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We will propose a derivation of the correspondence between cer-
tain gauge theories with N = 2 supersymmetry and conformal field
theory discovered by Alday, Gaiotto and Tachikawa in the spirit
of Seiberg-Witten theory. Based on certain results from the liter-
ature we argue that the quantum theory of the moduli spaces of
flat SL(2,R)-connections represents a non-perturbative “skeleton”
of the gauge theory, protected by supersymmetry. It follows that
instanton partition functions can be characterized as solutions to
a Riemann-Hilbert type problem. In order to solve it, we describe
the quantization of the moduli spaces of flat connections explicitly
in terms of two natural sets of Darboux coordinates. The kernel
describing the relation between the two pictures represents the
solution to the Riemann Hilbert problem, and is naturally identi-
fied with the Liouville conformal blocks.
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1. Introduction

This work is motivated by the discovery [AGT] of remarkable relations
between certain N = 2 supersymmetric gauge theories and conformal field
theories. The defining data for the relevant class of gauge theories, nowadays
often called class S, can be encoded in certain geometrical structures asso-
ciated to Riemann surfaces C of genus g with n punctures [G09]. We will
restrict attention to the case where the gauge group is [SU(2)]3g−3+n, for
which the corresponding conformal field theory is the Liouville theory. The
gauge theory corresponding to a Riemann surface C will be denoted GC .

The authors of [AGT] discovered relations between the instanton par-
tition functions Z inst(a,m, τ, ε1, ε2) defined in [N]1 for some gauge theories
GC of class S on the one hand, and the conformal blocks [BPZ] of the Liou-
ville conformal field theory [T01] on the other hand. Using this observation
one may furthermore use the variant of the localization technique developed
in [Pe] to find relations between expectation values of Wilson loops in GC
and certain Liouville correlation functions on C. The results of [Pe, AGT]
were further developed and generalized in particular in [GOP, HH], and the
results of [AFLT] prove the validity of these relations for the cases where
the Riemann surface C has genus zero or one, and arbitrary number of
punctures.

This correspondence can be used as a powerful tool for the study of non-
perturbative effects in N=2 gauge theories. As an example let us note that
techniques from the study of Liouville theory [T01] can be used to effectively
resum the instanton expansions, leading to highly nontrivial quantitative
checks of the strong-weak coupling conjectures formulated in [G09] for gauge
theories of class S. However, gaining a deeper understanding of the origin
of the relations between N=2 gauge theories and conformal field theories
discovered in [AGT] seems highly desirable.

We will propose a derivation of the relations discovered in [AGT] based
on certain physically motivated assumptions. We will in particular make the
following assumptions:

1Based in parts on earlier work [MNS1, MNS2, LNS] in this direction.
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Supersymmetric gauge theories 7

• The instanton partition functions Z inst(a,m, τ, ε1, ε2) are holomorphic
in the UV gauge couplings τ , and can be analytically continued over
the gauge theory coupling constant space. Singularities are in one-to-
one correspondence with weakly-coupled Lagrangian descriptions of
GC .

• Electric-magnetic duality exchanges Wilson- and ’t Hooft loops.

Our approach works for all g and n. One may observe an analogy with the
reasoning used by Seiberg and Witten in their derivations of the prepoten-
tials for certain examples of gauge theories from this class [SW1, SW2]. This
is not completely surprising, as the prepotential can be recovered from the
instanton partition functions Z inst(a,m, τ, ε1, ε2) in the limit ε1, ε2 → 0.

A basic observation underlying our approach is that the instanton par-
tition functions Z inst can be interpreted as certain wave-functions Ψτ (a)
representing states in subspacesH0 of the Hilbert spacesH defined by study-
ing GC on suitable four-manifolds. Indeed, the localization methods used in
[Pe, HH] show that the path integrals representing Wilson loop expecta-
tion values, for example, localize to the quantum mechanics of the scalar
zero modes of GC . The instanton partition functions represent certain wave-
functions in the zero mode quantum mechanics the path integral localizes
to.

Supersymmetric versions of the Wilson- and ’t Hooft loop operators
act naturally on the zero mode Hilbert space H0, generating a sub-algebra
Aε1,ε2 of the algebra of operators. A key information needed as input for our
approach is contained in the statement that the algebra Aε1,ε2 is isomorphic
to the quantized algebra of functions on the moduli space Mflat(C) of flat
SL(2,R)-connections on C. A derivation of this fact, applicable to all theo-
ries GC , was proposed in [NW]. It is strongly supported by the explicit calcu-
lations performed for certain theories from class S in [Pe, AGT, GOP, IOT].
A more direct way to understand why the algebra Aε1,ε2 is related to the
quantization of the moduli spaces Mflat(C) can propbably be based on the
work [GMN3] which relates the algebra of the loop operators to the quanti-
zation of the Darboux coordinates from [GMN1].

We view the algebra of supersymmetric loop operators Aε1ε2 and its
representation on H0 as a non-perturbative ”skeleton” of the gauge theory
GC which is protected by some unbroken supersymmetry. This structure
determines the low-energy physics of GC and its finite-size corrections on
certain supersymmetric backgrounds, as follows from the localization of the
path integral studied in [Pe, GOP, HH]
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The instanton partition functions Z inst(a,m, τ, ε1, ε2) may then be char-
acterized as wave-functions of joint eigenstates of the Wilson loop opera-
tors whose eigenvalues are given by the Coulomb branch parameters a. It
follows from our assumptions above that the instanton partition functions
Z inst

2 (a2,m, τ2, ε1, ε2) and Z inst
1 (a1,m, τ1, ε1, ε2) associated to two different

weakly-coupled Lagrangian descriptions must be related linearly as

Z inst
2 (a2,m, τ2, ε1, ε2)(1.1)

= f(m, τ2, ε1, ε2)

∫
da1 K(a2, a1;m; ε1, ε2)Z inst

1 (a1,m, τ1(τ2), ε1, ε2) .

The a2-independent prefactor f(m, τ2, ε1, ε2) describes a possible change of
regularization scheme used in the definition of the instanton partition func-
tions. Knowing the relation between the algebra Aε1,ε2 and the quantum
theory ofMflat(C) will allow us to determine the kernels K(a2, a1;m; ε1, ε2)
in (1.1) explicitly. These are the main pieces of data needed for the formula-
tion of a generalized Riemann-Hilbert problem characterizing the instanton
partition functions.

The resulting mathematical problem is not of standard Riemann-Hilbert
type in two respects: One is, on the one hand, dealing with infinite dimen-
sional representations of the relevant monodromy groups, here the mapping
class groups of the Riemann surfaces C. We will, on the other hand, find
that the a2-independent prefactors f(m, τ2, ε1, ε2) in (1.1) can not be elim-
inated in general2. Their appearance is closely related to the fact that the
representation of the mapping class group of C described by the kernels
K(a2, a1;m; ε1, ε2) is found to be projective. Without prefactors f(m, τ2, ε1,
ε2) which, roughly speaking, cancel the projectiveness there could not exist
any solution to our generalized Riemann-Hilbert problem.

Working out the kernels K(a2, a1;m; ε1, ε2) is the content of Part II of
this paper, containing a detailed study of the quantum theory of the relevant
connected componentM0

flat(C) ofMflat(C). In Part III we describe how the
Riemann-Hilbert problem for Z inst(a,m, τ, ε1, ε2) is solved by Liouville the-
ory. We explain how Liouville theory is related to the quantum theory of
M0

flat(C), which is equivalent to the quantum theory of the Teichmüller
spaces T (C). The relation between Liouville theory and the quantization
of M0

flat(C), combined with the connection between instanton partition
functions Z inst(a,m, τ, ε1, ε2) and wave-functions in the quantum theory of

2This is the case for surfaces of higher genus. The prefactors could be eliminated
for the cases studied in [AGT], and some generalizations like the so-called linear
quiver theories.
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M0
flat(C) yields a way to derive the correspondence found in [AGT]. One

of the main technical problems addressed in Part III is the proper char-
acterization of the prefactors f(m, τ2, ε1, ε2) in (1.1) which are related to
the projective line bundle whose importance for conformal field theory was
emphasized by Friedan and Shenker [FS]. The results obtained in this paper
have interesting connections to the work of Nekrasov, Rosly and Shatashvili
[NRS] devoted to the case ε2 = 0.

There is an alternative approach towards proving the AGT-
correspondence, which relates the series expansion of Z inst(a,m, τ, ε1, ε2)
defined from the equivariant cohomology of instanton moduli spaces more
directly to the definition of the conformal blocks of Liouville theory obtained
from the representation theory of the Virasoro algebra. Important progress
has been made along these lines. A first proof of the AGT-correspondence
for a subset of gauge theories GC from class S was obtained in [AFLT] by
finding closed formulae for the coefficients appearing in the series expansions
of the Liouville conformal blocks that directly match the formulae known
for the expansion coefficients of Z inst(a,m, τ, ε1, ε2) from the instanton cal-
culus. An important step towards a more conceptual explanation was taken
by identifying the Virasoro algebra as a symmetry of the equivariant coho-
mology of the instanton moduli spaces [SchV, MO]. A physical approach to
these results was described in [Tan].

This approach may be seen as complementary to the one used in this
paper: It elucidates the mathematical structure of the perturbative expan-
sion of Z inst(a,m, τ, ε1, ε2) as defined from a given Lagrangian description
for GC . The arguments presented here relate the non-perturbative ”skeleton”
of GC to global objects on C instead.

The results in Parts II and III of this paper are of independent interest.
Part II describes the quantization of M0

flat(C) using the Darboux variables
which were recently used in a related context in [NRS].3 These results give an
alternative representation for the quantum theory of the Teichmüller spaces
which is based on pants decompositions instead of triangulations of C, as is
important for understanding the relation to Liouville theory. Our approach
is related to the one pioneered in [F97, CF1, Ka1] by a nontrivial unitary
transformation that we construct explicitly.

In Part III we extend the relation between quantization of the Teich-
müller spaces and Liouville theory found in [T03] for surfaces of genus 0 to
arbitrary genus. An important subtlety is to properly take into account the
projective line bundle over moduli space whose relevance for conformal field

3Partial results in this direction were previously obtained in [DG].
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theory was first emphasized in [FS]. This allows us to find the appropriate
way to cancel the central extension of the canonical connection on the space
of conformal blocks defined by the energy-momentum tensor. Doing this is
crucial for having a solution of the Riemann-Hilbert problem of our interest
at all.

The results of Part III also seem to be interesting from a purely math-
ematical perspective. They amount to an interpretation of conformal field
theory in terms of the harmonic analysis on the Teichmüller spaces, which
can be seen as symmetric spaces for the group Diff0(S1).

Our work realizes part of a larger picture outlined in [T10] relating the
quantization of the Hitchin moduli spaces, integrable models and conformal
field theory. In order to get a connection to supersymmetric gauge theories
extending the connections discussed here one needs to consider insertions of
surface operators on the gauge theory side. This is currently under investi-
gation [FGT].

Acknowledgements: We would like to thank T. Dimofte, S. Gukov,
R. Kashaev and S. Shatashvili for useful discussions on related topics.

2. Riemann surfaces: Some basic definitions and results

Let us introduce some basic definitions concerning Riemann surfaces that
will be used throughout the paper.

2.1. Complex analytic gluing construction

A convenient family of particular choices for coordinates on T (C) is pro-
duced from the complex-analytic gluing construction of Riemann surfaces C
from three punctured spheres [Ma, HV]. Let us briefly review this construc-
tion.

Let C be a (possibly disconnected) Riemann surface. Fix a complex
number q with |q| < 1, and pick two points Q1 and Q2 on C together with
coordinates zi(P ) in a neighborhood of Qi, i = 1, 2, such that zi(Qi) = 0,
and such that the discs Di,

Di := {Pi ∈ Ci ; |zi(Pi)| < |q|−
1

2 } ,

do not intersect. One may define the annuli Ai,

Ai := {Pi ∈ Ci ; |q|
1

2 < |zi(Pi)| < |q|−
1

2 } .
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To glue A1 to A2 let us identify two points P1 and P2 on A1 and A2, respec-
tively, iff the coordinates of these two points satisfy the equation

(2.1) z1(P1)z2(P2) = q .

If C is connected one creates an additional handle, and if C = C1 t C2 has
two connected components one gets a single connected component after
performing the gluing operation. In the limiting case where q = 0 one gets a
nodal surface which represents a component of the boundary ∂M(C) defined
by the Deligne-Mumford compactification M(C).

By iterating the gluing operation one may build any Riemann surface C
of genus g with n punctures from three-punctured spheres C0,3. Embedded
into C we naturally get a collection of annuli A1, . . . , Ah, where

(2.2) h := 3g − 3 + n ,

The construction above can be used to define an 3g − 3 + n-parametric fam-
ily or Riemann surfaces, parameterized by a collection q = (q1, . . . , qh) of
complex parameters. These parameters can be taken as complex-analytic
coordinates for a neighborhood of a component in the boundary ∂M(C)
with respect to its natural complex structure [Ma].

Conversely, assume given a Riemann surface C and a cut system, a
collection C = {γ1, . . . , γh} of homotopy classes of non-intersecting simple
closed curves on C. Cutting along all the curves in C produces a pants
decompostion, C \ C '

⊔
v C

v
0,3, where the Cv0,3 are three-holed spheres.

Having glued C from three-punctured spheres defines a distinguished
cut system, defined by a collection of simple closed curves C = {γ1, . . . , γh}
such that γr can be embedded into the annulus Ar for r = 1, . . . , h.

An important deformation of the complex structure of C is the Dehn-
twist: It corresponds to rotating one end of an annulus Ar by 2π before
regluing, and can be described by a change of the local coordinates used
in the gluing construction. The coordinate qr can not distinguish complex
structures related by a Dehn twist in Ar. It is often useful to replace the
coordinates qr by logarithmic coordinates τr such that qr = e2πiτr . This cor-
responds to replacing the gluing identification (2.1) by its logarithm. In
order to define the logarithms of the coordinates zi used in (2.1), one needs
to introduce branch cuts on the three-punctured spheres, an example being
depicted in Figure 1.

By imposing the requirement that the branch cuts chosen on each three-
punctured sphere glue to a connected three-valent graph Γ on C, one gets an
unambiguous definition of the coordinates τr. We see that the logarithmic
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3

12

Figure 1: A sphere with three punctures, and a choice of branch cuts for
the definition of the logarithms of local coordinates around the punctures.

versions of the gluing construction that define the coordinates τr are param-
eterized by the pair of data σ = (Cσ,Γσ), where Cσ is the cut system defined
by the gluing construction, and Γσ is the three-valent graph specifying the
choices of branch cuts. In order to have a handy terminology we will call
the pair of data σ = (Cσ,Γσ) a pants decomposition, and the three-valent
graph Γσ will be called the Moore-Seiberg graph, or MS-graph associated to
a pants decomposition σ.

The gluing construction depends on the choices of coordinates around
the punctures Qi. There exists an ample supply of choices for the coordinates
zi such that the union of the neighborhoods Uσ produces a cover of M(C)
[HV]. For a fixed choice of these coordinates one produces families of Rie-
mann surfaces fibred over the multi-discs Uσ with coordinates q. Changing
the coordinates zi around qi produces a family of Riemann surfaces which
is locally biholomorphic to the initial one [RS].

2.2. The Moore-Seiberg groupoid

Let us note [MS, BK] that any two different pants decompositions σ2, σ1

can be connected by a sequence of elementary moves localized in subsurfaces
of Cg,n of type C0,3, C0,4 and C1,1. These will be called the B, F , Z and
S-moves, respectively. Graphical representations for the elementary moves
B, Z, F , and S are given in Figures 2, 3, 4, and 5, respectively.

One may formalize the resulting structure by introducing a
two-dimensional CW complex M(C) with set of vertices M0(C) given by
the pants decompositions σ, and a set of edges M1(C) associated to the
elementary moves.
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Figure 2: The B-move
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Figure 3: The Z-move
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=⇒

3

4

2
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Figure 4: The F-move

The Moore-Seiberg groupoid is defined to be the path groupoid ofM(C).
It can be described in terms of generators and relations, the generators being
associated with the edges of M(C), and the relations associated with the
faces ofM(C). The classification of the relations was first presented in [MS],
and rigorous mathematical proofs have been presented in [FG, BK]. The
relations are all represented by sequences of moves localized in subsurfaces
Cg,n with genus g = 0 and n = 3, 4, 5 punctures, as well as g = 1, n = 1, 2.
Graphical representations of the relations can be found in [MS, FG, BK].
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0

s

=⇒

0

t

Figure 5: The S-move

2.3. Hyperbolic metrics vs. flat connections

The classical uniformization theorem ensures existence and uniqueness of a
hyperbolic metric, a metric of constant negative curvature, on a Riemann
surface C. In a local chart with complex analytic coordinates y one may
represent this metric in the form ds2 = e2ϕdydȳ, with ϕ being a solution to
the Liouville equation ∂∂̄ϕ = µe2ϕdydȳ.

There is a well-known relation between the Teichmüller space T (C) and
a connected component of the moduli space Mflat(C) of flat PSL(2,R)-
connections on C. The relevant component will be denoted as M0

flat(C).
The relation between T (C) and M0

flat(C) may be desrcribed as follows.
To a hyperbolic metric ds2 = e2ϕdydȳ let us associate the connection

∇ = ∇′ +∇′′, and

(2.3) ∇′′ = ∂̄ , ∇′ = ∂ +M(y)dy , M(y) =

(
0 −t
1 0

)
,

with t constructed from ϕ(y, ȳ) as

(2.4) t := −(∂yϕ)2 + ∂2
yϕ .

This connection is flat since ∂y∂̄ȳϕ = µe2ϕ implies ∂̄t = 0. The form (2.3) of
∇ is preserved by changes of local coordinates if t = t(y) transforms as

(2.5) t(y) 7→ (y′(w))2t(y(w)) +
1

2
{y, w} ,

where the Schwarzian derivative {y, w} is defined as

(2.6) {y, w} ≡
(
y′′

y′

)′
− 1

2

(
y′′

y′

)2

.
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Equation (2.5) is the transformation law characteristic for projective con-
nections, which are also called sl2-opers, or opers for short.

The hyperbolic metric ds2 = e2ϕdydȳ can be constructed from the solu-
tions to ∇s = 0 which implies that the component χ of s = (η, χ) solves a
second order differential equation of the form

(2.7) (∂2
y + t(y))χ = 0 .

Picking two linearly independent solutions χ± of (2.7) with χ′+χ− − χ′−χ+ =
1 allows us to represent e2ϕ as e2ϕ = −(χ+χ̄− − χ−χ̄+)−2. The hyperbolic
metric ds2 = e2ϕdydȳ may now be written in terms of the quotient A(y) :=
χ+/χ− as

(2.8) ds2 = e2ϕdydȳ =
∂A∂̄Ā

(Im(A))2
.

It follows that A(y) represents a conformal mapping from C to a domain Ω
in the upper half plane U with its standard constant curvature metric. C is
therefore conformal to U/Γ, where the Fuchsian group Γ is the monodromy
group of the connection ∇.

2.4. Hyperbolic pants decomposition and
Fenchel-Nielsen coordinates

Let us consider hyperbolic surfaces C of genus g with n holes. We will assume
that the holes are represented by geodesics in the hyperbolic metric. A pants
decomposition of a hyperbolic surface C is defined, as before, by a cut system
which in this context may be represented by a collection C = {γ1, . . . , γh} of
non-intersecting simple closed geodesics on C. The complement C \ C is a
disjoint union

⊔
v C

v
0,3 of three-holed spheres (trinions). One may reconstruct

C from the resulting collection of trinions by pairwise gluing of boundary
components.

For given lengths of the three boundary geodesics there is a unique hyper-
bolic metric on each trinion Cv0,3. Introducing a numbering of the boundary
geodesics γi(v), i = 1, 2, 3, one gets three distinguished geodesic arcs γij(v),
i, j = 1, 2, 3 which connect the boundary components pairwise. Up to homo-
topy there are exactly two tri-valent graphs Γv± on Cv0,3 that do not intersect
any γij(v). We may assume that these graphs glue to two connected graphs
Γ± on C. The pair of data σ = (Cσ,Γσ), where Γσ is one of the MS graphs Γ±
associated to a hyperbolic pants decomposition, can be used to distinguish
different pants decompositions in hyperbolic geometry.
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The data σ = (Cσ,Γσ) can also be used to define the classical Fenchel-
Nielsen coordinates for T (C) as follows. Note that the edges e of Γσ are in
one-to-one correspondence with the curves γe in Cσ. To each edge e let us
first associate the length le of the geodesic γe.

In order to define the Fenchel-Nielsen twist variables we need to consider
two basic cases: Either a given γe ∈ C separates two different trinions Cv10,3

and Cv20,3, or it is the result of the identification of two boundary components
of a single trinion. In order to fix a precise prescription in the first case let us
assume that C and the edge e are oriented. One may then define a numbering
of the boundary components of the four-holed sphere Cv120,4 obtained by gluing
Cv10,3 and Cv20,3: Number 1 is assigned to the boundary component intersecting
the next edge of Γσ on the right of the tail of the edge e, number 4 to the
boundary component intersecting the next edge of Γσ to the left of the tip of
e. There are geodesic arcs γ4e(v2) and γ1e(v1) on Cv10,3 and Cv20,3 that intersect
γe in points P1, and P2, respectively. This set-up is drawn in Figure 6.

P
2

P
1

1

23

4

e

Figure 6: A four-holed sphere with MS graph (blue) and the geodesics used
in the definition of the Fenchel-Nielsen coordinates (red).

The twist variable ke is then defined to be the geodesic distance between
P1 and P2, and the twist angle θe = 2πke/le. The second case (gluing of two
holes in one trinion gives sub-surface Ce of type C1,1) is treated similarly.

We see that the role of the MS-graph Γσ is to distinguish pants decom-
positions related by Dehn-twists, corresponding to θe → θe + 2π.

2.5. Trace coordinates

Given a flat SL(2,C)-connection ∇ = d−A, one may define its holonomy
ρ(γ) along a closed loop γ as ρ(γ) = P exp(

∫
γ A). The assignment γ 7→ ρ(γ)

defines a representation of π1(C) in SL(2,C), defining a point in the so-called
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Supersymmetric gauge theories 17

character variety

(2.9) MC
char(C) := Hom(π1(C),PSL(2,C))/PSL(2,C) .

The Fuchsian groups Γ represent a connected componentMR,0
char(C) ' T (C)

in the real character variety

(2.10) MR
char(C) := Hom(π1(C),PSL(2,R))/PSL(2,R) .

which will be of main interest here.MR
char(C) is naturally identified with the

moduli space Mflat(C) of flat PSL(2,R) connections on C, and MR,0
char(C)

represents the so-called Teichmüller component M0
flat(C) within Mflat(C).

2.5.1. Topological classification of closed loops. With the help of
pants decompositions one may conveniently classify all non-selfintersecting
closed loops on C up to homotopy. To a loop γ let us associate the collection
of integers (re, se) associated to all edges e of Γσ which are defined as follows.
Recall that there is a unique curve γe ∈ Cσ that intersects a given edge e on
Γσ exactly once, and which does not intersect any other edge. The integer re
is defined as the number of intersections between γ and the curve γe. Having
chosen an orientation for the edge er we will define se to be the intersection
index between e and γ.

Dehn’s theorem (see [DMO] for a nice discussion) ensures that the curve
γ is up to homotopy uniquely classified by the collection of integers (r, s),
subject to the restrictions

(2.11)

(i) re ≥ 0 ,

(ii) if re = 0 ⇒ se ≥ 0 ,

(iii) re1 + re2 + re3 ∈ 2Z whenever γe1 , γe2 , γe3 bound the

same trinion.

We will use the notation γ(r,s) for the geodesic which has parameters (r, s) :
e 7→ (re, se).

2.5.2. Trace functions. The trace functions

(2.12) Lγ := νγtr(ρ(γ)) ,

represent useful coordinate functions forMC
char(C). The signs νγ ∈ {+1,−1}

in the definition (2.12) will be specified shortly. Real values of the trace
functions Lγ characterize MR

char(C).
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18 J. Teschner and G. S. Vartanov

If the representation ρ is the one coming from the uniformization of C,
it is an elementary exercise in hyperbolic geometry to show that the length
lγ of the geodesic γ is related to Lγ by

(2.13) |Lγ | = 2 cosh(lγ/2) .

Representing the points in MR,0
char(C) by representations ρ : π1(C)→ SL(2,

R), we will always choose the sign νγ in (2.12) such that Lγ = 2 cosh(lγ/2).
We may then analytically continue the trace functions Lγ defined thereby

to coordinates on the natural complexification MC,0
char(C) ⊂MC

char(C) of

MR,0
char(C). The representations ρ : π1(C)→ PSL(2,C) that are parameter-

ized by MC,0
char(C) are called quasi-Fuchsian. It is going to be important for

us to have coordinates Lγ that are complex analytic on MC,0
char(C) on the

one hand, but positive (and larger than two) when restricted to the real slice
MR,0

char(C) on the other hand.

2.5.3. Skein algebra. The well-known relation tr(g)tr(h) = tr(gh) +
tr(gh−1) valid for any pair of SL(2)-matrices g, h implies that the geodesic
length functions satisfy the so-called skein relations,

(2.14) Lγ1Lγ2 = LS(γ1,γ2) ,

where S(γ1, γ2) is the loop obtained from γ1, γ2 by means of the smoothing
operation, defined as follows. The application of S to a single intersection
point of γ1, γ2 is depicted in Figure 7 below. The general result is obtained

L
2

L
1

= +S

Figure 7: The symmetric smoothing operation

by applying this rule at each intersection point, and summing the results.
The coordinate functions Lγ generate the commutative algebra A(C) '

Funalg(Mflat(C)) of functions on Mflat(C). As set of generators one may
take the functions L(r,s) ≡ Lγ(r,s) . The skein relations imply various relations
among the L(r,s). It is not hard to see that these relations allow one to express
arbitrary L(r,s) in terms of a finite subset of the set of L(r,s).
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Supersymmetric gauge theories 19

2.5.4. Generators and relations. The pants decompositions allow us to
describe A(C) in terms of generators and relations. Let us note that to each
internal4 edge e of the MS-graph Γσ of σ there corresponds a unique curve
γe in the cut system Cσ. There is a unique subsurface Ce ↪→ C isomorphic
to either C0,4 or C1,1 that contains γe in the interior of Ce. The subsurface
Ce has boundary components labeled by numbers 1, 2, 3, 4 according to the
convention introduced in Subsection 2.4 if Ce ' C0,4, and if Ce ' C1,1 we
will assign to the single boundary component the number 0.

For each edge e let us introduce the geodesics γet which have Dehn
parameters (re, 0), where ree′ = 2δe,e′ if Ce ' C0,4 and ree′ = δe,e′ if Ce ' C1,1.
These geodesics are depicted as red curves on the right halfs of Figures 4
and 5, respectively. There furthermore exist unique geodesics γeu with Dehn
parameters (re, se), where see′ = δe,e′ . We will denote Lek ≡ |tr(γek)|, where
k ∈ {s, t, u} and γes ≡ γe. The set {Les, Let , Leu ; γe ∈ Cσ} generates A(C).

These coordinates are not independent, though. Further relations follow
from the relations in π1(C). It can be shown (see e.g. [Go09] for a review)
that any triple of coordinate functions Les, L

e
t and Leu satisfies an algebraic

relation of the form

(2.15) Pe(L
e
s, L

e
t , L

e
u) = 0 .

The polynomial Pe in (2.15) is for Ce ' C0,4 explicitly given as5

Pe(Ls, Lt, Lu)(2.16)

:=− LsLtLu + L2
s + L2

t + L2
u

+ Ls(L3L4 + L1L2) + Lt(L2L3 + L1L4) + Lu(L1L3 + L2L4)

− 4 + L2
1 + L2

2 + L2
3 + L2

4 + L1L2L3L4 ,

while for Ce ' C1,1 we take P to be

Pe(Ls, Lt, Lu) := L2
s + L2

t + L2
u − LsLtLu + L0 − 2 .(2.17)

In the expressions above we have denoted Li := |Tr(ρ(γi))|, i = 0, 1, 2, 3, 4,
where γ0 is the geodesic representing the boundary of C1,1, while γi, i =
1, 2, 3, 4 represent the boundary components of C0,4, labelled according to
the convention above.

4An internal edge does not end in a boundary component of C.
5Comparing to [Go09] note that some signs were absorbed by a suitable choice

of the signs νγ in (2.12).
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L
2

L
1

= −A

Figure 8: The anti-symmetric smoothing operation

2.5.5. Poisson structure. There is also a natural Poisson bracket on
A(C) [Go86], defined such that

(2.18) {Lγ1 , Lγ2 } = LA(γ1,γ2) ,

where A(γ1, γ2) is the loop obtained from γ1, γ2 by means of the anti-
symmetric smoothing operation, defined as above, but replacing the rule
depicted in Figure 7 by the one depicted in Figure 8.

The resulting expression for the Poisson bracket {Les , Let } can be written
elegantly in the form

(2.19) {Les , Let } =
∂

∂Leu
Pe(L

e
s, L

e
t , L

e
u) .

It is remarkable that the same polynomial appears both in (2.15) and
in (2.19), which indicates that the symplectic structure on Mflat is com-
patible with its structure as algebraic variety.

This Poisson structure coincides with the Poisson structure coming from
the natural symplectic structure onMflat(C) which was introduced by Atiyah
and Bott.

2.6. Darboux coordinates for Mflat(C)

One may express Les, L
e
t and Leu in terms of the Fenchel-Nielsen coordinates

le and ke [Go09]. The expressions are

Les = 2 cosh(le/2) ,(2.20a)

and for Ce ' C1,1,

Let
(
(Les)

2 − 4
) 1

2 = 2 cosh(ke/2)
√

(Les)
2 + Le0 − 2(2.20b)

Leu
(
(Les)

2 − 4
) 1

2 = 2 cosh((le + ke)/2)
√

(Les)
2 + Le0 − 2 ,(2.20c)
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while for Ce ' C0,4,

Let
(
(Les)

2 − 4
)

= 2(Le2L
e
3 + Le1L

e
4) + Les(L

e
1L

e
3 + Le2L

e
4)(2.20d)

+ 2 cosh(ke)
√
c12(Les)c34(Les) ,

Leu
(
(Les)

2 − 4
)

= Les(L
e
2L

e
3 + Le1L

e
4) + 2(Le1L

e
3 + Le2L

e
4)(2.20e)

+ 2 cosh((2ke − le)/2)
√
c12(Les)c34(Les) ,

where Lei = 2 cosh lei
2 , and cij(Ls) is defined as

cij(Ls) = L2
s + L2

i + L2
j + LsLiLj − 4(2.21)

= 2 cosh ls+li+lj
4 2 cosh ls+li−lj

4 2 cosh ls−li+lj
4 2 cosh ls−li−lj

4 .

These expressions ensure that the algebraic relations Pe(Ls, Lt, Lt) = 0 are
satisfied.

The coordinates le and ke are known to be Darboux-coordinates for
Mflat(C), having the Poisson bracket

(2.22) { le , ke′ } = 2δe,e′ .

This was recently observed and exploited in a related context in [NRS].
Other natural sets of Darboux-coordinates (le, ke) can be obtained by

means of canonical transformations k′e = ke + f(l). By a suitable choice of
f(l), one gets Darboux coordinates (le, ke) in which, for example, the expres-
sion for Let in (2.20) is replaced by

Let ((L
e
s)

2 − 4)(2.23)

= 2(Le2L
e
3 + Le1L

e
4) + Les(L

e
1L

e
3 + Le2L

e
4)

+ 2 cosh les+l
e
1−le2
4 2 cosh les+l

e
2−le1
4 2 cosh les+l

e
3−le4
4 2 cosh les+l

e
4−le3
4 e+k′s

+ 2 cosh les+l
e
1+le2
4 2 cosh les−le1−le2

4 2 cosh les+l
e
3+le4
4 2 cosh les−le3−le4

4 e−k
′
s .

