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Abstract

Based on a weak action of a finite group J on a finite group G, we
present a geometric construction of J-equivariant Dijkgraaf~Witten the-
ory as an extended topological field theory. The construction yields an
explicitly accessible class of equivariant modular tensor categories. For
the action of a group J on a group G, the category is described as the rep-
resentation category of a J-ribbon algebra that generalizes the Drinfel’d
double of the finite group G.
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1 Introduction

This paper has two seemingly different motivations and, correspondingly,
can be read from two different points of view, a more algebraic and a more
geometric one. Both in the introduction and the main body of the paper,
we try to separate these two points of view as much as possible, in the hope
to keep the paper accessible for readers with specific interests.

1.1 Algebraic motivation: equivariant modular categories

Among tensor categories, modular tensor categories are of particular inter-
est for representation theory and mathematical physics. The representation
categories of several algebraic structures give examples of semisimple mod-
ular tensor categories:

(1) Left modules over connected factorizable ribbon weak Hopf algebras
with Haar integral over an algebraically closed field [38].

(2) Local sectors of a finite p-index net of von Neumann algebras on R, if
the net is strongly additive and split [27].

(3) Representations of self-dual Cy-cofinite vertex algebras with an addi-
tional finiteness condition on the homogeneous components and which
have semisimple representation categories [22].

Despite this list and the rather different fields in which modular tensor
categories arise, it is fair to say that modular tensor categories are rare
mathematical objects. Arguably, the simplest incarnation of the first alge-
braic structure in the list is the Drinfel’d double D(G) of a finite group G.
Bantay [2] has suggested a more general source for modular tensor cate-
gories: a pair, consisting of a finite group H and a normal subgroup G < H.
(In fact, Bantay has suggested general finite crossed modules, but for this
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paper, only the case of a normal subgroup is relevant.) In this situation,
Bantay constructs a ribbon category which is, in a natural way, a represen-
tation category of a ribbon Hopf algebra B(G < H). Unfortunately, it turns
out that, for a proper subgroup inclusion, the category B(G < H)-mod is
only premodular and not modular.

Still, the category B(G < H)-mod is modularizable in the sense of
Bruguieres [8], and the next candidate for new modular tensor categories
is the modularization of B(G < H)-mod. However, it has been shown [37]
that this modularization is equivalent to the representation category of the
Drinfel’d double D(G).

The modularization procedure of Bruguieres is based on the observation
that the violation of modularity of a modularizable tensor category C is cap-
tured in terms of a canonical Tannakian subcategory of C. For the category
B(G < H)-mod, this subcategory can be realized as the representation cate-
gory of the the quotient group J := H/G [37]. The modularization functor

B(G < H)-mod — D(G)-mod

is induction along the commutative Frobenius algebra given by the regular
representation of J. This has the important consequence that the modular-
ized category D(G) is endowed with a J-action.

Experience with orbifold constructions, see [26,43] for a categorical for-
mulation, raises the question of whether the category D(G)-mod with this
J-action can be seen in a natural way as the neutral sector of a J-modular
tensor category.

We thus want to complete the following square of tensor categories:

J J
(Y )
D(G)-mod—— 777 (1.1)
modularization ,H/ orbifold H orbifold

B(G < H)-mod—— 777

Here vertical arrows pointing upwards stand for induction functors along
the commutative algebra given by the regular representation of J, while
downwards pointing arrows indicate orbifoldization. In the upper right cor-
ner, we wish to place a J-modular category, and in the lower right corner
its J-orbifold which, on general grounds [26], has to be a modular tensor
category. Horizontal arrows indicate the inclusion of neutral sectors.
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In general, such a completion need not exist. Even if it exists, there
might be inequivalent choices of J-modular tensor categories of which a
given modular tensor category with J-action is the neutral sector [15].

1.2 Geometric motivation: equivariant extended topological
field theory (TFT)

TFT is a mathematical structure that has been inspired by physical theories
[46] and which has developed into an important tool in low-dimensional
topology. Recently, these theories have received increased attention due to
the advent of extended topological field theories [31,42]. The present paper
focuses on three-dimensional (3D) TFT.

Dijkgraaf—~Witten theories provide a class of extended topological field
theories. They can be seen as discrete variants of Chern—Simons theories,
which provide invariants of three-manifolds and play an important role in
knot theory [46]. Dijkgraaf-~Witten theories have the advantage of being par-
ticularly tractable and admitting a very conceptual geometric construction.

A Dijkgraaf—~Witten theory is based on a finite group G; in this case
the ‘field configurations’ on a manifold M are given by G-bundles over M,
denoted by Ag(M). Furthermore, one has to choose a suitable action func-
tional S : Ag(M) — C (which we choose here in fact to be trivial) on field
configurations; this allows us to make the structure suggested by formal
path integration rigorous and to obtain a topological field theory. A concep-
tually very clear way to carry this construction out rigorously is described
in [17,36]; see Section 2 of this paper for a review.

Let us now assume that as a further input datum we have another finite
group J which acts on G. In this situation, we get an action of J on the
Dijkgraaf~Witten theory based on G. But it turns out that this topological
field theory together with the J-action does not fully reflect the equivariance
of the situation: it has been an important insight that the right notion is
the one of equivariant topological field theories, which have been another
point of recent interest [26,43]. Roughly speaking, equivariant topological
field theories require that all geometric objects (i.e., manifolds of different
dimensions) have to be decorated by a J-cover (see Definitions 3.11 and 3.13
for details). Equivariant field theories also provide a conceptual setting for
the orbifold construction, one of the standard tools for model building in
conformal field theory and string theory.

Given the action of a finite group J on a finite group G, these consider-
ations lead to the question of whether Dijkgraaf-~Witten theory based on G
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can be enlarged to a J-equivariant topological field theory. Let us pose this
question more in detail:

e What exactly is the right notion of an action of J on G that leads
to interesting theories? To keep equivariant Dijkgraaf-Witten theory
as explicit as the non-equivariant theory, one needs notions to keep
control of this action as explicitly as possible.

e Ordinary Dijkgraaf-Witten theory is mainly determined by the choice
of field configurations Ag(M) to be G-bundles. As mentioned before,
for J-equivariant theories, we should replace manifolds by manifolds
with J-covers. We thus need a geometric notion of a G-bundle that
is “twisted” by this J-cover in order to develop the theory parallel to
the non-equivariant one.

Based on an answer to these two points, we wish to construct equivariant
Dijkgraaf-~Witten theory as explicitly as possible.

1.3 Summary of the results

This paper solves both the algebraic and the geometric problem we have just
described. In fact, the two problems turn out to be closely related. We first
solve the problem of explicitly constructing equivariant Dijkgraaf-Witten
and then use our solution to construct the relevant modular categories that
complete the square (1.1).

Despite this strong mathematical interrelation, we have taken some effort
to write the paper in such a way that it is accessible to readers sharing only
a geometric or algebraic interest. The geometrically minded reader might
wish to restrict his attention to Sections 2 and 3, and only take notice of the
result about J-modularity stated in Theorem 4.34. An algebraically oriented
reader, on the other hand, might simply accept the categories described in
Proposition 3.22 together with the structure described in Propositions 3.23,
3.24 and 3.26 and then directly delve into Section 4.

For the benefit of all readers, we present here an outline of all our findings.
In Section 2, we review the pertinent aspects of Dijkgraaf—~Witten theory and
in particular the specific construction given in [36]. Section 3 is devoted to
the equivariant case: we observe that the correct notion of J-action on GG
is what we call a weak action of the group J on the group G; this notion
is introduced in Definition 3.1. Based on this notion, we can very explicitly
construct for every J-cover P — M a category Ag(P — M) of P-twisted
G-bundles. For the definition and elementary properties of twisted bundles,
we refer to Section 3.2 and for a local description to Appendix A.1. We
are then ready to construct equivariant Dijkgraaf Witten theory along the
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lines of the construction described in [36]. This is carried out in Sections 3.3
and 3.4. We obtain a construction of equivariant Dijkgraaf—~Witten theory
that is so explicit that we can read off the category C”(G) it assigns to the
circle S'. The equivariant topological field theory induces additional struc-
ture on this category, which can also be computed by geometric methods
due to the explicit control of the theory, and part of which we compute in
Section 3.5. This finishes the geometric part of our work. It remains to show
that the category C’(G) is indeed J-modular.

To establish the J-modularity of the category C’(G), we have to resort
to algebraic tools. Our discussion is based on the Appendix 6 of [43] by
Virélizier. At the same time, we explain the solution of the algebraic prob-
lems described in Section 1.1. The Hopf algebraic notions we encounter in
Section 4, in particular Hopf algebras with a weak group action and their
orbifold Hopf algebras might be of independent algebraic interest.

In Section 4, we introduce the notion of a J-equivariant ribbon Hopf alge-
bra. It turns out that it is natural to relax some strictness requirements on
the J-action on such a Hopf algebra. Given a weak action of a finite group
J on a finite group G, we describe in Proposition 4.23 a specific ribbon
Hopf algebra which we call the equivariant Drinfel’d double D7(G). This
ribbon Hopf algebra is designed in such a way that its representation cate-
gory is equivalent to the geometric category C”(G) constructed in Section 3,
compare Proposition 4.24.

The J-modularity of C’(G) is established via the modularity of its orbifold
category. The corresponding notion of an orbifold algebra is introduced in
Section 4.4. In the case of the equivariant Drinfel’d double D7(G), this
orbifold algebra is shown to be isomorphic, as a ribbon Hopf algebra, to a
Drinfel’d double. This implies modularity of the orbifold theory and, by a
result of [26], J-modularity of the category C”(G); cf. Theorem 4.34.

In the course of our construction, we develop several notions of indepen-
dent interest. In fact, our paper might be seen as a study of the geometry of
chiral backgrounds. It allows for various generalizations, some of which are
briefly sketched in the conclusions. These generalizations include in partic-
ular twists by 3-cocycles in group cohomology and, possibly, even the case
of non-semi simple chiral backgrounds.

2 Dijkgraaf-Witten theory and Drinfel’d double

This section contains a short review of Dijkgraaf~Witten theory as an
extended 3D topological field theory, covering the contributions of many
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authors, including in particular the work of Dijkgraaf~Witten [14], of Freed—
Quinn [17] and of Morton [36]. We explain how these extended 3D TFTs give
rise to modular tensor categories. These specific modular tensor categories
are the representation categories of a well-known class of quantum groups,
the Drinfel’d doubles of finite groups.

While this section does not contain original material, we present the ideas
in such a way that equivariant generalizations of the theories can be con-
veniently discussed. In this section, we also introduce some categories and
functors that we need for later sections.

2.1 DMotivation for Dijkgraaf-Witten theory

We start with a brief motivation for Dijkgraaf~Witten theory from physical
principles. A reader already familiar with Dijkgraaf~Witten theory might
wish to take at least notice of the Definition 2.2 and of Proposition 2.3.

It is an old, yet successful idea to extract invariants of manifolds from
quantum field theories, in particular from quantum field theories for which
the fields are G-bundles with connection, where G is some group. In this
paper we mostly consider the case of a finite group and only occasionally
make reference to the case of a compact Lie group.

Let M be a compact oriented manifold of dimension 1, 2 or 3, possibly
with boundary. As the ‘space’ of field configurations, we choose G bundles
with connection,

In this way, we really assign to a manifold a groupoid, rather than an
actual space. The morphisms of the category take gauge transformations
into account. We will nevertheless keep on calling it ‘space’ since the cor-
rect framework to handle Ag(M) is as a stack on the category of smooth
manifolds.

Moreover, another piece of data specifying the model is a function defined
on manifolds of a specific dimension,

S:Ag(M) —C

called the action. In the simplest case, when G is a finite group, a field
configuration is given by a G-bundle, since all bundles are canonically flat
and no connection data are involved. Then, the simplest action is given by
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S[P] := 0 for all P. In the case of a compact, simple, simply connected Lie
group G, consider a 3-manifold M. In this situation, each G-bundle P over
M is globally of the form P = G x M, because m1(G) = m2(G) = 0. Hence,
a field configuration is given by a connection on the trivial bundle, which
is a 1-form A € Q'(M, g) with values in the Lie algebra of G. An example
of an action yielding a topological field theory that can be defined in this
situation is the Chern—Simons action

S[4] = /M<A A dAY — é(A/\ AN A,

where (-, -) is the basic invariant inner product on the Lie algebra g.

The heuristic idea is then to introduce an invariant Z (M) for a 3-manifold
M by integration over all field configurations:

Z(M) — L(/ d¢e15[¢} ”
Ag (M)

Warning 2.1. In general, this path integral has only a heuristic meaning.
In the case of a finite group, however, one can choose a counting measure do
and thereby reduce the integral to a well-defined finite sum. The definition
of Dijkgraaf-Witten theory [14] is based on this idea.

Instead of giving a well-defined meaning to the invariant Z(M) as a path-
integral, we exhibit some formal properties these invariants are expected to
satisfy. To this end, it is crucial to allow for manifolds that are not closed,
as well. This allows us to cut a three-manifold into several simpler three-
manifolds with boundaries so that the computation of the invariant can be
reduced to the computation of the invariants of simpler pieces.

Hence, we consider a three-manifold M with a 2D boundary dM. We
fix boundary values ¢1 € Ag(0M) and consider the space Ag(M,¢1) of
all fields ¢ on M that restrict to the given boundary values ¢;. We then
introduce, again at a heuristic level, the quantity

Z(M)g, = / dg S0l (2.1)
Ac(M,¢1)

The assignment ¢ — Z(M )4, could be called a ‘wave function’ on the space
Ag(OM) of boundary values of fields. These ‘wave functions’ form a vector
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space Hans, the state space
Hon = “L*(Ag(0M),C)”

that we assign to the boundary OM. The transition to wave functions
amounts to a linearization. The notation L? should be taken with a grain
of salt and should indicate the choice of an appropriate vector space for the
category Ag(9M); it should not suggest the existence of any distinguished
measure on the category.

In the case of Dijkgraaf-Witten theory based on a finite group G, the
space of states has a basis consisting of d-functions on the set of isomorphism
classes of field configurations on the boundary 0M:

Hom = C(dy, | ¢1 € IsoAc(OM)).

In this way, we associate finite-dimensional vector spaces Hy to compact
oriented 2-manifolds . The heuristic path integral in (2.1) suggests to
associate to a 3-manifold M with boundary M an element

Z(M) € Howm,

or, equivalently, a linear map C — Hyyy.

