the states created by performing the path integral
over the upper/lower half-ellipsoid

(3.19) Efl’iz = { (w0, ...,24) | 2 + €3 (zF + 23)
+ (a5 + ) =1, £w0 >0},

respectively, and L, is the operator that represents the observable £, in the
Hilbert space Hg,.(E? ).

3.4.1. Localization — Interpretation in the functional Schrédinger
picture. The form , of the loop operator expectation values
is naturally interpreted in the Hamiltonian framework as follows. In the
functional Schroedinger picture one would represent the expecation values
<£7 > g+ schematically in the following form

€1,€2

€1,€2

(3.20) (Ly)p = /[ch] (U[®])* L, T[],

the integral being extended over all field configuration on the three-ellipsoid
E? ., at xo = 0. The wave-functional U[®] is defined by means of the path
integral over the lower half-ellipsoid Efl’,; with Dirichlet-type boundary con-
ditions defined by a field configuration ® on the boundary E? _ of B,
The fact that the path integral localizes to the locus Loc, defined by
constant values of the scalars, and zero values for all other fields implies
that the path integral in can be reduced to an ordinary integral of

the form
(3.21) <57>Egm = /da (T ()" LT (a),

with L’ being the restriction of L, to Locc, and ¥(a) defined by means of
the path integral over the lower half-ellipsoid Ef;;z with Dirichlet boundary
conditions ® € Loco, ¢p = ¢ = %ang. The form of the results for expec-
tation values of loop observables quoted in , is thereby naturally
explained.
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Comparing the results (3.8)) and (3.9) with (3.21]) leads to the conclusion
that the wave-functions ¥, (a) appearing in (3.21)) are represented by the
instanton partition functions,

(3.22) U (a) = Z2™%a,m, T;e1, €2) -

Our goal will be to find an alternative way to characterize the wave-functions
U, (a), based on their transformation properties under electric-magnetic
duality.

3.4.2. Reduction to a subspace of the Hilbert space. The Dirichlet
boundary condition ® € Locg, ¢e x a. is naturally interpreted as defining a
Hilbert subspace Ho within Hg,. States in Ho can, by definition, be repre-
sented by wave-functions ¥(a), a = (ai,...,ap).

Note that field configurations that satisfy the boundary condition ® €
Locc are annhilated by the supercharge ) used in the localization calcula-
tions of [Pe, (GOPL [HH] — that’s just what defined the locus Loce in the first
place. This indicates that the Hilbert subspace Hg represents the cohomol-
ogy of ) within Hg,..

The algebra of observables acting on Hg should contain the supersym-
metric Wilson- and 't Hooft loop observables. The Wilson loops W, , and
We,, act diagonally as operators of multiplication by 2 cosh(27a./€,) and
2 cosh(2ma./€,), respectively. The 't Hooft loops will act as certain differ-
ence operators.

Let us denote the non-commutative algebra of operators generated by
polynomial functions of the loop operators W, ; and T.; by A,, where i =
1,2. We will denote the algebra generated by all such supersymmetric loop
operators by A¢ ., = Ac, X Ac,.

4. Riemann-Hilbert problem for instanton
partition functions

The main result of this paper may be summarized in the statement that,
up to spurious factors, the wave-functions ¥, (a) in the quantum mechan-
ics of the zero modes of G- coincide with the Liouville conformal blocks
ZUeu(8, o, g;b),

(4.1) U (a) ~ 248 o, q:b).

The definition of ZM°%(3, o, ¢; b) will be reviewed and generalized in Part ITI
below, where we will also spell out the dictionary between the variables



Supersymmetric gauge theories 31

involved. Combined with (3.22)), we arrive at the relation Z"*(a, m, 7, €, €, )
~ ZLow(3 . q;b) proposed in [AGT].

In this paper we will characterize the wave-functions ¥ (a) using the
relation between the algebra A¢ ., of supersymmetric loop observables to
the quantized algebras of functions on moduli spaces of flat connections.
These quantized algebras of functions are deeply related to Liouville theory,
as will be explained in Part III of this paper. Taking into account these
relations will lead to the relation of ¥, (a) with the Liouville conformal
blocks.

Before we continue to discuss our approach to the relation let us
briefly review some of the known evidence for , mainly coming from its
relation with the observations of [AGT].

4.1. Available evidence

The authors of [AGT] observed in some examples of theories from class
S that one has (up to spurious factors) an equality of instanton partition
functions to the conformal blocks ZM°%(3, a, 7;b) of Liouville theory,

(4.2) ZinSt(a,m,T;61,€2) ~ ZLiou(B,a,T;b),

assuming a suitable dictionary between the variable involved. The results of
[AGT] can be generalized to a subset of the family of theories from class S
called the linear quiver theories corresponding to surfaces C of genus 0 or
1 [AFLT].

For surfaces C' of genus 0 we know, on the other hand, that the Liouville
conformal blocks coincide with certain wave-functions in the quantum theory
of the Teichmiiller spaces 7(C) of Riemann surfaces ([T03|, see also Part
IIT of this paper),

(4.3) 2V (8,a,738) = T (a) = (a| 7)) -

The state (a| is an eigenstate of a maximal family of commuting geodesic
length operators, while \T)T(C) is defined as an eigenstate of the opera-
tors obtained in the quantization of certain complex-analytic coordinates on
T(C). The definition of U7 (a) and the derivation of (4.3)) will be reviewed
and generalized to surfaces C' of higher genus in Part III of our paper.

Combining the observations (3.22)), (4.2) and (4.3) suggests that the

quantum mechanics of the zero modes of G¢ is equivalent to the quantum
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theory of the Teichmiiller spaces, and that we have in particular
(4.4) U(a) ~ U (a).

This conclusion was anticipated in [DGOT], where it was noted that the
existing results on Wilson loop observables can be rewritten in the form

(45) <£'7>Ef :<T|L’Y‘T>T(C)’

1,€2
using the observations and quoted above. The gauge theoret-
ical calculations leading to were later generalized to the case of 't
Hooft loops in [GOP]. These results confirmed the earlier proposals made in
[AGGTV, DGOT] that the supersymmetric loop operators in gauge theories
Go are related to the analogs of the Verlinde loop operators in Liouville the-
ory. The Verlinde loop operators are further mapped to the geodesic length
operators by the correspondence between Liouville theory and the quantum
Teichmiiller theory [T03, DGOT].

One should keep in mind that the Teichmiiller spaces T (C) are naturally
isomorphic to the connected components MY, (C) of Mgt (C). Combining
all these observations we may conclude that for surfaces C' of genus 0 the
expectation values of supersymmetric loop operators in Go can be repre-
sented as expectation values of certain operators in the quantum mechanics
obtained by quantizing M3, (C).

Our goal is to understand more directly why this is so, and to generalize
this result to all theories from class S.

4.2. Assumptions

Our approach for deriving (4.1]) is based on physically motivated assump-
tions. We will first formulate the underlying assumptions concisely, and later
dicuss the underlying motivations.

(a) ¥,(a) can be analytically continued with respect to the variables 7 to
define a multi-valued analytic function on the coupling constant space
M(Gc). The boundaries of M(G¢), labelled by pants decompositions
o correspond to weakly-coupled Lagrangian descriptions for Ge.

(b) The transitions between any two different weakly-coupled Lagrangian
descriptions for G¢ are generated from the elementary electric-magnetic
duality transformations of the Ny =4 and the N = 2*-theories. The
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electric-magnetic duality transformations exchange the respective
Wilson- and ’t Hooft loop observables.

(c) The algebra A, generated by the supersymmetric loop observables is
isomorphic to the algebra Fun,, (Mg.(C)) x Fune, (Mga:(C)), where
Fune(Mgat(C)) is the quantized algebra of functions on M3,  (C) ~
T(C).

Assumptions (a) and (b) can be motivated by noting that the theories of
class S are all quiver gauge theories [G09]. This combinatorial structure
reduces the S-duality transformations to those of the building blocks, the
Ny = 4 and the N’ = 2*-theories. The realization of electric-magnetic duality
in these theories has been discussed extensively in the literature, going back
to the works of Seiberg and Witten [SWI, [SW2].

Of particular importance for us is assumption (c). Let us first note that
this assumption is strongly supported by the explicit calculation of the 't
Hooft loop operator expectation values in the A/ = 2*-theory carried out in
[GOP]. One finds a precise correspondence between the difference operator
D.; in and operator L; representing the trace coordinate L; in the
quantum theory of Mg,(C) (see Equation below).

It should be possible to verify assumption (c) directly by studying the
algebra of Wilson-’t Hooft loop operators in the theories Go in more gener-
ality. It was proposed in [IOT] that in order to study the algebra of super-
symmetric loop operators one may replace the background space-time Eéll,eQ
by the local model S* x R3 for the vicinity of the loop operators, taking
into account the relevant effects of the curvature by a simple twist in the
boundary conditions. This has been used in [IOT] to calculate expectation
values of supersymmetric loop operators in several cases. The results give
additional support for the validity of assumption (c¢). Further development
of this approach may well lead to a derivation of (c¢) purely within four-
dimensional gauge theory.

As also pointed out in [IOT], the twisted boundary conditions on S x R?
used in this paper are essentially equivalent to the deformation of Go studied
in [GMN3]. Specializing the results of [GMN3] to the A; theories of class
S considered here, one gets a non-commutative algebra of observables with
generators IL, which can be represented in the form

(4.6) Ly = Qv,n;9) Xy,
n

where X, are generators of the non-commutative algebra obtained by canon-
ical quantization of the Darboux-coordinates studied in [GMNI] IGMN2],
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and the coefficients Q(v,n;y) are indices for certain BPS states extensively
studied in |[GMNS3]. It is pointed out in this paper, on the one hand, that
there is a simple physical reason for getting a non-commutative deforma-
tion of the algebra of the Darboux-coordinates generated by the X;. On the
other hand it is argued in [GMN3] that coincides with the decompo-
sition of geodesic length operators into the (quantized) coordinates for the
Teichmiiller spaces introduced by Fock [F97]. It follows that the algebra gen-
erated by the L, is isomorphic to the algebra of geodesic length operators in
the quantum Teichmiiller theory. This is exactly the algebra Fun.(Mg.(C))
studied in this paper. We believe that this line of thoughts can lead to an
insightful derivation of our assumption (c), but it seems desirable to have a
more detailed discussion of the applicability of the results of [GMN3] to our
set-up.

Yet another approach towards understanding assumption (c) starts from
a modified set-up in which the gauge theory G¢ is replaced by its Omega-
deformed version G [N, NW]. In the Omega-deformed theory one may
define analogs of the loop observables L., and wave-functions ¥i*(a) in a very
similar way as above, and one has Ui*(a) = Z(a, m, 7; €1, €2). Combined
with the observation made above we see that

(4.7) U, (a) = 2™ (a,m, 75 €1, €2) = TP (a).

This strongly indicates that we may use the results on the Omega-deformed
theory Ga“ from [NW] for the study of the gauge theory on thﬁz. In the
following Section we will briefly review the argument for (c) in the Omega-

deformed theory G which was given by Nekrasov and Witten in [NW].

4.3. The Riemann-Hilbert problem

The strategy for deriving may now be outlined as follows.
Assumption (b) implies that the S-duality transformations induce a
change of representation for the Hilbert space Hiop. Recall that W7 (a)
is defined to be a joint eigenfunction of the Wilson loop operators con-
structed using the weakly coupled Lagrangian description associated to a
pants decomposition ;. Considering another pants decomposition oo one
defines in a similar manner eigenfunctions ¥22(a) of another family of oper-
ators which are not commuting with the Wilson loop operators defined from
pants decomposition o1, but can be constructed as Wilson loop observables
using the fields used in the Lagrangian description of Go associated to pants
decompostion oy. The eigenfunctions ¥2'(a) and ¥22(a) must therefore be
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related by an integral transformations of the form

(48) V7 (22) = fouo, (7) [ dan Ko, (a2,00) 92" @),

We allow for a spurious prefactor f,,,, (7) in the sense explained in Sub-
section [3.3] as it will turn out that we can not eliminate such prefectors by
choosing an appropriate scheme in general.

Given that we know the data K,,,, (a2,a1) and fs,,, (7), the assump-
tions (a) - (c) completely describe of the analytic properties of Z*(a, m, 7,
€1,€,) as function on the coupling constant space M(G¢). This means that
Z0st(q.m, T, €,,€,) can be characterized as the solution to a Riemann-Hilbert
type problem.

A detailed construction of the representation of A, on Hop will be
given in Part II of this paper. The main result for our purposes is to show
that the kernels K, ., (a2,a1) appearing in can be characterized by
the requirement that this transformation correctly exchanges the Wilson-
and 't Hooft loops defined in the two Lagrangian descriptions associated to
o1 and o9, respectively. The technically hardest part is to ensure that the
Moore-Seiberg groupoid of transformations from one Lagrangian description
to another is correctly realized by the transformations .

In Part III we will then show that this Riemann-Hilbert type problem
has a solution that is unique up to spurious factors as encountered in ,
and given by the Liouville conformal blocks appearing on the right hand
side of . A precise mathematical charcterization of the possible spurious
factors is obtained.

It may be instructive to compare this type of reasoning to the derivations
of exact results for prepotentials in supersymmetric gauge theories pioneered
by Seiberg and Witten. The key assumptions made in these derivations were
the analyticity of the prepotential, and assumptions on the physical interpre-
tation of its singularities. Well-motivated assumptions on effective descrip-
tions near the singularities of the prepotential F lead Seiberg and Witten to
a characterization of this quantity in terms of a Riemann-Hilbert problem.
A key assumption was that the transition between any two singularities of
the prepotential corresponds to electric-magnetic duality.

5. The approach of Nekrasov and Witten
An approach towards understanding the link between the gauge theories G

and Liouville theory expressed in formula (4.2)) was proposed in the work
INW] of Nekrasov and Witten. This work considers the gauge theory G
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on four-manifolds M* that have (U(1))2-isometries and therefore allow to
define the Omega-deformation G of Go. The result may imprecisely be
summarized by saying that the topological sector of G is represented
by the quantum mechanics obtained from the quantization of Mg, (C).
The arguments presented in [NW] do not quite suffice to derive the AGT-
correspondence in the strong form .

We will argue that one may take the arguments of [NW]| as a starting
point to reach the more precise result : Certain wave-functions in the
topologically twisted version of Gi* considered by [NW] coincide with the
conformal blocks of Liouville theory. As the wave-functions in question also
coincide with the instanton partition functions (almost by definition), we
will thereby get a derivation of the AGT-correspondence which is somewhat
in the spirit of the characterization of the prepotentials that was pioneered
by Seiberg and Witten.

5.1. The basic ideas

The approach of Nekrasov and Witten is based on three main ideas:

(i) The instanton partition functions are defined in [N] as partition func-
tions of G5 on R*. The deformation of G¢ into G preserves a
supersymmetry which can be used to define a topologically twisted
version th?p of G, The partition function of G on R* coincides
with the partition function of 9852 on any four-manifold B* with the
same topology as R* that has the (S')2-isometries needed to define
the Omega-deformation G of Go [NW].

(ii) The four-manifold B* may be assumed to have a boundary M3, and
the metric near the boundary may be assumed to be the metric on
R x M?3. Canonical quantization on R x M? yields a quantum theory
with Hilbert space Haz:(Ge ). The partition function on B* can then
be interpreted as a wave-function of the state created by performing
the path integral over B*.

(iii) Viewing S as a fibration of (S!)? over an interval I, one may represent
QtCOp on R x S in terms of a topologically twisted two-dimensional
non-linear sigma model on the world-sheet R x I with target space
My, the Hitchin moduli space. This means that the instanton parti-
tion function gets re-interpreted as a wave-function of a certain state
in the two-dimensional sigma model on the strip.
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Let us consider the topologically twisted theory Q’g)p on R x M3. The
topological twist preserves two super-charges Q and Qf. Choosing Q to
be the preferred super-charge, one may identify the Hilbert-space Hiop =
H%}B(ggez) of gtc?p with the Q-cohomology within H s (G ).

A few points are clear. The Hilbert space Hiop, is acted on by the chiral
ring operactors

(5.1) ue == Tr(¢?).

These operators generate a commutative ring of operators acting on Hyop. It
is furthermore argued in [NW], Section 4.9.1] that analogs of the Wilson- and
't Hooft loop operators can be be defined within the gauge theory G5 on
R x M3 which commute with Q, and therefore define Wilson- and 't Hooft
loop operators W, ; and T.; acting on Hiop. We will denote the algebra
generated by all such supersymmetric loop operators by A7, = A» x AP,
And indeed, one of the main results of [NW] were the isomorphisms

(5.2) AP X AP > Fune, (Mgay(C)) x Fune, (Mgat (C))

where Fung, (Mg, (C)) is the quantized algebra of functions on Mg, (C') that
will be defined precisely in Part II, together with

(5.3) Hip(G67) = H(Miu(C)),
both sides being understood as module of Fun,, (Mg, (C)) x Fun,, (Mga:(C)).

5.2. The effective sigma model description

It may be instructive to briefly outline the approach that lead to the results
and (5.3)), see [NW] for more details.

In order to get a useful effective representation for G¢“*, let us note that
we may view three manifolds M3 with the necessary (U(1))?-isometries as a
circle fibration S' x S' — I, where the base I is an interval. It was argued
in [NW] that the low energy physics of G- can be represented by a (4,4)-
supersymmetric sigma model with world-sheet R x I and target space being
the Hitchin moduli space My (C). This sigma model can be thought of as
being obtained by compactifying Gi“* on S 1'% 81. Due to topological invari-
ance one expects that supersymmetric observables of G get represented
within the quantum theory of the sigma model.

An elegant argument for why the sigma model has target space My (C)
can be based on the description of Go as compactification of the six-
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dimensional (0, 2)-superconformal theories of the A;-type on spaces of the
form M* x C. If M* has the structure of a circle fibration, one expects that
the result of compactifying first on C, then on the circle fibers should be
equivalent to the result of first compactifying on the circle fibers, and then on
C, as far as the resulting topological subsector is concerned. If one compact-
ifies the six-dimensional (0, 2)-superconformal theory on a circle S, or on
S x S1, the result is a maximally supersymmetric Yang-Mills theory with
gauge group SU(2) on a five-, or four-dimensional space-time, respectively.
Minimal energy configurations in the resulting theories on space-times of
the form M x C are represented by solutions of Hitchin’s equations on C'
[BJSV], see also [GMN2, Subsection 3.1.6]. It follows that the low-energy
physics can be effectively represented by a sigma model on M which has
My (C) as a target space. This argument has been used in [NW], see also
[NRS| for a similar discussion.

The effect of the 2-deformation is represented within the sigma-model
description by boundary conditions B¢, and B, imposed on the sigma model
at the two ends of the interval I. It is shown that the boundary conditions
are represented by the so-called canonical co-isotropic branes, see [NW] for
the definition and further references. The Hilbert space Hﬁ(}‘;(ggﬁ) thereby
gets identified with the space of states Hom(B,,B.,) of this open two-
dimensional sigma model.

It was furthermore argued in [NW] that the action of the algebra A%,
of supersymmetric loop operators on H}‘}f;(gg’ﬁl) gets represented in the
sigma model as the action of the quantized algebra of functions on the
canonical coisotropic branes via the joining of open strings, which defines a
natural left (resp. right) action of A, (C) ~ Hom(B,, Be,) (resp. A, (C) ~
Hom(B,,, Be,)) on Hom(B,, B, ). The key result obtained in [NW] is then
that the algebras Hom(B,,, B, ), i = 1, 2, with multiplication naturally defined
by the joining of strips, are isomorphic to the quantized algebras of func-
tions Fune, (Mgat(C)) on Mgy (C). The method by which this conclusion
is obtained can be seen as special case of a more general framework for
producing quantizations of algebras of functions on hyper-Kéhler manifolds
from the canonical coisotropic branes of the sigma models on such manifolds

[GV].
5.3. Instanton partition functions as wave-functions
Let us extract from [NW] some implications that will be relevant for us.

Recall that the algebra A, ., is generated by the quantized counterparts
of Wilson- and 't Hooft loop operators. Using localisation [Pe] one may show
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that the Wilson loop operators W, ; are positive self-adjoint, and mutu-
ally commutative [W ;, We ;] = 0 for i = 1,2. It follows that there exists a
representation for Hiop in which the states are realized by wave-functions
V(a) = (a|V)top, where a = (a1, ...,ap).

As S-duality exchanges Wilson- and 't Hooft loops, the ’t Hooft loops
must also be positive self-adjoint. What is relevant for us is therefore the
subspace of the space of functions on Mg, (C') characterized by the posi-
tivity of all loop observables. This subspace is isomorphic to the space of
functions on the Teichmiiller space 7(C), and will be denoted M3, (C).

Considering the gauge theory G& on R x M 3 one may naturally con-
sider a state |7) € Hg, (M?3) created by performing the path integral over
the a BEuclidean four-manifold B*~ with boundary M3, and its projection

|7 )top t0 H'P. We may represent |7 ), by its wave-function

(5.4) rr(a) == (a7 )op -
Note that the overlap between an eigenstate (a| of all the Wilson loop
operators with the state | 7 ), should be related to the instanton partition
function by means of the metric-independence of the path integrals for gg? P,
This should relate (a |7 ), given by the path integral for Gi on B4~ to
Znst(q. m, 7, €,,€,) which is defined by a path integral on R?

(5.5) Tir(a) = 2™ (a,m, 7,6y, €,) -

The projection onto an eigenstate ( a | of the Wilson loop operators is traded
for the boundary condition to have fixed scalar expectation values at the
infinity of R%.