The Darboux coordinates (le, ke) are equally good to represent the Poisson
structure of MG(C0,4), but they have the advantage that the expressions
for Leκ do not contain square-roots. This remark will later turn out to be
useful.



i
i

“1-tes” — 2015/2/5 — 9:41 — page 22 — #22 i
i

i
i

i
i

22 J. Teschner and G. S. Vartanov

Part I. Supersymmetric gauge theories

Summary:

• Review of SUSY gauge theories GC of class S on 4d ellipsoids.

• The path integrals representing supersymmetric observables on 4d
ellipsoids localize to the quantum mechanics of the scalar zero modes
of GC .

• The instanton partition functions can be interpreted as certain wave-
functions Ψτ (a) in the zero mode quantum mechanics.

• The Wilson and ’t Hooft loops act nontrivially on the wave-functions
Ψτ (a).

• Algebra Aε1,ε2 generated by supersymmetric Wilson and ’t Hooft loops
is isomorphic to the quantized algebra of functions on a component of
Mflat(C).

• Physical reality properties of Wilson and ’t Hooft loops ⇒ Relevant
for GC is the component M0

flat(C) ⊂Mflat(C) isomorphic to the
Teichmüller space T (C).

• Analyticity + behavior under S-duality ⇒ Instanton partition func-
tions can be characterized as solutions to a Riemann-Hilbert type prob-
lem.

3. Quantization of Mflat(C) from gauge theory

To a Riemann surface C of genus g and n punctures one may associate
[G09] a four-dimensional gauge theory GC withN = 2 supersymmetry, gauge
group (SU(2))3g−3+n and flavor symmetry (SU(2))n. In the cases where
(g, n) = (0, 4) and (g, n) = (1, 1) one would get the supersymmetric gauge
theories commonly referred to as Nf = 4 and N = 2∗-theory, respectively.
The aim of this introductory section is to review the relation between C and
GC along with recent exact results on expectation values of certain super-
symmetric observables in GC .
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3.1. Supersymmetric gauge theories of class S

The gauge theory GC has a Lagrangian description for each choice of a pants
decomposition σ. We will now describe the relevant parts of the mapping
between geometric structures on C and the defining data of GC .

The field content of GC is determined as follows. To each internal edge
e ∈ Γσ there is an associated N = 2 vector multiplet containing a vector
field Aeµ, two fermions λe, λ̄e, and two real scalars φe, φ̄e. Matter fields are
represented by (half-)hypermultiplets associated to the vertices v of Γσ. They
couple only to the gauge fields associated to the edges that meet at the vertex
v. There are n mass parameters associated to the boundary components of
C. We refer to [HKS2] for a description of the necessary building blocks for
building the Lagrangian of GC associated to a pants decomposition σ.

The Lagrangian for GC will include kinetic terms for the gauge fields Aeµ
with gauge coupling constants ge, and it may include topological terms with
theta angles θe. These parameters are related to the gluing parameters qe as

(3.1) qe := e2πiτe , τe :=
4πi

g2
e

+
θe
2π

.

In order to define UV couplings constants like g2
e one generically needs to

fix a particular scheme for calculating amplitudes or expectation values.
Using a different scheme will lead to equivalent results related by analytic
redefinitions of the coupling constants. This ambiguity will be mapped to the
dependence of the coordinates qe for T (C) on the choices of local coordinates
around the punctures. Equation (3.1) describes the relation which holds for a
particular scheme in GC , and a particular choice of local coordinates around
the punctures of C0,3.

Different Lagrangian descriptions are related by S-duality. It follows from
the description of the gauge theories GC from class S given in [G09] that
the groupoid of S-duality transformations coincides with the Moore-Seiberg
groupoid for the gauge theories of class S.

3.2. Supersymmetric gauge theories on ellipsoids

It may be extremely useful to study quantum field theories on compact
Euclidean space-times or on compact spaces rather than flat R4. Physical
quantities get finite size corrections which encode deep information on the
quantum field theory we study. The zero modes of the fields become dynam-
ical, and have to be treated quantum-mechanically.
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In the case of supersymmetric quantum field theories there are not many
compact background space-times that allow us to preserve part of the super-
symmetry. A particularly interesting family of examples was studied in [HH],
generalizing the seminal work of Pestun [Pe].

3.2.1. The four-dimensional ellipsoid. Let us consider gauge theories
GC on the four-dimensional ellipsoid

(3.2) E4
ε1,ε2 := { (x0, . . . , x4) |x2

0 + ε21(x2
1 + x2

2) + ε22(x2
3 + x2

4) = 1 } .

Useful polar coordinates for E4
ε1,ε2 are defined as

(3.3) x0 = sin ρ ,

x1 = ε−1
1 cos ρ cos θ cosϕ ,

x2 = ε−1
1 cos ρ cos θ sinϕ ,

x3 = ε−1
2 cos ρ sin θ cosχ ,

x4 = ε−1
2 cos ρ sin θ sinχ .

It was shown in [Pe, HH] for some examples of gauge theories GC that one
of the supersymmetries Q is preserved on E4

ε1,ε2 . It should be possible to
generalize the proof of existence of an unbroken supersymmetry Q to all
gauge theories GC of class S.

3.2.2. Supersymmetric loop operators. Supersymmetric Wilson loops
can be defined as6

We,1 := TrF P exp

(
i

∫
S1
1

dϕ
(
Aeϕ −

1

ε1
(φe + φ̄e)

))
,(3.4a)

We,2 := TrF P exp

(
i

∫
S1
2

dχ
(
Aeχ −

1

ε2
(φe + φ̄e)

))
,(3.4b)

with traces taken in the fundamental representation of SU(2), and contours
of integration being

S1
1 := { (x0, . . . , x4) = (π/2, ε−1

1 cosϕ, ε−1
1 sinϕ, 0, 0) , ϕ ∈ [0, 2π) } ,(3.5)

S1
2 := { (x0, . . . , x4) = (π/2, 0, 0, ε−1

2 cosχ, ε−1
2 sinχ) , χ ∈ [0, 2π) } .(3.6)

The ’t Hooft loop observables Te,i, i = 1, 2, can be defined semiclassically
for vanishing theta-angles θe = 0 by the boundary condition

(3.7) Fe ∼
Be
4
εijk

xi

|~x|3
dxk ∧ dxj ,

6We adopt the conventiones used in [HH].
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near the contours S1
i , i = 1, 2. The coordinates xi are local coordinates for

the space transverse to S1
i , and Be is an element of the Cartan subalgebra

of SU(2)e. In order to get supersymmetric observables one needs to have a
corresponding singularity at S1

i for the scalar fields φe, φ̄e. For the details
of the definition and the generalization to θe 6= 0 we refer to [GOP].

It is shown in [Pe, HH, GOP] that these observables are left invariant
by the supersymmetry Q preserved on E4

ε1,ε2 .

3.2.3. Expectation values on the ellipsoid. Interesting physical quan-
tities include the partition function ZGC , or more generally expectation val-
ues of supersymmetric loop operators Lγ such as the Wilson- and ’t Hooft
loops. Such quantities are formally defined by the path integral over all fields
on E4

ε1,ε2 . It was shown in a few examples for gauge theories from class S
in [Pe, HH] how to evaluate this path integral by means of the localization
technique. A variant of the localization argument was used to show that the
integral over all fields actually reduces to an integral over the locus in field
space where the scalars φe take constant values φe = φ̄e ≡ i

2aeσ3 = const,
and all other fields vanish. This immediately implies that the path integral
reduces to an ordinary integral over the variables ae. It seems clear that this
argument can be generalized to all theories of class S.

A more detailed study [Pe, HH] then leads to the conclusion that the
Wilson loop expectation values have expressions of the form

(3.8)
〈
We,i

〉
E4
ε1ε2

=

∫
dµ(a) |Zinst(a,m, τ ; ε1, ε2)|2 2 cosh(2πae/εi) ,

where i = 1, 2. Zinst(a,m, τ ; ε1, ε2) is the so-called instanton partition func-
tion. It depends on Coulomb branch moduli a = (a1, . . . , ah), hypermul-
tiplett mass parameters m = (m1, . . . ,mn), UV gauge coupling constants
τ = (τ1, . . . , τh), and two parameters ε1, ε2. We will briefly summarize some
relevant issues concerning its definition in Subsection 3.3 below.

A rather nontrivial extension of the method from [Pe] allows one to
treat the case of ’t Hooft loops [GOP] as well, in which case a result of the
following form is found
(3.9)〈

Te,i
〉
E4
ε1,ε2

=

∫
dµ(a) (Zinst(a,m, τ ; ε1, ε2))∗De,i · Zinst(a,m, τ ; ε1, ε2) ,

with De,i being a certain difference operator acting only on the variable ae,
which has coefficients that depend only on a, m and εi, in general.
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3.3. Instanton partition functions - scheme dependence

Let us briefly discuss some relevant aspects concerning the definition of
Z inst(a,m, τ ; ε1, ε2). This function is defined in [N] as a partition function of
a two-parametric deformation Gε1ε2C of GC on R4. The theory Gε1ε2C is defined
by deforming the Lagrangian of GC by (ε1, ε2)-dependent terms which break
four-dimensional Lorentz invariance, but preserve one of the supersymme-
tries of GC on R4. The unbroken supersymmetry allows one to localize the
path integral defining Zinst(a,m, τ ; ε1, ε2) to a sum over integrals over the
instanton moduli spaces.

Subsequent generalizations to gauge theories from class S [AGT, HKS1,
HKS2] of linear quiver type lead to expressions of the following form,

(3.10) Z inst(a,m, τ ; ε1, ε2) = Zpert
∑

k∈(Z≥0)h

qk11 · · · q
kh
h Z

inst
k (a,m; ε1, ε2) .

Let us first discuss the terms Z inst
k (a,m; ε1, ε2) summed in (3.10). These

terms can be represented as multiple (h-fold) integrals over the moduli spaces
Minst

k,2 of SU(2)-instantons of charge k.

3.3.1. UV issues in the instanton corrections. It is important to bear
in mind that the integrals defining Z inst

k (a,m; ε1, ε2) are UV divergent due to
singularities caused by pointlike, and possibly colliding instantons, see e.g.
[DHKM]. Possible IR divergencies are regularized by the above-mentioned
(ε1, ε2)-dependent deformation of the Lagrangian [N].

The explicit formulae for Z inst
k (a,m; ε1, ε2) that were used in the calcu-

lations of expectation values
〈
Lγ
〉
E4
ε1,ε2

performed in [Pe, AGT, GOP, HH]

have been obtained using particular prescriptions for regularizing the UV-
divergencies which were introduced in [N, NO] and [NS04]. The approach
of [N, NO] uses a non-commutative deformation of Gε1ε2C which is known
to yield a smooth resolution of the instanton moduli spaces Minst

k,2 [NS98].
Another approach, presented in [NS04], uses a representation of Gε1ε2C as the
limit of a five-dimensional gauge theory on R4 × S1 when the radius of the
factor S1 vanishes. It was shown in [NS04] that both prescriptions yield
identical results.

These approaches work most straightforwardly for gauge theories with
gauge group (U(2))h rather than (SU(2))h. In order to use the known results
for (U(2))h, the authors of [AGT] proposed that the instanton partition func-
tions Z inst(a,m, τ ; ε1, ε2) for gauge group (SU(2))h are related to their coun-
terparts Z inst

U(2)(a,m, τ ; ε1, ε2) defined in theories with gauge group (U(2))h
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by splitting off a “U(1)-factor”,

(3.11) Z inst(a,m, τ ; ε1, ε2) = Zspur
U(1)(m, τ ; ε1, ε2)Z inst

U(2)(a,m, τ ; ε1, ε2) .

Note that the U(1)-factor Zspur
U(1)(m, τ ; ε1, ε2) does not depend on the Coulomb

branch moduli a. However, the precise form of the factor proposed in [AGT]
was so far mainly motivated by the relations with conformal field theory
discorvered there.

3.3.2. Non-perturbative scheme dependence ?. One would expect
that there should be other possibilities for regularizing the UV divergencies
in general. Some examples were explicitly discussed in [HKS1, HKS2]. One
may, for example, use that Sp(1) ' SU(2) in order to set up an alternative
scheme for the definition of the instanton partition functions. It was found
to give an answer Z̃ inst(a,m, τ ; ε1, ε2) that differs from Z inst(a,m, τ ; ε1, ε2)
by factors that do not depend on the Coulomb branch moduli a,

(3.12) Z̃ inst(a,m, τ̃ ; ε1, ε2) = Zspur(m, τ ; ε1, ε2)Z inst(a,m, τ ; ε1, ε2) ,

together with a redefinition τ̃ = τ̃(τ) of the UV gauge coupling constants.
The possibility to have redefinitions of the UV gauge couplings in general

is suggested by the structure of the Uhlenbeck-compactification Minst
k,2 of

Minst
k,2 ,

(3.13) Minst
k,2 =Minst

k,2 ∪
[
Minst

k−1,2 × R4
]
∪ · · · ∪

[
Symk(R4)

]
.

The factors Zspur(m, τ ; ε1, ε2) in (3.12) will be called spurious following
[HKS1, HKS2]. One way to justify this terminology is to note that such
factors will drop out in normalized expectation values defined as

(3.14)
〈〈
Lγ
〉〉
E4
ε1,ε2

:=
(〈

1
〉
E4
ε1,ε2

)−1〈Lγ 〉E4
ε1,ε2

,

as follows immediately from the general form of the results for the expec-
tation values quoted in (3.8) and (3.9). The scheme dependence contained
in the spurious factors Zspur(m, τ ; ε1, ε2) should therefore be considered as
unphysical.

It would be very interesting to understand the issue of the scheme
dependence, the freedom in the choice of UV regularization used to define
Z inst(a,m, τ ; ε1, ε2), more systematically. We will later arrive at a precise
description of the freedom left by the approach taken in this paper.
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3.3.3. Perturbative part. The perturbative part Zpert in (3.10) factor-
izes as Zpert = ZtreeZ1−loop.

The factor Z inst
tree represents the tree-level contribution. It is given by a

simple expression proportional (up to spurious factors) to

(3.15) Ztree =
∏
e∈σ1

qa
2
e/ε1ε2
e ,

where σ1 is the set of edges of the MS graph Γσ associated to the pants
decomposition σ defining the Lagrangian of GC .

The factor Z inst
1−loop is given by certain determinants of differential oper-

ators. It has the following form

(3.16) Z1−loop =
∏
v∈σ0

Z1−loop
v (ae1(v), ae2(v), ae3(v); ε1, ε2) ,

where σ0 is the set of vertices of the MS graph Γσ associated to the pants
decomposition σ, and e1(v), e2(v), e3(v) are the edges of Γσ that emanate
from v. If an edge ei(v) ends in a boundary component of C, then aei(v) will
be identified with the mass parameter associated to that boundary compo-
nent.

It should be noted that there is a certain freedom in the definition of
Z1−loop
v due to the regularization of divergencies in the infinite products

defining Z1−loop
v . This issue has a natural resolution in the case of partition

functions or expectation values on E4
ε1,ε2 going back to [Pe]: what enters into

these quantities is the absolute value squared |Z1−loop
v (ae1(v), ae2(v), ae3(v);

ε1, ε2)|2 which is unambigously defined [Pe, HH]. There does not seem to be
a preferred prescription to fix the phase of Z1−loop

v (ae1(v), ae2(v), ae3(v); ε1, ε2),
in general, which can be seen as a part of the perturbative scheme depen-
dence.

3.4. Reduction to zero mode quantum mechanics

We may assign to the expecation values 〈Lγ〉 an interpretation in terms of
expectation values of operators Lγ which act on the Hilbert space obtained
by canonical quantization of the gauge theory GC on the space-time R×
E3
ε1,ε2 , where E3

ε1,ε2 is the three-dimensional ellipsoid defined as

(3.17) E3
ε1,ε2 := { (x1, . . . , x4) | ε21(x2

1 + x2
2) + ε22(x2

3 + x2
4) = 1 } .

This is done by interpreting the coordinate x0 for E4
ε1,ε2 as Euclidean time.

Noting that E4
ε1,ε2 looks near x0 = 0 as R× E3

ε1,ε2 , we expect to be able to
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represent partition functions ZGC (E4
ε1,ε2) or expectation values

〈
Lγ
〉
GC(E4

ε1,ε2
)

as matrix elements of states in the Hilbert space HGC defined by canonical
quantization of GC on R× E3

ε1,ε2 . More precisely

(3.18) ZGC (E4
ε1,ε2) = 〈 τ | τ 〉 ,

〈
Lγ
〉
E4
ε1,ε2

= 〈 τ | Lγ | τ 〉 ,

where 〈 τ | and | τ 〉 are the states created by performing the path integral
over the upper/lower half-ellipsoid

E4,±
ε1,ε2 := { (x0, . . . , x4) |x2

0 + ε21(x2
1 + x2

2)(3.19)

+ ε22(x2
3 + x2

4) = 1 , ±x0 > 0 } ,

respectively, and Lγ is the operator that represents the observable Lγ in the
Hilbert space HGC (E3

ε1,ε2).

3.4.1. Localization – Interpretation in the functional Schrödinger
picture. The form (3.8), (3.9) of the loop operator expectation values
is naturally interpreted in the Hamiltonian framework as follows. In the
functional Schroedinger picture one would represent the expecation values〈
Lγ
〉
E4
ε1,ε2

schematically in the following form

(3.20)
〈
Lγ
〉
E4
ε1,ε2

=

∫
[DΦ] (Ψ[Φ])∗ LγΨ[Φ] ,

the integral being extended over all field configuration on the three-ellipsoid
E3
ε1,ε2 at x0 = 0. The wave-functional Ψ[Φ] is defined by means of the path

integral over the lower half-ellipsoid E4,−
ε1,ε2 with Dirichlet-type boundary con-

ditions defined by a field configuration Φ on the boundary E3
ε1,ε2 of E4,−

ε1,ε2 .
The fact that the path integral localizes to the locus LocC defined by

constant values of the scalars, and zero values for all other fields implies
that the path integral in (3.20) can be reduced to an ordinary integral of
the form

(3.21)
〈
Lγ
〉
E4
ε1,ε2

=

∫
da (Ψτ (a))∗ L′γΨτ (a) ,

with L′γ being the restriction of Lγ to LocC , and Ψ(a) defined by means of

the path integral over the lower half-ellipsoid E4,−
ε1,ε2 with Dirichlet boundary

conditions Φ ∈ LocC , φe = φ̄e = i
2aeσ3. The form of the results for expec-

tation values of loop observables quoted in (3.8), (3.9) is thereby naturally
explained.
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Comparing the results (3.8) and (3.9) with (3.21) leads to the conclusion
that the wave-functions Ψτ (a) appearing in (3.21) are represented by the
instanton partition functions,

(3.22) Ψτ (a) = Z inst(a,m, τ ; ε1, ε2) .

Our goal will be to find an alternative way to characterize the wave-functions
Ψτ (a), based on their transformation properties under electric-magnetic
duality.

3.4.2. Reduction to a subspace of the Hilbert space. The Dirichlet
boundary condition Φ ∈ LocC , φe ∝ ae is naturally interpreted as defining a
Hilbert subspace H0 within HGC . States in H0 can, by definition, be repre-
sented by wave-functions Ψ(a), a = (a1, . . . , ah).

Note that field configurations that satisfy the boundary condition Φ ∈
LocC are annhilated by the supercharge Q used in the localization calcula-
tions of [Pe, GOP, HH] – that’s just what defined the locus LocC in the first
place. This indicates that the Hilbert subspace H0 represents the cohomol-
ogy of Q within HGC .

The algebra of observables acting on H0 should contain the supersym-
metric Wilson- and ’t Hooft loop observables. The Wilson loops We,1 and
We,2 act diagonally as operators of multiplication by 2 cosh(2πae/ε1) and
2 cosh(2πae/ε2), respectively. The ’t Hooft loops will act as certain differ-
ence operators.

Let us denote the non-commutative algebra of operators generated by
polynomial functions of the loop operators We,i and Te,i by Aεi , where i =
1, 2. We will denote the algebra generated by all such supersymmetric loop
operators by Aε1ε2 ≡ Aε1 ×Aε2 .

4. Riemann-Hilbert problem for instanton
partition functions

The main result of this paper may be summarized in the statement that,
up to spurious factors, the wave-functions Ψτ (a) in the quantum mechan-
ics of the zero modes of GC coincide with the Liouville conformal blocks
ZLiou(β, α, q; b),

(4.1) Ψτ (a) ' ZLiou(β, α, q; b) .

The definition of ZLiou(β, α, q; b) will be reviewed and generalized in Part III
below, where we will also spell out the dictionary between the variables
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involved. Combined with (3.22), we arrive at the relation Z inst(a,m, τ, ε1, ε2)
' ZLiou(β, α, q; b) proposed in [AGT].

In this paper we will characterize the wave-functions Ψτ (a) using the
relation between the algebra Aε1ε2 of supersymmetric loop observables to
the quantized algebras of functions on moduli spaces of flat connections.
These quantized algebras of functions are deeply related to Liouville theory,
as will be explained in Part III of this paper. Taking into account these
relations will lead to the relation (4.1) of Ψτ (a) with the Liouville conformal
blocks.

Before we continue to discuss our approach to the relation (4.1) let us
briefly review some of the known evidence for (4.1), mainly coming from its
relation with the observations of [AGT].

4.1. Available evidence

The authors of [AGT] observed in some examples of theories from class
S that one has (up to spurious factors) an equality of instanton partition
functions to the conformal blocks ZLiou(β, α, τ ; b) of Liouville theory,

(4.2) Z inst(a,m, τ ; ε1, ε2) ' ZLiou(β, α, τ ; b) ,

assuming a suitable dictionary between the variable involved. The results of
[AGT] can be generalized to a subset of the family of theories from class S
called the linear quiver theories corresponding to surfaces C of genus 0 or
1 [AFLT].

For surfaces C of genus 0 we know, on the other hand, that the Liouville
conformal blocks coincide with certain wave-functions in the quantum theory
of the Teichmüller spaces T (C) of Riemann surfaces ([T03], see also Part
III of this paper),

(4.3) ZLiou(β, α, τ ; b) = ΨTτ (a) ≡ 〈 a | τ 〉T (C) .

The state 〈 a | is an eigenstate of a maximal family of commuting geodesic
length operators, while | τ 〉T (C) is defined as an eigenstate of the opera-
tors obtained in the quantization of certain complex-analytic coordinates on
T (C). The definition of ΨTτ (a) and the derivation of (4.3) will be reviewed
and generalized to surfaces C of higher genus in Part III of our paper.

Combining the observations (3.22), (4.2) and (4.3) suggests that the
quantum mechanics of the zero modes of GC is equivalent to the quantum
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theory of the Teichmüller spaces, and that we have in particular

(4.4) Ψτ (a) ' ΨTτ (a) .

This conclusion was anticipated in [DGOT], where it was noted that the
existing results on Wilson loop observables can be rewritten in the form

(4.5)
〈
Lγ
〉
E4
ε1,ε2

= 〈 τ | Lγ | τ 〉T (C) ,

using the observations (4.2) and (4.3) quoted above. The gauge theoret-
ical calculations leading to (4.5) were later generalized to the case of ’t
Hooft loops in [GOP]. These results confirmed the earlier proposals made in
[AGGTV, DGOT] that the supersymmetric loop operators in gauge theories
GC are related to the analogs of the Verlinde loop operators in Liouville the-
ory. The Verlinde loop operators are further mapped to the geodesic length
operators by the correspondence between Liouville theory and the quantum
Teichmüller theory [T03, DGOT].

One should keep in mind that the Teichmüller spaces T (C) are naturally
isomorphic to the connected components M0

flat(C) of Mflat(C). Combining
all these observations we may conclude that for surfaces C of genus 0 the
expectation values of supersymmetric loop operators in GC can be repre-
sented as expectation values of certain operators in the quantum mechanics
obtained by quantizing M0

flat(C).
Our goal is to understand more directly why this is so, and to generalize

this result to all theories from class S.

4.2. Assumptions

Our approach for deriving (4.1) is based on physically motivated assump-
tions. We will first formulate the underlying assumptions concisely, and later
dicuss the underlying motivations.

(a) Ψτ (a) can be analytically continued with respect to the variables τ to
define a multi-valued analytic function on the coupling constant space
M(GC). The boundaries of M(GC), labelled by pants decompositions
σ correspond to weakly-coupled Lagrangian descriptions for GC .

(b) The transitions between any two different weakly-coupled Lagrangian
descriptions for GC are generated from the elementary electric-magnetic
duality transformations of the Nf = 4 and the N = 2∗-theories. The
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electric-magnetic duality transformations exchange the respective
Wilson- and ’t Hooft loop observables.

(c) The algebra Aε1ε2 generated by the supersymmetric loop observables is
isomorphic to the algebra Funε1(Mflat(C))× Funε2(Mflat(C)), where
Funε(Mflat(C)) is the quantized algebra of functions on M0

flat(C) '
T (C).

Assumptions (a) and (b) can be motivated by noting that the theories of
class S are all quiver gauge theories [G09]. This combinatorial structure
reduces the S-duality transformations to those of the building blocks, the
Nf = 4 and theN = 2∗-theories. The realization of electric-magnetic duality
in these theories has been discussed extensively in the literature, going back
to the works of Seiberg and Witten [SW1, SW2].

Of particular importance for us is assumption (c). Let us first note that
this assumption is strongly supported by the explicit calculation of the ’t
Hooft loop operator expectation values in the N = 2∗-theory carried out in
[GOP]. One finds a precise correspondence between the difference operator
De,i in (3.9) and operator Lt representing the trace coordinate Lt in the
quantum theory of Mflat(C) (see Equation (6.16a) below).

It should be possible to verify assumption (c) directly by studying the
algebra of Wilson-’t Hooft loop operators in the theories GC in more gener-
ality. It was proposed in [IOT] that in order to study the algebra of super-
symmetric loop operators one may replace the background space-time E4

ε1,ε2
by the local model S1 × R3 for the vicinity of the loop operators, taking
into account the relevant effects of the curvature by a simple twist in the
boundary conditions. This has been used in [IOT] to calculate expectation
values of supersymmetric loop operators in several cases. The results give
additional support for the validity of assumption (c). Further development
of this approach may well lead to a derivation of (c) purely within four-
dimensional gauge theory.

As also pointed out in [IOT], the twisted boundary conditions on S1 × R3

used in this paper are essentially equivalent to the deformation of GC studied
in [GMN3]. Specializing the results of [GMN3] to the A1 theories of class
S considered here, one gets a non-commutative algebra of observables with
generators Lγ which can be represented in the form

(4.6) Lγ =
∑
η

Ω(γ, η; y)Xη ,

where Xη are generators of the non-commutative algebra obtained by canon-
ical quantization of the Darboux-coordinates studied in [GMN1, GMN2],
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and the coefficients Ω(γ, η; y) are indices for certain BPS states extensively
studied in [GMN3]. It is pointed out in this paper, on the one hand, that
there is a simple physical reason for getting a non-commutative deforma-
tion of the algebra of the Darboux-coordinates generated by the Xη. On the
other hand it is argued in [GMN3] that (4.6) coincides with the decompo-
sition of geodesic length operators into the (quantized) coordinates for the
Teichmüller spaces introduced by Fock [F97]. It follows that the algebra gen-
erated by the Lγ is isomorphic to the algebra of geodesic length operators in
the quantum Teichmüller theory. This is exactly the algebra Funε(Mflat(C))
studied in this paper. We believe that this line of thoughts can lead to an
insightful derivation of our assumption (c), but it seems desirable to have a
more detailed discussion of the applicability of the results of [GMN3] to our
set-up.

Yet another approach towards understanding assumption (c) starts from
a modified set-up in which the gauge theory GC is replaced by its Omega-
deformed version Gε1ε2C [N, NW]. In the Omega-deformed theory one may
define analogs of the loop observables Lγ and wave-functions Ψtop

τ (a) in a very
similar way as above, and one has Ψtop

τ (a) = Z inst(a,m, τ ; ε1, ε2). Combined
with the observation (3.22) made above we see that

(4.7) Ψτ (a) = Z inst(a,m, τ ; ε1, ε2) = Ψtop

τ (a) .

This strongly indicates that we may use the results on the Omega-deformed
theory Gε1ε2C from [NW] for the study of the gauge theory on E4

ε1,ε2 . In the
following Section 5 we will briefly review the argument for (c) in the Omega-
deformed theory Gε1ε2C which was given by Nekrasov and Witten in [NW].

4.3. The Riemann-Hilbert problem

The strategy for deriving (4.1) may now be outlined as follows.
Assumption (b) implies that the S-duality transformations induce a

change of representation for the Hilbert space Htop. Recall that Ψσ1
τ (a)

is defined to be a joint eigenfunction of the Wilson loop operators con-
structed using the weakly coupled Lagrangian description associated to a
pants decomposition σ1. Considering another pants decomposition σ2 one
defines in a similar manner eigenfunctions Ψσ2

τ (a) of another family of oper-
ators which are not commuting with the Wilson loop operators defined from
pants decomposition σ1, but can be constructed as Wilson loop observables
using the fields used in the Lagrangian description of GC associated to pants
decompostion σ2. The eigenfunctions Ψσ1

τ (a) and Ψσ2
τ (a) must therefore be
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related by an integral transformations of the form

(4.8) Ψσ2
τ (a2) = fσ2σ1

(τ)

∫
da1 Kσ2σ1(a2, a1) Ψσ1

τ (a1) .

We allow for a spurious prefactor fσ2σ1
(τ) in the sense explained in Sub-

section 3.3, as it will turn out that we can not eliminate such prefectors by
choosing an appropriate scheme in general.

Given that we know the data Kσ2σ1(a2, a1) and fσ2σ1
(τ), the assump-

tions (a) - (c) completely describe of the analytic properties of Z inst(a,m, τ,
ε1, ε2) as function on the coupling constant space M(GC). This means that
Z inst(a,m, τ, ε1, ε2) can be characterized as the solution to a Riemann-Hilbert
type problem.

A detailed construction of the representation of Aε1ε2 on H0 will be
given in Part II of this paper. The main result for our purposes is to show
that the kernels Kσ2σ1(a2, a1) appearing in (4.8) can be characterized by
the requirement that this transformation correctly exchanges the Wilson-
and ’t Hooft loops defined in the two Lagrangian descriptions associated to
σ1 and σ2, respectively. The technically hardest part is to ensure that the
Moore-Seiberg groupoid of transformations from one Lagrangian description
to another is correctly realized by the transformations (4.8).

In Part III we will then show that this Riemann-Hilbert type problem
has a solution that is unique up to spurious factors as encountered in (3.12),
and given by the Liouville conformal blocks appearing on the right hand
side of (4.1). A precise mathematical charcterization of the possible spurious
factors is obtained.

It may be instructive to compare this type of reasoning to the derivations
of exact results for prepotentials in supersymmetric gauge theories pioneered
by Seiberg and Witten. The key assumptions made in these derivations were
the analyticity of the prepotential, and assumptions on the physical interpre-
tation of its singularities. Well-motivated assumptions on effective descrip-
tions near the singularities of the prepotential F lead Seiberg and Witten to
a characterization of this quantity in terms of a Riemann-Hilbert problem.
A key assumption was that the transition between any two singularities of
the prepotential corresponds to electric-magnetic duality.