A natural generalization of this situation are cobordisms M : ¥ — Y/,
where ¥ and Y/ are compact oriented two-manifolds. A cobordism is a
compact oriented three-manifold M with boundary OM = ¥ 1UY where &
denotes X, with the opposite orientation. To a cobordism, we wish to asso-
ciate a linear map

Z(M) : Hs, — Hs

by giving its matrix elements in terms of the path integral

Z(M)fbo,fbl = “/ do eis[d)]”
Ac(M,p0,¢1)

with fixed boundary values ¢ € Ag(X) and ¢1 € Ag(X'). Here Ag(M,
@0, ¢1) is the space of field configurations on M that restrict to the field
configuration ¢g on the ingoing boundary ¥ and to the field configuration
¢1 on the outgoing boundary Y’. One can now show that the linear maps
Z(M) are compatible with gluing of cobordisms along boundaries. (If the
group G is not finite, additional subtleties arise; e.g., Z(M)g, 4, has to be
interpreted as an integral kernel.)
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Atiyah [1] has given a definition of a topological field theory that formal-
izes these properties: it describes a topological field theory as a symmetric
monoidal functor from a geometric tensor category to an algebraic category.
To make this definition explicit, let €ob(2,3) be the category which has 2D
compact oriented smooth manifolds as objects. Its morphisms M : ¥ — Y/
are given by (orientation preserving) diffeomorphism classes of 3D, compact
oriented cobordism from ¥ to ¥’ which we write as

Y~ MY

Composition of morphisms is given by gluing cobordisms together along
the boundary. The disjoint union of 2D manifolds and cobordisms equips
this category with the structure of a symmetric monoidal category. For
the algebraic category, we choose the symmetric tensor category Vectg of
finite-dimensional vector spaces over an algebraically closed field K of char-
acteristic zero.

Definition 2.2 (Atiyah). A 8D TFT is a symmetric monoidal functor

Z : €ob(2,3) — Vectk.

Let us set up such a functor for Dijkgraaf~Witten theory, i.e., fix a finite
group G and choose the trivial action S : Ag(M) — C, i.e., S[P] =0 for all
G-bundles P on M. Then the path integrals reduce to finite sums over 1
hence simply count the number of elements in the category Aqg. Since we are
counting objects in a category, the stabilizers have to be taken appropriately
into account, for details see e.g., [34, Section 4]. This is achieved by the
groupoid cardinality (which is sometimes also called the Euler-characteristic
of the groupoid I')

1
e Y L
Aut
A detailed discussion of groupoid cardinality can be found in [5,30].

We summarize the discussion:

Proposition 2.3 ( [14,17]). Given a finite group G, the following assign-
ment Zq defines a 3D TFT: to a closed, oriented 2-manifold X3, we assign
the vector space freely generated by the isomorphism classes of G-bundles
on X,

Y — Hy:=K(p|P € IsoAq(X)).



300

JENNIFER MAIER ET AL.

To a 3D cobordism M, we associate the linear map

with

ZG(Zf—>M<—>Z’): Hs, — Hsy

matriz elements given by the groupoid cardinality of the categories

AG(Ma P07P1)-'

ZG(M)P07P1 = ‘AG(Ma POaPI)‘-

Remark 2.4. 1) In the original paper [14], a generalization of the triv-

ial action S[P] =0, induced by an element 7 in the group cohomol-
ogy ng(G,U(l)) with values in U(1), has been studied. We post-
pone the treatment of this generalization to a separate paper: in the
present paper, the term Dijkgraaf-Witten theory refers to the 3D TFT
of Proposition 2.3 or its extended version.

In the case of a compact, simple, simply-connected Lie group G, a
definition of a 3D TFT by a path integral is not available. Instead,
the combinatorial definition of Reshetikin—Turaev [39] can be used to
set up a 3D TF'T, which has the properties expected for Chern—Simons
theory.

The vector spaces Hy, can be described rather explicitly. Since every
compact, closed, oriented 2-manifold is given by a disjoint union of
surfaces 3, of genus g, it suffices to compute the dimension of Hy, .
This can be done using the well-known description of moduli spaces
of flat G-bundles in terms of homomorphisms from the fundamental
group m1(X4) to the group G, modulo conjugation,

IsoAq(Xy) = Hom(m (Xy), G)/G,

which can be combined with the usual description of the fundamental
group 71(X,) in terms of generators and relations. In this way, one
finds that the space is 1D for surfaces of genus 0. In the case of surfaces
of genus 1, it is generated by pairs of commuting group elements,
modulo simultaneous conjugation.

Following the same line of argument, one can show that for a closed
3-manifold M, one has

| Ag(M)| = [Hom(m (M), G)| / |G|

This expresses the three-manifold invariants in terms of the fundamen-
tal group of M.
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2.2 Dijkgraaf-Witten theory as an extended TFT

Up to this point, we have considered a version of Dijkgraaf-Witten theory,
which assigns invariants to closed three-manifolds Z (M) and vector spaces to
2D manifolds ¥. Iterating the argument that has lead us to consider three-
manifolds with boundaries, we might wish to cut the two-manifolds into
smaller pieces as well, and thereby introduce two-manifolds with boundaries
into the picture.

Hence, we drop the requirement on the two-manifold 3 to be closed and
allow > to be a compact, oriented two-manifold with 1D boundary 0.
Given a field configuration ¢ € Ag(9%) on the boundary of the surface
Y, we consider the space of all field configurations Ag (3, ¢1) on X that
restrict to the given field configuration ¢; on the boundary 0. Again, we
linearize the situation and consider for each field configuration ¢1 on the 1D
boundary 0% the vector space freely generated by the isomorphism classes
of field configurations on 3,

H27¢1 = “L2 (AG(E, gbl))” = (C<5¢ ‘ qb S ISOA0(2,¢1)>.

The object we associate to the 1D boundary 0% of a two-manifold ¥ is thus
a map ¢1 — Hx 4, of field configurations to vector spaces, i.e., a complex
vector bundle over the space of all fields on the boundary. In the case of a
finite group G, we prefer to see these vector bundles as objects of the functor
category from the essentially small category Ag(9%) to the category Vectc
of finite-dimensional complex vector spaces, i.e., as an element of

Vect(Ag(9)) = [Aq(9%), Vectc].

Thus the extended version of the theory assigns the category Z(S) = [Aa(S),
Vectc] to a 1D, compact oriented manifold S. These categories possess cer-
tain additional properties, which can be summarized by saying that they
are 2-vector spaces in the sense of [28]:

Definition 2.5. 1) A 2-vector space (over a field K) is a K-linear,
abelian, finitely semi-simple category. Here finitely semi-simple means
that the category has finitely many isomorphism classes of simple
objects and each object is a finite direct sum of simple objects.

2) Morphisms between 2-vector spaces are K-linear functors and
2-morphisms are natural transformations. We denote the 2-category
of 2-vector spaces by 2Vectg

3) The Deligne tensor product X endows 2Vectg with the structure of
a symmetric monoidal 2-category.
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For the Deligne tensor product, we refer to [11, Section 5] or [6, Definition
1.1.15]. The definition and the properties of symmetric monoidal bicate-
gories (resp. 2-categories) can be found in [42, Chapter 3].

In the spirit of Definition 2.2, we formalize the properties of the extended
theory Z by describing it as a functor from a cobordism 2-category to the
algebraic category 2Vectk. It remains to state the formal definition of the
relevant geometric category. Here, we ought to be a little bit more care-
ful, since we expect a 2-category and hence can not identify diffeomorphic
two-manifolds. For precise statements on how to address the difficulties in
gluing smooth manifolds with corners, we refer to [35, 4.3]; here, we restrict
ourselves to the following short definition:

Definition 2.6. €ob(1, 2, 3) is the following symmetric monoidal bicategory:

Objects are compact, closed, oriented one-manifolds S.

1-Morphisms are 2D, compact, oriented collared cobordisms S x I —
Y 8 xI.

2-Morphisms are generated by diffeomorphisms of cobordisms fixing
the collar and 3D collared, oriented cobordisms with corners M, up to
diffeomorphisms preserving the orientation and boundary.

e Composition is by gluing along collars.

e The monoidal structure is given by disjoint union with the empty set
() as the monoidal unit.

Remark 2.7. The 1-morphisms are defined as collared surfaces, since in
the case of extended cobordism categories, we consider surfaces rather than
diffeomorphism classes of surfaces. A choice of collar is always possible, but
not unique. The choice of collars ensures that the glued surface has a well-
defined smooth structure. Different choices for the collars yield equivalent
1-morphisms in €ob(1,2,3).

Obviously, extended cobordism categories can be defined in dimensions dif-
ferent from three as well. We are now ready to give the definition of an
extended TFT, which goes essentially back to Lawrence [29]:

Definition 2.8. An extended 3D TFT is a weak symmetric monoidal
2-functor

7 : €ob(1,2,3) — 2Vect.

We pause to explain in which sense extended TFTs extend the TFTs defined
in Definition 2.2. To this end, we note that the monoidal 2-functor Z has to
send the monoidal unit in €ob(1,2,3) to the monoidal unit in 2Vectg. The
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monoidal unit in €ob(1,2,3) is the empty set (), and the unit in 2Vecty is
the category Vectg. The functor Z restricts to a functor Z|y from the endo-
morphisms of () in €ob(1,2,3) to the endomorphisms of Vectg in 2Vectg. It
follows directly from the definition that Endgop1,2,3) (0) = €ob(2,3). Using
the fact that the morphisms in 2Vectg are additive (which follows from
C-linearity of functors in the definition of 2-vector spaces), it is also easy
to see that the equivalence of categories Endavecty (VectK) = Vectk holds.
Hence we have deduced:

Lemma 2.9. Let Z be an extended 3D TFT. Then Z|y is a 3D TFT in the
sense of Definition 2.2.

At this point, the question arises whether a given (non-extended) 3d TFT
can be extended. In general, there is no reason for this to be true. For
Dijkgraaf—~Witten theory, however, such an extension can be constructed
based on ideas which we described at the beginning of this section. A very
conceptual presentation of this this construction based on important ideas
of [17,19] can be found in [36]. Before we describe this construction in more
detail in Section 2.3, we first state the result:

Proposition 2.10 ([36]). Given a finite group G, there exists an extended
3D TFT Zg which assigns the categories

[Ac(S), Vectk|

to 1D, closed oriented manifolds S and whose restriction Zg|y is (isomorphic
to) the Dijkgraaf-Witten TFT described in Proposition 2.3.

Remark 2.11. One can iterate the procedure of extension and introduce
the notion of a fully extended TFT, which also assigns quantities to points
rather than just 1-manifolds. It can be shown that Dijkgraaf-Witten theory
can be turned into a fully extended TFT, see [16]. The full extension will
not be needed in the present article.

2.3 Construction via 2-linearization

In this subsection, we describe in detail the construction of the extended
3d TFT of Proposition 2.10. An impatient reader may skip this subsection
and should still be able to understand most of the paper. He might, how-
ever, wish to take notice of the technique of 2-linearization in Proposition
2.14, which is also an essential ingredient in our construction of equivariant
Dijkgraaf~Witten theory in sequel of this paper.
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As emphasized in particular by Morton [36], the construction of the
extended TFT is naturally split into two steps, which have already been
implicitly present in preceding sections. The first step is to assign to man-
ifolds and cobordisms the configuration spaces Ag of G bundles. We now
restrict ourselves to the case when G is a finite group. The following fact is
standard:

e The assignment M +— Ag(M) := Bung is a contravariant 2-functor
from the category of manifolds to the 2-category of groupoids. Smooth
maps between manifolds are mapped to the corresponding pullback
functors on categories of bundles.

A few comments are in order: for a connected manifold M, the category
Ag(M) can be replaced by the equivalent category given by the action
groupoid Hom(m (M), G)//G where G acts by conjugation. In particular,
the category Ag(M) is essentially finite, if M is compact. It should be
appreciated that at this stage no restriction is imposed on the dimension of
the manifold M.

The functor Ag(—) can be evaluated on a 2D cobordism S < 3 « S’ or
a 3D cobordism ¥ — M « ¥'. Tt then yields diagrams of the form

Ac(S) — Ag(Z) — Ag(9),
Ag(B) «— Ag(M) — Ag(¥).

Such diagrams are called spans. They are the morphisms of a symmetric
monoidal bicategory Gpan of spans of groupoids as follows (see e.g., [12,35]):

Objects are (essentially finite) groupoids.

Morphisms are spans of essentially finite groupoids.

2-Morphisms are isomorphism classes of spans of span-maps.
Composition is given by forming weak fibre products.

The monoidal structure is given by the cartesian product X of
groupoids.

Proposition 2.12 ( [36]). Ag induces a symmetric monoidal 2-functor
A : €ob(1,2,3) — Span.

This functor assigns to a 1D manifold S the groupoid Ag(S), to a 2D
cobordism S — ¥« S the span Ag(S) — Aq(X) — Ag(S’) and to a
8-cobordism with corners a span of span-maps.
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Proof. It only remains to be shown that composition of morphisms and the
monoidal structure is respected. The first assertion is shown in [36, Theorem
2] and the second assertion follows immediately from the fact that bundles
over disjoint unions are given by pairs of bundles over the components, i.e.,
Ag(MI_IM/)ZAg(M) XAg(M/). [l

The second step in the construction of extended Dijkgraaf~Witten theory
is the 2-linearization of [34]. As we have explained in Section 2.1, the idea
is to associate to a groupoid I its category of vector bundles Vectg (T"). If T’
is essentially finite, the category of vector bundles is conveniently defined as
the functor category [I‘, VectK]. If K is algebraically closed of characteristic
zero, this category is a 2-vector space, see [34, Lemma 4.1.1].

e The assignment I'+— Vectg (F) = [F,VectK} is a contravariant
2-functor from the bicategory of (essentially finite) groupoids to the
2-category of 2-vector spaces. Functors between groupoids are sent to
pullback functors.

We next need to explain what 2-linearization assigns to spans of groupoids.
To this end, we use the following lemma due to [34, 4.2.1]:

Lemma 2.13. Let f:T' — 1T’ be a functor between essentially finite
groupoids. Then the pullback functor f* :Vect(F’) HVect(F) admits a
2-sided adjoint f, : Vect (F) — Vect (F’), called the pushforward.

Two-sided adjoints are also called ‘ambidextrous’ adjoint, see [3, ch. 5] for
a discussion. We use this pushforward to associate to a span

po P

Fr<=—A——1"
of (essentially finite) groupoids the ‘pull-push’-functor
(p1)«o (po)*:  Vectg (I') — Vectg ().