We conclude that the instanton partition functions Z™*(a, m, 7, €1, €2)
represent particular wave-functions within the quantum theory of M3 . (C).
The isomorphisms and established in [NW] can be taken as
the basis for a characterization of the wave-functions ¥'*(a) in terms of
a Riemann-Hilbert type problem which will coincide with the one discussed
in our previous Section {4} This leads to yet another way to find the rela-
tion W, (a) = ¥i*(a) that we had pointed out above in ([4.7)). This relation
can be understood in a more phyical way by combining the following two
observations: On the one hand one may note that both in the case of Go on
Eéll’;,‘,, and in the case of the Omega-deformed theory Gi“ on R* the instan-
ton corrections get localized to the fixed points of the relevant U(1) x U(1)
actions. The two cases are then linked by the key observation from [Pe] that
the residual effect of the curvature of E* _ in the vicinity of the poles can

€1,€2

be modeled by the Omega-deformation of [NJ.
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Part II. Quantization of M

We are now going to describe the quantum theory of MY  (C) ~ T(C) in
a way that is suitable for the gauge theoretical applications. This will in
particular lead to a precise description of the kernels K,,,, (a2,a1) that
define the Riemann-Hilbert problem for the instanton partition functions.

In Section [6] we will explain how the use of pants decompositions reduces
the task to the specification of a finite set of data. In order to character-
ize the relevant representations of the algebra Fun,(Mag,:(C)) it suffices to
define the counterparts fo the Wilson- and 't Hooft loop operators, and to
describe the relations in Fun,(Mg,:(C')). Transitions between pants decom-
positions (corresponding to the S-duality transformations) can be composed
from elementary moves associated to surfaces of type Cp3, Cp4 and Cf 1.
This section summarizes our main results by listing the explicit formulae for
the defining data.

The rest of Part II of this paper (Sections [7] and |8) explains how the
results summarized in Section [6] can be derived. Our starting point is the
quantization of the Teichmiiller spaces constructed in [F97, Kall, [CET] [CEF2]
which is briefly reviewed in the beginning of Section [7] The main technical
problem is to diagonalize a maximal commuting set of geodesic length oper-
ators which in our context correspond to the set of Wilson loop operators
[T05]. The relevant results from [T05] are summarized in Section

Section [8] describes what remains to be done to complete the derivation
of the results listed in Section [} An important step, the explicit calculation
of the generators associated to surfaces of genus 0, has recently been taken in
[INT]. A new result of particular importance for us is the explicit calculation
of the central extension of the representation of the Moore-Seiberg groupoid
that is canonically associated to the quantum theory of MJ_ (C) ~ T(C).

Another approach to the quantization of moduli spaces of flat connec-
tions for noncompact groups is described in particular in [Gu], and the case
of one-holed tori was previously discussed in [DG].

6. Construction of the quantization of MY_ (C)
An important feature of the description of Myg,; summarised in Section [2.6
is the fact that it exhibits a form of locality in the sense that the descrip-
tion can be reconstructed from the local pieces isomorphic to Cp4 or C1 1
appearing in pants decompositions. In the relation with gauge theory one
may view this locality as a consequence of the description of the A; theories
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in class S as quiver gauge theories [G09]. The Lagrangian includes only cou-
plings between neighbouring parts of the MS graph. We are now going to
describe in more detail how this locality is reflected in the quantum theory,
and introduce the main data that characterize the quantum theory in such
a description.

6.1. Algebra

Our aim is to construct a one-parameter family of non-commutative defor-
mations A(C) = Fun'® (Mg, (C)) of the Poisson-algebra of algebraic func-
tions on Mg, (C).

For a chosen pants decompostion defined by a cut system C we will
choose as set of generators {(L¢, L§,LS);y € CYU{Ly;;r=1,...,n}. The
generators L¢, L, and Lf, are associated to the simple closed curves ~¢,
¢, and ~¢ introduced in Subsection respectively. The generators L,
r =1,...,n are associated to the n boundary components of C' >~ C, ,,. They
will be central elements in A, (C).

For each subsurface C, C C associated to a curve -, in the cut system C
there will be two types of relations: Quadratic relations of the general form

(6.1) Qe(Lg, Li, L) =0,
and cubic relations
(6.2) Po(LE, g, LE) = 0.

We have not indicated in the notations that the polynomials Q. and P, may
depend also on the loop variables associated to the boundary components
of C, in a way that is similar to the classical case described in Subsec-
tion In order to describe the relations it therefore suffices to specify
the polynomials Q. and P, for the two cases C. ~ Cp4 and C, >~ C' 1.

6.1.1. Case C¢ ~ Cy 4 :. Quadratic relation:

(63) QE(LS7 Lt; Lu) = eﬂ'ibQLsLt N e—wib2LtLS i (827rib2 . 6727rib2)Lu
— (&M — ™Y (Ly Ly + LoLy).
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Cubic relation:

(6.4) Po(Ls, Lt, Ly) = —™ LyLy Ly, + 2™V L2 4 ¢72m0° [2 4 2mib* 2
+ ™ Lo(L3Ly 4 LyLy) + e ™ Ly(LoLs + Ly Ly)
+ €™ Ly(L1Ls + LoLy) + L3 + L3 + L3 + L3
+ L1LyLsLy — (2coswb*)?.

In the limit b — 0 it matches ([2.16)).

6.1.2. Case C, ~ (1,1 :. Quadratic relation:

i

(6.5)  Qc(Ls, Ly, Ly) = €3V LyLy — e 3V LiLy — (™ — ™)L, .
Cubic relation:

(6.6) Pe(Ls, Ly, Ly) =™ L2 4 ™ [2 4 ™ [2 _ o5V I, 1,
+ Lo — 2cosmh?.

The quadratic relations represent the deformation of the Poisson bracket
(2.19)), while the cubic relations will be deformations of the relations (2.15)).

6.2. Quantization of the Darboux coordinates

Natural representations m,, of Ay(C) by operators on suitable spaces of
functions can be constructed in terms of the quantum counterparts l., ke
of the Darboux variables [., k.. The algebra A(C') will be represented on
functions v, (1) of the tuple [ of h = 3g — 3 + n variables [, associated to the
edges of I';. The representations m, will be constructed from operators I,
ke which are defined as

(6.7) le Yo (1) := Lo e (1), ke Vo (1) := 47rb21£¢g(1) .

We are using the notation b? for the quantization parameter A.

The construction of the representations will reflect the locality proper-
ties emphasized above. In order to make this visible in the notations let us
introduce the one-dimensional Hilbert space Hfz ;, associated to a hyperbolic
three-holed sphere Cy 3 with boundary lengths I;, i = 1,2,3. We may then
identify the Hilbert space H, of square-integrable functions v, () on R’}r
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with the direct integral of Hilbert spaces

(6.8) M, _/ IT dte @ #2200

+ eco; V€O

We denoted the set of internal edges of the MS graph o by o1, and the set
of vertices by oyg.

For C' ~ Cp4 we may consider, in particular, that pants decomposition
0 = o5 depicted on the left of Figure 4, We then have

53]
(6.9) HO =N, ~ / dle Hp', @M,

For C'= C1 1, using the pants decomposition on the left of Figure

D
(6.10) H / dl M, .

For each edge e of the MS graph I', associated to a pants decomposition
o one has a corresponding subsurface C, that can be embedded into C. For
any given operator O on ”HSA and any edge e of I'y such that C, ~ Cp4
there is a natural way to define an operator O° on H, acting “locally” only
on the tensor factors in associated to Cl.

More formally one may define O¢ as follows. Let O = Oy,1,1,1, be a family
of operators on #2% Tt can be considered as a function O(l, k; 11, 12,13,14) of
the operators I, k that depends parametrically on 1,1s,13,14. Let T, be an
MS graph on C. To an edge e of I', such that C. ~ Cp 4 let us associate the
neighboring edges fi(e), i = 1,2, 3,4 numbered according to the convention
defined in Subsection . We may then use Oy,;,1,;, to define an operator
O¢ on H, as

(6.11) O° := O(les kes 1 p(e)s La(e)s Late) s 1 ate)) -

We are using the notation |; for the operators defined above if f is an
internal edge, and we identify |y = [ if f is an edge that ends in a boundary
component of C. If C, ~ (' 1 one may assomate in a similar fashion operators
O° to families O = Oy, of operators on Hit

It will sometimes be useful to introduce “basis vectors” (1| for H,, more
precisely distributions on dense subspaces of ‘H, such that the wave-function
(1) of a state |1) is represented as 1 (l) = (l|v¢ ). Representing H, as
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in one may identify

(6.12) ®v jj (o)

VEOTH

where vllj L is understood as an element of the dual (Hfz ll)t of the one-
dimensional Hilbert space ’Hfi’ I

6.3. Representations of the trace coordinates

It suffices to define the operators L; = 7, (L;), i = s,t,u, for the two cases
C ~ Cpy4 and C ~ (1. For these cases we don’t need the labelling by edges
e. In both cases we will have

(6.13) Ls := 2cosh(1/2).

The operators L;, i = t,u will be represented as finite difference operators.
Considering the operator L; representing the 't Hooft loop operator, for
example, we will find that it can be represented in the form

(6.14) L = mo(Le)vo(l) = [Dy(Det™ + Do(l) + D_(Ne ]y (1),

with coefficients D,(l) that may depend on l1,12,13,l4 for C ~ Cj 4, and on
l[) for C ~ 0171.

6.3.1. Case C, >~ Cp 4:. The operators L; and L, are constructed out of
the quantized Darboux coordinates k and | as follows

(6.15a)

1
L= (2 b2(LoLs + LiLy) + Lo(L{L LL)
t (COSh|—00527rb2) cosmb”(LaLs + L1L4) 4+ Ls(L1Ls + LoLy)

Y pek/z Vez(bs)esa(ls) o 1

= \/2smh (1/2) 2sinh(1/2) 2sinh(l/2)

where the notation ¢;;(Ls) was introduced in (2.21)). The operator L, is then
obtained from L; my means of a simple unitary operator

(6.15b) L, =[B™" L -B], /.

where we are using the notations L; := 2 cosh(l;/2), and

. 9 )
B :— ¢m(AM-A()-Al)) A(l) = (47lrb)2 N 1 Ibb .
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The operator B will later be recognized as representing the braiding of holes
1 and 2.

6.3.2. Case C, ~ C1,1:. We now find the following expressions for the
operators Ly and L,:

1
sinh(1/2)

ock/4 \/cosh 21ta ¢ ogp 2=l oek/4

6.16a)
(6.162) 6%:1 \/smh (1/2)

The operator L, can be obtained from L; by means of a unitary operator T,
(6.16b) Ly =T "L-T,

which is explicitly constructed as

(6.17) T = e 2mAl)

This operator will later be found to represent the Dehn twist.

It is straightforward to check by explicit calculations that the relations
of Ay(C) are satisfied. It can furthermore be shown that the representations
above are unique, see Appendix [A] for some details.

We furthermore observe that the operators L;, are positive self-adjoint,
but unbounded. There is a maximal dense subset S, inside of H, on which
the whole algebra A;(C) of algebraic functions on My, is realized.

6.4. Transitions between representation

For each MS graph o one will get a representation 7, of the quantized
algebra of Ay(C) of functions on Mpg.(C). A natural requirement is that
the resulting quantum theory does not depend on the choice of o in an
essential way. This can be ensured if there exist unitary operators U,,q,
intertwining between the different representations in the sense that

(6.18) Moy (L'y) “Usyo, = Usyo, * 7o, (L'y) .

Having such intertwining operators allows one to identify the operators
7s(L~) as different representatives of one and the same abstract element
L. of the quantized algebra of functions A,(C). The intertwining prop-
erty turn out to determine the operators U,,s, essentially uniquely.
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It will be found that the operators U,,,, can be represented as integral
operators

(6.19) (Upoontto (1) = / 0Ly Ag.o (1 1) U, (1)

This intertwining relation (6.18)) is then equivalent to a system of difference
equations for the kernels A, ,, (1,,1,),

p t

(6'20) To, (L'y) As,o, (lza ll): =As,0, (lz, ll) "o, (L’Y) .

The notation ;al (L,)! indicates that the transpose of the difference operator
7o, (Ly) acts on the variables I, from the right. 7., (L) acts only on the
variables [,. The equations represent a system of difference equations
which constrain the kernels A,,,, (I,,1,) severely. They will determine the
kernels A,, ., (1,,1;) essentially uniquely once the representations 7, have
been fixed.

6.5. Kernels of the unitary operators between
different representations

We now want to list the explicit representations for the generators of the
Moore-Seiberg groupoid in the quantization of Mﬂat(C')

For many of the following considerations we will find it useful to replace
the variables [, by

(6.21) Qe = Q

47Tb

Using the variables «, instead of [, will in particular help to compare with
Liouville theory.

6.5.1. B-move.

(6.22) B -vala, = Bala,Vala,
where
(6.23) Bl3a, = emilBa; =B =Aa,)

6.5.2. Z-move.

(6.24) Z vala, =022

a,ay °
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6.5.3. F-move.
D
<625) F ’ Ugi% ® Ug;al = /S d’Bt FBS,Bt [gi g?] Ugjal ® Ug;az )

where S = % +iRT, Q:=b+0b"!. The kernel describing the transition
between representation wg and m; is given as

1

(6.26) Falazar] = (Mg Mg,)z {ataza:},,

where

(6.27) Mg = |Sy(2B)|* = —4sinm(b(28 — Q))sin7(b~1(28 - Q)),

and the b-65 symbols { o1 &2 O‘j}b are defined as [PT1], [PT2| [TeVal

Q3 g

(628)  {@ o
= A(a87 Q2, al)A(a47 as, aS)A(at7 as, OKQ)A(OK4, at, Oél)
x/ﬁu&m—amg&W—aﬂn&W—aﬁﬁ%W—aM>
C

X Sp(a1234 — 1) Sp(vs13 — 1) Sp(usios — 1) Sp(2Q — ).

The expression involves the following ingredients:

e We have used the notations ayjr = o; + o + o, Qji = o + o +
aE + Q.

e The special function Sy(z) is a variant of the non-compact quantum
dilogarithm, definition and properties being collected in Appendix [B}

o A(as, e, 1) is defined as

1

Sb(oc1+042+043—@) )2
a1 + ag — a3)Sp(ar + az — ag)Sp(ae + a3 — aq) '

A(ozg,ozg,oq) = (Sb(

e The integral is defined in the cases that oy € Q/2 4+ iR by a contour
C which approaches 2@Q) + iR near infinity, and passes the real axis in
the interval (3Q/2,2Q).
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6.5.4. S-move.

®
(6.29) S v, = / 4B S3,5.,() v,
S
where
(6.30) .
A(Blaa()algl) 1 Q%A‘lo
S ap) = V2 — 25 (Mg, Mg,)?
8. (a0) A(Bz,ao,ﬂz)( o M.) Sp(ao)

y / gt 2725 -@) Sp(3(28, + ap — Q) + it) Sp(3(28, + ag — Q) — it)
R Sb(%(Zﬂz—ao-FQ)+it)8b(%(2ﬂz—ao+Q) —it) '

This ends our list of operators representing the generators of the Moore-
Seiberg groupoid.

6.6. Representation of the Moore-Seiberg groupoid

A projective unitary representation of the Moore-Seiberg groupoid is defined
by the family of unitary operators Uy, : Ho, = Ho,, 02,0, € Mo(X) which
satisfy the composition law projectively

(6.31) Uasaz ' U0201 = C0'3,01,Ul U03‘72 ’

where (5, 5,0, €C, |(s,.0,,0.| = 1. The operators Uy,,, which intertwine
the representations 7, according to (6.18]) will generate a representation of
the Moore-Seiberg groupoid.

6.6.1. Moore-Seiberg equations. Let us next list the explicit represen-
tations for the relations of the Moore-Seiberg groupoid in the quantization
of MY, (C). In order to state some of them it will be convenient to introduce
the operator T representing the Dehn twist such that

(6.32) T 080, = Taﬂgial ’
where
(6.33) T., = B&’a, B2, = o= 2mila,

We claim that the kernels of the operators B, F, S and Z defined above
satisfy the Moore-Seiberg equations in the following form:
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Genus zero, four punctures

(6.34a)

/S dBy Fy,p,[02 621 B3, Faop. (o1 03] = Blsey Faop.[a3 03] Baian »
(6.34b)

[ 48 P 828 P [ 23] = sl = o).

Genus zero, five punctures

(6.34c¢)

/Sd@% Fop [ 6 02 1 Fap, [0t 0  Faun [ 50 03] = Faop, [0 02 | Faup, (02 5 ]

Genus one, one puncture

(6.34d) /S dB, S5, ()55, () = 05(By — B5) (BI )",

034) [ d8. S5.5.(0) Ts, Saus () = PN T3 S ()T

Genus one, two punctures

(6.34f)

S (5) dB Ia [51 al]T T—lF [az Oél]
B1B2 3 s 4 ,83,34 B, o /84 B2 5455 B2 B2

_ B1 ay 1 Qs i(Ap, +A0, —A
—/SdBG Faop [ 0t 1Fs,5, [ 52 621668, (Bs) € Bes 5s).

The delta-distribution ds(51 — [f2) is defined by the ordinary delta-distribution
on the real positive half-line —i(S — Q/2).

6.6.2. Mapping class group action. Having a representation of the
Moore-Seiberg groupoid automatically produces a representation of the map-
ping class group. An element of the mapping class group u represents a
diffeomorphism of the surface C, and therefore maps any MS graph o
to another one denoted p.o. Note that the Hilbert spaces H, and H, .,
are canonically isomorphic. Indeed, the Hilbert spaces H,, described more
explicitly in , depend only on the combinatorics of the graphs o, but
not on their embedding into C. We may therefore define an operator M, (u) :
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Hs — Hy as

(6.35) My () == U0

It is automatic that the operators M(u) define a projective unitary repre-
sentation of the mapping class group MCG(C') on H,.
The operators Uy, », intertwine the actions defined thereby, as follows

from (6.31]), which implies
(6.36) Mg, (1) - Uo.on = TIO'ZUIUH/-0'27,U~UJ. Mo, (1) = Noso: Yo, o, - Mg, (),

where 7,0, = Cuo,,0,,0. /Cu.oz,u.ol,al- We may therefore naturally identify
the mapping class group actions defined on the various H,-.

6.7. Self-duality

For the application to gauge theory we are looking for a representation
of two copies of Fun,, (Mg, (C)), i = 1,2, generated from the two sets of
supersymmetric Wilson- and 't Hooft loop operators T ;, W, ; one can define
of the four-ellipsoid. The eigenvalues of the Wilson loop operators W, ; are
2 cosh(2mac/¢€;), for i = 1,2, respectively. This can be incorporated into the
quantum theory of MY (C) as follows.

Let us identify the quantization parameter b? with the ratio of the param-
eters €1, €2,

(6.37) b2 = €1 / €9 .

Let us furthermore introduce the rescaled variables

le
(6.38) ac ="

The representations 7, on functions ¢, () are equivalent to representations
on functions ¢, (a), defined by

(639) le (z)a(a) = Amac %(l) ) Ke 1/10(1) = geli(ba(a) :

€9 i~ Odae

Let us introduce a second pair of operators

(6.40) I =21, ke := = ke .
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Replacing in the construction of the operators L, all operators I by I, all
ke by ke, and all variables I; by EZl defines operators L The operators L
generate a representation of the algebra Fung-» (Mﬁat(c)) It can be checked
that the operatos L, (anti-)commute with the operators |~_7. Taken together
we thereby get a representation of Funy(Mgat(C)) x Fung-1(Mgai(C)). The
operators L{ and Eg correspond to the Wilson loop operators W, 1 and W, 2,
respectively.

6.8. Gauge transformations

Note that the requirement that the m,(LS) act as multiplication operators
leaves a large freedom. A gauge transformation

(6.:41) o) = XDy (1),
would lead to a representation 7/, of the form (6.14]) with k. replaced by
(6.42) k. := ke + 4mb? 9y, x (1) -

This is nothing but the quantum version of a canonical transformation
(I,k) = (I,k') with k = ke + fe(l). The representation 7, (L;) may then
be obtained from (6.14)) by replacing D.(I) — D.(l) with

(6.43) DI (ly) = e7xs) gekeeix()o=cks (1) | e = —1,0,1.

€

Locality leads to an important restriction on the form of allowed gauge
transformations x(/). They should preserve the local nature of the repre-
sentation 7X. This means that function v = e?X must have the form of a
product

(6.44) v(l) = H v(l3(v),l2(v),l1(v)),

V€O

over functions v which depend only on the variables associated to the vertices
v of o. This corresponds to replacing the basis vectors vll;‘ ), in |) by

vfsl = v(l3, 1o, ll)v o, . We then have, more explicitly,

(6.45) De(l) = diz(1)d3 (I) De(l)

where

U(l - 467Tib2, l2, ll)

v(ly, 13,1 — demib?) < (1) =
a v(l,la, 1) ’

(646) d43(l) (l4 13 l) ’ 21
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It is manifest that the property of the coefficients D¢(l) to depend only on
the variables [ assigned to the nearest neighbours f of an edge e is preserved
by the gauge transformations.

The freedom to change the representations of A(C) by gauge transfor-
mations reflects the perturbative scheme dependence mentioned in Subsec-

tion B.3.3
7. Relation to the quantum Teichmiiller theory

The Teichmiiller spaces had previously been quantized using other sets of
coordinates associated to triangulations of C rather than pants decompo-
sitions [F97, [CF1l, [Kall]. This quantization yields geodesic length operators
quantizing the geodesic length functions on 7 (C) |[CEF2, [T05]. By diagonaliz-
ing the commutative subalgebra generated by the geodesic length operators
associated to a cut system one may construct a representation of the Moore-
Seiberg groupoid [T05]. We will show that this representation is equivalent
to the one defined in Section [6l

This section starts by presenting the definitions and results from the
quantum Teichmiiller theory that will be needed in this paper. We will use
the formulation introduced by R. Kashaev [Kal], see also [T05] for a more
detailed exposition and a discussion of its relation to the framework of Fock
[F97] and Chekhov and Fock [CET]. We then review the results from [T05]
on the diagonalization of maximal sets of commuting length operators and
the corresponding representation of the Moore-Seiberg groupoid.

7.1. Algebra of operators and its representations

The formulation from [Kal] starts from the quantization of a somewhat
enlarged space T(C). The usual Teichmiiller space T(C) can then be char-
acterized as subspace of 7'(0) using certain linear constraints. This is moti-
vated by the observation that the spaces ’i'(C) have natural polarizations,
which is not obvious in the formulation of [F97, [CF1].