5. The approach of Nekrasov and Witten

An approach towards understanding the link between the gauge theories GC
and Liouville theory expressed in formula (4.2) was proposed in the work
[NW] of Nekrasov and Witten. This work considers the gauge theory GC
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on four-manifolds M4 that have (U(1))2-isometries and therefore allow to
define the Omega-deformation Gε1ε2C of GC . The result may imprecisely be
summarized by saying that the topological sector of Gε1ε2C is represented
by the quantum mechanics obtained from the quantization of Mflat(C).
The arguments presented in [NW] do not quite suffice to derive the AGT-
correspondence in the strong form (4.2).

We will argue that one may take the arguments of [NW] as a starting
point to reach the more precise result (4.2): Certain wave-functions in the
topologically twisted version of Gε1ε2C considered by [NW] coincide with the
conformal blocks of Liouville theory. As the wave-functions in question also
coincide with the instanton partition functions (almost by definition), we
will thereby get a derivation of the AGT-correspondence which is somewhat
in the spirit of the characterization of the prepotentials that was pioneered
by Seiberg and Witten.

5.1. The basic ideas

The approach of Nekrasov and Witten is based on three main ideas:

(i) The instanton partition functions are defined in [N] as partition func-
tions of Gε1ε2C on R4. The deformation of GC into Gε1ε2C preserves a
supersymmetry which can be used to define a topologically twisted
version Gtop

C of Gε1ε2C . The partition function of Gε1ε2C on R4 coincides
with the partition function of Gε1ε2C on any four-manifold B4 with the
same topology as R4 that has the (S1)2-isometries needed to define
the Omega-deformation Gε1ε2C of GC [NW].

(ii) The four-manifold B4 may be assumed to have a boundary M3, and
the metric near the boundary may be assumed to be the metric on
R×M3. Canonical quantization on R×M3 yields a quantum theory
with Hilbert space HM3(Gε1ε2C ). The partition function on B4 can then
be interpreted as a wave-function of the state created by performing
the path integral over B4.

(iii) Viewing S3 as a fibration of (S1)2 over an interval I, one may represent
Gtop
C on R× S3 in terms of a topologically twisted two-dimensional

non-linear sigma model on the world-sheet R× I with target space
MH , the Hitchin moduli space. This means that the instanton parti-
tion function gets re-interpreted as a wave-function of a certain state
in the two-dimensional sigma model on the strip.
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Let us consider the topologically twisted theory Gtop
C on R×M3. The

topological twist preserves two super-charges Q and Q†. Choosing Q to
be the preferred super-charge, one may identify the Hilbert-space Htop ≡
Htop
M3(Gε1ε2C ) of Gtop

C with the Q-cohomology within HM3(Gε1ε2C ).
A few points are clear. The Hilbert space Htop is acted on by the chiral

ring operactors

(5.1) ue := Tr(φ2
e) .

These operators generate a commutative ring of operators acting on Htop. It
is furthermore argued in [NW, Section 4.9.1] that analogs of the Wilson- and
’t Hooft loop operators can be be defined within the gauge theory Gε1ε2C on
R×M3 which commute with Q, and therefore define Wilson- and ’t Hooft
loop operators We,i and Te,i acting on Htop. We will denote the algebra
generated by all such supersymmetric loop operators by Atop

ε1ε2 ≡ A
top

ε1 ×A
top

ε2 .
And indeed, one of the main results of [NW] were the isomorphisms

(5.2) Atop

ε1 ×A
top

ε2 ' Funε1(Mflat(C))× Funε2(Mflat(C)) ,

where Funq(Mflat(C)) is the quantized algebra of functions onMflat(C) that
will be defined precisely in Part II, together with

(5.3) Htop
M3(Gε1,ε2C ) ' H(M0

flat(C)) ,

both sides being understood as module of Funε1(Mflat(C))× Funε2(Mflat(C)).

5.2. The effective sigma model description

It may be instructive to briefly outline the approach that lead to the results
(5.2) and (5.3), see [NW] for more details.

In order to get a useful effective representation for Gε1ε2C , let us note that
we may view three manifolds M3 with the necessary (U(1))2-isometries as a
circle fibration S1 × S1 → I, where the base I is an interval. It was argued
in [NW] that the low energy physics of GC can be represented by a (4, 4)-
supersymmetric sigma model with world-sheet R× I and target space being
the Hitchin moduli space MH(C). This sigma model can be thought of as
being obtained by compactifying Gε1ε2C on S1 × S1. Due to topological invari-
ance one expects that supersymmetric observables of Gε1ε2C get represented
within the quantum theory of the sigma model.

An elegant argument for why the sigma model has target spaceMH(C)
can be based on the description of GC as compactification of the six-
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dimensional (0, 2)-superconformal theories of the A1-type on spaces of the
form M4 × C. If M4 has the structure of a circle fibration, one expects that
the result of compactifying first on C, then on the circle fibers should be
equivalent to the result of first compactifying on the circle fibers, and then on
C, as far as the resulting topological subsector is concerned. If one compact-
ifies the six-dimensional (0, 2)-superconformal theory on a circle S1, or on
S1 × S1, the result is a maximally supersymmetric Yang-Mills theory with
gauge group SU(2) on a five-, or four-dimensional space-time, respectively.
Minimal energy configurations in the resulting theories on space-times of
the form M × C are represented by solutions of Hitchin’s equations on C
[BJSV], see also [GMN2, Subsection 3.1.6]. It follows that the low-energy
physics can be effectively represented by a sigma model on M which has
MH(C) as a target space. This argument has been used in [NW], see also
[NRS] for a similar discussion.

The effect of the Ω-deformation is represented within the sigma-model
description by boundary conditions Bε1 and Bε2 imposed on the sigma model
at the two ends of the interval I. It is shown that the boundary conditions
are represented by the so-called canonical co-isotropic branes, see [NW] for
the definition and further references. The Hilbert space Htop

M3(Gε1ε2C ) thereby
gets identified with the space of states Hom(Bε1 ,Bε2) of this open two-
dimensional sigma model.

It was furthermore argued in [NW] that the action of the algebra Atop
ε1,ε2

of supersymmetric loop operators on Htop
M3(Gε1,ε2C ) gets represented in the

sigma model as the action of the quantized algebra of functions on the
canonical coisotropic branes via the joining of open strings, which defines a
natural left (resp. right) action of Aε1(C) ' Hom(Bε1 ,Bε1) (resp. Aε2(C) '
Hom(Bε2 ,Bε2)) on Hom(Bε1 ,Bε2). The key result obtained in [NW] is then
that the algebras Hom(Bεi ,Bεi), i = 1, 2, with multiplication naturally defined
by the joining of strips, are isomorphic to the quantized algebras of func-
tions Funεi(Mflat(C)) on Mflat(C). The method by which this conclusion
is obtained can be seen as special case of a more general framework for
producing quantizations of algebras of functions on hyper-Kähler manifolds
from the canonical coisotropic branes of the sigma models on such manifolds
[GV].

5.3. Instanton partition functions as wave-functions

Let us extract from [NW] some implications that will be relevant for us.
Recall that the algebra Aε1,ε2 is generated by the quantized counterparts

of Wilson- and ’t Hooft loop operators. Using localisation [Pe] one may show
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that the Wilson loop operators We,i are positive self-adjoint, and mutu-
ally commutative [We,i,We′,i] = 0 for i = 1, 2. It follows that there exists a
representation for Htop in which the states are realized by wave-functions
Ψ(a) ≡ 〈a|Ψ〉top, where a = (a1, . . . , ah).

As S-duality exchanges Wilson- and ’t Hooft loops, the ’t Hooft loops
must also be positive self-adjoint. What is relevant for us is therefore the
subspace of the space of functions on Mflat(C) characterized by the posi-
tivity of all loop observables. This subspace is isomorphic to the space of
functions on the Teichmüller space T (C), and will be denoted M0

flat(C).
Considering the gauge theory Gε1ε2C on R×M3 one may naturally con-

sider a state | τ 〉 ∈ HGC (M3) created by performing the path integral over
the a Euclidean four-manifold B4,− with boundary M3, and its projection
| τ 〉top to Htop. We may represent | τ 〉top by its wave-function

(5.4) Ψtop

τ (a) := 〈 a | τ 〉top .

Note that the overlap between an eigenstate 〈 a | of all the Wilson loop
operators with the state | τ 〉top should be related to the instanton partition

function by means of the metric-independence of the path integrals for Gtop
C .

This should relate 〈 a | τ 〉top, given by the path integral for Gε1ε2C on B4,− to
Z inst(a,m, τ, ε1, ε2) which is defined by a path integral on R4

ε1,ε2 ,

(5.5) Ψtop

τ (a) = Z inst(a,m, τ, ε1, ε2) .

The projection onto an eigenstate 〈 a | of the Wilson loop operators is traded
for the boundary condition to have fixed scalar expectation values at the
infinity of R4.

We conclude that the instanton partition functions Z inst(a,m, τ, ε1, ε2)
represent particular wave-functions within the quantum theory ofM0

flat(C).
The isomorphisms (5.2) and (5.3) established in [NW] can be taken as
the basis for a characterization of the wave-functions Ψtop

τ (a) in terms of
a Riemann-Hilbert type problem which will coincide with the one discussed
in our previous Section 4. This leads to yet another way to find the rela-
tion Ψτ (a) = Ψtop

τ (a) that we had pointed out above in (4.7). This relation
can be understood in a more phyical way by combining the following two
observations: On the one hand one may note that both in the case of GC on
E4,−
ε1,ε2 , and in the case of the Omega-deformed theory Gε1ε2C on R4 the instan-

ton corrections get localized to the fixed points of the relevant U(1)× U(1)
actions. The two cases are then linked by the key observation from [Pe] that
the residual effect of the curvature of E4

ε1,ε2 in the vicinity of the poles can
be modeled by the Omega-deformation of [N].
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Part II. Quantization of M0
flat

We are now going to describe the quantum theory of M0
flat(C) ' T (C) in

a way that is suitable for the gauge theoretical applications. This will in
particular lead to a precise description of the kernels Kσ2σ1(a2, a1) that
define the Riemann-Hilbert problem for the instanton partition functions.

In Section 6 we will explain how the use of pants decompositions reduces
the task to the specification of a finite set of data. In order to character-
ize the relevant representations of the algebra Funb(Mflat(C)) it suffices to
define the counterparts fo the Wilson- and ’t Hooft loop operators, and to
describe the relations in Funb(Mflat(C)). Transitions between pants decom-
positions (corresponding to the S-duality transformations) can be composed
from elementary moves associated to surfaces of type C0,3, C0,4 and C1,1.
This section summarizes our main results by listing the explicit formulae for
the defining data.

The rest of Part II of this paper (Sections 7 and 8) explains how the
results summarized in Section 6 can be derived. Our starting point is the
quantization of the Teichmüller spaces constructed in [F97, Ka1, CF1, CF2]
which is briefly reviewed in the beginning of Section 7. The main technical
problem is to diagonalize a maximal commuting set of geodesic length oper-
ators which in our context correspond to the set of Wilson loop operators
[T05]. The relevant results from [T05] are summarized in Section 7.

Section 8 describes what remains to be done to complete the derivation
of the results listed in Section 6. An important step, the explicit calculation
of the generators associated to surfaces of genus 0, has recently been taken in
[NT]. A new result of particular importance for us is the explicit calculation
of the central extension of the representation of the Moore-Seiberg groupoid
that is canonically associated to the quantum theory of M0

flat(C) ' T (C).
Another approach to the quantization of moduli spaces of flat connec-

tions for noncompact groups is described in particular in [Gu], and the case
of one-holed tori was previously discussed in [DG].

6. Construction of the quantization of M0
flat(C)

An important feature of the description of Mflat summarised in Section 2.6
is the fact that it exhibits a form of locality in the sense that the descrip-
tion can be reconstructed from the local pieces isomorphic to C0,4 or C1,1

appearing in pants decompositions. In the relation with gauge theory one
may view this locality as a consequence of the description of the A1 theories
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in class S as quiver gauge theories [G09]. The Lagrangian includes only cou-
plings between neighbouring parts of the MS graph. We are now going to
describe in more detail how this locality is reflected in the quantum theory,
and introduce the main data that characterize the quantum theory in such
a description.

6.1. Algebra

Our aim is to construct a one-parameter family of non-commutative defor-
mations Ab(C) ≡ Funalg

b (Mflat(C)) of the Poisson-algebra of algebraic func-
tions on Mflat(C).

For a chosen pants decompostion defined by a cut system C we will
choose as set of generators {(Les, Let , Leu); γ ∈ C} ∪ {Lr; r = 1, . . . , n}. The
generators Les, L

e
t , and Leu are associated to the simple closed curves γes ,

γet , and γeu introduced in Subsection 2.5.4, respectively. The generators Lr
r = 1, . . . , n are associated to the n boundary components of C ' Cg,n. They
will be central elements in Ab(C).

For each subsurface Ce ⊂ C associated to a curve γe in the cut system C
there will be two types of relations: Quadratic relations of the general form

(6.1) Qe(Les, Let , Leu) = 0 ,

and cubic relations

(6.2) Pe(Les, Let , Leu) = 0 .

We have not indicated in the notations that the polynomials Qe and Pe may
depend also on the loop variables associated to the boundary components
of Ce in a way that is similar to the classical case described in Subsec-
tion 2.5.4. In order to describe the relations it therefore suffices to specify
the polynomials Qe and Pe for the two cases Ce ' C0,4 and Ce ' C1,1.

6.1.1. Case Ce ' C0,4 :. Quadratic relation:

Qe(Ls, Lt, Lu) := eπib2LsLt − e−πib2LtLs − (e2πib2 − e−2πib2)Lu(6.3)

− (eπib2 − e−πib2)(L1L3 + L2L4) .
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Cubic relation:

Pe(Ls, Lt, Lu) = −eπib2LsLtLu + e2πib2L2
s + e−2πib2L2

t + e2πib2L2
u(6.4)

+ eπib2Ls(L3L4 + L1L2) + e−πib2Lt(L2L3 + L1L4)

+ eπib2Lu(L1L3 + L2L4) + L2
1 + L2

2 + L2
3 + L2

4

+ L1L2L3L4 −
(
2 cosπb2)2 .

In the limit b→ 0 it matches (2.16).

6.1.2. Case Ce ' C1,1 :. Quadratic relation:

Qe(Ls, Lt, Lu) := e
πi

2
b2LsLt − e−

πi

2
b2LtLs − (eπib2 − e−πib2)Lu .(6.5)

Cubic relation:

Pe(Ls, Lt, Lu) = eπib2L2
s + e−πib2L2

t + eπib2L2
u − e

πi

2
b2LsLtLu(6.6)

+ L0 − 2 cosπb2 .

The quadratic relations represent the deformation of the Poisson bracket
(2.19), while the cubic relations will be deformations of the relations (2.15).

6.2. Quantization of the Darboux coordinates

Natural representations πσ, of Ab(C) by operators on suitable spaces of
functions can be constructed in terms of the quantum counterparts le, ke
of the Darboux variables le, ke. The algebra Ab(C) will be represented on
functions ψσ(l) of the tuple l of h = 3g − 3 + n variables le associated to the
edges of Γσ. The representations πσ will be constructed from operators le,
ke which are defined as

(6.7) le ψσ(l) := le ψσ(l) , ke ψσ(l) := 4πb2
1

i

∂

∂le
ψσ(l) .

We are using the notation b2 for the quantization parameter ~.
The construction of the representations will reflect the locality proper-

ties emphasized above. In order to make this visible in the notations let us
introduce the one-dimensional Hilbert space Hl3l2l1 associated to a hyperbolic
three-holed sphere C0,3 with boundary lengths li, i = 1, 2, 3. We may then
identify the Hilbert space Hσ of square-integrable functions ψσ(l) on Rh+
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with the direct integral of Hilbert spaces

(6.8) Hσ '
∫ ⊕
Rh+

∏
e∈σ1

dle
⊗
v∈σ0

Hl3(v)
l2(v),l1(v) .

We denoted the set of internal edges of the MS graph σ by σ1, and the set
of vertices by σ0.

For C ' C0,4 we may consider, in particular, that pants decomposition
σ = σs depicted on the left of Figure 4. We then have

(6.9) H0,4
s := Hσs '

∫ ⊕
dle Hl4l3le ⊗H

le
l2l1

.

For C = C1,1, using the pants decomposition on the left of Figure 5,

(6.10) H1,1
s '

∫ ⊕
dle Hlel0le .

For each edge e of the MS graph Γσ associated to a pants decomposition
σ one has a corresponding subsurface Ce that can be embedded into C. For
any given operator O on H0,4

s and any edge e of Γσ such that Ce ' C0,4

there is a natural way to define an operator Oe on Hσ acting “locally” only
on the tensor factors in (6.8) associated to Ce.

More formally one may define Oe as follows. Let O ≡ Ol4l3l2l1 be a family
of operators on H0,4

s . It can be considered as a function O(l, k; l1, l2, l3, l4) of
the operators l, k that depends parametrically on l1, l2, l3, l4. Let Γσ be an
MS graph on C. To an edge e of Γσ such that Ce ' C0,4 let us associate the
neighboring edges fi(e), i = 1, 2, 3, 4 numbered according to the convention
defined in Subsection 2.4. We may then use Ol4l3l2l1 to define an operator
Oe on Hσ as

(6.11) Oe := O(le, ke; lf1(e), lf2(e), lf3(e), lf4(e)) .

We are using the notation lf for the operators defined above if f is an
internal edge, and we identify lf ≡ lf if f is an edge that ends in a boundary
component of C. If Ce ' C1,1 one may associate in a similar fashion operators
Oe to families O ≡ Ol0 of operators on H1,1

s .
It will sometimes be useful to introduce “basis vectors” 〈 l | for Hσ, more

precisely distributions on dense subspaces of Hσ such that the wave-function
ψ(l) of a state |ψ 〉 is represented as ψ(l) = 〈 l |ψ 〉. Representing Hσ as



i
i

“1-tes” — 2015/2/5 — 9:41 — page 44 — #44 i
i

i
i

i
i

44 J. Teschner and G. S. Vartanov

in (6.8) one may identify

(6.12) 〈 l | '
⊗
v∈σ0

v
l3(v)
l2(v),l1(v) ,

where vl3l2,l1 is understood as an element of the dual
(
Hl3l2,l1

)t
of the one-

dimensional Hilbert space Hl3l2,l1 .

6.3. Representations of the trace coordinates

It suffices to define the operators Li ≡ πσs(Li), i = s, t, u, for the two cases
C ' C0,4 and C ' C1,1. For these cases we don’t need the labelling by edges
e. In both cases we will have

(6.13) Ls := 2 cosh(l/2) .

The operators Li, i = t, u will be represented as finite difference operators.
Considering the operator Lt representing the ’t Hooft loop operator, for
example, we will find that it can be represented in the form

(6.14) Lt ≡ πσ(Lt)ψσ(l) =
[
D+(l)e+k +D0(l) +D−(l)e−k

]
ψσ(l) ,

with coefficients Dε(l) that may depend on l1, l2, l3, l4 for C ' C0,4, and on
l0 for C ' C1,1.

6.3.1. Case Ce ' C0,4:. The operators Lt and Lu are constructed out of
the quantized Darboux coordinates k and l as follows

(6.15a)

Lt =
1

2(cosh l− cos 2πb2)

(
2 cosπb2(L2L3 + L1L4) + Ls(L1L3 + L2L4)

)
+
∑
ε=±1

1√
2 sinh(l/2)

eεk/2
√
c12(Ls)c34(Ls)

2 sinh(l/2)
eεk/2

1√
2 sinh(l/2)

where the notation cij(Ls) was introduced in (2.21). The operator Lu is then
obtained from Lt my means of a simple unitary operator

Lu =
[
B−1 · Lt · B

]
L1↔L2

,(6.15b)

where we are using the notations Li := 2 cosh(li/2), and

B := eπi(∆(l)−∆(l2)−∆(l1)) , ∆(l) :=
l2

(4πb)2
+

1 + b2

4b
.



i
i

“1-tes” — 2015/2/5 — 9:41 — page 45 — #45 i
i

i
i

i
i

Supersymmetric gauge theories 45

The operator B will later be recognized as representing the braiding of holes
1 and 2.

6.3.2. Case Ce ' C1,1:. We now find the following expressions for the
operators Lt and Lu:

Lt =
∑
ε=±1

1√
sinh(l/2)

eεk/4
√

cosh 2l+l0
4 cosh 2l−l0

4 eεk/4
1√

sinh(l/2)
(6.16a)

The operator Lu can be obtained from Lt by means of a unitary operator T,

Lu =T−1 · Lt · T ,(6.16b)

which is explicitly constructed as

(6.17) T := e−2πi∆(l) .

This operator will later be found to represent the Dehn twist.
It is straightforward to check by explicit calculations that the relations

of Ab(C) are satisfied. It can furthermore be shown that the representations
above are unique, see Appendix A for some details.

We furthermore observe that the operators Li, are positive self-adjoint,
but unbounded. There is a maximal dense subset Sσ inside of Hσ on which
the whole algebra Ab(C) of algebraic functions on Mflat is realized.

6.4. Transitions between representation

For each MS graph σ one will get a representation πσ of the quantized
algebra of Ab(C) of functions on Mflat(C). A natural requirement is that
the resulting quantum theory does not depend on the choice of σ in an
essential way. This can be ensured if there exist unitary operators Uσ2σ1

intertwining between the different representations in the sense that

(6.18) πσ2
(Lγ) · Uσ2σ1

= Uσ2σ1
· πσ1

(Lγ) .

Having such intertwining operators allows one to identify the operators
πσ(Lγ) as different representatives of one and the same abstract element
Lγ of the quantized algebra of functions Ab(C). The intertwining prop-
erty (6.18) turn out to determine the operators Uσ2σ1

essentially uniquely.
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It will be found that the operators Uσ2σ1
can be represented as integral

operators

(6.19) (Uσ2σ1ψσ1)(l2) =

∫
dl1 Aσ2σ1(l2, l1)ψσ1(l1) .

This intertwining relation (6.18) is then equivalent to a system of difference
equations for the kernels Aσ2σ1(l2, l1),

(6.20) πσ2(Lγ) ·Aσ2σ1(l2, l1),= Aσ2σ1(l2, l1) ·←πσ1(Lγ)t .

The notation
←
πσ1(Lγ)t indicates that the transpose of the difference operator

πσ1(Lγ) acts on the variables l1 from the right. πσ2(Lγ) acts only on the
variables l2. The equations (6.20) represent a system of difference equations
which constrain the kernels Aσ2σ1(l2, l1) severely. They will determine the
kernels Aσ2σ1(l2, l1) essentially uniquely once the representations πσ have
been fixed.

6.5. Kernels of the unitary operators between
different representations

We now want to list the explicit representations for the generators of the
Moore-Seiberg groupoid in the quantization of M0

flat(C).
For many of the following considerations we will find it useful to replace

the variables le by

(6.21) αe :=
Q

2
+ i

le
4πb

.

Using the variables αe instead of le will in particular help to compare with
Liouville theory.

6.5.1. B-move.

(6.22) B · vα3
α2α1 = B

α3
α2α1v

α3
α1α2 ,

where

(6.23) B
α3
α2α1 = eπi(∆α3−∆α2−∆α1 ) .

6.5.2. Z-move.

(6.24) Z · vα3
α2α1 = vα2

α1α3
.
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6.5.3. F-move.

(6.25) F · vα4
α3αs ⊗ v

αs
α2α1

=

∫ ⊕
S
dβt Fβsβt

[
α3
α4

α2
α1

]
vα4

βtα1
⊗ vβtα3α2

,

where S = Q
2 + iR+, Q := b+ b−1. The kernel describing the transition

between representation πs and πt is given as

(6.26) Fβsβt
[
α3
α4

α2
α1

]
= (MβsMβt)

1

2

{
α1
α3

α2
α4

αs
αt

}
b
,

where

(6.27) Mβ := |Sb(2β)|2 = −4 sinπ(b(2β −Q)) sinπ(b−1(2β −Q)) ,

and the b-6j symbols
{
α1
α3

α2
α4

αs
αt

}
b

are defined as [PT1, PT2, TeVa]

{
α1
α3

α2
α4

αs
αt

}
b

(6.28)

= ∆(αs, α2, α1)∆(α4, α3, αs)∆(αt, α3, α2)∆(α4, αt, α1)

×
∫
C
du Sb(u− α12s)Sb(u− αs34)Sb(u− α23t)Sb(u− α1t4)

× Sb(α1234 − u)Sb(αst13 − u)Sb(αst24 − u)Sb(2Q− u) .

The expression involves the following ingredients:

• We have used the notations αijk = αi + αj + αk, αijkl = αi + αj +
αk + αl.

• The special function Sb(x) is a variant of the non-compact quantum
dilogarithm, definition and properties being collected in Appendix B.

• ∆(α3, α2, α1) is defined as

∆(α3, α2, α1) =

(
Sb(α1 + α2 + α3 −Q)

Sb(α1 + α2 − α3)Sb(α1 + α3 − α2)Sb(α2 + α3 − α1)

) 1

2

.

• The integral is defined in the cases that αk ∈ Q/2 + iR by a contour
C which approaches 2Q+ iR near infinity, and passes the real axis in
the interval (3Q/2, 2Q).
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6.5.4. S-move.

(6.29) S · vβ1α,β1 =

∫ ⊕
S
dβ2 Sβ1β2(α) vβ2α,β2 ,

where

Sβ1β2(α0) =
√

2
∆(β1, α0, β1)

∆(β2, α0, β2)
(Mβ1Mβ2)

1

2
e
πi

2
∆α0

Sb(α0)

(6.30)

×
∫
R
dt e2πt(2β1−Q)Sb

(
1
2(2β2 + α0 −Q) + it

)
Sb
(

1
2(2β2 + α0 −Q)− it

)
Sb
(

1
2(2β2 − α0 +Q) + it

)
Sb
(

1
2(2β2 − α0 +Q)− it

) .
This ends our list of operators representing the generators of the Moore-
Seiberg groupoid.

6.6. Representation of the Moore-Seiberg groupoid

A projective unitary representation of the Moore-Seiberg groupoid is defined
by the family of unitary operators Uσ2σ1

: Hσ1 → Hσ2 , σ2, σ1 ∈M0(Σ) which
satisfy the composition law projectively

(6.31) Uσ3σ2
· Uσ2σ1

= ζσ3,σ2,σ1 Uσ3σ2
,

where ζσ3,σ2,σ1 ∈ C, |ζσ3,σ2,σ1 | = 1. The operators Uσ2σ1
which intertwine

the representations πσ according to (6.18) will generate a representation of
the Moore-Seiberg groupoid.

6.6.1. Moore-Seiberg equations. Let us next list the explicit represen-
tations for the relations of the Moore-Seiberg groupoid in the quantization
ofM0

flat(C). In order to state some of them it will be convenient to introduce
the operator T representing the Dehn twist such that

(6.32) T · vα3
α2α1 = Tα3v

α3
α2α1 ,

where

(6.33) Tα2 := B
α3
α2α1 B

α1
α3α2

= e−2πi∆α2

We claim that the kernels of the operators B, F, S and Z defined above
satisfy the Moore-Seiberg equations in the following form:
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Genus zero, four punctures

∫
S
dβt Fβsβt

[
α3
α4

α2
α1

]
Bα4

βtα1
Fβtβu

[
α1
α4

α3
α2

]
= Bβs

α2α1
Fβsβu

[
α3
α4

α1
α2

]
Bβu
α3α1

,

(6.34a)

∫
S
dβ2 Fβ1β2

[
α3
α4

α2
α1

]
Fβ2β3

[
α1
α4

α2
α3

]
= δS(β1 − β3) .

(6.34b)

Genus zero, five punctures

∫
S
dβ5 Fβ1β5

[
α3

β2

α2
α1

]
Fβ2β4

[
α4
α5

β5
α1

]
Fβ5β3

[
α4

β4

α3
α2

]
= Fβ1β4

[
β3
α5

α2
α1

]
Fβ2β3

[
α4
α5

α3

β1

]
.

(6.34c)

Genus one, one puncture∫
S
dβ2 Sβ1β2(α)Sβ2β3(α) = δS(β1 − β3) (Bβ1

β1α
)−1 ,(6.34d) ∫

S
dβ2 Sβ1β2(α)Tβ2 Sβ2β3(α) = e6πiχb T−1

β1
Sβ1β3(α)T−1

β3
.(6.34e)

Genus one, two punctures

Sβ1β2(β3)

∫
S
dβ4 Fβ3β4

[ β2
β2

α1
α2

]
Tβ4 T

−1
β2

Fβ4β5
[
α2

β2
α1

β2

](6.34f)

=

∫
S
dβ6 Fβ3β6

[ β1
β1

α1
α2

]
Fβ1β5

[
α1

β6
α2

β6

]
Sβ6β2(β5) eπi(∆α1+∆α2−∆β5 ) .

The delta-distribution δS(β1 − β2) is defined by the ordinary delta-distribution
on the real positive half-line −i(S−Q/2).

6.6.2. Mapping class group action. Having a representation of the
Moore-Seiberg groupoid automatically produces a representation of the map-
ping class group. An element of the mapping class group µ represents a
diffeomorphism of the surface C, and therefore maps any MS graph σ
to another one denoted µ.σ. Note that the Hilbert spaces Hσ and Hµ.σ
are canonically isomorphic. Indeed, the Hilbert spaces Hσ, described more
explicitly in (6.8), depend only on the combinatorics of the graphs σ, but
not on their embedding into C. We may therefore define an operator Mσ(µ) :
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Hσ → Hσ as

(6.35) Mσ(µ) := Uµ.σ,σ .

It is automatic that the operators M(µ) define a projective unitary repre-
sentation of the mapping class group MCG(C) on Hσ.

The operators Uσ2,σ1 intertwine the actions defined thereby, as follows
from (6.31), which implies

(6.36) Mσ2(µ) · Uσ2,σ1 = ησ2σ1
Uµ.σ2, µ.σ1 ·Mσ1(µ) ≡ ησ2σ1

Uσ2, σ1 ·Mσ1(µ),

where ησ2σ1
= ζµ.σ2,σ2,σ1/ζµ.σ2,µ.σ1,σ1 . We may therefore naturally identify

the mapping class group actions defined on the various Hσ.

6.7. Self-duality

For the application to gauge theory we are looking for a representation
of two copies of Funεi(Mflat(C)), i = 1, 2, generated from the two sets of
supersymmetric Wilson- and ’t Hooft loop operators Te,i, We,i one can define
of the four-ellipsoid. The eigenvalues of the Wilson loop operators We,i are
2 cosh(2πae/εi), for i = 1, 2, respectively. This can be incorporated into the
quantum theory of M0

flat(C) as follows.
Let us identify the quantization parameter b2 with the ratio of the param-

eters ε1, ε2,

(6.37) b2 = ε1 / ε2 .

Let us furthermore introduce the rescaled variables

(6.38) ae := ε2
le
4π

.

The representations πσ on functions ψσ(l) are equivalent to representations
on functions φσ(a), defined by

(6.39) le φσ(a) :=
4πae
ε2

ψσ(l) , ke ψσ(l) :=
2

i
ε1

∂

∂ae
φσ(a) .