A similar construction [34] associates to spans of span-morphisms a natural
transformation. Altogether we have:

Proposition 2.14 ( [34]). The functor T+ Vectg(T') can be extended to a
symmetric monoidal 2-functor on the category of spans of groupoids

%( : Gpan — 2Vectk.

This 2-functor is called 2-linearization.
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Proof. The proof that Vg is a 2-functor is in [34]. The fact that Vg is
monoidal follows from the fact that Vectk (F x T ) =~ Vectg (I‘) X Vectrg (F’ )
for a product I' x I of essentially finite groupoids. O

Arguments similar to the ones in [12, Proposition 1.10] which are based
on the universal property of the span category can be used to show that
such an extension is essentially unique.

We are now in a position to give the functor Zg described in Proposi-
tion 2.10 which is Dijkgraaf-Witten theory as an extended 3d TFT as the
composition of functors

Z¢ = Vg o Ag : €ob(1,2,3) —> 2Vectx.

It follows from Propositions 2.12 and 2.14 that Zg is an extended 3d TFT
in the sense of Definition 2.8. For the proof of Proposition 2.10, it remains
to be shown that Zg|y is the Dijkgraaf~Witten 3D TFT from Proposition
2.3; this follows from a calculation which can be found in [36, Section 5.2].

2.4 Evaluation on the circle

The goal of this subsection is a more detailed discussion of extended
Dijkgraaf-Witten theory Zg as described in Proposition 2.10. Our focus
is on the object assigned to the 1-manifold S' given by the circle with its
standard orientation. We start our discussion by evaluating an arbitrary
extended 3D TFT Z as in Definition 2.8 on certain manifolds of different
dimensions:

1) To the circle S, the extended TFT assigns a K-linear, abelian finitely
semisimple category Cz := Z(S!).

2) To the 2D sphere with three boundary components, two incoming and
one outgoing, also known as the pair of pants,

the TFT associates a functor
®: CzXCz — Cz,

which turns out to provide a tensor product on the category Cz.
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3) The figure

shows a 2-morphism between two three-punctured spheres, drawn as
the upper and lower lid. Both lids are 1-morphisms from two copies
of the circle to the circle. The outgoing circle is drawn as the bound-
ary of the big disc. To this cobordism, the TFT associates a natural
transformation

® = PP

which turns out to be a braiding.

Moreover, the TFT provides coherence cells, in particular associators and
relations between the given structures. This endows the category Cz with
much additional structure. This structure can be summarized as follows:

Proposition 2.15. For Z an extended 3D TFT, the category Cz := Z(S!)
1s naturally endowed with the structure of a braided tensor category.

For details, we refer to [9,18-20]. This is not yet the complete structure
that can be extracted: from the braiding-picture above it is intuitively clear
that the braiding is not symmetric; in fact, the braiding is ‘maximally non-
symmetric’ in a precise sense that is explained in Definition 2.20. We discuss
this in the next section for the category obtained from the Dijkgraaf-Witten
extended TFT.

We now specialize to the case of extended Dijkgraaf~Witten TFT Zg.
We first determine the category C(G) := Cz; it is by definition

C(G) = [Aa(S"), Vectk].

It is a standard result in the theory of coverings that G-covers on S! are
described by group homomorphisms 71(S!) — G and their morphisms by
group elements acting by conjugation. Thus the category Ag(S') is equiv-
alent to the action groupoid G//G for the conjugation action. As a conse-
quence, we obtain the abelian category C(G) = [G//G, Vectk]. We spell out
this functor category explicitly:

Proposition 2.16. For the extended Dijkgraaf-Witten 3d TFT, the cate-
gory C(G) associated to the circle S' is given by the category of G-graded
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vector spaces V.= P
z,ye G

gec Vo together with a G-action on V' such that for all

acV;] (- Vzgw—l.

As a next step we determine the tensor product on C(G). Since the funda-
mental group of the pair of pants is the free group on two generators, the rele-
vant category of G-bundles is equivalent to the action groupoid (G x G)//G
where G acts by simultaneous conjugation on the two copies of G. The
2-linearization Vk on the span

(G//G) x(G/]G) = (G xG)//G—G//G.

is treated in detail in [36, Remark 5]; the result of this calculation yields the
following tensor product:

Proposition 2.17. The tensor product of V and W is given by the G-graded
vector space

VeWw),=v.ew
st=g

together with the G-action g.(v,w) = (gv, gw). The associators are the obvi-
ous ones induced by the tensor product in Vectk.

In the same vein, the braiding can be calculated:

Proposition 2.18. The braiding V QW — W @V s forve Vy and w €
W given by

VRW = gw Q.

2.5 Drinfel’d double and modularity

The braided tensor category C(G) we just computed from the last section
has a well-known description as the category of modules over a braided Hopf-
algebra D(G), the Drinfel’d double D(G) := D(K[G]) of the group algebra
K[G] of G, see e.g., [24, Chapter 9.4]. The Hopf-algebra D(G) is defined as
follows:

As a vector space, D(G) is the tensor product K(G) ® K[G] of the algebra
of functions on G and the group algebra of G, i.e., we have the canonical
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basis (0g ® h)grec. The algebra structure can be described as a smash
product [33], an analogue of the semi-direct product for groups: in the
canonical basis, we have

8, @ hh for g = hg'h™ 1,
(6@ h)(§g ©h') =14 ¢
0 else.
where the unit is given by the tensor product of the two units: > e dg @ 1.

The coalgebra structure of D(G) is given by the tensor product of the coal-
gebras K(G) and K[G], i.e., the coproduct reads

Aldg@h)= Y (6y @h)® (5 @ h)

g9'9"=g

and the counit is given by €(d; ® h) =1 and €(6; ® h) = 0 for g # 1 for all
h € G. It can easily be checked that this defines a bialgebra structure on
K(G) ® K[G] and that furthermore the linear map

S:(6g®h)— (Sp-1,-1, @R

is an antipode for this bialgebra so that D(G) is a Hopf algebra. Further-
more, the element

R:= ) (6,®1)® (6, ®g) € D(G)® D(G)
g,heG

is a universal R-matrix, which fulfils the defining identities of a braided
bialgebra and corresponds to the braiding in Proposition 2.18. At last, the
element

0:=> (6,297 € D(G)

geG

is a ribbon-element in D(G), which gives D(G) the structure of a ribbon
Hopf-algebra (as defined in [24, Definition 14.6.1]). Comparison with Propo-
sitions 2.17 and 2.18 shows

Proposition 2.19. The category C(G) is isomorphic, as a braided tensor
category, to the category D(G)-mod.

The category D(G)-mod is actually endowed with more structure than the
one of a braided monoidal category. Since D(G) is a ribbon Hopf-algebra, the
category of representations D(G)-mod has also dualities and a compatible
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twist, i.e., has the structure of a ribbon category (see [24, Proposition 16.6.2]
or [6, Definition 2.2.1] for the notion of a ribbon category). Moreover, the
category D(G)-mod is a 2-vector space over K and thus, in particular, finitely
semi-simple. We finally make explicit the non-degeneracy condition on the
braiding that was mentioned in the last subsection.

Definition 2.20. 1) Let K be an algebraically closed field of character-
istic zero. A premodular tensor category over K is a K-linear, abelian,
finitely semisimple category C which has the structure of a ribbon
category such that the tensor product is linear in each variable and
the tensor unit is absolutely simple, i.e., End(1) = K.

2) Denote by A¢ a set of representatives for the isomorphism classes of
simple objects. The braiding on C allows us to define the S-matrix
with entries in the field K

sxy :=tr(Ryx o Rxy),

where X,Y € A¢c. A premodular category is called modular, if the
S-matrix is invertible.

In the case of the Drinfel’d double, the S-matrix can be expressed explicitly
in terms of characters of finite groups [6, Section 3.2]. Using orthogonality
relations, one shows:

Proposition 2.21. The category C(G) = D(G)-mod is modular.

The notion of a modular tensor category first arose as a formalization of
the Moore—Seiberg data of a 2D rational conformal field theory. They are
the input for the Turaev-Reshetikhin construction of 3D topological field
theories.

3 Equivariant Dijkgraaf-Witten theory

We are now ready to turn to the construction of equivariant generalization of
the results of Section 2. We denote again by G a finite group. Equivariance
will be with respect to another finite group J that acts on G in a way we
will have to explain. As usual, ‘twisted sectors’ [44] have to be taken into
account for a consistent equivariant theory. A description of these twisted
sectors in terms of bundles twisted by J-covers is one important result of
this section.
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3.1

Weak actions and extensions

Our first task is to identify the appropriate definition of a J-action. The
first idea that comes to mind — a genuine action of the group J acting on G
by group automorphisms — turns out to need a modification. For reasons
that will become apparent in a moment, we only require an action up to
inner automorphism.

Definition 3.1. 1) A weak action of a group J on a group G consists of

a collection of group automorphisms p; : G — G, one automorphism
for each j € J, and a collection of group elements ¢; ; € G, one group
element for each pair of elements ¢, j € J. These data are required to
obey the relations:

piopj=Tnne ;0 pij pi(cik) - cijr = cij-cije  and  cip =1
J J J

for all 4,5,k € J. Here Inn, denotes the inner automorphism G —
G associated to an element g € G. We will also use the short hand
notation Jg := p;(g).

Two weak actions (pj,ci,j) and (p},cg’j) of a group J on a group G
are called isomorphic, if there is a collection of group elements h; € G,
one group element for each j € J, such that

p; = Innh]. o pj and C;j . hij = hl . pl(h]) * Cij.

Remark 3.2. 1) If all group elements ¢;; equal the neutral element,

2)

3)

¢ij = 1, the weak action reduces to a strict action of J on G by group
automorphisms.

A weak action induces a strict action of J on the group Out(G) =
Aut(G)/Inn(G) of outer automorphisms.

In more abstract terms, a weak action amounts to a (weak) 2-group
homomorphism J — AUT(G). Here AUT(G) denotes the automor-
phism 2-group of G. This automorphism 2-group can be described
as the monoidal category of endofunctors of the one-object-category
with morphisms G. The group J is considered as a discrete 2-group
with only identities as morphisms. For more details on 2-groups, we
refer to [7].

Weak actions are also known under the name Dedecker cocycles, due to
the work [10]. The correspondence between weak actions and extensions of
groups is also termed Schreier theory, with reference to [40]. Let us briefly
sketch this correspondence:
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o Let (pj,ci,j) be a weak action of J on G. On the set H := G x J, we
define a multiplication by

(g:9) - (¢',5) = (9 "(¢) - ciy , ij). (3.1)

One can check that this turns H into a group in such a way that the
sequence G — H — J consisting of the inclusion g — (g,1) and the
projection (g, j) — j is exact.

e Conversely, let G — H — J be an extension of groups. Choose a
set theoretic section s : J — H of m with s(1) = 1. Conjugation with
the group element s(j) € H leaves the normal subgroup G invariant.
We thus obtain for j € J the automorphism p;(g) := s(j) g s(j)~! of
G. Furthermore, the element ¢; ; := s(i)s(j)s(ij) ! is in the kernel of
7w and thus actually contained in the normal subgroup G. It is then
straightforward to check that (pj, Ci,j) defines a weak action of J on G.

e Two different set-theoretic sections s and s’ of the extension G — H —
J differ by a map J — G. This map defines an isomorphism of the
induced weak actions in the sense of Definition 3.1.2.

We have thus arrived at the

Proposition 3.3 (Dedecker, Schreier). There is a 1-1 correspondence
between isomorphism classes of weak actions of J on G and isomorphism
classes of group extensions G — H — J.

Remark 3.4. 1) One can easily turn this statement into an equivalence
of categories. Since we do not need such a statement in this paper, we
leave a precise formulation to the reader.

2) Under this correspondence, strict actions of J on G correspond to split
extensions. This can be easily seen as follows: given a split extension
G — H — J, one can choose the section J — H as a group homomor-
phism and thus obtains a strict action of J on G. Conversely for a
strict action of J on G it is easy to see that the group constructed in
(3.1) is a semidirect product and thus the sequence of groups splits.
To cover all extensions, we thus really need to consider weak actions.

3.2 Twisted bundles

It is a common lesson from field theory that in an equivariant situation,
one has to include “twisted sectors” to obtain a complete theory. Our next
task is to construct the parameters labelling twisted sectors for a given weak
action of a finite group J on G, with corresponding extension G — H — J



J-EQUIVARIANT DIJKGRAAF-WITTEN THEORY 313

of groups and chosen set-theoretic section J — H. We will adhere to a two-
step procedure as outlined after Proposition 2.14. To this end, we will first
construct for any smooth manifold a category of twisted bundles. Then, the
linearization functor can be applied to spans of such categories.

We start our discussion of twisted G-bundles with the most familiar case
of the circle, M = S!.

The isomorphism classes of G-bundles on S' are in bijection to connected
components of the free loop space LBG of the classifying space BG:

Is0(Ac(S")) = Hompo(mop (S', BG) = mo(LBG).

Given a (weak) action of J on G, one can introduce twisted loop spaces.
For any element j € J, we have a group automorphism j : G — G and thus
a homeomorphism j : BG — BG. The j-twisted loop space is then defined
to be

L'BG :={f:[0,1] = BG | f(0) =3 f(1)}.

Our goal is to introduce for every group element j € J a category Ag(S!, 5)
of j-twisted G-bundles on S' such that

Iso(Aq(S', §)) = mo(L7BG).

In the case of the circle S!, the twist parameter was a group element j € J. A
more geometric description uses a family of J-covers P; over S!, with j € J.
The cover P; is uniquely determined by its monodromy j for the base point
1 € S! and a fixed point in the fibre over 1. A concrete construction of the
cover P; is given by the quotient P; := [0,1] x J/ ~ where (0,4) ~ (1, ji) for
all i € J. In terms of these J-covers, we can write

LIBG = {f :P; — BG | fis J—equivariant}.
This description generalizes to an arbitrary smooth manifold M. The nat-

ural twist parameter in the general case is a J-cover P ERyYS

Suppose, we have a weak J-action on GG and construct the corresponding
extension G — H 5 J. The category of bundles we need are H-lifts of the
given J-cover:

Definition 3.5. Let J act weakly on G. Let P 7, M be a J-cover over M.
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e A P-twisted G-bundle over M is a pair (Q,y), consisting of an
H-bundle @ over M and a smooth map ¢ :Q — P over M that is
required to obey

o(q-h) =p(q) - m(h)

for all ¢ € Q and h € H. Put differently, a P % M-twisted G-bundle
is a lift of the J-cover P reduction along the group homomorphism
T: H— J.

e A morphism of P-twisted bundles (@, ) and (@', ') is a morphism
f:@Q — Q' of H-bundles such that ¢’ o f = ¢.

e We denote the category of P-twisted G-bundles by Ag (P — M ) For
M = S', we introduce the abbreviation Ag (Sl,j) = Ag (PJ — Sl) for
the standard covers of the circle.