For a given surface C' with constant negative curvature metric and at
least one puncture one considers ideal triangulations 7. Such ideal triangu-
lations are defined by maximal collection of non-intersecting open geodesics
which start and end at the punctures of C'. We will assume that the trian-
gulations are decorated, which means that a distinguished corner is chosen
in each triangle.

We will find it convenient to parameterise triangulations 7 by their dual
graphs which are called fat graphs .. The vertices of ¢, are in one-to-one
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correspondence with the triangles of 7, and the edges of ¢ are in one-to-one
correspondence with the edges of 7. The relation between a triangle ¢ in 7
and the fat graph ¢, is depicted in Figure[d] ¢, inherits a natural decoration
of its vertices from 7, as is also indicated in Figure [0

\'"
&

Figure 9: Graphical representation of the vertex v dual to a triangle ¢t. The
marked corner defines a corresponding numbering of the edges that emanate
at v.

The quantum theory associated to the Teichmiiller space T (C') is defined
on the kinematical level by associating to each vertex v € ¢, @9 = {vertices
of p}, of ¢ a pair of generators p,,q, which are supposed to satisfy the
relations

51)1)’

omi

(7'1) [pvy qw] =

There is a natural representation of this algebra on the Schwarz space $¢(C )
of rapidly decaying smooth functions 1(q), ¢ : o > v — ¢y, generated from
W@(Qv) = Qu, W@(pv) = py, where

1 0
27 Ogy

(7.2) qv ¥(q) == ¢ (q), Py P(q) : ¥(q) -

For each surface C' we have thereby defined an algebra A(C) together with
a family of representations , of [A(C) on the Schwarz spaces S,,(C) which
are dense subspaces of the Hilbert space K(p) ~ L2(R49—4+2n),

The quantized algebra of functions Az (cy on the Teichmiiller spaces
is then defined by the quantum version of the Hamiltonian reduction with
respect to a certain set of constraints. To each element [y] of the first homol-
ogy H1(C,R) of C' one may associate an operator z, . that is constructed
as a linear combination of the operators p, and ¢, v € g, see [Kall [T05]
for details. The operators z, , represent the constraints which can be used
to characterize the subspace associated to the quantum Teichmiiller theory
within ().
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7.2. The projective representation of the
Ptolemy groupoid on ()

The next step is to show that the choice of fat graph ¢ is inessential by con-
structing unitary operators W, : K(p1) — K(¢p2) intertwining the repre-
sentations m,, and m,,.

The groupoid generated by the transitions [¢’, ] from a fat graph ¢ to
¢ is called the Ptolemy groupoid. It can be described in terms of genera-
tors wyy, pu, (uv) and certain relations. The generator wy,, is the elementary
change of diagonal in a quadrangle, p, is the clockwise rotation of the deco-
ration, and (uv) is the exchange of the numbers associated to the vertices u
and v. More details and further references can be found in [T05, Section 3].

Following [Ka3] closely we shall define a projective unitary represen-
tation of the Ptolemy groupoid in terms of the following set of unitary
operators

a3

U 2 _ ;q2
A’U =es3e 7”(pw’FqU) e 37T’qu

(7.3) where v, w € @, .

va = €b(% + Pw — qw)e*Qﬂ'ipqu7
The special function e;(z) can be defined in the strip |3z| < |Sep|, ¢ =
i(b+b~1)/2 by means of the integral representation

. i0+ood 9
W e 1zw
A4 1 =7 W '
(7 ) Ogeb(z) 4 / w sinh(b’w) sinh(b‘lw)
10—o0

These operators are unitary for (1 — |b])3b = 0. They satisfy the following
relations [Ka3]

TowTuw Tuw = Tuw Tow,
AvTupAu = AyTouAo,
TouAuTuw = CALALP Yy,
A3 =id,

where ¢ = e ™G/ ¢, = %(b + b~ 1). The relations 1’ to |D allow us

to define a projective representation of the Ptolemy groupoid as follows.

e Assume that wy, € [¢/, ¢]. To wy, let us associate the operator

U(wa) = Tuw @ K(@) 20 — Tud € K(¢).
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e For each fat graph ¢ and vertices u,v € ¢, let us define the following
operators

AY : K(p)do — A,0 € K(pyop).
P K(p)o0 — P,0€K((uv)op).

It follows from ([7.5a))-([7.5d)) that the operators T,,, A, and P, can be used
to generate a unitary projective representation of the Ptolemy groupoid.
The corresponding automorphisms of the algebra A(C') are

(7.6) 35,6, (0) :=ad[W,,](0) := W o-w

PP : Y201 "

The automorphism a,,,, generate the canonical quantization of the changes
of coordinates for 7(C') from one fat graph to another [Kal]. Let us note
that the constraints transform under a change of fat graph as a,,,, (z4, )

= 290277'

7.3. Length operators

A particularly important class of coordinate functions on the Teichmiiller
spaces are the geodesic length functions. The quantization of these observ-
ables was studied in [CET] [CEF2l [T05].

Such length operators can be constructed in general as follows [T05]. We
will first define the length operators for two special cases in which the choice
of fat graph ¢ simplifies the representation of the curve v. We then explain
how to generalize the definition to all other cases.

(i) Let A, be an annulus embedded in the surface C' containing the curve
7, and let ¢ be a fat graph which looks inside of A, as depicted in

Figure [7.7]

Annulus A,: Region bounded

(7.7) by the two dashed circles,

and part of ¢ contained in A,.
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Let us define the length operators

Ly~ := 2cosh 27bp, + e~2m%  where
(7.8) 1 1
Py = 5(Pa=da—P), Ay = 5(da+Pat Py —20).
(ii) Assume that the curve 7y = 75 is the boundary component labelled by
number 3 of a trinion P, embedded in C' within which the fat graph
o looks as follows:

Let 7, € = 1, 2 be the curves which represent the other boundary com-
ponents of P, as indicated in Figure Assume that L,, and L, are
already defined and define L, , = L., by

(7.10) Ly~ = 2cosh(yZ +yi) +e ¥ L, + Yo L, + Yo Vi

Yo = _27rb(pv

v

where yi, e =1,2 are defined as y; = 27b(q, + z,,),
—7y,).

In practise it may be necessary to use part (ii) of the definition recursively. In
all remaining cases we will define the length operator L, as follows: There
always exists a fat graph (g for which one of the two definitions above can
be used to define Ly, . Let then

(711) ch,'y = a(p,goo(l‘éooa’}’) .

It was explicitly verified in [NT] that the definition given above is consistent.
The length operators L, are unambigously defined by (i), (ii) and (7.11))
above, and we have Ly, = a, ,(Ly~) if [¢', ] represents an element of the
Ptolemy groupoid.

The length operators satisfy the following properties:

(a) Spectrum: L, , is self-adjoint. The spectrum of L, is simple and
equal to [2,00) [Kad]. This ensures that there exists an operator |,
— the geodesic length operator — such that L, = 2 cosh %I%W.
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(b) Commutativity:
[Los Loy | =0 if yNy' =0.
(¢) Mapping class group invariance:
au(lon) =Ly, au=apey), forall pe MC(X).

It can furthermore be shown that this definition reproduces the classical
geodesic length functions on 7(C) in the classical limit.

7.4. The Teichmiiller theory of the annulus

As a basic building block let us develop the quantum Teichmiiller theory
of an annulus in some detail. To the simple closed curve v that can be
embedded into A we associate

e the constraint
1
(7.12) 2=2p5 = 5(Pa = da +P0),

e the length operator L = L, -, defined as in (7.8).

The operator L is positive-self-adjoint, The functions

sp(s +p + ¢ —i0)
sp(s —p—cp +140)

(7.13) ¢s(p) :=(p|s) =

represent the eigenfunctions of the operator L with eigenvalue 2 cosh 27bs in
the representation where p = p, is diagonal with eigenvalue p. It was shown
in [Kad] that the family of eigenfunctions ¢s(p), s € RT, is delta-function
orthonormalized and complete in L?(R),

(7.14a) [ v (s 1p)l ) = 3= ).
(7.14D) | au (pls)s18') =80 = #).

Ry

where the Plancherel measure pu(s) is defined as du(s) = 2sinh(27bs)
- 2sinh(27b~ts)ds.

For later use let us construct the change of representation from the
representation in which p, and p are diagonal to a representation where z
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and L are diagonal. To this aim let us introduce d := %(qa + Pa — Py + 2ap).
We have

[Zvd] = (27”‘)71 ) [Z, p] =0, [Z, Q] =0,
[p.ql = (2mi)"',  [d,p]=0, [d,q =0.

Let (p, z| be an eigenvector of p and z with eigenvalues p and z, and | p,, pp )
an eigenvector of p, and p;, with eigenvalues p, and py, respectively. It follows
easily that

(7.15) (p, 2| Paspp) =0(pp — 2 +p)e“i(1’+z—pa)2 .

The transformation

(7.16) (s, 2) = / dpdp, sp(s —p + ¢ — i0) ewi(p+z—pa)qu(pm 2—p),

R sp(s +p — cp +i0)

will then map a wave function W(p,, pp) in the representation which diagonal-
izes pg, pp to the corresponding wave function (s, z) in the representation
which diagonalizes L and z.

7.5. Teichmiiller theory for surfaces with holes

The formulation of quantum Teichmiiller theory introduced above has only
punctures (holes with vanishing geodesic circumference) as boundary com-
ponents. In order to generalize to holes of non-vanishing geodesic circumfer-
ence one may represent each hole as the result of cutting along a geodesic
surrounding a pair of punctures.

®

Example for a fat graph in the The same fat graph
vicinity of two punctures (crosses) after cutting out the hole

On a surface C' with n holes one may choose ¢ to have the following simple
standard form near at most n — 1 of the holes, which will be called “incom-
ing” in the following:
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(7.17)

Incoming boundary component:

Hole h (shaded), together with an annular
neighborhood Ay, of h inside C, and

the part of ¢ contained in Ap.

The price to pay is a more complicated representation of the closed curves
which surround the remaining holes.

The simple form of the fat graph near the incoming boundary compo-
nents allows us to use the transformation to pass to a representation
where the length operators and constraints associated to these holes are diag-
onal. In order to describe the resulting hybrid representation let us denote
by sp and z; the assignments of values sp and z, to each incoming hole h,
while p assigns real numbers p, to all vertices v of ¢ which do not coincide
with any vertex h or I associated to an incoming hole h. The states will then
be described by wave-functions 1 (p; sp, 2p) on which the operators L and
zp, act as operators of multiplication by 2 cosh 27bs;, and zp, respectively.

For a given hole h one may define a projection 7:[(Ch(s7z)) of H(C) to
the eigenspace with fixed eigenvalues 2 cosh 27bs and z of Lj, and zj. States
in Q(Ch(s,z)) can be represented by wave-functions ¥y, (pp,), where py, assigns
real values to all vertices in o \ {h, h'}. The mapping class action on H(C)
commutes with Lj, and zj. It follows that the operators M, = M, , , repre-
senting the mapping class group action on 7:[(0 ) project to operators Mg . (1)
generating an action of MCG(C') on 7:[(C’h(57z)).

7.6. Passage to the length representation

Following [T05], we will now describe how to map a maximal commut-
ing family of length operators to diagonal form. We will start from the
hybrid representation described above in which the length operators and
constraints associated to the incoming holes are diagonal. Recall that states
are represented by wave-functions ¢ (p; sp, 2) in such a representation, where
p:@o— R, and ¢q is the subset of ¢y that does not contain h nor K for
any incoming hole hA. A maximal commuting family of length operators is
associated to a family of simple closed curves which define a pants decom-
position.
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7.6.1. Adapted fat graphs. Let us consider a decorated Moore-Seiberg
graph o on C, the decoration being the choice of an distinguished bound-
ary component in each trinion of the pants decomposition defined by o.
The distinguished boundary component will be called outgoing, all others
incoming.

Such a graph ¢ allows us to define a cutting of C' into annuli and trinions.
If cutting along a curve v in the cut system C, produces two incoming
boundary components, let v+ be two curves bounding a sufficiently small
annular neighborhood A, of v in C. Replacing v by {y*,7~} for all such
curves v produces an extended cut system C, which decomposes C' into
trinions and annuli.

Let us call a pants decomposition ¢ admissible if no curve v, € C, is an
outgoing boundary component for both of the two trinions it may separate.
To admissible pants decompostions ¢ we may associate a natural fat graph
o defined by gluing the following pieces:

e Annuli: See Figure ([7.7)).
e Trinions: See Figure (7.9)).

e Holes: See Figure (7.17)).

Gluing these pieces in the obvious way will produce the connected graph ¢,
adapted to the Moore-Seiberg graph o we started from. The restriction to
admissible fat graphs turns out to be inessential [N'T].

7.6.2. The unitary map to the length representation. To each ver-
tex v € g0 assign the length operator L} and L; to the incoming and L,
to the outgoing boundary components of the pair of pants P, containing
v. The main ingredient will be an operator C, which maps L, to a simple
standard form,

(7.18) Cy-Ly- (Cu)_l = 2 cosh 27bp, + e 2mba,
Such an operator can be constructed explicitly as [T05]

(7.19) C, := e ™50 ev(sy + Po) e 2P (g4 (qy — s2)) e 2mHE Pt zIa)
ep(sy — Pv)

where s!, ¢ = 1,2 are the positive self-adjoint operators defined by L. =

2 cosh 27bs}, and z7, z;, are the constraints associated to the incoming bound-
ary components of P,.
The map to the length representation is then constructed as follows. Let

us first apply the product of the transformations (7.16) that diagonalizes
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the length operators associated to all incoming holes and embedded annuli.
The resulting hybrid representation has states represented by wave-functions
¥ (p; 84, 24 ), where p assigns a real number p, to each vertex v of ', whereas
s, (resp. z,) assigns real positive numbers (resp. real numbers) to al]m annuli
A, respectively.

In order to diagonalize all length operators associated to all edges of
the MS graph I', it remains to apply an ordered product the operators C,.
The resulting operator may be represented as the following explicit integral
transformation: Let s be the assignment of real positive numbers s, to all
edges e of I',. Define

a20) sz = [ (Lo, doe K255 o)) oloisac ).
Rh

The kernel K327 (s, p) has the following explicit form [N'T]

K35i(sp) = Co/ dp/ e 2milsame)( AP Pt ) ey (p — 2y — 5, — p 4 )
R

Sb(sl - p/ - 32) Sb(s +p/ — Cb)e—Qm‘zz(Qp—zl)
sp(s1+p' +52) sp(s —p' + ) '

The explicit integral transformation defines an operator C,. In order
to get an operator C, which maps the representation WZU for the quantum
Teichmiiller theory based on the Penner-Fock coordinates to the represen-
tation 7, defined in this paper it suffices to compose V, with the projection
IT defined as ¢(s) = (II®)(s) := P(s,0). This corresponds to imposing the
constraints z, , ~ 0.

7.6.3. Changes of MS-graph. The construction above canonically de-
fines operators U,,,, intertwining between the representations 7,, and 7,
as

(721) Ua'zo'l = CO’z : W(Pﬂzgodl ’ C;_Ll ’

where W, is any operator representing the move [p,,, ¢s,] between
the fat graph associated to o, and o,, respectively. In this way one defines
operators B, F, Z and S associated to the elementary moves between differ-
ent MS-graphs. These operators satisfy operatorial versions of the Moore-
Seiberg consistency conditions [T05, NT], which follow from the relations of

the Ptolemy groupoid ([7.5)) using ([7.21)).

"both embedded annuli and annuli representing incoming boundary components



62 J. Teschner and G. S. Vartanov

8. Completing the proofs

In order to prove the consistency of the quantization of MJ, (C) defined in
Section [6] we will take the results of [T05] reviewed in the previous Section
as a starting point. It remains to

(i) calculate the kernels of the operators F, B, Z and S,

(ii) calculate the explicit form of the difference operators L{ in this repre-
sentation, and

(iii) calculate the central extension of the Moore-Seiberg groupoid.

The solution of these tasks will be described in this section.

8.1. The Moore-Seiberg groupoid for surfaces of genus 0

To begin, let us note that the kernels of the operators F, B and Z have been
calculated in [NT], giving the results stated in Section [6]

The key observation [NT] leading to the explicit calculation of the kernels
of F, Z and B is the fact that the operators C, defined in are closely
related to the Clebsch-Gordan maps of the modular double of U, (s((2,R))
[PT2]. This observation implies directly that the matrix elements of the
operator F must coincide with the b-6;5 symbols of [PT2]. Fixing a suit-
able normalization and using the alternative integral representation found
in [TeVa) one gets precisely formula (6.26).

One may furthermore use the results of [BT1] to prove that the operator
B acts diagonally with eigenvalue given in . For more details we may
refer to [NT.

8.2. Preparation I — Alternative normalizations

The representation for A,(C) constructed in Section [6] has a severe draw-
back: The appearance of square-roots in the expressions for the loop oper-
ators and for the kernels of U, ,, obscures some beautiful and profound
analytic properties that will later be found to have important consequences.
We shall therefore now introduce useful alternative normalizations obtained
by writing

(8.1) Vala, = 0(a3, a2,a1)0a’a,
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and taking 7a’«, as the new basis vector for Ha’w,. It will be useful to
consider vectors Ug°q, that may have a norm different from unity. It will be
useful to consider, in particular,

(8.2) o(ag, az,a1) = \/C(as, az, a1),

where ag = @ — as, and C(ag, ag, o) is the function defined as

(8.3)

2 (Q_Z?zlai)/b
Clay, az,a3) = |muy(b*)b* 2" ]

TQT(QOQ)T(20£2)T(20£3)
T(og 4+ g+ a3 — Q)Y (a1 +az — a3) (g + az — a1)Y(az + oy — az)

X

The expression on the right hand side of is constructed out of the
special function Y(x) which is related to the Barnes double Gamma function
[y(x) as Y(z) = (Tp(2)[(Q — )~ . The function C(a1, as,a3) is known
to be the expression for the three-point function in Liouville theory, as was
conjectured in [DO) [ZZ95], and derived in [T01].

Note that the gauge transformation defined by will modify the
kernels representing the elementary moves of the MS groupoid. In the rep-
resentation defined via one may represent the F-move, for example, by
the kernel

o(au, ag, o) o, a3, o)
o(ou, az, as)o(as, oz, ay)

(84)  Fhglaar]=

Q3 Qg
g O

B1B2 [044 (63}

We’d like to stress that the appearance of the function C'(ay, ag, a3) can
be motivated without any reference to Liouville theory by the intention to
make important analytic properties of the kernels representing F and S more
easily visible. One may note, in particular, that Sy(z) = I'y(z)/Tp(Q — ),
from which it is easily seen that the change of normalization removes all
square-roots from the expressions for F,, [gi ol } . The kernel F} [g; ol ]
is then found to be meromorphic in all of its arguments. A more complete
summary of the relevant analytic properties will be given in the following

Subsection R.3] below.
8.3. Preparation II — Analytic properties

The kernels representing the operators F and S have remarkable analytic
properties which will later be shown to have profound consequences. The
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origin of the analytic properties can be found in the structure of M§, . (C)
as an algebraic variety. The simple form of the relations describing M§, . (C)
as an algebraic variety implies nice analytic properties of the expressions for
the loop operators in terms of the Darboux coordinates, and this leads to
nice analytic properties of the kernels A,,,, (I,,1,) via .

We will here summarize some of the most important properties.

8.3.1. Symmetries. The kernel representing F has a large group of sym-
metries. We will state them in the normalization which makes the realization
of the respective symmetries most manifest.

Qy Qg O

o Tetrahedral symmetries: The coeflicients { P 1

hedral symmetries

satisfy the tetra-

(8.5) o Oé2as}b: Qa1 as}b: Qa Qs al}b: asou;as}b.

Q3 Qg Oy Qy O3 O Qg Oy O3 Q1 Qg Oy

o Weyl symmetries: The kernel FX [0‘3 aQ] is symmetric under all

QO | Oy X1

reflections a; — Q — «y, 1 € {1,2,3,4,s,t}.

The tetrahedral symmetries are easily read off from the integral represen-
tation . The derivation of the Weyl symmetries can be done with the
help of the alternative integral representation (D.22)).

Similar properties hold for the kernel representing the operator S.

e Permutation symmetry: The coefficients S, (cvo) satisfy

(8.6) Ay, o, 01)8, o, (@) = A0z, o, 003) S, o, (Qo) -

o Weyl symmetries: The kernel Sghaz (o) is symmetric under all reflec-
tions a; — Q — «y, i € {0,1,2}.

In other normalizations one will of course find a slightly more complicated
realization of these symmetries.

8.3.2. Resonances and degenerate values. We will now summarize
some of the most important facts concerning poles, residues and special
values of the intertwining kernels. Proofs of the statements below are given
in Appendix [C]

Important simplifications are found for particular values of the argu-
ments. Each oy, i € {1,2,3,4} is member of two out of the four triples T2, :=
(041, a9, Oés), T34S = (043, Qy, OJS), T23t = (052, asg, Oét), T14t = (al, Qy, at). We
will say that a triple Tj;;, is resonant if there exist ¢; € {+1,—1} and k,l €
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729 such that

\@

(8.7) €1 (ag — %) = 62(042 ) + 63(041 Q) —|— —|— kb+1b~ L

Poles in the variables «;, i € {1,2,3,4} will occur only if one of the triples
T12s, T34s, To3¢, Th4¢ is resonant. The location of poles is simplest to describe
in the case of F'°, which has poles in «;, i € {1,2,3,4} if and only if either
Tizo or Ty are resonant.

Of particular importance will be the cases where one of «;, i € {1,2,3,4}
takes one of the so-called degenerate values

8.8) €D, D:={apm,nmeZ> }, apn:=-nb/2—mb/2.

Something remarkable may happen under this condition if the triple con-
taining both «; and as becomes resonant: Let us assume that ag € Ian(ozj),
where

(8.9) Frm(aj) ={o;—(n—k)s — (m—1),
k=0,2,...,2n,1=0,2,...,2m }.