Let us introduce a second pair of operators

(6.40) l̃e :=
ε2
ε1

le , k̃e :=
ε2
ε1

ke .
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Replacing in the construction of the operators Lγ all operators le by l̃e, all
ke by k̃e, and all variables li by ε2

ε1
li defines operators L̃γ . The operators L̃γ

generate a representation of the algebra Funb−1(Mflat(C)). It can be checked
that the operatos Lγ (anti-)commute with the operators L̃γ . Taken together
we thereby get a representation of Funb(Mflat(C))× Funb−1(Mflat(C)). The
operators Les and L̃es correspond to the Wilson loop operators We,1 and We,2,
respectively.

6.8. Gauge transformations

Note that the requirement that the πσ(Les) act as multiplication operators
leaves a large freedom. A gauge transformation

(6.41) ψσ(l) = eiχ(l)ψ′σ(l) ,

would lead to a representation π′σ of the form (6.14) with ke replaced by

(6.42) k′e := ke + 4πb2 ∂leχ(l) .

This is nothing but the quantum version of a canonical transformation
(l, k)→ (l, k′) with k′e = ke + fe(l). The representation π′σs(Lt) may then
be obtained from (6.14) by replacing Dε(l)→ D′ε(l) with

(6.43) D′ε(ls) = e−iχ(ls) eεkseiχ(ls)e−εks Dε(ls) , ε = −1, 0, 1 .

Locality leads to an important restriction on the form of allowed gauge
transformations χ(l). They should preserve the local nature of the repre-
sentation πχσ . This means that function ν ≡ eiχ must have the form of a
product

(6.44) ν(l) =
∏
v∈σ0

ν(l3(v), l2(v), l1(v)) ,

over functions ν which depend only on the variables associated to the vertices
v of σ. This corresponds to replacing the basis vectors vl3l2,l1 in (6.12) by

vl3l2,l1 = ν(l3, l2, l1)v′l3l2,l1 . We then have, more explicitly,

(6.45) D′ε(l) = dε43(l)dε21(l)Dε(l) ,

where

(6.46) dε43(l) =
ν(l4, l3, l − 4επib2)

ν(l4, l3, l)
, dε21(l) =

ν(l − 4επib2, l2, l1)

ν(l, l2, l1)
,
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It is manifest that the property of the coefficients Dε(l) to depend only on
the variables lf assigned to the nearest neighbours f of an edge e is preserved
by the gauge transformations.

The freedom to change the representations of Ab(C) by gauge transfor-
mations reflects the perturbative scheme dependence mentioned in Subsec-
tion 3.3.3.

7. Relation to the quantum Teichmüller theory

The Teichmüller spaces had previously been quantized using other sets of
coordinates associated to triangulations of C rather than pants decompo-
sitions [F97, CF1, Ka1]. This quantization yields geodesic length operators
quantizing the geodesic length functions on T (C) [CF2, T05]. By diagonaliz-
ing the commutative subalgebra generated by the geodesic length operators
associated to a cut system one may construct a representation of the Moore-
Seiberg groupoid [T05]. We will show that this representation is equivalent
to the one defined in Section 6.

This section starts by presenting the definitions and results from the
quantum Teichmüller theory that will be needed in this paper. We will use
the formulation introduced by R. Kashaev [Ka1], see also [T05] for a more
detailed exposition and a discussion of its relation to the framework of Fock
[F97] and Chekhov and Fock [CF1]. We then review the results from [T05]
on the diagonalization of maximal sets of commuting length operators and
the corresponding representation of the Moore-Seiberg groupoid.

7.1. Algebra of operators and its representations

The formulation from [Ka1] starts from the quantization of a somewhat
enlarged space T̂ (C). The usual Teichmüller space T (C) can then be char-
acterized as subspace of T̂ (C) using certain linear constraints. This is moti-
vated by the observation that the spaces T̂ (C) have natural polarizations,
which is not obvious in the formulation of [F97, CF1].

For a given surface C with constant negative curvature metric and at
least one puncture one considers ideal triangulations τ . Such ideal triangu-
lations are defined by maximal collection of non-intersecting open geodesics
which start and end at the punctures of C. We will assume that the trian-
gulations are decorated, which means that a distinguished corner is chosen
in each triangle.

We will find it convenient to parameterise triangulations τ by their dual
graphs which are called fat graphs ϕτ . The vertices of ϕτ are in one-to-one
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correspondence with the triangles of τ , and the edges of ϕτ are in one-to-one
correspondence with the edges of τ . The relation between a triangle t in τ
and the fat graph ϕτ is depicted in Figure 9. ϕτ inherits a natural decoration
of its vertices from τ , as is also indicated in Figure 9.

ev

e
3

v

1
ev
2

*

t

v

Figure 9: Graphical representation of the vertex v dual to a triangle t. The
marked corner defines a corresponding numbering of the edges that emanate
at v.

The quantum theory associated to the Teichmüller space T (C) is defined
on the kinematical level by associating to each vertex v ∈ ϕ0, ϕ0 = {vertices
of ϕ}, of ϕ a pair of generators pv, qv which are supposed to satisfy the
relations

(7.1)
[
pv , qv′

]
=
δvv′

2πi
.

There is a natural representation of this algebra on the Schwarz space Ŝϕ(C)
of rapidly decaying smooth functions ψ(q), q : ϕ0 3 v → qv, generated from
πϕ(qv) := qv, πϕ(pv) := pv, where

(7.2) qv ψ(q) := qvψ(q) , pv ψ(q) :=
1

2πi

∂

∂qv
ψ(q) .

For each surface C we have thereby defined an algebra Â(C) together with
a family of representations πϕ of Â(C) on the Schwarz spaces Ŝϕ(C) which
are dense subspaces of the Hilbert space K(ϕ) ' L2(R4g−4+2n).

The quantized algebra of functions AT (C) on the Teichmüller spaces
is then defined by the quantum version of the Hamiltonian reduction with
respect to a certain set of constraints. To each element [γ] of the first homol-
ogy H1(C,R) of C one may associate an operator zϕ,γ that is constructed
as a linear combination of the operators pv and qv, v ∈ ϕ0, see [Ka1, T05]
for details. The operators zϕ,γ represent the constraints which can be used
to characterize the subspace associated to the quantum Teichmüller theory
within K(ϕ).
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7.2. The projective representation of the
Ptolemy groupoid on K(ϕ)

The next step is to show that the choice of fat graph ϕ is inessential by con-
structing unitary operators Wϕ2ϕ1 : K(ϕ1)→ K(ϕ2) intertwining the repre-
sentations πϕ1

and πϕ2 .
The groupoid generated by the transitions [ϕ′, ϕ] from a fat graph ϕ to

ϕ′ is called the Ptolemy groupoid. It can be described in terms of genera-
tors ωuv, ρu, (uv) and certain relations. The generator ωuv is the elementary
change of diagonal in a quadrangle, ρu is the clockwise rotation of the deco-
ration, and (uv) is the exchange of the numbers associated to the vertices u
and v. More details and further references can be found in [T05, Section 3].

Following [Ka3] closely we shall define a projective unitary represen-
tation of the Ptolemy groupoid in terms of the following set of unitary
operators

(7.3)
Av ≡ e

πi

3 e−πi(pv+qv)2e−3πiq2
v

Tvw ≡ eb(qv + pw − qw)e−2πipvqw ,
where v, w ∈ ϕ0 .

The special function eb(z) can be defined in the strip |=z| < |=cb|, cb ≡
i(b+ b−1)/2 by means of the integral representation

(7.4) log eb(z) ≡
1

4

i0+∞∫
i0−∞

dw

w

e−2izw

sinh(bw) sinh(b−1w)
.

These operators are unitary for (1− |b|)=b = 0. They satisfy the following
relations [Ka3]

(i) TvwTuwTuv = TuvTvw,(7.5a)

(ii) AvTuvAu = AuTvuAv,(7.5b)

(iii) TvuAuTuv = ζAuAvPuv,(7.5c)

(iv) A3
u = id,(7.5d)

where ζ = e−πic
2
b/3, cb ≡ i

2(b+ b−1). The relations (7.5a) to (7.5d) allow us
to define a projective representation of the Ptolemy groupoid as follows.

• Assume that ωuv ∈ [ϕ′, ϕ]. To ωuv let us associate the operator

u(ωuv) ≡ Tuv : K(ϕ) 3 v → Tuvv ∈ K(ϕ′).
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• For each fat graph ϕ and vertices u, v ∈ ϕ0 let us define the following
operators

Aϕu : K(ϕ) 3 v → Auv ∈ K(ρu ◦ ϕ).

Pϕuv : K(ϕ) 3 v → Puvv ∈ K((uv) ◦ ϕ).

It follows from (7.5a)-(7.5d) that the operators Tuv, Au and Puv can be used
to generate a unitary projective representation of the Ptolemy groupoid.

The corresponding automorphisms of the algebra A(C) are

(7.6) aϕ2ϕ1(O) := ad[Wϕ2ϕ1 ](O) := Wϕ2ϕ1
· O ·Wϕ2ϕ1

.

The automorphism aϕ2ϕ1 generate the canonical quantization of the changes
of coordinates for T̂ (C) from one fat graph to another [Ka1]. Let us note
that the constraints transform under a change of fat graph as aϕ2ϕ1(zϕ1,γ)
= zϕ2,γ .

7.3. Length operators

A particularly important class of coordinate functions on the Teichmüller
spaces are the geodesic length functions. The quantization of these observ-
ables was studied in [CF1, CF2, T05].

Such length operators can be constructed in general as follows [T05]. We
will first define the length operators for two special cases in which the choice
of fat graph ϕ simplifies the representation of the curve γ. We then explain
how to generalize the definition to all other cases.

(i) Let Aγ be an annulus embedded in the surface C containing the curve
γ, and let ϕ be a fat graph which looks inside of Aγ as depicted in
Figure 7.7.

(7.7)
**a b

Annulus Aγ : Region bounded

by the two dashed circles,

and part of ϕ contained in Aγ .
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Let us define the length operators

(7.8)
Lϕ,γ := 2 cosh 2πbpγ + e−2πbqγ , where

pγ :=
1

2
(pa − qa − pb) , qγ :=

1

2
(qa + pa + pb − 2qb) .

(ii) Assume that the curve γ ≡ γ3 is the boundary component labelled by
number 3 of a trinion Pγ embedded in C within which the fat graph
ϕ looks as follows:

(7.9)

v

2 1

3

.

Let γε, ε = 1, 2 be the curves which represent the other boundary com-
ponents of Pγ as indicated in Figure 7.9. Assume that Lγ1 and Lγ2 are
already defined and define Lϕ,γ ≡ Lγ3 by

(7.10) Lϕ,γ = 2 cosh(y2v + y1v) + e−y
2
v Lγ1 + ey

1
v Lγ2 + ey

1
v−y2v ,

where yεv, ε = 1, 2 are defined as y2v = 2πb(qv + zγ2), y1v = −2πb(pv
− zγ1).

In practise it may be necessary to use part (ii) of the definition recursively. In
all remaining cases we will define the length operator Lϕ,γ as follows: There
always exists a fat graph ϕ0 for which one of the two definitions above can
be used to define Lϕ0,γ . Let then

(7.11) Lϕ,γ := aϕ,ϕ0
(Lϕ0,γ) .

It was explicitly verified in [NT] that the definition given above is consistent.
The length operators Lϕ,γ are unambigously defined by (i), (ii) and (7.11)
above, and we have Lϕ′,γ = aϕ′,ϕ(Lϕ,γ) if [ϕ′, ϕ] represents an element of the
Ptolemy groupoid.

The length operators satisfy the following properties:

(a) Spectrum: Lϕ,γ is self-adjoint. The spectrum of Lϕ,γ is simple and
equal to [2,∞) [Ka4]. This ensures that there exists an operator lϕ,γ
— the geodesic length operator — such that Lϕ,γ = 2 cosh 1

2 lϕ,γ .
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(b) Commutativity:[
Lϕ,γ , Lϕ,γ′

]
= 0 if γ ∩ γ′ = ∅.

(c) Mapping class group invariance:

aµ(Lϕ,γ) = Lµ.ϕ,γ , aµ ≡ a[µ.ϕ,ϕ], for all µ ∈ MC(Σ).

It can furthermore be shown that this definition reproduces the classical
geodesic length functions on T (C) in the classical limit.

7.4. The Teichmüller theory of the annulus

As a basic building block let us develop the quantum Teichmüller theory
of an annulus in some detail. To the simple closed curve γ that can be
embedded into A we associate

• the constraint

(7.12) z ≡ zϕ,γ :=
1

2
(pa − qa + pb) ,

• the length operator L ≡ Lϕ,γ , defined as in (7.8).

The operator L is positive-self-adjoint, The functions

(7.13) φs(p) := 〈 p | s 〉 =
sb(s+ p+ cb − i0)

sb(s− p− cb + i0)
.

represent the eigenfunctions of the operator L with eigenvalue 2 cosh 2πbs in
the representation where p ≡ pγ is diagonal with eigenvalue p. It was shown
in [Ka4] that the family of eigenfunctions φs(p), s ∈ R+, is delta-function
orthonormalized and complete in L2(R),∫

R
dp 〈 s | p 〉〈 p | s′ 〉 = δ(s − s′) .(7.14a) ∫

R+

dµ(s) 〈 p | s 〉〈 s | p′ 〉 = δ(p − p′) ,(7.14b)

where the Plancherel measure µ(s) is defined as dµ(s) = 2 sinh(2πbs)
· 2 sinh(2πb−1s)ds.

For later use let us construct the change of representation from the
representation in which pa and pb are diagonal to a representation where z
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and L are diagonal. To this aim let us introduce d := 1
2(qa + pa − pb + 2qb).

We have

[z, d] = (2πi)−1 ,

[p, q] = (2πi)−1 ,

[z, p] = 0 , [z, q] = 0 ,

[d, p] = 0 , [d, q] = 0 .

Let 〈 p, z | be an eigenvector of p and z with eigenvalues p and z, and | pa, pb 〉
an eigenvector of pa and pb with eigenvalues pa and pb, respectively. It follows
easily that

(7.15) 〈 p, z | pa, pb 〉 = δ(pb − z + p)eπi(p+z−pa)2 .

The transformation

(7.16) ψ(s, z) =

∫
R2

dpdpa
sb(s− p+ cb − i0)

sb(s+ p− cb + i0)
eπi(p+z−pa)2Ψ(pa, z − p) ,

will then map a wave function Ψ(pa, pb) in the representation which diagonal-
izes pa, pb to the corresponding wave function ψ(s, z) in the representation
which diagonalizes L and z.

7.5. Teichmüller theory for surfaces with holes

The formulation of quantum Teichmüller theory introduced above has only
punctures (holes with vanishing geodesic circumference) as boundary com-
ponents. In order to generalize to holes of non-vanishing geodesic circumfer-
ence one may represent each hole as the result of cutting along a geodesic
surrounding a pair of punctures.

**

*

Example for a fat graph in the
vicinity of two punctures (crosses)

**

*

The same fat graph
after cutting out the hole

On a surface C with n holes one may choose ϕ to have the following simple
standard form near at most n− 1 of the holes, which will be called “incom-
ing” in the following:
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(7.17)

h
**
h’

h

Incoming boundary component:

Hole h (shaded), together with an annular

neighborhood Ah of h inside C, and

the part of ϕ contained in Ah.

The price to pay is a more complicated representation of the closed curves
which surround the remaining holes.

The simple form of the fat graph near the incoming boundary compo-
nents allows us to use the transformation (7.16) to pass to a representation
where the length operators and constraints associated to these holes are diag-
onal. In order to describe the resulting hybrid representation let us denote
by sb and zb the assignments of values sh and zh to each incoming hole h,
while p assigns real numbers pv to all vertices v of ϕ which do not coincide
with any vertex ĥ or h′ associated to an incoming hole h. The states will then
be described by wave-functions ψ(p; sb, zb) on which the operators Lh and
zh act as operators of multiplication by 2 cosh 2πbsh and zh, respectively.

For a given hole h one may define a projection Ĥ(Ch(s,z)) of Ĥ(C) to
the eigenspace with fixed eigenvalues 2 cosh 2πbs and z of Lh and zh. States
in Ĥ(Ch(s,z)) can be represented by wave-functions ψh(ph), where ph assigns

real values to all vertices in ϕ0 \ {ĥ, h′}. The mapping class action on Ĥ(C)
commutes with Lh and zh. It follows that the operators Mµ ≡ Mµ.ϕ,ϕ repre-
senting the mapping class group action on Ĥ(C) project to operators Ms,z(µ)
generating an action of MCG(C) on Ĥ(Ch(s,z)).

7.6. Passage to the length representation

Following [T05], we will now describe how to map a maximal commut-
ing family of length operators to diagonal form. We will start from the
hybrid representation described above in which the length operators and
constraints associated to the incoming holes are diagonal. Recall that states
are represented by wave-functions ψ(p; sb, zb) in such a representation, where
p : ϕ̃0 7→ R, and ϕ̃0 is the subset of ϕ0 that does not contain ĥ nor h′ for
any incoming hole h. A maximal commuting family of length operators is
associated to a family of simple closed curves which define a pants decom-
position.
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7.6.1. Adapted fat graphs. Let us consider a decorated Moore-Seiberg
graph σ on C, the decoration being the choice of an distinguished bound-
ary component in each trinion of the pants decomposition defined by σ.
The distinguished boundary component will be called outgoing, all others
incoming.

Such a graph σ allows us to define a cutting of C into annuli and trinions.
If cutting along a curve γ in the cut system Cσ produces two incoming
boundary components, let γ± be two curves bounding a sufficiently small
annular neighborhood Aγ of γ in C. Replacing γ by {γ+, γ−} for all such
curves γ produces an extended cut system Ĉσ which decomposes C into
trinions and annuli.

Let us call a pants decomposition σ admissible if no curve γe ∈ Cσ is an
outgoing boundary component for both of the two trinions it may separate.
To admissible pants decompostions σ we may associate a natural fat graph
ϕσ defined by gluing the following pieces:

• Annuli: See Figure (7.7).

• Trinions: See Figure (7.9).

• Holes: See Figure (7.17).

Gluing these pieces in the obvious way will produce the connected graph ϕσ
adapted to the Moore-Seiberg graph σ we started from. The restriction to
admissible fat graphs turns out to be inessential [NT].

7.6.2. The unitary map to the length representation. To each ver-
tex v ∈ ϕσ,0 assign the length operator L2v and L1v to the incoming and Lv
to the outgoing boundary components of the pair of pants Pv containing
v. The main ingredient will be an operator Cv which maps Lv to a simple
standard form,

(7.18) Cv · Lv · (Cv)−1 = 2 cosh 2πbpv + e−2πbqv .

Such an operator can be constructed explicitly as [T05]

(7.19) Cv := e−2πis2qv eb(s
1
v + pv)

eb(s1v − pv)
e−2πis1vpv (eb(qv − s2v))

−1 e−2πi(z2vpv+z1vqv),

where sıv, ı = 1, 2 are the positive self-adjoint operators defined by Lıv =
2 cosh 2πbsıv, and z2v , z

1
v are the constraints associated to the incoming bound-

ary components of Pv.
The map to the length representation is then constructed as follows. Let

us first apply the product of the transformations (7.16) that diagonalizes
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the length operators associated to all incoming holes and embedded annuli.
The resulting hybrid representation has states represented by wave-functions
ψ(p; sA, zA), where p assigns a real number pv to each vertex v of Γσ, whereas
sA (resp. zA) assigns real positive numbers (resp. real numbers) to all7 annuli
A, respectively.

In order to diagonalize all length operators associated to all edges of
the MS graph Γσ it remains to apply an ordered product the operators Cv.
The resulting operator may be represented as the following explicit integral
transformation: Let s be the assignment of real positive numbers se to all
edges e of Γσ. Define

Φ(s, zA) =

∫
Rh

(∏
v∈ϕ̃0

dpv K
z2v z

1
v

s2v s
1
v

(sv, pv)
)
ψ(p; sA, zA) .(7.20)

The kernel Kz2z1
s2s1 (s, p) has the following explicit form [NT]

Kz2z1
s2s1 (s, p) = ζ0

∫
R
dp′ e−2πi(s2−cb)(s2+p′−p+z1)eb(p− z1 − s2 − p′ + cb)

× sb(s1 − p′ − s2)

sb(s1 + p′ + s2)

sb(s+ p′ − cb)
sb(s− p′ + cb)

e−2πiz2(2p−z1) .

The explicit integral transformation (7.20) defines an operator Ĉσ. In order
to get an operator Cσ which maps the representation πTϕσ for the quantum
Teichmüller theory based on the Penner-Fock coordinates to the represen-
tation πσ defined in this paper it suffices to compose V̂σ with the projection
Π defined as φ(s) ≡ (ΠΦ)(s) := Φ(s, 0). This corresponds to imposing the
constraints zϕ,γ ' 0.

7.6.3. Changes of MS-graph. The construction above canonically de-
fines operators Uσ2σ1 intertwining between the representations πσ1 and πσ2

as

(7.21) Uσ2σ1 := Ĉσ2
·Wϕσ2ϕσ1 · Ĉ

−1
σ1
,

where Wϕσ2ϕσ1 is any operator representing the move [ϕσ2 , ϕσ1 ] between
the fat graph associated to σ1 and σ2, respectively. In this way one defines
operators B, F, Z and S associated to the elementary moves between differ-
ent MS-graphs. These operators satisfy operatorial versions of the Moore-
Seiberg consistency conditions [T05, NT], which follow from the relations of
the Ptolemy groupoid (7.5) using (7.21).

7both embedded annuli and annuli representing incoming boundary components
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8. Completing the proofs

In order to prove the consistency of the quantization ofM0
flat(C) defined in

Section 6 we will take the results of [T05] reviewed in the previous Section 7
as a starting point. It remains to

(i) calculate the kernels of the operators F, B, Z and S,

(ii) calculate the explicit form of the difference operators Let in this repre-
sentation, and

(iii) calculate the central extension of the Moore-Seiberg groupoid.

The solution of these tasks will be described in this section.

8.1. The Moore-Seiberg groupoid for surfaces of genus 0

To begin, let us note that the kernels of the operators F, B and Z have been
calculated in [NT], giving the results stated in Section 6.

The key observation [NT] leading to the explicit calculation of the kernels
of F, Z and B is the fact that the operators Cv defined in (7.19) are closely
related to the Clebsch-Gordan maps of the modular double of Uq(sl(2,R))
[PT2]. This observation implies directly that the matrix elements of the
operator F must coincide with the b-6j symbols of [PT2]. Fixing a suit-
able normalization and using the alternative integral representation found
in [TeVa] one gets precisely formula (6.26).

One may furthermore use the results of [BT1] to prove that the operator
B acts diagonally with eigenvalue given in (6.23). For more details we may
refer to [NT].

8.2. Preparation I – Alternative normalizations

The representation for Ab(C) constructed in Section 6 has a severe draw-
back: The appearance of square-roots in the expressions for the loop oper-
ators and for the kernels of Uσ2σ1 obscures some beautiful and profound
analytic properties that will later be found to have important consequences.
We shall therefore now introduce useful alternative normalizations obtained
by writing

(8.1) v
α3
α2α1 = %(α3, α2, α1)ṽ

α3
α2α1 ,
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and taking ṽ
α3
α2α1 as the new basis vector for Hα3

α2α1 . It will be useful to
consider vectors ṽ

α3
α2α1 that may have a norm different from unity. It will be

useful to consider, in particular,

(8.2) %(α3, α2, α1) =
√
C(ᾱ3, α2, α1) ,

where ᾱ3 = Q− α3, and C(α3, α2, α1) is the function defined as

C(α1, α2, α3) =
[
πµγ(b2)b2−2b2

](Q−
∑3
i=1 αi)/b

(8.3)

× Υ0Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1 + α2 + α3 −Q)Υ(α1 + α2 − α3)Υ(α2 + α3 − α1)Υ(α3 + α1 − α2)
.

The expression on the right hand side of (8.3) is constructed out of the
special function Υ(x) which is related to the Barnes double Gamma function
Γb(x) as Υ(x) = (Γb(x)Γb(Q− x))−1. The function C(α1, α2, α3) is known
to be the expression for the three-point function in Liouville theory, as was
conjectured in [DO, ZZ95], and derived in [T01].

Note that the gauge transformation defined by (8.1) will modify the
kernels representing the elementary moves of the MS groupoid. In the rep-
resentation defined via (8.1) one may represent the F-move, for example, by
the kernel

(8.4) F L

β1β2

[
α3
α4

α2
α1

]
=
%(α4, αt, α1)%(αt, α3, α2)

%(α4, α3, αs)%(αs, α2, α1)
Fβ1β2

[
α3
α4

α2
α1

]
.

We’d like to stress that the appearance of the function C(α1, α2, α3) can
be motivated without any reference to Liouville theory by the intention to
make important analytic properties of the kernels representing F and S more
easily visible. One may note, in particular, that Sb(x) = Γb(x)/Γb(Q− x),
from which it is easily seen that the change of normalization removes all
square-roots from the expressions for Fαsαt

[
α3
α4

α2
α1

]
. The kernel F L

αsαt

[
α3
α4

α2
α1

]
is then found to be meromorphic in all of its arguments. A more complete
summary of the relevant analytic properties will be given in the following
Subsection 8.3 below.

8.3. Preparation II – Analytic properties

The kernels representing the operators F and S have remarkable analytic
properties which will later be shown to have profound consequences. The
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origin of the analytic properties can be found in the structure of MC
flat(C)

as an algebraic variety. The simple form of the relations describingMC
flat(C)

as an algebraic variety implies nice analytic properties of the expressions for
the loop operators in terms of the Darboux coordinates, and this leads to
nice analytic properties of the kernels Aσ2σ1(l2, l1) via (6.20).

We will here summarize some of the most important properties.

8.3.1. Symmetries. The kernel representing F has a large group of sym-
metries. We will state them in the normalization which makes the realization
of the respective symmetries most manifest.

• Tetrahedral symmetries: The coefficients
{
α1
α3

α2
α4

αs
αt

}
b

satisfy the tetra-
hedral symmetries

(8.5)
{
α1
α3

α2
α4

αs
αt

}
b

=
{
α2
α4

α1
α3

αs
αt

}
b

=
{
α2
α4

αs
αt

α1
α3

}
b

=
{
α3
α1

α4
α2

αs
αt

}
b
.

• Weyl symmetries: The kernel F L

αsαt

[
α3
α4

α2
α1

]
is symmetric under all

reflections αi → Q− αi, i ∈ {1, 2, 3, 4, s, t}.

The tetrahedral symmetries are easily read off from the integral represen-
tation (6.28). The derivation of the Weyl symmetries can be done with the
help of the alternative integral representation (D.22).

Similar properties hold for the kernel representing the operator S.

• Permutation symmetry: The coefficients Sα1,α2
(α0) satisfy

(8.6) ∆(α1, α0, α1)Sα1α2
(α0) = ∆(α2, α0, α2)Sα2α1

(α0) .

• Weyl symmetries: The kernel SCα1,α2
(α0) is symmetric under all reflec-

tions αi → Q− αi, i ∈ {0, 1, 2}.

In other normalizations one will of course find a slightly more complicated
realization of these symmetries.

8.3.2. Resonances and degenerate values. We will now summarize
some of the most important facts concerning poles, residues and special
values of the intertwining kernels. Proofs of the statements below are given
in Appendix C.

Important simplifications are found for particular values of the argu-
ments. Each αi, i ∈ {1, 2, 3, 4} is member of two out of the four triples T12s :=
(α1, α2, αs), T34s := (α3, α4, αs), T23t := (α2, α3, αt), T14t := (α1, α4, αt). We
will say that a triple Tijk is resonant if there exist εi ∈ {+1,−1} and k, l ∈
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Z≥0 such that

(8.7) ε1
(
α3 − Q

2

)
= ε2

(
α2 − Q

2

)
+ ε3

(
α1 − Q

2

)
+ Q

2 + kb+ lb−1 .

Poles in the variables αi, i ∈ {1, 2, 3, 4} will occur only if one of the triples
T12s, T34s, T23t, T14t is resonant. The location of poles is simplest to describe
in the case of F C, which has poles in αi, i ∈ {1, 2, 3, 4} if and only if either
Tt32 or T4t1 are resonant.

Of particular importance will be the cases where one of αi, i ∈ {1, 2, 3, 4}
takes one of the so-called degenerate values

(8.8) αi ∈ D , D := {αnm , n,m ∈ Z≥0 } , αnm := −nb/2−mb/2 .

Something remarkable may happen under this condition if the triple con-
taining both αi and αs becomes resonant: Let us assume that αs ∈ Fnm(αj),
where

Fnm(αj) =
{
αj − (n− k) b2 − (m− l) 1

2b ,(8.9)

k = 0, 2, . . . , 2n , l = 0, 2, . . . , 2m
}
.

The kernel FC becomes proportional to a sum of delta-distributions sup-
ported on resonances of the triple containing both αt and αi as expressed in
the formulae

lim
α1→αnm

F L

αsαt

[
α3
α4

α2
α1

]
αs∈Fnm(α2)

=
∑

βt∈Fnm(α4)

δ(αt − βt)fαsβt
[
α3
α4

α2
α1

](8.10a)

lim
α2→αmn

F L

αsαt

[
α3
α4

α2
α1

]
αs∈Fnm(α1)

=
∑

βt∈Fnm(α3)

δ(αt − βt)fαsβt
[
α3
α4

α2
α1

]
,

(8.10b)

and similarly for α3 and α4. The delta-distributions δ(αt − βt) on the right
of (8.10) are to be understood as complexified versions of the usual delta-
distributions. δ(α− β) is defined to be the linear functional defined on spaces
T of entire analytic test function t(α) as

(8.11)
〈
δ(α− β) , t

〉
= t(β) ,

with 〈., .〉 : T ′ × T → C being the pairing between T and its dual T ′. The
identities (8.10) are likewise understood as identities between distributions
on T .
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8.4. Intertwining property

In this subsection we are going to describe a quick way to prove that the
unitary operators defined in Subsection 6.5 correctly map the representa-
tions πσ1

to πσ2
, as expressed in Equations (6.18). The proof we will give

here exploits the remarkable analytic properties of the fusion coefficients
Fαsαt

[
α3
α4

α2
α1

]
summarized in Subsection 8.3.

One may, in particular, use the relations (8.10a) in order to derive
from the pentagon relation (6.34c) systems of difference equations relating
Fαsαt

[
α3
α4

α2
α1

]
to the residues of its poles, like for example∑

β5∈Fnm(β2)

fβ1β5

[
α3

β2

α2
α1

]
fβ2β4

[
α4
α5

β5
α1

]
Fβ5β3

[
α4

β4

α3
α2

]
(8.12)

= fβ1β4

[
β3
α5

α2
α1

]
Fβ2β3

[
α4
α5

α3

β1

]
,

valid for α1 = αnm, β1 ∈ Fnm(α2) and β4 ∈ Fnm(α5). Similar equations can
be derived for αi = αnm, i = 2, 3, 4, 5.

Further specializing (8.12) to α1 = −b and β1 = α2, β4 = α5, for exam-
ple, yields a somewhat simpler difference equation of the form

1∑
k=−1

d
(k)
β2β3

[
α4
α5

α3
α2

]
Fβ2+kb,β3

[
α4
α5

α3
α2

]
= 0 .(8.13)

The coefficients d
(k)
β2β3

[
α4
α5

α3
α2

]
are given as

(8.14)

d
(k)
β2β3

[
α4
α5

α3
α2

]
= fα2,β2+kb

[
α3

β2

α2

−b
]
fβ2α5

[
α4
α5

β2+kb
−b

]
− δk,0fα2α5

[
β3
α5

α2

−b
]
.

