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Abstract

We consider topology changing transitions for M -theory compactifica-
tions on Calabi–Yau fourfolds with background G-flux. The local geome-
try of the transition is generically a genus g curve of conifold singularities,
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which engineers a 3d gauge theory with four supercharges, near the inter-
section of Coulomb and Higgs branches. We identify a set of canonical,
minimal flux quanta which solve the local quantization condition on G
for a given geometry, including new solutions in which the flux is neither
of horizontal nor vertical type. A local analysis of the flux superpotential
shows that the potential has flat directions for a subset of these fluxes
and the topologically different phases can be dynamically connected. For
special geometries and background configurations, the local transitions
extend to extremal transitions between global fourfold compactifications
with flux. By a circle decompactification the M -theory analysis identifies
consistent flux configurations in four-dimensional F -theory compactifica-
tions and flat directions in the deformation space of branes with bundles.
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1 Introduction

As seen in many examples over the years, there is an intriguing interplay
between the geometry of string theory compactifications (in the presence of
branes, or near singularities) and the dynamics of supersymmetric quantum
field theories in various dimensions. The geometry of Calabi–Yau manifolds
and their moduli spaces can determine the non-perturbative vacuum mani-
fold and the spectrum of BPS particles of a field theory. Extremal transitions
in the geometry can map to transitions between different branches of low-
energy supersymmetric gauge theories. Examples with eight supercharges
include transition between Higgs and Coulomb branches of abelian [1–3] and
non-Abelian [4–6] four-dimensional N = 2 gauge theories, three-dimensional
N = 4 theories [7] and five-dimensional N = 1 theories [8, 9, 11]. For theo-
ries with four supercharges, i.e., N = 1 in four or N = 2 in three dimensions,
an essential new ingredient is needed to match between deformations of a
Calabi–Yau geometry and field theory dynamics: a choice of background
fluxes or background branes in needed on top of the geometry, which induces
an N = 1 superpotential in the field theory. An example is the fluxed coni-
fold transition in a Calabi–Yau threefold, leading to confining glueball super-
potentials in the associated non-Abelian gauge theories [12, 13].

In this paper, we study extremal transitions inM - and F -theory compact-
ifications on Calabi–Yau fourfolds, whose low-energy theories are described
by a certain class of supersymmetric theories with four supercharges. The
three-dimensional N = 2 theories have again Coulomb and Higgs branches
meeting at singular points of the moduli space, as discussed e.g. in [14].
This turns out to have a nice parallel description in the fourfold geometry,
where a set of four-cycles shrinks and another set of four-cycles grows, e.g.,

flop transition: S�
1 → S�

2 � Coulomb1 → Coulomb2

conifold transition: S� → S� � Coulomb → Higgs (1.1)

Here S� denotes an algebraic four-cycle, whereas S� has a generically non-
zero volume with respect to the holomorphic (4, 0)-form Ω. The spectrum
of additional light BPS particles near the transition locus arises on the
S� side from M2 branes wrapping small two-cycles in the local geometry.
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It can eventually be computed in the topologically twisted theory associ-
ated with M -theory compactification on the local geometry by counting
the number of holomorphic sections of certain line bundles, similarly as
in [4].

As mentioned above, a key element for four supercharges is the depen-
dence of the spectrum and the superpotential obstruction on background
flux. In an M -theory compactification on the fourfold one has to specify
on top of the fourfold geometry X the background four-form flux G, which
induces the geometric Gukov-Vafa-Witten superpotential [15]. Interestingly
enough, a quantization condition for G enforces a non-zero flux on a four-
cycle S ∈ H4(X, Z) — and a non-zero superpotential — if the second Chern
class c2(X) evaluated on a S is not even [16]. The local aspects of this quan-
tization condition have not been studied systematically so far. We identify a
set of canonical, minimal flux quanta that solve the quantization condition
for a given four-cycle geometry.

As a consequence of the flux superpotential one expects that topology
changing transitions between Calabi–Yau fourfolds will generally be
obstructed, except when a judicious choice of flux quanta has been made
that solves the quantization condition. If a four-cycle S with minimal flux
is affected by a transition with a 3d field theory interpretation, these flux
quanta should correspond to choices in the field theory and the superpoten-
tial obstruction should be matched by the 3d spectrum and vacuum struc-
ture. Both expectations turn out to be true via a beautiful correspondence
between sections of certain line bundles in the geometry and meson operators
in the field theory.

If X is elliptically fibered and a four-dimensional F -theory limit exists,
the G-flux is replaced by, amongst others, gauge flux on seven-branes wrap-
ping algebraic four-cycles D in X. In this case, one can resort to the detailed
results on the field theory spectra and potentials obtained from a local com-
putation in [17–19]. As expected, after a circle compactification these results
match with those obtained from M2 branes in M -theory as discussed in this
note. The perhaps new point on F -theory obtained here from the M -theory
analysis are local solutions to the flux quantization condition and the inter-
play of spectra, flux quanta and superpotential obstructions near the transi-
tion point. These are needed to determine the dynamics on Higgs-branches
and recombination of seven-branes in a local model. Our solutions have a
number of parallels to some recent discussions in the literature of flux quanta
in F -theory [20–22].

The low-energy gauge theory gauge fields that we consider all arise from
the eleven-dimensional M -theory three-form C field on two-cycles, with
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electrically charged matter from M2 branes wrapped on two-cycles. Many
early works have already explored aspects of connecting M -theory on four-
folds with three-dimensional N = 2 gauge theory dynamics with M -theory
on fourfolds. To cite one example, [23] explored connecting the three-
dimensional N = 2 gauge theory non-perturbative results, including
instanton-generated superpotentials [24] and the higher Nf results (super-
symmetric quantum electrodynamics and quantum chromodynamics) of [14],
with M -theory realizations from euclidean M5 branes wrapping six-cycles.
Other early works explored aspects of the connection between M -theory
background G-flux (which spontaneously breaks parity) and three-
dimensional Chern–Simons terms, as well as type II or M -theory realiza-
tions of 3d mirror symmetry [25], and gauge theory moduli space or phase
transitions via geometric transitions, see, e.g., [15, 26, 27].

In this paper, we mostly focus on singularities which, when approached
through the moduli space of Kähler structures, arise in codimension one.
The light M2-brane states arise from two-cycles in one homology class and
their charge singles out a U(1) gauge group. To decouple the dynamics of
these degrees of freedom we work in the limit in which all other cycles are
large, including the curve C to which S� shrinks at the transition.

Much of the literature on string or M -theory realizations of three-
dimensional gauge theories uses spacetime filling D2 or M2 branes at spe-
cial points in the geometry. That is not our focus here. Including M
spacetime filling M2 branes introduces additional fields and dynamics in
the low-energy three-dimensional quantum field theory. In particular, there
are moduli fields for varying the points where the M2 branes are located
in the fourfold. We here focus on small M and, when M is non-zero,
on the regions of the moduli space where the M2 branes are not near
the fourfold singularity, and hence they do not participate in or affect
the conifold transitions. In terms of the three-dimensional field theory, the
degrees of freedom coming from the M2 branes are, in this region of mod-
uli space, decoupled from those that we study, associated with the geo-
metric singularity. Interesting new degrees of freedom will become light
when the M2 branes are near the singularity, and can potentially partic-
ipate in the conifold transitions; we will not discuss that here in detail,
leaving it for future work. We will also not discuss here the interesting large
M limit, where the backreaction of the M2 branes on the geometry leads
to M -theory on AdS4 ×H7. We will see here that, even without including
M2 branes in the conifold transition dynamics, there is already a lot of rich
structure.

The organization of this paper is as follows: In Section 2, we set the
stage for the subsequent analysis and collect various aspects of G-flux of
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M -theory on Calabi–Yau fourfold geometries. In Section 3, we set up local
Calabi–Yau fourfold geometries so as to model the extremal fourfold tran-
sitions of interest. We analyze consistency conditions for G-fluxes imposed
by the quantization and tadpole cancellation conditions. We examine the
structure and the flat directions of the flux-induced potentials. In Section 4,
we embed the local fourfold geometries into global Calabi–Yau fourfolds, for
which we again examine the behavior of (consistently quantized) G-fluxes
together with their flux-induced scalar potentials, as we go through extremal
M -theory transitions. We discuss our findings both for generic Calabi–
Yau fourfolds with a genus g curve of conifold singularities and for explicit
Calabi–Yau fourfold examples. In particular, we find particular flux configu-
rations with flat directions through the extremal transition. Finally, we com-
ment on the relationship of our M -theory configurations to similar F -theory
compactifications. In Section 5, we discuss the associated three-dimensional
low-energy theory, which reproduces the M -theory phase structure obtained
by geometric means in the previous sections.

2 Preliminaries: M -theory on Calabi–Yau fourfolds

In a compactification of M -theory on a Calabi–Yau fourfold X to three
dimensions, one has to specify the background flux for the four-form G. We
first collect a few basic facts on G and the superpotential induced by it. Most
importantly, G is not exactly integral, but satisfies the shifted quantization
condition [16]

GZ =
G

2π
− c2(X)

2
∈ H4(X, Z). (2.1)

This condition ensures locally that the integral of GZ over an arbitrary cycle
S ∈ H4(X, Z) is an integer. Globally, the shift by c2(X)/2 is related to the
integrality of the M2 brane tadpole

M =
χ(X)
24

− 1
2

∫
X

G

2π
∧ G

2π
. (2.2)

Only if c2(X)/2 is an integral class, χ(X)
24 is an integer and G can be con-

sistently set to zero by including M space-filling (anti-)M2 branes [16,28].1

1To avoid supersymmetry breaking by anti-M2 branes, one needs positive M2 brane
charge M = −60− 1

2

∫
X

GZ(GZ + c2(X)) ≥ 0. Self-dual flux components G with
∫

G ∧
G > 0 reduce the number of M2 branes M . If M gets negative, or if there are anti-self-
dual flux components, supersymmetry is generically broken.
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The conditions for unbroken supersymmetry have been derived in [29]
and phrased in terms of a superpotential2 in [15]

W =
∫

G

2π
∧
(
Ω+

1
2
J2

)
= W (Ω) + W̃ (J). (2.3)

Here W (Ω) and W̃ (J) are the parts of the integral depending on the holo-
morphic (4,0)-form Ω and the Kähler form J , respectively. Minimization
with respect to the complex structure deformations and Kähler deforma-
tions requires G to be of Hodge type (2,2) and primitive, i.e., J ∧G = 0,
which in turn implies that G is self-dual, ∗G = G [15].

The superpotential W (Ω) vanishes if G is dual to an algebraic cycle and
the twisted superpotential W̃ (J) vanishes if G is Poinaré dual to a special
Lagrangian cycle. There is a decomposition of H4(X, Z) into “vertical” and
“horizontal” sublattices with the property that W (Ω) always vanishes if G is
in the vertical sublattice and W̃ (J) always vanishes if G is in the horizontal
sublattice. (See Appendix A for a thorough discussion of these sublattices.)
It is therefore tempting to decompose G into these pieces

G

2π
=

GV

2π
+

GH

2π
, (2.4)

and treat the pieces separately. Unfortunately, this decomposition does not
work within the lattice H4(X, Z) — rational coefficients must be introduced
(except perhaps in exceptional cases).3 The generic solution to the quan-
tization condition 2.2 will therefore arise from a mixed G flux, where the
decomposition 2.4 of GZ is not defined over the integers.

As will be studied in some detail below, G fluxes of mixed type also give
a new important class of supersymmetric vacua. The standard solution to

2As we will review and discuss in Section 5, W (Ω) is a true superpotential, for Higgs

branch fields in Ω, whereas W̃ (J) is not a superpotential but rather gives Chern–Simons
terms and masses for Coulomb branch moduli in J . Given the different nature of W (Ω)
and W (J), adding then together in W is perhaps curious; W, although, can contribute to
the central charge of 1/4-BPS objects. Moreover, as in [15], it is tempting to introduce an
additional massive field, Φ, with W(Ω, J, Φ) having various 〈Φ〉 minima that give W(Ω, J)
for the various allowed G fluxes.

3It has been suggested in [30] that any missing cycle classes might be provided by Cayley
submanifolds calibrated by the form Ω0 + 1

2
J2 (see 2.3), where Ω0 a fixed representative

for the class of Ω. Note that if calibrated cycles do not provide a basis for H4(X, Q), the
superpotential 2.3 is only valid on the sublocus of deformation space, where G is dual to
a sum of calibrated cycles with rational coefficients, including the special case of a split
flux G = GV + GH .
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(2.1) is to shift G by a class ω dual to an algebraic cycle, with ω − c2(X)/2 ∈
H4(X, Z). This flux of a split type generates a twisted superpotential W̃ (J)
for the Kähler moduli and the condition W̃ (J) = 0 = dW̃ (J) would exclude
supersymmetric vacua for h1,1(X) = 1 and greatly reduce the number of
vacua in general. On the other hand, a mixed flux allows to cancel the
c2(X)/2 anomaly locally on each cycle in H4(X, Z), as required, while at the
same time the twisted superpotential can be identically zero and there is no
restriction on the Kähler moduli at all.

In the following we will study topology changing transitions between two
Calabi–Yau fourfolds X� and X�, where a number of algebraic four-cycles S�

i

shrink on the X� side, and a number of new, generically non-algebraic cycles
S�

k appear on the X� side.4 As indicated in Appendix A, all of the Hodge
numbers of X� and X� are determined by three specific ones (which also
determine the Euler characteristic χ, the signature σ, and the decomposition
of h2,2 into self-dual and anti-self-dual parts). The changes are:

δχ

6
=

δσ

2
= δh1,1 − δh1,2 + δh1,3, δh2,2

− = δh1,1,

δh2,2
+ = 3δh1,1 − 2δh1,2 + 4δh1,3.

(2.5)

If δχ is not a multiple of 24, integrality of the M2 brane charges M(X�)
and M(X�) requires a jump of flux quanta during the transition. (In fact, if
we keep locations of the space-fillingM2-branes far away from the transition,
any change in χ will require a jump of flux quanta.) A priori it is not obvious
whether this prohibits the transition or whether there is a physical effect
that causes this jump. As argued below, transitions are possible if there are
appropriate new massless states at the transition point that induce a jump
of flux by a one-loop effect.

Since the quantization condition 2.2 implies a local constraint on each
four-cycle, the non-zero jump of flux must appear on four-cycles that take
part in the transition. A simple intersection argument shows that if T � is
any four-cycle which transversally intersects a vanishing four-cycle S�, the
value of c2 jumps as∫

T �

c2(X�) =
∫

T �

c2(X�) + δc2, δc2 =
(T �.S�)
(S�.S�)

∫
S�

c2(X�). (2.6)

Here T � is a cycle, which replaces the T � after the local surgery that describes
transition from X� to X�; detailed examples in local and global geometries

4Various aspects of transitions of this type have been previously studied in [21,22,28,31].
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will be considered in Sections 3 and 4.4. If δc2 is odd, quantization will
require a non-zero flux on either T � or on T �.

3 Conifold transitions in local Calabi–Yau fourfolds

After these preliminaries, we turn to a detailed study of the local model
for the generic transition, which describes a higher-dimensional analogue of
the familiar extremal transitions at isolated conifold points in Calabi–Yau
threefolds [1, 2]. The double point of a threefold is given by the equation

x1 x2 − x3 x4 = 0, (3.1)

in terms of the complex coordinates x� of C4. The fourfold analog of a
conifold point arises from fibering this conifold singularity over a genus g
curve C. To accomplish that, the coordinates x� are taken to be sections of
line bundles L� over the curve C, and the singular local Calabi–Yau fourfold
X̃sing is given by the hypersurface (3.1) in the five-dimensional complex
variety L1 ⊕ L2 ⊕ L3 ⊕ L4 → C. The line bundles are required to obey the
relation L1 ⊗ L2 � L3 ⊗ L4, so that x1 x2 − x3 x4 in equation (3.1) is a well-
defined section.

Analogously to a conifold singularity in a threefold, the singular Calabi–
Yau fourfold X̃sing can be smoothed by either a small resolution or by a
deformation along the curve C of double points. We denote the resulting

Calabi–Yau fourfolds by X̃�
a, a = 1, 2, and X̃�, respectively. As in the case

of Calabi–Yau threefolds, the two distinct small resolutions X̃�
a are related

by a flop [32], whereas the small resolution X̃� and the deformation X̃� are
connected by an extremal transition.5

3.1 Small resolution phases X̃�

The local fourfold X̃� is a fibration of the resolved conifold O(−1)⊕
O(−1)→ P1 over the genus g base curve C, and it contains the compact

5We often neglect the index of the small resolution X̃�
a, if the distinction between the

two resolved phases is not relevant. Also, we refer to local (non-compact) Calabi–Yau
fourfolds with a tilde in order to distinguish them from global (compact) Calabi–Yau
fourfolds written without a tilde, which will appear later on.
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complex surface S� ⊂ X̃�, which is a P1 fibration over the curve C

P1 �� S�

��
C

. (3.2)

The P1-fiber arises from the small resolution of the conifold singularity (3.1),
i.e., (

x1 x4

x3 x2

)(
u
v

)
= 0. (3.3)

Here [u : v] are the homogeneous coordinates of the P1-fibers and they trans-
form – up to an overall tensoring with an arbitrary line bundle – as sections
of L4 and L1. Therefore, the affine coordinates z = u

v and w = v
u of the two

coordinate patches of the P1-fibers are sections of L4 ⊗ L−1
1 and L1 ⊗ L−1

4 ,
respectively. The line bundle L1 ⊗ L−1

4 has degree n,

n = degL1 − degL4, (3.4)

which is an integral parameter in the geometry that determines the inter-
section numbers.

The Picard group of the surface S� is generated by the divisor classes F
of the generic fiber and C of the base curve, given by the zero section z = 0.
They have the intersection numbers6

F.F = 0, F.C = 1, C.C = −n. (3.5)

The Euler characteristic of the fibration (3.2) is given by

χ(S�) = χ(P1)χ(C) = 4− 4g, (3.6)

and, with the help of the adjunction formula, we find for the total Chern
class of S�

c(S�) = 1 + (2[C]− (2g − 2− n)[F ]) + (4− 4g)dvol(S�). (3.7)

Here [C] and [F ] denotes the (1, 1)-form in H1,1(S�) corresponding to the
divisor classes C and F , while dvol(S�) is the volume form generating

6Alternatively, we could have chosen the divisor C′ in terms of the zero section w = 0,
such that F.C′ = 1 and C′.C′ = −n′ with n′ = −n = degL4 − degL1. The two divisor
classes C and C′ are related by C′ = C + nF and do not intersect as C.C′ = 0.
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H4(S�, Z). The self-intersection of the surface S� is

S�.S� = 2− 2g, (3.8)

and its Kähler volume, measured in terms of the Kähler form J(S�) =
JF ([C] + n[F ]) + JC [F ], is given by

Vol(S�) =
1
2

∫
S�

J(S�) ∧ J(S�) =
n

2
(JF )2 + JF JC . (3.9)

The Kähler parameters JF and JC measure the volume of the P1 fiber and
the curve C.

For the local fourfold geometry X̃� we need to take into account the
non-compact normal bundle directions NS� � X̃� over the surface S�. The
normal bundle NS� restricted to the generic fiber F is the resolved conifold
O(−1)⊕O(−1)→ P1, whereas the normal bundle restricted to zero section
z = 0 is the bundle L1 ⊕ L3. Hence, the first Chern class of the normal
bundle is given by

c1(NS�) = −2[C ′] + (degL1 + degL3)[F ] = −2[C] + (degL2 + degL4)[F ].

(3.10)

For the small resolution to yield a local smooth Calabi–Yau fourfold, i.e.,
c1(X̃�) = 0, it is required that c1(NS�) = −c1(S�). Thus, with equation (3.4)
we arrive at the Calabi–Yau condition for the small resolution X̃� 7

degL1 + degL2 = degL3 + degL4 = degKC = 2g − 2, (3.11)

and the second Chern class of the fourfold is determined to be

c2(X̃�) = −(2− 2g) dvol(S�). (3.12)

Analogously to the analyzed small resolution (3.3), we can carry out the
other small resolution described by the blow-up(

x1 x3

x4 x2

)(
s
t

)
= 0, (3.13)

7Note that due to the relation (3.1) we arrive at the same conclusion, if we derive the
Calabi–Yau condition with the generators F and C′ of the Picard group.
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where now the homogeneous coordinates [s : t] transform as sections of
L3 ⊗ L−1

1 . Then the twisting of the P1-bundle is captured by the integer
degL1 − degL3.

The two distinct small resolutions X̃�
1 and X̃�

2 are related by a flop transi-
tion. We can explicitly model this flop transition by describing the conifold
fibers of the genus g curve C as a symplectic quotient V//U(1) as in [33,34].
We relegate the detailed analysis of the flop transition to Appendix B. Here
we record that the volume integral over the surface S�

2, measured in terms

of the Kähler coordinates JF
1 and JC

1 of the phase X̃�
1, reads

1
2

∫
S�

2

J(S�
1) ∧ J(S�

1) = −
1
2
(n− (2g − 2))(JF

1 )
2 − JF

1 JC
1 . (3.14)

This is the negative of (3.9), except for the shift by (g − 1) in the first term.
As we will see, this shift represents a quantum correction to the twisted
superpotential and the Chern–Simons coefficient in the three-dimensional
gauge theory, whereas n determines the classical coefficient. The shift
becomes important as we trace the flux-induced twisted superpotential
through the flop transition and we return to this aspect in Section 5.

3.2 Deformed phase X̃�

We obtain the deformed conifold geometry by deforming the conifold singu-
larity (3.1) by

x y − u v = ε, (3.15)

In the context of the local Calabi–Yau fourfold X̃�, the deformation parame-
ter ε is again a section of the line bundle L1 ⊗ L2 � L3 ⊗ L4, which, accord-
ing to the Calabi–Yau condition is the canonical line bundle KC .

The canonical line bundle has g global holomorphic sections and as a
consequence contributes g directions to the deformation space Def(X̃�) of
the Calabi–Yau fourfold X̃�. Since ε transforms as a section of a line bundle
of degree (2g − 2), a generic global holomorphic section has (2g − 2) isolated
zeros along the curve C. For a generic deformed conifold fiber — that is to
say for a fiber where the deformation section ε is non-zero — the singular
conifold fiber is replaced by a deformed conifold fiber T ∗S3. The (2g − 2)
fibers, which are located at the zeros of the section ε, remain singular conifold
fibers. As (generically) these (2g − 2) fibers are isolated, the total space
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Figure 1: Depicted are the zeros p� of the deformation section ε on the genus
g curve C. The depicted paths, supplemented by S3 in the fiber, give rise to
the four-cycles A�

n and B�
�, which furnish a basis of H4(X̃�, Z).

of the deformed Calabi–Yau fourfold X̃� is smooth, even in the vicinity of
singular conifold fibers. As a result, the Euler characteristic of the deformed
Calabi–Yau fourfold X̃� reads

χ(X̃�) = χ(S3)χ(C̃) + (2g − 2) = 2g − 2, (3.16)

where C̃ is obtained by removing the vicinities of the curve C where ε
becomes zero.

From the described local fourfold geometry X̃�, we identify homologi-
cally non-trivial four-cycles. We obtain 2g four-cycles A�

n, n = 1, . . . , 2g
of topology S1 × S3 by transporting (generic) S3-fibers along a non-trivial
one-cycle (which avoids the (2g − 2) singular points) on the base C. By
transporting S3-fibers along the path connecting two singular points pk,
k = 0, . . . , (2g − 3), we arrive at non-trivial four-cycle of topology S4. There
are (2g − 3) inequivalent such four-cycles B�

�, which may be constructed by
considering the paths p0 – p�, � = 1, . . . , (2g − 3). Thus, we arrive at

H4(X̃�, Z) = 〈〈A�
1, . . . , A

�
2g, B

�
1, . . . , B

�
2g−3〉〉 � Z4g−3. (3.17)

This basis of four-cycles is depicted in figure 1.

For the analysis of background fluxes in the fourfold X̃�, later on we
need to derive the intersection numbers for the basis elements 3.17. By
construction the four-cycles A�

n do not intersect the four-cycles B�
�, i.e.,

A�
n.B�

� = 0. Furthermore, the four-cycles A�
n have vanishing8 intersection

numbers among themselves, i.e., A�
n.A�

m = 0. The intersections among the

8While the S1 cycles depicted in figure 1 clearly have non-zero intersections, the asso-
ciated four-cycles can be deformed within the S3 fiber, so that they do not intersect.
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Figure 2: Depicted are the paths of the group-theoretic basis of cycles B̂�
�.