The kernel F¢ becomes proportional to a sum of delta-distributions sup-
ported on resonances of the triple containing both «a; and «; as expressed in
the formulae

(8.10a)
allgg v Foa [gi ol ]asE]an (@) — Z d(a — ﬁt)fasﬁt [gi g? ]
6t€]F’n,7n(a4)
(8.10b)
lim F* [0‘30‘2] —= Z 5w — Bo)f [ag%]
g0ty Qs laa a1 Joa,€Fym(an) t t)Ja, B Loy @1 ]

BtEFm (a3)

and similarly for ag and ay4. The delta-distributions §(a; — 5;) on the right
of are to be understood as complexified versions of the usual delta-
distributions. (a — () is defined to be the linear functional defined on spaces
T of entire analytic test function ¢(«) as

(8.11) (8(a—=p), t)=1t(B)

with (.,.) : 7" x T — C being the pairing between 7 and its dual 7. The
identities (8.10]) are likewise understood as identities between distributions
onT.
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8.4. Intertwining property

In this subsection we are going to describe a quick way to prove that the
unitary operators defined in Subsection [6.9| correctly map the representa-
tions m,, to m,,, as expressed in Equations . The proof we will give
here exploits the remarkable analytic properties of the fusion coefficients
oo, [ 22 22 ] summarized in Subsection
One may, in particular, use the relations in order to derive
from the pentagon relation systems of difference equations relating

. [gg ol ] to the residues of its poles, like for example

(8.12) D Fas 5 0 fa o 2 1 Fae, (502 ]
ﬁ5€an(52)

- f,31,34 [gi gf ]F,32,33 [gg %31 ] )
valid for a1 = apm, B1 € Frum(az) and By € Fpypn(as). Similar equations can
be derived for a; = anm, @ = 2, 3,4, 5.

Further specializing (8.12) to o = —b and 1 = ag, 4 = as, for exam-
ple, yields a somewhat simpler difference equation of the form

1
k 3 4 3 —
(813) Z d(ﬁ2)ﬁ3 [g: %42] F52+kb753 [gs 32] =0.
k=-1
The coefficients ng)BS (g2 93 ] are given as
(8.14)

Ao, (32 %] = fanparnol 3 %3] finae [32 557 = k0 fanae [ 22 %3]

By carefully evaluating the relevant residues of F, [g; gﬂ (see Appen-
dix for a list of the relevant results) one may show that is equiv-
alent to the statement that the fusion transformation correctly inter-
twines the representation 7., and m,, of L; associated to the pants decom-
positions o5 and oy, respectively. Alternatively one may use this argument
in order to compute the explicit form of the operator L; in the representation
where Lg is diagonal.

8.5. The S-kernel and the central extension

It remains to calculate the kernel of S and the central extension, as param-
eterized by the real number Yy, depending on the deformation parameter
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b in . One way to calculate the kernel of S directly within quantum
Teichmiiller theory is described in Appendix[D.I] We conclude that the oper-
ators B, F, S are all represented by kernels that depend meromorphically on
all their variables.

We had noted above that the operators B, F, Z and S satisfy the operato-
rial form of the Moore-Seiberg consistency equations up to projective phases
[T05]. Being represented by meromorphic kernels, this implies the validity

of (6.34) up to projective phases. One may then use special cases of (8.10)),
like

(8.15) o Lo 0y ] = 0(Bt — as)

in order to check that the relations (6.34a)), (6.34c) and (6.34f) have to hold
identically, not just up to a phase. All but one of the remaining projective
phases can be eliminated by a redefinition of the generators. We have chosen
to parameterize the remaining phase by means of the real number , which
appears in the relation . This is of course conventional, redefining
the the kernels by a phase would allow one to move the phase from relation
to other relations. Our convention will turn out to be natural in Part
III of this paper. The explicit formula for the phase x, will be determined
below.

In order to derive a formula for Sg g, (ag) we may then consider the
relation in the special case a; = a9 and take the limit where 5; and
B3 are sent to zero. The details are somewhat delicate. We will here give an
outline of the argument, with more details given in Appendix [D] It turns
out to be necessary to send 51 and 53 to zero simultaneously. One will find
a simplification of relation in this limit due to the relation

(8.16) mF:, [(0] =0(as — o).

6,05 L€ a
el0 T3 B

Using Equation (8.16]) it becomes straightforward to take 51 = 53 = € and
send € — 0 in the relation (6.34f)), leading to

(817)  Fiu[35]85.5. ()

L —7 QA QA 72A 7Aa L 2 M1 L 1M1
= 8052 /Sd’BS € 74( p2 A0 7 ) 083; [gzgl]Flg%a [gzgz] ’

where S5 := lime,0 Sg5(€). This formula determines S§ 5 (a)/Sgg, in terms

of F% 3, [gi gi] In Appendix [D.3| it is shown that one may evaluate the
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integral in (8.17)) explicitly, leading to the formula

(8.18) |
L o N(Bu, g, By) €5 2o
5,81,6’2(040) = Soa, N (B, a0, 3,) Splag)
) 55(3(282 + a0 — Q) + it) Sy
2t (26, —Q) 20\ 2
X/Rdte Sp(3(28, — ap + Q) +it) Sy (

(26, + ag — Q) —it)
(28, —ap+ Q) —it)’

1
2
1
2

where N (a3, a9, aq) is defined as

1
8.19 N(as,az,a1) =
(8.19) (as, az, 1) [5(2Q — a1 — ag — a3)[(Q — a1 — ag + a3)

T5(2Q — 203)T' (2002) ' (201)T'5 (Q)
Lp(ar + a3 — a2)lp(as + a3 —aq)

It remains to determine Sj; . In order to do this, let us note (using
i

formula (D.34c) in Appendix [D.4)) that the expression (8.18) simplifies for
ap — 0 to an expression of the form

SL
(8.20) Sk 5, := lim S 5 () = ﬁ 2cos (m(261 — Q)(262 — Q)) -

ap—0

It then follows from (|6.34d)) that we must have
(8:21)  Shy=V2|S(26)* = —23 sin7b(26 — Q) sinmb (26 — Q).

One may observe an interesting phenomenon: The analytic continuation of
S,g’l,é’z to the value 5, = 0 does not coincide with the limit S&B = lime_q SﬁLﬁ(e).
This can also be shown directly using the integral representation , see
Appendix [D.4]

Direct calculation using relation in the special case a = 0 then
shows that x, is equal to

(8.22) Xp = i c=1+6(b+b"1)2.

We conclude that the quantization of Teichmiiller space produces a projec-
tive representation of the Moore-Seiberg groupoid with central extension
given in terms of the Liouville central charge c, as is necessary for the rela-
tion between Liouville theory and the quantum Teichmiiller theory to hold
in higher genus.
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8.6. General remarks

It should be possible to verify the consistency of the quantum theory of

0..(C) =~ T(C) defined in Section |§| without using the relation with the
quantum Teichmiiller theory described in Section [7] above. However, the
most difficult statements to prove would then be the consistency conditions

(6.34). We may note, however, that the relations (6.34al)-(6.34c) can be

proven by using the relation between the fusion coefficients Fj 5 [gi gj]
and the 6j-symbols of the modular double of U, (s((2,R)) [PT2, INT], or with
the fusion and braiding coefficients of quantum Liouville theory [PT1] [T01,
T03a].

Any proof that the operators defined in Section [f] satisfy the full set of
consistency conditions could be taken as the basis for an alternative
approach to the quantum Teichmiiller theory that is entirely based on the
loop coordinates associated to pants decompositions rather than triangula-
tions of the Riemann surfaces.

A more direct way to prove the consistency conditions could prob-
ably start by demonstrating the fact that the operators U,,,, correctly inter-
twine the representations 7, according to . It follows that any operator
intertwining a representation m,, with itself like Uy, 5, Uy, 5, Uy, 5, acts triv-
ially on all generators L,, ~. This should imply that such operators must
be proportional to the identity, from which the validity of the consistency
conditions up to projective phases would follow.

However, such an approach would lead into difficulties of functional-
analytic nature that we have not tried to solve. One would need to show, in
particular, that any operator commuting with 7, (A(C)) has to be propor-
tional to the identity.

The proof of using the quantum Teichmiiller theory described in

Section [7] seems to be the most elegant for the time being.

Part III. Conformal field theory

We are now going to describe an alternative approach to the quantization
of MJ..(C), and explain why it is intimately related to the Liouville theory.
It will be shown that the conformal blocks, naturally identified with certain
wave-functions in the quantum theory of Mgat(C), represent solutions to
the Riemann-Hilbert type problem formulated in Subsection [4.3] above.
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This will in particular clarify why we need to have the spurious pref-
actors fy,», () in the S-duality transformations (4.8)), in general. They will
be identified with transition functions of the projective line bundle which
plays an important role in the geometric approach to conformal field theory
going back to [ES]. This observation will lead us to the proper geomet-
ric characterization of the non-perturbative scheme dependence observed in
Subsection and will allow us to define natural prescriptions fixing the
resulting ambiguities.

9. Classical theory
9.1. Complex analytic Darboux coordinates

In order to establish the relation with conformal field theory it will be useful
to consider an alternative quantization scheme for MJ, (C) ~ T(C) which
makes explicit use of the complex structure on these spaces. In order to do
this, it will first be convenient to identify a natural complexification of the
spaces of interest by representing Mgat(C’ ) as a connected component of the
real slice My, (C) within M§, (C).

Let us begin by recalling that natural Darboux coordinates for an impor-
tant component of the moduli space of flat SL(2,C) connections can be
defined in terms of a special class of local systems called opers.

9.1.1. Opers. In the case g = sl one may define opers as bundles admit-
ting a connection that locally can be represented as

, 0 1 (0 —t(y)
o0 Vegriuw, uw-(] ).

The equation V'h = 0 for horizontal sections s = (s1, s2)! implies the second
order differential equation (6285 + t(y))s2 = 0. Under holomorphic changes
of the local coordinates on C, t(y) transforms as

c

(9-2) Hy) = (' (W) *ty(w)) + 5 {y.w},

where ¢ = c,, := 6¢2, and the Schwarzian derivative {y,w} is defined as
B Y " Y 2

) ot = () -2 ()

Equation (9.2) is the transformation law characteristic for projective c-
connections, which are also called sls-opers, or opers for short.
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Let Op(C) the space of sly-opers on a Riemann surface C. Two opers
represented by ¢ and t/, respecticely, differ by a holomorphic quadratic dif-
ferentials ¥ = (¢ — t')(dy)?. This implies that the space Op(Cy.,,) of sly-opers
on a fixed surface Cy , of genus g with n marked points is h = 3g — 3 + n-
dimensional. Complex analytic coordinates for Op(Cy,) are obtained by
picking a reference oper tg, a basis 11, . . . , ¥, for the vector space of quadratic
differentials, and writing any other oper as

h
(9-4) t(dy)* = to(dy)* + Y _ .

r=1

The space of opers forms an affine bundle P(C') over the Teichmiiller
space of deformations of the complex structure of C'. The monodromy rep-
resentations pp : m1(Cy,) — SL(2,C) of the connections V' will generate a
3g — 3 + n-dimensional subspace in the character variety MS _ (C) of sur-
face group representations. Varying the complex structure of the underly-
ing surface C, too, we get a subspace of M$ _ (C) of complex dimension

6g — 6 + 2n. It is important that the mapping P(C) — M5 (C) defined
by associating to the family of opers 6283 + t(y; q) its monodromy represen-

tation p, is locally biholomorphic [He, [Eal [Hul.

9.1.2. Projective structures. A projective structure is a particular atlas
of complex-analytic coordinates on C which is such that the transition func-
tions are all given by Moebius transformations

ay+b
cy+d’

(9.5) y'(y) =

It will be useful to note that there is a natural one-to-one correspondence
between projective structures and opers. Given an oper, in a patch U C C
locally represented by the differential operator 6263 + t(y), one may con-
struct a projective structure by taking the ratio

(9.6) w(y) == fi(y)/f2(y)

of two linearly independent solutions fi, fo of the differential equation
(€202 4+ t(y))f(y) = 0 as the new coordinate in Y. The oper will be rep-
resented by the differential operator 92, in the coordinate w, as follows
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from (9.2)) observing that
c
97) ty) = 5w}

The bundle P(C) may therefore be identified with the space of projective
structures on C.

9.1.3. Complex structure on P(C). The space P(C) is isomorphic as
a complex manifold to the holomorphic cotangent bundle T7*7 (C') over the
Teichmiiller space 7 (C'). In order to indicate how this isomorphism comes
about, let us recall some basic results from the complex analytic theory of
the Teichmiiller spaces [

Let Q(C) be the vector space of meromorphic quadratic differentials on
C which are allowed to have poles only at the punctures of C. The poles
are required to be of second order, with fixed leading coefficient. A Beltrami
differential p is a (—1,1)-tensor, locally written as pZdz/dz. Let B(C) be
the space of all measurable Beltrami differentials such that [ [p1)] < oo for
all ¥ € Q(C). There is a natural pairing between Q(C') and B(C) defined as

(9.8) w,m:/cw.

Standard Teichmiiller theory establishes the basic isomorphisms of vector
spaces

(9.9) TT7(C) (©)/(C)*,
(9.10) T*T(C) ~ Q(C),

12
=

where Q(C)* is the subspace in B(C') on which all linear forms fy, 9 € Q(C),
defined by fy(u) = (9, ) vanish identically.

The relation between P(C) and T*7 (C) follows from the relation between
Op(C) and the space Q(C) of quadratic differentials explained above. What’s
not immediately obvious is the fact there is a natural complex structure on
P(C) that makes the isomorphism P(C) ~ T*T (C) an isomorphism of com-
plex manifolds.

To see this, the key ingredient is the existence of a holomorphic sec-
tion of the bundle P(C) — T(C), locally represented by opers €20, + t(y; q)

8A standard reference is [Na]. A useful summary and further references to the
original literature can be found in [TT03]. The results that are relevant for us are
very concisely summarized in [BMW] Section 1.
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that depend holomorphically on ¢. Such a section is provided by the Bers
double uniformization. Given two Riemann surfaces C, and C, there exists
a subgroup I'(C,, C,) of PSL(2,C) that uniformizes C, and C, simultane-
ously in the following sense: Considering the natural action of I'(C,,C,)
on C by Moebius transformations, the group I' will have a domain of dis-

continuity of the form Q(C,,C,) = Q, UQ, such that Q,/T'(C,,C,) ~ C,,
0,/T(C,,C,) ~C,, where C, is obtained from C, by orientation rever-
sal. Let 7, : Q3 — C be the corresponding covering map. The Schwarzian
derivatives S(r!) and S(7;') then define a families of opers on C, and C,,
respectively. The family of opers defined by S(7;!) depends holomorphically

on the complex structure moduli ¢, of C,.

9.1.4. Symplectic structure on P(C). Note furthermore that the cor-
responding mapping P(C) ~ T*T(C) — M, (C) is symplectic in the sense
that the canonical cotangent bundle symplectic structure is mapped to the
Atiyah-Bott symplectic structure 2; on the space of flat complex con-
nections [Kaw]. We may, therefore, choose a set of local coordinates ¢ =
(q1,---,qn) on T(Cy,) which are conjugate to the coordinates h, defined
above in the sense that the Poisson brackets coming from this symplectic

structure are

(9-11) {QTaQS}:()» {hr7QS}:6r,sa {hryhs}:()-

Let us note that one may also use non-holomorphic sections t'(y; g, ) in
P(C) — T(C) in order to get such Darboux coordinates (g, h). This amounts
to a shift of the variables h, by a function of the variables ¢,

hl. = hy + v:(q,q), r=1,...,h,

which clearly preserves the canonical form of the Poisson brackets ((9.11)).
9.2. Twisted cotangent bundle T M(C)

The affine bundle P(C) over T(C) descends to a twisted cotangent bundle
over the moduli space M(C) of complex structures on C. To explain what
this means let us use a covering {U,;2 € Z} of M(C'). Within each patch U,
we may consider local coordinates ¢ = (q1, . .., qp) for M(C), which may be
completed to a set of local Darboux coordinates (g, h) for P(C) such that

h
Q= "dh, Ndg,.

r=1
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P(C) is a twisted holomorphic cotangent bundle over M(C) if the Darboux
coordinates transform as

(9.12) A=Y "hidg =) hldg —x",

with x* being locally defined holomorphic one-forms on U,, = U, NU,. The
collection of one-forms defines a 1-cocycle with values in the sheaf of holo-
morphic one-forms. We may always write x"/ = g, for locally defined holo-
morphic functions g,, on U,,. The functions f,, := e2™9u will then satisfy
relations of the form

(9'13> fzszz lezl - Uzszzzl fzszl )

where o,,,,,, is constant on the triple overlaps U, ,,,, =U,, NU,, NU,,. A
collection of functions f,, on U,, that satisfy defines a so-called pro-
jective line bundle [FS]. The obstruction to represent it as an ordinary line
bundle is represented by a class in H2(M(C),C*).

It was pointed out in [FS] that any holomorphic section of P(C) —
T(C), represented by a family of opers 6285 + t(y; q), can be considered
as a connection on a certain holomorphic projective line bundle &.. The
connection is locally represented by the one-forms (9, + A,)dg, on T(C)
such that

(9.14) Ap(r) = /Ctﬂr ;

for a collection of Beltrami differentials p, which represent a basis to the
tangent space 77 (C') dual to the chosen set of coordinates ¢,. One may
define a family of local sections F, of £ which are horizontal with respect
to the connection A; as solutions to the differential equations

(9.15) O InF, = —/ tity .
C

The transition functions f;; of & are then defined by f; := .7-"[1]-"]. In general
it will not be possible to choose the integration constants in the solution
of (9.15) in such a way that in we find ,,,,,, = 1 for all nontrivial
triple intersections U, -

The resulting projective line bundle &, is uniquely characterized by the
real number c¢ if the family ¢ is regular at the boundary of M(C). It was
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shown in [FS] that

where Ay is the so-called Hodge line bundle, the determinant bundle detQy =
A? Qu of the bundle of rank g over M(C) whose fiber over a point of M(C
is the space of abelian differentials of first kind on C.

9.3. Projective structures from the gluing construction

In Subsection [2.1] we have described how to construct local patches of coordi-
nates ¢ = (q1,- .., qn) for T(C) by means of the gluing construction. There is
a corresponding natural choice of coordinates H = (hy,..., hy) for T*T(C)
defined as follows. The choice of the coordinates g defines a basis for 77 (C)
generated by the tangent vectors 9, which can be represented by Beltrami
differentials p, via (9.9). The dual basis of quadratic differentials ¥, is
then defined by the condition (¥, is) = 0, s. This defines coordinates h,.
for T*T(C).

In order to make the coordinates (g, h) for 77 (C) into coordinates for
P(C), one needs to choose a section S : T(C) — P(C). It will be important
to note that the gluing construction allows one to define natural choices for
local sections of P(C') as follows.

Let us represent the three-punctured spheres used in the gluing construc-
tion as Cp g ~ PL\ {0,1,00} ~ C\ {0,1}. A natural choice of coordinate on
Co,3 is then coming from the coordinate y on the complex plane C. Let
us choose the coordinates around the punctures 0, 1 and co to be y, 1 —y
and 1/y, respectively. The surfaces C' obtained from the gluing construction
will then automatically come with an atlas of local coordinates which has
transition functions always represented by Moebius transformations ((9.5)).
It follows that the gluing construction naturally defines families of projec-
tive structures over the multi-discs U, with coordinates ¢, or equivalently
according to Subsection a section S, : Uy, — P(C). One could replace
the representation of Cp 3 as Co 3 ~ P\ {0,1,00} by Cp3 ~ P\ {21, 22, 23},
leading to other sections S : U, — P(C).

We may define such a section S, for any pants decomposition o. The
sections S, define corresponding local trivializations of the projective line
bundle &, according to our discussion in Subsection [9.2] The trivializations
coming from pants decompositions lead to a particularly simple representa-
tion for the transition functions fS , defining &, which will be calculated
explicitly in the following.
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9.3.1. Transition functions. It is enough to calculate the resulting tran-
sition functions for the elementary moves B, F' and S generating the MS
groupoid. In the case of B and F' it suffices to note that the gluing of
two three-punctured spheres produces a four-punctured sphere that may be
represented as Cp4 ~ P!\ {0,1,¢,00}, with ¢ being the gluing parameter.
The B-move corresponds to the Moebius transformation 3’ = ¢ — y which
exchanges 0 and ¢. Being related by a Moebius transformation, the projec-
tive structures associated to two pants decompositions o, and o, related
by a B-move must coincide. We may therefore assume that g,,,, =1 if o,
and o, differ by a B-move. The F-move corresponds to 3’ = 1 — v, so that
Js,0, = 1 if o, and o, differ by a F-move.

The only nontrivial case is the S-move. We assume that C ; is obtained
from a three-punctured sphere Cp 3 ~ P!\ {0, 1, 00} by gluing annular neigh-
borhoods of 0 and co. The resulting coordinate y, on C4 1 is coming from
the coordinate y on Cp3 ~ P\ {0,1,00}. A nontrivial transition function
9o, o, Will be found if o, and o, differ by a S-move since the coordinates y,,
and y,, are not related by a Moebius transformation.

In order to see this, it is convenient to introduce the coordinate w,
related to the coordinate y, on the complex plane by y, = e“~. The coordi-
nate w, would be the natural coordinate if we had represented C7 ;1 as

Cip~{weC; w~w+nr+mnrr; n,meZ}\{0}.

This corresponds to representing C' ;1 by gluing the two infinite ends of the
punctured cylinder {w € C; w ~w +nm;n € Z} \ {0}. The corresponding
alternative pants decomposition of C1; will be denoted .

The transition function g¢,,,, defined by our conventions for the glu-
ing construction will then be nontrivial since the relation y, = "= is not
a Moebius transformation. The relation between the projective structures
associated to pants decompositions ¢ and ¢ can be calculated from ,

(9.17) Fw) = 2 t(e?) — — .