By carefully evaluating the relevant residues of Fαsαt
[
α3
α4

α2
α1

]
(see Appen-

dix C.4 for a list of the relevant results) one may show that (8.13) is equiv-
alent to the statement (6.20) that the fusion transformation correctly inter-
twines the representation πσs and πσt of Lt associated to the pants decom-
positions σs and σt, respectively. Alternatively one may use this argument
in order to compute the explicit form of the operator Lt in the representation
where Ls is diagonal.

8.5. The S-kernel and the central extension

It remains to calculate the kernel of S and the central extension, as param-
eterized by the real number χb depending on the deformation parameter
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b in (6.34f). One way to calculate the kernel of S directly within quantum
Teichmüller theory is described in Appendix D.1. We conclude that the oper-
ators B, F, S are all represented by kernels that depend meromorphically on
all their variables.

We had noted above that the operators B, F, Z and S satisfy the operato-
rial form of the Moore-Seiberg consistency equations up to projective phases
[T05]. Being represented by meromorphic kernels, this implies the validity
of (6.34) up to projective phases. One may then use special cases of (8.10),
like

(8.15) F L

α1βt

[
α3
α4

0
α1

]
= δ(βt − α3)

in order to check that the relations (6.34a), (6.34c) and (6.34f) have to hold
identically, not just up to a phase. All but one of the remaining projective
phases can be eliminated by a redefinition of the generators. We have chosen
to parameterize the remaining phase by means of the real number χb which
appears in the relation (6.34e). This is of course conventional, redefining
the the kernels by a phase would allow one to move the phase from relation
(6.34e) to other relations. Our convention will turn out to be natural in Part
III of this paper. The explicit formula for the phase χb will be determined
below.

In order to derive a formula for Sβ1β2(α0) we may then consider the
relation (6.34f) in the special case α1 = α2 and take the limit where β1 and
β3 are sent to zero. The details are somewhat delicate. We will here give an
outline of the argument, with more details given in Appendix D. It turns
out to be necessary to send β1 and β3 to zero simultaneously. One will find
a simplification of relation (6.34f) in this limit due to the relation

(8.16) lim
ε↓0

FL

ε,α3

[
ε
ε
α1
α1

]
= δ(α3 − α1) .

Using Equation (8.16) it becomes straightforward to take β1 = β3 = ε and
send ε→ 0 in the relation (6.34f), leading to

F L

0α

[β1
β1
β1
β1

]
SL

β1β2(α)(8.17)

= SL

0β2

∫
S
dβ3 e

−πi(2∆β2+2∆β1−2∆β3−∆α) FL

0β3

[β2
β2
β1
β1

]
FL

β3α

[β1
β2
β1
β2

]
,

where SL

0β := limε→0 S
L

εβ(ε). This formula determines SL

β1β2
(α)/SL

0β2
in terms

of FL

βsβt

[β3
β4
β2
β1

]
. In Appendix D.3 it is shown that one may evaluate the
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integral in (8.17) explicitly, leading to the formula

SL

β1β2(α0) = SL

0β2

N(β1, α0, β1)

N(β2, α0, β2)

e
πi

2
∆α0

Sb(α0)

(8.18)

×
∫
R
dt e2πt(2β1−Q)Sb

(
1
2(2β2 + α0 −Q) + it

)
Sb
(

1
2(2β2 + α0 −Q)− it

)
Sb
(

1
2(2β2 − α0 +Q) + it

)
Sb
(

1
2(2β2 − α0 +Q)− it

) ,
where N(α3, α2, α1) is defined as

N(α3, α2, α1) =
1

Γb(2Q− α1 − α2 − α3)Γb(Q− α1 − α2 + α3)
(8.19)

· Γb(2Q− 2α3)Γb(2α2)Γb(2α1)Γb(Q)

Γb(α1 + α3 − α2)Γb(α2 + α3 − α1)
.

It remains to determine SL

0β2
. In order to do this, let us note (using

formula (D.34c) in Appendix D.4) that the expression (8.18) simplifies for
α0 → 0 to an expression of the form

(8.20) SL

β1β2 := lim
α0→0

SL

β1β2(α0) =
SL

0β2

|Sb(2β2)|2
2 cos (π(2β1 −Q)(2β2 −Q)) .

It then follows from (6.34d) that we must have

(8.21) SL

0β =
√

2|Sb(2β)|2 = −2
5

2 sinπb(2β −Q) sinπb−1(2β −Q) .

One may observe an interesting phenomenon: The analytic continuation of
SL

β1β2
to the value β1 = 0 does not coincide with the limit SL

0β := limε→0 S
L

εβ(ε).
This can also be shown directly using the integral representation (8.18), see
Appendix D.4.

Direct calculation using relation (6.34e) in the special case α = 0 then
shows that χb is equal to

(8.22) χb =
c

24
, c = 1 + 6(b+ b−1)2 .

We conclude that the quantization of Teichmüller space produces a projec-
tive representation of the Moore-Seiberg groupoid with central extension
given in terms of the Liouville central charge c, as is necessary for the rela-
tion between Liouville theory and the quantum Teichmüller theory to hold
in higher genus.



i
i

“1-tes” — 2015/2/5 — 9:41 — page 69 — #69 i
i

i
i

i
i

Supersymmetric gauge theories 69

8.6. General remarks

It should be possible to verify the consistency of the quantum theory of
M0

flat(C) ' T (C) defined in Section 6 without using the relation with the
quantum Teichmüller theory described in Section 7 above. However, the
most difficult statements to prove would then be the consistency conditions
(6.34). We may note, however, that the relations (6.34a)-(6.34c) can be
proven by using the relation between the fusion coefficients Fβsβt

[
α3
α4

α2
α1

]
and the 6j-symbols of the modular double of Uq(sl(2,R)) [PT2, NT], or with
the fusion and braiding coefficients of quantum Liouville theory [PT1, T01,
T03a].

Any proof that the operators defined in Section 6 satisfy the full set of
consistency conditions (6.34) could be taken as the basis for an alternative
approach to the quantum Teichmüller theory that is entirely based on the
loop coordinates associated to pants decompositions rather than triangula-
tions of the Riemann surfaces.

A more direct way to prove the consistency conditions (6.34) could prob-
ably start by demonstrating the fact that the operators Uσ2σ1 correctly inter-
twine the representations πσ according to (6.18). It follows that any operator
intertwining a representation πσ1 with itself like Uσ1σ3Uσ3σ2Uσ2σ1 acts triv-
ially on all generators Lσ1,γ . This should imply that such operators must
be proportional to the identity, from which the validity of the consistency
conditions (6.34) up to projective phases would follow.

However, such an approach would lead into difficulties of functional-
analytic nature that we have not tried to solve. One would need to show, in
particular, that any operator commuting with πσ(Ab(C)) has to be propor-
tional to the identity.

The proof of (6.34) using the quantum Teichmüller theory described in
Section 7 seems to be the most elegant for the time being.

Part III. Conformal field theory

We are now going to describe an alternative approach to the quantization
ofM0

flat(C), and explain why it is intimately related to the Liouville theory.
It will be shown that the conformal blocks, naturally identified with certain
wave-functions in the quantum theory of M0

flat(C), represent solutions to
the Riemann-Hilbert type problem formulated in Subsection 4.3 above.
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This will in particular clarify why we need to have the spurious pref-
actors fσ2σ1

(τ) in the S-duality transformations (4.8), in general. They will
be identified with transition functions of the projective line bundle which
plays an important role in the geometric approach to conformal field theory
going back to [FS]. This observation will lead us to the proper geomet-
ric characterization of the non-perturbative scheme dependence observed in
Subsection 3.3.2, and will allow us to define natural prescriptions fixing the
resulting ambiguities.

9. Classical theory

9.1. Complex analytic Darboux coordinates

In order to establish the relation with conformal field theory it will be useful
to consider an alternative quantization scheme for M0

flat(C) ' T (C) which
makes explicit use of the complex structure on these spaces. In order to do
this, it will first be convenient to identify a natural complexification of the
spaces of interest by representingM0

flat(C) as a connected component of the
real slice Mflat(C) within MC

flat(C).
Let us begin by recalling that natural Darboux coordinates for an impor-

tant component of the moduli space of flat SL(2,C) connections can be
defined in terms of a special class of local systems called opers.

9.1.1. Opers. In the case g = sl2 one may define opers as bundles admit-
ting a connection that locally can be represented as

(9.1) ∇′ = ∂

∂y
+

1

ε
M(y) , M(y) =

(
0 −t(y)
1 0

)
.

The equation ∇′h = 0 for horizontal sections s = (s1, s2)t implies the second
order differential equation (ε2∂2

y + t(y))s2 = 0. Under holomorphic changes
of the local coordinates on C, t(y) transforms as

(9.2) t(y) 7→ (y′(w))2t(y(w)) +
c

12
{y, w} ,

where c ≡ ccl := 6ε2, and the Schwarzian derivative {y, w} is defined as

(9.3) {y, w} ≡
(
y′′

y′

)′
− 1

2

(
y′′

y′

)2

.

Equation (9.2) is the transformation law characteristic for projective c-
connections, which are also called sl2-opers, or opers for short.



i
i

“1-tes” — 2015/2/5 — 9:41 — page 71 — #71 i
i

i
i

i
i

Supersymmetric gauge theories 71

Let Op(C) the space of sl2-opers on a Riemann surface C. Two opers
represented by t and t′, respecticely, differ by a holomorphic quadratic dif-
ferentials ϑ = (t− t′)(dy)2. This implies that the space Op(Cg,n) of sl2-opers
on a fixed surface Cg,n of genus g with n marked points is h = 3g − 3 + n-
dimensional. Complex analytic coordinates for Op(Cg,n) are obtained by
picking a reference oper t0, a basis ϑ1, . . . , ϑh for the vector space of quadratic
differentials, and writing any other oper as

(9.4) t(dy)2 = t0(dy)2 +

h∑
r=1

hr ϑr .

The space of opers forms an affine bundle P(C) over the Teichmüller
space of deformations of the complex structure of C. The monodromy rep-
resentations ρP : π1(Cg,n)→ SL(2,C) of the connections ∇′ will generate a
3g − 3 + n-dimensional subspace in the character variety MC

char(C) of sur-
face group representations. Varying the complex structure of the underly-
ing surface C, too, we get a subspace of MC

char(C) of complex dimension
6g − 6 + 2n. It is important that the mapping P(C)→MC

char(C) defined
by associating to the family of opers ε2∂2

y + t(y; q) its monodromy represen-
tation ρt is locally biholomorphic [He, Ea, Hu].

9.1.2. Projective structures. A projective structure is a particular atlas
of complex-analytic coordinates on C which is such that the transition func-
tions are all given by Moebius transformations

(9.5) y′(y) =
ay + b

cy + d
.

It will be useful to note that there is a natural one-to-one correspondence
between projective structures and opers. Given an oper, in a patch U ⊂ C
locally represented by the differential operator ε2∂2

y + t(y), one may con-
struct a projective structure by taking the ratio

(9.6) w(y) := f1(y)/f2(y) ,

of two linearly independent solutions f1, f2 of the differential equation
(ε2∂2

y + t(y))f(y) = 0 as the new coordinate in U . The oper will be rep-
resented by the differential operator ∂2

w in the coordinate w, as follows
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from (9.2) observing that

(9.7) t(y) =
c

2
{w, y} .

The bundle P(C) may therefore be identified with the space of projective
structures on C.

9.1.3. Complex structure on P(C). The space P(C) is isomorphic as
a complex manifold to the holomorphic cotangent bundle T ∗T (C) over the
Teichmüller space T (C). In order to indicate how this isomorphism comes
about, let us recall some basic results from the complex analytic theory of
the Teichmüller spaces.8

Let Q(C) be the vector space of meromorphic quadratic differentials on
C which are allowed to have poles only at the punctures of C. The poles
are required to be of second order, with fixed leading coefficient. A Beltrami
differential µ is a (−1, 1)-tensor, locally written as µzz̄dz̄/dz. Let B(C) be
the space of all measurable Beltrami differentials such that

∫
C |µϑ| <∞ for

all ϑ ∈ Q(C). There is a natural pairing between Q(C) and B(C) defined as

(9.8) 〈ϑ , µ 〉 :=

∫
C
µϑ .

Standard Teichmüller theory establishes the basic isomorphisms of vector
spaces

TT (C) ' B(C)/Q(C)⊥ ,(9.9)

T ∗T (C) ' Q(C) ,(9.10)

whereQ(C)⊥ is the subspace in B(C) on which all linear forms fϑ, ϑ ∈ Q(C),
defined by fϑ(µ) ≡ 〈ϑ, µ〉 vanish identically.

The relation between P(C) and T ∗T (C) follows from the relation between
Op(C) and the spaceQ(C) of quadratic differentials explained above. What’s
not immediately obvious is the fact there is a natural complex structure on
P(C) that makes the isomorphism P(C) ' T ∗T (C) an isomorphism of com-
plex manifolds.

To see this, the key ingredient is the existence of a holomorphic sec-
tion of the bundle P(C)→ T (C), locally represented by opers ε2∂2

y + t(y; q)

8A standard reference is [Na]. A useful summary and further references to the
original literature can be found in [TT03]. The results that are relevant for us are
very concisely summarized in [BMW, Section 1].
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that depend holomorphically on q. Such a section is provided by the Bers
double uniformization. Given two Riemann surfaces C1 and C2 there exists
a subgroup Γ(C1, C2) of PSL(2,C) that uniformizes C1 and C2 simultane-
ously in the following sense: Considering the natural action of Γ(C1, C2)
on C by Moebius transformations, the group Γ will have a domain of dis-
continuity of the form Ω(C1, C2) = Ω1 t Ω2 such that Ω1/Γ(C1, C2) ' C1,
Ω2/Γ(C1, C2) ' C̄2, where C̄2 is obtained from C2 by orientation rever-
sal. Let π1 : Ω1 → C1 be the corresponding covering map. The Schwarzian
derivatives S(π−1

1 ) and S(π−1
2 ) then define a families of opers on C1 and C̄2,

respectively. The family of opers defined by S(π−1
1 ) depends holomorphically

on the complex structure moduli q2 of C2.

9.1.4. Symplectic structure on P(C). Note furthermore that the cor-
responding mapping P(C) ' T ∗T (C)→MC

char(C) is symplectic in the sense
that the canonical cotangent bundle symplectic structure is mapped to the
Atiyah-Bott symplectic structure ΩJ on the space of flat complex con-
nections [Kaw]. We may, therefore, choose a set of local coordinates q =
(q1, . . . , qh) on T (Cg,n) which are conjugate to the coordinates hr defined
above in the sense that the Poisson brackets coming from this symplectic
structure are

(9.11) { qr , qs } = 0 , {hr , qs } = δr,s , {hr , hs } = 0 .

Let us note that one may also use non-holomorphic sections t′(y; q, q̄) in
P(C)→ T (C) in order to get such Darboux coordinates (q, h). This amounts
to a shift of the variables hr by a function of the variables q,

h′r = hr + νr(q, q̄) , r = 1, . . . , h ,

which clearly preserves the canonical form of the Poisson brackets (9.11).

9.2. Twisted cotangent bundle T ∗
cM(C)

The affine bundle P(C) over T (C) descends to a twisted cotangent bundle
over the moduli space M(C) of complex structures on C. To explain what
this means let us use a covering {Uı; ı ∈ I} of M(C). Within each patch Uı
we may consider local coordinates q = (q1, . . . , qh) forM(C), which may be
completed to a set of local Darboux coordinates (q, h) for P(C) such that

Ω =

h∑
r=1

dhr ∧ dqr .
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P(C) is a twisted holomorphic cotangent bundle overM(C) if the Darboux
coordinates transform as

(9.12) Λ =
∑
r

hır dq
ı
r =

∑
r

hr dq

r − χı ,

with χı being locally defined holomorphic one-forms on Uı ≡ Uı ∩ U. The
collection of one-forms defines a 1-cocycle with values in the sheaf of holo-
morphic one-forms. We may always write χı = ∂gı for locally defined holo-
morphic functions gı on Uı. The functions fı := e2πigı will then satisfy
relations of the form

(9.13) fı3ı2 fı2ı1 = σı3ı2ı1 fı3ı1 ,

where σı3ı2ı1 is constant on the triple overlaps Uı1ı2ı3 ≡ Uı1 ∩ Uı2 ∩ Uı3 . A
collection of functions fı on Uı that satisfy (9.13) defines a so-called pro-
jective line bundle [FS]. The obstruction to represent it as an ordinary line
bundle is represented by a class in Ȟ2(M(C),C∗).

It was pointed out in [FS] that any holomorphic section of P(C)→
T (C), represented by a family of opers ε2∂2

y + t(y; q), can be considered
as a connection on a certain holomorphic projective line bundle Ec. The
connection is locally represented by the one-forms (∂r +Ar)dqr on T (C)
such that

(9.14) Ar(τ) =

∫
C
tµr ,

for a collection of Beltrami differentials µr which represent a basis to the
tangent space TT (C) dual to the chosen set of coordinates qr. One may
define a family of local sections Fı of Ec which are horizontal with respect
to the connection At as solutions to the differential equations

(9.15) ∂r lnFı = −
∫
C
tµr .

The transition functions f cı of Ec are then defined by f cı := F−1
ı F. In general

it will not be possible to choose the integration constants in the solution
of (9.15) in such a way that in (9.13) we find σı3ı2ı1 = 1 for all nontrivial
triple intersections Uı3ı2ı1 .

The resulting projective line bundle Ec is uniquely characterized by the
real number c if the family t is regular at the boundary of M(C). It was
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shown in [FS] that

(9.16) Ec = (λH)
c

2 ,

where λH is the so-called Hodge line bundle, the determinant bundle detΩH ≡∧g ΩH of the bundle of rank g overM(C) whose fiber over a point ofM(C)
is the space of abelian differentials of first kind on C.

9.3. Projective structures from the gluing construction

In Subsection 2.1 we have described how to construct local patches of coordi-
nates q = (q1, . . . , qh) for T (C) by means of the gluing construction. There is
a corresponding natural choice of coordinates H = (h1, . . . , hh) for T ∗T (C)
defined as follows. The choice of the coordinates q defines a basis for TT (C)
generated by the tangent vectors ∂qr which can be represented by Beltrami
differentials µr via (9.9). The dual basis of quadratic differentials ϑr is
then defined by the condition 〈ϑr, µs〉 = δr,s. This defines coordinates hr
for T ∗T (C).

In order to make the coordinates (q, h) for T ∗T (C) into coordinates for
P(C), one needs to choose a section S : T (C)→ P(C). It will be important
to note that the gluing construction allows one to define natural choices for
local sections of P(C) as follows.

Let us represent the three-punctured spheres used in the gluing construc-
tion as C0,3 ∼ P1 \ {0, 1,∞} ∼ C \ {0, 1}. A natural choice of coordinate on
C0,3 is then coming from the coordinate y on the complex plane C. Let
us choose the coordinates around the punctures 0, 1 and ∞ to be y, 1− y
and 1/y, respectively. The surfaces C obtained from the gluing construction
will then automatically come with an atlas of local coordinates which has
transition functions always represented by Moebius transformations (9.5).
It follows that the gluing construction naturally defines families of projec-
tive structures over the multi-discs Uσ with coordinates q, or equivalently
according to Subsection 9.1.2 a section Sσ : Uσ → P(C). One could replace
the representation of C0,3 as C0,3 ∼ P1 \ {0, 1,∞} by C0,3 ∼ P1 \ {z1, z2, z3},
leading to other sections S : Uσ → P(C).

We may define such a section Sσ for any pants decomposition σ. The
sections Sσ define corresponding local trivializations of the projective line
bundle Ec according to our discussion in Subsection 9.2. The trivializations
coming from pants decompositions lead to a particularly simple representa-
tion for the transition functions f cσ2σ1

defining Ec, which will be calculated
explicitly in the following.



i
i

“1-tes” — 2015/2/5 — 9:41 — page 76 — #76 i
i

i
i

i
i

76 J. Teschner and G. S. Vartanov

9.3.1. Transition functions. It is enough to calculate the resulting tran-
sition functions for the elementary moves B, F and S generating the MS
groupoid. In the case of B and F it suffices to note that the gluing of
two three-punctured spheres produces a four-punctured sphere that may be
represented as C0,4 ∼ P1 \ {0, 1, q,∞}, with q being the gluing parameter.
The B-move corresponds to the Moebius transformation y′ = q − y which
exchanges 0 and q. Being related by a Moebius transformation, the projec-
tive structures associated to two pants decompositions σ1 and σ2 related
by a B-move must coincide. We may therefore assume that gσ2σ1 = 1 if σ1
and σ2 differ by a B-move. The F-move corresponds to y′ = 1− y, so that
gσ2σ1 = 1 if σ1 and σ2 differ by a F-move.

The only nontrivial case is the S-move. We assume that C1,1 is obtained
from a three-punctured sphere C0,3 ∼ P1 \ {0, 1,∞} by gluing annular neigh-
borhoods of 0 and ∞. The resulting coordinate yσ on C1,1 is coming from
the coordinate y on C0,3 ∼ P1 \ {0, 1,∞}. A nontrivial transition function
gσ2σ1

will be found if σ1 and σ2 differ by a S-move since the coordinates yσ1

and yσ2 are not related by a Moebius transformation.
In order to see this, it is convenient to introduce the coordinate wσ

related to the coordinate yσ on the complex plane by yσ = ewσ . The coordi-
nate wσ would be the natural coordinate if we had represented C1,1 as

C1,1 ∼
{
w ∈ C; w ∼ w + nπ +mπτ ; n,m ∈ Z

}
\ {0} .

This corresponds to representing C1,1 by gluing the two infinite ends of the
punctured cylinder {w ∈ C; w ∼ w + nπ;n ∈ Z} \ {0}. The corresponding
alternative pants decomposition of C1,1 will be denoted σ̃.

The transition function gσ2σ1 defined by our conventions for the glu-
ing construction will then be nontrivial since the relation yσ = ewσ is not
a Moebius transformation. The relation between the projective structures
associated to pants decompositions σ and σ̃ can be calculated from (9.2),

(9.17) t̃(w) = e2w t(ew)− c

24
.

We thereby get a nontrivial transition function gσ̃σ between the trivializa-
tions of Ec associated to σ and σ̃ equal to c

24τ up to an additive constant.
Let us assume that σ2 is obtained from σ1 by an S-move. The projective

structures associated to the coordinates wσ1 and wσ2 will coincide since the
S-move is represented by the Moebius transformation wσ2 = −wσ1/τ . The
resulting transition function gσ̃2σ̃1 = 1 is trivial. Taken together we conclude
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that

(9.18) gσ2σ1 = gσ2σ̃2
+ gσ̃2σ̃1 + gσ̃1σ1 =

c

24

(
τ +

1

τ

)
+ hσ2σ1 ,

with hσ2σ1 being constant, if σ1 and σ2 are related by an S-move. These are
the only nontrivial transition functions of Ec in the representation associated
to pants decompositions defined above. The argument above determines
gσ2σ1 up to an additive ambiguitiy hσ2σ1 . Precise normalizations fixing this
ambiguity will be defined next.

10. The generating functions W

In the following we will set ε = 1. The parameter ε can easily be restored by
rescaling t(y).

10.1. Definition

We have used two radically different representations for the space P(C):
As cotangent bundle T ∗T (C), on the one hand, and as character variety
MC

char(C) on the other hand. In Section 2.6 we had introduced systems
of Darboux coordinates (l, k) associated to MS-graphs σ for the character
varietyMC

char(C). We had previously introduced Darboux coordinates (q, h)
with the help of the isomorphism P(C) ' T ∗T (C). Important objects are
the generating functions W(l, q) that characterize the transitions between
these sets of coordinates.

Let us briefly explain how the functions W(l, q) are defined. The locally
defined one-forms

∑
r krdlr −

∑
r hrdqr are ∂-closed since

∑
r dkr ∧ dlr =∑

r dhr ∧ dqr [Kaw], therefore locally exact,

(10.1)
∑
r

krdlr −
∑
r

hrdqr = ∂W .

It follows that the change of coordinates (l, k)→ (q, h) can locally be de-
scribed in terms of a generating function W. Let us start, for example, with
the coordinates (q, h). For fixed values of l, let us define the functions hr(l, q)
as the solutions to the system of equations

(10.2) 2 cosh(lr/2) = tr(ρq,h(γr)) ,
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where ρq,h is the monodromy representation of the oper ∂2
y + t0(y; q) +∑

r hrϑr(y). Equation (10.1) ensures integrability of the equations

hr(l, q) = − ∂

∂qr
W(l, q) ,(10.3)

which define W(q, l) up to a function of l. This ambiguity is fixed by the
equations

kr(l, q) =
∂

∂lr
W(l, q) , kr(l, q) ≡ kr(ρq,h(l,q)) ,(10.4)

following from (10.1), where kr(ρ) is the value of the coordinate kr on the
monondromy ρ as defined in Section 2.6.

Comparing (10.3) with (9.15) we realize Fcl(l, q) ≡ eW(l,q)F0(q) as the
local section of the projective holomorphic line bundle Ec that is horizontal
with respect to the connection defined by the family of opers ∂2

y + t0(y; q) +∑
r hr(q, l)ϑr(y).

10.2. Changes of coordinates

We have introduced systems of coordinates (l, k) and (q, h) that both depend
on the choice of a pants decomposition σ. In order to indicate the dependence
on the choices of pants decompositions underlying the defininitions of the
coordinates we shall use the notation Wσ,σ′(l, q) if coordinates (l, k) were
defined using the pants decomposition σ and if coordinates (q, h) were define
using the pants decomposition σ′.

10.2.1. Changes of coordinates (l, k). Let us compare the functions
Wσ2,σ′(l, q) and Wσ1,σ′(l, q) associated to two different choices of pants
decompositions σ2 and σ1, respectively. It is clear that there must exist
a relation of the form

(10.5) Wσ2,σ′(l2, q) = Fσ2σ1(l2, l1(l2, q)) +Wσ1,σ′(l1(l2, q), q) ,

where Fσ2σ1(l2, l1) is the generating function for the change of Darboux
coordinates (k2, l2) associated to σ2 to (k1, l1) associated to σ1, respectively.

The generating function Fσ2σ1(l2, l1) can be represented up to an addi-
tive constant by choosing a path $σ2σ1 ∈ [σ2, σ1] connecting σ1 and σ2, rep-
resenting it as sequence of Moore-Seiberg moves [mN ◦mN−1 ◦ · · · ◦m1], and
adding the generating functions Fmi

representing the changes of Darboux
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variables associated to the moves mi. Changes of the path $σ2σ1 ∈ [σ2, σ1]
will change the result by an additive constant.

The generating functions Fσ2σ1(l2, l1) can be identified as the semiclas-
sical limits of b2 logAσ2σ1(l2, l1), with Aσ2σ1(l2, l1) being the kernels of the
operators generating the representation of the Moore-Seiberg groupoid con-
structed in Part II.

10.2.2. Changes of coordinates (q, h). It turns out that Wσ,σ′(l, q),
considered as function of q, can be extended to functions on all of T (C)
by analytic continuation9. We will use the same notation Wσ,σ′(l, q) for the
result of the analytic continuation.

Comparing the transformation (9.12) of the coordinates hr with (10.3),
we see that the functions Wσ,σ′2(l, q) and Wσ,σ′1(l, q) defined by using differ-
ent pants decompositions for the definition of coordinates (q, h) are related
by the transition functions in the projective line bundle Ec,

(10.6) Wσ,σ′2(l, q) = gσ′2,σ′1(q) +Wσ,σ′1(l, q) .

This reflects the changes of coordinates hr induced by changes of the sections
P(C)→ T (C) associated to transitions between different pants decomposi-
tions.

By combining (10.5) and (10.6) one gets, in particular,

(10.7) Wσ2,σ2
(l2, q) = gσ2,σ1

(q) + Fσ2σ1(l2, l1(l2, q)) +Wσ1,σ1
(l1(l2, q), q) .

In order to define Fσ2σ1(l2, l1(l2, q)) and gσ2,σ1
(q) unambigously one would

need to fix a normalization prescription for Wσ,σ′(l, q).

10.2.3. Mapping class group action. Note that in the case σ′2 = µ.σ′,
σ′1 ≡ σ′ we get from (10.6)

(10.8) Wσ,µ.σ′(l, q) = gµ(q) +Wσ,σ′(l, q) .

We have used the shortened notation

(10.9) gµ(q) := gµ.σ,σ(q) .

9We don’t have a direct proof of this fact at the moment, but we may infer it
indirectly from the corresponding statement about the Liouville conformal blocks
ZL together with the fact that the Wσ,σ(l, q) coincide with the semiclassical limit
b→ 0 of b2 logZL.
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Taken together we find, in the particular case σ = σ′

(10.10) Wµ.σ,µ.σ(l, q) = gµ(q) + Fµ.σ,σ(l, l̃(l, q)) +Wσ,σ(l̃(l, q), q) .

Below we will fix a specific normalization for Wσ,σ(l, q). Thanks to the
uniqueness of analytic continuation the sum of terms Fµ.σ,σ(l, l̃(l, q)) + gµ(q)
appearing in (10.10) will then be uniquely defined.

10.3. Behavior at the boundaries of T (C)

It will be important for us to understand the behavior of the generating
functionsW(l, q) at the boundaries of the Teichmüller spaces T (C). This will
in particular allow us to define a natural choice for the precise normalization
of the functions Wσ,σ(l, q).

By means of pants decompositions one may reduce the problem to the
cases of the four-punctured sphere C = C0,4, and the one-punctured torus
C = C1,1.

10.3.1. Genus zero, four punctures, singular term. Let us first con-
sider C = C0,4 = P1 \ {z1, z2, z3, z4}. We may assume that z1 = 0, z3 = 1,
z4 =∞, and identify the complex structure parameter q with z2. The opers
on C can be represented in the form ∂2

y + t(y), where

(10.11) t(y) =
δ3

(y − 1)2
+
δ1

y2
+

δ2

(y − q)2
+

υ

y(y − 1)
+
q(q − 1)

y(y − 1)

H

y − q
,

where υ = δ4 − δ1 − δ2 − δ3. The relation (10.3) becomes simply

(10.12) H(l, q) = − ∂

∂q
W(l, q) .

This relation determines W(l, q) up to q-independent functions of l. For
q → 0 it may be shown that W(l, q) behaves as

(10.13) W(l, q) = (δ(l1) + δ(l2)− δ(l)) log q +W0(l) +O(q) ,

where δ(l) = 1
4 +

(
l

4π

)2
. Indeed, this is equivalent to the statement that

H(l, q) behaves as

(10.14) H(l, q) ∼ δ(l)− δ(l1)− δ(l2)

q
+O(q0) ,

for q → 0. To prove this, let us first calculate the monodromy of ∂2
y + t(y)

around the pair of points z1 and z2 as function of the parameters q and
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D := qH. It is straightforward to show that the differential equation (∂2
y +

t(y))g(y) = 0 will have a solution of the form

(10.15) g(y) = yν
∞∑
l=0

yl gl +O(q) ,

provided that ν is one of the two solutions of

(10.16) ν(ν − 1) + δ(l1) + δ(l2) +D = 0 +O(q) .

The solution (10.15) has diagonal monodromy e2πiν around (z1, z2) ≡ (0, q).
Note that ν and l are related as ν = 1

2 + i l4π . The Equation (10.14) follows.
A more detailed analysis of the solutions to the differential equation

∂2
y + t(y) shows that the expansion of the function W(l, q) in powers of q is

fully defined by (10.12) combined with the boundary condition (10.13) once
W0(l) is specified.