Remark 3.6. There is an alternative point of view on a P-twisted bundle
(Q, ¢): the subgroup G C H acts on the total space @ in such a way that the
map ¢ : Q — P endows @Q with the structure of a G-bundle on P. Both the
structure group H of the bundle @) and the bundle P itself carry an action
of G; for twisted bundles, an equivariance condition on this action has to
be imposed. Unfortunately this equivariance property is relatively involved;
therefore, we have opted for the definition in the form given above.

A morphism f: P — P’ of J-covers over the same manifold induces a
functor fi : Ag(P — M) — Ag(P' — M) by f(Q,¢) = (Q, foy). Fur-
thermore, for a smooth map f: M — N, we can pull back the twist data
P — M and get a pullback functor of twisted G-bundles:

ffiAc(P— N) = Ag(f*P — M)

by f*(Q,¢) = (f*Q, f*¢). Before we discuss more sophisticated properties
of twisted bundles, we have to make sure that our definition is consistent
with ‘untwisted” bundles:

Lemma 3.7. Let the group J act weakly on the group G. For G-bundles
tuisted by the trivial J-cover M xJ — M, we have a canonical equivalence
of categories

Ac(MxJ — M) = Ag(M).

Proof. We have to show that for an element (Q,¢) € Ag(M xJ — M) the
H-bundle @ can be reduced to a G-bundle. Such a reduction is the same as
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a section of the associated fibre bundle 7,(Q) € Bunj(M) see e.g., [4, Satz
2.14]). Now ¢ : Q — M x J induces an isomorphism of J-covers Q x g J =
(M x J)xg J= M x J so that the bundle @ xg J is trivial as a J-cover
and in particular admits global sections.

Since morphisms of twisted bundles have to commute with these sections,
we obtain in that way a functor A (M xJ — M) — Ag(M). Its inverse is
given by extension of G-bundles on M to H-bundles on M. O

We also give a description of twisted bundles using standard covering theory;
for an alternative description using Cech-cohomology, we refer to Appendix
A.1. We start by recalling the following standard fact from covering theory,
see e.g., [21, 1.3] that has already been used to prove Proposition 2.16: for a
finite group J, the category of J-covers is equivalent to the action groupoid
Hom(7y (M), J)//J. (Note that this equivalence involves choices and is not
canonical.)

To give a similar description of twisted bundles, fix a J-cover P. Next,
we choose a basepoint m € M and a point p in the fibre P,, over m. These
data determine a unique group morphism w : 71 (M, m) — J representing P.

Proposition 3.8. Let J act weakly on G. Let M be a connected manifold
and P be a J-cover over M represented after the choices just indicated by
the group homomorphism w : m(M) — J. Then there is a (non-canonical)
equivalence of categories

Ac(P — M) = Hom” (m(M),H)//G
where we consider group homomorphisms
Hom" (m (M), H) :=={p:m(M) - H|rmop=w}

whose composition restricts to the group homomorphism w describing the
J-cover P. The group G acts on Hom" (7’['1(M), H) via pointwise conjugation
using the inclusion G — H.

Proof. Let m € M and p € P over m be the choices of base point in the
J-cover P — M that lead to the homomorphism w. Consider a (P — M)
twisted bundle Q — M. Since ¢ : Q — P is surjective, we can choose a base
point ¢ in the fibre of @) over m such that ¢(¢) = p. The group homomor-
phism 7 (M) — H describing the H-bundle @ is obtained by lifting closed
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paths in M starting in m to paths in @) starting in q. They are mapped under
 to lifts of the same path to P starting at p, and these lifts are just described
by the group homomorphism w : 71 (M) — J describing the cover P. If the
end point of the path in @ is gh for some h € H, then by the defining prop-
erty of ¢, the lifted path in P has endpoint ¢(¢h) = ¢(q)7(h) = pm(h). Thus
To U =w. O

Remark 3.9. For non-connected manifolds, a description as in Proposi-
tion 3.8 can be obtained for every component. Again the equivalence involves
choices of base points on M and in the fibres over the base points. This
could be fixed by working with pointed manifolds, but pointed manifolds
cause problems when we consider cobordisms. Alternatively, we could use
the fundamental groupoid instead of the fundamental group, see e.g., [32].

Example 3.10. We now calculate the categories of twisted bundles over
certain manifolds using Proposition 3.8.

1) For the circle S', w € Hom(m(S!), J) = Hom(Z, J) is determined by
an element j € J and the condition 7 o 4 = w requires p(1) € H to be
in the preimage H; := 7~ 1(j) of j. Thus, we have A;(S!,j) = H;//G.

2) For the 3-Sphere S3, all twists P and all G-bundles are trivial. Thus,
we have Ag(P — S3) =2 Aq(S?) = pt//G.

3.3 Equivariant Dijkgraaf-Witten theory

The key idea in the construction of equivariant Dijkgraaf—~Witten theory
is to take twisted bundles Ag(P — M) as the field configurations, taking
the place of G-bundles in Section 2. We cannot expect to get then invari-
ants of closed three-manifolds M, but rather invariants of three-manifolds
M together with a twist datum, i.e., a J-cover P over M. Analogous
statements apply to manifolds with boundary and cobordisms. Therefore
we need to introduce extended cobordism-categories as €ob(1,2,3) in Def-
inition 2.6, but endowed with the extra datum of a J-cover over each
manifold.

Definition 3.11. €ob”/(1,2,3) is the following symmetric monoidal
bicategory:

e Objects are compact, closed, oriented 1-manifolds S, together with a
J-cover Pg J, S.
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e 1-Morphisms are collared cobordisms
SxI—X—8xI

where X is a 2D, compact, oriented cobordism, together with a J-cover
Ps, — ¥ and isomorphisms

PE‘(SXI) = PS x I and PE‘(S/XI) - PS' x 1.

over the collars.
e 2-Morphisms are generated by

- orientation preserving diffeomorphisms ¢ : ¥ — ¥/ of cobordisms
fixing the collar together with an isomorphism ¢ : Py — Psy cover-
ing .

- 3D collared, oriented cobordisms with corners M with cover
Py — M together with covering isomorphisms over the collars (as
before) up to diffeomorphisms preserving the orientation and
boundary.

e Composition is by gluing cobordisms and covers along collars.
e The monoidal structure is given by disjoint union.

Remark 3.12. In analogy to Remark 2.7, we point out that the isomor-
phisms of covers are defined over the collars, rather than only over the the
boundaries. This endows the glued cover with a well-defined smooth struc-
ture.

Definition 3.13. An extended 3d J-TFT is a symmetric monoidal 2-functor

Z : €ob’(1,2,3) — 2Vectk.

Just for the sake of completeness, we will also give a definition of
non-extended J-TFT. Therefore define the symmetric monoidal category
¢ob”(2,3) to be the endomorphism category of the monoidal unit @ in
Cob(1,2,3). More concretely, this category has as objects closed, oriented
2-manifolds with J-cover and as morphisms J-cobordisms between them.

Definition 3.14. A (non-extended) 3D J-TFT is a symmetric monoidal
2-functor

Cob’(2,3) — Vectk.

Similarly as in the non-equivariant case (lemma 2.9), we get
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Lemma 3.15. Let Z be an extended 3d J-TFT. Then Zl|y is a (non-
extended) 3D J-TFT.

Now we can state the main result of this section:

Theorem 3.16. For a finite group G and a weak J-action on G, there is
an extended 3D J-TFT called Zg; which assigns the categories

Vectg (Ag(P — S)) = [Ag(P — 5), Vectk]

to 1D, closed oriented manifolds S with J-cover P — S.

We will give a proof of this theorem in the next sections. Having twisted
bundles at our disposal, the main ingredient will again be the 2-linearization
described in Section 2.3.

3.4 Construction via spans

As in the case of ordinary Dijkgraaf-Witten theory, cf. Section 2.3, equi-
variant Dijkgraaf-Witten Zg; theory is constructed as the composition of
the symmetric monoidal 2-functors

.,/42 : Qlob‘](l, 2,3) — Gpan and ]7]1; : Gpan — 2Vectg.

The second functor will be exactly the 2-linearization functor of Proposi-
tion 2.14. Hence we can limit our discussion to the construction of the first
functor Ag. As it will turn out, our definition of twisted bundles is set up
precisely in such a way that the construction of the corresponding functor
in Proposition 2.12 can be generalized.

Our starting point is the following observation:

e The assignment (P M ) — Ag (P M ) of twisted bundles to
a twist datum Py — M constitutes a contravariant 2-functor from
the category of manifolds with J-cover to the 2-category of groupoids.
Maps between manifolds with cover are mapped to the corresponding
pullback functors of bundles.

From this functor that is defined on manifolds of any dimension, we construct
a functor Ag on J-cobordisms with values in the 2-category Gpan of spans
of groupoids, where the category Gpan is defined in Section 2.3. To an
object in €ob’(1,2,3), i.e., to a J-cover Ps — M, we assign the category
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Ac(Ps — S) of J-covers. To a 1-morphism Ps < Ps «> P4 in €ob”(1,2,3),
we associate the span

Ac(Ps — S) «— Ag(Ps — %) — Ag(Ps — ') (3.2)
and to a 2-morphism of the type Py, — Pj; < Psy the span
Ac(Ps — %) «— Ag(Py — M) — Ag(Psr — X). (3.3)

We have to show that this defines a symmetric monoidal functor XE:
€ob‘](1, 2,3) — Gpan.

In particular, we have to show that the composition of morphisms is
respected.

Lemma 3.17. Let Ps — X and Psy — X' be two 1-morphisms in Cob”
(1,2,3) which can be composed at the object Ps — S to get the 1-morphism

Ps; 0 Psy := (Py Upgxr Por — S Ugxr ),

where I =[0,1] is the standard interval. (Recall that we are gluing over
collars.) Then the category Ag (PE o PZ/) is the weak pullback of Aq(Ps —
Y) and Ag(Psr — X') over Ag(Ps — S).

Proof. By definition the category
AG (PZ (@] PE/)

has as objects twisted G-bundles over the two-manifold ¥ gy ¥/ =: N.
The manifold N admits an open covering N = Uy U Uy with Uy = ¥\ S and
Uy =X\ S where the intersection is the cylinder UyNU; = S x (0,1). By
construction, the restrictions of the glued bundle Py — N to Uy and U; are
given by Py \ Ps and Psy \ Ps.

The natural inclusions Uy — ¥ and U; — Y/ induce equivalences

Ac(Ps — ) — Ag(Pnlu, — Uo)
Aq(Py — %) = Ag(Pn|u, — Uh)

Analogously, we have an equivalence
.AG(PN’UOQUI —UpN Ul) = Ag(Ps — S).

At this point, we have reduced the claim to an assertion about descent
of twisted bundles which we will prove in Corollary 3.20. This corollary
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implies that Ag(Py — N) is the weak pullback of Ag(Pn|y, — Up) and
Ac(Py|y, — Uy) over Ag (PN|UOQU1). Since weak pullbacks are invariant
under equivalence of groupoids, this shows the claim. O

We now turn to the promised results about descent of twisted bundles.
Let P — M be a J-cover over a manifold M and {U,} be an open covering
of M, where for the sake of generality we allow for arbitrary open coverings.
We want to show that twisted bundles can be glued together like ordinary
bundles; while the precise meaning of this statement is straightforward, we
briefly summarize the relevant definitions for the sake of completeness:

Definition 3.18. Let P — M be a J-cover over a manifold M and {U,}
be an open covering of M. The descent category Desc(U,, P) has

e Objects: families of P|y_-twisted bundles @, over U,, together with

isomorphisms of twisted bundles a5 : Qalv.nu;, AN Qplu.nu, satis-
fying the cocycle condition ¢.g 0 ¥y = Yary-

e Morphisms: families of morphisms f, : Qo — @', of twisted bundles
such that over Uyg we have ¢ 50 (fo)lv., = (f8)|u.s © Pap-

Proposition 3.19 (Descent for twisted bundles). Let P — M be a J-cover
over a manifold M and {Uy} be an open covering of M. Then the groupoid
Ac(P — M) is equivalent to the descent category Desc(U,, P).

Proof. Note that the corresponding statements are true for H-bundles and
for J-covers. Then the description in Definition 3.5 of a twisted bundle as an
H-bundle together with a morphism of the associated J-cover immediately
implies the claim. O

Corollary 3.20. For an open covering of M by two open sets Uy and
Ui the category Ag(P — M) is the weak pullback of Ac(Plu, — Uy) and
Ac(Ply, — Ur) over Ag(P|u,nu, — UoNUY).

In order to prove that the assignment (3.2) and (3.3) really promotes Ag

to a symmetric monoidal functor Ag : Cob‘](l, 2,3) — Gpan, it remains to
show that Ag preserves the monoidal structure.

Now a bundle over a disjoint union is given by a pair of bundles over
each component. Thus, for a disjoint union of J-manifolds P — M = (P, U
P2) — (Ml U MQ), we have Ag(P — M) = .AG(Pl — Ml) X .AG(PQ — MQ).
Note that the manifolds M, M7 and Ms can also be cobordisms. The iso-
morphism of categories is clearly associative and preserves the symmetric
structure. Together with Lemma 3.17, this proves the next proposition.
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Proposition 3.21. Ag induces a symmetric monoidal functor
.74; : €0bj(1,2,3) — Gpan

which assigns the spans (3.2) and (3.3) to 2D and 3D cobordisms with
J-cover.

3.5 Twisted sectors and fusion

We next proceed to evaluate the J-equivariant TFT Zé constructed in the
last section on the circle, as we did in Section 2.4 for the non-equivariant
TFT. We recall from Section 3.2 the fact that over the circle S' we have for
each j € J a standard cover P;. The associated category

C(G); = 2 (P — S*)

is called the j-twisted sector of the theory; the sector C(G); is called the
neutral sector. By Lemma 3.7, we have an equivalence Ag(P; — S!) =
Ac(Sh); hence we get an equivalence of categories C(G)1 = C(G), where C(G)
is the category arising in the non-equivariant Dijkgraaf-Witten model, we
discussed in Section 2.4. We have already computed the twisted sectors as
abelian categories in Example 3.10 and note the result for future reference:

Proposition 3.22. For the j-twisted sector of equivariant Dijkgraaf-Witten
theory, we have an equivalence of abelian categories

C(G); = [H;//G, Vectk],

where H;//G is the action groupoid given by the conjugation action of G
on H; :=71(j). More concretely, the category C(G); is equivalent to the
category of H;-graded vector spaces V = @heHj Vi, together with a G-action
on V such that

g.Vi, C ‘/ghgfl.