B�
� cycles turn out to be

B�
n.B�

n = 2, B�
n.B�

m = 1 (n 
= m), (3.18)

which yield the intersection matrix

I =
(
B�

n.B�
m

)
=

⎛⎜⎜⎜⎜⎜⎝
2 1 · · · 1 1
1 2 · · · 1 1
...

...
. . .

...
...

1 1 · · · 2 1
1 1 · · · 1 2

⎞⎟⎟⎟⎟⎟⎠ . (3.19)

These intersections are derived in detail in Appendix C by carefully exam-
ining the structure of the shrinking S3-fibers in the vicinity of the points p�.

Instead of the cycles B�
� we can also work with the integral cycles B̂�

�, � =
1, . . . , 2g − 3, which are constructed by considering the paths p0 – p1, p1 – p2,
. . ., p2g−4 – p2g−3 depicted in figure 2. Then starting from the intersection
matrix (3.19) with respect to the basis B�

�, it is straightforward to determine
the intersection matrix Î of the basis B̂�

�:
9

Î =
(
B̂�

n.B̂�
m

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 2 −1
0 0 0 · · · −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.20)

Note that Î is just the Cartan matrix of H = SU(N), N = 2g − 2, with the
cycles B̂�

� corresponding to the roots of H, and this is precisely the homology

9We have chosen our conventions such that the intersection matrix Î gives rise to the
Cartan matrix of SU(N). This differs from the conventions used in [15], where the four-

cycles B̂�
� are oriented in such a way that the off-diagonal entries of Î become positive.
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lattice of the local A-type singularity studied in [15, 35] in connection with
2d Kazama–Suzuki conformal field theories (CFTs). The difference here is
that the Landau–Ginzburg field lives on the Riemann surface C instead of
the complex plane and the paths between the p� define points in the Jacobian
of C. In the fourfold geometry, periods of Ω on B̂�

n are defined up to addition
of A�

m periods.

As we will see, depending on the posed geometric question either the basis
B�

� or the group-theoretical basis B̂�
� will turn out to be more convenient.

3.3 Classification of G-flux on the local geometries

After having described the local geometry of the transition, the next impor-
tant step is to determine the consistent G-fluxes on top of it. Since the
conifold transition represents a local surgery operation, the boundary of the
local fourfold is the same in all phases

∂X̃ ≡ ∂X̃�
a = ∂X̃�. (3.21)

Similarly the flux on the boundary does not change under a transition and
must match throughout the different phases. In a global embedding, the
geometry of the boundary ∂X̃ and the flux on it will be further restricted
by the requirement that one can consistently extend the local data to the
global fourfolds X� and X�.

The relevant concepts to determine the flux choices on a non-compact
fourfold have been described in [15] and we review here the key results.
Neglecting the shift in (2.1) for the moment, the background flux G is clas-
sified by an element of H4(X̃, Z). This group has two parts of different
origin, which are visible in the long exact sequence

· · · −→ H3(∂X̃, Z) −→ H4
c (X̃, Z) ι−→H4(X̃, Z) −→ H4(∂X̃, Z) −→ · · · .

(3.22)

The first part comes from the integral four-form cohomology with compact
support H4

c (X̃, Z) � H4(X̃, ∂X̃, Z), which is supported in the interior of
X̃. This interior part may change due to the local dynamics and will be
denoted by Gc. The second part arises from the homology of the boundary,
H4(∂X̃, Z), cannot be changed by the dynamics in the interior and hence
the flux in this part will be fixed under the phase transitions. In particular,
H4(∂X̃, Z) may include torsion classes, which capture at infinity flat —
but nevertheless topologically non-trivial — configurations of the three-form
gauge field C [15].
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Resolved phase
First consider the resolved conifold phase. Here, ∂X̃ arises as the boundary
of the normal bundle NS� � X̃�, which is an S3-bundle fibered over S�.
From the Gysin long exact sequence we infer10

H3(∂X̃, Z) � Z2g, H4(∂X̃, Z) � Z2g ⊕ Z2g−2, (3.23)

which implies by Poincaré duality

H3(∂X̃, Z) � Z2g ⊕ Z2g−2, H4(∂X̃, Z) � Z2g. (3.24)

The torsion of H3(∂X̃, Z) is generated by a fiber S3
tor of ∂X̃, which is

the boundary of the conifold fiber (3.1), and it obeys in homology (2g −
2)S3

tor � 0.

The long exact sequence 3.22 embeds the interior fluxes G�
c into the flux

background G� according to

ι : H4
c (X̃�, Z) ↪→ H4(X̃�, Z), e� �→ (2g − 2)e� ∗. (3.25)

Here e� is the generator of H4
c (X̃�, Z), which may be identified with [S�],

whereas the generator e� ∗ of H4(X̃�, Z) may be identified with the volume
form dvol(S�). It is dual to e� via the intersection pairing B.10.11 Owing
to the intersection pairing T �.S� = 1 of the (algebraic12 ) four-cycle S� with
the non-compact (algebraic) four-cycle

T � = π−1(p) ∩ {x1 = x3 = u = 0} , (3.26)

10The torsion piece Z2g−2 in H4(∂X̃, Z) arises in the Gysin sequence due to the second

Chern class 3.12, which is the Euler class of the S3-fibration in ∂X̃. See Appendix A for
more information on the (co)homology groups of the local geometries that is used below.

11Poincaré duality for non-compact (complex four-dimensional) manifolds X̃ associates

Hq
c (X̃, Z) � H8−q(X̃, Z) to Hq(X̃, Z) � Hq(X̃, Z) by (the non-degenerate part of) the

intersection pairing I : Hq(X̃, Z)⊗H8−q(X̃, Z)→ Z.
12We continue to refer to complex submanifolds as “algebraic” cycles in the local case,

even though — strictly speaking — we do not have a tool such as Chow’s theorem [36]
which guarantees that they are algebraic in the compact case.
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where π−1(p) ⊂ X̃� is a resolved conifold fiber (3.3) over some point p of
C, the generator e� ∗ is dual to the non-compact four-cycle T �. As a conse-
quence, the background flux may be written as13

G�

2π
=

k�

2g − 2
e� =

(
k� mod (2g − 2)

)
[T �] +

G�
c

2π
, k� ∈ Z. (3.27)

In the second expression, we have separated the background flux G� into two
contributions with non-compact and compact support. The first term char-
acterizes the topologically non-trivial three-form C-field at infinity ∂X̃ spec-
ified by the torsion k� ∈ Z2g−2, which is given by the intersection (k� T �) ∩
∂X̃ � k� S3

tor. The second term is attributed to an interior background flux
G�

c. Note that a change k� → k� ± (2g − 2) keeps the torsion class invariant,
but changes G�

c in agreement with (3.25).

Deformed phase
In the deformed phase X̃�, the relevant part of the long exact sequence
(3.22) is

0 −→ H3(∂X̃, Z) α−→H4
c (X̃�, Z) ι−→H4(X̃�, Z)

β−→H4(∂X̃, Z) −→ 0. (3.28)

The part G�
c of the flux comes from (2g − 3) generators in the cokernel of the

map α, which are Poincaré dual to the four-cycles B�
� and span a (2g − 3)-

dimensional integral lattice Γ� with intersection form (3.19) (or, in the group
basis, 3.20):

G�
c

2π
∈ Γ� = H4

c (X̃�, Z)/α(H3(∂X̃, Z)) � 〈〈B�
1, . . . , B

�
2g−3〉〉. (3.29)

The background fluxes G� lying in the non-compact part of H4(X̃�, Z) can
be further divided into two parts, depending on whether they are mapped
under β onto a non-torsion four-form in H4(∂X̃, Z) or not. The fluxes
G�

0 in the second part span the (2g − 3)-dimensional lattice Γ� ∗ dual to Γ�

13Since the second Chern class (3.12) is even in the local geometry, there is no half-
integral shift in the quantization condition.
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in (3.30):

Γ� ∗ � Z2g−3 ⊂ H4(X̃�, Z),
G�

0

2π
∈ Γ� ∗ (3.30)

The torsion class in H4(∂X̃, Z) reflects again the fact that the lattice Γ�

may be viewed as a sublattice of its dual lattice Γ� ∗ of index (2g − 2), i.e.,

Γ� ∗/Γ� � Z2g−2. (3.31)

Background fluxes that map under β onto the non-torsion four-forms on the
boundary ∂X̃ and that are orthogonal to Γ�

0 are denoted as G�
⊥. Then the

background fluxes G� can be written as

G�

2π
=

G�
⊥
2π

+
G�

0

2π
,

G�
0

2π
=

2g−3∑
�=1

b�
� e� ∗

� =
2g−3∑
�=1

λ�
� ê� ∗

� , (3.32)

where e� ∗
� are the lattice generators of Γ� ∗ dual to the generators e�

� of Γ
�,

i.e., e�
�.e

� ∗
m = δ�m and e� ∗

m .e� ∗
n = I−1

mn, with I given in (3.19). Alternatively,
one may use the SU(2g − 2) basis ê�

� with ê� ∗
m .ê� ∗

n = Î−1
nm, as indicated in the

second expression.

Note that the term G�
0 describes both, the interior part G�

c and the torsion
classes in terms of the lattice Γ� ∗. The latter is exactly the cohomology
lattice of the A-type local singularity in [15]. A flux decomposition into
elements in G�

c and the torsion fluxes on ∂X̃ corresponds to a decomposition
of a lattice vector into root and weight vectors of SU(2g − 2), respectively.

We can again express the lattice generators e� ∗
� of Γ� ∗ in terms of dual

non-compact (algebraic) four-cycles. To this end we define the non-compact
four-cycles

T �
� = π−1(p�) ∩ {x1 = x3 = 0}, � = 0, . . . , 2g − 3, (3.33)

with intersection numbers T �
� .B�

k = δlk and T �
0 .B�

k = −1 for �, k = 1, . . . ,
2g − 3.14 Due to the shift in the second Chern class 2.6, the quantization

14Note that B�
� = T �

� − T �
0 up to the ambiguity of adding four-cycle classes A�

n, which,
however, do not affect the intersection numbers. The representation of the cycles B�

� as
differences of non-compact “algebraic planes” T �

� has been discussed in detail in [35] in the
context of identifying the chiral fields of the dual Kazama–Suzuki model. In particular,
the integral of Ω over the non-compact algebraic cycles T �

� is not zero due to contributions
at infinity.
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condition (2.1) requires us to put half-integral fluxes on all the non-compact
cycles T �

� . Hence, expressed in terms of the four-cycles T �
� the background

flux G�
0 reads

G�
0

2π
=

2g−3∑
�=0

t�� [T
�
� ], t�� ∈ Z+

1
2
, (3.34)

where the half-integral flux quanta t�� are related to the integral flux quanta
b�
� according to

b�
� = t�� − t�0, � = 1, . . . , 2g − 3. (3.35)

The torsion part contains again information about the flat topological non-
trivial three-form C-field on the boundary ∂X̃, classified by the torsion
element k� ∈ Z2g−2. Since the non-compact four-cycles T �

� intersect ∂X̃ in
the generator S3

tor of the torsion subgroup of H3(∂X̃, Z), the torsion k�

becomes

k� =
2g−3∑
�=0

t�� =
2g−3∑
�=1

b�
� + (2g − 2)t�0 =

2g−3∑
�=1

b�
� + (g − 1) mod (2g − 2),

(3.36)

where we have used in the last step that t�0 is half-integrally quantized. Note
that a change in the flux quanta b�

� −→ b�
�

′
, such that

∑
� b�

� =
∑

� b�
�

′
mod

(2g − 2) affects G�
c, but not the torsion class k� on the boundary ∂X̃.

3.4 Non-dynamical flux constraints for the phase transitions

A conifold transition between an M-theory compactification on X� and X�

can occur only if the fluxes G� and G� in the two phases match certain
conditions. A universal constraint comes from the flux Φ at infinity, defined
in [15] as:

Φ = M +
1
2

∫
G

2π
∧ G

2π
−
∫

X
X8(R). (3.37)

We must require that this flux is constant through phase transitions among
Calabi–Yau fourfolds, i.e.,

Φ ≡ Φ�
1 = Φ�

2 = Φ�, (3.38)
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Explicitly

Φ�
a = M �

a +
1
2

∫
X̃�

a

G�
a

2π
∧ G�

a

2π
−
∫

X̃�
1

X8(R�
a), a = 1, 2,

Φ� = M � +
1
2

∫
X̃�

G�

2π
∧ G�

2π
−
∫

X̃�

X8(R�) (3.39)

in terms of the M2 brane, flux and curvature contributions in the different
phases.

Let us first derive the flux constraints for extremal conifold transitions,
i.e., between two local Calabi–Yau fourfolds X̃� and X̃�. First we observe
that the background fluxes G�

⊥ of the deformed phase in (3.32) do not have
a counterpart in the resolved phases in (3.27). As a consequence there is
no dynamical phase transition between X̃� and X̃� in the presence of non-
trivial background fluxes G�

⊥. Setting G�
⊥ ≡ 0, the condition Φ� = Φ� can

be written as

4(g − 1)(M � −M �) = (g − 1)2 − (k�)2 − 2(g − 1)b� · I−1 · b�, (3.40)

where (I−1)mn = δmn − (2g − 2)−1 is the inverse of the intersection form
(3.19) and we used equations (3.6), (3.16), (3.27) and (3.32). From (3.40) it
follows, that the torsion classes must match at the common boundary, i.e.,

k� =
∑

�

b�
� + (g − 1) = k� mod (2g − 2), (3.41)

in terms of the torsion class k� of equation (3.36). Note that this torsion
condition — derived from the constraint 3.38 — agrees with the requirement
to maintain the torsion class at the boundary ∂X̃ throughout the extremal
transition.

The basic transitions with minimal flux are geometric transitions without
a change in the number M2 branes, i.e., M � = M �. In this case, equa-
tion (3.40) simplifies to

(g − 1)2 − (k�)2 = 2(g − 1)b� · I−1 · b� = 2(g − 1)λ� · Î−1 · λ�, (3.42)

where the shift of flux on the left-hand side (l.h.s.) comes from the grav-
itational contribution in (3.37). Note that the right-hand side (r.h.s.) of
equation (3.42) is always positive, as follows, e.g., from the last expression
and (3.20). As a consequence a transition without M2 brane participa-
tion is only possible, if the flux quantum k� of the resolved phase is in the
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charge window −(g − 1) ≤ k� ≤ (g − 1). The solutions to these constraints
are given by

0 ≤ k� ≤ (g − 1), b�
� ∈ {−1, 0}, k� − (g − 1) =

∑
�

b�
�,

or

−(g − 1) ≤ k� ≤ 0, b�
� ∈ {0, 1}, (g − 1) + k� =

∑
�

b�
�. (3.43)

The fluxes G� and G� determined by (3.43), (3.27), (3.32) and G�
⊥ = 0 are

then the minimal flux choices on X̃� and X̃� that allow for a transitions.

Rewriting the solutions (3.43) for b�
� in the group theory basis G�

2π =
b�
�e

� ∗
� = λ�

�ê
� ∗
� , one observes that the solution vectors λ�

� are simply the
miniscule weights λ� of SU(2g − 2). These have been already determined
in [15, 35] as the minimal flux choices on an A-type singularity, which lead
to a (Kazama–Suzuki coset) CFT with a mass gap after a circle compacti-
fication to 2d. Here we have found that the minimal fluxes (and states) of
the A-type singularity are at the same time the minimal fluxes (and states)
relevant for the fourfold conifold transition, where the group is SU(2g − 2)
for the conifold fibration over a genus g curve. In this context, the flux
constraints (3.41) and (3.42) amount to partitioning the shifted flux on the
X� side with (g − 1)− |k�| flux quanta into single flux quanta b�

� of charge
±1 in the deformed phase X�.

Next we consider the flux constraint for a flop transition between the two

resolved conifold phases X̃�
1 and X̃�

2, which is simpler. From equation (3.38)
it already follows that k�

1 = ±k�
2. Matching the torsion class at the common

boundary ∂X̃ through the flop gives

k�
1 = −k�

2. (3.44)

We summarize the possible geometric phase transitions without the partic-
ipation of M2 branes in the following phase diagram:

X̃�
1

��
flop

k�
1=−k�

2 ��
��

extr. trans.

k�≡k�
1

(3.43)←→ b�
�

���
��

��
��

��
��

��
X̃�

2��

k�≡−k�
2

(3.43)←→ b�
�

����
��
��
��
��
��
�

X̃�

(3.45)
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The flux constraints discussed above and displayed in the diagram reflect
only the necessary boundary conditions for a transition to exist. In addition,
the transitions may be obstructed dynamically by the flux-induced scalar
potential for the deformations. Naturally, these obstructions cannot solely
be phrased in terms of topological data, but depend on the actual values
of the deformation ‘moduli’. In the next section, we therefore examine the
flux-induced scalar potentials and exemplify their role in the context of these
geometric phase transitions.

3.5 M-theory three-form C-field and Cheeger–Simons
cohomology

In the previous section, we determined the torsion classes of the C-field at
the boundary by intersecting the non-compact (algebraic) four-cycles dual
to the four-form flux with the boundary ∂X̃. In order to characterize in
greater detail the C-field at the boundary, we need a refined description
of the M -theory three-form C-field together with its four-form flux G. As
explained and spelled out in [37], in order to get a handle on the C-field in
the presence of non-trivial background fluxes, we consider the pair (C, G)
as an element of Cheeger–Simons cohomology [38,39](

gZ, C,
G

2π

)
∈ C4(X, Z)× C3(X, R)× Ω4(X). (3.46)

This triple consists of a closed integral four-cocycle gZ, a real three cochain
C and a closed four-form G

2π such that

dgZ = 0, dG = 0,
G

2π
− gZ = dC, (3.47)

modulo

(gZ, C) ∼ (gZ + dΛ, C − Λ− dρ) , (3.48)

with (Λ, ρ) ∈ C3(X, Z)× C2(X, R).15

In this triple, the integral cocycle gZ contains the topological information
of the background flux, while the four-form G is a solution to the M -theory
equations of motion, which to leading order is a harmonic four-form. Finally,

15This description has to be appropriately adjusted for four-form background fluxes
with shifted quantization conditions according to equation (2.1).
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the real three-cocycle C, which corresponds to the expectation value of three-
form M-theory gauge field, captures the deviation of the dynamical flux G
from the rigid topological integral cocycle flux gZ.

By integrating the four-form G
2π or equivalently the integral four-cocycle

gZ over four-cycles, we extract the integral quanta of the background flux,
while M2 branes wrapped on three-cycles Σ probe the three-form gauge field
C in terms of the holonomy phase [37]

φ(C,Σ) = exp
(
2πi
∫

Σ
C

)
. (3.49)

Note that this holonomy factor is well-defined, as it is invariant with respect
to the transformations (3.48).

We now apply the Cheeger–Simons cohomology description to measure
the C-field at the boundary ∂X̃ of the discussed non-compact fourfolds.
The four-form flux G� on the local fourfold X̃� is represented (at leading
order) by a L2 harmonic form with compact support, as determined by the
equations of motion for the real four-form G�, whereas the topological flux
g�

Z
— representing the integral four-cocycle of the flux — reaches out to the

boundary ∂X̃. At the boundary the deviation of the dynamical flux G form
the topological flux gZ is characterized by the C-field, which we analyze by
computing the holonomies φ(C,Σa) over a set of generators of H3(∂X̃, Z)

φ(C, ∂X̃) =

(
exp

(
2πi
∫

S3
tor

C

)
; exp

(
2πi
∫

Σ1

C

)
, . . . , exp

(
2πi
∫

Σ2g

C

))
,

(3.50)

where S3
tor and Σn, n = 1, . . . , 2g, are the generators of the torsion and non-

torsion subgroups of the homology group (3.24), respectively.

For the local fourfold X̃� the holonomy phase factors (3.50) become

φ(C, ∂X̃) =
(
e

2πik�

2g−2 ; e2πiν�
1 , . . . , e2πiν�

2g

)
, (3.51)

where the first factor measures the torsion of the C-field and the subsequent
factors the holonomies ν�

n with respect to the non-torsion three-cycles S1 ×
S2. Note that the latter phase factors are continuous periodic moduli of
M -theory on the local fourfold X̃�.
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The flux G� on the fourfold X̃� gives rise to similar phases at the boundary
∂X̃

φ(C, ∂X̃) =
(
e

2πik�

2g−2 ; e2πiν�
1 , . . . , e2πiν�

2g

)
, (3.52)

which capture again the torsion class k� of the C-field and the non-torsion
holonomies ν�

n.

Note that in the context of the local geometry X̃� the phase factors ν�
n may

be interpreted as non-trivial four-form fluxes with compact support, which
are Poincaré dual to the cycles A�

n. Such fluxes are trivial in the cohomol-
ogy with compact support, i.e., they are in the kernel of the map α in the
sequence 3.28. Therefore, the local geometry X̃� does not impose a quanti-
zation condition on the parameters ν�

n. If, however, we couple to gravity —
by embedding the local geometry X̃� into a global compact Calabi–Yau four-
fold X� — a quantization condition may be imposed on the phase factors ν�

n.
Therefore, by having a particular global compactification X� in mind, we
may impose even in the local setting X̃� a particular quantization condition
on the parameters ν�

n.

Thus, in order to realize an extremal M -theory transition between the
local geometries X̃� and X̃�, in addition to the constraints summarized in
(3.45), we also need to ensure that the non-torsion holonomies match accord-
ing to:

e2πiν�
n = e2πiν�

n , n = 1, . . . , 2g. (3.53)

3.6 Flat directions of the superpotential and Abel–Jacobi map

Having established the topological conditions on background fields, which
must be fulfilled independently of any further details for a phase transition
to exist, we now examine the dynamical conditions, i.e., the unobstructed
directions of the scalar potential. Along these directions, the Kähler and
complex structure moduli adjust such that dW = 0 and the harmonic back-
ground fluxes are both primitive and of Hodge type (2, 2) [15, 29]. The
conditions on the complex structure and the Kähler moduli can be study
separately on the two parts W (Ω) and W̃ (J) in equation (2.3).
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Resolved phase
In the resolved local fourfold X̃� the possible background fluxes G� in equa-
tion (3.27) are Poincaré dual to (a rational multiple of) the algebraic surface
S� ⊂ X̃�, i.e., e� � [S�]. As a consequence the superpotential W (X̃�) van-
ishes identically and there are no constraints on the complex structure. On
the other hand, due to equations (2.3), (3.9) and (3.27) a non-vanishing flux
G� gives rise to a twisted superpotential. Thus, in the phase X̃� we find

W̃ (X̃�) =
k�

4(g − 1)

(n

2
(JF )2 + JF JC

)
, W (X̃�) = 0. (3.54)

and the resolved phases X̃� tend to be dynamically lifted for non-zero flux
G� if n 
= 0.

Deformed phase
We have already argued that a transition requiresG�

⊥ = 0, and, therefore, we
concentrate on non-vanishing fluxes of type G�

0 as given in equations (3.32)
and (3.43). These fluxes are represented by harmonic L2 four-forms.

The flat directions of the flux-induced twisted superpotential W̃ (X̃�) cor-
respond to primitive L2 fluxes G�

0, namely

dW̃ (X̃�) = 0, for G�
0 ∧ J(X̃�) = 0, (3.55)

where J(X̃�) is the Kähler form of the non-compact fourfold X̃�. The six
form G�

0 ∧ J(X̃�) is again L2 harmonic and a priori needs not to vanish. For
compact manifolds the Hodge–DeRham theorem identifies harmonic forms
with cohomology groups. However, for non-compact Kähler manifolds a sim-
ilar relationship between L2 harmonic forms and cohomology groups is only
established in special cases. Therefore — despite of the vanishing cohomol-
ogy group H6(X̃�, R) — a non-trivial flux G�

0 may still fail to be primitive.
In the context of explicit global embeddings of X̃� into a compact fourfold
X�, we observe that the fluxes G�

0 are primitive for the torsion class k� = 0
and tend to be imprimitive for other torsion classes k� 
= 0 (cf., Section 4.1).