We thereby get a nontrivial transition function gz, between the trivializa-
tions of &, associated to o and & equal to 537 up to an additive constant.
Let us assume that o, is obtained from ¢, by an S-move. The projective
structures associated to the coordinates w,, and w,, will coincide since the
S-move is represented by the Moebius transformation w,, = —w,, /7. The
resulting transition function gs,5, = 1 1is trivial. Taken together we conclude
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that

c 1
(918) gUzUL = 90'7_5'2 +g&z&1 +g5'10'l = ﬂ(T—i_ ;) +h0'10']_ I

with hs,,, being constant, if o, and o, are related by an S-move. These are
the only nontrivial transition functions of &, in the representation associated
to pants decompositions defined above. The argument above determines
Jdo.0, Up to an additive ambiguitiy h,,., . Precise normalizations fixing this
ambiguity will be defined next.

10. The generating functions W

In the following we will set € = 1. The parameter € can easily be restored by
rescaling t(y).

10.1. Definition

We have used two radically different representations for the space P(C):
As cotangent bundle T*7(C'), on the one hand, and as character variety
ME,..(C) on the other hand. In Section we had introduced systems
of Darboux coordinates (I, k) associated to MS-graphs o for the character
variety MG (C). We had previously introduced Darboux coordinates (g, h)
with the help of the isomorphism P(C) ~ T*T(C). Important objects are
the generating functions W(l,q) that characterize the transitions between
these sets of coordinates.

Let us briefly explain how the functions W(I, q) are defined. The locally
defined one-forms ) k,dl, — ) h,dg, are O-closed since ) dk,. Adl, =

>, dhy A dg, [Kaw], therefore locally exact,

(10.1) > kpdle = > hedge = 0OW.

It follows that the change of coordinates (I,k) — (q,h) can locally be de-
scribed in terms of a generating function W. Let us start, for example, with
the coordinates (g, h). For fixed values of [, let us define the functions A, (I, q)
as the solutions to the system of equations

(10.2) 2cosh(l,/2) = tr(pgn(vr)),
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where p,; is the monodromy representation of the oper 85 +to(y;q) +
>, hyUy(y). Equation ((10.1)) ensures integrability of the equations

(103 el ) =~

W(l,q),
0 (l,q)

which define W(q,1) up to a function of [. This ambiguity is fixed by the
equations

104 ki) =g Wla)s  k0) = ko)
following from , where k,(p) is the value of the coordinate k, on the
monondromy p as defined in Section [2.6

Comparing with we realize F(l,q) = V9 Fy(q) as the
local section of the projective holomorphic line bundle &, that is horizontal
with respect to the connection defined by the family of opers 85 +to(y; q) +

> he(@: D)0 ().

10.2. Changes of coordinates

We have introduced systems of coordinates (I, k) and (g, k) that both depend
on the choice of a pants decomposition ¢. In order to indicate the dependence
on the choices of pants decompositions underlying the defininitions of the
coordinates we shall use the notation Wy (I, q) if coordinates (I, k) were
defined using the pants decomposition o and if coordinates (g, h) were define
using the pants decomposition o”.

10.2.1. Changes of coordinates (l,k). Let us compare the functions
Wiy, o(l,q) and Wy, »(l,q) associated to two different choices of pants
decompositions o, and o,, respectively. It is clear that there must exist
a relation of the form

(10'5) We, o0 (l27Q) = Fo,0, (lu ll(lzﬂ)) + Wal,a’(ll(lza Q)a Q) )

where Fy, o, (I5,1,) is the generating function for the change of Darboux
coordinates (k,,1,) associated to o, to (ky,l,) associated to o,, respectively.

The generating function F,,,, (1,,1,) can be represented up to an addi-
tive constant by choosing a path w,,,, € [0,,0,] connecting o and o9, rep-
resenting it as sequence of Moore-Seiberg moves [my o my_1 o --- o my], and
adding the generating functions F,, representing the changes of Darboux
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variables associated to the moves m;. Changes of the path w,,,, € [0,,0,]
will change the result by an additive constant.

The generating functions F,,, (I,1,) can be identified as the semiclas-
sical limits of b%log Ay, o, (I5,1,), with A, 4, (I,,1,) being the kernels of the
operators generating the representation of the Moore-Seiberg groupoid con-
structed in Part II.

10.2.2. Changes of coordinates (g, k). It turns out that Wy (l,q),
considered as function of ¢, can be extended to functions on all of 7(C)
by analytic continuationﬂ We will use the same notation Wy (I, ¢) for the
result of the analytic continuation.

Comparing the transformation of the coordinates h, with ,
we see that the functions W, (I, q) and Wy o (1, q) defined by using differ-
ent pants decompositions for the definition of coordinates (g, h) are related
by the transition functions in the projective line bundle &,

(106) Wo,a’l (l, Q) = gg/z,all ((]) + chr,a’1 (la Q) .

This reflects the changes of coordinates h,. induced by changes of the sections
P(C) — T(C) associated to transitions between different pants decomposi-
tions.

By combining ((10.5)) and (10.6]) one gets, in particular,
(10.7) We. 0 (l2,q9) = 95,0, (@) + Fo,o, 2y 1125 9) + Wal,al(ll(lza q),9) -

In order to define F5 4, (15,1:(l2,q)) and g,, , (¢) unambigously one would
need to fix a normalization prescription for Wy (1, q).

/

10.2.3. Mapping class group action. Note that in the case o/, = p.o”,
o' = o’ we get from (10.6))

(108) Wa,u.a’ (l, Q) = g,u(q) + WG,U' (l7 Q) .

We have used the shortened notation

(10.9) 9,(0) = Gp.oo(q) -

9We don’t have a direct proof of this fact at the moment, but we may infer it
indirectly from the corresponding statement about the Liouville conformal blocks
ZL together with the fact that the W, ,(l, q) coincide with the semiclassical limit
b — 0 of b?log ZV.
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Taken together we find, in the particular case o = o’

(10.10)  Wiouo(l,q) = 9,(0) + Fuoo(,1(L,9)) + Wa o (i(1,9),9) -

Below we will fix a specific normalization for W, (l,¢). Thanks to the

uniqueness of analytic continuation the sum of terms Fy, 5 (1, (I, q)) + g,(q)

appearing in ((10.10)) will then be uniquely defined.

10.3. Behavior at the boundaries of 7T (C)

It will be important for us to understand the behavior of the generating
functions W(l, q) at the boundaries of the Teichmiiller spaces 7 (C). This will
in particular allow us to define a natural choice for the precise normalization
of the functions W, (I, q).

By means of pants decompositions one may reduce the problem to the

cases of the four-punctured sphere C' = Cy 4, and the one-punctured torus
C=0Cn.
10.3.1. Genus zero, four punctures, singular term. Let us first con-
sider C'= Cpq =P\ {21, 22, 23, 24}. We may assume that 21 =0, 23 = 1,
z4 = 00, and identify the complex structure parameter ¢ with z5. The opers
on C can be represented in the form 85 + t(y), where

53 51 52 v q(q — 1) H
—3 2y + + :
=12 v w—-9* yy-1) yy-1y—q
where v = §4 — 61 — 02 — 3. The relation (10.3) becomes simply

(10.11)  t(y) =

(10.12) H(l,q) = —;}W(Z,Q) -

This relation determines W(l,q) up to g-independent functions of [. For
q — 0 it may be shown that W(I, ¢) behaves as

(10.13) W(l,q) = (6(11) + 8(12) — 6(1)) log g + Wo(l) + O(q) ,

where §(1) = 1 + (ﬁ)Q. Indeed, this is equivalent to the statement that
H(l,q) behaves as

6(1) —d(h) = d(l2)

(10.14) H(l,q) ~ .

+0(¢"),

for ¢ — 0. To prove this, let us first calculate the monodromy of 97 + t(y)
around the pair of points z; and z9 as function of the parameters ¢ and
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D :=qH. It is straightforward to show that the differential equation (62
ty)g(y

))g9(y) = 0 will have a solution of the form
(10.15) 9W) =v"> v a+0(q),
=0

provided that v is one of the two solutions of
(10.16) v(v—1)4+d(l1) +d(l) + D=0+ O(q).

The solution ((10.15)) has diagonal monodromy e?™™ around (z1, 22) = (0, q).
Note that v and [ are related as v = % + iﬁ. The Equation 1' follows.

A more detailed analysis of the solutions to the differential equation
82 + t(y) shows that the expansion of the function W(l, ¢) in powers of ¢ is
fully defined by (10.12)) combined with the boundary condition once
Wo(l) is specified.

10.3.2. Genus zero, four punctures, constant term. In order to
determine Wy(l) let us recall that the Darboux variable k conjugate to [
is obtained from W(I, q) as

(10.17) k= 4#2%W(l, q) .

Having fixed a definition for the coordinate k& by means of (2.20)), we should
therefore be able to determine W(I, ¢) up to a constant, including the precise
form of Wy(1). The result is the following:

Claim 1. The function Wy(l) characterizing the asymptotics of
Wo(l,q) is explicitly given as

1
(10.18) Wo(l) = 5(061(14,@,, )+ CY—=1,1,,1,)),

where CY(15,1,,1,) is explicitly given as

1
CNi, 0,14 = ( +

: ﬁ(zsﬂﬁll >1og 1) Zrd (1+ 5=1,)

(10.19) + Z Ta( + S0+ suly + 8,0, +l 3)

$1,82=
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with function Yo (z) defined as

(10.20) Ya(x) = /1:; du log F(li(ﬁ)u) .

The proof is described in Appendix [El A formula for Wy(l) that is very
similar (but not quite identical) to was previously proposed in [NRSJ.

Let us note that the function C°(l5,1,,1,) coincides with the classical
Liouville action for the three-punctured sphere [ZZ95].

10.3.3. Genus one, one puncture. It remains to discuss the case C =
C1,1. The discussion is similar, the results are the following. The opers on
C1,1 can be represented in the form 82 + t(y), where

(10.21) t(y) = 0(lo) p(lny) + H(l,q),

with p(w) being the Weierstrass elliptic function

1 1 1
10.22 = — — .
(10.22)  p(w) w? * ( )2?;(0 0) ((w —mn—mn7)?  (mn+ m7rT)2>

W(l, q) behaves as

(10.23) W(l,q) = —dlogq +Wo(l) + O(q) ,
where
(10.24) Wo(l) = %Cd(z, —1,1p).

As before we note that (10.3)), (10.4)) determine W(I, ¢) only up to a constant,
Equation (10.24)) holds for a particular convention fixing this constant.

10.4. The real slice

We had pointed out earlier that the monodromy map induces a map p:
P(C) = ME (C) that is locally biholomorphic. A natural real slice in

har
MS,..(C) isC .;a\/l]i{har((}'), which contains a connected component isomorphic
to MJ..(C). The corresponding slice in P(C) can locally be described by a
family of opers t(y; ¢, q) that is real analytic in g, g.
Let us consider coordinates ¢, ¢ introduced using a pants decomposition
o. We will furthermore assume that the local coordinates y are coming from

the projective structure naturally associated to the pants decomposition o.
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There exists a real analytic function S,(gq,q) on 7(C) such that

(10.25) ) = hede, =2 S,(0.0).

The function S, (g, §) is related to the generating function W, (I, q) as

(10.26) So(q, @) = 2ReWo,0(1(9,7) 9)) ,

where l.(q, ) is the length of the geodesic v, in the hyperbolic metric which
corresponds to the complex structure specified by ¢, g.

It is clear that the function S,(q,q) represents a hermitian metric in a
(generically) projective line bundle &.. This means more concretely that the
mapping class group acts on S,(q, 7) as follows

(10.27) So(p-g, 11-9) = |f5(@)* So(q,0), 1€ MCG(C).

The functions fﬁ(q) are transition functions of the projective line bundle &,.

The function S,(q,q) is nothing but the classical Liouville action. It
should be possible to give a direct proof of this claim along the lines of
|ZT87al,[ZT87hH, [TT03]. It will follow indirectly from the relations with quan-
tum Liouville theory to be described later.

10.5. Scheme dependence

In the above we have given an unambiguous definition of the generating
functions W, »(1, ¢). One should keep in mind that the definition was based
on the use of the projective structures that were defined using the gluing
constructions of Riemann surfaces C'. This corresponds to choosing partic-
ular local sections ty(y, q) of P(C) in the definition of the coordinates h,
via .

One may, of course, consider other choices for the local sections ¢y(y, q)
than the one chosen for convenience above. This would modify the coor-
dinates h, by functions of ¢, leading to a modification of W(l, q) by some
function Wy(q) that depends on ¢ and parameterically on ¢. The dependence
of W(l, q) on the variables [ would be unaffected.
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11. Quantization

Summary:

e Functions on P(C) ~» Ring of holomorphic differential operators on

7;777"

e Quantization of twisted cotangent bundle T M(C) ~» Eigenstates
vg of operators qge: Section of holomorphic vector bundle W(C) ®
&, where W(C): flat projective vector bundle defined from repr. of
MCG(C) defined in Part

e Quantization of generating functions Wy (I, ¢) ~» matrix elements 7/ (q)
= (g, 07 )y

e Results of Parts IT and III ~» Riemann-Hilbert type problem for 7/ (q).
11.1. Algebra of functions - representations

11.1.1. We want to describe the quantization of the spaces MJ. (C) ~
T(C) in a way that makes explicit use of the complex structure on these
spaces. In order to do this, we find it convenient to represent MJ,  (C)
as a connected component of the real slice Mgat(C) within MY, (C). As
a preliminary, we are going to explain how such a description works in a
simple example.

Let us consider R? with real coordinates = and p and Poisson bracket
{z,p} = 1. Canonical quantization will produce operators p and x with com-
mutation relations [p,x] = —ih, which can be realized on a space of functions
1 (x) of a real variable x. This is a simple analog of the quantization scheme
discussed in Part II.

We now want to use a quantization scheme that makes explicit use of
the complex structure of R? ~ C. In order to do this let us consider R? as a
real slice of the space C2. One could, of course, use complex coordinates x
and p for C2 with Poisson bracket {x,p} = 1, and describe the real slice R?
by the requirement z* = x, p* = p. Alternatively one may use the complex
analytic coordinates a = = 4 ip and @’ = x — ip for C? which have Poisson
bracket {a,a’} = —2i. The real slice R? is then described by the equation
a' = a* which expresses a’ as a non-holomorphic function of the complex
analytic coordinate a on the real slice R2.

Quantization of the Poisson bracket {a,a’} = —2i gives operators a,
a’ which satisfy [a,a’] = 2h. This algebra can be represgnted on functions

¥(a) in terms of the holomorphic differential operator g-. If a and a’ were
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independent variables, we could also realize the algebra [a,a’] = —2h gen-
erated by the hermitian conjugate operators on non-holomorphic functions
V(a) = ¥Y(a,a).

But in the case of interest, a’ is a non-holomorphic function of a by
restriction to the real slice. We want to point out that it is then natural to
realize [a,a’] = 2h on holomorphic functions ¥(a), thereby making explicit
use of the complex structure on the phase space R?. There is a natural
isomorphism with the representation defined on functions v (z) of a real
variable x which can be described as an integral transformation of the form

(11.1) U(a) = /da? (alz)¥(z),

where the kernel (a|x) is the complex conjugate of the wave-function 1, (z) =
(x|a) of an eigenstate of the operator a = x + ip with eigenvalue a.

The representation of the Hilbert space using holomorphic functions
U(a) is known as the coherent state representation in quantum mechanics.

11.1.2. In the present case we regard the Darboux coordinates (I, k) as
analogs of the coordinates (x,p), while the coordinates (g, h) take the role
of (a,a*). Both (k,l) and (g,h) form systems of Darboux coordinates for
T(C). The coordinates ¢, alone are complex analytic coordinates for Q(C),
and the coordinates h, are non-holomorphic functions h, = h,(q,q) — this is
in exact analogy to the case of (a,a*). Important differences will follow from
the fact that the relation between (¢, h) and (I, k) is much more complicated
than the relation between (x,p) and (a,a*). It is no longer true that h, is
the complex conjugate of g;.

Quantization is canonical on a purely algebraic level: We introduce a
noncommutative algebra with generators ¢ = (¢1,...,¢n) and h= (ﬁl, cel
hi,) and relations

(11‘2) [}Alra és] = b2 57“,3 .

The resulting algebra is the natural quantization of the algebra of holomor-
phic functions on the cotangent bundle 7#7 (C) which will be denoted as
Fun, (T*T(C)).

There is an obvious realization of the algebra Fun,(7*7 (C)) on functions
VU(q) locally defined on subsets of 7(C'). The generators g, corresponding
to the coordinate ¢, introduced in Section [9.1] are represented as operators
of multiplication by ¢,, and the generators h, associated to the conjugate
"momenta” h, should be represented by the differential operators h, = b28qr
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in such a representation,

0
(11.3) a¥(q) =a¥(),  hU(g) =0 ag v@-
T
The resulting representation should be seen as an analog of the coherent
state representation of quantum mechanics.

11.1.3. As both (k,1) and (g, h) form systems of Darboux coordinates for
T(C), we expect that there exists a unitary equivalence between the rep-
resentations on functions v (l) defined in Part II, and the representation on
holomorphic functions ¥(g) we are constructing here. This means in partic-
ular that there should ultimately be a representation of the scalar product
in H(C) within each of these representations

(L4 (v, )= / dp(l) ()P = /T o, e 1)

Normalizability of the wave-functions v(g) will restrict both the appearance
of singularities in the analytic continuation of ¥ (q) over all of 7(C), and
the behavior of 1(q) at the boundaries of 7(C). In our case it is not apriori
obvious how to identify a natural domain for the action of the operators
(9, h) which represent Fun,(T*7 (C)) on holomorphic wave-functions ¥(q).
However, it is certainly natural to expect that U(q) has to be analytic on all
of T(C). It will furthermore be necessary to demand that the behavior of
U(q) at the boundaries of 7(C) is "regular” in a sense that needs to be made
more precise. A more precise description of the space of wave-functions that
is relevant here will eventually follow from the results to be described below.

It is natural to introduce eigenstates v, of the position operators q, such
that

(11.5) U(g) = (vg, V).

The definition of the coordinates ¢ will in general require the considera-
tion of a local patch U, C T(C). The corresponding wave-functions will be
denoted as W,(q) = (v, ¥). When the coordinates ¢ come from the gluing
construction we will use the index o instead of 1.

11.1.4. Important further requirements are motivated by the fact that
the cotangent bundle 7*7 (C') descends to a twisted cotangent bundle over
Tx M(C) for which coordinates like (g, h) represent local systems of coordi-
nates. Recall that the coordinates H* and H’ associated to different patches
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U, and U, are related via (9.12)), where

1 C
(116) X’L] = %3log fl.;l .

The relation (9.12)) has a natural quantum counterpart,

0 9 -
(11.7) Z:dqraq;%(q) = zr:dq’]“aqﬁ%@ — 53X,

which leads us to require that

(11.8) Wolq) = fi(@)¥,(q)

where the parameter ¢ will be given by c.1/b% up to corrections of order b2
that will be determined later.

The mapping class group MCG(C) acts by holomorphic transformations
on T(C). We will use the notation u.7 for the image of a point 7 € T(C)
under p € MCG(C). We require that there is a representation of MCG(C)
on H(C') which is represented on the wave-functions ¥, (q) naturally as

(11.9) M), 0(q) = Uy(pq), or M 1wk =27 .

This requirement should be understood as one of the properties defining the

representations W, (q), or equivalently the eigenstates vg -

11.2. Relation between length representation
and Kahler quantization

There should exist expansions of the form
(11.10)  Uyp(g) = /dl (vg, 07 Wo7 W) = /dl Foo(l,q) Yo (1) .

The requirement introduces key objects, the eigenfunctions \Iff’ol(q)
= Fu.0(l,q) of the length operators. We will mostly restrict attention to the
diagonal case o = ¢’ in the following, and denote ¥7(q) = ¥ (q).

The wave-functions W7 (¢) and ¥;*(q) associated to different patches
Uy, and U,, are related by an integral transformation of the following form:

(11.11) U7 (9) = f5,0.(2) /dlz Us,o. (1, 12) 97 (q)
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as follows from

(11.12) (vg, o7 ) = f5.0. (@) (vg, 07)

0,0,

= Uclo'l(q)<vgz7 UUlgz(Slo:lz)'

Let us now consider the wave-function ¥}"%(q) := (v§7, 6;"7 ), where
€ MCG(C). On the one hand,

Oy = (0T M)

nqs O ) =¥ (pn.q).

In the first line we have beeen using that M, = U, ,,, in passing to the
second the unitarity of M, and our requirement . Another way of
representing the wave-function (vj”, 67 ) is found by specializing
to the case that o, = p.o, and 0, = 0. Taken together we find

(11.13) W (g) = 2,4 (0) / dl, Miy(, 1) (q).

Note that one may read (11.13|) as expression of the fact that the wave-
functions W7 (¢) represent sections of the holomorphic vector bundle V(C) :=
W(C) @ & over M(C'), where W(C') is the projective local system defined
by the projective representation of the mapping class group constructed
in Part II. For the reader’s convenience we have reviewed the notion of a
projective local system in Appendix [F] It is important that the holomorphic
bundle V(C) of Hilbert spaces over M(C) is an ordinary vector bundle as
opposed to a projective one, as the latter can not have any section.

The kernels M,,(l,,1,) in have been defined in Part II. The clas-
sical limits of —b?log M,,(,1,) may be identified with the generating func-
tions F), »-(ly,1,) that appear in . The transition functions f7, ;(q)
in may then be identified with e2™95.0.-(0)  with 95,5, (q) being the
transition function of &, defined via .

Having specified the data M,(l,,l,) and fg, ,(q) defining the vector
bundle V(C), one may regard (11.11)) as definition of a Riemann-Hilbert
type problem for the wave-functions ¥7(q). If V(C) were a projective vector
bundle, the Riemann-Hilbert problem would not have any solution.
The fact that it has a solution for

(11.14) c= <, c=cq+ 130 +6b,
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will immediately follow from the relation with Liouville theory to be exhib-
ited in the next section. Note that

(11.15) c=13+6(b*+b?),

coincides with the expression of the central extension found in Eq. (8.22))
above.