As a next step, we want to make explicit additional structure on the
categories C(G); coming from certain cobordisms. Therefore, consider the
pair of pants X(2,1):

>
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The fundamental group of ¥(2, 1) is the free group on two generators. Thus,
given a pair of group elements j, k € J, there is a J-cover Pfk?’l) — 3(2,1)
which restricts to the standard covers P; and P, on the two ingoing bound-
aries and to the standard cover Pj, on the outgoing boundary circle. (To
find a concrete construction, one should fix a parametrization of the pair of

pants ¥(2,1).) The cobordism Pfk(Q’I) is a morphism
PRED (P =8 U (P = 8!) — (P — 8! (3.4)

in the category QobJ(1,2,3). Applying the equivariant TFT-functor Zé
yields a functor

®jk . C(G); WC(G)r — C(G) k-

We describe this functor in terms of the equivalent categories of graded
vector spaces as a functor

H;//G-mod x Hy//G-mod — Hjj,//G-mod.

Proposition 3.23. For V = @heHj Vi, € Hj//G-mod and W =@ W), €
Hy,//G-mod the product V @, W € Hj,//G-mod is given by

(VerWh=EPView,
st=h

together with the action g.(v ® w) = g.v @ g.w.

Proof. As a first step we have to compute the span Ag( Ek@ 1)) associated

to the cobordism PH From the description of twisted bundles in Proposi-

tion 3.8 and the fact that the fundamental group of ¥(2,1) is the free group
on two generators, we derive the following equivalence of categories:

Ac(PR™D = $(2,1)) = (H; x Hy)//G.

Here we have H; x Hy, = {(h,h') € H x H | n(h) = j, w(h') = k}, on which
G acts by simultaneous conjugation. This leads to the span of
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action groupoids
Hj//G x Hy/|G «— (Hj x Hy)//G — Hjy,/ /G

where the left map is given be projection to the factors and the right hand
map by multiplication. Applying the 2-linearization functor Vg from Propo-
sition 2.14 amounts to computing the corresponding pull-push functor. This
yields the result. O

Next, we consider the two-manifold ¥(1,1) given by the cylinder over S,
ie,X(1,1) =S x I

There exists a cover Pfx(l’l) — X(1,1) for j,x € J that restricts to P; on the
ingoing circle and to P,j;,-1 on the outgoing circle. The simplest way to
construct such a cover is to consider the cylinder P ;-1 X I — St x I and

to use the identification of szél’l) over (a collaring neighbourhood of) the
outgoing circle by the identity and over the ingoing circle the identification
by the morphism Ps1)lsix1 = Pj — Py-1j, given by conjugation with x.

In this way, we obtain a cobordism that is a 1-morphism

LD

j7m

:(P; —S') — (Pyjp—1 — sh (3.5)

in the category €ob”(1,2,3) and hence induces a functor
b : C(G)j — C(G) gz
We compute the functor on the equivalent action groupoids explicitly:

Proposition 3.24. The image under ¢, of an object V=P Vy € H;//
G-mod is the graded vector space with homogeneous component

¢z(v)h = ‘/s(xfl)hs(x—l)*l

for h € Hyj,—1 and with G-action on v € Vj, given by s(z~Ygs (x_l)_l ‘.
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Proof. As before we compute the span ZE(PJE;“) ). Using explicitly the

equivalence given in the proof of Proposition 3.8, we obtain the span of
action groupoids

H]//G — ijzfl//G - ijxfl//G
where the right-hand map is the identity and the left-hand map is given by
(h,g) = (s(a™Hhs(z™H) " s(@gs(@™h) ™).

Computing the corresponding pull-push functor, which here in fact only
consists of a pullback, shows the claim. O

Finally we come to the structure corresponding to the braiding of Sec-
tion 2.4. Note that the cobordism that interchanges the two ingoing circles
of the pair of pants ¥(2,1), as in the following picture,

can also be realized as the diffeomorphism F': ¥(2,1) — 3(2,1) of the pair
of pants that rotates the ingoing circles counterclockwise around each other
and leaves the outgoing circle fixed. In this picture, we think of the cobor-
dism as the cylinder ¥(2,1) x I where the identification with 3(2,1) on the
top is the identity and on the bottom is given by the diffeomorphism F.
More explicitly, denote by 7: S' x St — S! x S! the map that interchanges
the two copies. We then consider the following diagram in the 2-category

Cob(1,2,3):
/ Y

St x St F st

N /

1 X Sl E(Qal)
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where ¢ :S! x S! — ¥(2,1) is the standard inclusion of the two ingoing
boundary circles into the trinion (2, 1).

Our next task is to lift this situation to manifolds with J-covers. On the
ingoing trinion, we take the J cover Pﬁ;@’l). We denote the symmetry iso-

morphism in QObJ(l, 2,3) by 7 as well. Applying the diffeomorphism of the
trinion explicitly, one sees that the outgoing trinion will have monodromies
jkj~! and j on the ingoing circles. Hence we have to apply a J-cover Pfk(l’l)
of the cylinder ¥(1,1) first to one insertion. The next lemma asserts that

then the 2-morphism in €ob”(1,2,3) is fixed:
Lemma 3.25. In the 2-category (’lob‘](l, 2,3), there is a unique 2-morphism

P Pf 21 — (P.Z(,Q’l)j) oT O (id LJ Pj k(l’l))

that covers the 2-morphism F in €ob(1,2,3).

Proof. First we show that a morphism F : szk(fj? — P?k@’l) can be found
that covers the diffeomorphism F': ¥(2,1) — 3(2,1). This morphism is
most easily described using the action of F' on the fundamental group
m1(X(2,1)) of the pair of pants. The latter is a free group with two gener-
ators which can be chosen as the paths a,b around the two ingoing cir-
cles, m1(3(2,1)) =Z*Z = (a,b). Then the induced action of F' on the
generators is 71 (F)(a) = aba~! and 71 (F)(b) = a. Hence, we find on the
covers F*P;p = Pji-1 ;. This implies that we have a diffeomorphism F:
Pjj-1 ; — Pjj covering F.

To extend F to a 2-morphism in Cob’(1,2,3), we have to be a bit care-

(f;})j — 3(2,1) of the trinion as
a 1-morphism. In fact, it has to be considered as a morphism (P; — S') U
(P, — S') — (Pj, — S!) where the ingoing components are first exchanged

and then the identification of P, — S' and Pjjj-1 — S! via the conjugation

ful about how we consider the cover Pfk

isomorphisms Pfk(l’l) induced by covers of the cylinders is used first, com-
pare the lower arrows in the preceding commuting diagram. This yields
the composition (P]Ekgz,PJ) oToO (id U Pfk(l’l)) on the right hand side of the
diagram. ([l

The next step is to apply the TFT functor Zé to the 2-morphism F.
The target 1-morphism of F' can be computed using the fact that Z&]: is
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a symmetric monoidal 2-functor; we find the following functor C(G); ®

C(G)k — C(G)jk:

z7, ((Pﬁf_’}fj) oo (idU Pf,ﬁl’”)) = (=Y &% 1, (=)

We thus have the functor that acts on objects as (V, W) — ¢;(W) ® V for
Ve C(G)] and W € C(G)k

Then c:= Zé(F) is a natural transformation (—)®,x(—) = (—)’
®?§j—1 i (—) i.e., a family of isomorphisms

CY,W 1% ®j,k W - ¢](W) ®jkj*1,j 1% (3.6)

in C(G);, for V € C(G); and W € C(G)y.

We next show how this natural transformation is expressed when we use
the equivalent description of the categories C(G); as vector bundles on action
groupoids:

Proposition 3.26. For V=@V, € H;//G-mod and W = W), € Hy//
G-mod the natural isomorphism cyyw : V@ W — ¢;(W) ® V is given by

v@w (s(i7Hh)wewv

forv e Vi withh € Hj andw e W.

Proof. We first compute the 1-morphism in the category Gpan of spans of

finite groupoids that corresponds to the target 1-morphism (PE(2’1) ) oToO

VLT
(id U Pfk(l’l)). From the previous proposition, we obtain the following zigzag

diagram:
H;j//G x Hy/|G < Hjpj-1//G x Hj/ |G — (Hjpj—1 x Hy)//G — Hji,//G.

The first morphism is given by the morphisms implementing the J-action
that has been computed in the proof of Proposition 3.24, composed with
the exchange of factors. The second 1-morphism is obtained from the two
projections and the last 1-morphism is the product in the group H.
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Thus, the 2-morphism F from Lemma 3.25 yields a 2-morphism Fg in
the diagram

Hj X Hk//G

| T

H;//Gx H//G Fg Hjk//G

\ /

H . 1//GxH;j//G<—— (Hj 1 xH,;)//G

where Fy is induced by the equivariant map (h, h') — (hh'h~", h). Once the
situation is presented in this way, one can carry out explicitly the calculation
along the lines described in [36, Section 4.3] and obtain the result. O

A similar discussion can in principle be carried out to compute the asso-
ciators. More generally, structural morphisms on H//G-mod can be derived
from suitable 3-cobordisms. The relevant computations become rather
involved. On the other hand, the category H//G-mod also inherits struc-
tural morphisms from the underlying category of vector spaces. We will use
in the sequel the latter type of structural morphism.

4 Equivariant Drinfel’d double

The goal of this section is to show that the category C/(G) := D, C(G);
comprising the categories we have constructed in Proposition 3.22 has a
natural structure of a J-modular category.

Very much like ordinary modularity, J-modularity is a completeness
requirement for the relevant tensor category that is suggested by principles
of field theory. Indeed, it ensures that one can construct a .J-equivariant
topological field theory, see [43]. For the definition of J-modularity, we refer
to [26, Definition 10.1].

To establish the structure of a modular tensor category on the category
found in the previous sections, we realize this category as the representation
category of a finite-dimensional algebra, more precisely of a J-Hopf algebra.
This section is organized as follows: we first recall the notions of equivariant
ribbon categories and of equivariant ribbon algebras, taking into account a
suitable form of weak actions. In Section 4.3, we then present the appropri-
ate generalization of the Drinfel’d double that describes the category C7(G).
We then describe its orbifold category as the category of representations of
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a braided Hopf algebra, which allows us to establish the modularity of the
orbifold category. We then apply a result of [26] to deduce that the struc-
ture with which we have endowed C’(G) is the one of a J-modular tensor
category.

The Hopf algebraic structures endowed with weak actions we introduce
in this section might be of independent interest.

4.1 Equivariant braided categories

Let 1 — G — H 5 J — 1 be an exact sequence of finite groups. The normal
subgroup G acts on H by conjugation; denote by H//G the corresponding
action groupoid. We consider the functor category H//G-mod := [H//G,
Vectk], where K is an algebraically closed field of characteristic zero. The
category H//G-mod is the category of H-graded vector spaces, endowed
with an action of the subgroup G such that g¢.Vi C V-1 for all
geG,heH.

An immediate corollary of Proposition 3.22 is the following description of
the category C7(G) := @D ,c,C(G); as an abelian category:

Proposition 4.1. The category C’(G) is equivalent, as an abelian category,
to the category H//G-mod. In particular, the category C’(G) is a 2-vector
space in the sense of Definition 2.5.

Proof. With H; := m~1(j), Proposition 3.22 gives the equivalence C(G);
H;//G-mod of abelian categories. The equivalence of categories C’(G)
H//G-mod now follows from the decomposition H =||;.; H;. By [34,
Lemma 4.1.1], the representation category of a finite groupoid is a 2-vector
space.

|1l

O

Representation categories of finite groupoids are very close in structure to
representation categories of finite groups. In particular, there is a complete
character theory that describes the simple objects, see Appendix A.2.

We next introduce equivariant categories.

Definition 4.2. Let J be a finite group and C a category.

1) A categorical action of the group J on the category C consists of the
following data:
— A functor ¢; : C — C for every group element j € J.
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— A functorial isomorphism «;; : ¢; o @; = ¢ij, called compositors,
for every pair of group elements i,j5 € J
such that the coherence conditions

@k © Qi = @i 0 di(ajk)  and @1 =id (4.1)

hold.

If C is a monoidal category, we only consider actions by monoidal
functors ¢; and require the natural transformations to be monoidal
natural transformations. In particular, for each group element j € J,
we have the additional datum of a natural isomorphism

(U, V) : ¢;(U) @ (V) = ¢;(U V)

for each pair of objects U,V of C such that the following diagrams
commute:

*x @iy i (X,Y) jk(X oY)

Oéjk(X)®ajk(Y)i \Lajk(X@)Y)

TRX)) @ I(M(Y))

: IMXeY
]7k(X7Y)07j(kX7kY) ( ( ))

(The data of a monoidal functor includes an isomorphism ¢;(1) — 1
in principal, but in this paper, the isomorphism will be the identity and
therefore we will suppress it in our discussion.) We use the notation
IU := ¢;(U) for the image of an object U € C under the functor ¢;.
A J-equivariant category C is a category with a decomposition C =
@je ;C; and a categorical action of J, subject to the compatibility
requirement

with the grading.

A J-equivariant tensor category is a J-equivariant monoidal category
C, subject to the compatibility requirement that the tensor product
of two homogeneous elements U € C;, V' € C; is again homogeneous,

U®V€C¢j.

Remark 4.3. We remark that the condition ¢; = id 4.1 should in general be
replaced by an extra datum, an isomorphism 7 : id = ¢; and two coherence
conditions which involve the compositors «; ;. The diagrams can be found
as follows: For any category C, consider the category AUT(C) whose objects
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are automorphisms of C and whose morphisms are natural isomorphisms.
The composition of functors and natural transformations endow AUT(C)
with the natural structure of a strict tensor category. A categorical action
of a finite group J on a category C then amounts to a tensor functor ¢ : J —
AUT(C), where J is seen as a tensor category with only identity morphisms,
compare also Remark 3.2.3. The condition ¢; = id holds in the categories
we are interested in, hence we impose it.