10.3.2. Genus zero, four punctures, constant term. In order to
determine W0(l) let us recall that the Darboux variable k conjugate to l
is obtained from W(l, q) as

(10.17) k = 4πi
∂

∂l
W(l, q) .

Having fixed a definition for the coordinate k by means of (2.20), we should
therefore be able to determineW(l, q) up to a constant, including the precise
form of W0(l). The result is the following:

Claim 1. The function W0(l) characterizing the asymptotics (10.13) of
W0(l, q) is explicitly given as

(10.18) W0(l) =
1

2
(Ccl(l4, l3, l) + Ccl(−l, l2, l1)) ,

where Ccl(l3, l2, l1) is explicitly given as

Ccl(l3, l2, l1) =

(
1

2
+

i

4π
(l3 + l2 + l1)

)
log(πµ)−

3∑
i=1

Υcl

(
1 + i

2π li
)

+
∑

s1,s2=±
Υcl

(
1
2 + i

4π (l + s1l1 + s2l2 + l3)
)

(10.19)
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with function Υcl(x) defined as

(10.20) Υcl(x) =

∫ x

1/2
du log

Γ(u)

Γ(1− u)
.

The proof is described in Appendix E. A formula for W0(l) that is very
similar (but not quite identical) to (10.18) was previously proposed in [NRS].

Let us note that the function Ccl(l3, l2, l1) coincides with the classical
Liouville action for the three-punctured sphere [ZZ95].

10.3.3. Genus one, one puncture. It remains to discuss the case C =
C1,1. The discussion is similar, the results are the following. The opers on
C1,1 can be represented in the form ∂2

y + t(y), where

(10.21) t(y) = δ(l0)℘(ln y) +H(l, q) ,

with ℘(w) being the Weierstrass elliptic function

(10.22) ℘(w) =
1

w2
+

∑
(n,m) 6=(0,0)

(
1

(w − πn−mπτ)2
− 1

(πn+mπτ)2

)
.

W(l, q) behaves as

(10.23) W(l, q) = −δ log q +W0(l) +O(q) ,

where

(10.24) W0(l) =
1

2
Ccl(l,−l, l0) .

As before we note that (10.3), (10.4) determineW(l, q) only up to a constant,
Equation (10.24) holds for a particular convention fixing this constant.

10.4. The real slice

We had pointed out earlier that the monodromy map induces a map ρ :
P(C)→MC

char(C) that is locally biholomorphic. A natural real slice in
MC

char(C) is MR
char(C), which contains a connected component isomorphic

to M0
flat(C). The corresponding slice in P(C) can locally be described by a

family of opers t(y; q, q̄) that is real analytic in q, q̄.
Let us consider coordinates q, q̄ introduced using a pants decomposition

σ. We will furthermore assume that the local coordinates y are coming from
the projective structure naturally associated to the pants decomposition σ.
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There exists a real analytic function Sσ(q, q̄) on T (C) such that

(10.25) t(y) =

h∑
r=1

hr ϑr , hr = − ∂

∂qr
Sσ(q, q̄) .

The function Sσ(q, q̄) is related to the generating function Wσ,σ(l, q) as

(10.26) Sσ(q, q̄) = 2 Re(Wσ,σ(l(q, q̄), q)) ,

where le(q, q̄) is the length of the geodesic γe in the hyperbolic metric which
corresponds to the complex structure specified by q, q̄.

It is clear that the function Sσ(q, q̄) represents a hermitian metric in a
(generically) projective line bundle Ec. This means more concretely that the
mapping class group acts on Sσ(q, q̄) as follows

(10.27) Sσ(µ.q, µ.q̄) = |f cµ(q)|2 Sσ(q, q̄) , µ ∈ MCG(C) .

The functions f cµ(q) are transition functions of the projective line bundle Ec.
The function Sσ(q, q̄) is nothing but the classical Liouville action. It

should be possible to give a direct proof of this claim along the lines of
[ZT87a, ZT87b, TT03]. It will follow indirectly from the relations with quan-
tum Liouville theory to be described later.

10.5. Scheme dependence

In the above we have given an unambiguous definition of the generating
functions Wσ,σ(l, q). One should keep in mind that the definition was based
on the use of the projective structures that were defined using the gluing
constructions of Riemann surfaces C. This corresponds to choosing partic-
ular local sections t0(y, q) of P(C) in the definition of the coordinates hr
via (9.4).

One may, of course, consider other choices for the local sections t0(y, q)
than the one chosen for convenience above. This would modify the coor-
dinates hr by functions of q, leading to a modification of W(l, q) by some
functionW0(q) that depends on q and parameterically on c. The dependence
of W(l, q) on the variables l would be unaffected.
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11. Quantization

Summary:

• Functions on P(C)  Ring of holomorphic differential operators on
Tg,n.

• Quantization of twisted cotangent bundle T ∗cM(C)  Eigenstates
vq of operators qe: Section of holomorphic vector bundle W(C)⊗
Ec, where W(C): flat projective vector bundle defined from repr. of
MCG(C) defined in Part II.

• Quantization of generating functionsWσ(l, q) matrix elements Fσl (q)
≡ σ〈 vq , δσl 〉σ.

• Results of Parts II and III Riemann-Hilbert type problem for Fσl (q).

11.1. Algebra of functions - representations

11.1.1. We want to describe the quantization of the spaces M0
flat(C) '

T (C) in a way that makes explicit use of the complex structure on these
spaces. In order to do this, we find it convenient to represent M0

flat(C)
as a connected component of the real slice Mflat(C) within MC

flat(C). As
a preliminary, we are going to explain how such a description works in a
simple example.

Let us consider R2 with real coordinates x and p and Poisson bracket
{x, p} = 1. Canonical quantization will produce operators p and x with com-
mutation relations [p, x] = −i~, which can be realized on a space of functions
ψ(x) of a real variable x. This is a simple analog of the quantization scheme
discussed in Part II.

We now want to use a quantization scheme that makes explicit use of
the complex structure of R2 ' C. In order to do this let us consider R2 as a
real slice of the space C2. One could, of course, use complex coordinates x
and p for C2 with Poisson bracket {x, p} = 1, and describe the real slice R2

by the requirement x∗ = x, p∗ = p. Alternatively one may use the complex
analytic coordinates a = x+ ip and a′ = x− ip for C2 which have Poisson
bracket {a, a′} = −2i. The real slice R2 is then described by the equation
a′ = a∗ which expresses a′ as a non-holomorphic function of the complex
analytic coordinate a on the real slice R2.

Quantization of the Poisson bracket {a, a′} = −2i gives operators a,
a′ which satisfy [a, a′] = 2~. This algebra can be represented on functions
Ψ(a) in terms of the holomorphic differential operator ∂

∂a . If a and a′ were



i
i

“1-tes” — 2015/2/5 — 9:41 — page 85 — #85 i
i

i
i

i
i

Supersymmetric gauge theories 85

independent variables, we could also realize the algebra [ā, ā′] = −2~ gen-
erated by the hermitian conjugate operators on non-holomorphic functions
Ψ(a) ≡ Ψ(a, ā).

But in the case of interest, a′ is a non-holomorphic function of a by
restriction to the real slice. We want to point out that it is then natural to
realize [a, a′] = 2~ on holomorphic functions Ψ(a), thereby making explicit
use of the complex structure on the phase space R2. There is a natural
isomorphism with the representation defined on functions ψ(x) of a real
variable x which can be described as an integral transformation of the form

(11.1) Ψ(a) =

∫
dx 〈a|x〉Ψ(x) ,

where the kernel 〈a|x〉 is the complex conjugate of the wave-function ψa(x) =
〈x|a〉 of an eigenstate of the operator a = x + ip with eigenvalue a.

The representation of the Hilbert space using holomorphic functions
Ψ(a) is known as the coherent state representation in quantum mechanics.

11.1.2. In the present case we regard the Darboux coordinates (l, k) as
analogs of the coordinates (x, p), while the coordinates (q, h) take the role
of (a, a∗). Both (k, l) and (q, h) form systems of Darboux coordinates for
T (C). The coordinates qr alone are complex analytic coordinates for Q(C),
and the coordinates hr are non-holomorphic functions hr = hr(q, q̄) – this is
in exact analogy to the case of (a, a∗). Important differences will follow from
the fact that the relation between (q, h) and (l, k) is much more complicated
than the relation between (x, p) and (a, a∗). It is no longer true that hr is
the complex conjugate of qr.

Quantization is canonical on a purely algebraic level: We introduce a
noncommutative algebra with generators q̂ = (q̂1, . . . , q̂h) and ĥ = (ĥ1, . . . ,
ĥh) and relations

(11.2) [ ĥr , q̂s ] = b2 δr,s .

The resulting algebra is the natural quantization of the algebra of holomor-
phic functions on the cotangent bundle T ∗T (C) which will be denoted as
Funb(T

∗T (C)).
There is an obvious realization of the algebra Funb(T

∗T (C)) on functions
Ψ(q) locally defined on subsets of T (C). The generators q̂r corresponding
to the coordinate qr introduced in Section 9.1 are represented as operators
of multiplication by qr, and the generators ĥr associated to the conjugate
”momenta” hr should be represented by the differential operators hr ≡ b2∂qr
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in such a representation,

(11.3) qrΨ(q) = qrΨ(q) , hrΨ(q) = b2
∂

∂qr
Ψ(q) .

The resulting representation should be seen as an analog of the coherent
state representation of quantum mechanics.

11.1.3. As both (k, l) and (q, h) form systems of Darboux coordinates for
T (C), we expect that there exists a unitary equivalence between the rep-
resentations on functions ψ(l) defined in Part II, and the representation on
holomorphic functions Ψ(q) we are constructing here. This means in partic-
ular that there should ultimately be a representation of the scalar product
in H(C) within each of these representations

(11.4) 〈Ψ , Ψ 〉 =

∫
dµ(l) |ψ(l)|2 =

∫
T (C)

dµ(q, q̄) |Ψ(q)|2 .

Normalizability of the wave-functions ψ(q) will restrict both the appearance
of singularities in the analytic continuation of ψ(q) over all of T (C), and
the behavior of ψ(q) at the boundaries of T (C). In our case it is not apriori
obvious how to identify a natural domain for the action of the operators
(q, h) which represent Funb(T

∗T (C)) on holomorphic wave-functions Ψ(q).
However, it is certainly natural to expect that Ψ(q) has to be analytic on all
of T (C). It will furthermore be necessary to demand that the behavior of
Ψ(q) at the boundaries of T (C) is ”regular” in a sense that needs to be made
more precise. A more precise description of the space of wave-functions that
is relevant here will eventually follow from the results to be described below.

It is natural to introduce eigenstates vq of the position operators qr such
that

(11.5) Ψ(q) = 〈 vq , Ψ 〉 .

The definition of the coordinates q will in general require the considera-
tion of a local patch Uı ⊂ T (C). The corresponding wave-functions will be
denoted as Ψı(q) ≡ 〈vıq,Ψ〉. When the coordinates q come from the gluing
construction we will use the index σ instead of ı.

11.1.4. Important further requirements are motivated by the fact that
the cotangent bundle T ∗T (C) descends to a twisted cotangent bundle over
T ∗cM(C) for which coordinates like (q, h) represent local systems of coordi-
nates. Recall that the coordinates H ı and H associated to different patches
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Uı and U are related via (9.12), where

(11.6) χı =
1

2πi
∂ log f cclı .

The relation (9.12) has a natural quantum counterpart,

(11.7)
∑
r

dqır
∂

∂qır
Ψı(q) =

∑
r

dqr
∂

∂qr
Ψ(q)−

1

b2
χı ,

which leads us to require that

(11.8) Ψı(q) = fc
ı(q)Ψ(q) ,

where the parameter c will be given by ccl/b
2 up to corrections of order b2

that will be determined later.
The mapping class group MCG(C) acts by holomorphic transformations

on T (C). We will use the notation µ.τ for the image of a point τ ∈ T (C)
under µ ∈ MCG(C). We require that there is a representation of MCG(C)
on H(C) which is represented on the wave-functions Ψσ(q) naturally as

(11.9) (MµΨ)µ.σ(q) = Ψσ(µ.q) , or M−1
µ vµ.σq = vσµ.q .

This requirement should be understood as one of the properties defining the
representations Ψσ(q), or equivalently the eigenstates vσq .

11.2. Relation between length representation
and Kähler quantization

There should exist expansions of the form

(11.10) Ψσ,σ′(q) =

∫
dl 〈 vσq , δσ

′

l 〉〈 δσ
′

l , Ψ 〉 ≡
∫
dl Fσ,σ′(l, q)ψσ′(l) .

The requirement (11.10) introduces key objects, the eigenfunctions Ψσ,σ′

l (q)
≡ Fσ,σ′(l, q) of the length operators. We will mostly restrict attention to the
diagonal case σ ≡ σ′ in the following, and denote Ψσ

l (q) ≡ Ψσ,σ
l (q).

The wave-functions Ψσ1

l (q) and Ψσ2

l (q) associated to different patches
Uσ1 and Uσ2 are related by an integral transformation of the following form:

(11.11) Ψσ1

l1
(q) = fc

σ1σ2
(q)

∫
dl2 Uσ1σ2(l1, l2)Ψσ2

l2
(q) ,
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as follows from

〈 vσ1
q , δσ1

l1
〉 = fc

σ1σ2
(q) 〈 vσ2

q , δσ1

l1
〉(11.12)

= fc
σ1σ2

(q) 〈 vσ2
q , Uσ1σ2δ

σ2

l1
〉 .

Let us now consider the wave-function Ψµ.σ
l (q) := 〈 vµ.σq , δµ.σl 〉, where

µ ∈ MCG(C). On the one hand,

Ψµ.σ
l (q) = 〈 vµ.σq , δµ.σl 〉 = 〈 vµ.σq , Mµδ

σ
l 〉

(11.9)
= 〈 vσµ.q , δσl 〉 = Ψσ

l (µ.q) .

In the first line we have beeen using that Mµ = Uµ.σ,σ, in passing to the
second the unitarity of Mµ and our requirement (11.9). Another way of
representing the wave-function 〈 vµ.σq , δµ.σl 〉 is found by specializing (11.11)
to the case that σ1 = µ.σ, and σ2 = σ. Taken together we find

(11.13) Ψσ
l1(µ.q) = fc

µ.σ,σ(q)

∫
dl2 Mµ(l1, l2)Ψσ

l2(q) .

Note that one may read (11.13) as expression of the fact that the wave-
functions Ψσ

l (q) represent sections of the holomorphic vector bundle V(C) :=
W(C)⊗ Ec over M(C), where W(C) is the projective local system defined
by the projective representation of the mapping class group constructed
in Part II. For the reader’s convenience we have reviewed the notion of a
projective local system in Appendix F. It is important that the holomorphic
bundle V(C) of Hilbert spaces over M(C) is an ordinary vector bundle as
opposed to a projective one, as the latter can not have any section.

The kernels Mµ(l1, l2) in (11.13) have been defined in Part II. The clas-
sical limits of −b2 logMµ(l1, l2) may be identified with the generating func-
tions Fµ.σ,σ(l1, l2) that appear in (10.10). The transition functions fc

µ.σ,σ(q)

in (11.13) may then be identified with e2πigcµ.σ,σ(q), with gcσ2σ1
(q) being the

transition function of Ec defined via (10.10).
Having specified the data Mµ(l1, l2) and fc

µ.σ,σ(q) defining the vector
bundle V(C), one may regard (11.11) as definition of a Riemann-Hilbert
type problem for the wave-functions Ψσ

l (q). If V(C) were a projective vector
bundle, the Riemann-Hilbert problem (11.13) would not have any solution.
The fact that it has a solution for

(11.14) c =
c

b2
, c = ccl + 13b2 + 6b4 ,
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will immediately follow from the relation with Liouville theory to be exhib-
ited in the next section. Note that

(11.15) c = 13 + 6
(
b2 + b−2

)
,

coincides with the expression of the central extension found in Eq. (8.22)
above.

11.3. Uniqueness and asymptotics

Uniqueness of the solution to the Riemann-Hilbert problem defined above
can then be shown by a variant of the argument used in [T03b]: Any two
solutions of the Riemann-Hilbert problem differ by multiplication with a
meromorphic function with possible poles at the boundary ∂M(C) ofM(C).
In order to fix this ambiguity one needs to fix the asymptotic behavior
at ∂M(C). Let us consider the component of ∂M(C) where the gluing
parameter qe vanishes. We need to distinguish the cases Ce ' C0,4 and Ce '
C1,1, as before.

Let us consider the case Ce ' C0,4. Note that the functions Fσ(l, q) ≡
Ψσ
l (q) represent the quantum counterparts of e−

1

b2
Wσ(l,q),

(11.16) Wσ(l, q) = − lim
b→0

b2 logFσ(l, q) .

In view of the asymptotic behavior (10.13) and (10.23) ofWσ(l, q) it is there-
fore natural to require that the functions Fσ(l, q) should have asymptotics
of the form

(11.17) logFσ(l, q) = (∆(le)−∆(l1)−∆(l2)) log qe + F0,σ(l) +O(qe) .

The functions ∆(l) should coincide with 1
b2 δ(l) up to possible quantum cor-

rections, b2∆(l) = δ(l) +O(b2). The form (11.17) of the asymptotic behav-
ior is equivalent to the validity of a quantized version of the relation (10.14)
which takes the following form

(11.18)
(
b2
[
(1− ν)qe∂qe + ν∂qeqe

]
+ δ(l1) + δ(l2)− δ(l)

)
Fσ(l, q) = 0 .

On the left hand side we have parameterized the ambiguity in the operator
ordering using the parameter ν ∈ [0, 1]. Consistency with the realization of
the B-move, given in (6.23), requires that ν = 1

2 + b2

4 . This determines the
possible quantum corrections in the definition of the function ∆(l) to be
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∆(l) = 1
b2 δ(l) + ν, which gives

(11.19) ∆(l) =

(
l

4πb

)2

+
Q2

4
, Q = b+ b−1 .

In a very similar way one may treat the case Ce ' C1,1. Having fixed the
asymptotics, the solution to the Riemann-Hilbert problem is unique up to
multiplication by a constant.

11.4. Scheme dependence

We had noted above in Subsection 10.5 that the definition of the observables
hr depends on the choice of a projective structure. A similar issue must
therefore be found in the quantum theory concerning the definition of the
operators hr. We have to allow for redefinitions of the operators hr that
correspond to redefinitions of the eigenstates vq by multiplicative factors
which may depend on q.

This freedom is physically irrelevant in the following sense. What is
physically relevant are normalized expectation values of observable like

(11.20)
〈〈
O
〉〉
q

:=
〈 vq ,O vq 〉
〈 vq , vq 〉

.

It is clear that such expectation values are unaffected by redefinitions of the
eigenstates vq by multiplicative, q-dependent factors. This is how the scheme
dependence discussed in Section 3.3 manifests itself in the quantum theory
of M0

flat(C).

12. Relation to quantum Liouville theory

We will now argue that the conformal field theory called Liouville theory
is mathematically best interpreted as the harmonic analysis on Teichmüller
spaces, which is another name for the quantum theory defined in the previous
section. This will partly explain why the Riemann-Hilbert type problems
defined in Sections 4 and 11 are solved by Liouville theory.
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12.1. Virasoro conformal blocks

12.1.1. Definition of the conformal blocks. The Virasoro algebra Virc
has generators Ln, n ∈ Z, and relations

(12.1) [Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0.

Let C be a Riemann surface C with n marked points P1, . . . , Pn. At each of
the marked points Pr, r = 1, . . . , n, we choose local coordinates wr, which
vanish at Pr. We will fix a projective structure on C and assume that the
patches around the points Pr are part of an atlas defining the projective
structure. We associate highest weight representations Vr, of Virc to Pr, r =
1, . . . , n. The representations Vr are generated from highest weight vectors
er with weights ∆r.

The conformal blocks are then defined to be the linear functionals F :
V[n] ≡ ⊗nr=1Vr → C that satisfy the invariance property

(12.2) FC(T [χ] · v) = 0 ∀v ∈ R[n], ∀χ ∈ Vout,

where Vout is the Lie algebra of meromorphic differential operators on C
which may have poles only at P1, . . . , Pn. The action of T [χ] on ⊗nr=1Rr → C
is defined as

T [χ] =

n∑
r=1

id⊗ · · · ⊗ L[χ(r)]
(r−th)

⊗ · · · ⊗ id,(12.3)

L[χ(r)] :=
∑
k∈Z

Lkχ
(r)
k ∈ Virc,

where χ
(r)
k are the coefficients of the Laurent expansions of χ at the points

P1, . . . Pn,

(12.4) χ(wr) =
∑
k∈Z

χ
(r)
k wk+1

r ∂wr ∈ C((wr))∂wr .

It can be shown that the central extension vanishes on the image of the
Lie algebra Vout in

⊕n
r=1 Virc, making the definition consistent. We may

refer to [AGMV, W88] for early discussions of this definition in the physics
literature, and to [BF] for a mathematically rigorous treatment.

The vector space of conformal blocks associated to the Riemann surface
C with representations Vr associated to the marked points Pr, r = 1, . . . , n
will be denoted as CB(V[n], C). It is the space of solutions to the defining
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invariance conditions (12.2). The space CB(V[n], C) is infinite-dimensional
in general. Considering the case n = 1, ∆1 = 0 and g > 1, for example, one
may see this more explicitly by noting that for P1 in generic position10

one may find a basis for Vout generated by vector fields which have a pole
at P1 of order higher than 3g − 3. This follows from the Weierstrass gap
theorem. The conditions (12.2) will then allow us to express the values of F
on arbitrary vectors in V1 in terms of the values

(12.5) F
(
L
k3g−3

3−3g · · ·L
k1
−1e1

)
, k1, . . . , k3g−3 ∈ Z>0 ,

were e1 is the highest weight vector of V1. We note that F is completely
defined by the values (12.5). CB(V[n], C) is therefore isomorphic as a vector
space to the space of formal power series in 3g − 3 variables.

12.1.2. Conformal blocks as expectation values of chiral vertex
operators. Let us also introduce the notation

(12.6) ZL(F , C) = F(e1 ⊗ · · · ⊗ en) ,

for the value of F on the product of highest weight vectors. ZL(F , C) can be
interpreted as a chiral “partition function” from a physicist’s point of view.
It may alternatively be interpreted as an expectation value of a product of n
chiral primary fields inserted into a Riemann surface C. This interpretation
may be expressed using the notation

(12.7) ZL(F , C) = 〈Φn(zn) · · ·Ψ1(z1) 〉F ,

with zr being (local) coordinates of the points Pr. The state-operator corre-
spondence associates chiral vertex operators Φr(vr|zr) to arbitrary vectors
vr ∈ Vr. The vertex operators Φr(vr|zr) are called the descendants of Φr(zr).
The value F(v1 ⊗ · · · ⊗ vn) is therefore identified with the expectation value

(12.8) F(v1 ⊗ · · · ⊗ vn) = 〈Φn(vn|zn) · · ·Ψ1(v1|z1) 〉F .

There are generically many different ways to “compose” chiral vertex oper-
ators. The necessary choices are encoded in the choice of F in a way that
will become more clear in the following.

10We assume that P1 is not a Weierstrass point.
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12.1.3. Deformations of the complex structure of C. A key point
that needs to be understood about spaces of conformal blocks is the depen-
dence on the complex structure of C. There is a canonical way to represent
infinitesimal variations of the complex structure on the spaces of conformal
blocks. By combining the definition of conformal blocks with the so-called
“Virasoro uniformization” of the moduli space Mg,n of complex structures
on C = Cg,n one may construct a representation of infinitesimal motions on
Mg,n on the space of conformal blocks.

The “Virasoro uniformization” of the moduli spaceMg,n may be formu-
lated as the statement that the tangent space TMg,n to Mg,n at C can be
identified with the double quotient
(12.9)

TMg,n = Γ(C \ {P1, . . . , Pn},ΘC)

∖
n⊕
k=1

C((wk))∂k

/
n⊕
k=1

wkC[[wk]]∂k,

where C((wk)) and C[[wk]] are the spaces of formal Laurent and Taylor series
respectively, and Γ(C\ {P1, . . . , Pn},ΘC) is the space of vector fields that
are holomorphic on C \ {P1, . . . , Pn}.

Given a tangent vector ϑ ∈ TMg,n, it follows from the Virasoro uni-
formization (12.9) that we may find an element ηϑ of

⊕n
k=1 C((wk))∂k, which

represents ϑ via (12.9). Let us then consider F(T [ηϑ]v) with T [η] being
defined in (12.3) in the case that the vectors vk are the highest weight vec-
tors ek for all k = 1, . . . , n. (12.9) suggests to define the derivative δϑF(v)
of F(v) in the direction of ϑ ∈ TMg,n as

(12.10) δϑF(v) := F(T [ηϑ]v),

Dropping the condition that v is a product of highest weight vectors one may
use (12.10) to define δϑF in general. Indeed, it is well-known that (12.10)
leads to the definition of a canonical connection on the space CB(V[n], C) of
conformal blocks which is projectively flat, see e.g. [BF] for more details.

There is no hope to integrate the canonical connection on CB(V[n], C)
to produce a bundle over M(C) with fiber at a Riemann surface C being
CB(V[n], C), in general.

The first problem is that the connection defined by (12.10) is not flat,
but only projectively flat. It can only define a connection on the projec-
tivized space PCB(V[n], C), in general. For the readers convenience we have
gathered some basic material on connections on bundles of projective spaces
in Appendix F. As we will see in a little more detail later, one may trivialize
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the curvature at least locally, opening the possibility to integrate (12.10) at
least in some local patches U ⊂M(C).

The other problem is simply that CB(V[n], C) is way too big, as no
growth conditions whatsoever are imposed on the values (12.5) for gen-
eral elements F ∈ CB(V[n], C). One needs to find interesting subspaces of
CB(V[n], C) which admit useful topologies.

We will later even be able to identify natural Hilbert-subspaces
HCB(V[n], C) of CB(V[n], C). The Hilbert-subspaces HCB(V[n], C) will be
found to glue into a bundle of projective vector spaces W(V[n], C) over
M(C) with connection defined via (12.10) – this is the best possible sit-
uation one can hope for in cases where the spaces of conformal blocks are
infinite-dimensional.

12.1.4. Propagation of vacua. The vacuum representation V0 which
corresponds to ∆r = 0 plays a distinguished role. If Φ0(v0|w0) is the vertex
operator associated to the vacuum representation, we have

(12.11) Φ0(e0|w0) = id, Φ0(L−2e0|w0) = T (w0),

where T (z) is the energy-momentum tensor. It can be shown that the spaces
of conformal blocks with and without insertions of the vacuum representa-
tion are canonically isomorphic, see e.g. [BF] for a proof. The isomorphism
between CB(V0 ⊗ V[n], Cg,n+1) and CB(V[n], Cg,n) is simply given by evalua-
tion at the vacuum vector e0 ∈ V0

(12.12) F ′(e0 ⊗ v) ≡ F(v), v ∈ V[n] ,

as is also suggested by (12.11). This fact is often referred to as the “propa-
gation of vacua”.

One may then define the expectation value of the energy momentum
tensor defined by a fixed element F as follows

(12.13) TF (w0) ≡ 〈〈T (w0) 〉〉F := F ′(L−2e0 ⊗ v) /F(v) .

We are assuming that the local coordinate w0 is part of an atlas defining
the chosen projective structure on C. It follows that TF (w0) transforms like
a quadratic differential when going from one patch of this atlas to another.

The invariance property (12.2) allows us to rewrite F ′(L−2e0 ⊗ v) in the
form

(12.14) F ′(L−2e0 ⊗ v) = F ′(e0 ⊗ ϑw0
v) ,
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with ϑw0
= T [χw0

], for a vector field χw0
that has a pole at w0. We may

then use (12.12) to write F ′(e0 ⊗ ϑw0
v) = F(ϑw0

v). It follows that TF (w0)
can be expressed in terms of F as

(12.15) TF (w0) = F(ϑw0
v)/F(v) .

Recalling the definition (12.10), we observe that that the canonical connec-
tion can be characterized in terms of the expectation value TF (w0).

12.1.5. Parallel transport. Note that the value F(ϑw0
v) in (12.15), by

definition, represents the action of a differential operator Tw0
corresponding

to a tangent vector toM(C) on F . This statement may be expressed in the
form of a differential equation for ZL(F , C)

(12.16) Tw0
ZL(F , C) = TF (w0)ZL(F , C) .

The differential equation (12.16) may be re-written using local coordinates
q = (q1, . . . , qh) for T (C) whose variation is described by means of Beltrami-
differentials (µ1, . . . , µh) as

(12.17)
[
∂qr +Ar(F , q)

]
ZL(F , C) = 0 , Ar(F , q) :=

∫
C
µrTF .

Our aim is to use (12.17) to construct a family Fq of conformal blocks over a
neighborhood U ofM(C). We first need to ensure that the partial derivatives
∂
∂qr

whose action is defined via (12.17) do indeed commute. This amounts
to the trivialization of the curvature of the canonical connection within U .

One way do this concretely uses the atlas of local coordinates produced
by the gluing construction of Riemann surfaces. One may consider Beltrami-
differentials µr which are compactly supported in non-intersecting annular
regions Ar on C. Equation (12.17) then describes the variations of the con-
formal blocks with respect to the coordinates qr for T (C) defined by the
gluing construction.

Let us assume that F is such that (12.17) can be integrated to define
a function ZL(F , q) in a neighborhood of a point in M represented by the
surface C. Note that the Taylor expansion of ZL(F , q) is completely defined
by the conformal block F ∈ CB(V[n], C). Derivatives of ZL(F , q) are related
to the values F(T [ηϑ]v) via (12.10). These values can be computed in terms
of the values (12.5) which characterize F by using the defining invariance
condition (12.2). Conversely let us note that the values (12.5) character-
izing a conformal block can be computed from the derivatives of ZL(F , q)
via (12.10).
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It may not be possible to integrate (12.17) for arbitrary F ∈ CB(V[n], C)
as the numbers (12.5) which characterize F may grow too quickly. We will
denote the subspace of CB(V[n], C) spanned by the conformal blocks F for
which (12.17) can locally be integrated to an analytic function ZL(F , q) by
CBan

loc
(V[n], C).

Let us stress that for any given function ZL(q) which is analytic in a
neighborhood of a point q0 in M represented by the surface C one may
define a family of conformal blocks Fq ∈ CBan

loc
(V[n], Cq) by using the Taylor

expansion of ZL(q) around q to define the values (12.5) which characterize
the elements Fq ∈ CB(V[n], Cq). The conformal blocks F in CBan

loc
(V[n], C) are

therefore in one-to-one correspondence with analytic functions ZL(q) defined
locally in open subsets U ⊂M.

12.1.6. Scheme dependence. In the definition of the conformal blocks
we assumed that a projective structure on C had been chosen. This allows us
in particular to define an expectation value TF (w0) of the energy-momentum
tensor which transforms as a quadratic differential when going from one local
coordinate patch on C to another. In order to define families of conformal
blocks using the canonical connection one needs to have families of projective
structures over local patches U ⊂M(C) that allow one to trivialize the
curvature of the canonical connection locally in U . Such families certainly
exist, we had pointed out earlier that the families of projective structures
defined by the gluing construction described in Subsection 9.3 do the job.

One may describe changes of the underlying projective structure by con-
sidering the corresponding oper ∂2

y + t0(y), and modifying t0(y) by addition

of a quadratic differential
∑h

r=1 hr ϑr. The parallel transport defined using
the modified projective structure will remain integrable if there exists a
potential Z0(q) on U such that hr = −∂qrZ0(q). The result will be a modi-
fication of the partition functions ZL(F , q) by a universal factor, a function
Z0(q) of q independent of the choice of F . This may be regarded as the
conformal field theory counterpart of the scheme dependence discussed in
Subsections 3.3 and 10.5.