Before starting with analyzing the detailed conditions on the complex
structure moduli from W (X̃�), it is instructive to remember the structure
of the result found in [13, 40] for the closely related problem of geometric
engineering of N = 1 supersymmetric four-dimensional Yang–Mills theory
on Calabi–Yau threefold with flux. The non-zero flux potential describes
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a N = 1 superpotential, which drives the theory to loci in the deforma-
tion space with extra massless dyon states, which condense in the N = 1
vacuum [41]. The spectrum of massless states corresponds to a particular
factorization of the Seiberg–Witten curve in the parent N = 2 theory, which
supports these states on vanishing cycles. The beautiful interplay between
the factorization of the defining equations of the effectively one-dimensional
geometry, a complex curve, and the minimization of the quantum superpo-
tential computed by periods integrals is provided by the Abel–Jacobi theo-
rem, which links the zeros of a linear combination of periods to the existence
of a certain meromorphic function in the factorized geometry [40].

In the following, we find a similar structure for the present minimization
problem by reducing the superpotential for the complex structure moduli
to Abel–Jacobi integrals on the curve C.16 The Abel–Jacobi theorem then
relates the minima of the superpotential to the existence of line bundles with
global holomorphic sections, with the latter associated with the massless 3d
states that are the building blocks of the meson operators. The existence
of these sections amounts to the split of the canonical divisor on C into two
residual special divisors in the sense of [42], and this condition can be written
as a factorization condition on the polynomial ε in (3.15) representing the
deformations of X̃�.

In order to explicitly find the flat directions of the flux-induced superpo-
tentialW (X̃�), we start by evaluating (2.3) in the presence of the background
flux G�

0

W (X̃�) =
2g−3∑
�=1

b�
�

(∫
B�

�

Ω− 1
2g − 2

2g−3∑
m=1

∫
B�

m

Ω

)
. (3.56)

Here, use the relations (3.32) and (3.30) to express the superpotential in
terms of the integers b�

�, restricted by the topological condition (3.43). For
ease of notation we focus on the window 0 ≤ k� ≤ (g − 1) and label the
points p0 through p2g−3 in figure 1 such that the flux quanta (3.43) are dis-
tributed according to b�

1 = · · · = b�
(g−2)+k� = 0 and b�

(g−1)+k� = · · · = b�
2g−3 =

−1. Integrating over the S3 fibers we obtain

W (X̃�) =
g − 1− k�

2g − 2
·
∑

p�∈Z+

∫ p�(z)

p0(z)
ω(z)− g − 1 + k�

2g − 2
·
∑

p�∈Z−

∫ p�(z)

p0(z)
ω(z),

(3.57)

16With a slight extension necessary to describe the C-fields discussed in the previous
section.
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where Z± denote the two point sets

Z+ = {p0, p1, . . . , pg−2+k�}, Z− = {pg−1+k� , . . . , p2g−3}, (3.58)

with g − 1± k� elements and Z+ ∪ Z− is the divisor of KC , by construction.
Moreover, for generic moduli, ω(z) is a holomorphic one-form on the genus
g curve C, which depends on both the parameters of deforming section ε
of the canonical bundle KC and the complex structure moduli of the base
curve C.17 Both types of moduli furnish complex structure deformations of
the local Calabi–Yau fourfold X̃�, which we collectively denote by z. The
line integrals are taken over paths as schematically depicted in figure 1. For
criticality of this superpotential we arrive at the condition

dW (X̃�) =

⎛⎝d+

Δ

∑
p�∈Z+

∫ p�

p0

∂zω(z)−
d−
Δ

∑
p�∈Z−

∫ p�(z)

p0(z)
∂zω(z)

⎞⎠dz = 0,

(3.59)

where we used that the differential ω vanishes at the points p� and we defined
the positive integers

d± =
g − 1∓ k�

gcd(g − 1− k�, g − 1 + k�)
,

Δ = d+ + d− =
2g − 2

gcd(g − 1− k�, g − 1 + k�)
.

(3.60)

As the derivatives ∂zω(z) for all z generate a basis of holomorphic one-forms
ωα, α = 1, . . . , g, we can formulate the criticality constraint (3.59) in terms
of the map

μ̃ : {p�} �→
(∫ p�

p0

ω1, . . . ,

∫ p�

p0

ωg

)
, (3.61)

as

d+

Δ
μ̃(p0 + · · ·+ pg−2+k�)− d−

Δ
μ̃(pg−1+k� + · · ·+ p2g−3) = 0, (3.62)

where we used linearity of μ̃. The map μ̃ is related to the Abel–Jacobi map

μ : C → Jac(C), q �→
(∫ q

p0

ω1, . . . ,

∫ q

p0

ωg

)
, (3.63)

17Explicit examples will be considered in the next subsection.
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by the commuting diagram

{p�}
μ̃ ��

μ

		��
��

��
��

� Cg

P
��

Jac(C)

. (3.64)

The definition of the map μ̃ includes a specific path of integration p0–p�,
which is determined by the minimal volume condition when integrating over
the S3 fibers in equation (3.56). On the other hand, modding out by integral
cycles in H1(C, Z) defines the projection P and one obtains the Abel–Jacobi
map μ, which is well-defined for a point q on C. Inversely, the lift from μ to
μ̃ requires specifying the path p0–p�.

To include also the C-fields, we have to consider in addition a contri-
bution to the superpotential from background fluxes Poincaré dual to the
four-cycles A�

n. These fluxes have compact support and become exact in
the cohomology H4(X̃�) according to (3.28). Nevertheless, they enter the
superpotential due to their contributions at the boundary ∂X̃. Integrating
over the S3 fibers, this flux-induced superpotential becomes

W (X̃�, ν�
n) =

2g∑
n=1

ν�
n

∮
a�

n

ω(z), (3.65)

with a basis of one-cycles a�
n, n = 1, . . . , 2g, ofH1(C, Z). The flux parameters

ν�
n give rise to the (periodic) holonomy phases e2πiν�

n in the Cheeger–Simons
cohomology.18 As discussed at the end of Section 3.5, these flux parame-
ters are quantized in a global embedding of X̃�. The generalized criticality
condition for the combined superpotential from equations (3.57) and (3.65)
can then be written as

d+

Δ
μ̃(p0 + · · ·+ pg−2+k�)− d−

Δ
μ̃(pg−1+k� + · · ·+ p2g−3) + μ̃ν(ν�

n) = 0,

(3.66)

with

μ̃ν : ν�
n �→

(∑
n

ν�
n

∮
a�

n

ω1, . . . ,
∑

n

ν�
n

∮
a�

n

ωg

)
, (3.67)

18Note that the continuous values of the parameters ν�
n become only meaningful with

respect to an explicitly chosen basis of four-cycles B�
� and A�

n.
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which, analogously to (3.64), also projects onto the intermediate Jacobian
Jac(C). Finally, by linearity of the map μ̃, we may rewrite the criticality
condition (3.66) into the two equivalent constraints

μ̃(p0 + · · ·+ pg−2+k�) =
d−
Δ

μ̃(p0 + · · ·+ p2g−3)− μ̃ν(ν�
n),

μ̃(pg−1+k� + · · ·+ p2g−3) =
d+

Δ
μ̃(p0 + . . .+ p2g−3) + μ̃ν(ν�

n). (3.68)

The projection of the map μ̃ onto the Abel–Jacobi map μ gives a nice
geometric interpretation of the supersymmetry conditions (3.68): firstly,
the zero of the Abel–Jacobi map establishes a one-to-one correspondence
with holomorphic line bundles. Namely, we assign to the effective divisors
appearing as the arguments of the map μ̃ on the left-hand side of the two
relations in equation (3.68) the line bundles E±

E+ = OC(p0 + · · ·+ pg−2+k�), E− = OC(pg−1+k� + · · ·+ p2g−3). (3.69)

Then the supersymmetry conditions (3.68) tell us that the two line bundles
must be given by

E+ � K
d−/Δ
C ⊗ L0, E− � K

d+/Δ
C ⊗ L∗0. (3.70)

where L0 is the degree zero line bundle associated to the point−μν(ν�
n) of the

intermediate Jacobian Jac(C). Here the root of the canonical bundle appears
because the effective divisor p0 + · · ·+ p2g−3 corresponds to the canonical
bundle KC of the curve C. As a result, we observe that the line bundles E±
fulfill

E+ ⊗ E− � KC . (3.71)

For later reference, we alternatively write the line bundles 3.70 as

E+ � K
1/2
C ⊗ L, E− � K

1/2
C ⊗ L∗, (3.72)

in terms of the spin structure K
1/2
C and the degree-k� line bundle

L = K
k�

2g−2

C ⊗ L0. (3.73)

The spin structure K
1/2
C and the (2g − 2)-th root of KC in equation (3.73)

must be chosen in accord with equations (3.68).
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To recapitulate at this point, the flux superpotential W (X̃�) is speci-
fied by the torsion class k� and the C-field parameters ν�

n and imposes the
constraint (3.68) on the complex structure deformation space of Def(X̃�)
parameterized by the global sections ε of the canonical bundle KC on the
family of curves C. Via the above argument, the condition dW (X̃�) = 0
translates into the condition, that the canonical divisor splits into two resid-
ual divisors associated to two line bundles E± with holomorphic sections ε±.
The flat directions in Def(X̃�) are therefore of the factorized form

x1 x2 − x3 x4 = ε+ε− with ε± ∈ H0(C, E±). (3.74)

The above conditions (3.71) and (3.70) do not uniquely specify the line bun-
dles E±, as there is an ambiguity in taking the Δ-th root in equation (3.70).
The different choices of roots of the canonical bundle are distinguished by
the C-field parameters ν�

n in equation (3.68), and these have to be matched
as well in an extremal transition.

As the space of flat directions is parameterized by the deformations of ε
that arise as the product of two global sections ε± of the line bundles E±,
the dimension of the unobstructed deformation space is

dimDef(X̃�, E+ ⊗ E−) = N+ +N− − 1. (3.75)

Here N± = h0(C, E±) is the number of global sections of E± and the −1
accounts for a rescaling (ε+, ε−)→ (λε+, λ−1ε−) with λ ∈ C∗. Note that
the individual number of global sections N±, and thus the dimension of the
deformation space 3.75, depends on the complex structure of the curve C
and the holonomy phase factors ν�

n. Only the index

N+ −N− = h0(C, E+)− h1(C, E+) = h1(C, E−)− h0(C, E−), (3.76)

is a topological invariant.

In summary the non-vanishing superpotential W (X̃�) obstructs a generic
deformation into the deformed phase X̃�. The flux G�

0 is still consistent
with the topological constraints (3.45) as we move along non-flat directions
of the superpotential W (X̃�) where the zero set Z+ ∪ Z− of the canonical
bundle does not split into the zero sets of holomorphic sections of the two
line bundles E±. On the other hand, the superpotential W (X̃�) is identically
zero on the flat directions determined by the factorization condition (3.74).
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Combining the above results for the superpotential and the twisted super-
potential, we can find dynamically unobstructed phase transitions at least
for vanishing torsion class k� = k� = 0.

3.7 Local transitions for special configurations

To make some of the previous findings more concrete, we consider now
some special configurations. Since the flux superpotential W (X̃�) in equa-
tion (3.54) generically prevents a phase transition for k� 
= 0 (at least in the
local case) we first focus on the most promising case of vanishing background
flux G� in the resolved geometry X̃�. This corresponds to the torsion class
k� = k� = 0 and a flux

G�

2π
= 0,

G�
0

2π
=
1
2

⎛⎝ ∑
�: p�∈Z+

[T �
� ]−

∑
�: p�∈Z−

[T �
� ]

⎞⎠ , (3.77)

where each set Z± defined in (3.58) contains g − 1 points. While there is no
potential in the resolved phase X̃�, the flux-induced superpotential W (X̃�)
is given by (3.57) for k� = 0 and the flat directions correspond to the split
(3.71) with E± = K

1/2
C ⊗ L±1.

A particular interesting case, motivated by the existence of a global
embedding, is the factorization E± � K

1/2
C . The flat directions of the super-

potential then correspond to the holomorphic global sections N+ = N− of
a chosen spin structure K

1/2
C on C. On the genus g curve C there are 22g

inequivalent spin structures or, in other words, 22g inequivalent square roots
of the canonical bundle KC [43]. These are in one-to-one correspondence
with the 22g half-integral choices for the phases ν�

n

ν�
n ∈
{
0,
1
2

}
, n = 1, . . . , 2g 1:1←→ 22g spin structures K

1/2
C (3.78)

By a classical result due to Riemann (and proved in modern algebraic lan-
guage by Mumford [44]) these spin structures (also called “theta characteris-
tics”) can be divided into two classes: for 2g−1(2g + 1) of the spin structures,
the dimension of the space of global sections is even, while for the remaining
2g−1(2g − 1) spin structures, the dimension of the space of global sections is
odd, hence non-vanishing.
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As a first example consider the case with a single global section ε = ε±.19
Then the unobstructed deformation space is one-dimensional with its flat
direction parameterized by ε = ε2. As the deformation ε is a square, it yields
(g − 1) double zeros. For explicitness, we label the individual zeros in such
a way that the pairs (p0, p1), (p2, p3), . . . , (p2g−4, p2g−3) correspond to the
(g − 1) double zeros. In this way, we naturally define a basis of four-cycles
B̂�

� as in figure 2. Then the four-cycles B̂�
2k−1, k = 1, . . . , g − 1 are associated

to the vanishing paths p2k−2 – p2k−1, and hence are shrunken to zero size.
With these conventions and according to equation (3.77) the deformation
ε = ε2 corresponds to a flat direction for the flux configuration

G�
0

2π
=
1
2

g−2∑
k=0

(
[T �

2k+1]− [T �
2k]
)
= ê� ∗

1 − ê� ∗
3 + · · ·+ (−1)g ê� ∗

2g−3

=
1
2

g−2∑
k=0

[B̂�
2k+1] (3.79)

expressed in terms of dual forms of the non-compact four-cycles T �
� or, alter-

natively, in terms of a (particular choice of) basis ê� ∗
� Poincaré dual to

the duals of the four-cycles B̂�
�. Owing to the vanishing of the four-cycles

B̂�
2k−1, k = 1, . . . , g − 1, along the deformation direction ε = ε2, the superpo-

tential W (X̃�) = 1
2

∑g−2
k=0

∫
B̂�

2k+1
Ω associated to the flux configuration 3.79

is identically zero. Note that the deformed Calabi–Yau X̃� remains singular
at the vanishing cycles B̂�

2k−1 corresponding to the (g − 1) double points.
A five-brane wrapped on a vanishing cycle B̂�

2k−1 gives rise to a tensionless
domain wall which connects two vacua distinguished by a sign flip of the
coefficient of [B̂�

2k−1] in (3.79).

Hyperelliptic curves
For a concrete class of phase transitions with higher-dimensional deforma-
tion spaces we consider next the case of a hyperelliptic curve C, where the
relevant spaces of holomorphic sections can be studied quite explicitly. A
hyperelliptic curve can be described as branched double covers of P1, which
can be realized as the locus

y2 =
2g+2∏
i=1

(x− wi). (3.80)

19For hyperelliptic Riemann surfaces there is always a spin structure with a single
global section, whereas for the generic Riemann surface such a spin structure is conjectured
in [45].
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in C2. Hyperelliptic curves C come with an involution

ι : (x, y) �→ (x,−y), (3.81)

which fixes the (2g + 2) Weierstrass points wi, i = 1, . . . , 2g + 2. The divi-
sors 2w1 ∼ 2w2 ∼ · · · ∼ 2w2g+2 are linearly equivalent, and the canonical
bundle may be represented by [45]

KC � OC((2g − 2)wi), for any i = 1, . . . , 2g + 2. (3.82)

As described above, the flat directions of the superpotential arise from
global holomorphic sections of the spin structures, which have been clas-
sified in [45]. Any spin structure of a hyperelliptic curve C can be expressed
in terms of divisors built out of Weierstrass points

K
1/2
C = OC(c1w1 + . . .+ c2g+2w2g+2), ci ∈ Z,

∑
i

ci = g − 1. (3.83)

The zeros of the holomorphic sections of KC and K
1/2
C , whose interplay led

to the derivation of the factorization condition (3.71), are subject to the
following general conditions:

(i) The global holomorphic sections of the canonical bundle KC are odd
with respect to the involution ι, which implies that their (2g − 2) zeros
group into (g − 1) pairs of zeros (p, p̂) such that p can be put at an
arbitrary position, while p̂ = ι(p). If a zero of ε coincides with a Weier-
strass point wi, than it is at least a double zero.

(ii) A global section of a spin structure has (at least) a simple zero at
every Weierstrass point that appears with an odd coefficient ci in
equation (3.83). The remaining zeros come again in pairs (p, p̂) with
ι(p) = p̂, with p at an arbitrary position.

The classification of spin structures in [45] distinguishes two classes, namely
hyperelliptic curves C of odd and of even genus g. We examine these two sit-
uations separately and start first with odd genus curves C. For convenience,
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we reproduce the results of this classification here (with i1 < i2 < · · · < ig+1):

# K
1/2
C dimH0(C,K1/2

C ) dimDef(X̃�,K
1/2
C )

1 OC((g − 1)w1) g+1
2 g (odd)(

2g+2
2

)
OC((g − 2)wi1 + wi2)

g−1
2 g − 2(

2g+2
4

)
OC((g − 4)wi1 + wi2 + wi3 + wi4)

g−3
2 g − 4

...
...

...
...(

2g+2
g−1

)
OC(wi1 + · · ·+ wig−1) 1 1(

2g+1
g

)
OC(−w1 + wi2 + · · ·+ wig+1) 0 0

(3.84)

The columns denote the number of distinct spin structures of a given type,
the spin structure expressed by divisors, the number of global holomorphic
sections, and the dimension of the unobstructed deformation space (3.75).
By the above arguments, this space is supposed to parameterize the flat
directions of the flux superpotential given by the two contributions (3.57)
and (3.65). To match these two descriptions we write the superpotential as
a sum of two contributions

W (X̃�) = W+ +W− =
∫

g+ ∧ ω +
∫

g− ∧ ω,

where g± is the part of the (reduction to C of the) flux, which is even/odd
under the involution. Since ω is odd, W+ vanishes identically, while W− 
= 0
and puts a non-trivial restriction on the deformation space.

For k� = 0 the superpotential (3.57) can be expressed as a sum W =∑
� t��[T̂

�
� ] =

∑
� λ�

�[B̂
�
�], with t��, λ

�
� ∈ {1

2 ,−1
2}. The poles p� of the four-cycles

B̂�
n are paired by the involution ι and there are three different possibilities

to locate the four-cycles B̂�
n relative to the two sheets, as shown in figure 3.

Here, the solid circles denote the points p�, the arrows the projection to C of
the cycles B̂�

n with the orientation determined by the sign of the coefficients
t��, λ

�
� and the dashed line the branch cut separating the two sheets of C.

In the first configuration a) the zeros p� and ι(p�) appear with the same
coefficient t�� and both lie in a single factor ε±. The combined contribution
of the two B̂� cycles on the two sheets is W+ =

∫
B̂ ω +

∫
ι(B̂) ω =

∫
B̂(ω +

ι∗(ω)) = 0. For the other two configurations, the zeros p� and ι(p�) appear
with opposite coefficients and lie in different factors ε±. The superpotential
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Figure 3: The diagram depicts the three different local flux configurations
appearing on hyperelliptic curves C. The dashed line indicates a branch cut
separating the two sheets of the branched covering of P1. As explained in
the text, the circles and the connecting solid lines show the poles p� together
with fluxes along four-cycles B̂�

n.

Figure 4: The diagram shows the flux configurations as the poles p� in fig-
ure 3 approach Weierstrass points wi and wj . Moving the poles onto the
Weierstrass points realizes a flat direction in case (a) whereas the superpo-
tential for the flux configuration becomes critical in case (b) and (c).

for these configurations is non-zero for generic position of p�, but becomes
critical if the zeros p� approach a Weierstrass points wi as shown in figure 4.

The superpotential for case (b) in figure 4 is equal to a half-integer flux
on a cycle a�

ij encircling the points wi, wj and can be canceled by adding a
flux ν = −1

2 in (3.65). For case (c), the flux is dual to vanishing cycles and
gives a zero superpotential, similarly as in the case N± = 1 discussed above.
The number of deformations is reduced by −2 and by −1 in these two cases,
respectively.

To compare with the results of [45] note that there is a unique maxi-
mal spin structure K

1/2
C , corresponding to the first line of table (3.84), for

which the unobstructed deformation space Def(X̃�, K
1/2
C ) realizes the entire

geometric deformation space Def(X̃�). This spin structure has only even
coefficients, and as a result of point (ii), we can pick two sections ε± each
with 1

2(g − 1) pairs of zeros (p, p̂) where the zeros p are at arbitrary positions.
This maximal spin structure assigns to any pair of points (p, p̂) half-integral
flux quanta of the same sign which contribute only to the configurations a)
with W+ = 0, in accord with the above analysis of the flux superpotential.
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Moreover, ν�
� = 0 for all � as adding a flux (3.65) would induce a non-zero

obstruction.

On general grounds, the other spin structures can be obtained from the
maximal one by switching on half-integral C-field fluxes ν�

� along cycles a�
�.

The critical points of the superpotential are then of the type b) with flux coef-
ficients t�� of opposite signs on two points p� and ι(p�). Indeed all the other
spin structure in (3.84) have global sections with zeros at 2 ≤ 2k ≤ 2g − 2
Weierstrass points according to (ii). Let us denote these Weierstrass points
by wi1 to wi2k

. Thus, the deformations ε = ε+ε− realized in terms of such
a spin structure has (at least) a double zero at these Weierstrass points.
This constrains the deformation space Def(X̃�) by 2k conditions, explain-
ing the dimension of the deformation spaces Def(X̃�, K

1/2
C ) ⊂ Def(X̃�) in

(3.84). Since the deformations ε exhibit these 2k double points, there are 2k
vanishing B-cycles in the deformed geometry and the fourfold X̃� remains
singular at the fibers over these Weierstrass points. The sections ε± assign
now half-integral flux quanta [T �

� ] of opposite sign to the two distinct zeros
in the double zeros of the 2k Weierstrass point according to equation (3.77),
resulting in one unit of flux for each vanishing B-cycles at the Weierstrass
points wi1 and wi2k

.

The third critical configuration (c) describes a half-integral flux on a van-
ishing cycle B̂�, representing a root of the AM lattice 3.20 with M = 2g − 3.
A Weyl reflection of AM sends G/2π = 1

2 [B̂
�]→ −G/2π. The two configu-

rations are related by a five-brane domain wall wrapping B̂ and have the
same number of M2 branes δM(B̂�) = 0. Indeed, for a five-brane wrapped
on a four-cycle D, we should consider the averaged flux Ḡ = (G1 +G2)/2 =
G1 + 2π[D]/2 of the fluxes G1/2 on both sides of the domain wall [15] and
integrate over D to obtain

δM(D) =
∫

D

Ḡ

2π
=
∫ (

G1

2π
∧ [D] + 1

2
[D]2

)
. (3.85)

This is zero for the above case as Ḡ = 0.20

We know briefly turn to the geometries based upon hyperelliptic curves
of even genus. In this case, the classification of spin structures reads (with

20The configurations of type (c) require X to have an An singularity with n ≥ 1 in
the sense of [15, 35] and appear to be more general in that they need not be related to a
factorization in the non-hyperelliptic case.
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i1 < i2 < · · · < ig+1) [45]:

# K
1/2
C dimH0(C,K1/2

C ) dimDef(X̃�,K
1/2
C )

2g + 2 OC((g − 1)w1) g
2 g − 1 (odd)(

2g+2
3

)
OC((g − 3)wi1 + wi2 + wi3)

g−2
2 g − 3(

2g+2
5

)
OC((g − 5)wi1 + · · ·+ wi5)

g−4
2 g − 5

...
...

...
...(

2g+2
g−1

)
OC(wi1 + · · ·+ wig−1) 1 1(

2g+1
g

)
OC(−w1 + wi2 + · · ·+ wig+1) 0 0

(3.86)

The analysis of spin structures for the even genus hyperelliptic curves pro-
ceeds analogously to the odd genus case. For even genus there are 2g + 2
maximal spin structures (as opposed to a single maximal spin structure
for odd genus). However, no spin structure — not even the maximal spin
structures — can dynamically realize the entire deformation space Def(X̃�),
because any spin structure has at least one odd coefficient ci in (3.83) and
hence at least one double zero along a Weierstrass point according to (ii).
As a consequence the deformation space Def(X̃�, K

1/2
C ) is always a true sub-

space of Def(X̃�) for any spin structure K
1/2
C . The individual spin structures

are again distinguished by the phase factors ν�
n as in (3.78). This can be

worked out explicitly by determining integral versus half-integral flux quanta
on the four-cycles A�

n.