Similarly, we consider for a monoidal category C the category AUT mon(C)
whose objects are monoidal automorphisms of C and whose morphisms are
monoidal natural automorphisms. The categorical actions we consider for
monoidal categories are then tensor functors ¢ : J — AUT mon(C) For more
details, we refer to [43] Appendix 5.

The category H//G-mod has a natural structure of a monoidal category:
the tensor product of two objects V = ®pepg Vi and W = @pc g W, is the vec-
tor space V @ W with H grading given by (V ® W), := Spyny=h Vi, @ Wh,
and G action given by g.(v ® w) = g.v ® g.w. The associators are inherited
from the underlying category of vector spaces.

Proposition 4.4. Consider an exact sequence of groups 1 — G — H —
J — 1. Any choice of a a set-theoretic section s : J — H allows us to endow
the abelian category H//G-mod with the structure of a J-equivariant tensor
category as follows: the functor ¢; is given by shifting the grading from h
to s(j)hs(4)~! and replacing the action by g by the action of s(j)gs(5)~!.
The isomorphism o j : ¢; 0 ¢, — ¢4 1s given by the left action action of the
element

i = s(i)s(j)s(ij) "

The fact that the action is only a weak action thus accounts for the failure
of s to be a section in the category of groups.

Proof. Only the coherence conditions aj i © a;j = v ji; © $i(evj ) remain to
be checked. By the results of Dedecker and Schreier, cf. Proposition 3.3, the
group elements s(i)s(j)s(ij)~! € G are the coherence cells of a weak group
action of J on H. By Definition 3.1, this implies the coherence identities,
once one takes into account that that composition of functors is written in
different order than group multiplication. O

We have derived in Section 3.5 from the geometry of extended cobordism

categories more structure on the geometric category C”(G) = D, C(G);.
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In particular, we collect the functors ®;; : C(G); RC(G)r — C(G)ji from
Proposition 3.23 into a functor

®K:CXC —C. (4.2)

Another structure are the isomorphisms V@ W — ¢;(W)®@V for V €
C(G);, described in Proposition 3.26. Together with the associators, this
suggests to endow the category C’(G) with a structure of a braided
J-equivariant tensor category:

Definition 4.5. A braiding on a J-equivariant tensor category is a family
cy,v - U®V—>jV®U

of isomorphisms, one for every pair of objects U € C;,V € C;, which are
natural in U and V. Moreover, a braiding is required to satisfy an analogue
of the hexagon axioms (see [43, Appendix A.5]) and to be preserved under
the action of J, i.e., the following diagram commutes for all objects U, V'
with U € Cj and i € J

i(CU,V) Yi

(WUeV) 0V @U) V)Y® U (4.3)
'Vil \Laij (V)@id
i i ig= i i ij i

Remark 4.6. 1) It should be appreciated that a braided J-equivariant

category is not, in general, a braided category. Its neutral component
Cy with 1 € J the neutral element, is a braided tensor category.

2) By replacing the underlying category by an equivalent category, one
can replace a weak action by a strict action, compare [43, Appendix
A5]. In our case, weak actions actually lead to simpler algebraic struc-
tures.

3) The J-equivariant monoidal category H//G-mod has a natural braid-
ing isomorphism that has been described in Proposition 3.26

We use the equivalence of abelian categories  between
Cl(G) = ®,c,C(G); and H//G-mod to endow the category
Cl(G) = ®,c, C(G); with associators. The category has now enough struc-
ture that we can state our next result:

Proposition 4.7. The category C’(G) = ®D,cs C(G);, with the tensor prod-
uct functor from (4.2), can be endowed with the structure of a braided
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J-equivariant  tensor  category  such  that  the  isomorphism
Cl (@) = ®D,c,C(G); = H//G-mod becomes an isomorphism of braided
J-equivariant tensor categories.

Proof. The compatibility with the grading is implemented by definition via
the graded components ®;; of ® and the graded components of cyy. It
remains to check that the action is by tensor functors and that the braiding
satisfies the hexagon axiom. The second boils down to a simple calculation
and the first is seen by noting that the action is essentially an index shift
which is preserved by tensoring together the respective components. O

4.2 Equivariant ribbon algebras

In the following, let J again be a finite group. To identify the structure of a
J-modular tensor category on the geometric category C’(G) = D, C(G);,
we need dualities. This will lead us to the discussion of (equivariant) ribbon
algebras. Apart from strictness issues, our discussion closely follows [43]. We
start our discussion with the relevant category-theoretic structures, which
generalize premodular categories (cf. Definition 2.20) to the equivariant
setting.

Definition 4.8. 1) A J-equivariant ribbon category is a J-braided cate-
gory with dualities and a family of isomorphisms 6y : V — 7V for all
j € J,V €Cj, such that ¢ is compatible with duality and the action
of J (see [43, VI.2.3] for the identities). In contrast to [43], we allow
weak J-actions and thus require the diagram

fuev

UV TURV)
0U®0Vl T'Yijo(o‘ijil,i(gid)
UV iji*l(z‘U) Q4 V
V)y®'Uu o @i VU

(4.4)

involving compositors, to commute for U € C; and V' € C;.

2) A J-premodular category is a K-linear, abelian, finitely semi-simple
J-equivariant ribbon category such that the tensor product is a
K-bilinear functor and the tensor unit is absolutely simple.
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Remark 4.9. The following facts directly follow from the definition of
J-equivariant ribbon category: the neutral component C; is itself a braided
tensor category. In particular, it contains the tensor unit of the J-equivariant
tensor category. The dual object of an object V' € C; is in the category C;-1.

We will not be able to directly endow the geometric category C’(G) =
@D ,c, C(G); with the structure of a J-equivariant ribbon category. Rather,
we will realize an equivalent category as the category of modules over a
suitable algebra. To this end, we introduce in several steps the notions of a
J-ribbon algebra and analyze the extra structure induced on its representa-
tion category.

Definition 4.10. Let A be an (associative, unital) algebra over a field K.
A weak J-action on A consists of algebra automorphisms ¢; € Aut(A), one
for every element j € J, and invertible elements c;; € A, one for every pair
of elements ¢, 7 € J, such that for all 4, j, k € J the following conditions hold:

piow;=1Inne,; 0wy wilejr) - cigr = cij-cijr and  ci =1 (4.5)

Here Inn, with x an invertible element of A denotes the algebra automor-
phism a — zaz~!. A weak action of a group J is called strict, if cij = 1 for
all pairs ¢,5 € J.

Remark 4.11. As discussed for weak actions on groups in Remark 3.2, a
weak action on a K-algebra A can be seen as a categorical action on the
category which has one object and the elements of A as endomorphisms.

We now want to relate a weak action (¢;, ¢; ;) of a group J on an algebra
A to a categorical action on the representation category A-mod. To this
end, we define for each element j € J a functor on objects by

H(M, p) := (M, po(pj-1 @idn))
and on morphisms by 7 f = f. For the functorial isomorphisms, we take
- =1 s
am’(M, p) = p((cj—17i—1) X ldM).

The inversions in the above formulas make sure that the action on the level
of categories really becomes a left action.

Lemma 4.12. Given a weak action of J on a K-algebra A, these data define
a categorical action on the category A-mod.
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Proof. Let V be an A-Modul. We first show that «; ; is a morphism (V')
—4 V in A-mod: Let V € A-mod, then for every v € V,a € A, we have:

a;;(V)o pi(jv)(a ®v) = (ci717j71)*1g0j71 op;-1(a).v
= (,0(1])—1 ((I)(Ci—lvj—l)_l.v
= pesvy © (ida ® a5 (V) (a @ v),

where we used the abbreviation a.v := p(a ® v). The validity of the coher-
ence condition (4.1) for the «; ; follows from the second equation in (4.5),
since the right side of (4.1) evaluated on an element v € V' reads

@i jk © i) (v) = (C(jk)*l,i*)_1(014*1,]‘*1)_1'”

and the left one is:

Q5 k © Ozi’j(’U) = (Ck—l}(ij)—l)_lng—l(Cj—l,i—l)_l.’(} -

We next turn to an algebraic structure that yields J-equivariant tensor
categories.

Definition 4.13. A J-Hopf algebra over K is a Hopf algebra A with a
J-grading A = @jeJ Aj and a weak J-action such that:

e The algebra structure of A restricts to the structure of an associative
algebra on each homogeneous component so that A is the direct sum
of the components A; as an algebra.

J acts by homomorphisms of Hopf algebras.
The action of J is compatible with the grading, i.e., ¢;(A4;) C 4;;,1
The coproduct A : A — A ® A respects the grading, i.e.,

A4 c P 44,

P,9€J,pg=j

The elements (c; ;)i jes are group-like, i.e A(c; ;) = ¢ij ® ¢; ;.

Remark 4.14. 1) For the counit € and the antipode S of a J-Hopf alge-
bra, the compatibility relations with the grading e(A;) =0 for j # 1
and S(A;) C A;-1 are immediate consequences of the definitions.

2) The restrictions of the structure maps endow the homogeneous com-
ponent A; of A with the structure of a Hopf algebra with a weak
J-action.
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3) J-Hopf algebras with strict J-action have been considered under the
name “J-crossed Hopf coalgebra” in [43, Chapter VII.1.2].

The category A-mod of finite-dimensional modules over a J-Hopf alge-
bra inherits a natural duality from the duality of the underlying category
of K-vector spaces. The weak action described in Lemma 4.12 is even a
monoidal action, since J acts by Hopf algebra morphisms. A grading on
A-mod can be given by taking (A-mod); = Aj-mod as the j-homogeneous
component. From the properties of a J-Hopf algebra one can finally deduce
that the tensor product, duality and grading are compatible with the
J-action. We have thus arrived at the following statement:

Lemma 4.15. The category of representations of a J-Hopf algebra has a
natural structure of a K-linear, abelian J-equivariant tensor category with
compatible duality as introduced in Definition 4.5.

Proof. We show, that the grading and the action on A-mod are compatible.
Let V € Aj-mod, then the j-component 1, of the unit in A acts as the
identity on V. We have to check, that ‘V € A;ji—1-mod, i.e that 1;;,-1 acts
as the identity on V. For v € V, we have:

pi(liji-1 ®v) = @-1(L-1).v = 1j0 =0

This shows V € A, ;;~1-mod. O

Jt

The representation category of a braided Hopf algebra is a braided tensor
category. If the Hopf algebra has, moreover, a twist element, its represen-
tation category is even a ribbon category. We now present J-equivariant
generalizations of these structures.

Definition 4.16. Let A be a J-Hopf algebra.

1) A J-equivariant R-matrix is an element R = Ry ® R(3) € A ® A such
that for V' € (A-mod);, W € A-mod, the map

avw VoW - WaeV
VW R(Q).’w ®R(1).v

is a J-braiding on the category A-mod according to Definition 4.5.
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2) A J-twist is an invertible element 6 € A such that for every object
V € (A-mod); the induced map

Oy :V =ty

vi— 0
is a J-twist on A-mod as defined in 4.8.

If A has an R-matrix and a twist, we call it a J-ribbon-algebra.

Remark 4.17. e A J-ribbon algebra is not, in general, a ribbon Hopf
algebra.

e The component A; with the obvious restrictions of R and 0 is a ribbon
algebra.

e The conditions that the category A-mod is braided resp. ribbon can
be translated into algebraic conditions on the elements R and 6. Since
we are mainly interested in the categorical structure we refrain from
doing that here.

Taking all the introduced algebraic structure into account we get the
following proposition.

Proposition 4.18. The representation category of a J-ribbon algebra is a
J-ribbon category.

Remark 4.19. In [43], Hopf algebras and ribbon Hopf algebras with strict
J-action have been considered. The next subsection will give an illustrative
example where the natural action is not strict.

4.3 Equivariant Drinfel’d double

The goal of this subsection is to construct a J-ribbon algebra, given a finite
group G with a weak J-action. As explained in Section 3.1, such a weak
J-action amounts to a group extension

1-G—H- 5 J—1 (4.6)

with a set-theoretical splitting s: J — H.

We start from the well-known fact reviewed in Section 2.5 that the Drin-
fel’d double D(H) of the finite group H is a ribbon Hopf algebra. The double
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D(H) has a canonical basis dj,, ® hy indexed by pairs hi, he of elements of
H. Let G C H be a subgroup. We are interested in the vector subspace
D’ (@) spanned by the basis vectors 6, ® g with h € H and g € G.

Lemma 4.20. The structure maps of the Hopf algebra D(H) restrict to the
vector subspace D?(G) in such a way that the latter is endowed with the
structure of a Hopf subalgebra.

Remark 4.21. The induced algebra structure on D7 (G) is the one of the
groupoid algebra of the action groupoid H//G.

The Drinfel’d double D(H) of a group H has also the structure of a
ribbon algebra. However, neither the R-matrix nor the the ribbon element
yield an R-matrix or a ribbon element of D’ (G) C D(H). Rather, this Hopf
subalgebra can be endowed with the structure of a J-ribbon Hopf algebra
as in Definition 4.16.

To this end, consider the partition of the group H into the subsets
H; :=71(j) C H. It gives a J-grading of the algebra A as a direct sum of
subalgebras:

Aj = (0n ® 9)neH, geG-

The set-theoretical section s gives a weak action of J on A that can be
described by its action on the canonical basis of A;:

©;(0h ® g) := (Os()ns(j)—1 © 5(5)gs() ;s

the coherence elements are

Cij 1= Z S @ s(i)s(5)s(ig) "

heH

Proposition 4.22. The Hopf algebra D’ (G), together with the grading and
weak J-action derived from the weak J-action on the group G, has the struc-
ture of a J-Hopf algebra.

Proof. 1t only remains to check the compatibility relations of grading and
weak J-action with the Hopf algebra structure that have been formulated in
Definition 4.13.  The fact that ¢;(A4;) C A;j;~1 is immediate, since
s(i)H;s(i~') C H;j;—1. The axioms follow are essentially equivalent to the
property that conjugation commutes with the product and coproduct of the
Drinfel’d double. 0
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We now turn to the last piece of structure, an R-matrix and twist ele-
ment in D7 (G). Consider the element R = > Rij € D’(G) ® D’ (G) with
homogeneous elements R; ; defined as

Riji= Y (0, ®1) @ (p, ® (i ")ha). (4.7)
hi1€H;,hocH;

(Note that 7(s(i"*)h1) = 1 for hy € H; and thus s(i"1)hy € G.)

The element R; ; is invertible with inverse

Rl= Y (0 @1)® @ @b,
h1€H;,h2€H;
We also introduce a twist element 6 =

ies 05 € D(G) with

= h@s(iT)he A (4.8)
heH;

for every element j € J.