12.1.7. Mapping class group action. Let CBan(V[n], C) be the sub-
space of CBan

loc
(V[n], C) which can be analytically continued over all of T (C).

Note that TF (w0) defines a projective c-connection on C. Given a family
of conformal blocks Fq defined in a subset U ⊂M one gets a correspond-
ing family of projective connections TFq(w0). If F ∈ CBan(V[n], C) one may
analytically continue the family of projective connections TFq(w0) over all of
T (C). The resulting section of P(C)→ T (C) may then be used to define a
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family of local sections of the projective line bundle Ec as explained in Sub-
section 9.2. It is defined by the Equations (9.15) which coincide with (12.17)
in the present case.

Analytic continuation along closed curves in M(C) defines an action
of the mapping class group on CBan(V[n], C). We will later define a sub-
space CBtemp(V[n], C) of CBan(V[n], C) which is closed under this action. It
may be characterized by the condition that the partition functions ZL(F , q)
are “tempered” in a sense that will be made more precise. The spaces
CBtemp(V[n], Cq) associated to local families Cq of Riemann surfaces glue into
a projective local system WL(C) over M(C).

A vector bundle that is not projective is [FS]

(12.18) VL(C) :=WL(C)⊗ Ec .

Picking a basis for CBtemp(V[n], Cq) in some U ⊂M(C) one may define a sec-
tion of VL(C) by means of analytic continuation. Natural bases for CBtemp(V[n],
Cq) can be defined by means of the gluing construction, as will be explained
next.

12.2. Gluing construction of conformal blocks

12.2.1. Gluing boundary components. Let us first consider a Rie-
mann surface C21 that was obtained by gluing two surfaces C2 and C1

with n2 + 1 and n1 + 1 boundary components, respectively. Given an inte-
ger n, let sets I1 and I2 be such that I1 ∪ I2 = {1, . . . , n}. Let us con-

sider conformal blocks FCi ∈ CB(V [ni]
i , Ci) where V [n2]

2 = (⊗r∈I2Vr)⊗ V0 and

V [n1]
1 = V0 ⊗ (⊗r∈I1Vr) with the same representation V0 assigned to P0,1 and
P0,2, respectively. Let 〈 ., . 〉V0 be the invariant bilinear form on V0. For given
v2 ∈ ⊗r∈I2Vr let Wv2 be the linear form on V0 defined by

(12.19) Wv2(w) := FC2
(v2 ⊗ w), ∀w ∈ V0,

and let C1(q) be the family of linear operators V [n1]
1 → V0 defined as

(12.20) C1(q) · v1 :=
∑

e∈B(V0)

qL0e FC1
(ě⊗ v1),

where we have used the notation B(V0) for a basis of the representation V0

and ě for the dual of an element e of B(V0) defined by 〈 ě, e′ 〉V0 = δe,e′ . We
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may then consider the expression

(12.21) FC21
(v2 ⊗ v1) := Wv2(C1(q) · v1).

We have thereby defined a new conformal block associated to the glued sur-
face C21, see [T08] for more discussion. The insertion of the operator qL0

plays the role of a regularization. It is not a priori clear that the linear form
Wv2 is defined on infinite linear combinations such as C1(q) · v1. Assum-
ing |q| < 1, the factor qL0 will produce an suppression of the contributions
with large L0-eigenvalue, which renders the infinite series produced by the
definitions (12.21) and (12.20) convergent.

An operation representing the gluing of two boundary components of a
single Riemann surface can be defined in a very similar way.

12.2.2. Gluing from pairs of pants. One can produce any Riemann
surface C by gluing pairs of pants. The different ways to obtain C in this
way are labeled by pants decompositions σ. The elementary building blocks
are the conformal blocks associated to three-punctured spheres C0,3, which
are well-known to be uniquely defined up to normalization by the invariance
property (12.2). We fix the normalization such that the value of FC0,3

on
the product of highest weight vectors is

(12.22) FC0,3
(e3 ⊗ e2 ⊗ e1) =

√
C(Q− α3, α2, α1) ,

where C(α3, α2, α1) is the function defined in (8.3).
Using the gluing construction recursively leads to the definition of a

family of conformal blocks Fσβ,q depending on the following set of data:

• σ is a pants decomposition.

• q is the coordinate for Uσ ⊂ T (C) defined by the gluing construction.

• β is an assignment e 7→ βe ∈ S ≡ Q
2 + iR, defined for all edges on Γσ.

The parameters βe determine the Virasoro representations V∆e
to be used

in the gluing construction of the conformal blocks from pairs of pants via

(12.23) ∆e = βe(Q− βe) , c = 1 + 6Q2 .

The partition functions ZL

σ(β, q) defined from Fσβ,q via (12.6) are entire
analytic with respect to the variables αr, meromorphic in the variables βe,
with poles at the zeros of the Kac determinant, and it can be argued that
the dependence on the gluing parameters q is analytic in a open multi-disc
Uσ of full dimension 3g − 3 + n [T03a, T08].
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12.2.3. Change of pants decomposition. It turns out that the con-
formal blocks ZL

σ1
(β, q) constructed by the gluing construction in a neigh-

borhood of the asymptotic region of T (C) that is determined by σ1 have
an analytic continuation to the asymptotic region of T (C) determined by
a second pants decomposition σ2. A fact [T01, T03a, T08]11 of founda-
tional importance for the subject is that the analytically continued con-
formal blocks ZL

σ2
(β2, q) can be represented as a linear combination of the

conformal blocks ZL

σ1
(β1, q), which takes the form

(12.24) ZL

σ2
(β2, q) = Eσ2σ1(q)

∫
dµ(β1) Wσ2σ1

(β2, β1)ZL

σ1
(β1, q) .

The mapping class group acts naturally,

(12.25) ZL

µ.σ(β, q) = ZL

σ(β, µ.q) .

Combining (12.24) and (12.25) yields a relation of the form

(12.26) ZL

σ(β2, µ.q) = Eµ.σ,σ(q)

∫
dµ(β1) Wµ.σ,σ(β2, β1)ZL

σ(β1, q) .

The transformations (12.26) define the infinite-dimensional vector bundle
VL(C) = Ec ⊗WL(C). The constant kernelsWσ2σ1

(β2, β1) represent the tran-
sition functions ofWL(C), while the prefactors Eσ2σ1

(q) can be identified as
transition functions of the projective line bundle Ec.

It suffices to calculate the relations (12.24) in the cases of surfaces C =
C0,4, and C = C1,1. This was done in [T01] for C = C0,4, where a relation
of the form

(12.27) ZL

σs(β1, q) =

∫
S
dβ2 Fβ1β2

[
α3
α4

α2
α1

]
ZL

σt(β2, q) ,

was found. The pants decompositions σs and σt are depicted on the left and
right half of Figure 4, respectively. Using this result, the case C = C1,1 was

11A full proof of the statements made here does not appear in the literature yet.
It can, however, be assembled from building blocks that are published. By using
the groupoid of changes of the pants decompositions it is sufficient to verify the
claim for the cases g = 0, n = 4 and g = 1, n = 1, respectively. For g = 0, n = 4 this
was done in [T01], see also [T03a]. The case of g = 1, n = 1 was recently reduced
to the case g = 0, n = 4 in [HJS].
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treated in [HJS], the result being

(12.28) ZL

σs(β1, q) = eπi
c

12
(τ+1/τ)

∫
S
dβ2 Sβ1β2

(α0)ZL

σt(β2, q) ,

where q = e2πiτ , as usual. The pants decompositions σs and σt are depicted
in Figure 5. The prefactor is due to the fact that the conformal blocks
defined according to the gluing construction differ by a factor of q

c

24 from
the conformal blocks considered in [HJS]. It represents the only non-trivial
transition functions of Ec according to our discussion in Subsection 9.3.1.

We should again remember that the definition of the partition functions
ZL

σ(β, q) was based on a particular scheme, the choice of the projective struc-
ture coming from the gluing construction described above. Using a diffent
scheme would modify the partition functions by β-independent functions
of q.

12.3. Comparison with the Kähler quantization of T (C)

We had previously identified the space of conformal blocks CBan

loc
(V[n], C)

with the space of functions Z(q) locally defined on patches U ⊂ T (C).
This space is naturally acted on by the algebra of differential operators
DO(T (C)), which is directly related to the action of DO(T (C)) on spaces
of conformal blocks defined by means of the Virasoro algebra via (12.9).
These observations already indicate that the space of wave-functions Ψ(q)
that represent the Hilbert space H(C) in the representation coming from the
Kähler quantization scheme should coincide with a suitable Hilbert-subspace
HCB(V[n], C) of CB(V[n], C).

The direct calculations of the kernels Wσ2σ1
(β2, β1) carried out for the

generators Z,B, F in [T01, T03a], and for S in [HJS] yield results that coin-
cide with the kernels defined in Subsection 6.5. It follows that WL coincides
with the projective local system from the quantization of M0

flat(C),

(12.29) WL(C) =W(C) .

This implies immediately that the conformal blocks ZL

σ(β, q) represent the
solution to the Riemann-Hilbert problem that was found to characterize the
wave-functions Ψσ

l (q) which describe the relation between length represen-
tation and Kähler quantization.

These results imply furthermore that there is a natural Hilbert space
structure on the spaces of conformal blocks which is such that the map-
ping class group action becomes unitary. The Hilbert spaces HCB(V[n], C)
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of conformal blocks are isomorphic as representations of the Moore-Seiberg
groupoid to the Hilbert spaces of states constructed in the quantization of
M0

flat(C) in Part II.
Within HCB(V[n], C) one may consider the maximal domains of defini-

tion of the algebras Ab(C) of quantized trace functions, which can be seen
as natural analogs SCB(V[n], C) of the Schwarz spaces of test functions in
distribution theory. The spaces SCB(V[n], C) are Fréchet spaces with topol-
ogy given by the family of semi-norms defined from the expectation values
of the operators representing the elements of Ab(C) on SCB(V[n], C). The
(topological) dual of SCB(V[n], C) is the space of “tempered” distributions
on SCB(V[n], C), which will be identified with the subspace CBtemp(V[n], Cq)
of CB(V[n], C) spanned by “tempered” conformal blocks.

13. Relation to gauge theory

13.1. The solution to the Riemann-Hilbert problem

We have seen that the kernels representing S-duality transformations in the
gauge theory coincide with the kernels representing the changes of pants
decomposition in Liouville theory. Taken together we conclude that

(13.1) Z inst
σ (a,m, τ ; ε1, ε2) = Zspur

σ (α, τ ; b)ZL

σ(β, α, q; b) ,

where the following identifications of parameters have been used,

b2 =
ε1
ε2
, ~2 = ε1ε2 , q = e2πiτ ,(13.2a)

βe =
Q

2
+ i

ae
~
, αr =

Q

2
+ i

mr

~
, Q := b+ b−1 .(13.2b)

The factors Zspur
σ (α, τ ; b) represents the scheme dependence discussed pre-

viously. We expect that the possibility to have such factors is related to the
issues raised by the necessity to introduce a UV regularization in the study
of the gauge theories GC mentioned in Subsection 3.3.

13.2. Chiral ring

Let us recall that there are further supersymmetric observables which should
be realized on H0 or Htop, respectively: the chiral ring operators ur :=
Tr(φ2

r). We are going to propose that the operators ur are directly related
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to the operators hr arising in the quantum theory of M0
flat(C),

(13.3) ur ' ε22hr .

This is nontrivially supported by the calculations of certain examples in
[LMN, FFMP, FMPT].

The existence of a relation of the form (13.3) is natural in view of the
fact that the prepotential

(13.4) F(a,m, τ) := − lim
ε1,ε2→0

ε1ε2Z inst
σ (a,m, τ ; ε1, ε2) ,

satisfies Matone type relations of the general form

(13.5) ur =
∂

∂τr
F(a, τ) .

A proof of the relations (13.5) that is valid for all theories of class S was
given in [GT]. It was based on the observation that both the coordinates
(a, aD) describing the special geometry underlying Seiberg-Witten theory,
and the coordinates (τ, h) introduced above can be seen as systems of Dar-
boux coordinates for the same space T ∗T (C). The prepotential F(a,m, τ) is
the generating function of the change of variables between (a, aD) and (τ, h)
[GT].

This observation can be obtained in the limit for ε2 → 0 from the fact
that

(13.6) W(a,m, τ ; ε2) := − lim
ε1→0

ε1Z inst
σ (a,m, τ ; ε1, ε2) ,

coincides with the generating function W(l, τ) defined above, taking into
account the identifications (13.2). Passing to the limit ε2 → 0, we may observe
that

ε22(∂2
y + t(y)) ≡ ε22∂

2
y + ϑ(y)

turns into the quadratic differential ϑ(y) when ε2 is sent to zero keeping ϑ(y)
finite. Using ϑ(y) we define the Seiberg-Witten curve Σ as usual by

(13.7) Σ = { (v, u) | v2 = ϑ(u) } .

It follows by WKB analysis of the differential equation (ε22∂
2
y + ϑ(y))χ = 0

that the coordinates le have asymptotics that can be expressed in terms of
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the Seiberg-Witten differential Λ on Σ defined such that Λ2 = ϑ(u)(du)2.
We find

(13.8)
le
2
∼ 2π

ε2
ae ,

κe
2
∼ 2π

ε2
aD

e ,

where ae and aD

e are periods of the Seiberg-Witten differential Λ defined as

(13.9) ae :=

∫
γ̂es

Λ , aD

e :=

∫
γ̂et

Λ ,

with γ̂es , γ̂
e
t being cycles on Σ that project to γes and γet , respectively.

It may also be interesting to note that the relation (13.3) relates the
scheme dependence in the definition of the conformal blocks to a possible
quantum-field theoretical scheme-dependence in the definition of the chiral
ring operators ur.

We thereby realize that the quantum theory ofM0
flat(C) studied in this

paper can also be interpreted as the quantization of the geometrical struc-
ture encoding the low energy physics of the A1 gauge theories of class S:
Recall that the prepotential can be characterized as the generating func-
tion for the change of Darboux coordinates (a, aD)↔ (τ, h) for T ∗T (C)
[GT]. Turning on ε2 “deforms” (a, aD) into (k, l), see (13.8). The wave-
functions Ψτ (a) studied in this paper represent the change of coordinates
(k, l)↔ (τ, h) on the quantum level. By combining these observations we
realize that the quantum mechanics of scalar zero modes that represents the
non-perturbative skeleton of GC can be obtained from the Seiberg-Witten
theory of GC in two steps: The first is the deformation of the cotangent bun-
dle T ∗T (C) representing the Seiberg-Witten theory of GC into the twisted
cotangent bundle T ∗ε2T (C) which is isomorphic to M0

flat(C). The second
step is the quantization of T ∗ε2T (C) 'M0

flat(C). The parameter ε1 of the
Omega-deformation plays the role of Planck’s constant in the second step.
The combination of the two steps may be interpreted as the quantization
of the Seiberg-Witten theory of GC , with quantization parameter ~ = ε1ε2.
One has a certain freedom in quantizing T ∗T (C) which is parameterized by
the “refinement parameter” b2 = ε1/ε2.
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Part IV. Appendices

Appendix A. Uniqueness of the representations

Let us look at the question of uniqueness of representation for the alge-
bra (6.3) with the constraint (6.2). Let us write the operators Lt and Lu in
the following form

Lt = D+e
+k +D0 +D−e

−k,(A.1)

Lu = E+e
+k + E0 + E−e

−k,

and substitute these operators into the relation (6.3). Considering the coef-
ficient corresponding to different difference operators e+k, I, e−k one finds
the following relation between the coefficients E = {E+, E0, E−} and D =
{D+, D0, D−}, respectively,

E+ = e−ls/2e−πib2D+

E0 =
1

eπib2 + e−πib2
(LsD0 − L1L3 − L2L4)(A.2)

E− = els/2e−πib2D−,

which is true for the set of coefficients D and E defined in the main text.
Let us now check which constraints we obtain from (6.2). Again combin-

ing the coefficients corresponding to the shift operators e+2k, e+k, I, e−k, e−2k

we see that coefficients of the shift operators e+2k and e−2k are trivially zero
while the conditions for the coefficients of e+k and e−k to be zero are equiv-
alent and take the following form

e−πib2el − e−3πib2

eπib2 + e−πib2
D0 +

e3πib2e−l − e−3πib2

eπib2 + e−πib2
e−kD0e

+k(A.3)

=
e−πib2el/2 − eπib2e−l/2

eπib2 + e−πib2
(L1L3 + L2L4) + e−πib2(L2L3 + L1L4),

which is satisfied for D0 presented in the main text. Let us now write the
constraint appearing from the trivial shift operator
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(e−2πib2 − e2πib2el)D+e
+kD−e

−k + (e−2πib2 − e2πib2e−l)D−e
−kD+e

+k(A.4)

+
e−4πib2 + 2e−2πib2 − 1− el − e−l

(eπib2 + e−πib2)2
D2

0 −
(L1L3 + L2L4)2

(eπib2 + e−πib2)2

+

(
2

(el/2 + e−l/2)(L1L3 + L2L4)

(eπib2 + e−πib2)2
+ e−πib2(L2L3 + L1L4)

)
D0

+ e2πib2(el/2 + e−l/2)2 − (eπib2 + e−πib2)2

+ eπib2(el/2 + e−l/2)(L3L4 + L1L2)

+ L2
1 + L2

2 + L2
3 + L2

4 + L1L2L3L4 = 0,

which is satisfied by (6.15).
Let us look more closely at the constraint (A.3). We already know that

there exists one solution D0 but it might happen that there are additional
solutions. Imagine that the solution we have could be modified as follows,

D0 = D
(0)
0 +Dadd

0 ,

where D
(0)
0 is coefficient in (6.15). Dadd

0 would have to be a solution to the
following equation

e−πib2el − e−3πib2

eπib2 + e−πib2
Dadd

0 +
e3πib2e−l − e−3πib2

eπib2 + e−πib2
e−kDadd

0 e+k = 0.

A solution exists and is equal to

Dadd
0 = D̃0 e

− l2

8πib2
Sb(− l

2πib + b)Sb(− l
2πib − b)

Sb(− l
2πib)Sb(−

l
2πib + 2b)

(A.5)

= e−
l2

8πib2
sinh( l2 + πib2)

sinh( l2 − πib2)
,

with D̃0 being an 4πib2-periodic functions of l. However, any non-vanishing
modification of this kind would spoil the reality of the solution.

For analysing the constraint (A.4) we introduce

(A.6) E−+ = D−e
−kD+e

+k,

and observe that

D+e
+kD−e

−k = e+k
(
e−kD+e

+kD−e
−k) = e+kE−+e

−k,
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which allows us to rewrite (A.4) as

(e−2πib2 − e2πib2el)e+kE−+e
−k + (e−2πib2 − e2πib2e−l)E−+(A.7)

+
e−4πib2 + 2e−2πib2 − 1− el − e−l

(eπib2 + e−πib2)2
D2

0 −
(L1L3 + L2L4)2

(eπib2 + e−πib2)2

+

(
2

(el/2 + e−l/2)(L1L3 + L2L4)

(eπib2 + e−πib2)2
+ e−πib2(L2L3 + L1L4)

)
D0

+ e2πib2(el/2 + e−l/2)2 − (eπib2 + e−πib2)2

+ eπib2(el/2 + e−l/2)(L3L4 + L1L2)

+ L2
1 + L2

2 + L2
3 + L2

4 + L1L2L3L4 = 0.

As in the case of constraint for D0 we consider an additive deviation to E
(0)
−+,

E−+ = E
(0)
−+ + Eadd

−+ ,

and find the following equation for Eadd
−+ :

(A.8)
(
e−2πib2 − e2πib2el

)
e+kEadd

−+ e
−k +

(
e−2πib2 − e2πib2e−l

)
Eadd
−+ = 0,

whose solution is

(A.9) Eadd
−+ = Ẽ0

e−
l2

8πib2
− l

2

sinh l
2 sinh( l2 − 2πib2)

,

with Ẽ0 being 4πib2-periodic. Again one sees that solution (A.9) would spoil
the reality of the solution.

The only freedom we are left with is the gauge transformation since
(A.7) fixes only the product (up to the shift) of D− and D+. To see more
clearly the conclusion above let us take the classical limit of constraints (A.3)
and (A.4) which become

(el/2 − e−l/2)2D0 = Ls(L1L3 + L2L4) + 2(L2L3 + L1L4),(A.10)

which defines D0 unambiguously. Let us now consider the condition obtained
by comparing coefficients of the trivial shift operator
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−(el/2 − e−l/2)2D+D− −
1

4
(el/2 − e−l/2)2D2

0 −
1

4
(L1L3 + L2L4)2(A.11)

+

(
1

4
Ls(L1L3 + L2L4) + (L2L3 + L1L4)

)
D0 + L2

s − 4

+Ls(L3L4 + L1L2) + L2
1 + L2

2 + L2
3 + L2

4 + L1L2L3L4 = 0,

from which one finds unambiguously D+D−. The only freedom is to multiply
D+ by eπiχ(l) and D− by e−πiχ(l), i. e. the gauge freedom.

Let us finally remark that assuming the cyclic symmetry for algebra of
loop operators under permutations of two points on a sphere

(A.12) Ls →2↔3 Lt →1↔2 Lu →2↔4 Ls

one gets the cyclic symmetry for the cubic relation (6.2), so in a sense the
two first lines in (6.2) are fixed by cyclic symmetry.

Appendix B. Special functions

B.1. The function Γb(x)

The function Γb(x) is a close relative of the double Gamma function studied
in [Br]. It can be defined by means of the integral representation

(B.1) log Γb(x) =

∞∫
0

dt

t

(
e−xt − e−Qt/2

(1− e−bt)(1− e−t/b)
− (Q− 2x)2

8et
− Q− 2x

t

)
.

Important properties of Γb(x) are

functional equation Γb(x+ b) =
√

2πbbx−
1

2 Γ−1(bx)Γb(x).(B.2)

analyticity Γb(x) is meromorphic, it has poles only(B.3)

at x = −nb−mb−1, n,m ∈ Z≥0.

A useful reference for further properties is [Sp].

B.2. Double Sine function

The special functions denoted eb(x) was introduced under the name of quan-
tum dilogarithm in [FK2]. These special functions are simply related to the
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Barnes double Gamma function [Br], and were also introduced in studies of
quantum groups and integrable models in [F2, Ru, Wo, V].

In the strip |Im(x)| < Q
2 , function eb(x) has the following integral repre-

sentation

(B.4) eb(x) = exp

{
−
∫

R+i0

dt

4 t

e−2itx

sinh bt sinh t
b

}
,

where the integration contour goes around the pole t = 0 in the upper half–
plane. The function sb(x) is then related to eb(x) as follows

(B.5) sb(x) = e
iπ

2
x2+ iπ

24
(b2+b−2)eb(x) .

The analytic continuation of sb(x) to the entire complex plane is a mero-
morphic function with the following properties

(B.6) functional equation
sb(x+ i

2b
±1)

sb(x− i
2b
±1)

= 2 cosh(πb±1x) ,

(B.7) reflection property sb(x) sb(−x) = 1 ,

(B.8) complex conjugation sb(x) = sb(−x̄) ,

(B.9) zeros / poles (sb(x))±1 = 0 ⇔ ±x ∈
{

iQ2 +nb+mb−1;n,m ∈ Z≥0
}
,

(B.10) residue Res
x=−iQ

2

sb(x) =
i

2π
,

(B.11)

asymptotics sb(x) ∼

{
e−

iπ

2
(x2+ 1

12
(b2+b−2)) for |x| → ∞, |arg(x)| < π

2 ,

e+ iπ

2
(x2+ 1

12
(b2+b−2)) for |x| → ∞, |arg(x)| > π

2 .

The behavior for b→ 0 is given as

(B.12) eb

( v

2πb

)
= exp

(
− 1

2πb2
Li2(−ev)

)(
1 +O(b2)

)
.
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In our paper we often use the special function Sb(x) defined by

(B.13) Sb(x) := sb(ix− i
2Q) .

In terms of Γb(x) the double Sine-function is given as

Sb(x) =
Γb(x)

Γb(Q− x)
.

We will use the properties

self–duality Sb(x) = Sb−1(x) ,(B.14)

functional equation Sb(x+ b±1) = 2 sin(πb±1x)Sb(x) ,(B.15)

reflection property Sb(x)Sb(Q− x) = 1 .(B.16)

B.3. Integral identities

We will use the following set of integral identities.

Proposition 1.

∫
iR
dz

3∏
i=1

Sb(µi − z)Sb(νi + z) =

3∏
i,j=1

Sb(µi + νj),(B.17)

where the balancing condition is
∑3

i=1(µi + νi) = Q.

This identity was recently understood as a pentagon identity in [KLV].

Proposition 2.

1

2

∫
iR
dz

Sb(µ± z)Sb(ν ± z)
Sb(±2z)

e−2πiz2(B.18)

= Sb(µ+ ν)e−
1

2
πi(µ−ν)2+ 1

2
πiQ(µ+ν).

The following notation has been used Sb(α± u) := Sb(α+ u)Sb(α− u).
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Proposition 3.∫
iR
dy

3∏
i=1

Sb(µi − y)

2∏
i=1

Sb(νi + y)eπiλye−
1

2
πiy2(B.19)

=

3∏
i=1

Sb(µi + ν2)e
1

2
πiλ2

e
1

8
πiQ2

e−
1

2
πiQ(λ+ν1)

× 1

2

∫
iR
dy

∏3
i=1 Sb(µi + σ ± y)Sb(ν1 − σ ± y)

Sb(±2y)
e−2πiy2 ,

where

2σ = Q−
3∑
i=1

µi − ν2,

and the following balancing condition is satisfied

3∑
i=1

µi +

2∑
i=1

νi = λ+
Q

2
.

The proof of the above Propositions is easily obtained from the reduc-
tion of elliptic hypergeometric integrals to the hyperbolic level [DS] (the
details can be found in [Bu] or in [SV11]). Identity B.17, B.18 and B.19 are
equivalent to Theorem 5.6.7, Theorem 5.6.6 and Theorem 5.6.17 in [Bu],
respectively.

Appendix C. Analytic properties of intertwining kernels

C.1. Preparations

It will be convenient to factorize the expression for F L

αsαt

[
α3
α4

α2
α1

]
as

F L

αsαt

[
α3
α4

α2
α1

]
=

Γb(2Q− 2αs)Γb(2αs)

Γb(2Q− 2αt)Γb(2αt)
×
{
α1
α3

α2
α4

αs
αt

}C
b

(C.1)

with b-6j symbols
{
α1
α3

α2
α4

αs
αt

}C
b

in the normalization from Subsection 8.2
given by the formula

{
α1
α3

α2
α4

αs
αt

}C
b

:=
T (αt, α3, α2)T (α4, αt, α1)

S(αs, α2, α1)S(α4, α3, αs)
× J ,(C.2)
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where

J :=

∫
C
du Sb(u− α12s)Sb(u− αs34)Sb(u− α23t)Sb(u− α1t4)

× Sb(α1234 − u)Sb(αst13 − u)Sb(αst24 − u)Sb(2Q− u) ,

and

S(α3, α2, α1) = Γb(2Q− α123)Γb(α
3
12)Γb(α

1
23)Γb(α

2
31)(C.3)

T (α3, α2, α1) = Γb(α123 −Q)Γb(Q− α3
12)Γb(Q− α1

23)Γb(Q− α2
31) .(C.4)

We are using the notations αijk = αi + αj + αk, α
k
ij = αi + αj − αk.

C.2. Resonant values

Singular behavior of the integral J could be caused by the behavior of the
integrand at infinity, or by the pinching of the contour C between poles of the
integrand. It is not hard to check that the integral converges for u→∞ for
all values of the variables αi. It is furthermore straightforward to check that
the pinching of the contour of integration in (C.3) only occurs when at least
one of the triples Ts12, T43s, Tt32, T4t1 is resonant, using the terminology from
Subsection 8.3.2. Taking into account the poles and zeros of the prefactors

in (C.1) one easily verifies that the b-6j symbols
{
α1
α3

α2
α4

αs
αt

}C
b

are entire in
αs, and have poles iff one of Tt32, T4t1 is resonant.

We are going to consider the b-6j symbols
{
α1
α3

α2
α4

αs
αt

}C
b

as distribution on
a space T of functions f(αt) which are (i) entire, (ii) decay faster than any
exponential for αr →∞ along the axis Q/2 + iR, and (iii) Weyl-symmetric
f(αt) = f(Q− αt). For αi ∈ Q/2 + iR, i = 1, 2, 3, 4, s one defines

(C.5) Dαs

{
α1
α3

α2
α4

}
(f) :=

1

2

∫
Q/2+iR

dαt
{
α1
α3

α2
α4

αs
αt

}C
b
f(αt) .

Assuming αi ∈ Q/2 + iR, i = 1, 2, 3, 4, one easily checks that f̃(αs) :=
Dαs

{
α1
α3

α2
α4

}
(f) has the properties (i)-(iii) above. This means that the oper-

ator F maps T to itself.
Consider now the analytic continuation of Dαs

{
α1
α3

α2
α4

}
with respect to

the parameter α2. It can always be represented in the form (C.5), but the
contour of integration may need to be deformed. The result can generically
be represented as an integral over the original contour Q/2 + iR plus a
finite sum over residue terms. The residue terms define generalized delta-
distributions as introduced in (8.11).
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C.3. Degenerate values

We are particularly interested in the case where takes one of the degenerate
values

(C.6) α2 = −kb/2− lb−1/2 .

Note that this is a necessary condition for having a double resonance,

(C.7) αs12 = −k′b− l′b−1 ∧ α1
s2 = −k′′b− l′′b−1 ,

where k = k′ + k′′, l = l′ + l′′. The prefactor in (C.2) proportional to (S(αs,
α2, α1))−1 vanishes in the case of a double resonance. It follows that only
residue terms can appear in the expression for Dαs

{
α1
α3

α2
α4

}
at double reso-

nance (C.7).
So let us look at the residue terms that become relevant in the analytic

continuation from <(α2) = Q/2 to the values (C.6). Relevant are the poles
from the triple Tt32, in particular the poles at

αt32 = −k1b− l1b−1 ,(C.8)

α3
t2 = −k2b− l2b−1 ,(C.9)

where k = k1 + k2, l = l1 + l2. It is for some considerations convenient to
assume that <(α3) = Q/2− ε+ iP3 for some small real number 0 < ε < b/2.
It follows that the poles

αt = Q
2 − ε+ iP3 + (k1 − k2) b2 + (l1 − l2) 1

2b ,(C.10)

with k1 − k2 ≤ 0 and l1 − l2 ≤ 0 will have crossed the contour of integration
from the right, and the poles

αt = Q
2 − ε+ iP3 − (k2 − k1) b2 − (l2 − l1) 1

2b ,(C.11)

with k2 − k1 < 0 and l2 − l1 < 0 will have crossed the contour of integration
from the left. The form of the distribution given in (8.10b) follows easily
from these observations.
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C.4. Residues

We list here some relevant residues.

f10

[
α3
α4

α2

−b
]

=
1

Γ(−2b2)

(C.12)

× Γ(1− 2bα4)Γ(−Qb− b2 + 2bα4)Γ(2− 2bα2)Γ(2Qb− 2bα2 − b2)

Γ(2Qb− b2 − bα234))Γ(−b2 − bα2
34)Γ(1− bα3

24)Γ(1− bα4
23)

;

f−10

[
α3
α4

α2

−b
]

=
1

Γ(−2b2)

(C.13)

× Γ(1− 2bα4)Γ(−Qb− b2 + 2bα4)Γ(2bα2 − 2b2)Γ(2bα2 − b2)

Γ(−b2 + bα4
23)Γ(−b2 + bα3

24))Γ(1− bα2
34)Γ(−Qb− b2 + bα234)

;

f01

[
α3
α4

α2

−b
]

= 2 cos(πb2)
Γ(−2b2)

Γ(−b2)2

(C.14)

× Γ(−Qb+ 2bα4)Γ(−Qb+ 2bα4 + b2)Γ(2Qb− 2bα2)Γ(2bα2)

Γ(bα2
34)Γ(bα3

24)Γ(Qb− bα4
23)Γ(−Qb+ bα234)

;

f0−1

[
α3
α4

α2

−b
]

= 2 cos(πb2)
Γ(−2b2)

Γ(−b2)2

(C.15)

× Γ(Qb− 2bα4)Γ(Qb− 2bα4 + b2)Γ(2Qb− 2bα2)Γ(2bα2)

Γ(2Qb− bα234)Γ(Qb− bα3
24)Γ(Qb− bα2

34)Γ(bα4
23)

;

f00

[
α3
α4

α2

−b
]

=
Γ(−Qb+ 2bα4 − b2)Γ(2Qb− 2bα2)

Γ(−b2)Γ(2bα4)Γ(1− 2bα2)

(C.16)

×
{

1 + 2 cosπb2
sin[πb(α2 − α3 + α4)] sin[πb(−Q+ α2 + α3 + α4)]

sin[2πbα2] sin[2πbα4]

}
,

where the notation αkij = αi + αj − αk was used. From the above fusion
matrices one can derive the ’t Hooft–Wilson loop intertwining relation.