To summarize we have seen how the Abel–Jacobi theorem applied to the
flat directions of the superpotential (3.57) and (3.65) reproduces the classifi-
cation of spin structures on hyperelliptic curves obtained in [45] by different
means. Moreover the above argument explicitly illustrates the correspon-
dence (3.78) between spin structures and holonomy factors ν�

n in the context
of hyperelliptic curves. The above arguments based on the superpotential
are however not restricted to the hyperelliptic case (and not even to spin
structures, as they apply to more general line bundles, i.e., tensor products
with the flat bundle L0). It would be interesting to study the classification
of spin structures on non-hyperelliptic curves from this perspective.

In this context, note that the Z2 symmetry, which asserts the cancella-
tion of the two contributions to W+ in the configuration (a), arises here
from the hyperelliptic involution, but can be interpreted more generally as
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a Z2 symmetry acting on the SU(2g − 2) lattice (3.30), which asserts the
coincidence of the volumes of two subgroups of four-cycles (roots) with iden-
tical intersections. A natural ansatz for a systematic construction of critical
subsets is therefore to classify and study those loci in the deformation space
of SU(2g − 2), which are invariant under discrete symmetries acting on the
group lattice.

Genus 6 curves with a maximal spin structure
We now discuss the dynamics of the phases X̃� and X̃� built upon a genus
6 curve that arises as the zero locus of a (generic) homogeneous degree five
polynomial p5 in P2

C = {p5(x1, x2, x3) ≡ 0} ⊂ P2, (3.87)

with homogeneous coordinates x1 to x3.

In order to have dynamical transitions we focus on a scenario with vanish-
ing flux G� = 0 in the resolved phase X̃�. Then, as discussed, the flat direc-
tions of the deformed phase X̃� are controlled by a spin structure E± � K

1/2
C

arising as the square root of the canonical bundle KC . The canonical bundle
of the curve (3.87) is the line bundle O(2) restricted to the curve C, namely
KC � O(2)|C . Its sections are homogeneous degree two polynomial

q2 = z1 x2
1 + z2 x2

2 + · · ·+ z6 x2x3, (3.88)

with six parameters z1 to z6 parameterizing the deformation space Def(X̃�).

An obvious square root of the canonical bundle is given by K
1/2
C � O(1)|C

with three global sections x1, x2, x3, i.e., N± = 3, which gives rise to five
unobstructed deformations (cf., equation (3.75)). This five-dimensional
unobstructed deformation space Def(X̃�, K

1/2
C ) is a codimension one slice in

the six-dimensional deformation space Def(X̃�) parameterized by sections
of the canonical bundle KC . The unobstructed deformations correspond to
those polynomials q2, which factorize into two linear polynomials q2 = l1l2
with the linear factors l1/2 representing sections of the spin structure O(1)|C .

As a side remark, we observe that the discussed spin structure O(1)|C
is maximal. A spin structure of a genus g curve is called maximal, if it
has

[
g+1
2

]
global sections, which is the maximal number of sections for

a spin structure of a curve [43]. However, a spin structure can only be
maximal if the curve C is either hyperelliptic or it is of genus four or genus
six [45,46]. The curve (3.87) is not hyperelliptic, and therefore we encounter
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here an example of a maximal spin structure for the exceptional case g = 6.
In the subsequent examples, we come back to maximal spin structures of
hyperelliptic curves.

Vanishing G-flux on the local fourfold X̃�

In our first scenario, we take a generic genus g curve C (g > 1) with the
background fluxes

G�

2π
= ±1

2
[S�],

G�

2π
= 0, (3.89)

in the resolved and in the deformed phase, respectively. Such fluxes corre-
spond to the torsion classes k� = k� = g − 1 with vanishing flux quanta b�

� on

the deformed geometry X̃�. Dynamically, the resolved phase X̃� is lifted due
to the presence of the twisted superpotential (3.54), while — because of the
absence of background fluxes G� — the deformed phase X̃� is unobstructed,
realizing the entire deformation space of the deformed phase. Formally,
we may identify the unobstructed phase X̃� with the factorization bundles
E+ � KC and E− � OC with N+ = g and N− = 1 global holomorphic sec-
tions, giving rise to the g-dimensional deformation space (3.75).

4 Conifold transition in global Calabi–Yau fourfolds

In this section, we study the embedding of the local transitions into global
fourfolds. The globalization of the locally consistent fluxes identified above
leads us to consider fluxes supported on integral homology cycles of a mixed
type, which give a new class of solutions to the local anomaly conditions. We
study the flat directions of the superpotential for these solutions and show
that these are often the only solutions, which give rise to supersymmetric
vacua and dynamically realized phase transitions.

At the critical points the local condition captured by the Abel–Jacobi
theorem translates to the appearance of new algebraic four-cycle classes
at special complex structure where the polynomial of the global hypersur-
face allows for reducible algebraic cycles. Reducible algebraic four-cycles
supporting G-flux have been already studied in the context of F -theory and
elliptic fibrations in [21].21 The correspondence between reducible algebraic
cycles in Calabi–Yau threefolds and its dual fourfolds and the critical points

21A dual spectral cover description for G-fluxes supported on algebraic four-cycles has
been given in [19,47–49].
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of N = 1 superpotentials via an Abel–Jacobi argument is also prominent in
the works [48, 50–52] on N = 1 mirror symmetry.

To avoid being too technical from the beginning, we first consider the
sextic fourfold as a simple example, as it illustrates already some of the
distinct features of the new class of mixed fluxes emerging from the local
discussion.

4.1 A simple example: extremal transition for the sextic

Before we delve into the general discussion of extremal M -theory transi-
tions in Calabi–Yau fourfolds, we first present an instructive example. Let
us consider the sextic hypersurface Calabi–Yau fourfold X� ≡ P5[6] in the
projective space P5, given in terms of a general homogeneous polynomial of
degree six in the projective coordinates x1, . . . , x6 of P5. The fourfold X�

has Hodge numbers and Euler characteristic

h1,1

X� = 1, h2,1

X� = 0 h3,1

X� = 426, h2,2

X� = 1752, χ(X�) = 2 610. (4.1)

As the defining sextic polynomial degenerates to x5 g(x) + x6 h(x) with two
degree-five polynomials g(x) and h(x), it develops along the codimension two
locus x5 = x6 = g(x) = h(x) = 0 a genus 76 curve C of conifold singularities.
A small resolution of this singular curve yields the Calabi–Yau fourfold X�

with Hodge numbers and Euler characteristic22

h1,1
X� = 2, h2,1

X� = 0, h3,1
X� = 350, h2,2

X� = 1452, χ(X�) = 2 160. (4.2)

We observe that the Euler characteristic changes by δχ = χ(X�)−
χ(X�) = 450 = 6− 6 g(C), in agreement with the change in Euler charac-
teristics deduced from equations (3.6) and (3.16) in the context of the local
extremal transitions. Furthermore, the Hodge numbers change as antici-
pated in equation (2.5), which we will show in general in Sections 4.2 and
4.3 for such extremal transitions.

To describe dynamical phase transition between X� and X�, let us now
turn to the background fluxes. Firstly, we observe that the Euler char-
acteristic χ(X�) is divisible by 24 and the second Chern class c2(X�) is

22We obtain the small resolution as follows (cf., [2, 53]). The curve C lies within P3

defined by x5 = x6 = 0. We blow up P3 within P5, which may be realized in P5 × P1

as the locus s1x5 − s2x6 = 0 with the projective coordinates s1, s2 of P1. The resolved
Calabi–Yau fourfold X� is the locus 0 = s1x5 − s2x6 = s1g(x) + s2h(x) within P5 × P1.
Alternatively, we will give a (related) toric hypersurface realization of X� in Section 4.4.
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even in H4(X�, Z). As consequence, the Calabi–Yau fourfold X� together
with MX� = 2 160

24 = 90 space-time filling M2 branes fulfills both the tad-
pole constraint (2.2) and the quantization condition (2.2) in the absence of
background fluxes G� = 0. Thus, such a scenario represents a consistent M -
theory background. Owing to the absence of background fluxes, there are
no potentials (2.3) and we arrive at a supersymmetric M -theory vacuum on
X� with

MX� = 90, G� = 0. (4.3)

From a local perspective in the vicinity of the curve C — that is to say from
the vantage point of the local fourfold X̃� of a resolved genus 76 curve C as
discussed in Section 3 — the vacuum (4.3) describes a local configuration
with vanishing torsion class k� = 0. Furthermore, due to the absence of
homologically non-trivial three-cycles, i.e, h2,1

X� = 0, the phase factors ν�
n are

set to zero due to the embedding into the global geometry X�.

Let us now examine dynamical phase transitions into the fourfoldX�. The
Euler characteristic of χ(X�) is not divisible by 24 and the second Chern class
c2(X�) = 15H2 is odd, where the class H is induced from the hyperplane
class of the ambient P5.23 Thus, consistency of M -theory on the fourfold
X� requires a half-integrally quantized background flux G� such that the
quantization condition (2.1) is met. Then the tadpole condition (2.2) can
be fulfilled with an integral number of space-time filling M2 branes MX� .

For a dynamical phase transition into X�, the required background flux
G� must be supersymmetric for an unobstructed deformation into X�. In
the discussed global setting these deformations are parameterized by homo-
geneous polynomials of degree six ε(x) according to

x5 g(x) + x6 h(x) = ε(x). (4.4)

The deformation ε(x) restricts on the genus g curve C to a section of the
canonical bundle KC , as discussed in the context of the local fourfold X̃�.
The analysis of the superpotential in the local geometry of Section 3.6 told
us that — for vanishing phase factors ν�

n and for vanishing torsion classes
k� = k� = 0 — the section of the canonical bundle ε must factor into sections
of an appropriate spin structure K

1/2
C as ε = ε+ε−.24

23Since
∫

X� H2 ∧H2 = 6, the four form class H2 is not divisible by two in H4(X�, Z).

Hence, c2(X
�) is not divisible by two.

24Except for the critical configurations related to An singularities.
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When the local geometry is embedded into a global fourfold X�, the two
local algebraic cycles defined by x5 = x6 = εi(x) = 0 must extend to globally
defined algebraic cycles. The easiest way to achieve this is to assume that
the factorization condition globalizes, i.e., the sextic deformation ε(x) in
equation (4.4) has to factor into two homogeneous polynomials of degree
three, which is a constraint on the complex structure of X�. The new
aspect in the global geometry is that for this complex structure there is
a new integral algebraic four-cycle class. Indeed if we set x5 = x6 = 0 in
equation (4.4), then — contrary to the generic sextic fourfold X� near the
transition — we get a reducible algebraic four-cycle with two components
T �± : x5 = x6 = ε±(x) = 0. By construction the integral four-form classes
[T �±] add up to the square of the hyperplane class, namely H2 = [T �

+] + [T �−].

A global version of the local result (3.77) obtained for k� = 0 in Section 3.6
is the flux

G�

2π
=
1
2

(
[T �

+]− [T �
−]
)

. (4.5)

As expected from the local analysis, this satisfies the quantization condition
(2.1):

G�

2π
− c2(X�)

2
=
1
2

(
[T �

+]− [T �
−]
)
− 15

2
H2 = −7[T �

+]− 8[T �
−]. (4.6)

Furthermore, with the help of the intersection numbers T �
+.T �

+ = T �−.T �− = 39
and T �−.T �

+ = −36 of the four-cycles T �±,25 we determine for the flux (4.6) a
tadpole-free M -theory configuration with space-time filling M2 branes that
is unchanged from (4.3)

MX� =
2610
24

− 1
2 · 4 (2 · 39 + 2 · 36) = 90. (4.7)

Note that the classes [T �±] continue to exist, and provide a solution to the
local anomaly cancellation on each integral four-cycle, for any complex struc-
ture away from the factorization locus. For generic complex structure, the
representatives for [T �±] are neither algebraic nor special Lagrangian and the
flux (4.5) is of a mixed type. For the special complex structure the lattice
vectors in H4(X, Z) associated with the classes [T �

+] and [T �−] become orthog-
onal to the class represented by Ω (see also the discussion in Appendix A.)

25We calculate the Euler number of the normal bundle NT �
±, which determines the

self-intersections of T �
± to be 39. Then we infer T �

−.T �
+ = −36 from 6 =

∫
X� H2 ∧H2 =

(T �
+ + T �

−)2.
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The flux discussed above gives rise to an unobstructed phase transition
between X� and X�. As for the Kähler moduli, the mixed G-flux G� in equa-
tion (4.5) is primitive because of J ∧G� ∼ (T �

+ + T �−)(T �
+ − T �−) = 0. The

twisted superpotential W̃ is zero. This feature of the new mixed solution to
the anomaly constraint should be compared to the other obvious solution of
the split type:

G�
split

2π
=
1
2
H2 =

1
2

(
[T �

+] + [T �
−]
)

. (4.8)

In distinction to the flux (4.5), this choice of flux generates a twisted super-
potential for the Kähler modulus of the sextic. Note that the two configu-
rations (4.5) and (4.8) are connected by a five-brane domain wall wrapped
on T−.

On the other hand, the mixed G-flux generates the superpotential W
for the complex structure deformations studied in Section 3.6. As argued
there, the critical points of this superpotential are precisely the complex
structures for which ε factorizes as ε(x) = ε+(x)ε−(x). These deformations
will keep both cycles T �± as cycles of type (2, 2), as expected from the results
of [15, 29]. Hence, moving along factorized deformation directions, we find
a dynamically unobstructed phase transition from X� into the deformed
phase X�.

More precisely, the 150 zeros of ε(x) on the genus 76 curve C split into the
g − 1 = 75 zeros p� ∈ Z± of ε±(x), defining the four-cycles T �

� that appear
with positive/negative coefficients in (3.77). In the global embedding, these
two sets of four-cycles in the local geometry add up to the four-cycle classes
T �± inX�. Thus, the analyzed phase transition represents a global embedding
of the local transition discussed in equation (3.43).

Extremal transitions for other torsion classes correspond to other classes
of factorizations of ε(x) and these again give rise to (different) new algebraic
four-cycle classes in the global fourfold X� for special complex structures.
For the sextic, a globally consistent factorization requires ε± to be of degree
3, 2, 1, corresponding to the torsion classes k� = 0, 25, 50 and a net number
of M2 branes 90, 92, 98, respectively. Note that the flux contribution to
the M2 brane charge on X� has the wrong sign for k� > 0 (see (2.2)) and
indicates an obstruction toward the transition to X�. These obstructed
cases are similar to the transitions in elliptic fourfolds considered in [21],
where the flux contribution on the resolved phase appears to have always
the wrong sign.
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As a concrete example consider the factorization of ε(x) = ε5(x)ε1(x) into
a degree five and a degree one polynomial. In this case, the G-flux becomes

G�

2π
=
1
2

(
[T �

5 ]− [T �
1 ]
)

, (4.9)

in terms of the corresponding algebraic cycles with H2 = [T �
5 ] + [T �

1 ]. By
similar arguments, this flux is again consistent with the quantization con-
straint (2.1) and yields M � = 98 due to the tadpole condition (2.2) (because
T �

5 .T �
5 = 25, T �

1 .T �
1 = 21 and T �

5 .T �
1 = −20). From the 125 and 25 zeros

of ε5(x) and ε1(x), respectively, we obtain 125 non-vanishing flux-quanta
b�
� of charge one, which yield the torsion class k� = 50 according to equa-
tion (3.36). However, the flux G� is not primitive anymore, because the
intersection

∫
X� G� ∧H2 = 2 gives rise to a twisted superpotential

W̃ � =
1
2

∫
X�

G�

2π
∧ J ∧ J = J2

H , (4.10)

in terms of the Kähler form J = JH H with Kähler parameter JH . In the
resolved fourfold X� the corresponding background flux G� is given by26

G�

2π
=
1
3
[S�] +

1
3
H̃2 ∈ H4(X�, Z), (4.11)

expressed in terms of the four-form [S�] dual to the surface (3.2) and the
two-form class H̃ induced from the hyperplane class H in P6. As [S�] is
orthogonal to H̃2, the tadpole condition (2.2) yields again the M2 brane
number M � = 98. Furthermore, the flux (4.11) generates a twisted super-
potential of the form

W̃ � =
1
2

∫
X�

G�

2π
∧ J ∧ J = J2

H + 10JHJF , (4.12)

with the Kähler form J = JHH̃ + JF [F ], where JF is the volume of the
P1 fiber F of the fibration S�. The first term corresponds to the twisted
superpotential (4.10) also appearing in the fourfold X�. The second term
arises in the extremal transition in the vicinity of the genus 76 curve C, as
discussed in the context of the local geometries in Section 3. This is the
contribution in (3.54) for the torsion class k� = 50.

26Despite the overall factor of 1
3
, a closer analysis reveals that G�

2π
is actually integral

and thus compatible with the quantization condition (2.1).
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Hence, the factorization ε(x) = ε5(x)ε1(x) realizes a local extremal M-
theory transition scenario along a genus 76 curve C with torsion class k� =
k� = 50. However, in addition to the potential terms arising in the vicinity
of the local transition geometries X̃� and X̃�, we find an additional overall
twisted superpotential term, which we attribute to the chosen realization of
the global embedding fourfolds X� and X�. As we review and discuss in
section 5, twisted superpotentials yield Chern–Simons terms in the 3d field
theory, and mixed terms, involving one dynamical and one background field,
have the interpretation of a FI term in the low-energy field theory. Then,
in (4.12), the first term ∼J2

H is a genuine global effect present on both sides
of the transition, whereas the second term has an interpretation as a non-
zero FI-term in the 3d field theory. For the above choice of global flux, the
transition will therefore be obstructed, even in the field theory sense. This is
in accord with the fact that again one needs 8 more M2 branes on X� with
flux (4.11) as in the vacuum with zero flux. The FI-term can be however
removed by an additional integral flux on X�, i.e., G� = 1

3([S
�] + H̃2)− 2H̃2

with twisted superpotential W̃ � = −5J2
H on both sides of the transition.

4.2 M-theory transitions via topological surgery

As we have exemplified in the previous section, M -theory transitions among
non-compact geometries X̃� and X̃� furnish a local description of M -theory
conifold transitions among compact Calabi–Yau fourfolds X� and X�. For
a global conifold transition, we envision the local geometries X̃� and X̃� to
be topologically glued to a common complementary space Xc, so as to give
rise to the global geometries X� and X� via topological surgery according to

X� = Xc ∪ X̃�, X� = Xc ∪ X̃� with ∂X̃ = ∂X̃� = ∂X̃� = −∂Xc.
(4.13)

The structure of the participating cycles and chains along the extremal coni-
fold transition are schematically depicted in figure 5 and are explained in
detail below.

In the compact Kähler fourfold X� the algebraic four-cycle S� ⊂ X̃� ⊂
X� represents a non-trivial class in H4(X�, Z). In addition, there are 0 ≤
b̃3 ≤ 2g three cycle classes Σ�

k, k = 1, . . . , b̃3, arising from the 2g non-torsion
three-cycles Σn in H3(∂̃X, Z) together with (2g − b̃3) relations in homology.
These relations are geometrically realized by (2g − b̃3) four-chains, Ĉ�

s, s =
1, . . . , 2g − b̃3, with ∂Ĉ�

s ⊂ (
⋃

nΣn). Finally, the cycle classes in H5(X�, Z),
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Figure 5: The diagram summarizes the topological properties of the conifold
transition between the compact fourfold X� and X�. It shows the homolog-
ical structure of cycles inherited from the local fourfold X̃� and X̃� and
their resulting homological relations in the embedding compact Calabi–Yau
fourfolds.

which are Poincaré dual to the non-trivial three cycles Σ�
k, are denoted by

Π�
k, k = 1, . . . , b̃3.

As we go through the conifold transition to the fourfold X�, the alge-
braic four-cycle S� disappears, and instead we obtain (2g − 3) new four-
cycle classes B�

�, � = 1, . . . , 2g − 3, which correspond to the local B-cycle

classes (3.17) in H4(X̃�, Z). Furthermore, all the three-cycles classes Σn ∈
H3(∂̃X, Z) become homologically trivial in X̃� (because H3(X̃�, Z) � 0).
Thus, there are (2g − b̃3) three cycle classes in H3(∂X̃, Z) that are trivial
in both H3(Xc, Z) and H3(X̃�, Z). Then — due to the long exact homology
sequence . . . →H4(X�, Z)→H3(∂X̃, Z)→H3(Xc, Z)⊕H3(X̃�, Z)→ . . . —
we find that there are (2g − b̃3) non-trivial four-cycle classes, C�

s, s = 1, . . . ,
2g − b̃3, in H4(X�, Z), which in the transition come from closing off the (2g −
b̃3) four-chains Ĉ�

s. The Poincaré dual four-cycle classes to C�
s correspond

to appropriate (linear combinations of) four-cycles, A�
s, s = 1, . . . , 2g − b̃3,

of the 2g local four-cycles A�
n, n = 1, . . . , 2g, in equation (3.17), while the

remaining local A-type cycles become trivial in the global geometry X�, as
they are bounded by b̃3 five chains Π̂�

k, k = 1, . . . , b̃3. These chains come from
the five cycles Π�

k, which open up as we go through the conifold transition.
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4.3 M-theory transitions via the Clemens–Schmid exact
sequence

We will now compare the topology and Hodge structures on X� and X�

using the Clemens–Schmid exact sequence, which is reviewed in Appen-
dix D.1 and demonstrated for Calabi–Yau threefold conifold transitions in
Appendix D.2. To apply this to our fourfold extremal transition, we must
first construct a semistable degeneration. Here, such a degeneration is a
certain (smooth) fibration of Calabi–Yau fourfolds over a disc Δ, where a
normal-crossing component of the singular central fiber is birational equiv-
alent to the resolved fourfold X�, while the non-central (smooth) fourfold
fibers describe the deformed Calabi–Yau fourfold X�. With the constructed
semistable degeneration the Clemens–Schmid exact sequence allows us to
calculate the change in Hodge structure as we go through the extremal
fourfold transition. The details of this computation are relegated to Appen-
dix D.3, and we now summarize the result of this analysis.

By transitioning from the central fiber of the constructed semi-stable
degeneration (D.10) to deformed Calabi–Yau geometry X� of the generic
smooth fiber, we arrive at the Hodge diamond (D.14) of the fourfold X�:

dimHp,q(X�) =

1

0 0

0 h1,1
X�−1 0

0 h2,1
X�−̃h2,1 h2,1

X�−̃h2,1 0

1 h3,1
X�−̃h2,1+g h2,2

X�−2h̃2,1+4g−4 h3,1
X�−̃h2,1+g 1

0 h2,1
X�−̃h2,1 h2,1

X�−̃h2,1 0

0 h1,1
X�−1 0

0 0

1

(4.14)

Here we express the Hodge diamond of X� in terms of the Hodge num-
bers hp,q

X� of the resolved Calabi–Yau fourfold X�. The number h̃2,1 refers
to the number of harmonic (2, 1)-forms participating in the extremal tran-
sition. They are in the image of the canonical map H2,1(X�)→ H2,1(S�)
and therefore disappear with the cycle S�, as we go through the extremal
transition form X� to X�. By comparing with the topological properties
of the conifold transition we can now also identify the number b̃3 of non-
trivial three-cycles Σ�

k of X
� in figure 5 with the number h̃2,1 of participating
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(2, 1)-forms according to

b̃3 = h̃2,1 + h̃1,2 = 2 h̃2,1. (4.15)

Furthermore, we can associate the remaining (h2,1
X� − h̃2,1) three-forms as

part of the complementary space Xc (cf., equation (4.13)). Hence, they arise
as non-trivial three-forms in both fourfold geometries X� and X�. Finally,
we note that the determined Hodge diamond (4.14) yields the characteristic
change of Hodge numbers advertised in equations (2.5).

4.4 G-flux quantization condition

In the following, we consider the change of G-flux quantization during an
extremal transition X� to X�, where the four-cycle S� with self-intersection
S�.S� = 2− 2g < 0 shrinks and disappears from H4(X�, Z).27 The alge-
braic cycle S� need not be a generator of the homology lattice H4(X�, Z),
but instead it could be homologous to a linear combination of generators of
H4(X�, Z). However, for the considered transition S� is the only four-cycle
vanishing in the resolved geometry X� (see figure 5). As a result, for the
extremal transitions under consideration S� can only be a multiple of gener-
ator S�

1/� with S� ∼ � S�
1/� in homology. As result the self-intersection of S�

must factor as 2− 2g = �2m, and we have intersection numbers S�
1/�.S

�
1/� =

m. Furthermore, as the intersection pairing of H4(X�, Z) is unimodular,
there is always a dual cycle T � with T �.S�

1/� = 1, and we can write the dual
integral four-form as

[T �] =
1
m
([S�

1/�] + Θ) ∈ H4(X�, Z), (4.16)

where Θ is a four-form such that [T �] is integral. Firstly, Θ is integral itself
because both m[T �] and [S�

1/�] are integral. Secondly, Θ is orthogonal to

S�
1/� because

∫
S�

1/�
[T �] = T �.S�

1/� = 1.