Proposition 4.23. The elements R and 6 endow the J-Hopf algebra D’ (G)
with the structure of a J-ribbon algebra that we call the J-Drinfel’d double
of G.

Proof. By Definition 4.16 we have to check that the induced transformations
on the level of categories satisfy the axioms for a braiding and a twist. We
first compute the induced braiding by using the R-matrix given in (4.7): For
V € (D?(G)-mod); = D’(G);-mod and W € D’(G)-mod, we get the linear

map

cvw VaWw I WeV
v@w— s(jTHhw®v for veV,

First of all, we show that this is a morphism in D7 (G)-mod. Let v € V}, and
w € Wy, Wehavev @ w € (VW) andcvw(v®w) =s(j7Hhwevec
(W @ V), since the element s(j7!)h.aw is in the component
(s(G=HRIhts(j71)~1) of W which is the component hh'h~! of 7W. So
cy,w respects the grading. As for the action of G, we observe that for
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g € G, the element g.v lies in the component V;,,-1, and so

cvw(g-(v@w)) = (s(j")ghg™") gw ® gv = s(j~")ghw ® g.v
gevwwew) = (s Hgs(G) ) s Hhaw ® gv = s ghw ® g.v

which shows that cyr commutes with the action of G.

Furthermore, it needs to be checked, that cy satisfies the hexagon
axioms, which in our case reduce to the two diagrams

CU, VW

UVeoW VWU
CU’V®idwl /
id;y ®cy,w
VoUW

and

CUQV,W .
UQVRW ———9WeUV
idU®CV’Wl Ta¢7j®idU
U WV — W)UV
CU,]W 1dy

where U € C;,V € C; and we suppressed the associators in A-mod.

And at last we need to check the compatibility of the braiding and the
J-action, i.e., diagram (4.3). All of that can be proven by straightforward
calculations, which show, that the morphism induced by the element R is
really a braiding in the module category.

We now compute the morphism given by the action with the inverse twist

element (4.8). For V € (D?(G)-mod); = D/ (G);-mod we get the linear map:

Oy :V IV

v— s Hho

for v € V3. This map is compatible with the H-grading since for v € Vj, we
have s(j~1h.v € Vii-1ms(-1)-1 = (/V)p and it is also compatible with the
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G-action, since

Ov(g.v) = s( ) (ghg™ Hg.v = s()ghw
9.0v(v) = (s(G"gs(G™) ") s Hhv = s(i)ghow

So the induced map is a morphism in the category D”(G). In order to proof
that it is a twist, we have to check the commutativity of diagram (4.4) as well
as for every ¢, j € J and object V in the component j, the commutativity of
the diagrams

(6v)Y

jv\/ \VA%

jvV
Q=1

fl(jVV)

(which displays the compatibility of the twist with the duality), and

) ] .

iy v (V)
9ivl lam
iji— L (zv) - ijy/

i e
(which is the compatibility of the twist with the J-action). This again can
be checked by straightforward calculations. O

We are now ready to come back to the J-equivariant tensor category
C/(G) = @D,csC(G); described in Proposition 4.7. From this proposition,
we know that the category C”(G) is equivalent to H//G-mod = D (G)-mod
as a J-equivariant tensor category. Also J-action and tensor product coin-
cide with the ones on D/(G)-mod. Moreover, the equivariant braiding of
C’(G) computed in Proposition 3.26 coincides with the braiding on D/ (G)
computed in the proof of the last Proposition 4.23.

This allows us to transfer also the other structure on the representation
category of the J-Drinfel’d double D’ (G) described in Proposition 4.23 to
the category C’(G):

Proposition 4.24. The J-equivariant tensor category C’(G) = D,c, C(G);
described in Proposition 4.7 can be endowed with the structure of a
J-premodular category such that it is equivalent, as a J-premodular cate-
gory, to the category D’ (G)-mod.
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Remark 4.25. At this point, we have constructed in paticular a
J-equivariant braided fusion category C’(G) = @D,c,C(G); (see [15]) with
neutral component C(G); = D(G)-mod from a weak action of the group
J on the group G, or in different words, from a 2-group homomorphisms
J — AUT(G) with AUT(G) the automorphism 2-group of G.

In this remark, we very briefly sketch the relation to the description of
J-equivariant braided fusion categories with given neutral sector B in terms
of 3-group homomorphisms J — Pic(B) given in [15]. Here Pic(B) denotes
the so called Picard 3-group whose objects are invertible module-categories
of the category B. The group structure comes from the tensor product of
module categories, which can be defined since the braiding on B allows it to
turn module categories into bimodule categories.

Using this setting, we give a description of our J-equivariant braided
fusion category D”(G)-mod in terms of a functor = : J — Pic(D(G)). To
this end, we construct a 3-group homomorphism AUT(G) — Pic(D(G)) and
write = as the composition of this functor and the functor J — AUT(G)
defining the weak J-action.

The 3-group homomorphism AUT(G) — Pic(D(G)) is given as follows:
to an object ¢ € AUT(G) we associate the twisted conjugation groupoid
G//%G, where G acts on itself by twisted conjugation, g.z := grp(g)~L.
This yields the category G//¥G-mod := [G//¥G, Vectk] which is naturally
a module category over D(G)-mod. Morphisms ¢ — 1 in AUT(G) are given
by group elements g € G with gpg~! = ; to such a morphism we asso-
ciate the functor L, : G//¥G — G//¥G given by conjugating with g € G
on objects and morphisms. This induces functors of module categories
G//?G-mod — G//¥G-mod. Natural coherence data exist; one then shows
that this really establishes the desired 3-group homomorphism.

4.4 Orbifold category and orbifold algebra

It remains to show that the J-equivariant ribbon category
Cl(G) = ®D,c,C(G); described in 4.23 is J-modular. To this end, we will
use the orbifold category of the J-equivariant category:

Definition 4.26. Let C be a J-equivariant category. The orbifold category
C’ of C has:

e as objects pairs (V, (1j)cs) consisting of an object V' € C and a family
of isomorphisms ;:7V —V with j € J such that ; o “p; =
Yij © Qij-
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e as morphisms f : (V, zp;/) — (W, 1/JJVV) those morphisms f:V — W in
C for which ; 07(f) = f o); holds for all j € J.

In [26], it has been shown that the orbifold category of a J-ribbon category
is an ordinary, non-equivariant ribbon category:

Proposition 4.27. 1) Let C be a J-ribbon category. Then the orbifold
category C” is naturally endowed with the structure of a ribbon category
by the following data:

e The tensor product of the objects (V, (@DJV)) and (W, (w;/v)) is defined
as the object (V @ W, (wjv ® l/J;/V))

e The tensor unit for this tensor product is 1 = (1, (id))

o The dual object of (V, (1)) is the object (V*,(?/);‘-‘)_l), where V*
denotes the dual object in C.

e The braiding of the two objects (V, (@ij)) and (W, (1/1;/1/)) with V € C;
is given by the isomorphism (¢; ®idy) o cy,w, where cyw : V ®
W —I3 W @V is the J-braiding in C.

e The twist on an object (V, (1)) is 1; o0, where 6 : V. — IV is the
twist in C.

2) IfC is a J-premodular category, then the orbifold category C’ is even
a premodular category.

It has been shown in [26] that the J-modularity of a J-premodular
category is equivalent to the modularity as in Definition 2.20 of its orbifold
category. Our problem is thus reduced to showing modularity of the orbifold
category of D’(G)-mod.

To this end, we describe orbifoldization on the level of (Hopf-)algebras:
given a J-equivariant algebra A, we introduce an orbifold algebra A’ such
that its representation category A7 -mod is isomorphic to the orbifold cate-
gory of A-mod.

Definition 4.28. Let A be an algebra with a weak J-action (gj,c¢;;). We

endow the vector space A7 := A @ K[J] with a unital associative multipli-
cation which is defined on an element of the form (¢ ® j) with a € A and
Jj€J by

(a®1)(b®j) :=apib)ci; @ ij.

This algebra is called the orbifold algebra A7 of the J-equivariant algebra A
with respect to the weak J-action.
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If A is even a J-Hopf algebra, it is possible to endow the orbifold algebra
with even more structure. To define the coalgebra structure on the orbifold
algebra, we use the standard coalgebra structure on the group algebra K[.J]
with coproduct Ay(j) = j ® j and counit €;(j) = 1 on the canonical basis
(4)jes- The tensor product coalgebra on A ® K[J] has the coproduct and
counit

Aa® ) = (ida © 7 ® idg)(Aala) € ©5), and e(a®j) = eala)
(4.9)
which is clearly coassociative and counital.

To show that this endows the orbifold algebra with the structure of a
bialgebra, we have first to show that the coproduct A is a unital algebra
morphism. This follows from the fact, that A4 is already an algebra mor-
phism and that the action of J is by coalgebra morphisms. Next, we have
to show that the counit € is a unital algebra morphism as well. This follows
from the fact that the action of J commutes with the counit and from the
fact that the elements c¢; ; are group-like. The compatibility of e with the
unit is obvious.

In a final step, one verifies that the endomorphism
S(a®j) = (¢j15) "p;1(Sala) @
is an antipode. Altogether, one arrives at

Proposition 4.29. If A is a J-Hopf-algebra, then the orbifold algebra A/
has a natural structure of a Hopf algebra.

Remark 4.30. 1) The algebra A7 is not the fixed point subalgebra A”

of A; in general, the categories A’-mod and A7-mod are inequivalent.

2) Given any Hopf algebra A with weak J-action, we have an exact
sequence of Hopf algebras

A— AT S K[J). (4.10)

In particular, A is a sg\b-Hopf algebra of A7, In general, there is no
inclusion of K[J] into A’ as a Hopf algebra.

3) If the action of J on the algebra A is strict, then the algebra A is
a module algebra over the Hopf algebra K[J] (i.e., an algebra in the
tensor category K[J]-mod). Then the orbifold algebra is the smash
product A#K[J] (see [33, Section 4] for the definitions). The situation
described occurs, if and only if the exact sequence (4.10) splits.
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The next proposition justifies the name “orbifold algebra” for A7

Proposition 4.31. Let A be a J-Hopf algebra. Then there is an equivalence
of tensor categories

A7 mod 2 (A-mod)”.

Proof. e An object of (A-mod)’ conmsists of a K-vector space M, an
A-action p: A — End(M) and a family of A-module morphisms
(¢j)jes. We define on the same K-vector space M the structure of
an A7 module by 5 : A/ — End(M) with j(a ® j) := p(a) o (1)t

One next checks that, given two objects (M, p,) and (M’, p', ")
in (A-mod)’, a K-linear map f € Homg(M, M’) is in the subspace
Hom g ynoqys (M, M') if and only if it is in the subspace Homz;
(M, p), (M, "))

We can thus consider a K-linear functor

mod

F : (A-mod)’” — A”-mod, (4.11)

which maps on objects by (M, p,v) — (M, p) and on morphisms as
the identity. This functor is clearly fully faithful.

To show that the functor is also essentially surjective, we note
that for any object (M,7) in A7-mod, an object in (A-mod)’ can
be obtained as follows: on the underlying vector space, we have the
structure of an A-module by restriction, p(a) := p(a ® 1;). A family
of equivariant morphisms is given by ¢; := (p(1 ® j~1))~7L. Clearly
its image under F' is isomorphic to (M, p). This shows that the func-
tor F' is an equivalence of categories, indeed even an isomorphism of
categories.

e The functor F' is also a strict tensor functor: consider two objects
F(M,p,%) and F(M', p',9') in (A-mod)’. The functor F yields the
following action of the orbifold Hopf algebra A7 on the K-vector space
M XK M':

prenr(a®j) =p® p'(Aa) o ((¥;-1)7' @ (Y1) 7).

Since the coproduct on A7 was just given by the tensor product of
coproducts on A and K[J], this coincides with the tensor product of

It oY i AT
F(M,p,%) and F(M',p',¢) in A’-mod. 0

In a final step, we assume that the J-equivariant algebra A has the addi-
tional structure of a J-ribbon algebra. Then, by Proposition 4.18, the
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category A-mod is a J-ribbon category and by Proposition 4.27 the orbifold
category (A-mod)” is a ribbon category. The strict isomorphism (4.11) of
tensor categories allows us to transport both the braiding and the ribbon
structure to the representation category of the orbifold Hopf algebra A7
General results [24, Proposition 16.6.2] assert that this amounts to a nat-
ural structure of a ribbon algebra on A7, In fact, we directly read off the
R-matrix and the ribbon element. For example, the R-matrix R of A7 equals

R=7+ CA\J7A\J(].A\‘] ®1EJ) S A‘]®A‘],
where the linear map 7 flips the two components of the tensor product
A7 @ A7. This expression can be explicitly evaluated, using the fact that

A®K[J] is an object in (A-mod)’ with A-module structure given by left
action on the first component and that the morphisms v; are given by left

multiplication on the second component. We find for the R-matrix of A7

R=) (id@¢;)(p®p)(Ri)(1a®1) @14 ®1y)
1,j€J

=) (Rij)1®1)@1a@i ) (Rij)2®1)),
ijeJ

where R is the R-matrix of A. The twist element of A7 can be computed
similarly; one finds

071 => WiopB))(la; @1)=> (1a®ji ) 6;®1)
jeJ jeJ
We summarize our findings:
Corollary 4.32. If A is a J-ribbon algebra, then the orbifold algebra A7

inherits a natural structure of a ribbon algebra such that the equivalence of
tensor categories in Proposition 4.31 is an equivalence of ribbon categories.

4.5 Equivariant modular categories

In this subsection, we show that the orbifold category of the J-equivariant
ribbon category C”(G)-mod is J-modular. A theorem of Kirillov [26, Theo-
rem 10.5] then immediately implies that the category C”7(G)-mod is
J-modular.

Since we have already seen in Corollary 4.32 that the orbifold category
is equivalent, as a ribbon category, to the representation category of the
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orbifold Hopf algebra, it suffices the compute this Hopf algebra explicitly.
Our final result asserts that this Hopf algebra is an ordinary Drinfel’d double:

Proposition 4.33. The K-linear map

—J

v :D/(G) — D(H)

(4.12)
(6h ® g ® j) +— (6n @ gs(j))

is an isomorphism of ribbon algebras, where the Drinfel’d double D(H) is
taken with the standard ribbon structure introduced in Section 2.5.