11.3. Uniqueness and asymptotics

Uniqueness of the solution to the Riemann-Hilbert problem defined above
can then be shown by a variant of the argument used in [T03b]: Any two
solutions of the Riemann-Hilbert problem differ by multiplication with a
meromorphic function with possible poles at the boundary M (C') of M(C).
In order to fix this ambiguity one needs to fix the asymptotic behavior
at OM(C). Let us consider the component of dM(C) where the gluing
parameter g, vanishes. We need to distinguish the cases C, ~ Cj 4 and C, ~
C1,1, as before.

Let us consider the case C, =~ Cp 4. Note that the functions F,(l,q) =
U7 (q) represent the quantum counterparts of e_b%w”(l’q),

(11.16) Wy(l,q) = — lim b* log F» (1, q) .
b—0

In view of the asymptotic behavior (10.13]) and (10.23)) of W, (I, q) it is there-
fore natural to require that the functions F,(l,q) should have asymptotics
of the form

(11.17)  log Fo(l,q) = (A(le) — A(ly) — A(l)) log ge + Fo,o (1) + O(ge) -

The functions A(l) should coincide with (1) up to possible quantum cor-
rections, b2A(1) = §(1) + O(b?). The form of the asymptotic behav-
ior is equivalent to the validity of a quantized version of the relation
which takes the following form

(11.18)  (B?[(1 = 1)auy, + 10, 0] +0() + 8(12) = 6() ) Fo (1,q) = 0.

On the left hand side we have parameterized the ambiguity in the operator
ordering using the parameter v € [0, 1]. Consistency with the realization of
the B-move, given in (D requires that v = % + %. This determines the
possible quantum corrections in the definition of the function A(l) to be
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A(l) = £6(1) + v, which gives

I \? Q2
(11.19) A(l):<47rb> + Q=b+0b"'.

In a very similar way one may treat the case C, ~ C ;. Having fixed the
asymptotics, the solution to the Riemann-Hilbert problem is unique up to
multiplication by a constant.

11.4. Scheme dependence

We had noted above in Subsection [[0.5] that the definition of the observables
h, depends on the choice of a projective structure. A similar issue must
therefore be found in the quantum theory concerning the definition of the
operators h,. We have to allow for redefinitions of the operators h, that
correspond to redefinitions of the eigenstates v, by multiplicative factors
which may depend on gq.

This freedom is physically irrelevant in the following sense. What is
physically relevant are normalized expectation values of observable like

<”¢17O”q>.

(vg,vq)

(11.20) (o), =

It is clear that such expectation values are unaffected by redefinitions of the
eigenstates v, by multiplicative, g-dependent factors. This is how the scheme
dependence discussed in Section manifests itself in the quantum theory
of Mgat (C) .

12. Relation to quantum Liouville theory

We will now argue that the conformal field theory called Liouville theory
is mathematically best interpreted as the harmonic analysis on Teichmiiller
spaces, which is another name for the quantum theory defined in the previous
section. This will partly explain why the Riemann-Hilbert type problems
defined in Sections [4 and [11] are solved by Liouville theory.
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12.1. Virasoro conformal blocks

12.1.1. Definition of the conformal blocks. The Virasoro algebra Vir,
has generators L,, n € Z, and relations

(12.1) (L, Lyn] = (1 — 1) Ly + %n(nz — 1)dnsm.o-
Let C be a Riemann surface C' with n marked points Py, ..., P,. At each of
the marked points P., r =1,...,n, we choose local coordinates w,, which
vanish at P.. We will fix a projective structure on C' and assume that the
patches around the points P, are part of an atlas defining the projective
structure. We associate highest weight representations V.., of Vire to Py, r =
1,...,n. The representations V, are generated from highest weight vectors
e, with weights A,..

The conformal blocks are then defined to be the linear functionals F :
Vi) = @21 Vr — C that satisfy the invariance property

(12.2) Fo(Tlx]-v)=0 YveRp, VxE€Dou,

where Yo, is the Lie algebra of meromorphic differential operators on C'
which may have poles only at Py, ..., P,. The action of T[x] on ®"_; R, — C
is defined as

n

(12.3) Th] =Y ido- oL ®id,
r=1 (r—th)
L[X(T)] = Z kal(cr) € Vir,
kez

where Xg) are the coefficients of the Laurent expansions of x at the points

Pi,...P,,

(12.4) Xwr) = 3" x4 Wk 8, € C(w,)d, -
kEZ

It can be shown that the central extension vanishes on the image of the
Lie algebra Yoy in @, Vire, making the definition consistent. We may
refer to [AGMV], (W8S] for early discussions of this definition in the physics
literature, and to [BE] for a mathematically rigorous treatment.

The vector space of conformal blocks associated to the Riemann surface
C' with representations V, associated to the marked points P, r =1,...,n
will be denoted as CB(V,,C). It is the space of solutions to the defining
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invariance conditions . The space CB(V},],C) is infinite-dimensional
in general. Considering the case n =1, A; =0 and g > 1, for example, one
may see this more explicitly by noting that for P in generic positio
one may find a basis for U,y generated by vector fields which have a pole
at P; of order higher than 3g — 3. This follows from the Weierstrass gap
theorem. The conditions will then allow us to express the values of F
on arbitrary vectors in V; in terms of the values

(12.5) F(L5ess - LMer), ki, ksgs € 270,

were e is the highest weight vector of V. We note that F is completely
defined by the values ([12.5). CB(V[R], () is therefore isomorphic as a vector
space to the space of formal power series in 3g — 3 variables.

12.1.2. Conformal blocks as expectation values of chiral vertex
operators. Let us also introduce the notation

(12.6) ZHF,C)=F(le1®--Qeyp),

for the value of F on the product of highest weight vectors. Z"(F, C) can be
interpreted as a chiral “partition function” from a physicist’s point of view.
It may alternatively be interpreted as an expectation value of a product of n
chiral primary fields inserted into a Riemann surface C'. This interpretation
may be expressed using the notation

(12.7) ZHF,C) = (@n(zn) - Vi(21) )

with z, being (local) coordinates of the points P,. The state-operator corre-
spondence associates chiral vertex operators @, (v,|z.) to arbitrary vectors
v € V;.. The vertex operators ®,.(v,|z,) are called the descendants of ®,(z;).
The value F(v; ® - - - ® vy,) is therefore identified with the expectation value

(12.8) Fr @ @vp) = (Pr(vn|zn) - Yi(v1]21) ) £ -
There are generically many different ways to “compose” chiral vertex oper-

ators. The necessary choices are encoded in the choice of F in a way that
will become more clear in the following.

10We assume that P; is not a Weierstrass point.
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12.1.3. Deformations of the complex structure of C. A key point
that needs to be understood about spaces of conformal blocks is the depen-
dence on the complex structure of C. There is a canonical way to represent
infinitesimal variations of the complex structure on the spaces of conformal
blocks. By combining the definition of conformal blocks with the so-called
“Virasoro uniformization” of the moduli space M, of complex structures
on C = Cy,, one may construct a representation of infinitesimal motions on
My on the space of conformal blocks.

The “Virasoro uniformization” of the moduli space M, ,, may be formu-
lated as the statement that the tangent space T Mg, to My, at C can be
identified with the double quotient
(12.9)

TMg,n = F(C \ {Pl, ce. ,Pn}, @C’) é (C((wk))ak/ é wk(C[[wk]]ak,
k=1

k=1

where C((wy)) and Cl[[wy]] are the spaces of formal Laurent and Taylor series
respectively, and T'(C\ {Pi,...,P,},O¢) is the space of vector fields that
are holomorphic on C'\ {P,..., P,}.

Given a tangent vector ¥ € T M, ,, it follows from the Virasoro uni-
formization that we may find an element 7y of @}._; C((wy))dk, which
represents U via (12.9). Let us then consider F(T[nglv) with T[n] being
defined in in the case that the vectors vy are the highest weight vec-
tors ey, for all k=1,...,n. suggests to define the derivative dyF (v)
of F(v) in the direction of ¥ € TM,,, as

(12.10) 69 F (v) := F(T'[nyv),

Dropping the condition that v is a product of highest weight vectors one may
use to define dyF in general. Indeed, it is well-known that
leads to the definition of a canonical connection on the space CB(V,, C) of
conformal blocks which is projectively flat, see e.g. [BE] for more details.

There is no hope to integrate the canonical connection on CB(V[n], )
to produce a bundle over M(C) with fiber at a Riemann surface C' being
CB(Vp, €), in general.

The first problem is that the connection defined by is not flat,
but only projectively flat. It can only define a connection on the projec-
tivized space IP’CB(V[n], (), in general. For the readers convenience we have
gathered some basic material on connections on bundles of projective spaces
in Appendix [F] As we will see in a little more detail later, one may trivialize
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the curvature at least locally, opening the possibility to integrate at
least in some local patches U C M(C).

The other problem is simply that CB(V},,C) is way too big, as no
growth conditions whatsoever are imposed on the values for gen-
eral elements F € CB(V},,C). One needs to find interesting subspaces of
CB(V}p), C) which admit useful topologies.

We will later even be able to identify natural Hilbert-subspaces
HCB(V},}, C) of CB(V},),C). The Hilbert-subspaces HCB(V,},C) will be
found to glue into a bundle of projective vector spaces W(V[n],C') over
M(C) with connection defined via — this is the best possible sit-
uation one can hope for in cases where the spaces of conformal blocks are
infinite-dimensional.

12.1.4. Propagation of vacua. The vacuum representation Vy which
corresponds to A, = 0 plays a distinguished role. If ®((vg|wp) is the vertex
operator associated to the vacuum representation, we have

(12.11) <I>0(eolw0) = id, @o(L_Qe()”wo) = T(’wo),

where T'(z) is the energy-momentum tensor. It can be shown that the spaces
of conformal blocks with and without insertions of the vacuum representa-
tion are canonically isomorphic, see e.g. [BF] for a proof. The isomorphism
between CB(Vo ® Vi), Cgnt1) and CB(Vyy,), Cyn) is simply given by evalua-
tion at the vacuum vector ey € V)

(12.12) Fl(eg @v) = F(v), v E Vs

as is also suggested by . This fact is often referred to as the “propa-
gation of vacua”.

One may then define the expectation value of the energy momentum
tensor defined by a fixed element F as follows

(1213)  Tr(wo) = (T(we) )r i= F'(L-seo @) | F(v).

We are assuming that the local coordinate wqg is part of an atlas defining
the chosen projective structure on C. It follows that T'r(wp) transforms like
a quadratic differential when going from one patch of this atlas to another.

The invariance property allows us to rewrite F'(L_zep ® v) in the
form

(12.14) F'(L_2eq ® v) = F'(eg ® I, v),
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with ¥y, = T[x,,], for a vector field x,,, that has a pole at wy. We may
then use (12.12) to write F'(eq ® ¥,,,v) = F(¥,,v). It follows that Tx(wo)
can be expressed in terms of F as

(12.15) Tr(wo) = F(V,,v)/F(v).

Recalling the definition (12.10]), we observe that that the canonical connec-
tion can be characterized in terms of the expectation value T'x(wyo).

12.1.5. Parallel transport. Note that the value F(¢,, v) in , by
definition, represents the action of a differential operator 7, corresponding
to a tangent vector to M(C') on F. This statement may be expressed in the
form of a differential equation for Z"(F, C)

(12.16) To Z4(F, C) = Tr(wo) 2“(F, C).

The differential equation (12.16]) may be re-written using local coordinates
q=(q1,-..,qn) for T(C) whose variation is described by means of Beltrami-
differentials (p1, ..., up) as

(12.17) [0, + A(F, @) 24 (F.C) =0,  A(F.q):= /C 1 Tr

Our aim is to use to construct a family F, of conformal blocks over a
neighborhood U of M(C'). We first need to ensure that the partial derivatives
% whose action is defined via 1} do indeed commute. This amounts
to the trivialization of the curvature of the canonical connection within i.

One way do this concretely uses the atlas of local coordinates produced
by the gluing construction of Riemann surfaces. One may consider Beltrami-
differentials p, which are compactly supported in non-intersecting annular
regions A, on C. Equation then describes the variations of the con-
formal blocks with respect to the coordinates g, for 7(C) defined by the
gluing construction.

Let us assume that F is such that can be integrated to define
a function Z*(F,q) in a neighborhood of a point in M represented by the
surface C. Note that the Taylor expansion of Z*(F,q) is completely defined
by the conformal block F € CB(V},), C). Derivatives of Z*(F, q) are related
to the values F(T'[ny]v) via . These values can be computed in terms
of the values which characterize F by using the defining invariance
condition . Conversely let us note that the values character-
izing a conformal block can be computed from the derivatives of Z"(F,q)

via (12.10).
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It may not be possible to integrate for arbitrary F € CB(V,}, C)
as the numbers which characterize F may grow too quickly. We will
denote the subspace of CB(V,,C) spanned by the conformal blocks F for
which can locally be integrated to an analytic function Z"(F,q) by
CBY.(Vin)» ©)-

Let us stress that for any given function Z"(q) which is analytic in a
neighborhood of a point gy in M represented by the surface C' one may
define a family of conformal blocks F, € CB;" (V},}, C;) by using the Taylor
expansion of Z%(q) around ¢ to define the values ([12.5) which characterize
the elements F; € CB(V},), Cy). The conformal blocks F in CB;.(V},], C) are
therefore in one-to-one correspondence with analytic functions Z*(q) defined
locally in open subsets U C M.

12.1.6. Scheme dependence. In the definition of the conformal blocks
we assumed that a projective structure on C' had been chosen. This allows us
in particular to define an expectation value Tx(wp) of the energy-momentum
tensor which transforms as a quadratic differential when going from one local
coordinate patch on C' to another. In order to define families of conformal
blocks using the canonical connection one needs to have families of projective
structures over local patches U C M(C) that allow one to trivialize the
curvature of the canonical connection locally in U. Such families certainly
exist, we had pointed out earlier that the families of projective structures
defined by the gluing construction described in Subsection do the job.
One may describe changes of the underlying projective structure by con-
sidering the corresponding oper 6; + to(y), and modifying to(y) by addition
of a quadratic differential 27]}:1 h,¥,. The parallel transport defined using
the modified projective structure will remain integrable if there exists a
potential Zy(¢) on U such that h, = —0, Zp(q). The result will be a modi-
fication of the partition functions Z"(F,q) by a universal factor, a function
Zo(q) of ¢ independent of the choice of F. This may be regarded as the
conformal field theory counterpart of the scheme dependence discussed in

Subsections 3.3 and 0.5

12.1.7. Mapping class group action. Let CB**(V},,C) be the sub-
space of CB;” (V|,], C) which can be analytically continued over all of 7(C').
Note that Tr(wo) defines a projective c-connection on C. Given a family
of conformal blocks F; defined in a subset &/ C M one gets a correspond-
ing family of projective connections T, (wo). If F € CB*"(V},), C) one may
analytically continue the family of projective connections T', (wg) over all of
T (C). The resulting section of P(C) — T(C) may then be used to define a
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family of local sections of the projective line bundle &. as explained in Sub-
section It is defined by the Equations which coincide with
in the present case.

Analytic continuation along closed curves in M(C) defines an action
of the mapping class group on CBan(V[n],C'). We will later define a sub-
space CB*"(V|,}, C) of CB*™(V,},C) which is closed under this action. It
may be characterized by the condition that the partition functions Z"(F,q)
are “tempered” in a sense that will be made more precise. The spaces
CB*“™*(V}), Cy) associated to local families Cy of Riemann surfaces glue into
a projective local system W, (C) over M(C).

A vector bundle that is not projective is [FS]

(12.18) VL(C) = WL(C)® & .

Picking a basis for CB****(V},], C) in some U C M(C') one may define a sec-

tion of VI, (C) by means of analytic continuation. Natural bases for CB***(V,,),
Cy) can be defined by means of the gluing construction, as will be explained

next.

12.2. Gluing construction of conformal blocks

12.2.1. Gluing boundary components. Let us first consider a Rie-
mann surface Cy; that was obtained by gluing two surfaces C and Cy
with ng + 1 and n; + 1 boundary components, respectively. Given an inte-
ger n, let sets I; and Iy be such that [; UIy ={1,...,n}. Let us con-
sider conformal blocks F¢, € CB(VZ-[m], C;) where V£n2] = (®prer,Vr) ® Vo and
Vl[nl] = Vo ® (®rer, V) with the same representation V, assigned to Py and
Py 2, respectively. Let (.,. )y, be the invariant bilinear form on Vy. For given
vy € Qrer, Vr let W, be the linear form on Vy defined by

(12.19) Wy, (w) = Fo,(va @ w), Yw € Wy,

[n]

and let C,(q) be the family of linear operators V; "' — Vj defined as

(12.20) Ci(q)-v1 = Z q"e Fo,(E@v),
e€B(V)

where we have used the notation B()}) for a basis of the representation Vg
and é for the dual of an element e of B(V) defined by (é,€’ )y, = 0¢ . We



98 J. Teschner and G. S. Vartanov

may then consider the expression
(12.21) Fe,, (V2 @ v1) := W, (Cy(q) - v1).

We have thereby defined a new conformal block associated to the glued sur-
face Co1, see [TO8] for more discussion. The insertion of the operator ¢l
plays the role of a regularization. It is not a priori clear that the linear form
Wy, is defined on infinite linear combinations such as Cji(q) - v;. Assum-
ing |¢| < 1, the factor ¢’ will produce an suppression of the contributions
with large Lg-eigenvalue, which renders the infinite series produced by the
definitions and convergent.

An operation representing the gluing of two boundary components of a
single Riemann surface can be defined in a very similar way.

12.2.2. Gluing from pairs of pants. One can produce any Riemann
surface C' by gluing pairs of pants. The different ways to obtain C' in this
way are labeled by pants decompositions o. The elementary building blocks
are the conformal blocks associated to three-punctured spheres Cj 3, which
are well-known to be uniquely defined up to normalization by the invariance
property . We fix the normalization such that the value of F¢,, on
the product of highest weight vectors is

(12.22) Feosles®@es@er) = /C(Q — ag,az,a1),

where C(ag, a2, aq) is the function defined in ({8.3)).
Using the gluing construction recursively leads to the definition of a
family of conformal blocks F8q depending on the following set of data:

e o is a pants decomposition.
e ¢ is the coordinate for U, C 7 (C) defined by the gluing construction.
e (3 is an assignment e — 3, € S = % + iR, defined for all edges on I',.

The parameters 3. determine the Virasoro representations Va, to be used
in the gluing construction of the conformal blocks from pairs of pants via

(12.23) Ao =B(Q—B), c=1+6Q%.

The partition functions Z%(3, q) defined from F§, via (12.6) are entire
analytic with respect to the variables «,., meromorphic in the variables [,
with poles at the zeros of the Kac determinant, and it can be argued that

the dependence on the gluing parameters ¢ is analytic in a open multi-disc
U, of full dimension 3g — 3 + n [T03a, [T0§].
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12.2.3. Change of pants decomposition. It turns out that the con-
formal blocks Z} (/3,q) constructed by the gluing construction in a neigh-
borhood of the asymptotic region of 7(C) that is determined by o; have
an analytic continuation to the asymptotic region of 7(C') determined by
a second pants decomposition oy. A fact [T01, [T03al TOSJE of founda-
tional importance for the subject is that the analytically continued con-
formal blocks Z} (8,,q) can be represented as a linear combination of the
conformal blocks Z> (f,,q), which takes the form

(1220) 25,0500 = Eruo, (0) [ di(52) o, (32 25, ().
The mapping class group acts naturally,

(12.25) 2,.(8:q9) = 258, 1-9) -

Combining and yields a relation of the form

(1226) 253 0) = Buna(@) [ Au(B) W (521 5:) 251 0).

The transformations define the infinite-dimensional vector bundle
VL(C) = & ® WLL(C). The constant kernels W, 5, (3., 81) represent the tran-
sition functions of Wr,(C'), while the prefactors E,,., (¢) can be identified as
transition functions of the projective line bundle &..

It suffices to calculate the relations in the cases of surfaces C' =
Co,4, and C = Cq 1. This was done in [T01] for C' = Cy 4, where a relation
of the form

(12.27) Z,,(b1,q) = /Sd52 Fap, e a0 ] 25,(B2.0)

was found. The pants decompositions o4 and o; are depicted on the left and
right half of Figure E|, respectively. Using this result, the case C' = C11 was

LA full proof of the statements made here does not appear in the literature yet.
It can, however, be assembled from building blocks that are published. By using
the groupoid of changes of the pants decompositions it is sufficient to verify the
claim for the cases ¢ = 0,n =4 and g = 1,n = 1, respectively. For ¢ = 0,n = 4 this
was done in [T01], see also [T03a]. The case of g = 1,n = 1 was recently reduced
to the case g = 0,n =4 in [HIS].
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treated in [HJS], the result being

(12.28) 25 (Br,q) = TR /S 4B Sap(00) 25 (B2r )

where ¢ = 2™ as usual. The pants decompositions o5 and o; are depicted

in Figure The prefactor is due to the fact that the conformal blocks
defined according to the gluing construction differ by a factor of ¢2i from
the conformal blocks considered in [HJS]. It represents the only non-trivial
transition functions of & according to our discussion in Subsection [9.3.1}

We should again remember that the definition of the partition functions
Z:(B,q) was based on a particular scheme, the choice of the projective struc-
ture coming from the gluing construction described above. Using a diffent
scheme would modify the partition functions by S-independent functions
of q.

12.3. Comparison with the Kahler quantization of 7 (C)

We had previously identified the space of conformal blocks CB;” (V},},C)
with the space of functions Z(q) locally defined on patches U C T(C).
This space is naturally acted on by the algebra of differential operators
DO(T(C)), which is directly related to the action of DO(T(C)) on spaces
of conformal blocks defined by means of the Virasoro algebra via .
These observations already indicate that the space of wave-functions ¥(q)
that represent the Hilbert space H(C') in the representation coming from the
Kahler quantization scheme should coincide with a suitable Hilbert-subspace
HCB(V},), C) of CB(Vy,), C).

The direct calculations of the kernels W, (82, 51) carried out for the
generators Z, B, F' in [T01], [T03a], and for S in [HJS] yield results that coin-
cide with the kernels defined in Subsection It follows that W, coincides
with the projective local system from the quantization of Mj, (C),

(12.29) WL(C) = W(C).