27For a discussion of the quantization condition in F -theory on elliptic fibrations,
see [20,49,54,55].
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In order to determine consistent G-flux, we need to look at the second
Chern class of X�. The second Chern class of X� takes the following form

c2(X�) = −� m [T �] + Δc2 = −� [S�
1/�]− �Θ+Δc2, (4.17)

where the integral piece Δc2 must be orthogonal to S� to yield
∫
S� c2(X�) =∫

S� c2(X̃�) = 2g − 2 in agreement with equation (3.12). Then we make for
the G-flux G� the ansatz

G�

2π
= κ [T �] +

ΔG

2π
, κ ∈ Z, (4.18)

with ΔG orthogonal to T � such that the quantization condition (2.1) is
fulfilled. Note that κ is integrally quantized because � m in equation (4.17)
is even.

In the local geometry X̃� the cycle T � reduces to � copies of the non-
compact cycles (3.26). Therefore, the fluxG� corresponds to the local torsion
class k� = κ �, whereas the flux ΔG is attributed to the complement Xc of
the non-compact local geometry X̃�. As a side remark, we observe here that
the global embedding geometry X� restricts the globally possible torsion
classes to multiples of � where � must obey �2 |χ(C).

As we go through the extremal transition to X� the second Chern class
(4.17) becomes

c2(X�) = −�Θ+Δc2, (4.19)

because the contributions Θ and Δc2 are associated to the complementary
geometry Xc, and, as we transition to X�, we (generically) do not generate
any new holomorphic four-forms that could contribute to the the second
Chern class c2(X�). As a check we find that

∫
X�

c2
2(X

�)−
∫

X�

c2
2(X

�) = 2g − 2, (4.20)

which, according to [28], agrees with δχ
3 = χ(X�)

3 − χ(X�)
3 .
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Similarly, the flux ΔG just carries over to X�, and we arrive at the G-flux

G�

2π
=

G�
0

2π
+
ΔG

2π
. (4.21)

For the four-form flux G�
0, we make the ansatz

G�
0

2π
=
1
2

(
[T �

+]− [T �
−]
)

, (4.22)

with the four-forms

[T �
±] =

1
m

(
±[B�] +

(
� m

2
± κ

)
Θ
)

. (4.23)

Here [B�] arises from the local geometry X̃� and is chosen such that the
four-forms [T �±] become integral.28

As T �± is integral, we note that the quantization condition (2.1) is fulfilled

G�
0

2π
− c2(X�)

2
= [T �

+] +
(
ΔG

2
−Δc2

)
∈ H4(X�, Z). (4.24)

Furthermore, the flux (4.22) arises from the flux component κ[T �] in equa-
tion (4.18), as both G-fluxes (4.18) and (4.21) have the (fractional) four-form
part κ

mΘ in common.

Due to the flux contribution 2
m [B�], the G-flux G�

0 becomes in the local

geometry X̃� the local flux (3.34). Requiring that the four-forms [T �±] are
integral, does not entirely fix the four-form component [B�]. Its structure,
however, is constraint by the local tadpole condition (3.36) examined in
detail in Section 3. In particular, requiring no change in the number of
space-time filling M2 branes along the transition, we get further constraints
on the choice of [B�].

4.5 Non-Abelian gauge groups and relation to F -theory

The topology changing transitions considered in the previous sections pro-
ceed via Higgsing of a U(1) factor in the gauge group, with the gauge field

28Using long exact Mayer–Vietoris singular homology sequences for the topological

surgeries X� = Xc ∪ X̃� and X� = Xc ∪ X̃�, we can argue that we can always find a form
B� such that T �

± becomes integral.
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arising from the three-form reduced on the P1 fiber over the curve C on the
resolved side. This can be generalized in a straightforward way to phase
transitions that involve singularities with several intersecting P1, leading to
non-Abelian gauge groups with various matter representations.29

A comprehensive study of the relevant fourfold singularities in the context
of F-theory and twisted eight-dimensional SYM has appeared in refs. [17–
19]. The essential local geometry is that of an ADE singularity (possibly
with monodromy) over a surface SG ∈ X�, which is enhanced over a matter
curve C ⊂ SG. For the F -theory compactification on a fourfold X to four
dimensions, X has to be elliptically fibered and this is related to M -theory
on X by S1 compactification. The existence of an elliptic fibration in the
compactification of the normal bundle to SG restricts the possible gauge
and matter content,30 but is otherwise inessential to the local analysis of
the gauge theory engineered by the local singularity. The results of our M -
theory analysis is therefore slightly more general, but directly applicable to
the F -theory compactification to four dimensions, if the 3d spectrum fulfills
the four-dimensional anomaly constraints and an elliptic fibration exists. In
particular, the M -theory picture must reproduce the results of [17, 18] in
this case and we will indeed see explicitly in Section 5 that this is the case
for the spectrum obtained from a topological twist in M-theory.

As discussed above, a topological transition to a deformed manifold X� in
the presence of consistently quantized fluxes describes a motion along a flat
direction in the parameter space of the non-Abelian space-time gauge theory
associated with this local geometry. Alternatively, this can be viewed as a
microscopic engineering of a G bundle over the surface SG in the internal
Calabi–Yau space.

As is clear from the analysis of [17,18], the spectrum and the superpoten-
tial couplings will depend very much on the details of a concrete geometry,
and in particular on the choice of quantized G-flux, which captures topologi-
cal data of the gauge bundle on SG in the F -theory picture. Instead of trying
to be general we restrict here to illustrate the application of the results of
the M -theory analysis on topological transitions in a simple non-Abelian
example.

Our non-Abelian example is a SU(6) gauge theory that reproduces the
sextic compactification of Section 4.1 as the end point of a chain of topology
changing transitions. For the engineering of the SU(6) gauge group, we need

29Parallel discussions for the case of Calabi–Yau threefold singularities can be found,
e.g., in [4, 5, 10,56–59]

30As is expected from the fact that the constraints from four-dimensional anomalies
are more restrictive then those from Z2 anomalies in three dimensions.
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an A5 surface singularity with local equation

xy + z6 = 0. (4.25)

The engineering of global elliptic fibrations with the appropriate singularities
is well-understood, but the requirement of X being elliptic leads to slightly
more complicated geometries then needed for our purposes. To study the 3d
physics associated with the transition it suffices to study the case without
elliptic fibration. Since the difference is not essential for the local physics
we will anyway often comment on the F -theory picture and heavily borrow
from the results of [17, 18].31

To make contact with the sextic example, we identify x and z with the
homogeneous coordinates x5, x6 on P6 and y with a degree 5 polynomial
p5(xi) depending only on the other coordinates xi, i = 1, . . . , 4. Equation
(4.25) then describes an A5 singularity over a quintic hypersurface SG :
p5(xi) = 0 in P3(x1, x2, x3, x4) with Hodge numbers

h0,0(SG) = 1, h1,0(SG) = 0, h1,1(SG) = 45, h2,0(SG) = 4,

χ(SG) = 55. (4.26)

More generally, an Ak−1 singularity over SG gives rise to a G = SU(k)
gauge theory in 3d with h2,0 = 4 chiral multiplets in the adjoint represen-
tation [17, 60]. Adding additional monomials allowed for the general sextic
in P6(x1, . . . , x6) to (4.25) describes (partial) resolutions of the singularity
with k ≤ 5. As a concrete model we consider a chain of hypersurfaces Xk,
k = 0, . . . , 6 that arise as the zero of the polynomial

Pk =
∑
a,b

p
(b)
6−a−bx

b
5x

a
6

k∏
n=1

x
a+n(b−1)
6+n , (4.27)

in the toric ambient spaces P[Δk] with homogeneous coordinates xi, i =
1, . . . , 6 + k. The toric ambient spaces P[Δk] describe a k-fold blow up of P6

and can be described as in [61,62] by a series of polyhedra Δk, k = 0, . . . , 6,

31It is self-evident, that the Coulomb branches of the resolved singularities can arise in
F -theory only after compactification on S1.
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specified by the vertices of the dual polyhedra Δ∗k = {ν∗0 , . . . ν∗6+k}:

Δ∗0
ν∗0 0 0 0 0 0
ν∗1 −1 −1 −1 −1 −1
ν∗2 1 0 0 0 0
ν∗3 0 1 0 0 0
ν∗4 0 0 1 0 0
ν∗5 0 0 0 1 0
ν∗6 0 0 0 0 1

Blowup vertices
ν∗7 0 0 0 1 1
ν∗8 0 0 0 2 1
ν∗9 0 0 0 3 1
ν∗10 0 0 0 4 1
ν∗11 0 0 0 5 1
ν∗12 0 0 0 6 1

(4.28)

The vertices ν∗i fulfill the relations
∑

lai ν∗i = 0 with

l1 = (−6, 1, 1, 1, 1, 1, 1, 06) , l2 = (−1, 0, 0, 0, 0, 1, 1,−1, 05), (4.29)

and lai = −2δa+4,i + δa+4,i−1 + δa+4,i+1 for a = 3, . . . , 6. Appropriate linear
combinations of the la define a phase in the Kähler moduli space of the toric
hypersurfaces [34, 62].

The sections p
(l)
k in (4.27) are generic degree k polynomials in the coordi-

nates xi, i = 1, . . . , 4 and the defining quintic polynomial of SG is p
(1)
5 = 0.

The coefficients of the homogeneous monomials in Pk parameterize the com-
plex structure moduli space of the Calabi–Yau fourfolds Xk with indepen-
dent Hodge numbers h2,1(Xk) = 0 and

Hodge numbers Euler characteristic Singularity structure
CY4 h1,1 h3,1 h3,1

np h2,2 χ mod 24 C g(C) SG

X0 1 426 (0) 1 752 2 610 18
X1 2 350 (0) 1 452 2 160 0 A0 76
X2 3 299 (4) 1 252 1 860 12 A2 51 A1

X3 4 268 (8) 1 132 1 680 0 A3 31 A2

X4 5 252 (12) 1 072 1 590 6 A4 16 A3

X5 6 246 (16) 1 052 1 560 0 A5 6 A4

X6 6 246 (20) 1 052 1 560 0 A5

(4.30)

For each of this partial resolutions with 2 ≤ k ≤ 5, there is an Ak singularity
over SG ⊂ Xk+1 with local equation

x5p
(1)
5 + xk+1

6 p
(0)
6−(k+1) + xk+2

6 p
(0)
5−(k+1) = 0. (4.31)
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As specified in the rightmost column, this singularity enhances over the
genus g matter curve Xk+1 ⊃ Ck+1 : p

(1)
5 = 0 = p

(0)
6−(k+1) to Ak+1. The Euler

characteristic and genus of the complete intersection curves Ck+1 are

χ(Ck+1) = −5(5− k)(6− k), g(Ck+1) = 5 ·
(
6− k

2

)
+ 1, k = 0, . . . , 4.

(4.32)

The enhancement of the singularity on C gives rise to matter in the fun-
damental representation of G [6, 17, 57]. As alluded to above, the local
geometry is almost identical to the matter curves representing intersecting
seven-branes in an F -theory compactification, except for the absence of a
global elliptic fibration. The topological twist and the spectrum for this
local geometry has been computed in [17], and is reproduced by the results
reported in Sections 5.3 and 5.5.

In the M -theory compactification on Xk, a generic point in the Kähler
moduli corresponds naively to a Coulomb branch of G, where the gauge
symmetry is broken to G = U(1)rk G. Moreover there is a common bare
mass for the fundamentals proportional to the volume of the single extra
P1 in the resolution of the Ak singularity over Ck, which again represents a
Coulomb vev for the U(1) associated with the single mass parameter. Except
for a possible obstruction from the flux configuration, the moduli spaces
of two manifolds Xk+1 and Xk can be connected by a topology changing
transition, where the extra P1 over Ck+1 ⊂ Xk+1 shrinks, each step giving
rise to a local conifold transition of the type described in Section 3. The
change in the Hodge numbers in (4.30) in each step is of the expected form

Δh1,1 = +1, Δh3,1 = −g, Δh2,2 = −4(g − 1), Δχ = −6(g − 1).
(4.33)

In F-theory language, transitions of this type describes a process, where a
stack of parallel seven-branes is deformed to a set of intersecting branes,
which recombine under addition of fluxes [17, 21].

The spectrum of the 3d theory obtained from the local A5 singularity
over SG in X6 is that of an SU(6) theory with four adjoint chiral multiplets.
Giving a vev to scalars in the Cartan subalgebra breaks SU(6)→ U(1)5.
There are two different types of Coulomb branches depending on whether
the scalars Ja in the 3d vector multiplet or the scalars zα in the chiral
multiplet get a vev. The second branch is also available in the F -theory
compactification (if the global embedding X would be chosen to be elliptic)
and then describes a deformation of parallel seven-branes to intersecting
7-branes [17].
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In the partial resolutions (4.30), the Cartan part of the adjoint fields
correspond to the non-polynomial deformations h3,1

np , which are frozen in
the hypersurface representation and can not be represented by coefficients
in Pk in the given representation of Xk as a hypersurface in P[Δk]. The
number of non-polynomial deformations h3,1

np in (4.30) matches the number
4 · rk(G) of neutral components of the four adjoint hypermultiplets. Indeed
the difference in the hypersurface equations for X6 and X5 is that the four
coefficients of the polynomial p

(0)
1 ∈ Γ(KSG

) are set to zero in X6. Since
the adjoint chiral multiplet are sections of the canonical bundle KSG

, these
coefficients should be identified with a vev for the four chiral multiplets
lying in a U(1) ⊂ SU(6) subgroup. Thus the moduli of the hypersurface X6

with 20 frozen deformations describes a pure 3d Coulomb-branch U(1)5 with
vev’s only of the 3d vector multiplet Ja, while the transition to X5 describes
moving from a pure 3d C-branch to a mixed U(1)4 × U(1)z Coulomb-branch,
where the subscript z denotes a non-zero vev of a neutral scalar in the chiral
multiplet.

The zero locus of the section p
(0)
1 defines a genus six curve C5 ⊂ X5 above

which the singularity enhances to A5; the local deformation theory for the
genus six case was one of the examples treated in detail in Section 3.7. M2
Branes wrapping the extra node account for the charged components of the
adjoint chiral multiplets with a 3d mass proportional to the vev in the vector
multiplet. In the F -theory context, a SU(6) stack of parallel D7-branes is
deformed to a SU(5) stack intersected by a single brane [17].

Starting from X5 the partial resolutions are related successively by coni-
fold transitionsXk+1 � X� → Xk � X�, upon condition of appropriate back-
ground flux. Some or all of the Coulomb and/or Higgs branches will be lifted,
depending on the choice of consistent G-flux and C-fields analyzed in Sec-
tion 3, leading to many components of the N = 1 deformation space with
different spectra and disconnected in the field theory limit. For a suitable
triangulation, the charges for the toric C∗ actions encoding the Mori cone
of P[Δk] for k = 5 are

P[Δ5] p x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

ω1 −1 1 1 1 1 −4 0 0 0 0 0 1
ω2 −1 0 0 0 0 1 0 0 0 0 1 −1
ω3 0 0 0 0 0 0 0 0 0 1 −2 1
ω4 0 0 0 0 0 0 0 0 1 −2 1 0
ω5 0 0 0 0 0 0 0 1 −2 1 0 0
ω6 0 0 0 0 0 0 1 −2 1 0 0 0 (4.34)
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For 1 ≤ k < 5 the toric divisors D� : {x� = 0} are blown down for � > k +
6 and the charge vectors in each step related by ω1(Xk) = ω1(Xk+1) +
ω2(Xk+1), ω2(Xk) = ω2(Xk+1) + ω3(Xk+1), ω2+α(Xk) = ω3+α(Xk+1), α =
1, . . . , k − 1. With these definitions, the classes of the surfaces S�

k+1 ⊂ Xk+1,
which are the P1-fibrations over the curves Ck+1 (3.2), are

S�
k+1 � (4Dk+6 + 5Dk+7) ∩Dk+7 ⊂ Xk+1, k = 0, . . . , 4. (4.35)

For k even, χ = 0 mod 24 on Xk+1 and a flux in the torsion class k� = 0
gives rise to a flat direction for the conifold transition from Xk+1 → Xk

as shown in Section 3. For 1 < k < 4 odd, χ 
= 0mod 24 on Xk+1 and a
canonical flux solving the local quantization condition is in the torsion class
k� = ±(g(Ck+1)− 1), i.e.,

G�

2π
= ±1

2
[S�

k+1], (4.36)

which leads to the twisted superpotential

W̃ (Xk) = ±
5(6− k)

2
J1J2 ±

nk

4
J2

2 , nk = 5(6− k)(k − 1), (4.37)

A full analysis of the different disconnected branches of the N = 1 deforma-
tion space, distinguished by the fluxes consistent with the local quantization
condition, is beyond the scope of this exposition. It would be interesting to
work out more details for a concrete model with a phenomenological per-
spective. This will require also a further study of non-generic configurations.
E.g. note that if we start with zero flux on X5 and blow down the first P1

fiber over C5 : p
(1)
5 = 0 = p

(0)
1 , the critical points of the superpotential on

X4 describe the local singularity

X5 → X4 : xy + z6 + p1z
5 → xy + z6 + p1z

5 + p2z
4, (4.38)

with p2 factorized into two linear polynomials as p2 = t1.s1. On this locus,
the genus 16 curve X4 ⊃ C4 : p

(1)
5 = 0 = p

(0)
2 degenerates to two genus six

curves intersecting each other and the original genus 6 curve. The intersec-
tion points may induce further superpotential couplings, as described in [17].

5 M -theory phases in the effective N = 2 three-dimensional
field theory

In this section, we first review aspects of N = 2 three-dimensional U(1)
gauge theories with charged matter fields. We discuss the interplay among
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global symmetries, phase structures, Chern–Simons terms and parity anom-
alies of such field theories. By constructing such theories by dimensional
reduction of certain five-dimensional field theories with eight supercharges,
we associate the resulting three-dimensional field theories with the analyzed
conifold transitions in M-theory. While completing this manuscript, the
paper [63] appeared, which has a certain overlap with the aspects discussed
in this section.

5.1 N = 2 three-dimensional field theory

We briefly review a few aspects, mostly following the notation of [14].
The algebra of three-dimensional N = 2 (four supercharges) admits a
U(1)R symmetry32 and a real central term Z, {Qα, Q̄β} = 2σμ

αβPμ + 2iεαβZ,
with all other anticommutators vanishing. The matter multiplets are in
chiral33 superfields X, similar to those of 4d N = 1, [Q̄α, X] = 0, with CPT
conjugate anti-chiral superfields X̄, with [Qα, X̄] = 0.

Considering, say a U(1)r Abelian34 gauge theory, with vector multiplets
V a, a = 1, . . . , r, one can form associated linear multiplets Σa= εαβD̄αDβV a,
with D2Σa = D̄2Σa = 0, i.e. the same as for a conserved current, D2J =
D̄2J = 0. Indeed, abelian gauge fields lead to U(1)J global conserved cur-
rents, jμ = εμνρFνρ, that shifts the scalar dual of the photon, with Σ the
corresponding superspace conserved current. The bottom components of
Σa are the real scalars of the Coulomb branch, Σa| = Ja.35

32For 3d, N -extended supersymmetry (2N supercharges) it’s an SO(N)R symmetry.
33The terminology is in analogy with 4d, even though there is no chirality in 3d, since

there is no analog of γ5 and all 3d fermions ψα are two-component. Also similar to 4d, the
coupling of the real scalar in the N = 2 vector multiplet (the A4 component in reducing
from 4d) distinguishes between 3d chiral superfield matter in representations r versus r̄.
So, much as in 4d, we can distinguish between vector-like (real or r⊕ r̄) vs chiral matter
representations in 3d N = 2 theories.

34The non-Abelian case is similar, since the gauge group is anyway broken to the Cartan
U(1)r on the Coulomb branch. We will briefly remark about the differences for the non-
Abelian case. One difference, for the case of non-Abelian N = 2 pure Yang-Mills, with no
matter, is that instantons generate a non-perturbative, runaway superpotential that lifts
the Coulomb branch [24]. For non-Abelian gauge theories with matter, instantons have
too many fermion zero modes to generate a superpotential, though there can be other
non-perturbative effects; see, e.g., [14].

35Note that we refer to the bottom component of Σ by the roman letter J , whereas we
use the calligraphic letter J for the conserved currents.
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The lagrangian terms involving the gauge multiplet include

LN=2 ⊃
∫

d4θ

(
τabΣaΣb + V aJa +

kab

4π
ΣaV b

)
, (5.1)

(summing repeated indices) where τ ∼ g−2 give the gauge kinetic terms, and
kab give the N = 2 supersymmetric Chern–Simons terms:

LN=2 ⊃ −
1
4
τabF

a
μνF

b μν + 1
2τab∂μJa∂μJb +

kab

4π
εμνρAa

μF b
νρ

− 1
8π2

kac kbd τ cdJaJb. (5.2)

The Chern–Simons terms give masses ∼ kab to the gauge fields, and the last
term in (5.2) give supersymmetry-preserving superpartner masses to the Ja,
lifting the Coulomb branch. The N = 2 Chern–Simons terms in (5.1) can
be expressed in terms of the “twisted superpotential” W̃ (Σ) = 1

2kabΣaΣb,36

where the term in Lagrangian is

LN=2 ⊃
∫

d4θ ∂aW̃ (Σ)V a. (5.3)

The V aJa sum in (5.1) can include both dynamical gauge fields coupled
to gauge currents, and also background gauge fields coupled to any global
currents; for background gauge fields, τai →∞, and Σi ∼ m̃ coupling to a
global symmetry gives the real mass term parameters, m̃. Fayet–Iliopoulous
terms

∫
d4θ ξaV

a can be regarded as mixed Chern–Simons couplings between
the dynamical field V a and a background field Σi, ξa ∼ kaiΣi. The central
term Z can get contributions from real mass terms or FI terms,

Z =
∑

i

qim̃
i, (5.4)

where qi is the charge of the field under a global U(1)i symmetry, m̃i is the
real mass that can be regarded as a U(1)i background field, m̃i = Σi|, and
the sum includes U(1)J , with mJ = ξ the FI parameter.

36Again, W̃ (Σ) is not a superpotential in 3d, since Σ is real, but reduces in 2d to a
superpotential for twisted chiral superfields.
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The N = 2 supersymmetric Chern–Simons term coefficients kab in (5.1)
to (5.3) include both classical and one-loop contributions,

ktotal
ab = kcl

ab +
1
2

∑
f

(qf )a(qf )b sign(Mf ), (5.5)

where f runs over all fermions, (qf )a is its charge under U(1)a and Mf is its
real mass, including the contribution from the Ja expectation values on the
Coulomb branch, Mf = m̃f +

∑
a(qf )aJa. There is a quantization condition

ktotal
ab ∈ Z or 1

2Z.37

If the charged matter spectrum representation is vector-like, with all mat-
ter chiral superfields in real or r⊕ r̄ representations, the induced Chern–
Simons term vanishes. For example, for U(1) with chiral matter of charge
+1 and −1, the conjugate fields have opposite sign(Mf ) and make canceling
contributions to (5.5). This can also be understood in terms of the non-
renormalization theorems given in [14] related to the non-coupling of chiral
versus linear multiplets: the Chern–Simons term cannot depend on chiral
multiplets, so it cannot depend on complex masses which is a background
chiral multiplet. So vector-like matter can be decoupled with arbitrarily
large complex mass mC , with (5.5) unaffected. In the non-Abelian case,
the induced Chern–Simons term on the Coulomb branch is related to the
cubic Casimir, essentially k = kcl + 1

2

∑
f d3(rf ) [14], where the sum runs

over all chiral superfields. See [66] for a detailed discussion and the more
precise statement. The upshot is a connection between the one-loop induced
Chern–Simons terms of the 3d theory and the 4d TrF 3 gauge anomaly:
the 3d induced Chern–Simons term vanishes precisely if the matter content
would be gauge anomaly free in 4d.