This result immediately implies the equivalence
(DY(G)-mod)” = D(H)-mod
of ribbon categories and thus, by Proposition 2.21, the modularity of the

orbifold category, so that we have finally proven:

Theorem 4.34. The category C'(G) = @D ,c,C(G); has a natural structure
of a J-modular tensor category.

Proof of Proposition 4.33. We show by direct computations that the linear
map ¥ preserves product, coproduct, R-matrix and twist element:

o Compatibility with the product:

V(6 29®))(6, 09 ®j")
=U((0h®9) (6, ® g ey @ j5')

=V ((5h ®9) - Bsyms)-1 @ s(3)g's() ™)

S 6w @ 5()s (s G @jj'>

h"eH
= U (6(h, gs(5)hs(5)"2g™H) (0 @ g5(5)d's(5")s(i5) ™) © §7)
= 6(h, gs(j)hs(5) " g~ ")(0n ® gs(4)g's(i"))
= (0n ® g5(7)) - (O @ ¢'s(5"))
=V(6 @9 )V (o @y @j.
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e Compatibility with the coproduct:
(TR UAGLgR)= Y V(iyegej) e V(6w e ge j)
h'h/'=h

— Z (0 @ g5(4)) @ (6pr ® gs(j))
hh!'=h
=A(¥(6p®g®j)).

]

e The R-matrix of the orbifold algebra D’(G) can be determined using
the lines preceding C.orollary 4.32 and the definition of the R-Matrix

of D’/(G) given in (4.7):

R=) Y (w®lgel)e1elegei ) 0yesi Hhely)
J:j'€J heHj,hW €H

This implies
(TRU)R)=> > VHeleel)ov(lelgej )
j.4'€J he Hj W €H
(o @ s(jHh @ 1)
=Y Y el eesiH™ - @ osiGhh)
J,j'€J heH; W €H
= > (h®1) e Ow®h),
h h'eH
which is the standard R-matrix of the Drinfel’d double D(H).

—J

e The twist in D/(G) is by Corollary 4.32 equal to
7' =>"> (Ghos(i Hhely)
jeJ heH,
and thus it gets mapped to the element

TEO =) Y vieleei ) U es@GTHhe1y)
jeJ hEHj

=3 > (esE ™)™ Gahes(iTHh)

jeJ heH;

= Z(5h®h)

heH

which is the inverse of the twist element in D(H). O
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4.6 Summary of all tensor categories involved

We summarize our findings by discussing again the four tensor categories
mentioned in the introduction, in the square of (1.1), thereby presenting the
explicit solution of the algebraic problem described in Section 1.1. Given a
finite group G with a weak action of a finite group J, we get an extension
1— G — H — J — 1 of finite groups, together with a set-theoretic section
s:J— H.

Proposition 4.35. We have the following natural realizations of the cate-
gories in question in terms of categories of finite-dimensional representations
over finite-dimensional ribbon algebras:

1) The premodular category introduced in [2] is B(G < H)-mod. As an
abelian category, it is equivalent to the representation category G//
H-mod of the action groupoid G//H, i.e., to the category of G-graded
K-vector spaces with compatible action of H.

2) The modular category obtained by modularization is D(G)-mod. As
an abelian category, it is equivalent to G//G-mod.

3) The J-modular category constructed in this paper is D’ (G)-mod. As
an abelian category, it is equivalent to H//G-mod.

4) The modular category obtained by orbifoldization from the J-modular
category D(G)-mod is equivalent to D(H)-mod. As an abelian cate-
gory, it is equivalent to H//H -mod.

Equivalently, the diagram in (1.1), has the explicit realization:

D(G)-mod—— D’(G)-mod (4.13)
modularization iOTbifold orbifold

B(G < H)-mod~—— D(H )-mod

-

We could have chosen the inclusion in the lower line as an alternative start-
ing point for the solution of the algebraic problem presented in Introduction
1.1. Recall from the Introduction that the category B(G < H)-mod contains
a Tannakian subcategory that can be identified with the category of repre-
sentations of the quotient group J = H/G. The Tannakian subcategory and
thus the category B(G < H)-mod contain a commutative Frobenius algebra
given by the algebra of functions on J; recall that the modularization func-
tion was just induction along this algebra. The image of this algebra under
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the inclusion in the lower line yields a commutative Frobenius algebra in the
category D(H)-mod. In a next step, one can consider induction along this
algebra to obtain another tensor category which, by general results [26, The-
orem 4.2] is a J-modular category.

In this approach, it remains to show that this J-modular tensor cate-
gory is equivalent, as a J-modular tensor category, to D’(G)-mod and, in
a next step that the modularization D(G)-mod can be naturally identified
with the neutral sector of the J-modular category. This line of thought
has been discussed in [25, Lemma 2.2] including the square (4.13) of Hopf
algebras. Our results directly lead to a natural Hopf algebra D”/(G) and
additionally show how the various categories arise from extended topologi-
cal field theories which are built on clear geometric principles and through
which all additional structure of the algebraic categories become explicitly
computable.

5 Outlook

Our results very explicitly provide an interesting class J-modular tensor
categories. All data of these theories, including the representations of the
modular group SL(2,7Z) on the vector spaces assigned to the torus, are
directly accessible in terms of representations of finite groups. Also series
of examples exist in which closed formulae for all quantities can be derived,
e.g., for the inclusion of the alternating group in the symmetric group.

Our results admit generalizations in various directions. In fact, in this
paper, we have only studied a subclass of Dijkgraaf-Witten theories. The
general case requires, apart from the choice of a finite group G, the choice
of an element of

HE,(G,U(1)) = H(Ag,Z).

This element can be interpreted [45] geometrically as a 2-gerbe on Ag. It
is known that in this case a quasi-triangular Hopf algebra can be extracted
that is exactly the one discussed in [13]. Indeed, our results can also be
generalized by including the additional choice of a non-trivial element

we HY(Ag,Z) = HYAg//J, 7).

Only all these data together allow us to investigate in a similar manner the
categories constructed by Bantay [2] for crossed modules with a boundary
map that is not necessarily injective any longer. We plan to explain this
general case in a subsequent publication.
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Appendix A
A.1 Cohomological description of twisted bundles

In this appendix, we give a description of P-twisted bundles as introduced
in Definition 3.5 in terms of local data. This local description will also
serve as a motivation for the term ‘twisted’ in twisted bundles. Recall the
relevant situation: 1 — G — H 5 J — 1 is an exact sequence of groups.

Let P J, M be a J-cover. A P-twisted bundle on a smooth manifold M
is an H-bundle Q — M, together with a smooth map ¢ : Q — P such that
w(gh) = p(q)m(h) for all ¢ € Q and h € H.

We start with the choice of a contractible open covering {U,} of M, i.e.,
a covering for which all open sets U, are contractible. Then the J-cover P
admits local sections over U,. By choosing local sections s, we obtain the
cocycle

Jog ::3;1‘85:UaﬂUﬂ—>J
describing P.

Let (Q,¢) be a P-twisted G-bundle over M. We claim that we can find
local sections

ta 1 Us — Q

of the H-bundle ) which are compatible with the local section of the J-cover
P in the sense that ¢ o t, = s, holds for all a.

To see this, consider the map ¢ : Q — P; restricting the H-action on @
along the inclusion G — H, we get a G-action on () that covers the identity
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on P. Hence @ has the structure of a G-bundle over P. Note that the image
of s, is contractible, since U, is contractible. Thus the G-bundle Q — P
admits a section s/, over the image of s,. Then t, := s, 0 s, is a section of
the H-bundle Q — M that does the job.

With these sections t, : U, — @, we obtain the cocycle description
hap :=1" tg: UyNUg — H

of Q.

The set underlying the group H is isomorphic to the set G x J. The
relevant multiplication on this set depends on the choice of a section J — H;
it has been described in (3.1):

(9,4) - (¢'5) = (9- "(¢) - iy » ij).

This allows us to express the H-valued cocycles hqg in terms of J-valued
and G-valued functions

9op : Ua NUg — G.

By the condition ¢ ot, = sq, the J-valued functions are determined to be
the J-valued cocycles j,3. Using the multiplication on the set G x J, the
cocycle condition h,g - hgy = ha, can be translated into the following con-
dition for g.g

9o - 7% (987) * Ciaprizy = Gy (A.1)

over U, NUg NU,. This local expression can serve as a justification of the
term P-twisted G-bundle.

We next turn to morphisms. A morphism f between P-twisted bundles
(@, ) and (Q',9) which are represented by twisted cocycles gog and g5 is
represented by a coboundary

lo = (t/a)fl < f(ta) : Uy — H

between the H-valued cocycles h,g and h’aﬁ. Since f satisfies ¢ o f = ¢,
the J-component wol, : Uy, — H — J is given by the constant function to
e € J. Hence the local data describing the morphism f reduce to a family
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of functions
ko : Uy — G

Under the multiplication (3.1), the coboundary relation I, - hog = h’aﬁ g
translates into

Koo “(90p) * Cesjus = Gng = % (K5) - Cjagre-

One can easily conclude from the Definition 3.1 of a weak action that %9 = g
and c. 4 = ¢4 = € for all g € G. Hence this condition reduces to the condi-
tion

kq - Jap = g;ﬁ - Jas (k,@) (AQ)

We are now ready to present a classification of P-twisted bundles in terms
of Cech-cohomology.

Therefore we define the relevant cohomology set:

Definition A.1.1. Let {Ua} be a contractible cover of M and (j,g) be a
Cech-cocycle with values in J.

o A (jop)-twisted Cech-cocycle is given by a family
Jap : Ua NUg — G

satisfying relation (A.1).
e Two such cocycles gqg and g, ;3 are cobordant if there exists a cobound-
ary, that is a family of functions k, : U, — G satisfying relation (A.2).
e The twisted Cech-cohomology set H}aﬁ (M, G) is defined as the quotient
of twisted cocycles modulo coboundaries.

Warning A.1.2. It might be natural to guess that twisted Cech-cohomology
H}aﬁ(M, G) agrees with the preimage of the class [jag] under the map

7, : HY (M, H) — HY (M, J). This turns out to be wrong: The natural map
1 1
Hjag(Mv G) —H (M7 H)7 (AB)
[9a8] = (90 Jap)]; (A.4)

is, in general, not injective. The image of this map is always the fibre
71 .
T []ozﬁ]'
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We summarize our findings:
Proposition A.1.3. Let P be a J-cover of M, described by the cocycle jop
over the contractible open cover {Ua}. Then there is a canonical bijection

<1 ~ J Isomorphism classes of P-twisted
Hjaﬁ(M’ G) = { G-bundles over M

A.2 Character theory for action groupoids

In this subsection, we explicitly work out a character theory for finite action
groupoids M //G; in the case of M = pt, this theory specializes to the char-
acter theory of a finite group (cf. [23,41]). In the special case of a finite action
groupoid coming from a finite crossed module, a character theory including
orthogonality relation has been presented in [2]. In the sequel, let K be a
field and denote by Vectg(M//G) the category of K-linear representations
of M//G.

Definition A.2.4. Let ((Vin)menm, (p(9))gec) be a K- linear representation
of the action groupoid M//G and denote by P(m) the projection of V =
@D,.car Vn to the homogeneous component V;,,. We call the function

X:MxG—=K,
x(m, g) == Try(p(g)P(m))
the character of the representation.
Example A.2.5. On the K-vector space H := K(M) ® K[G] with canon-
ical basis (0 ® g)mem gec, We define a grading by H,, = @, K(g.m ® g)
and a group action by p(g)(d;, ® h) = §, ® gh. This defines an object in

Vectg (M//G), called the regular representation. The character is easily
calculated in the canonical basis and found to be

(n,h)EM G

Definition A.2.6. We call a function

f:MxG—-K



354 JENNIFER MAIER ET AL.
an action groupoid class function on M//G, if it satisfies
f(m,g)=0if gm#m and f(h.m,hgh™) = f(m,g).
The character of any finite-dimensional representation is a class function.

j, From now on, we assume that the characteristic of K does not divide
the order |G| of the group G. This assumption allows us to consider the
following normalized non-degenerate symmetric bilinear form

Gl = S fmg ) (mg). (A.5)

’G| geG,meM

In the case of complex representations, one can show, precisely as in the
case of groups, the equality x(m, g~!) = x(m, g) which allows introduce the
Hermitian scalar product

0ox) == Y. x(mg)x'(m,g). (A.6)

Lemma A.2.7. Let K be algebraically closed. The characters of irreducible
M/ |G -representations are orthogonal and of unit length with respect to the
bilinear form (A.5).

Proof. The proof proceeds as in the case of finite groups: for a linear map
f: V. — W on the vector spaces underlying two irreducible representations,
one considers the intertwiner

1 _
= @l > pwlg ) Pw(m)fPy(m)py(9), (A7)
geG,meM
and applies Schur’s lemma. O

A second orthogonality relation
Z xi(m, g)xi(n,h1) = Z §(n, zzm)d(h, zgz~1)
iel zeG

can be derived as in the case of finite groups, as well.

Combining the orthogonality relations with the explicit form for the char-
acter of the regular representation, we derive in the case of an algebraically



J-EQUIVARIANT DIJKGRAAF-WITTEN THEORY 356

closed field whose characteristic does not divide the order |G| use a standard
reasoning:

Lemma A.2.8. FEvery irreducible representation V; is contained in the reg-
ular representation with multiplicity d; := dimg V;.

As a consequence, the following generalization of Burnside’s Theorem
holds:

Proposition A.2.9. Denote by (V;)icr a set of representatives for the iso-
morphism classes of simple representations of the action groupoid and by
d; := dimg V; the dimension of the simple object. Then

> i = MG

el

Proof. One combines the relation dim H = ), _; d; dim V; from Lemma A.2.8
with the relation dim H = |M||G]. O

In complete analogy to the case of finite groups, one then shows:

Proposition A.2.10. The irreducible characters of M//G form an orthog-

onal basis of the space of class functions with respect to the scalar product
(A5).

The above proposition allows us to count the number of irreducible rep-
resentations. On the set

A:={(m,g)lgm=m} C M xG

the group G naturally acts by h.(m, g) := (h.m,hgh™'). A class function of
M//G is constant on G-orbits of A; it vanishes on the complement of A in
M x G. We conclude that the number of irreducible characters equals the
number of G-orbits of A.

This can be rephrased as follows: the set A is equal to the set of objects
of the inertia groupoid A(M//G) :=[e//Z,M//G]. Thus the number of
G-orbits of A equals the number of isomorphism classes of objects in A(M//G),
thus |I] = |Iso(A(M//G))].
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