This implies immediately that the conformal blocks Z%(f, ¢q) represent the
solution to the Riemann-Hilbert problem that was found to characterize the
wave-functions W7 (q) which describe the relation between length represen-
tation and Kéhler quantization.

These results imply furthermore that there is a natural Hilbert space
structure on the spaces of conformal blocks which is such that the map-
ping class group action becomes unitary. The Hilbert spaces HCB(V},), C)
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of conformal blocks are isomorphic as representations of the Moore-Seiberg
groupoid to the Hilbert spaces of states constructed in the quantization of
MJ,.(C) in Part IL

Within HCB(V},, C) one may consider the maximal domains of defini-
tion of the algebras A,(C) of quantized trace functions, which can be seen
as natural analogs SCB(V[,L], () of the Schwarz spaces of test functions in
distribution theory. The spaces SCB(V[n], () are Fréchet spaces with topol-
ogy given by the family of semi-norms defined from the expectation values
of the operators representing the elements of A,(C) on SCB(V,},C). The
(topological) dual of SCB(V,),C) is the space of “tempered” distributions
on SCB(V},}, C'), which will be identified with the subspace CB***(V,,}, Cy)
of CB(Vj;), C) spanned by “tempered” conformal blocks.

13. Relation to gauge theory
13.1. The solution to the Riemann-Hilbert problem
We have seen that the kernels representing S-duality transformations in the
gauge theory coincide with the kernels representing the changes of pants
decomposition in Liouville theory. Taken together we conclude that

(13.1) Z(i,nSt(a, m,T;€1,€) = ZP(a,1;0) Z5(B, a, q; ) ,

where the following identifications of parameters have been used,

(13.2a) b = Z—;, B2 = erer, q= >,
. Q .Qe . Q .My L 1
(13.2b) Be—Q—l-zh, ozr—2+zh, Q:=b+0b".

The factors Z5"" (v, 7;b) represents the scheme dependence discussed pre-
viously. We expect that the possibility to have such factors is related to the
issues raised by the necessity to introduce a UV regularization in the study
of the gauge theories Go mentioned in Subsection 3.3

13.2. Chiral ring

Let us recall that there are further supersymmetric observables which should
be realized on Ho or Hiop, respectively: the chiral ring operators u, :=
Tr(¢2). We are going to propose that the operators u, are directly related
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to the operators h, arising in the quantum theory of Mgat(C),
(13.3) u. =~ eih,.

This is nontrivially supported by the calculations of certain examples in
[LMN, [FEMPL [EMPT].

The existence of a relation of the form is natural in view of the
fact that the prepotential

(13.4) Fla,m,T) = — . leingo €162 (a,m, i €1, €9)

satisfies Matone type relations of the general form

0 Fla,T).

(13.5) Up = o

A proof of the relations that is valid for all theories of class S was
given in [GT]. It was based on the observation that both the coordinates
(a,a®) describing the special geometry underlying Seiberg-Witten theory,
and the coordinates (7, h) introduced above can be seen as systems of Dar-
boux coordinates for the same space T*7T (C'). The prepotential F(a, m, ) is
the generating function of the change of variables between (a, a”) and (7, h)
[GT].

This observation can be obtained in the limit for e — 0 from the fact
that

(13.6) W(a,m,T;e3) := — ehglo €121 (q,m, T €1, €2),

coincides with the generating function W(I,7) defined above, taking into
account the identifications ([13.2)). Passing to the limit e — 0, we may observe
that

3(02 + t(y)) = €0; +9(y)

turns into the quadratic differential ¥(y) when €5 is sent to zero keeping ¥(y)
finite. Using ¥(y) we define the Seiberg-Witten curve ¥ as usual by

(13.7) Y ={(v,u)|v* =0(u)}.

It follows by WKB analysis of the differential equation (€39; +9(y))x = 0
that the coordinates [, have asymptotics that can be expressed in terms of
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the Seiberg-Witten differential A on X defined such that A% = 9 (u)(du)?.
We find

(13.8) — ~ —Q, — ~ —ag,

(13.9) Qe ::/ A, ay ::/ A,
7 5

with ¢, 47 being cycles on X that project to ¢ and ~f, respectively.

It may also be interesting to note that the relation relates the
scheme dependence in the definition of the conformal blocks to a possible
quantum-field theoretical scheme-dependence in the definition of the chiral
ring operators u,.

We thereby realize that the quantum theory of M, (C) studied in this
paper can also be interpreted as the quantization of the geometrical struc-
ture encoding the low energy physics of the A; gauge theories of class S:
Recall that the prepotential can be characterized as the generating func-
tion for the change of Darboux coordinates (a,a”) « (7,h) for T*T(C)
[GT]. Turning on ez “deforms” (a,a”) into (k,I), see (13.8). The wave-
functions ¥, (a) studied in this paper represent the change of coordinates
(k,1) <> (1,h) on the quantum level. By combining these observations we
realize that the quantum mechanics of scalar zero modes that represents the
non-perturbative skeleton of Go can be obtained from the Seiberg-Witten
theory of G¢ in two steps: The first is the deformation of the cotangent bun-
dle T*T (C) representing the Seiberg-Witten theory of Go into the twisted
cotangent bundle T 7(C) which is isomorphic to M§},,(C). The second
step is the quantization of T} T(C) ~ M}, (C). The parameter e; of the
Omega-deformation plays the role of Planck’s constant in the second step.
The combination of the two steps may be interpreted as the quantization
of the Seiberg-Witten theory of G, with quantization parameter h = €jé€o.
One has a certain freedom in quantizing 7*7 (C') which is parameterized by
the “refinement parameter” b? = ¢; /€.
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Part IV. Appendices
Appendix A. Uniqueness of the representations

Let us look at the question of uniqueness of representation for the alge-
bra (/6.3]) with the constraint (6.2)). Let us write the operators L; and L, in
the following form

(A1) Ly =Die™ + Dy + D_e¥,
L,=E. e+ Ey+ E_e™,

and substitute these operators into the relation . Considering the coef-
ficient corresponding to different difference operators et*, I,e™* one finds
the following relation between the coefficients £ = {F,, Ey, E_} and D =
{D4, Dy, D_}, respectively,

E+ _ efls/ZefwibQD_i_
1

12
E_ :615/26 Tib D_,

which is true for the set of coefficients D and E defined in the main text.

Let us now check which constraints we obtain from . Again combin-
ing the coefficients corresponding to the shift operators etk etk I e=* e=2k
we see that coefficients of the shift operators et2k and e =2 are trivially zero
while the conditions for the coefficients of et* and e to be zero are equiv-
alent and take the following form

—mib? e—37rib2 637Tib2e—l _ —3mib?

e e
67Tib2 + e—7rib2 DO +

e
e7rib2 + €—7rib2

(A.3) e KDoetk
e~ mib? 12 _ omib? /2

T T omit? g oot (L1Ls + LaLa) + ¢ ™ (Lo La + L1 La),

which is satisfied for Dy presented in the main text. Let us now write the
constraint appearing from the trivial shift operator
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(A.4) (67271'ib2 _ e2ﬂib26l)D+e+kD_€fk + (ef2rrib2 _ e27rib2€fl)D_eka+e+k
6747711)2 + 267271'ib2 B L ) (L1L3 + L2L4)2
(emib* 4 ¢—mib?)2 0 (emib? 4 e—mib*)2
(e 4 e V2) (L1 L3 + LoLy)
2 143 244

+ <e7rib2 + e—Tribz)Q
+ e271'ib2(€l/2 + e—l/2)2 _ (eﬂ'ib2 + e—ﬁib2)2
+eﬂib2(el/2 + e_l/2)(L3L4 _|_ L1L2)
+ L3+ L5+ L5+ L+ L1LaLsLy =0,

which is satisfied by (6.15]).

Let us look more closely at the constraint . We already know that
there exists one solution Dy but it might happen that there are additional
solutions. Imagine that the solution we have could be modified as follows,

_.|_

+e ™ (LyLy + L1L4)) Dy

Do = D" + D3,

where D(()O) is coefficient in 1} ngd would have to be a solution to the
following equation

_ _ a9 12
e l_e 3mib

e7rib2 + e—7rib2

—mib? I —3mib? 6371'1132

e € e Dadd +
e7rib2 + e—7rib2 0

e_kDde6+k —=0.
A solution exists and is equal to
- 2 Sp(—o5tr +b)Sy(— 5k — b
(A5) -Dfa)dd = DO G_Siibi’ b( 27rlll7 ) b( l27r1b )
S (—55) Sb(— 55 + 2b)
2 sinh(% —|—7rib2)

—e 8riz ——= 7
sinh(4 — mib2)’

with Dy being an 47ib?-periodic functions of I. However, any non-vanishing
modification of this kind would spoil the reality of the solution.
For analysing the constraint ((A.4)) we introduce

(A.6) E_, = D_e*D etk
and observe that

DJFeH“D_e*IC = et¥ (e*k‘DJreJrkD_e*k) = e+kE_+e*k
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which allows us to rewrite (A.4]) as

(A7) (&2 _ 2miV lyotk ok g (o720 2mi ol
. e—dmib? | 2?—2mb2 _.1 e e_lDQ - (L1.L3 I LZ.L4)2
(emib? 4 —mib?)2 0 (emit? 4 o—mib?)2
n <2 (eV/? 4_(6_2/2)([,1[,.:2 4)—2L2L4)
emib? 4 e—mib?
4 2T (2 Tl2)2 (it b2
+ ™ (2 4 eTU2)(L3Ly 4 Ly Ly)
+ L2+ L34+ L3+ L3+ LiLolsLy = 0.

+e ™ (LoLs + L1L4)> Dq

As in the case of constraint for Dy we consider an additive deviation to E(_OL

E_, = EY) + B,
: : dd.
and find the following equation for E2%¢:
(A.8) (6727Tib2 _ 627rib26l> e+kEic£Sefk 1 (672mb2 _ e27rib2€fl> Eid+d —0,

whose solution is

12 1

e smib2 2

sinh £ sinh(L — 27ib?)’

(A.9) E* =,

with Ej being 4rib?-periodic. Again one sees that solution would spoil
the reality of the solution.

The only freedom we are left with is the gauge transformation since
(A.7) fixes only the product (up to the shift) of D_ and Dy. To see more
clearly the conclusion above let us take the classical limit of constraints
and which become

(A.10) (e/? — e 22Dy = Ly(L1Ls + LaL4) + 2(LaLs + L1Ly),

which defines Dy unambiguously. Let us now consider the condition obtained
by comparing coefficients of the trivial shift operator
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1 1
(A1) —(/2—e V22D, D_ — 1(61/2 —e7122p2 L (ILs + LoLy)?
1
+ <4Ls(L1L3 + LoLy) + (LaLs + L1L4)> Do+ L?—4
+Lg(L3Ly+ LyLo) + L3 + L3+ L34+ L2 + Ly LoLsLy = 0,

from which one finds unambiguously D D_. The only freedom is to multiply
D, by e™XW) and D_ by e=™X() i, e. the gauge freedom.

Let us finally remark that assuming the cyclic symmetry for algebra of
loop operators under permutations of two points on a sphere

(A.12) Ly =963 L =162 Ly —204 L

one gets the cyclic symmetry for the cubic relation (6.2)), so in a sense the
two first lines in (6.2]) are fixed by cyclic symmetry.

Appendix B. Special functions
B.1. The function I'y(x)

The function I'p(x) is a close relative of the double Gamma function studied
in [Br]. It can be defined by means of the integral representation

oo

(B.1) long(:U):/
0

dt et — = Ql/2 (Q—-2x)> Q-—2x
t \(1—ebt)(1—et/b) 8et t ’
Important properties of I'y(x) are

(B.2) functional equation Ty(z + b) = v2mb** 2~ (bx)[y().
(B.3) analyticity I'p(x) is meromorphic, it has poles only

at £ = —nb—mb~t,n,m e 22",
A useful reference for further properties is [Sp].

B.2. Double Sine function

The special functions denoted ep(z) was introduced under the name of quan-
tum dilogarithm in [FK2]. These special functions are simply related to the
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Barnes double Gamma function [Br], and were also introduced in studies of
quantum groups and integrable models in [F2, Rul, (Wol, [V].

In the strip [Im(z)| < %, function ep(z) has the following integral repre-
sentation

dt 672itx
B4 = _ e =2
( ) eb(x) exp{ 4t sinh bt sinh% } ’
R+i0

where the integration contour goes around the pole t = 0 in the upper half-
plane. The function sp(z) is then related to ep(x) as follows

(B.5) sp(x) = e3P a0 ) (1)

The analytic continuation of s(x) to the entire complex plane is a mero-
morphic function with the following properties

sb(x + %bil)

B.6 functional equation ——2 2 =2 cosh(mb*'z),
(B.6) auation. 1710 =2 coshi )
(B.7) reflection property sp(x) sp(—2x) =1,

(B.8) complex conjugation sp(z) = sp(—7),

(B.9) zeros /poles (sp(z))F1 =0 <+ ¢ {i%+nb+mb‘1; n,m € ZZO} ,

(B.10) residue  Res_sy(z) = 2L’

=—j& ™
T i3

(B.11)

e~ 2 @O for |z = 0o, |arg(z)] <

asymptotics sp(x) ~ o _

[SIERNIE]

e for |x| — oo, |arg(z)| >

The behavior for b — 0 is given as

v 1
B.12 (—) - _
( ) @ \omp) TP ( 27b?

LiQ(—ev)) (1 + 0(b2)) .



Supersymmetric gauge theories 109
In our paper we often use the special function Sy(x) defined by
(B.13) Sp(z) = sp(iz — 1Q).

In terms of I'y(z) the double Sine-function is given as

Uy (2)
Sp(z) = =———.
b( ) Fb(Q — IB)
We will use the properties
(B.14) self-duality  Sp(z) = Sp-1(x),
(B.15) functional equation Sy(z + b*1) = 2 sin(mb™lz) Sy(x),
(B.16) reflection property Sp(z) Sp(Q —x) = 1.

B.3. Integral identities
We will use the following set of integral identities.

Proposition 1.

3 3
(B.17) / dz [ Se(wi — 2)Sp(vi+2) = ] Solws +v),
R i =1
where the balancing condition is Zf’zl(m +v;) = Q.

This identity was recently understood as a pentagon identity in [KLV].

Proposition 2.

(B.18) 1 / ds Sp(p £ 2)Sp(v £ Z)e—2mz2
iR

5 Sb(:tQZ)

— Sy(ju + ) Bl S miQUuy),

The following notation has been used Sp(a + u) := Sp(a + u)Sp(v — w).
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Proposition 3.
3 2
(B.19) / dy H Sp(pi — ) H Sy(vi + y)e™ e ™Y
R =1 i=1

3
- H Sp(pi + vp)ez™N TR g3 mROFY)
i=1

1 / dy H?:1 Sp(pi + 0 £y)Sp(r1 — o £ y) o2y’
iR

) Sp(+2y)

where
3
QUZQ—ZM—W,
i=1

and the following balancing condition is satisfied

3 2 Q
=1 =1

The proof of the above Propositions is easily obtained from the reduc-
tion of elliptic hypergeometric integrals to the hyperbolic level [DS] (the
details can be found in [Bul or in [SV11]). Identity [B.17} [B.18| and [B.19| are
equivalent to Theorem 5.6.7, Theorem 5.6.6 and Theorem 5.6.17 in [Bul,
respectively.

Appendix C. Analytic properties of intertwining kernels

C.1. Preparations

It will be convenient to factorize the expression for F . [gi gf] as
L Tas s _ L6(2Q — 20)T (20 e
(C.1) Fiolaia]= — S x{aaaty
Iy (2Q — 204)Tp(201)

with b-65 symbols {"‘1 o2 O‘S}g in the normalization from Subsection

Q3 Og Qg
given by the formula

ap, a3, 02)T (o, ar, )

xJ,

Q3 g Oy

o, T(
‘2 a1 Oy g =
(C ) }b S(as,ag,()dl)S(Oé4aa3aas)
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where

J = /du Sp(u — 12)Sp(u — as34)Sp(u — a23¢) Sp(u — a144)
c
X Sp(a1234 — 1) Sp(vst13 — 1) Sp(usios — 1) Sp(2Q — u),

and

(C.3) S(as, a2, a1) =Ty(2Q — on23)Ty(aty)Th(0gs)T(03;)
(C4) T(as,az, o) =Tylaiss — Q)Th(Q — afy)Th(Q — ag3)Th(Q — o) -

We are using the notations «;j, = a; + aj + ag, « ’-“ = +aj — Q.
C.2. Resonant values

Singular behavior of the integral 7 could be caused by the behavior of the
integrand at infinity, or by the pinching of the contour C between poles of the
integrand. It is not hard to check that the integral converges for u — oo for
all values of the variables «;. It is furthermore straightforward to check that
the pinching of the contour of integration in only occurs when at least
one of the triples Ts12, Tu3s, 1¢32, T4s1 is resonant, using the terminology from
Subsection [8.3.2] Taking into account the poles and zeros of the prefactors
in (C.1) one easily verifies that the b-6; symbols { 5! &2 g} , are entire in
ag, and have poles iff one of Ti30, Tys1 is resonant.

We are going to consider the b-6j symbols { gt 62 g: }bc as distribution on
a space T of functions f(ay) which are (i) entire, (ii) decay faster than any
exponential for o, — oo along the axis /2 + iR, and (iii) Weyl-symmetric
flay) = f(Q — ay). For a; € Q/2 4 iR, i =1,2,3,4, s one defines

1
(C.5) a%§£36%=2/ s
Q/2+i IR

Assuming «o; € Q/2+iR, i =1,2,3,4, one easily checks that f(as) =
Dq, {2122 }(f) has the properties (i)-(iii) above. This means that the oper-
ator F maps 7 to itself.

Consider now the analytic continuation of D, {al %2 ¢ with respect to
the parameter as. It can always be represented in the form , but the
contour of integration may need to be deformed. The result can generically
be represented as an integral over the original contour @)/2 4+ iR plus a
finite sum over residue terms. The residue terms define generalized delta-

distributions as introduced in (8.11]).
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C.3. Degenerate values

We are particularly interested in the case where takes one of the degenerate
values

(C.6) g = —kb/2 —1b71/2.
Note that this is a necessary condition for having a double resonance,
(C.7) Ay =—Kb-0Ub"t A aly=—kK'b-1"b7",

where k = k' + k", 1 =1' +1”. The prefactor in (C.2)) proportional to (S(as,
az,a1)) ! vanishes in the case of a double resonance. It follows that only
residue terms can appear in the expression for D, { P } at double reso-

a3 Og
nance ((C.7)).

So let us look at the residue terms that become relevant in the analytic
continuation from R(ag) = /2 to the values (C.6). Relevant are the poles
from the triple Ti30, in particular the poles at

0432 = —k‘lb — llb_l N

(C.9) afy = —kob— b7 !,

where k = k1 + ko, [ =11 + 5. It is for some considerations convenient to
assume that R(as) = Q/2 — € + i P; for some small real number 0 < e < b/2.
It follows that the poles

8}

(0'10) ar = 5 —€+ip3+(k1—k‘2)%+(l1—lg)%,

with k1 — ko < 0 and [; — I3 < 0 will have crossed the contour of integration
from the right, and the poles

(9]

(C.11) ar =% —et+iPs—(ka— k)% — (la— )3,

with ko — k1 < 0 and I — I; < 0 will have crossed the contour of integration
from the left. The form of the distribution given in (8.10b) follows easily
from these observations.
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C.4. Residues

We list here some relevant residues.

(C.12)
1
fola %] = T(—25?)
['(1 — 2bag)T(—Qb — b? + 2bay)T'(2 — 2baz)T'(2Qb — 2bay — b%)
L(2Qb — b? — baggs))T(—b% — ba3 )T(1 — bai,)I(1 — bads)

(C.13)
a3 Qo 1
foola: %] = T(—20%)
I'(1 — 2bay)L(—Qb — b* + 2bay)T'(2bay — 26*)T(2bay — b?)
D(—b% + bags)T(—b% + baiy))I'(1 — ba,)T(—Qb — b2 + bagss)’

(C.14)
for[82 23] = 2 cos(mb) E Zs))
D(—Qb + 2bas ) (—Qb + 2bay + b*)T'(2Qb — 2baa)T'(2baa)
(b3, )T (baiy )T(Qb — baigs )T (—Qb + baaza) ’
(C.15)
az oo | 9 b2 F( 2b2)
fO 1[ — ] COS(T( ) ( b2)

I'(Qb — 2bauy)T(Qb — 2bay + b*)I'(2Qb — 2ba)T(2baa)
L(2Qb — bagsa)T(Qb — ba3, )T(Qb — ba3, )T (basy)

(C.16)
foo[ 2272 ] = I'(—Qb + 2bay — b*)T'(2Qb — 2bars)
00las —b [(—b2)[(2bag)T(1 — 2bas)
osin[mb(ae — ag + ay)] sin[mb(—Q + a2 + ag + )]
. {1 2 cosmb sin[2mbas] sin[2wbay] } ’

where the notation afj = a; +aj — oy, was used. From the above fusion
matrices one can derive the 't Hooft—Wilson loop intertwining relation.

Appendix D. The kernel for the S-move

We here describe in more detail our derivation of formula (6.30) for the
kernel representing the S-move. As outlined in the main text, we are using
the following strategy:
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e Definition ([7.21)) defines operators B, F, Z and S within the quantum
Teichmiiller theory which satisfy operatorial versions of the Moore-
Seiberg consistency conditions [T05].

e The direct calculation of the kernel of the operator S presented in
Subsection [D.1] below shows that this operator is represented by a
kernel which depends meromorphically on its arguments.

e It was explained in Subsection [8.5]that this allows us to use the Moore-
Seiberg equation

ﬁl 1 _1 2 1
(D.1) Sﬁlﬁz(ﬁs)/sdﬁéx Fg g, a2 Ts, Tg, Fa,p. 152 5]

1y L Qs i(Aay +A0, —Apg
- /SdﬂG Fﬁ%ﬁs [gl gz ]Fﬁlﬁs [gs gs ]SBGBZ (/65) 67”( - ) )

to derive a formula for Sg, g, (3;) in terms of the kernel for F. More
details are given in Subsection below.

e The integrals in the resulting formula for Sg, 3, (5;) will be calculated
explicitly in Subsection leading to our formula (6.30)).