5.2 Effective N = 2 field theory for M-theory on smooth four-
folds with flux

M-theory compactified on a smooth Calabi–Yau fourfold (with or without
flux) yields at low energies three-dimensional N = 2 – i.e., four
supercharges — supergravity coupled to matter and vector multiplets. As

37For non-Abelian groups, gauge invariance quantizes ktotal, independent of any details.
For Abelian groups, the quantization relies on having compact U(1)s, and considering the
theory on a compact spacetime X3, with the normalization of the gauge field specified via∮

A ∈ 2πZ. The quantization condition depends on X3: if X3 is restricted to be spin, as is
required for compactification of M -theory (or having fermions for that matter), one gets
k ∈ 1

2
Z; the half-integer case is is referred to as Abelian spin-Chern–Simons [64,65]. This

is similar to compactification of M-theory to 5d, where the spin restriction on X5 gives
ctotal ∈ Z (rather than c ∈ 6Z).
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shown in [15, 29, 67], reducing eleven-dimensional supergravity, along with
the additional eleven-dimensional M -theory C ∧G ∧G and C ∧X8 and
purely gravitational interactions, leads to theN = 2 three-dimensional super-
gravity Lagrangian for the U(1)h

1,1
Coulomb branch moduli Ja, with gauge

kinetic terms and Chern–Simons terms as in (5.1). In particular, three-
dimensional Chern–Simons terms arise from the reduction of the M -theory
eleven-dimensional Chern–Simons term C ∧G ∧G on fourfold compactifi-
cations with non-trivial four-form background fluxes G [67, 68]

kab = ∂a∂bW̃ =
∫

X

G

2π
∧ ωa ∧ ωb, (5.6)

where ωa is a basis for H1,1(X, Z). The quantization condition is kab ∈ Z or
kab ∈ Z + 1

2 where the latter possibility is because, as discussed in the above
footnote, the 3d spacetime is necessarily a spin manifold. In comparing
with the Lagrangian derived in [67], we can restore the three-dimensional
Planck mass scale M3,38 and consider the low-energy, gravity decoupling
limit, M3 →∞. For example, LSUGRA

3d ⊂ M3
2 R− 1

M3
W̃ 2, which decouple

in this limit. The remaining terms are the twisted superpotential Chern–
Simons terms (5.6). In addition to the terms in [67], we have the charged
matter contributions, from wrapped M2 branes, and their superpotential
interactions.

5.3 Singularities, charged matter, and the 5d → 3d reduction

The smooth-fourfold theory of the previous subsection is a three-dimensional
Abelian gauge theory, without charged matter. Geometric singularities are
needed to obtain non-Abelian groups or charged matter. In our construction
of the fourfold as coming from a threefold that is fibered over a genus g
curve C, we can take the shrinking P1 in the threefold fiber to be very small
compared with the curve C, i.e., writing the Kähler class J = JF + JC for the
sizes of the threefold fiber and the curve C, respectively, we can consider the
limit JF � JC , which leads to the mass hierarchy M11d→5d � M5d→3d. The
three-dimensional matter spectrum can then be analyzed by first reducing
M -theory on the threefold, which yields a low-energy five-dimensional N =
1 (eight supercharge) theory. The five dimensional gauge theory is next
reduced (fibered) over the curve C to reduce to the three-dimensional N = 2
(four supercharge) theory.

38The canonical scaling dimensions are assigned as Δ[zα] = 1
2

the free scalar field

dimension, the vector multiplet has Δ[Ja] = Δ[Aa
μ] = 1, Δ[τab] = Δ[1/e2] = −1, and

Δ[W̃ ] = 2.
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Let us briefly outline how the latter reduction works, for a general five-
dimensional N = 1 gauge theory, reduced to three dimensions on a genus g
curve C. The five-dimensional theory in flat spacetime would have SO(4, 1)×
SU(2)R isometry group, and reduction on C breaks SU(4, 1)→ SO(2, 1)×
U(1)L, where the eight supercharges of five-dimensions transform in the
(2s,±1

2 ,2) of SO(2, 1)× U(1)L × SU(2)R. Four of these supercharges are
preserved if the theory is twisted, modifying the U(1)L factor of the Lorentz
group to U(1)′L, with generator

J ′L = JL + J3 (5.7)

where JL is the 2d U(1)L generator, J3 = 1
2σ3 is the Cartan generator of

SU(2)R, and the preserved supercharges have J ′L = 0. The four preserved
supercharges have a three-dimensional U(1)R symmetry, with generator
given by R3d = 2JL, so the four supercharges transform under SO(2, 1)×
U(1)R as (2s,±1).

The five-dimensional N = 1 (eight supercharge) fields are

5d-vector =

⎛⎝ Aμ

λ ψ
φR

⎞⎠ , 5d-hyper =

⎛⎝ ψq+

q+ q†−
ψ†q−

⎞⎠ , (5.8)

where SU(2)R acts on the rows, with J3 = ±1
2 . All 5d spinors in (5.8)

reduce as ψd=5 → (ψd=3
α ⊗ ψd=2

+ )⊕ (ψ
′d=3
α ⊗ ψd=2− ), where ψd=3

α=1,2 is a two-
component 3d spinor and ψd=2± is a 2d spinor of U(1)L Lorentz charge
JL = ±1

2 .

Consider first reducing the 5d-vector multiplet in (5.8) on C. Collecting
the fields according to their U(1)L′ spin (5.7), there are fields with J ′L = 0,
which assemble into a 3d N = 2 vector multiplet. There are also fields with
J ′L = ±1, which assemble into a 3d N = 2, adjoint valued chiral multiplet.
Reducing on C, the U(1)L′ = 0 fields yield a massless 3d, N = 2 vector
multiplet, from the constant mode on C (along with a massive tower from
the other modes of the laplacian on C). The J ′L = ±1 fields are 1-forms on
the curve C, e.g. Az,z̄ = A4 ± iA5, and thus the C laplacian zero modes are
given by the g holomorphic and g anti-holomorphic 1-forms on C. We thus
obtain, in addition to the 3d N = 2 massless vector multiplet, g additional
massless, 3d N = 2 chiral multiplets, ϕi=1...g, in the adjoint representation
of the gauge group G. The scalar components of these g chiral multiplets ϕi

come from the g holomorphic 1-form Az components of the five-dimensional
gauge field on C.39 The coupling of Az to charged matter implies that ϕi

39Indeed, the 2g real scalars in these multiplets are the 2g Wilson loops
∮

αn
A, where

αn are the 2g one-cycles associated with the four-cycles An in figure 1.
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have superpotential couplings to charged matter in three dimensions. For
g = 1, the supersymmetry is enhanced to three-dimensional N = 4 and Φ is
the adjoint chiral superfield of the N = 4 vector multiplet.

Now consider reducing a five-dimensional matter hypermultiplets in (5.8)
on C. Collecting the fields according to their U(1)L′ spin, we find a 3d
N = 2 chiral superfield, q+, in some representation r of the gauge group,
with U(1)L′ spin J ′L = +1

2 , and a 3d N = 2 chiral superfield q−, in conju-
gate representation r of the gauge group, with U(1)L′ spin J ′L = 1

2 . Upon
reducing on C, we get massless 3d chiral superfields from the zero modes
of the two-dimensional Dirac operator on C with U(1)L′ spin ±1

2 . The
five-dimensional hypermultiplet thus reduces to massless three-dimensional
chiral multiplets as:

(5d− hyper)→ q
f=1,...,N+
+ ⊕ q

f̃=1,...,N−
− , (5.9)

where N± are the numbers of U(1)L spin ±1
2 fermion zero modes of the

two-dimensional Dirac operator in representation r:

/D2χ
f=1,...,N+
+ = 0, /D2χ

f̃=1,...,N−
− = 0. (5.10)

For example, for a U(1) gauge group and a 5d hypermultiplet of charge 1,
the reduction on a genus g curve C yields the three-dimensional spectrum
given by:

3d N = 2 multiplet 3d field SO(2, 1) U(1)g U(1)R
Vector multiplet V φ 1 0 0

λ0 2s 0 +1
λ′0 2s 0 −1
Aμ 3 0 0

Neutral chiral ϕi = Ai
z 1 0 2

multiplets ϕi λi
z 2s 0 1

i = 1, . . . , g λi
z̄ 2s 0 −1

Charged chiral qf
+ 1 +1 0

multiplets qf
+ ψf

q+ 2s +1 −1
f = 1, . . . , N+ ψ′fq+

2s +1 1

Charged chiral qf̃
− 1 −1 0

multiplets qf̃
− ψf̃

q− 2s −1 −1
f̃ = 1, . . . , N− ψ′f̃q− 2s −1 1 (5.11)
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The multiplicities N± of the charged chiral multiplets are governed by
the zero-modes of the two-dimensional Dirac operator on C twisted by the
background flux FC . Note also that the gauge covariant derivatives in (5.10)
contain the gauge connection on C, so the fermion zero modes are affected
by the expectation values of the g, gauge adjoint chiral multiplets ϕi=1,...,g

that came from the 5d vector multiplet. Non-zero expectation values of the
ϕi=1,...,g can give 3d complex masses to pairs qf

+, q
f̃
−. In terms of the 3d gauge

theory obtained by dimensional reduction on C, this effect is accounted for
by a superpotential,

W =
g∑

i=1

N+∑
f=1

N−∑
f̃=1

cif f̃ Tr qf
+ϕiqf̃

− (5.12)

with Tr over the gauge indices. For the case of g = 1, where supersymmetry
is enhanced, this is the expected superpotential of 3d N = 4 supersymmet-
ric gauge theories. The constants cif f̃ can be determined by a topological
calculation (independent of the metrics), as we will exhibit shortly in the
connection with M -theory. The 3d complex masses obtained from (5.12) for
non-zero 〈ϕi〉 affects the phase structure of the 3d field theory, for example
lifting Higgs branch moduli.

While the solutions (5.10) and the numbers N± depend on the ϕi moduli,
the difference N+ −N− is the topological index that is independent of the
ϕi moduli (since 〈ϕi〉 gives complex masses to pairs, q+ and q− in pairs).
This index is that of the two-dimensional Dirac operator on C twisted by
the background flux FC . In particular, for the case of a U(1) gauge theory,

index(/D2) = N+ −N− =
∫
C

FC
2π

= n(1− g). (5.13)

The FC flux in (5.13) corresponds to a magnetic monopole and is thus quan-
tized (see e.g. section 14.4 in [69]) as Aα = 1

2nωα, where ωα is the U(1)L
spin connection on C and n is an integer unit of flux. For g = 1 there is
enhanced supersymmetry and the theory is necessarily vector-like, fitting
with the vanishing index (5.13). For g 
= 1 and n 
= 0 flux units, the three-
dimensional theory has chiral matter, N+ 
= N−.

5.4 The dynamics of 3d U(1) gauge theories for general matter
fields of charge ±1

The analysis in [14] focused on the vectorlike matter case, N+ = N− = Nf ,
noting the branched moduli space of vacua, with the Higgs branch, and two
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distinct quantum Coulomb branches, all meeting at the origin. We here
generalize this to allow for N+ 
= N−.

Consider a U(1) gauge theory with N+ chiral superfields q
f=1...N+
+ of

charge +1, and N− chiral superfields q
f̃=1,...,N−
− of charge −1. The fields

and global symmetries are

U(1)R U(1)J U(1)A SU(N+) SU(N−)

q+ 0 0 1 N+ 1
q− 0 0 1 1 N−
M 0 0 2 N+ N−
V± Nf ±1 −Nf 1 1

(5.14)

where Mfg̃ = qf
+qg̃
− are the N+ ×N− gauge invariant mesons, and V± are

chiral superfields labeling the Coulomb branch, which can be obtained from
Σ by dualizing the gauge field to a compact, real scalar. The U(1)R is an
R-symmetry and we could just as well have chosen a different basis of the
U(1)s, e.g., Ũ(1)R = U(1)R + rU(1)A. The charges of V± under the global
symmetries follow from a one-loop diagram coupling the global currents to
the gauge fields [14], and here Nf ≡ 1

2(N+ +N−).

For N+N− 
= 0, there is a N+ +N− − 1 complex dimensional Higgs
branch moduli space of classical vacua when Wtree = 0. The Higgs branch
can be parameterized by expectation values of the N−N+ meson gauge
invariants, subject to their classical constraint coming from Mfg̃ = qf

+qg̃
−:

MHiggs : 〈Mfg̃〉 with rank(M) = 1. (5.15)

The case N+ = N− was discussed in [14, 70]. As in that case, the moduli
space generally separates into three branches: The Higgs branch (5.15) with
〈J〉 = 0, and two distinct Coulomb branches, Coulomb± with 〈M〉 = 0, and
sign(J) = ±1. The quantum Coulomb branches are parameterized by the
chiral superfields V± in (5.14).

The q+ and q− fields get real masses on the Coulomb branch, m̃+ + J and
m̃− − J , respectively, where m̃± are in the adjoint of SU(N±)× U(1)A. For
vanishing real masses, the Chern–Simons term on the branch Coulomb± is
given by (5.5) to be

ktotal
± = kcl ± 1

2
(N+ −N−) (5.16)
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with ±1
2(N+ −N−) the quantum contribution from integrating out the mas-

sive fields q+ and q− fields. WhenN+ 
= N−, generally ktotal 
= 0, lifting both
Coulomb branches. It is possible to tune kcl to leave one of the two Coulomb
branches unlifted. Note that kcl cancels if we consider the difference of the
Chern–Simons coefficient on the two Coulomb branches, which is given by
the topological index:

ktotal
+ − ktotal

− = N+ −N−. (5.17)

Recall first the case N+ = N− = Nf > 0, with kcl = 0 so the two Coulomb
branches are unlifted and meet the Higgs branch at the origin. The theory
at the origin flows to an interacting superconformal field theory (SCFT) [14]
that can be described by a dual effective theory of the gauge invariant moduli
fields in (5.14), with

W = −Nf (V+V− detM)1/Nf . (5.18)

For Nf = 1 the dual theory (5.18) is non-singular and provides a complete
dual description of the low-energy theory and interacting SCFT at the origin.
For Nf > 1, the superpotential (5.18) is singular, corresponding to the fact
that additional degrees of freedom are needed to describe the interacting
SCFT at the origin.

SCFTs are generic in 3d, so anything pointing toward additional degrees
of freedom beyond the moduli fields can be regarded as some evidence for
an interacting SCFT. In particular, singular moduli spaces or moduli spaces
with branches are some general evidence pointing toward an interacting
SCFT at the singularity.

Let us now discuss theN+ 
= N− cases. For kcl = 0, the Coulomb branches
are lifted by the Chern–Simons terms ktotal± 
= 0, so the moduli space consists
only of the Higgs branch (5.15). Whenever both N+ > 1 and N− > 1, the
Higgs branch (5.15) is singular at the origin (the classical singularity can
not be smoothed by quantum effects), which suggests an interacting SCFT
there.

On the other hand, for N+ > 1 and N− = 1, the N+ dimensional Higgs
branch is smoothly parameterized by the mesons M i = qi

+q−, so it is pos-
sible that the theory with kcl = 0, and hence lifted Coulomb branches for
N+ 
= 1, is an IR free smoothly confined theory of the mesons M i, without
additional SCFT degrees of freedom at the origin. A weak test of such a
scenario is the Z2 parity anomaly matching [14] analog of ’t Hooft anom-
aly matching for the global symmetries. The microscopic fields (qi

+ and q−
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and the U(1) multiplet) in (5.14) give kRR = 1
2N+, kRA = kAA = 1

2(N+ + 1)
mod integers. The Mi low energy fields give kRR = 1

2N+, kRA = 0, kAA = 0
mod integers. So the parity anomalies involving U(1)A do not match for N+

even, suggesting again an interacting SCFT at the origin in that case. Only
N+ odd and N− = 1 might have an IR free theory of mesons, rather than a
SCFT.

If N+ 
= N− and kcl is tuned so that ktotal
+ or ktotal− in (5.16) vanishes,

then there is an unlifted Coulomb branch, intersecting the Higgs branch
(5.15) at the origin, and there again we expect an interacting SCFT at the
intersection point on the moduli space.

5.5 Comparing M-theory conifold transitions with 3d field theory
phase structure

Reducing M-theory on the ruled surface S� – as analyzed in Section 3 —
actually leads to two three-dimensional U(1) gauge fields, U(1)F and U(1)C ,
coming from reducing C3 on either P1 or C in (3.2). In terms of the 11→ 5→
3 reduction, C11d → A5d ∧ JF + C5d → A3d

F ∧ JF +A3d
C ∧ JC . The U(1)F

gauge field A3d
F comes from the five-dimensional gauge field A5d, while U(1)C

comes from the five-dimensional C5d 3-form gauge field. We are interested
in the JF � JC limit where the interesting dynamics is in the U(1)F gauge
theory, and we can take a low-energy limit where the U(1)C gauge theory
essentially decouples, together with the gravity multiplet (it comes from
C5d, in the five-dimensional gravity multiplet). The point is that U(1)F has
light charged matter, from M2 branes wrapping the small P1, whereas all
matter charged under U(1)C is much heavier for JC � JF , as it gets a large
real mass m̃ ∼ JC on the Coulomb branch. It is in this limit that we make
contact with the three-dimensional field theory associated to the spectrum
(5.11). Let us know discuss how this correspondence between the M -theory
geometry and the discussed 3d field theory comes about.

As we discussed above, the numbers N± of massless 3d chiral superfields,
coming from the solutions of the Dirac operator zero modes (5.10), are
determined by the number of flux units, with index given by (5.13). Lifting
the 5d gauge theory results to M -theory on S�, the background flux FC arises
from integrating out the P1-fibers. We therefore identify the index (5.13)
with the torsion classes in equation (3.41)

∫
S�

G�

2π
=
∫
C

FC
2π

⇒ k� = k� = N+ −N− = index(/D2). (5.19)
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The moduli dependence of zero modes (5.10) enters in the M -theory transi-
tion through the dynamical obstructions induced form the flux superpoten-
tial (3.56). In particular, the deformation sections 3.74, which are the global
sections of the line bundles E± in (3.72), are in one-to-one correspondence
with the zero mode structure of the Dirac operators (5.10). Identifying the
U(1) line bundle L with the line bundle L in equation (3.73) arising in the
M -theory transition and using the previous definitions E+ = K

1/2
C ⊗ L and

E+ = K
1/2
C ⊗ L∗ in equation (3.72), we get a 1–1 correspondence

H0(C, E±) 1:1←→ {χf=1,...,N±
± },

which implies for the multiplicities N+ and N− of the charged chiral fields
q+ and q−

N+ = h0(C, E+), N− = h1(C, E−).

As discussed in the previous sections, interacting SCFTs are generic at the
origin of 3d N = 2 gauge theories with non-zero matter content, and in par-
ticular occur at the transition point in the moduli space between Higgs and
Coulomb branches. The interacting SCFT at the transition point has addi-
tional degrees of freedom. In the M -theory geometry description, M2 branes
give a natural source for the additional degrees of freedom. Indeed, there are
tensionless domain walls located at the singularity, which is another tell-tale
sign of an interacting SCFT, where the number of M2 branes can change.
This is because at the origin of the Higgs branch the SU(N+)× SU(N−) fla-
vor symmetry is restored, which implies that there are vanishing cycles sup-
porting tensionless domain walls with δM 
= 0 computed by equation (3.85).

If the 3d theory is related to a 4d theory by a circle compactification, we
recover the result [17] in the four-dimensional theory from F -theory com-
pactification on the fourfold. As in that case, the index of the charged
chiral matter fields q+ and q− can be written, using Serre duality and the
Riemann–Roch theorem, as

N+ −N− = h0(C, K1/2
C ⊗ L)− h1(C, K1/2

C ⊗ L)

= (1− g) +
∫
C
c1(L ⊗K

1/2
C ) =

∫
C

FC
2π

. (5.20)

The latter equality in the second line of (5.20) can again be directly under-
stood as the statement of the index theorem for the two-dimensional twisted
Dirac operator (5.13).
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The spectrum obtained form the dimensional reduction of the 5d multi-
plets (5.8) upon C and their associated geometric sections are summarized
in the following table:

Fields SO(2, 1) U(1)L U(1)g SU(2)R Sections of
Supercharge (Q,Q′) 2s +1/2 0 2 K

1/2
C

Vector multiplet φ 1 0 0 1 OC
(λ, ψ) 2s +1/2 0 2 K

1/2
C

Aμ 3 0 0 1 OC
Az 1 +1 0 1 KC

Hypermultiplet (q+, q†−) 1 0 +1 2 L
ψq+ 2s +1/2 +1 1 K

1/2
C ⊗ L

ψq− 2s +1/2 −1 1 K
1/2
C ⊗ L∗

(5.21)

Here (Q, Q′) is the pair of pseudo-real spinorial supercharges of five-
dimensional N = 1 supersymmetry. Performing the topological twist (5.7),
which corresponds to tensoring the sections of the fields in table (5.21)
with KJ3

C according to their quantum number of the Cartan generator J3 of
SU(2)R, we obtain the 3d N = 2 supercharges with U(1)L′ spin J ′3 = 0 and
arrive at the 3d spectrum of table (5.11).

In the geometry, the coefficients cif f̃ in (5.12) are determined by the
integrals

ci f f̃ =
∫
C
(εf

+ εf̃
−) ∧ μ̄i, (5.22)

where ε± are the sections of E± associated with the matter fields, and μ̄i the
(0, 1)-form for the ith Wilson line, see equation (4.105) in [17].

With these identifications at hand we can now compare the phase struc-
ture of the discussed 3d field theory with the local M -theory geometries of

Section 3. The two resolved phases X̃�
1 and X̃�

2 map to the two Coulomb
branches with sign(φ) > 0 and sign(φ) < 0. Indeed, as computed explicitly
in Appendix B, the flop transition 3.45 induces the discontinuous jump in
the Chern–Simons term according to the flux-induced twisted superpoten-
tials integrated over the two flopped volumes (3.9) and (3.9)iii. This matches
the expected jump as induced form the chiral spectrum (5.5), in agreement
with (5.17)

Δk = index(/D2) = N+ −N−.
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In the context of both the M -theory geometry and the associated 3d field
theory, the presence of non-vanishing Chern–Simons couplings from twisted
superpotentials lift those branches geometrically in the former and field the-
oretically the latter description.

The deformed M -theory geometry X̃� is identified with the Higgs branch
of the 3d field theory. The dimension of this Higgs branch (5.15) agrees with
the dimension of the unobstructed deformation space 3.75. In particular, the
factorized deformations ε = ε+ε− in equation (3.74) get mapped to the gauge
invariant mesonic operators Mfg̃.

Let us emphasize that this correspondence holds not only on the level of
multiplicities and of dimensionality of moduli spaces, but also on the level
of moduli spaces itself. In the local M-theory transition the moduli of the
background fluxes FC are mapped to the moduli of the line bundle (3.73),
while both in the 5d-to-3d reduction and in the geometric M -theory coni-
fold transition, the moduli of the curve C enter through their dependence
on the structure of global sections. The underlying reason for this corre-
spondence is that the Albanese map of the ruled surface S� gets identified
with the Abel Jacobi map of the curve C [42], which in turn encodes both
the dynamically unobstructed deformation directions in Section 3 and the
field-theoretic spectrum (5.11).

Accordingly, as discussed in Section 3, non-zero C-field backgrounds cor-
respond to non-zero Wilson lines ϕi and also lift massless fields via the
couplings (5.12),(5.22). If h2,1(X�) = h2,1(X�) = 0, all the fields ϕi are non-
dynamical and their expectation values are fixed by the global embedding
geometry. A very explicit example is provided by the hyperelliptic cases
studied in Section 3.7, where a choice of half-integer C-field values corre-
sponds to a choice of a particular spin structure K

1/2
C . The latter will be

fixed in a global embedding and in turn determine the actual number of
holomorphic sections/massless fields given in equations (3.84) and (3.86).
Similarly, the fields ϕi associated to (2, 1)-forms participating in the M -
theory transition (cf., equation (4.15)) are dynamical and further reduce the
Higgs branch dimension by their equations of motion, e.g., setting Fϕi = 0.

6 Conclusions

We examine topological changing transition for M -theory compactification
on Calabi–Yau fourfolds, which give rise to three-dimensional theories with
four supercharges. Compared to extremal transitions of M -theory/type II
string compactifications on Calabi–Yau threefolds, which result in low-energy
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effective theories with eight supercharges, a crucial new ingredient emerges
due to the presence of non-trivial background G-fluxes. Therefore, the cen-
tral theme of this work is the interplay among the quantization conditions of
G-fluxes, the contribution of G-fluxes to the tadpole cancellation condition
and the flat directions of the flux-induced scalar potential in the effective
three-dimensional description.