Appendix D. The kernel for the S-move

We here describe in more detail our derivation of formula (6.30) for the
kernel representing the S-move. As outlined in the main text, we are using
the following strategy:
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• Definition (7.21) defines operators B, F, Z and S within the quantum
Teichmüller theory which satisfy operatorial versions of the Moore-
Seiberg consistency conditions [T05].

• The direct calculation of the kernel of the operator S presented in
Subsection D.1 below shows that this operator is represented by a
kernel which depends meromorphically on its arguments.

• It was explained in Subsection 8.5 that this allows us to use the Moore-
Seiberg equation

Sβ1β2(β3)

∫
S
dβ4 Fβ3β4

[ β2
β2

α1
α2

]
Tβ4 T

−1
β2

Fβ4β5
[
α2

β2
α1

β2

]
(D.1)

=

∫
S
dβ6 Fβ3β6

[ β1
β1

α1
α2

]
Fβ1β5

[
α1

β6
α2

β6

]
Sβ6β2(β5) eπi(∆α1+∆α2−∆β5 ) ,

to derive a formula for Sβ1β2(β3) in terms of the kernel for F . More
details are given in Subsection D.2 below.

• The integrals in the resulting formula for Sβ1β2(β3) will be calculated
explicitly in Subsection D.3, leading to our formula (6.30).

A faster way to find the formula (6.30) would be to use the intertwining
property (6.20) to derive an difference equation for the kernel Sβ1β2(α).
The problem would then be to show that the resulting formula solves the
Moore-Seiberg equations. This is manifest in our approach.

D.1. Calculation using Teichmüller theory

We shall work within the representation for quantum Teichmüller theory
associated to the fat graph drawn in Figure D1. The representation asso-
ciated to the annulus As in Figure D1 is taken to be the one defined in
Subsection 7.4.

For the following it will suffice to work in a reduced representation
defined by setting the constraint z to zero. The length operator Ls is then
defined by using (7.8). In order to define the operator L0 representing the
length of the hole of C1,1 we may use formula (7.10). The length operator
Lt has to be calculated using (7.11) by finding a fat graph ϕ0 which allows
one to use the definition (7.8). The resulting formulae for the relevant length
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s
A

v
0

Figure D1: Fat graph on a one-holed torus C1,1, represented as rectangle
with opposite sides identified. The hole sits at the corners of the rectangle.
The annulus As (grey) contains the geodesic γs defining a pants decompo-
sition of C1,1.

operators are

Ls = 2 cosh 2πbps + e2πbqs ,(D.2)

Lt = 2 cosh 2πbpt + e2πbqt + e−2πbq0eπb(qt−pt) ,(D.3)

L0 = 2 cosh 2πbp0 + 2 cosh(πbp0)Lse
−2πbq0 + e−4πbq0 .(D.4)

In the expression for Lt we have been using the notations

(D.5) pt := 1
2(qs − ps − p0) , qt := −1

2(3ps + qs + p0) .

Let us consider eigenstates | a,m 〉s and | a,m 〉t to the pairs of mutually
commuting operators (Ls, L0) and (Lt, L0), respectively
(D.6)
Ls | a,m 〉s = 2 cosh 2πba | a,m 〉s ,
Lt | a,m 〉t = 2 cosh 2πba | a,m 〉t ,

L0 | a,m 〉s = 2 cosh 2πbm | a,m 〉s ,
L0 | a,m 〉t = 2 cosh 2πbm | a,m 〉t .

We shall work in a representation where the operators ps and q0 are diagonal.
States are represented by wave-functions φsa,m(ps, q0) := 〈 ps, q0 | a,m 〉s and
φta,m(ps, q0) := 〈 ps, q0 | a,m 〉t.

These wave-functions are related by an integral transformation of the
form

(D.7) φtat,m(ps, q0) =

∫
das Satas(m)φsas,m(ps, q0) .

In order to simplify the calculation it helps to consider the limit q0 →∞.
Note that L0 can be approximately be represented by 2 cosh 2πbp0 in this
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limit. Both φsa,m(ps, q0) and φta,m(ps, q0) can be normalized to have a leading
asymptotic behavior for q0 →∞ of the form

φsa,m(ps, q0) ∼ (e2πimq0 +Rsme
−2πimq0)ψsa(ps) ,(D.8)

φta,m(pt, q0) ∼ (e2πimq0 +Rtme
−2πimq0)ψta(ps) ,(D.9)

where ψsa(ps) and ψta(pt) must be eigenfunctions of the operators L′s and L′t
obtained from Ls and Lt by sending q0 →∞ and considering a representa-
tions of (ps, qs) on functions ψ(ps) of a single variable on which ps acts as
multiplication operator. Equation (D.7) implies

(D.10) ψtat,m(ps) =

∫
das Satas(m)ψsas,m(ps) .

The calculation of the kernel Satas(m) is now straightforward. Recall
that a complete set of orthonormalized eigenfunction of Ls is given by the
functions defined in (7.13). Note furthermore that

(D.11) L′t = 2 cosh 2πbpt + e2πbqt .

The eigenfunctions of L′t in a representation in which pt is diagonal are
therefore obtained from (7.13) by obvious substitutions. We finally need
that 〈 ps | pt 〉 = eπi(p2s+p

2
t ) e4πipspte−2πim(ps+pt) . The kernel representing the

modular transformation S is then given as

Sasat(m0) = 〈 as | at 〉(D.12)

=

∫
dpsdpt 〈 as | ps 〉 〈 ps | pt 〉 〈 pt | at 〉

=

∫
dps e

πi(ps−2m)ps sb(as − ps + cb − i0)

sb(as + ps − cb + i0)

·
∫
dpt e

πi(pt−2m)pt sb(at + pt + cb − i0)

sb(at − pt − cb + i0)
e4πipspt .

It is easy to see that Sasat(m0) is meromorphic in m0, as and at.
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D.2. Solving the Moore-Seiberg relations for the S-kernel

We now want to explain how to derive the formula

F L

0α

[β1
β1
β1
β1

]
SL

β1β2(α)(D.13)

= SL

0β2

∫
dβ3 e

−πi(2∆β2+2∆β1−2∆β3−∆α) FL

0β3

[β2
β2
β1
β1

]
FL

β3α

[β1
β2
β1
β2

]
.

for SL

β1β2
(α) from Equation (D.1). As explained in the main text, we mainly

need the identity

(D.14) lim
ε↓0

FL

ε,α3

[
ε
ε
α1
α1

]
= δ(α3 − α1) .

Setting α1 = α2 and taking β1 = ε, β3 = ε, ε→ 0 using (D.14) yields (D.13).
One might be tempted to take β1 → 0 first. This turns out not to be

straightforward, as the convergence of the integrals in (D.1) would then be
lost. Doing this naively would seem to lead to an equation similar to (D.13),
but with SL

0β2
replaced by S̃L

0β2
:= limβ1→0 S

L

β1β2
, which is not the same as

SL

0β2
:= limε→0 S

L

ε,β2
(ε). The fact that SL

0β2
6= S̃L

0β2
can be verified explicitly

using Equations (D.34c), (D.34d) below.
It remains to prove (D.14). In order to do this, we will show that

(D.15) FL

ε,α3

[
ε
ε
α1
α1

]
= FL

0,α3

[
ε
ε
α1
α1

]
+O(ε) ,

and use the remarkable identity [T08, Sa]

(D.16) FL

0α3

[
α2
α2

α1
α1

]
=

1

2π

Z(0) Z(α3)

Z(α2)Z(α1)
C(Q− α3, α2, α1) ,

proven below. The function C(α3, α2, α1) was defined in (8.3), and Z(α) is
explicitly given as

(D.17) Z(α) =
(πµγ(b2))

1

2b
(Q−2α) 2π(Q− 2α)

Γ(1 + b(Q− 2α))Γ(1 + b−1(Q− 2α))
.

The normalization factor Z(α) is closely related to the Liouville one-point
function on the unit disc [ZZ01]. Note furthermore that [T01, Section 4.4]

(D.18) lim
α2→0

C(Q− α3, α2, α1) = 2πδ(α3 − α1) .

The identity (D.14) follows from the combination of (D.16) and (D.18).
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For the calculations necessary to prove (D.15) and (D.16) we will find it
convenient to use a further gauge transformation defined by writing

(D.19) ṽ
α3
α2α1 = N(α3, α2, α1)w

α3
α2α1 ,

with N(α3, α2, α1) being defined in (8.19). The kernels representing the
F - and S-moves in the corresponding representation will be denoted as
F PT

αsαt

[
α3
α4

α2
α1

]
and SPT

β1β2
(α0), respectively. We have

F L

αsαt

[
α3
α4

α2
α1

]
=
N(αs, α2, α1)N(α4, α3, αs)

N(αt, α3, α2)N(α4, αt, α1)
F PT

αsαt

[
α3
α4

α2
α1

]
,(D.20)

SL

β1β2(α0) =
N(β1, α0, β1)

N(β2, α0, β2)
SPT

β1β2(α0) .(D.21)

The kernel F PT

αsαt

[
α3
α4

α2
α1

]
can be expressed using the formula first derived in

in [PT2]12,

F PT

αsαt

[
α3

ᾱ4

α2
α1

]
(D.22)

=
Sb(α2 + αs − α1)Sb(αt + α1 − α4)

Sb(α2 + αt − α3)Sb(αs + α3 − α4)
|Sb(2αt)|2

×
∫
C
du Sb(−α2 ± (α1 −Q/2) + u)Sb(−α4 ± (α3 −Q/2) + u)

× Sb(α2 + α4 ± (αt −Q/2)− u)Sb(Q± (αs −Q/2)− u) .

The following notation has been used Sb(α± u) := Sb(α+ u)Sb(α− u). The
integral in (D.22) will be defined for αk ∈ Q/2 + iR by using a contour C that
approaches Q+ iR near infinity, and passes the real axis in (Q/2, Q), and
for other values of αk by analytic continuation. The equivalence between
the two different integral representations of the b-6j symbols was proven
in [TeVa] using methods from [DSV].

Using the the representation (D.22) and the integral identity (B.17) it
becomes easy to find that
(D.23)

FPT

εα3

[
α2
α2

α1
α1

]
= |Sb(2α3)|2 Sb(α1 + α2 + α3 −Q)

Sb(α2 + α3 − α1)Sb(2α1)
(Sb(ε))

2(1 +O(ε)),

from which Equation (D.15) and identity (D.16) follow straightforwardly.

12The formula below coincides with Equation (228) in [T01] after shifting s→
u− αs −Q/2.
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D.3. Evaluating the integral

We start from Equation (D.13). Considering the right hand side, let us
represent FPT

0β3

[β2
β2
β1
β1

]
as

(D.24) FPT

0β3

[β2
β2
β1
β1

]
= lim

δ→0
FPT

δβ3

[β2
β2
β1
β1

]
.

One may then represent the right hand side of (D.13) as the limit δ → 0 of
an expression proportional to the following integral:

I = C

∫
e−2πi(Q

2
−y)2dγ

Sb(±2(Q2 − γ))

·
∫
dx
Sb(−β1 ± (Q2 − β1) + x)Sb(−Q+ β2 ± (Q2 − β2) + x)

Sb(
Q
2 + δ + x)Sb(−Q

2 + x)Sb(β2 − β1 ± (Q2 − γ) + x)

×
∫
dy
Sb(−β1 ± (Q2 − β2) + y)Sb(−Q+ β2 ± (Q2 − β1) + y)

Sb(±(Q2 − γ) + y)Sb(β2 − β1 ± (Q2 − α0) + y)
,(D.25)

where

C ' e
πiQ2

2
−πi(2∆β2

+2∆β1
−∆α0

) Sb(−Q+ α0 + 2β2)

Sb(−Q+ 2β2)Sb(α0)
Sb(δ).

We use the notation ' to indicate equality up to terms that are less singular
when δ → 0. The divergent factor Sb(δ) will be cancelled by zeros in the
prefactors, see (C.2), so that we only need to consider the leading singular
behavior of the integral I when δ → 0.

Simplifying the above expression one gets

I ' C
∫

e−2πi(Q
2
−y)2dγ

Sb(±2(Q2 − γ))

·
∫
dx
Sb(

Q
2 − 2β1 + x)Sb(−Q

2 + x)Sb(−3
2Q+ 2β2 + x)

Sb(
Q
2 + x+ δ)Sb(β2 − β1 ± (Q2 − γ) + x)

×
∫
dy
Sb(−β1 ± (Q2 − β2) + y)Sb(−Q+ β2 ± (Q2 − β1) + y)

Sb(±(Q2 − γ) + y)Sb(β2 − β1 ± (Q2 − α0) + y)
.(D.26)
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We may take the integral over the variable x in (D.26) using identity (B.17)
and get

I ' C1

∫ i∞

−i∞

e−2πi(Q
2
−y)2dγ

Sb(±2(Q2 − γ))
Sb(

Q
2 − β2 + β1 ± (Q2 − γ))

×
∫
dy
Sb(−β1 ± (Q2 − β2) + y)Sb(−Q+ β2 ± (Q2 − β1) + y)

Sb(±(Q2 − γ) + y)Sb(β2 − β1 ± (Q2 − α0) + y)
,(D.27)

where

C1 ' C Sb(Q− 2β1)Sb(−Q+ 2β2)Sb(−δ).

Next we take the integral over γ using identity (B.18) with taking ν2 =
Q− β2 + β1 + (Q2 − α0) (and then apply change of variables y → −y)

I ' C2

∫ i∞

−i∞
dy Sb(

Q
2 − β1 − β2 − y)

· Sb(−Q
2 + β2 − β1 − y)Sb(−3

2Q+ β1 + β2 − y)

× Sb(Q− β2 + β1 ± (Q2 − α0) + y)eπiy(β1−β2)e−
πiy2

2 ,(D.28)

where

C2 ' e−
1

2
πi(Q

2
+β2−β1)2e

1

2
πiQ( 3

2
Q−β2+β1)C1.

As a final step we use (B.19) taking ν2 = Q− β2 + β1 + (Q2 − α0),

I ' C3
1

2

∫ i∞

−i∞
dy
Sb(

α0

2 ± (Q2 − β1)± (Q2 − β2)± y)

Sb(±2y)
e−2πiy2dy,(D.29)

with

C3 ' C2 e
πiQ

2

8 eπi(β1−β2)2e−
1

2
πiQ(Q

2
+α0)

· Sb(2Q− 2β2 − α0)Sb(Q− α0)Sb(2β1 − α0) .

We also need F PT

εα0

[ β1

β1

β1

β1

]
for ε→ 0. Formula (D.23) gives

F PT

εα0

[ β1

β1

β1

β1

]
' (Sb(ε))

2 Sb(Q− 2β1)Sb(−Q+ 2β1 + α0)

Sb(α0)
.(D.30)
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By assembling the pieces we come to the following relation

SPT

β1β2
(α0) =

1

2
SPT

0β2

Sb(2β1 − α0)Sb(2Q− 2β1 − α0)

Sb(α0)

· e2πi(β1−Q2 )2e2πi(β2−Q2 )2e−πi(α2
0−2Q

4
α0)

×
∫
Sb(Q− β1 − β2 + α0

2 ± y)Sb(−Q+ β1 + β2 + α0

2 ± y)

Sb(±2y)

· e−2πiy2dy × Sb(β1 − β2 + α0

2 ± y)Sb(−β1 + β2 + α0

2 ± y) .(D.31)

It remains to apply the following formula [SV11],

∫
iR
dz

Sb(Q/4− µ+m/2± z)
Sb(3Q/4− µ−m/2± z)

e4πiξz(D.32)

=
1

2
e2πi(ξ2−(Q

4
+m

2
)2+µ2)Sb(Q/2−m± 2ξ)

·
∫
iR
dy

Sb(
Q
4 + m

2 ± µ± ξ ± y)

Sb(±2y)
e−2πiy2 ,

which had been used in this form in [SV11], in order to get the desired result,

SPT

β1β2(α0) = SPT

0β2

e
πi

2
∆α0

Sb(α0)

∫
R
dt e2πt(2β1−Q)Sb

(
1
2(2β2 + α0 −Q) + it

)
Sb
(

1
2(2β2 − α0 +Q) + it

)
·
Sb
(

1
2(2β2 + α0 −Q)− it

)
Sb
(

1
2(2β2 − α0 +Q)− it

) .(D.33)

This is equivalent to formula (6.30), taking into account (D.21).

D.4. Properties of Sβ1β2(α0)

In order to derive the key properties of Sβ1β2(α0) let us define the integral

Iα0

β1β2
:=

1

Sb(α0)

∫
R
dt e2πt(2β1−Q)

·
Sb
(

1
2(2β2 + α0 −Q) + it

)
Sb
(

1
2(2β2 + α0 −Q)− it

)
Sb
(

1
2(2β2 − α0 +Q) + it

)
Sb
(

1
2(2β2 − α0 +Q)− it

) .
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Iα0

β1β2
has the following properties:

Iα0

β1β2
= IQ−α0

β2β1
,(D.34a)

Iα0

β1,β2
= Iα0

β1,Q−β1 = Iα0

Q−β1,β1 ,(D.34b)

lim
ε↓0

Iεβ1β2 =
1

Mβ2

2 cos(π(2β1 −Q)(2β2 −Q)) ,(D.34c)

lim
ε↓0

Iεεβ = 1 , lim
ε↓0

IQ−εεβ =
Mβ

M0
,(D.34d)

recalling that Mβ = |Sb(2β)|2 = −4 sin(πb(2β −Q)) sin(πb−1(2β −Q)).
Identity (D.34a) follows easily from Equation (A.31) in [BT2]. (D.34b) is
an easy consequence of the symmetry properties of the integrand under
t =→ −t and (D.34a).

In order to derive (D.34c) note that the zero of the prefactor in the
definition of Iα0

β1β2
is canceled by a pole of the integral. This pole results from

the fact that the contour of integration gets pinched between the poles at
it = ±1

2(2β2 ± α0 −Q) in the limit α0 → 0. The residue may be evaluated
by deforming the contour into the sum of two small circles around it =
±1

2(2β2 −Q) + α0 plus some residual contour that does not get pinched
when α0 → 0.

In order to prove (D.34d), one may first use (D.34a), and then similar
arguments as used to prove (D.34c).

Appendix E. Asymptotics of the generating function W

E.1. Monodromy on nodal surfaces

We need to calculate the monodromy of the oper ∂2
y + t(y) on the nodal

surface representing the boundary component of T (C) corresponding to an
pants decomposition σ. We will need the result to leading order in the gluing
parameters qr. Using the gluing construction one may represent the nodal
surface as union of punctured spheres and long thin cylinders. Parallel trans-
port along a closed curve γ breaks up into a sequence M1, . . . ,MN of moves
which represent either the transition Fij from puncture i to puncture j of a
three-punctured sphere, the braiding Bi of puncture i on a three-punctured
sphere with the additional puncture at y, or the propagation Te along the
long thin tube containing the edge e of Γσ. To each moves Mk let us associate
a 2x2 matrix mk according to the following rules:
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• Moves Fij :

i

j

k

Fij−→

i

j k

are represented by the matrix f ij with elements

(E.1a) f ijs1s2 ≡ fs1s2(lk; lj , li) ,

where

fs1s2(l3; l2, l1) =
Γ(1 + is1

l1
2π )Γb(−is2

l2
2π )∏

s3=± Γ
(

1
2 + i

4π (s1l1 − s2l2 + s3l3)
) .(E.1b)

• Moves Bi:

i

j

k

Bi−→

i

j

k

are represented by the matrix bi with elements

(E.1c) biss′ = δss′ e
πi

2
−s li

2 .

• Moves Te:

e

Te−→
e

are represented by the matrix te with elements

(E.1d) tess′ = δss′ q
ike/4π
e .



i
i

“1-tes” — 2015/2/5 — 9:41 — page 124 — #124 i
i

i
i

i
i

124 J. Teschner and G. S. Vartanov

If the curve γ is decribed as the composition of segmentsM1 ◦M2 ◦ · · · ◦MN ,
the trace function Lγ is calculated as

(E.2) Lγ = Tr(m1 ·m2 · · · · ·mN ) ,

where mk are the 2× 2-matrices representing the moves along the seg-
ments Mk.

It is easy to see that the rules above are nothing but the limit b→ 0 of
the rules defining the Verlinde loop operators from conformal field theory
[AGGTV, DGOT]. This is of course no accident. The comparison of the
explicit expressions for Verlinde loop operators found in [AGGTV, DGOT]
with the expressions for the expressions quoted in Subsection 6.3 shows that
the Verlinde loop operators coincide with the quantized trace coordinates,
the respective representations differing only by gauge transformations. A
more direct explanation of this fact will be given elsewhere.

E.2. Calculation of the constant term

We may therefore use the results of references [AGGTV, DGOT]. This yields,
in particular, an expression for Lt of the form

Lt = Dcl

+(l) e+k0 +Dcl

0 (l) +Dcl

−(l) e−k0 ,(E.3a)

where k0 = − i
2π l log(q), and the coefficients Dcl

±(l) are explicitly given as

Dcl

±(l) = (2π)4 (Γ(1± i
2π l)Γ(± i

2π l))
2∏

s,s′=±
Γ
(

1
2 ±

i
4π (l + sl1 + s′l2)

)
Γ
(

1
2 ±

i
4π b(l + sl3 + s′l4)

) ,
Dcl

0 (l) =
4

cosh l − 1
(cosh(l2/2) cosh(l3/2) + cosh(l1/2) cosh(l4/2))

+
4 cosh(l/2)

cosh l − 1
(cosh(l1/2) cosh(l3/2) + cosh(l2/2) cosh(l4/2)) .

This should be compared to (2.20d). In the degeneration limit we may
use (10.13) to represent the leading behavior of k in the form

(E.4) k = 4πi
∂

∂l
W(l, q) = k0 + 4πi

∂

∂l
W0(l) +O(q) .

It follows that we must have

(E.5) logDcl

±(l) = log
√
c12(Ls)c34(Ls)± 4πi

∂

∂l
W0(l) .

This is a differential equation for W0(l), solved by (10.18). �
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Appendix F. Projectively flat connections

For the reader’s convenience we will collect here some generalities on connec-
tions on bundles of projective spaces and projective line bundles. We follow
in parts the discussions in [FS, Fe].

F.1. Connections on bundles of projective spaces

Given a holomorphic vector bundle E over a complex manifold X, let P(E) be
its projectivization, the bundle of projective spaces with fiber at x ∈ X being
the projectivization P(Ex) of the fiber Ex of E . A connection on P(E) is an
equivalence class of locally defined connections ∇ı on E|Uı , where {Uı; ı ∈ I}
is a covering of X, subject to the condition that aı := ∇ı −∇ is a scalar
holomorphic one-form on the overlaps Uı = Uı ∩ U. Two such families of
connections are identified in ∇ı −∇′ı is a scalar holomorphic one-form for
all ı ∈ I.

The curvature Fı = ∇2
ı is a two-form with values in End(E) that satisfies

Fı − F = daı on overlaps Uı. A connection is (projectively) flat if Fı is a
scalar, i.e. proportional to the identity in all patches Uı. As the curvature
Fı of a flat connection is locally exact, we may always choose a represen-
tative ∇ı for the equivalence class such that Fı = 0 in Uı. Alternatively
one may trivialize the scalar one-forms aı := ∇ı −∇ by choosing smooth
scalar one-forms cı such that aı = cı − c, and considering ∇′ı := ∇ı + cı as
the preferred representative for a given equivalence class. The connection ∇′ı
is globally defined, but it has non-trivial scalar curvature.

The representation in terms of locally defined flat connections, is some-
times referred to as the Čech point of view. This point of view will make it
clear that the deviation from being a vector bundle with an ordinary flat
connection is controlled by a projective holomorphic line bundle. Such a line
bundle L is defined by transitions functions fı defined on overlaps Uı that
satisfy

fı3ı2 fı2ı1 = σı3ı2ı1 fı3ı1 ,

on the triple overlaps Uı1ı2ı3 ≡ Uı1 ∩ Uı2 ∩ Uı3 . The 1-cochain fı, ı,  ∈ I,
defines a class in Ȟ2(Ω0). The collection of fı will be called a section of L.
Being one level higher in the Čech-degree than in the case of ordinary line
bundles makes it seem natural to identify sections with 1-cochains rather
than 0-cochains in the rest of this appendix.

Having a projectively flat vector bundle one gets a projective line bundle
by setting fı ≡ e2πigı , where the fı are any solutions of ∂gı = 1

2πiaı. The
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collection of one-forms aı defines a Čech-cohomology class in Ȟ1(Ω1), which
corresponds to a globally defined (1, 1)-form $ by the Čech-Dolbeault iso-
morphism. This (1, 1)-form represents the first Chern class of the projective
line bundle defined by the transition functions fı.

F.2. Projective local systems

Recall the natural correspondence between

(i) vector bundles V with flat connections ∇,

(ii) local systems – vector bundles with constant transition functions,

(iii) representations of the fundamental group ρ : π1(X)→ End(V ) modulo
overall conjugation.

Indeed, any flat connection ∇ in a vector bundle V may be trivialized locally
in the patches Uı by means of gauge transformations. This defines a system
of preferred trivializations for ∇ with constant transition functions. Parallel
transport w.r.t. to ∇ defines a representation of the fundamental group.
Conversely, given a representation of the fundamental group one gets a local
system as (X̃, V )/ ∼, where X̃ is the universal cover of X, and ∼ is the
equivalence relation

(F.1) ( x̃ , v ) ∼ ( γx̃ , ρ(γ)v ) , ∀( x̃ , v ) ∈ ( X̃ , V ) , ∀γ ∈ π1(X) .

This vector bundle has a canonical flat connection – the trivial one.
Parallel transport w.r.t. a projectively flat connection defines projective

representations of the fundamental group π1(X), a map ρ : π1(X), which
assigns to each element γ of π(X) an operator ρ(γ) ∈ End(E) such that

(F.2) ρ(γ1) · ρ(γ2) = e2πiχ(γ1,γ2) ρ(γ1 ◦ γ2) .

The notation anticipates that we will ultimately be interested in unitary
connections leading to unitary representations of the fundamental group.

It is easy to see that there are equally natural correspondences between

(i) projective vector bundles P(V) with projectively flat connections ∇,

(ii) projective local systems – projective vector bundles with constant tran-
sition functions,

(iii) projective representations of the fundamental group ρ : π1(X)→
End(V ).
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One needs, in particular, to replace the vector space V in the equivalence
relation (F.1) by its projectivization. The resulting equivalence relation
makes perfect sense thanks to (F.2).

F.3. Riemann-Hilbert type problems

It directly follows from the definition of a projectively flat vector bundle that
an ordinary vector bundle can be obtained by tensoring with a projective
line bundle. This makes clear how to formulate a suitable generalization
of the Riemann-Hilbert correspondence in case of projectively flat vector
bundles. We need two pieces of data:

(a) a projective representation of the fundamental group ρ : π1(X)→
End(V ), and:

(b) a holomorphic section of the projective line bundle canonically associ-
ated to ρ.

We may then ask for V -valued holomorphic functions F (x̃) on X̃ that satisfy

(F.3) F (γx̃) = fγ(x̃) (ρ(γ)F )(x̃) ,

where the functions fγ(x̃) represent the holomorphic section of the projective
line bundle Pρ associated to ρ.

There is of course an inevitable ambiguity in the solution of this general-
ized Riemann Hilbert problem, represented by the choice of a section of the
projective line bundle Pρ. This is closely related to the issue called scheme
dependence in the main text. A natural point of view is to consider classes
of solutions to the generalized Riemann-Hilbert problem which differ by the
choice of a section of Pρ. In our concrete application we will be able to do
slightly better by identifying natural choices for the sections of Pρ.
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Birkhäuser Boston, Boston, MA, 2006.

[NRS] N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-
Yang functional, and gauge theory. Nucl. Phys. Proc. Suppl. 216 (2011)
69–93.

[NS98] N. Nekrasov and A. Schwarz, Instantons on noncommutative R4,
and (2, 0) superconformal six dimensional theory. Comm. Math. Phys.
198 (1998) 689–703.

[NS04] N. Nekrasov and S. Shadchin, ABCD of instantons. Comm. Math.
Phys. 252 (2004) 359–391.

[NW] N. Nekrasov and E. Witten, The omega deformation, branes, integra-
bility, and Liouville theory. JHEP 2010, no. 9, 092.

[NT] I. Nidaeiev and J. Teschner, On the relation between the modular
double of Uq(sl(2,R)) and the quantum Teichmüller theory. Preprint
arXiv:1302.3454.



i
i

“1-tes” — 2015/2/5 — 9:41 — page 133 — #133 i
i

i
i

i
i

Supersymmetric gauge theories 133

[Pe] V. Pestun, Localization of gauge theory on a four-sphere and supersym-
metric Wilson loops. Comm. Math. Phys. 313 (2012) 71–129.

[PT1] B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis
on a noncompact quantum group. Preprint arXiv:hep-th/9911110.

[PT2] B. Ponsot and J. Teschner, Clebsch-Gordan and Racah-Wigner coef-
ficients for a continuous series of representations of Uq(sl(2,R)). Com-
mun. Math. Phys. 224 (2001) 613–655.

[RS] J. W. Robbin and D. A. Salamon, A construction of the Deligne-
Mumford orbifold. J. Eur. Math. Soc. (JEMS) 8 (2006) 611–699.

[Ru] S. N. M. Ruijsenaars, First order analytic difference equations and inte-
grable quantum systems. J. Math. Phys. 38 (1997) 1069–1146.

[Sa] G. Sarkissian, Some remarks on D-branes and defects in Liouville and
Toda field theories. Int. J. Mod. Phys. A27 (2012) 1250181.

[SchV] O. Schiffmann and E. Vasserot, Cherednik algebras, W algebras and
the equivariant cohomology of the moduli space of instantons on A2,
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