A faster way to find the formula would be to use the intertwining
property to derive an difference equation for the kernel Sg, g, ().
The problem would then be to show that the resulting formula solves the
Moore-Seiberg equations. This is manifest in our approach.

D.1. Calculation using Teichmiiller theory

We shall work within the representation for quantum Teichmiiller theory
associated to the fat graph drawn in Figure The representation asso-
ciated to the annulus A in Figure is taken to be the one defined in
Subsection [7.4l

For the following it will suffice to work in a reduced representation
defined by setting the constraint z to zero. The length operator L is then
defined by using . In order to define the operator Ly representing the
length of the hole of C1; we may use formula . The length operator
L; has to be calculated using by finding a fat graph (g which allows
one to use the definition . The resulting formulae for the relevant length
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° °
Vo
AS
°

Figure D1: Fat graph on a one-holed torus Cj 1, represented as rectangle
with opposite sides identified. The hole sits at the corners of the rectangle.
The annulus As (grey) contains the geodesic 75 defining a pants decompo-
sition of C 1.

operators are

(D.2) Ly = 2 cosh 2mbp, + €279 |

(D.3) L; = 2cosh 27bp; + e2mbar 4 o—2mbao omb(q:—py) ,

D4 Lo = 2 cosh 2mbpg + 2 cosh(mbpg)Lge2™0% 4 ¢=4mbdo
( P P

In the expression for Ly we have been using the notations

(D.5) pr:=13(4s—Ps—Po),  Ge:=—2(3ps+as+po).

Let us consider eigenstates |a,m)s and |a,m); to the pairs of mutually
commuting operators (Ls,Lg) and (L, L), respectively

(D.6)
Ls|a,m)s = 2cosh2rwba|a,m)s, Lo|a,m)s = 2cosh2mbm|a,m)s,
L¢|a,m )y = 2cosh27wba | a,m )y, Lo |a,m); = 2cosh2mbm |a,m ).

We shall work in a representation where the operators ps and qg are diagonal.
States are represented by wave-functions ¢, ,,(ps, qo) = (ps,qo | @, m )s and
Ot (Ps,q0) == (ps, qo | a,m ).

These wave-functions are related by an integral transformation of the
form

(D.7) ¢Zt7m(p57 Q) = /das Sa,a, (M) ¢Zs,m(p57 ) -

In order to simplify the calculation it helps to consider the limit gy — oo.
Note that Ly can be approximately be represented by 2 cosh 27wbpg in this
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limit. Both ¢; ,,,(ps, qo) and ¢}, ,,(ps, go) can be normalized to have a leading
asymptotic behavior for gy — oo of the form

(D.8) G (Ps,q0) ~ (77° 4 Ry e Ty (py)

(D.9) B (Pes @0) ~ (€279 + Ry 72T ) (py)

where 18 (ps) and ! (p;) must be eigenfunctions of the operators L, and L}
obtained from Lg and L; by sending gy — oo and considering a representa-
tions of (ps,qs) on functions ¥ (ps) of a single variable on which ps acts as
multiplication operator. Equation implies

(D.10) qammz/mwmwm%m@»

The calculation of the kernel S,,q, (m) is now straightforward. Recall
that a complete set of orthonormalized eigenfunction of Ly is given by the
functions defined in ((7.13)). Note furthermore that

(D.11) L, = 2 cosh 27bp; 4 €™ .

The eigenfunctions of L) in a representation in which p; is diagonal are
therefore obtained from ([7.13)) by obvious substitutions. We finally need
that (ps|p;) = em@Hpi) Amipapeg=2mim(p+pe)  The kernel representing the

modular transformation S is then given as

(D.12) Sa.a,(mo) = (as|ar)
=/mmwmmmmwmm

|ty - s e 0
® sp(as + ps — cp +10)

. / dpy e™iP—2m)p: sp(ar +pr + ¢ — ?0)e4wipspt'
sp(ar — pr — cp +0)

It is easy to see that S, 4, (M) is meromorphic in mg, as and a;.
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D.2. Solving the Moore-Seiberg relations for the S-kernel

We now want to explain how to derive the formula

(D13)  Fa[5:5:185.5.(a)
= S, [ dB, emiBAN A B0, 00 By (BT B
for Sgl 3, () from Equation . As explained in the main text, we mainly
need the identity
(D.14) ImF:, [¢8] =d(as—ar).

€, €
E\LO s&3 1

Setting ar; = a9 and taking f1 =€, 3 = €, € — 0 using yields .

One might be tempted to take 81 — 0 first. This turns out not to be
straightforward, as the convergence of the integrals in (D.1]) would then be
lost. Doing this naively would seem to lead to an equation similar to ,
but with Séﬁl replaced by N(L)ﬂz = limg, o S,g’l 8. which is not the same as
Sog, = lime 0S¢ 5 (€). The fact that Sps # 5562 can be verified explicitly
using Equations (D.34c)), (D.34d) below.

It remains to prove . In order to do this, we will show that

(D.15) Fio lear] =Fba, [car] +0(e),

€05 L€ ay € a;

and use the remarkable identity [T08| [Sal

(D.16) L [azal] _ 1 Z(O) Z(as)

Oas la,a,] — %Z(O&z)Z(al)C(Q - asaa27a1) )

proven below. The function C(ag, a2, a1) was defined in (8.3)), and Z(«) is
explicitly given as

_ ()59 2m(Q — 2q)
(D.17) 2 = A5 0(Q = 20) T+ b-1(Q — 20))

The normalization factor Z(«) is closely related to the Liouville one-point
function on the unit disc [ZZ01]. Note furthermore that [T01, Section 4.4]

(D.18) lim C(Q — as,a2,a1) =270 (ag — 1) .

az—0

The identity (D.14) follows from the combination of (D.16]) and (D.18).



118 J. Teschner and G. S. Vartanov

For the calculations necessary to prove (D.15)) and (D.16|) we will find it
convenient to use a further gauge transformation defined by writing

(D.19) Uata, = N(az, az,a1)wala, ,

with N(as, g, 1) being defined in (8.19)). The kernels representing the
F- and S-moves in the corresponding representation will be denoted as
Frr, [a @] and Shrs, (o), respectively. We have

a87a27a1 N(O[4,0é3,0[s)

L a3 g ( )
(D.20) E [ ] (o, a3, a2) N (o, o,y )
( )
( )

QsQy | Og O

Qa3 Q2
Qg Oét Qg4 O Y

1aa0761 ST ( )

D.21 S% ag) =
( ) BIBZ( O) 2)050’62 1'32

2222

The kernel FJT, [gi o’ ] can be expressed using the formula first derived in
in [PT2[?]

(D22)  F7, [4 6]

_ Sb(OéQ + as — al)Sb(at + oy — )
Sp(az + ap — az)Sp(as + az — aq)

X /Cdu Sp(—ag £ (a1 — Q/2) + u)Sp(—au £ (a3 — Q/2) + u)
X Splag +ou £ (o — Q/2) — u)Sp(Q £ (as — Q/2) —u).

|Ss(204)|

The following notation has been used Sp(a + u) := Sp(a + u)Sp(aw — u). The
integral in will be defined for ay, € /2 + iR by using a contour C that
approaches @ + iR near infinity, and passes the real axis in (Q/2,Q), and
for other values of «y by analytic continuation. The equivalence between
the two different integral representations of the b-6j symbols was proven
in [TeVal using methods from [DSV].

Using the the representation and the integral identity it
becomes easy to find that
(D.23)

FPT [azal} _ |Sb(20é )‘2

eas la, o,

Sp(a +ag +az — Q)
(ag + a3 — al)Sb(Zal)

(Sp(€))*(1 + O(e)),

from which Equation (D.15]) and identity (D.16]) follow straightforwardly.

12The formula below coincides with Equation (228) in [T0I] after shifting s —
u—as—Q/2.
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D.3. Evaluating the integral

We start from Equation (D.13). Considering the right hand side, let us

represent Fngﬂs [gi gi] as

(D.24) Fs (520 = lim Fjp, [5:5:] -

One may then represent the right hand side of (D.13]) as the limit 6 — 0 of
an expression proportional to the following integral:

I_C/ Sy(£2(% = 7))
‘/dw b(—B1 £ (Q—ﬁ1)+:r:)Sb( Q+fBat (L —B) +2)
Sp(§ + 6 +2)Sp(— 2 +2)Sp(B — Br £ (£ — ) +2)

% /d (_Bl (2 BQ) + y)Sb( Q + ﬁZ (i _ 61) + y)
Y
Sp( (Q =) +y)S(B2 — 1 £ (* —ap) +y)

(D.25)

)

where

Q2 _ . _ Sp(—Q + ap + 2/2)
C ~ e ;2 7T1(2A32+2Aﬁ1 Aao) b S 5 .
Sp(—Q + 262) Sy (o) b0)

We use the notation ~ to indicate equality up to terms that are less singular
when § — 0. The divergent factor Sp(6) will be cancelled by zeros in the
prefactors, see , so that we only need to consider the leading singular
behavior of the integral I when § — 0.

Simplifying the above expression one gets

2 g
1= | So=2( 7))
‘/deb( — 281+ 2)Sp(—§ +2)S(—3Q + 262 + x)
Sp(8 +x+ 5)Sb(ﬁ2 —Bi+(§ ) +x)

x/d So(~B1% (% B) +)S(-Q+ L= (§ —B)+y)
y .
Sp(E($ =) +1)Su(B2 — 1 £ (§ — a0) + 1)

(D.26)
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We may take the integral over the variable = in (D.26|) using identity (B.17))
and get

ico e—zm(%—w

D 62— Byt 1 £ (S — 7))

I~ Cl —Q
—ioo Sb(i2(* - ’Y))
(D.27) /d Sb —Ba) +y)Sp(—Q + Pa £ (£ — B1) + y)’
5 — ’Y) +4)Sp(B2 — B+ ($ — ag) + )
where

C1 = CSp(Q — 261)Sp(—Q + 262) Sp(—9).

Next we take the integral over ~ using identity (B.18) with taking vp =
Q—pP2+ 61+ (— — ap) (and then apply change of varlables y— —y)

I:CQ/_ dy Sp($ — 81— B2 — y)
Sp(—=G + B — Br —y)SH(—3Q + 1 + B2 — y)
(D.28) x Sp(Q — B2+ B £ (% — ap) +y)emV )

where

C2 ~ 6*%7"1(%4#32*51)2e%ﬂ'iQ(%Q*%Jr[%)Cl'

As a final step we use 1D taking vo = Q — B2 + 1 + (% — ),

1[0 S+ (2-B)+(2—B)ty) ..
b2 I~ 9 d 2 2 2 2miy® g
(D.29) Cs5 /_ W 52 . y
with
Cs ~ Cge mi(B1— Bz)ze—éﬂiQ(%+%)

: Sb(QQ — 2f2 — @) Sp(Q — ) Sp(281 — ) -

We also need FT [ ! ,81 ] for € — 0. Formula (D.23)) gives

€EQ

9 Sp(Q —2B1)Sp(—Q + 251 + ap)
Sp(0) ‘

(D.30)  FEE [0 0] = (Sele))
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By assembling the pieces we come to the following relation

S, (a0) = Som L aO);?:((jg — 261~ o)

.e?m(ﬁl—%)ze%ri(ﬁz—%)z€—7ri(o¢0 22 ap)
X/Sb(Q—Bl —Po+ G EyY)Sp(—Q+ f1+ P+ F £ y)
Sp(£2y)
(D.31) e dy x Syp(Br— Po+ L £ y)Sp(—B1+ B+ L Ey).

It remains to apply the following formula [SV11],

(D.32) / b SQA =t m/2E2) e

Sy (3Q/4 — ji—m/2 £ 2)

= T 5,(Qf2 — m o+ 2¢)

/ gy SEFFEnEEEY) oy
iR Sb(:l:2y> ’

which had been used in this form in [SV11], in order to get the desired result,

™A n .
PT pp €270 - A S(5(26, +ap — Q) + it
S51s.(00) = S, g s /R it 226 -Q) (i( 0— Q) +it)

ap) Sp(5(28. — ao + Q) +it)
. (%(252 + ag — Q) - Z.75)
(D-33) (128 —a0t Q) —it)

This is equivalent to formula (6.30)), taking into account (D.21]).

D.4. Properties of Sg, 3, (o)

In order to derive the key properties of Sg, g, (o) let us define the integral

Iﬂlﬂz . /dt e27rt(261
'Sb(%(2ﬁz+a0_Q)+i) b(
Sp(5(28, — ag + Q) +it) S (

(28, 4+ a0 — Q) — it)
(28, — a0 + Q) —it)

1
2
1
2
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Igl“ 5, has the following properties:

(D.34a) Ig%, = 155",
o7y _ rQp o
(D.34b) I3} 5. =15, g5, =10 5. 5. -
1
D.34 li 9 281 — Q)(28y —
( c) e%l 5.8, = Mﬁl cos(m(261 — Q) (262 — Q)),
M
D.34d miI¢% =1, limI9 ‘=22
( ) i 155 im [ My

recalling that Mg = [S,(28)|> = —4sin(7b(28 — Q)) sin(7b~1(28 — Q)).
Identity follows easily from Equation (A.31) in [BT2]. is
an easy consequence of the symmetry properties of the integrand under
t =— —t and .

In order to derive note that the zero of the prefactor in the
definition of I ’g, Is canceled by a pole of the integral. This pole results from
the fact that the contour of integration gets pinched between the poles at
it = 2(252 + ap — Q) in the limit oy — 0. The residue may be evaluated
by deforming the contour into the sum of two small circles around it =
:I:%(Qﬂ2 — @) + ap plus some residual contour that does not get pinched
when ag — 0.

In order to prove @ , one may first use (D.34a)), and then similar
arguments as used to prove @

Appendix E. Asymptotics of the generating function W
E.1. Monodromy on nodal surfaces

We need to calculate the monodromy of the oper 85 + t(y) on the nodal
surface representing the boundary component of 7 (C) corresponding to an
pants decomposition o. We will need the result to leading order in the gluing
parameters ¢,. Using the gluing construction one may represent the nodal
surface as union of punctured spheres and long thin cylinders. Parallel trans-
port along a closed curve ~ breaks up into a sequence My, ..., My of moves
which represent either the transition Fj; from puncture i to puncture j of a
three-punctured sphere, the braiding B; of puncture i on a three-punctured
sphere with the additional puncture at y, or the propagation 7, along the
long thin tube containing the edge e of I',;. To each moves My, let us associate
a 2x2 matrix my according to the following rules:
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e Moves Fj;:

are represented by the matrix f* with elements

(Ela) 2{52 = fslSQ(lk;ljali)a
where

T(1 + s 44 )Dp(—is242)

E.1b Forso(l3il2, ) = i |
( ) L (I3;l2, 1) H53=ir(% + 7(81l1 — sala + 3313))

e Moves B;:

are represented by the matrix b* with elements
(E.1c) b, =6,,e2 °7.

e Moves T,:

are represented by the matrix ¢ with elements

(E.1d) 18, = 0, qFe/Am
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If the curve -y is decribed as the composition of segments My o My o --- 0 My,
the trace function L. is calculated as

where my are the 2 x 2-matrices representing the moves along the seg-
ments M.

It is easy to see that the rules above are nothing but the limit b — 0 of
the rules defining the Verlinde loop operators from conformal field theory
[AGGTV], IDGOT]. This is of course no accident. The comparison of the
explicit expressions for Verlinde loop operators found in [AGGTV], DGOT]
with the expressions for the expressions quoted in Subsection shows that
the Verlinde loop operators coincide with the quantized trace coordinates,
the respective representations differing only by gauge transformations. A
more direct explanation of this fact will be given elsewhere.

E.2. Calculation of the constant term

We may therefore use the results of references [AGGTV,[DGOT]. This yields,
in particular, an expression for L; of the form

(E.3a) Ly =D (l)e™ + Dy (1) + D (1) e "o,
where ko = —ﬁl log(g), and the coefficients D4 (I) are explicitly given as

(D1 52D (E5:0)?
[T T3+ &0 +sh+s0)D(5 % b(l + sl + '14))
+

s,8'=

(cosh(l2/2) cosh(l3/2) + cosh(l1/2) cosh(ls/2))

D1(1) = (2r)*

Dy(l) =

coshl —1
4cf)(;ihl(l—/Ql)(cosh(h/?) cosh(l3/2) + cosh(l2/2) cosh(l4/2)) .

This should be compared to (2.20d)). In the degeneration limit we may
use ((10.13)) to represent the leading behavior of k in the form

(E.4) k= 47ri§lW(l, q) = ko + 47Ti§lW0(l) +0(q).

It follows that we must have

(E.5) log D (1) = log~/c12(Ls)caa(Ls) £ 47TiaalW0(l) :

This is a differential equation for Wy(l), solved by ({10.18]). O
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Appendix F. Projectively flat connections

For the reader’s convenience we will collect here some generalities on connec-
tions on bundles of projective spaces and projective line bundles. We follow
in parts the discussions in [ES, [Fe].

F.1. Connections on bundles of projective spaces

Given a holomorphic vector bundle £ over a complex manifold X, let P(£) be
its projectivization, the bundle of projective spaces with fiber at x € X being
the projectivization P(&;) of the fiber &, of £. A connection on P(€) is an
equivalence class of locally defined connections V, on &J,, where {U,;2 € T}
is a covering of X, subject to the condition that a,, := V, — V, is a scalar
holomorphic one-form on the overlaps U,, = U, NU,. Two such families of
connections are identified in V, — V! is a scalar holomorphic one-form for
all e 7.

The curvature F, = V2 is a two-form with values in End(€) that satisfies
F, — F, = da,, on overlaps U,,. A connection is (projectively) flat if F, is a
scalar, i.e. proportional to the identity in all patches U,. As the curvature
F, of a flat connection is locally exact, we may always choose a represen-
tative V, for the equivalence class such that F;, =0 in U,. Alternatively
one may trivialize the scalar one-forms a,, := V, — V, by choosing smooth
scalar one-forms ¢, such that a,; = ¢, — ¢,, and considering V) := V, + ¢, as
the preferred representative for a given equivalence class. The connection V/
is globally defined, but it has non-trivial scalar curvature.

The representation in terms of locally defined flat connections, is some-
times referred to as the Cech point of view. This point of view will make it
clear that the deviation from being a vector bundle with an ordinary flat
connection is controlled by a projective holomorphic line bundle. Such a line
bundle L is defined by transitions functions f,, defined on overlaps U,, that
satisfy

flglz Jro, = Ous1,1, fl;zl )

on the triple overlaps U,,,,,, =U,, NU,, "U,,. The 1-cochain f,, 2,7 € T,
defines a class in H2(Q°). The collection of f,, will be called a section of L.
Being one level higher in the Cech-degree than in the case of ordinary line
bundles makes it seem natural to identify sections with 1-cochains rather
than 0-cochains in the rest of this appendix.

Having a projectively flat vector bundle one gets a projective line bundle

by setting f,, = e2™9  where the [,y are any solutions of dg,, = ﬁa”. The
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collection of one-forms a,, defines a Cech-cohomology class in H'(Q'), which
corresponds to a globally defined (1, 1)-form @ by the Cech-Dolbeault iso-
morphism. This (1, 1)-form represents the first Chern class of the projective
line bundle defined by the transition functions f,.

F.2. Projective local systems

Recall the natural correspondence between

(i) vector bundles V with flat connections V,
(ii) local systems — vector bundles with constant transition functions,

(iii) representations of the fundamental group p : 71 (X) — End(V) modulo
overall conjugation.

Indeed, any flat connection V in a vector bundle V may be trivialized locally
in the patches U, by means of gauge transformations. This defines a system
of preferred trivializations for V with constant transition functions. Parallel
transport w.r.t. to V defines a representation of the fundamental group.
Conversely, given a representation of the fundamental group one gets a local
system as (X,V)/ ~, where X is the universal cover of X, and ~ is the
equivalence relation

(F.1)  (Z,0) ~ (9@, p(Y)v), Y(Z,v) € (X,V), Vyem(X).

This vector bundle has a canonical flat connection — the trivial one.
Parallel transport w.r.t. a projectively flat connection defines projective

representations of the fundamental group 7;(X), a map p: m(X), which

assigns to each element « of 7(X) an operator p(v) € End(E) such that

(F.2) p(n) - p(y2) = €TX) (0 ).

The notation anticipates that we will ultimately be interested in unitary
connections leading to unitary representations of the fundamental group.
It is easy to see that there are equally natural correspondences between

(i) projective vector bundles P(V) with projectively flat connections V,

(ii) projective local systems — projective vector bundles with constant tran-
sition functions,

(iii) projective representations of the fundamental group p: 7 (X) —
End(V).
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One needs, in particular, to replace the vector space V in the equivalence
relation (F.1)) by its projectivization. The resulting equivalence relation
makes perfect sense thanks to (F.2]).

F.3. Riemann-Hilbert type problems

It directly follows from the definition of a projectively flat vector bundle that
an ordinary vector bundle can be obtained by tensoring with a projective
line bundle. This makes clear how to formulate a suitable generalization
of the Riemann-Hilbert correspondence in case of projectively flat vector
bundles. We need two pieces of data:

(a) a projective representation of the fundamental group p:m(X) —
End(V), and:

(b) a holomorphic section of the projective line bundle canonically associ-
ated to p.

We may then ask for V-valued holomorphic functions F(Z) on X that satisfy

(F.3) F(yz) = () (p(v) F)(Z),

where the functions f,(Z) represent the holomorphic section of the projective
line bundle P, associated to p.

There is of course an inevitable ambiguity in the solution of this general-
ized Riemann Hilbert problem, represented by the choice of a section of the
projective line bundle P,. This is closely related to the issue called scheme
dependence in the main text. A natural point of view is to consider classes
of solutions to the generalized Riemann-Hilbert problem which differ by the
choice of a section of P,. In our concrete application we will be able to do
slightly better by identifying natural choices for the sections of P,.
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