To model the conifold transitions of interest, we first analyze non-compact
local Calabi–Yau fourfolds with a genus g curve of conifold singularities.
Geometrically, we find three phases — two small resolutions and one defor-
mation — that smooth the singular fourfold geometry.40 By including the
M -theory G-flux we find a rich structure of consistent flux configurations
governing the dynamics along such a conifold transition. The flux config-
urations at the boundary constrains and determines the dynamics in the
interior. We argue that finding the flat directions of the flux-induced super-
potential in the M -theory description is mapped to the classical problem
of studying global holomorphic sections of divisors on Riemann surfaces:
namely, the canonical line bundle of the genus g curve factorizes into the
two line bundles E± as determined by the background G-flux data. The
global holomorphic sections of the factors E± then give rise to flat directions
of the flux-induced superpotential. We illustrate our findings for particular
curves of genus g (mainly for hyperelliptic curves), but as our result holds
more generally, it would be interesting to apply our techniques so as to study
linear systems of line bundles on generic Riemann surfaces.

The geometrically derived factorization condition enjoys a beautiful inter-
pretation in the associated three-dimensional U(1) gauge theory. The
M -theory phase structure matches with the phase structure of such gauge
theories, i.e., the two resolved phases correspond to the two Coulomb
branches whereas the deformed phase maps to a Higgs branch. Moreover,
the global sections of the factored bundles E± are in one-to-one correspon-
dence with the ±1 charged chiral spectrum of the U(1) gauge theory. The
products of such sections — realizing the flat directions of M -theory in the
deformed phase — correspond in the field theory to gauge invariant mesonic
condensates, which parameterize the Higgs branch of the three-dimensional
U(1) gauge theory. Moreover, in the two Coulomb branches these charged
multiplets become massive, they are integrated out and generate (for a non-
vanishing index of the chiral spectrum) a Chern–Simons coupling at one
loop. We demonstrate that the characteristic structure of such one-loop

40Note the interesting distinction from the familiar case of type II string theories on a
Calabi–Yau threefold: in that case, the two small resolutions unify into a single branch of
the moduli space [32].
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Chern–Simons terms is reproduced by the M -theory phases attributed to
the two small resolutions.

At the transition point itself, the structure of the global symmetries
together with their anomaly structure of the U(1) gauge theory signal the
emergence of new degrees of freedom giving evidence for a non-trivially
interacting three-dimensional N = 2 SCFT. Clearly, it would be interest-
ing to further investigate such a N = 2 SCFT at the transition point. To
make direct contact with the M -theory description we believe that a detailed
analysis of the quantum effects is necessary.

By embedding the local Calabi–Yau fourfold geometries into compact
Calabi–Yau fourfolds, we realize conifold extremal transitions in the con-
text of global M -theory compactification. A consistent choice of G-flux also
specifies the boundary conditions of the associated local M -theory geom-
etry. The quantization condition imposed by the global Calabi–Yau four-
fold imposes further constraints on the possible realization of G-flux in the
local M -theory geometries. In order to realize a dynamically unobstructed
conifold transition in this global setting, we find a consistently quantized
background G-flux of “mixed type”. As explained, these flux backgrounds
of mixed type include G-flux quanta, which reside in both the vertical and
horizontal cohomology of the Calabi–Yau fourfold. Such G-flux configu-
rations reflect the factorization condition discovered for flat directions in
the local Calabi–Yau fourfold transitions. In the global fourfold the factor-
ization condition signals the appearance of non-generic algebraic four-cycle
supported with G-flux and extremizing the flux-induced superpotential.

The class of local geometries for the conifold transitions studied here com-
prises geometries of “matter curves” in gauge theories from F-theory, studied
in depth in [17–19]. The local solutions to the quantization and flatness con-
ditions for the G flux (potential) encountered in our M -theory analysis thus
carry over to solutions for the seven-brane dynamics in F -theory compacti-
fications, provided the 3d spectrum is anomaly free in the 4d sense and the
normal bundle allows for an elliptic fibration. The extension to non-Abelian
SU(n) gauge theories is demonstrated at the hand of an explicit example
of a chain of topologically distinct fourfolds with An−1 surface singularities,
connected by extremal conifold transitions along curves of varying genera.
We discuss consistency of G-fluxes for the individual fourfolds in the tran-
sition chain, but we do not examine the implications of the flux-induced
potentials at the level of the underlying non-Abelian phase structure, and
we hope to return to this analysis elsewhere.

The M -theory analysis again parallels the F -theory discussion in [17,18]
and we hope the results on the M -theory classification of consistent fluxes
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and the flat directions of their potential also prove useful in the context of
F -theory in the future.

A somewhat curious observation that deserves further study is the relation
between three different objects, namely the phase transitions in (possibly
interacting superconformal) 3d field theory on one hand, the fluxes for the
associated extremal fourfold transition consistent with the local quantization
condition on the other hand, and finally the close connection of these fluxes
to 2d Kazama–Suzuki models based on the group G = SU(M)/(SU(M −
�)× SU(�)× U(1)) described in refs. [15, 35]. In the present context, M =
2g − 2 was related to the genus g of the curve C of conifold singularities
and the integer � = ||k�| − (g − 1)| is related to the index k� of the 3d field
theory. This connection might be interesting from the point of a possible
group theoretical classification of the components of the vacuum space as
well as for a better understanding of the field theory spectrum at the 3d
conformal fixed points.
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Appendix A Calabi–Yau fourfolds and collection of
(co)homology data

In this appendix, we collect some information on the cohomology groups of
the global and local fourfolds used in the text.
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Hodge numbers
A compact Calabi–Yau fourfold X has Hodge numbers hp,q satisfying the
usual Hodge symmetry hq,p = hp,q, Poincaré duality hn−p,n−q = hp,q and the
Calabi–Yau condition h0,0 = h4,0 = 1, h1,0 = h2,0 = h3,0 = 0. This appar-
ently leaves four independent Hodge numbers h1,1, h2,1, h3,1, and h2,2, but
as shown in [28] they are not independent:

−h1,1 + h2,1 − h3,1 = 8− χ

6

−2h2,1 + h2,2 = 12 +
2χ
3

(where χ is the Euler characteristic of X), from which it follows that

h2,2 = 44 + 4h1,1 − 2h2,1 + 4h3,1.

The Kähler form J of the Calabi–Yau fourfold also determines a Lefschetz
decomposition of the cohomology. The second cohomology has a one-
dimensional imprimitive part spanned by [J ] and the orthogonal complement
(J3)⊥ ⊂ H2(X) is the primitive part H2

prim(X). The fourth cohomology
has two imprimitive parts: one spanned by [J2] and the other of the form
J ∧H2

prim(X).

Homology four-cycles and H4(X, Z): global case
For a compact Calabi–Yau fourfold X, Poincaré duality asserts that if Ei

is a basis of four-cycles for H4(X, Z), then there exists another basis of
four-cycles E∗i such that Ei ∩ E∗j = δij . Thus, H4(X, Z) � H4(X, Z) is an
unimodular lattice of rank b4 = 2 + 2h1,3 + h2,2. The signature of the lattice
is the pair (n+, n−), with the (anti-)self-dual forms contributing to the pos-
itive (negative) part of dimension n+ (n−). From the Hodge index theorem
(working over C), the forms of type (4,0) and (0,4) and primitive (2,2)-forms
contribute to n+, forms of type (3,1) and (1,3) to n−. Of the imprimitive
(2,2) forms, those coming from J ∧H1,1

prim (a space of dimension h1,1 − 1)
contribute to n− while the form J2 contributes 1 to n+. Putting these
together, we find

(n+, n−) = (2 + h2,2 − (h1,1 − 1), 2h3,1 + (h1,1 − 1)).

On the other hand, from the Hirzebruch signature theorem it follows that [15]

σ = n+ − n− = 8
( χ

24
+ 4
)

, (A.1)
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which also follows from the relations above:

n+ − n− = 4 + h2,2 − 2h1,1 − 2h3,1 = 48 + 2h1,1 − 2h2,1 + 2h3,1 = 32 +
χ

3
.

If c2(X) is even, H4(X, Z) is even [16], and the lattice Γn+,n− � H4(X, Z)
is unique up to isometry [71], with inner product

(e∗i , e
∗
j ) � H⊕ b4−σ

2 ⊕ E
⊕σ

8
8 , H =

(
0 1
1 0

)
. (A.2)

Here E8 denotes the Cartan matrix of E8 and we write the formula for
σ > 0, with the obvious changes for σ < 0. If c2(X) is odd, then H4(X, Z)
is odd [16] and the lattice is again unique up to isometry [71], this time
taking the form

(e∗i , e
∗
j ) � (1)⊕n+ ⊕ (−1)⊕n− . (A.3)

Vertical and horizontal cohomology
Slightly modifying the construction in [30, 72, 73], we decompose the even
cohomology of X into “vertical” and “horizontal” parts. The vertical coho-
mology is the subring of H∗(X, Z) generated by H2(X, Z). That is, the ver-
tical cohomology consists of all linear combinations of expressions Ji1 ∧ · · · ∧
Jik for integral Kähler classes Jiα . These classes are always of type (k, k),
no matter what complex structure is chosen on X, and can be thought of
as “complete intersections” of divisors on X.

On the other hand, the horizontal cohomology is the subset of H4(X, Z)
which is orthogonal to Ji ∧ Jj for every pair of Kähler classes Ji and Jj .
These classes are always primitive, no matter what Kähler structure is cho-
sen on X.

Finding appropriate supersymmetric four-cycles to represent a given inte-
gral cycle class is a challenging problem. When the class has type (2,2), the
celebrated Hodge conjecture asserts that there should be an algebraic cycle
representing the class (which would provide a supersymmetric cycle). A
class that is not in the vertical cohomology can only be of type (2,2) for a
proper subset of the complex structures on X.

On the other hand, when the class is primitive, it has all of the coho-
mological properties one expects of a special Lagrangian cycle (although
unfortunately we have no general existence results which would guarantee
that it is a special Lagrangian cycle. A special Lagrangian representative
would be supersymmetric. Note that a class which is not in the horizontal
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cohomology can only satisfy this primitivity assumption (the “cohomological
special Lagrangian” assumption) for a proper subset of the Kähler structures
on X.

There is a third possibility for a supersymmetric representative, described
in [30]: there could be a representative for the cohomology class which is a
Cayley cycle, which would give a 1/4-BPS cycle.

Note that the intersection form restricted to the horizontal cohomology
will not in general be unimodular. Thus, the decomposition ofH4(X, Z) into
vertical and horizontal pieces cannot in general be done over the integers:
one needs rational coefficients. We refer to a four-cycle with components in
both spaces as a mixed four-cycle.

Moreover, although a basis of integral cycles for these vertical/horizontal
subspaces can be determined by fourfold mirror symmetry as described in
[68, 74], these will not generate H4(X, Z), which is the relevant group for
the (appropriately shifted) G-flux.

As a simple example consider the sextic X in P5 with h1,1(X) = 1 gener-
ated by the hyperplane H with

∫
X H4 = 6. The generator of non-primitive

four-forms in H2,2
V (X) is the dual of an irreducible sextic in P3 of class H2

with
∫
X(H

2)2 = 6. The primitive part is expected to be generated (over the
rationals) by duals of special Lagrangian cycles. The basis of algebraic and
special Lagrangian cycles generates a finite index sublattice of H4(X, Z). A
basis ofH4(X, Z) necessarily includes a mixed class of the form e = 1

6H2 + θ,
with θ a rational multiple of a form dual to a special Lagrangian cycle, pos-
sibly dual to a Cayley cycle.

Mirror symmetry and the Hodge conjecture
We have identified certain cycles — the integral (p, p) cycles — as being
suitable for fluxes that minimize the superpotential, and other cycles —
the integral primitive cycles — as being suitable for fluxes that minimize
the twisted superpotential. Mirror symmetry between pairs of Calabi–Yau
fourfolds should exchange several things: the horizontal and vertical coho-
mologies should be exchanged, the integral (p, p) cycles (which may include
more cycles than just the vertical cohomology) should be exchanged with
the integral primitive cycles (which may include more cycles than just the
horizontal cohomology).

To get supersymmetric representatives of cycles, calibrated cycles should
be used, and the two natural calibrations for Calabi–Yau fourfolds — the
Kähler calibration and the special Lagrangain calibration — should also
be exchanged under mirror symmetry (since they lead to different types of
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branes). Since the Hodge conjecture can be interpreted as asserting that
any integral (p, p) cycles is, up to torsion, a rational linear combination of
Kähler-calibrated cycles (i.e., algebraic cycles), it is tempting to formulate
the following:

Mirror Hodge Conjecture. If G is a middle-dimensional cycle on a com-
pact Calabi–Yau manifold such that [G] ∧ J is an exact form, then, up to
torsion, G is a rational linear combination of special Lagrangian cycles.

Although not as well motivated by mirror symmetry, one can go on to
formulate the:

Symplectic Hodge Conjecture. If G is a middle-dimensional cycle on a
compact symplectic manifold such that [G] ∧ ω is an exact form (where ω is
the symplectic form), then, up to torsion, G is a rational linear combination
of Lagrangian cycles.

Cohomology groups of local fourfolds
As described in the text, the common boundary ∂X̃ of the local fourfolds X̃�

and X̃� is a S3 bundle with base S�. The integral cohomology and homology
groups H3(∂X̃, Z) can be computed from the Gysin long exact sequence, or
the Leray spectral sequence, to be

Hq(∂X̃, Z) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z q = 0, 7
Z2g q = 1, 3, 6
Z2 q = 2, 5
Z2g ⊕ Z2g−2 q = 4

,

Hq(∂X̃, Z) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z q = 0, 7
Z2g q = 1, 4, 6
Z2 q = 2, 5
Z2g ⊕ Z2g−2 q = 3

By exploiting the fibered structure of the local fourfolds X̃� and X̃�, we
determine their cohomology groups to be

Hq(X̃�, Z) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z q = 0, 4
Z2g q = 1, 3
Z2 q = 2
0 else

, Hq(X̃�, Z) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z q = 0, 2, 5
Z2g q = 1
Z4g−3 q = 4
0 else
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Via the duality relations Hq(X̃�/�, Z) � Hq(X̃�/�, Z) � H8−q
c (X̃�/�, Z), we

can also deduce the cohomology groups H8−q
c (X̃�/�, Z) of compact support,

which are Poincaré dual to the homology groups Hq(X̃�/�, Z).

Hodge structure of the stable degeneration components X and Y
As described in the section 4.3 in the semi stable degeneration — relevant
to the extremal transition X� to X� — the Calabi–Yau fourfold X� degen-
erates into two four-dimensional component varieties X and Y intersecting
transversely in the three-dimensional variety E. Since the variety X is the
blowup of X� along the genus g curve C, its non-vanishing Hodge numbers
read [42]

h0,0(X) = h4,4(X) = h4,0(X) = h0,4(X) = 1,

h1,1(X) = h3,3(X) = h1,1(X�) + 1,

h2,1(X) = h1,2(X) = h3,2(X) = h2,3(X) = h2,1(X�) + g,

h3,1(X) = h1,3(X) = h3,1(X�),

h2,2(X) = h2,2(X�) + 2, (A.4)

expressed in terms of the Hodge numbers h1,1(X�), h2,1(X�), h3,1(X�), and
h2,2(X�) of the Calabi–Yau fourfold X�.

The variety Y is a quadratic hypersurface inside a P4 bundle of the genus
g curve C. For generic fibers over C the quadric fibers are of rank 5, while
there are 2g − 2 non-generic points on C, where the quadric fibers drop to
rank 4. Using topological surgery techniques in the vicinity of the points of
C, where the quadric fibers degenerate to rank 4, the Hodge numbers of the
variety Y can be derived

h0,0(Y ) = h4,4(Y ) = 1,

h1,0(Y ) = h0,1(Y ) = h4,3(Y ) = h3,4(Y ) = g,

h2,1(Y ) = h1,2(Y ) = h3,2(Y ) = h2,3(Y ) = g,

h1,1(Y ) = h3,3(Y ) = 2,

h2,2(Y ) = 2g. (A.5)

Finally, the non-vanishing Hodge numbers of the intersection E, which is a
P1 × P1 bundle of the curve C, are given by

h0,0(E) = h3,3(E) = 1,

h1,1(E) = h2,2(E) = 3,
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h1,0(E) = h0,1(E) = h3,2(E) = h2,3(E) = g,

h2,1(E) = h1,2(E) = 2g. (A.6)

With the help of equations (A.5), (A.4) and (A.6), we will evaluate the maps
in equation (D.1), where X [0] is the disjoint union of X and Y and X [1] ≡ E.

Appendix B Conifold flop transitions in local Calabi–Yau
fourfolds

To describe the flop transition between the two small resolutions X̃�
1 and

X̃�
2, we describe the conifold fibers of the genus g curve C as a symplectic

quotient V//U(1) as in refs. [33,34]. To this end we introduce gauged linear
σ-model fields s1, s2 and s3, s4 with U(1) charge +1 and −1, respectively.
As usually, these gauged linear σ-model fields are constrained by the D-term

|s1|2 + |s2|2 − |s3|2 − |s4|2 = r, (B.1)

where the parameter r distinguishes among the singular phase X̃sing (for

r = 0) and the two small resolutions X̃�
1 (for r > 0) and X̃�

2 (for r < 0) [34].
In the following, we collectively denote the geometry of these three phases
by X̃r.

In addition to their U(1) charges the fields s1 to s4 transform as sections
of line bundles S1 to S4 over the curve C, and therefore the local fourfold
X̃r is realized as the non-trivial fibration

V//U(1) �� X̃r

π

��
C

. (B.2)

The coordinates x1 to x4 in equation (3.1) arise as the gauge invariant
combinations

x1 = s1s3, x2 = s2s4, x3 = s1s4, x4 = s2s3, (B.3)
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which fulfill the relation (3.1) by construction. Moreover, the line bundles
S� are related to the line bundles L� according to41

L1 = S1 ⊗ S3, L2 = S2 ⊗ S4, L3 = S1 ⊗ S4, L4 = S2 ⊗ S3. (B.4)

The (compact) surfaces S�
1 and S�

2 of the small resolutions X̃�
1 and X̃�

2 are
now given by

r > 0 : S�
1 = {s3 = s4 = 0}, r < 0 : S�

2 = {s1 = s2 = 0}. (B.5)

Furthermore, we define the divisor class D� = {s� = 0} and Dp = π−1(p)
in terms of a point p on the curve C. Note that these divisor classes do
not depend on the parameter r because the fourfold X̃r is a normal variety
for all values of r (as the conifold singularities arise in X̃r for r = 0 at
codimension two). As a consequence, we can also define the cohomology
elements H2(X̃r) (because H2,0(X̃r) = 0) in a r-independent way by means
of Poincaré duality. Thus, we define the (1, 1)-forms ω� and ωp as duals of
the divisors D� and Dp.

Let us first concentrate on the phase r > 0. The surface S�
1 intersects Dp

at a generic P1-fiber F1, i.e.,

F1 = S�
1.Dp. (B.6)

The generic fiber F1 yields according to [34] the intersection numbers

F1.D1/2 = S�
1.Dp.D1/2 = 1, F1.D3/4 = S�

1.Dp.D3/4 = −1,
F1.Dp = S�

1.Dp.Dp = 0. (B.7)

The vanishing intersection is a consequence of the fact that two generic fibers
F1 are non-intersecting. Furthermore, S�

1 intersects the divisors D1/2 in the

41In terms of the line bundles L�, these relations specify the line bundles S� up to a
line bundle P, i.e., S1/2 ∼ S1/2 ⊗ P and S3/4 ∼ S3/4 ⊗ P−1. Note, however, that the line

bundle P cancels out in the symplectic quotient V//U(1).
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two sections C ′1 and C1, i.e.,

C1 = S�
1.D2, C ′1 = S�

1.D1, (B.8)

and we arrive at their intersections

C1.Dp = 1, C1.D1 = 0, C1.D2 = degL4 − degL1 = −n,

C ′1.Dp = 1, C ′1.D2 = 0, C ′1.D1 = degL1 − degL4 = n, (B.9)

and the self-intersection

S�
1.S

�
1 = 2− 2g. (B.10)

The vanishing intersections are a consequence of the fact that the two sec-
tions C1 and C ′1 are disjoint in S�

1. The intersections C1.D2 = S�
1.D2.D2 and

C ′1.D1 = S�
1.D1.D1 and the self-intersection of S�

1 are calculated by using
equations (B.4) and the fact that — on the level of the performed inter-
section calculus — we have the relations D1 +D3 ∼ (degS1 + degS3)Dp,
D2 +D3 ∼ (degS2 + degS3)Dp and so on. By inspecting the resulting inter-
section numbers (B.7) and (B.9), we readily identify the curves C1 and F1

with the curves C and F (and C ′1 with C ′) of equation (3.5). The Kähler
form is again given by J(S�

1) = JF
1 (ω2 + n ωp) + JC

1 ωp (cf., equation (3.9)),
and, as before, we find the Kähler volume

1
2

∫
S�

1

J(S�
1) ∧ J(S�

1) =
n

2
(JF

1 )
2 + JF

1 JC
1 , (B.11)

where JF
1 and JC

1 measure the volumes of the curves F1 and C1.

We now turn to the phase r < 0. In particular, we are interested how the
volume integral (3.9)ii behaves as we traverse from the r > 0 phase to the
r < 0 phase. The divisors and their dual (1, 1)-forms remain invariant, but
we need to recalculate the intersection numbers. Using similar arguments
as for the intersection numbers in the phase r > 0, we find for r < 0

S�
2.Dp.D1/2 = −1, S�

2.Dp.D3/4 = 1,

S�
2.D3.D4 = 0, S�

2.D2.D2 = n− (2g − 2), (B.12)

and

S�
2.S

�
2 = 2− 2g. (B.13)
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With these intersection numbers we immediately infer the volume integral
(3.9)iii of the surface S�

2 expressed in terms of the Kähler coordinates JF
1

and JC
1 .

Appendix C The quarternionic Hopf fibration and the Milnor
fibration

In order to control the intersection properties of the four-cycles B�
� on X̃�,

we must take some care in how they are defined. Our main tools are the
Milnor fibration [75] and the quaternionic Hopf fibration.

Locally near a zero of ε, we can use ε as a local coordinate on the curve
C, and regard ε as locally describing the map X̃� → C. The fiber of the map
over 0 has a singular point, and locally near that singular point, there are
four coordinates x� on X̃� with respect to which the function ε takes the
form

ε = x1x2 − x3x4.

We will use these coordinates to describe the fourfold near such a zero, which
is isomorphic to a neighborhood of the origin in C4.

The function ε = ε(x�) : C4 → C defines an isolated hypersurface singu-
larity, and Milnor found a very elegant way to describe the topology near
such a singularity. Let S7

r = {‖x1‖2 + ‖x2‖2 + ‖x3‖2 + ‖x4‖2 = r2} be the
sphere of radius r in C4. The Milnor fibration is the map

ε

‖ε‖

∣∣∣∣
S7

r−(S7
r∩{ε=0})

: S7
r − (S7

r ∩ {ε = 0})→ S1,

and its fibers, the Milnor fibers, are in general homotopic to a wedge of
three-spheres. In our case, the function ε describes the simplest isolated
hypersurface singularity, and the Milnor fiber is diffeomorphic to T ∗S3, the
cotangent bundle of the three-sphere. A three-sphere in the Milnor fiber is
a vanishing cycle, since there is a four-chain whose boundary is the three-
sphere, given by taking the cone over S3 ⊂ S7

r to get a bounding four-chain
Σ4 ⊂ B8

r , where B8
r is the eight-ball of radius r.

As we will show momentarily, a generating 3-sphere in the Milnor fiber
can be deformed to a three-sphere contained in the fiber of the map ε. Our
strategy for giving an explicit description of the four-cycles B�

� is as follows.
We have a path joining p0 to p� on C. In the middle of this path, we follow
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a three-sphere within the fiber of the map X̃� → C. Near each endpoint,
though, we stop following the path, and follow instead the deformation of
the three-sphere in the fiber of ε to a three-sphere in the Milnor fiber of
small radius, concluding by using the bounding four-chain Σ4 to close off
the four-cycle.

In order to describe the behavior explicitly near the origin, we use the
quaternionic Hopf fibration. Let us introduce quaternion variables q1 =
x1 + x4j and q2 = x3 + x2j which allow us to regard C4 as H2. Note that
the quaternionic conjugate q1 = x̄1 − x4j satisfies q1q1 = ‖q1‖2 = ‖x1‖2 +
‖x4‖2.

There is a natural map H2 → HP1 ∼= S4 defined by (q1, q2) �→ [q1, q2]. If
q1 
= 0 then

[q1, q2] =
[
1,

q2

q1

]
=
[
1,

q2q1

‖q1‖2
]
=
[
1,
(x3 + x2j)(x̄1 − x4j)
‖x1‖2 + ‖x4‖2

]
=
[
1,
(x̄1x3 + x2x̄4) + (x1x2 − x3x4)j

‖x1‖2 + ‖x4‖2
]

.

If we restrict this map to the sphere S7
r ⊂ H2 of radius r, we get the quater-

nionic Hopf fibration S7 → S4 whose fibers are three-spheres. More explic-
itly, if we fix σ + τj ∈ H ⊂ S4, then the quaternionic Hopf fiber over σ + τj
defined by

x̄1x3 + x2x̄4

‖x1‖2 + ‖x4‖2
= σ,

x1x2 − x3x4

‖x1‖2 + ‖x4‖2
= τ,

‖x1‖2 + ‖x2‖2 + ‖x3‖2 + ‖x4‖2 = r2

is a three-sphere.

We have chosen our coordinates very carefully, to insure that τ/‖τ‖ =
ε/‖ε‖. Thus, the three-spheres in the quaternionic Hopf fibration are con-
tained in the Milnor fibers for the function ε = x1x2 − x3x4. (Note that the
complex variable σ labels a real two-parameter family of such three-spheres
within a fixed Milnor fiber labeled by τ . We denote that three-sphere by
S3

σ if we need to emphasize this dependence on parameters.) The advan-
tage of this description is that we can immediately see that the bounding
four-chains Σ4 are quaternion-linear subspaces of H2, and so are nonsingular
four-manifolds with boundary. Moreover, any two such bounding four-chains
meet transversally in a single point, with intersection number +1 (using the
natural orientation of the quaternions). This reflects a well-known property
of the quaternionic Hopf fibration, analogous to the same property of the
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ordinary Hopf fibration: any two fibers S3
j ⊂ S7 (j = 1, 2) of the quater-

nionic Hopf fibration have linking number 1 in the 7-sphere.

To finish our story, we must show that the Hopf fiber S3
σ in the Milnor

fiber over τ/‖τ‖ can be naturally deformed to a three-sphere in the fiber
ε−1(τ) of the holomorphic map ε. Assume that σ 
= 0, which implies that
x1 and x4 do not simultaneously vanish on S3

σ. We rescale, defining

x̂� =
x�√

‖x1‖2 + ‖x4‖2
, � = 1, 2, 3, 4.

The defining equations for the fiber of the Hopf fibration become

¯̂x1x̂3 + x̂2
¯̂x4 = σ, x̂1x̂2 − x̂3x̂4 = τ, ‖x̂1‖2 + ‖x̂4‖2 = 1.

That is, the rescaled three-sphere Ŝ3
σ is contained in ε−1(τ). (Note that

‖x̂1‖2 + ‖x̂2‖2 + ‖x̂3‖2 + ‖x̂4‖2 = r2(‖x1‖2 + ‖x4‖2) does not constrain the
variables, but rather, allows the definition

‖x1‖2 + ‖x4‖2 =
‖x̂1‖2 + ‖x̂2‖2 + ‖x̂3‖2 + ‖x̂4‖2

r2
,

which can be used to construct the inverse transformation.)

Let us now consider the intersection number of two such cycles B�
�.B

�
�′ .

Near each point pj , the bundle of three-spheres in fibers is an oriented bun-
dle, so we can fix a consistent orientation of the three-spheres throughout
a neighborhood of pj . We can also fix a common orientation for all paths
emanating from pj , either pointing toward the point or pointing away from
the point. Note that changing the orientation of all of the three-spheres
changes the orientations of both B�

� and B�
�′ , and thus does not change the

intersection number. Similarly, changing the orientation of all of the paths
emanating from pj does not change the intersection number.

We computed a local contribution to the intersection number at a point
pj by using the natural orientation of the quaternions. Given a choice of how
to orienting paths emanating from pj , the quaternion orientation determines
an orientation of all of the three-spheres. Whichever orientation it is, it is
the same orientation for both four-cycles, so the local contribution of + 1
to the intersection number is correct.

Globally, if � 
= �′ then B�
� and B�

�′ are given by paths from p0 to p� and
p�′ , respectively. If we choose the tangent directions of those two paths at
p0 to be different, then we can use the computation above to conclude that
the intersection number is 1.
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On the other hand, if � = �′, we can choose two different paths from p0

to p�, and we can take them to have different tangent directions at p0 and
also at p�. Thus, at each endpoint we get a contribution of 1, for a total
intersection number of 2.

Appendix D The Clemens–Schmid exact sequence

D.1 Triple-point-free Clemens–Schmid exact sequences

The original sources for the Clemens–Schmid exact sequence are in [76,77];
we follow the exposition in [78], which is based in part in [79]–[81].

A semistable degeneration is a Kähler manifold X of dimension d+ 1
together with a map X → Δ to the unit disc such that the fibers Xt := π−1(t)
for t 
= 0 are compact complex manifolds of dimension d and X0 =

⋃
Xi

is reduced divisor with each Xi a compact complex manifold of dimen-
sion d, such that all intersections of distinct components Xi1 , . . . , Xik are
transverse. (“Reduced” means that the function t has a simple zero along
each Xi.)

We will consider a special case of this, in which Xi meets Xj transversally
for i 
= j, but all triple intersectionsXi ∩Xj ∩Xk (i, j, k distinct) are empty.
In this case, we call the degeneration triple-point-free following [82,83].

For a triple-point-free degeneration, define X [0] to be the disjoint union
of the components Xi, and X [1] to be the disjoint union of the intersections
Xij := Xi ∩Xj . There are restriction maps

Hm(X [0]) −→ Hm(X [1]),

and we define

E0,m
2 := Ker(Hm(X [0]) −→ Hm(X [1])),

E1,m
2 := Coker(Hm(X [0]) −→ Hm(X [1])). (D.1)

As the notation suggests, these are the E2 terms in a spectral sequence,
which degenerates at E2 and converges to the cohomology of X0. In practice,
this means that there are short exact sequences

0 −→ E1,m−1
2 −→ Hm(X0) −→ E0,m

2 −→ 0. (D.2)
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For brevity, we denote Hm(X0) by Hm. It turns out that this is also isomor-
phic to the cohomology of the total space Hm(X ). (For general semistable
degenerations, the construction involves more strata X [k], and is much more
complicated.)

These cohomology groups carry mixed Hodge structures. This means that
there is a “weight” filtration on cohomology whose graded pieces carry Hodge
structures of the given weight.42 In the triple-point-free case, the weight fil-
tration has only two non-trivial terms: Wm−1H

m = E1,m−1
2 , and WmHm =

Hm (with Wm−2H
m = {0}); the corresponding graded pieces GrW

m−1H
m :=

Wm−1H
m and GrW

m Hm := WmHm/Wm−1H
m carry Hodge structures of

weights m− 1 and m, respectively.

There is an induced filtration, with induced Hodge structures of negative
weight, on the homology Hm. The weights of the Hodge structures are −m
and −m+ 1.

On the other hand, the cohomology of the general fibers Hm(Xt) admit a
monodromy transformation T with a logarithm N , and the limit as t → 0 of
the Hodge structures on Hm(Xt) gives another mixed Hodge structure. Let
us denote this limit by Hm

lim. The monodromy weight filtration is in general a
somewhat complicated linear algebra construction using N , but in the case
that N2 = 0 (which corresponds to our triple-point-free situation) it takes
a simple form:

Wm−1H
m
lim = Im(N), WmHm

lim = Ker(N), Wm+1H
m
lim = Hm

lim. (D.3)

So there is a Hodge structure of weight m− 1 on Im(N), a Hodge structure
of weight m on Ker(N)/Im(N) and a Hodge structure of weight m+ 1 on
Hm

lim/Ker(N).

The Clemens–Schmid exact sequence is an exact sequence of mixed Hodge
structures:

· · · −→ H2n−m+2
α−→Hm i∗−→Hm

lim
N−→Hm

lim
β−→H2n−m

α−→Hm+2 −→ · · · .
(D.4)

Let us describe the various maps in this sequence. N is the logarithm of
monodromy, as described above. i∗ is just the restriction of a cohomology
class from the total space X to the fiber Xt. α is the composition of Poincaré

42A Hodge structure of weight k on a vector space V is a decomposition V ⊗ C ∼=⊕
p+q=k V p,q with V q,p = V p,q.
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duality on the total space

H2n−m+2(X ) −→ Hm(X , ∂X ),

with the natural map from relative cohomology to absolute cohomology

Hm(X , ∂X ) −→ Hm(X ),

while β is the composition of Poincaré duality on the fiber

Hm(Xt) −→ H2n−m(Xt),

with the homology push-forward

H2n−m(Xt)
i∗−→H2n−m(X ).

The Clemens–Schmid exact sequence induces exact sequences on the
graded pieces, which are morphisms of (pure) Hodge structures. There are
four such exact sequences: three isomorphisms

0 −→ GrW
m+1H

m
lim

N−→GrW
m−1H

m
lim −→ 0, (D.5)

0 −→ GrW
m−1H

m i∗−→GrW
m−1H

m
lim −→ 0, (D.6)

0 −→ GrW
m+1H

m
lim

β−→GrW
m−2n+1H2n−m −→ 0, (D.7)

and a more interesting one

0 −→ GrW
m−2H

m−2
lim

β−→GrW
m−2n−2H2n−m+2

α−→GrW
m Hm i∗−→GrW

m Hm
lim −→ 0.

(D.8)

Thus, the crucial things to calculate in any example are the kernel and
cokernel of

α : GrW
m−2n−2H2n−m+2 −→ GrW

m Hm, (D.9)

for each m.

D.2 Conifold transition in Calabi–Yau threefolds

The Clemens–Schmid exact sequence can be used to study three-dimensional
conifold transitions [2, 53] in the general geometric setting of [84–87]. This



688 KENNETH INTRILIGATOR ET AL.

has previously been worked out in [88]; we review it here to establish notation
and familiarity with our setup.

We take a family X̃ of Calabi–Yau threefolds Xs depending on s ∈ Δ
which acquires δ nodes at s = 0. Our key assumption is that the δ vanishing
cycles for these nodes only span a subspace of dimension σ := δ − ρ within
H3(Xs). Since the vanishing cycles span the image of N on H3

lim, this implies
that W2H

3
lim = Im(N) has rank σ, and so that GrW

2 H3 ∼= GrW
2 H3

lim also has
rank σ.

To obtain a semistable degeneration, we would like to blowup the nodes,
but a simple computation shows that the resulting central fiber would not be
reduced (i.e., the function s would have a double zero along the exceptional
divisor). The way forward is pointed to by Mumford’s semistable reduction
theorem [89], and we make the “basechange” s = t2 before blowing up the
nodes.

It is worth making the local computation to see what is going on. We have

x1x2 − x3x4 = t2,

and we are blowing up the origin in that space. At t = 0 we see two (local)
components: one of them, X, is the blowup of the original fiber X̃0 at the
node. Note that this is the not the familiar small blowup which replaces
the node by a P1 but rather a bigger blowup which replaces it by a quadric
surface P1 × P1. The other local component Y is the exceptional divisor of
the blowup, isomorphic to a nonsingular quadric hypersurface in P4. Note
that X ∩ Y = E ∼= P1 × P1.

More globally, we will have X and δ exceptional divisors Y1, . . . , Yδ, one
for each node, with X0 = X ∪⋃Yi. X is the blowup of X� along the rational
curves S�

i with exceptional divisors Ei ⊂ X, and Xt coincides with X�.

To compute the cohomology of X0 and its weight filtration, we must study
the maps Hm(X [0])→ Hm(X [1]), which in this case can be written as

Hm(X�)⊕Blm ⊕
⊕

Hm(Yi) −→
⊕

Hm(Ei),

where Blm represents the addition to the cohomology of X� caused by the
blowup. Explicitly, if ei ⊂ Ei is the fiber of Ei → S�

i , then Bl2 =
⊕

Z[Ei]
and Bl4 =

⊕
Z[ei].

In the cases m = 1 and m = 5, all of the constituents of the cohomology
vanish, so we conclude that W1H

1, W1H
2, W5H

5, and W5H
6 all vanish. In
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the case m = 3, the only non-vanishing constituent is H3(X�), so W3H
3 =

H3(X�) and W3H
4 vanishes.

In the case m = 0, the maps H0(Yi)→ H0(Ei) are isomorphisms, so the
kernel is just W0H

0 = H0(X�) and the cokernel W0H
1 vanishes. In the

case m = 6, the right side vanishes and we simply get W6H
6 = H6(X�)⊕⊕

H6(Yi) = Zδ+1.

In the case m = 4, since GrW
4 H5 vanishes, the map

H4(X�)⊕
⊕

Z[ei]⊕
⊕

H4(Yi) −→
⊕

H4(Ei)

is surjective, and its kernel must be W4H
4 = H4(X�)⊕ Zδ.

Finally, in the case m = 2, since GrW
2 H3 has rank σ and it is the cokernel

of the map

H2(X�)⊕
⊕

Z[Ei]⊕
⊕

H2(Yi) −→
⊕

H2(Ei),

the kernel of that map is W2H
2 = H2(X�)⊕ Zσ.

Now we can use the Clemens–Schmid exact sequence to relate the coho-
mology and Hodge structures of X� and X�. We focus on the “interesting”
part of the sequence. If m = 4, this reads

0 −→ GrW
2 H2

lim −→ GrW
−4H4 −→ GrW

4 H4 −→ GrW
4 H4

lim −→ 0.

Note that there is no monodromy here, so the first and last terms coincide
with H2(X�) and H4(X�), respectively. Since the middle two groups have
the same rank, the kernel and cokernel must also have the same rank. This
simply expresses Poincaré duality for H∗(X�), and we learn nothing new.

If m = 3, our sequence reads

0 −→ GrW
1 H1

lim −→ GrW
−5H5 −→ GrW

3 H3 −→ GrW
3 H3

lim −→ 0.

The first two terms vanish, so this gives an isomorphism between the last
two terms. The last term is only part of H3(X�), and in fact we have

H3(X�) = GrW
3 H3

lim ⊕ Z2σ = H3(X�)⊕ Z2σ.

Note that at the level of Hodge structures, the limit of the Hodge structures
on H3(Xt) as t → 0 retains a piece of smaller rank which coincides with
H3(X�) and has a Hodge structure of weight 3, while the other part of the
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cohomology goes to parts of the limiting mixed Hodge structure of weights
2 and 4.

Finally, if m = 2, our sequence reads

0 −→ GrW
0 H0

lim −→ GrW
−6H6 −→ GrW

2 H2 −→ GrW
2 H2

lim −→ 0.

The first two terms have ranks 1 and δ + 1, respectively, and the third term
is isomorphic to H2(X�)⊕ Zσ. Thus,

H2(X�) = GrW
2 H2

lim ⊕ Zδ−σ = H2(X�)⊕ Zδ−σ.

D.3 Conifold transition along a genus g curve in global Calabi–
Yau fourfolds

To apply the Clemens–Schmid exact sequence to our fourfold extremal tran-
sition between the Calabi–Yau fourfolds X� and X�, we must first construct
a semistable degeneration, which relates one to the other.

Our deformed Calabi–Yau fourfold has a local equation of the form

x1x2 − x3x4 = ε,

where x1, x2, x3, x4 and ε are sections of the bundles L1, . . . ,L4, andKC over
C, respectively. We make a one-parameter deformation of this for t ∈ Δ (the
unit disc), approaching the singular Calabi–Yau space at t = 0, as follows.
For that purpose, we use the equation

x1x2 − x3x4 = t2ε, (D.10)

where t is the coordinate on the disc Δ. We will resolve singularities by
blowing up x1 = · · · = x4 = t = 0, which gives a variety that is still fibered
over C. (We can treat ε as a local coordinate on C.)

We can in fact regard equation (D.10) as defining the deformation more
globally. When we do the blowup, on the central fiber we do not get the usual
“small” blowup X�, but rather, the proper transform in that blowup is a
variety X which is the blowup of X� along S�. There is also an exceptional
divisor Y of this blowup map in the ambient space, and all together the
blown up total space gives a family X mapping to the disc via t, such that
the central fiber is X0 = X ∪ Y .
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To see the structure more clearly, we blow up in the ambient space in terms
of the local coordinates z0 to z4 with z0 = t

x1
, z1 = x1, z2 = x2

x1
, . . . , z4 = x4

x1
.

(These local coordinates are again appropriate sections over the curve C.)
Then the equation (D.10) becomes

z2 − z3z4 − z2
0ε = 0, (D.11)

while the reduced form of the resulting semistable degeneration reads

t = z0 z1.

The components z0 = 0 and z1 = 0 intersect the (local) hypersurface equa-
tions (D.11) transversely and gives rise to the varietiesX and Y , respectively.

Intrinsically, we can describe Y — locally given as z1 = 0— as a quadratic
hypersurface inside a P4 bundle over C. More precisely, the bundle is P(L1 ⊕
L2 ⊕ L3 ⊕ L4 ⊕O) (spanned by x1, . . . , x4, and t) when ε giving a coefficient
in the equation. As a consequence, the fibers of Y → C are quadrics of rank
5 for generic points of C, dropping to rank 4 precisely at the 2g − 2 zeros of
the section ε of the canonical bundle.

We let E = X ∩ Y , which locally is given by z0 = z1 = 0. This is a P1 × P1

bundle over C; more precisely, it is the fibration {x1x2 − x3x4 = 0} ⊂ P(L1 ⊕
L2 ⊕ L3 ⊕ L4).

The cohomology of the central fiber X0 is governed by the short exact
sequence (D.2), which — together with the relations (D.1) for the disjoint
union X [0] of X and Y , and for X [1] ≡ E — results into the (non-vanishing)
graded pieces GrW

m−1H
m(X0) and GrW

m Hm(X0). The for us relevant graded
cohomology groups together with their mixed Hodge structures — carrying
weight and Hodge filtrations — are recorded here43

GrW
1 H2(X0) =

⊕
p+q=1

V p,q
1 , dimV p,q

1 = (0, 0) ,

GrW
2 H2(X0) =

⊕
p+q=2

V p,q
2 , dimV p,q

2 =
(
0, h1,1

X� , 0
)

, (D.12)

43To derive the mixed Hodge structure of the central fiber X0, we need further coho-
mology data of the component varieties X and Y , which we have collected in Appendix A.
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and

GrW
3 H4(X0) =

⊕
p+q=3

V p,q
3 , dimV p,q

3 =
(
0, g − h̃2,1, g − h̃2,1, 0

)
,

GrW
4 H4(X0) =

⊕
p+q=4

V p,q
4 , dimV p,q

4 =
(
1, h3,1

X� , h
2,2
X� + 2g − 1, h3,1

X� , 1
)

.

(D.13)

These graded cohomology groups are expressed in terms of the Hodge num-
bers hp,q

X� of the Calabi–Yau fourfold X�. h̃2,1 denotes the number of har-
monic (2, 1)-forms participating in the extremal transition. That is to say,
0 ≤ h̃2,1 ≤ g refers to the number of (2, 1)-forms that are in the image of the
canonical map H2,1(X�)→ H2,1(S�) and therefore disappear together with
the cycle S� in the extremal transition to the fourfold X�.

First, let’s see how the vanishing cycles of the family behave. The limiting
mixed Hodge structure on H4(Xt) as t → 0 will have Hodge structures of
three weights (cf., equations (D.3)), determined by the behavior of N , the
logarithm of monodromy. The vanishing cycles are in Im(N), and give
a Hodge structure of weight 3, which, according to the Clemens–Schmid
exact sequence (cf., equation (D.6)), is identified withGrW

3 H4(X0) in (D.13).
Thus, there is no (3, 0) part of this Hodge structure; the (2, 1) and (1, 2) parts
of dimension (g − h̃2,1) contribute to H3,1

lim and H2,2
lim, respectively.

The cokernel of N gives a Hodge structure of weight 5. This coker-
nel is isomorphic to Im(N) due to equation (D.5). The non-vanishing
(g − h̃2,1)-dimensional (3, 2) and (2, 3) parts contribute to H2,2

lim and to H1,3
lim,

respectively.

The remaining portion of H4
lim — corresponding to a Hodge structure of

weight 4 — goes over to H4(X0), and we shall see how much of it matches
with H4(X�). The Clemens–Schmid exact sequence tells us together with
(D.13) (by evaluating the cokernel (D.9) in the sequence (D.8)) that the
weight 4 contribution of the limiting mixed Hodge contains (4, 0), (3, 1),
(2, 2), (1, 3) and (0, 4) pieces. The the two one-dimensional (4, 0) and (0, 4)
parts are associated to the holomorphic (4, 0)-form and the anti-holomorphic
(0, 4)-form of X�. The h3,1

X� dimensional (3, 1) and (1, 3) pieces are identified
with the complex structure deformations of the fourfold X�. Finally, the
(2, 2) part is (h2,2

X� + 2g − 4)-dimensional. Only (h2,2
X� − 1) of these forms are

associated with (2, 2)-forms of X�. The remaining (2g − 3) (2, 2)-pieces,
which go over to H4(X0), are associated with the (2g − 3) four-forms [B�

�]
and map to forms in H4(Y ).
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Thus, in summary the Hodge diamond of X� expressed in terms of the
Hodge numbers of X� and decomposed into the pieces of the limiting mixed
Hodge structure of H4

lim reads

Hp,q(X�) =
⊕
m

GrW
m Hp,q

lim, (D.14)

with

dimGrW
m Hp,q

lim =

0
1
0

0 0
0 0
0 0

0 0 0
0 h1,1

X�−1 0
0 0 0

0 0 0 0
0 h2,1

X�−̃h2,1 h2,1
X�−̃h2,1 0

0 0 0 0
0 g−̃h2,1 g−̃h2,1 0 0
1 h3,1

X� h2,2
X�+2g−4 h3,1

X� 1

0 0 g−̃h2,1 g−̃h2,1 0
0 0 0 0
0 h2,1

X�−̃h2,1 h2,1
X�−̃h2,1 0

0 0 0 0
0 0 0
0 h1,1

X�−1 0
0 0 0

0 0
0 0
0 0

0
1
0

.

(D.15)

The triplet at a position (p, q) in the Hodge diamond corresponds to the
three weights with respect to the limiting monodromy weight filtration, i.e.,
dim GrW

p+q−1Hp,q
lim

dim GrW
p+qHp,q

lim

dim GrW
p+q+1Hp,q

lim

. Note that the indicated decomposition (D.14) only holds

in the limit t → 0, whereas for finite t the Hodge type of the individual
graded pieces get corrected. Nevertheless, also for finite t the Hodge numbers
hp,q

X� are obtained by summing up the entries of the triplets, that is to say
hp,q

X� = dimGrW
p+q−1H

p,q
lim + dimGrW

p+qH
p,q
lim + dimGrW

p+q+1H
p,q
lim.
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in Mathematics 29, Birkhäuser, Boston, Basel, Stuttgart, 353–386
(1983).

[83] B. Crauder and D.R. Morrison, Minimal models and degenerations
of surfaces with Kodaira number zero, Trans. Amer. Mathematical
Society 343 (1994) 525–558.

[84] C.H. Clemens, Double solids, Adv. in Math. 47 (1983), 107–230.
[85] C.H. Clemens, Homological equivalence, modulo algebraic equivalence,

is not finitely generated, Publ. Math. IHES 58 (1983), 19–38.
[86] R. Friedman, Simultaneous resolution of threefold double points,

Math. Ann. 274 (1986), 671–689.
[87] D.R. Morrison, Through the looking glass, Mirror Symmetry III

(D. H. Phong, L. Vinet, and S.-T. Yau, eds), AMS/IP Stud.
Adv. Math. 10, International Press, Cambridge, 263–277 (1999)
[arXiv:alg-geom/9705028].

[88] D.E. Diaconescu, R. Donagi and T. Pantev, Geometric transitions
and mixed Hodge structures, Adv. Theor. Math. Phys. 11 (2007),
65–89, [arXiv:hep-th/0506195].

[89] G. Kempf, F.F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal
embeddings. I, Lecture Notes in Math. 339, Springer–Verlag, Berlin
(1973).





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


